1
|
Xue L, Liu R, Qiu T, Zhuang H, Li H, Zhang L, Yin R, Jiang T. Design, synthesis, and activity evaluation of novel STING inhibitors based on C170 and H151. Eur J Med Chem 2025; 290:117533. [PMID: 40157312 DOI: 10.1016/j.ejmech.2025.117533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Stimulating the STING signaling pathway for immune system activation is considered a promising strategy for cancer treatment. However, activating the STING pathway can lead to adverse effects, as aberrant activation or specific mutations in STING may result in autoimmune and inflammatory diseases. Therefore, the development of STING inhibitors is equally important. In this study, we first introduced hydroxyl groups into the STING inhibitors C170 and H151, creating functional sites for further modification. Then the introduction of various substituents resulted in the identification of more potent inhibitors, Y2 and HY2, which effectively suppressed the activation of the STING pathway in THP1 and RAW264.7 cells. Compounds Y2 and HY2 demonstrated potent anti-inflammatory effects in mice cisplatin-induced acute kidney injury models by inhibiting the STING pathway. Collectively, Y2 and HY2 warrant further investigation as novel anti-inflammatory agents.
Collapse
Affiliation(s)
- Liang Xue
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Ruixue Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Tingting Qiu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Huiying Zhuang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Hongwei Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Lican Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Ruijuan Yin
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266237, China.
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Center for Innovative Drug Discovery, Greater Bay Area Institute of Precision Medicine (Guangzhou), Guangzhou, 511455, China.
| |
Collapse
|
2
|
Guilbaud L, Chen C, Domingues I, Kavungere EK, Marotti V, Yagoubi H, Zhang W, Malfanti A, Beloqui A. Oral Lipid-Based Nanomedicine for the Inhibition of the cGAS-STING Pathway in Inflammatory Bowel Disease Treatment. Mol Pharm 2025; 22:2108-2121. [PMID: 40032274 PMCID: PMC11979890 DOI: 10.1021/acs.molpharmaceut.4c01297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Harnessing the effect of the cyclic GMP-AMP Synthase-STimulator of INterferon Genes (cGAS-STING) signaling pathway has emerged as a promising approach to developing novel strategies for the oral treatment of inflammatory bowel disease (IBD). In this work, we screened different cGAS-STING inhibitors in vitro in murine macrophages. Then, we encapsulated the cGAS-STING inhibitor H-151 within lipid nanocapsules (LNCs), owing to their inherent ability to induce the secretion of glucagon-like peptide 2 (GLP-2), a re-epithelizing peptide, upon oral administration. We demonstrated that our formulation (LNC(H-151)) could induce GLP-2 secretion and selectively target the cGAS-STING pathway and its downstream key markers (including TBK1 and pTBK1) while reducing the expression of pro-inflammatory cytokines associated with the cGAS-STING pathway (TNF-α and CXCL10) in murine macrophages. In an in vivo acute dextran sodium sulfate (DSS)-induced colitis mouse model, the oral administration of LNC(H-151) significantly reduced pro-inflammatory cytokines to levels comparable to the CTRL Healthy group while promoting mucosal healing. The therapeutic potential of this scalable and cost-effective nanomedicine warrants further investigation as an alternative for the oral treatment of IBD.
Collapse
Affiliation(s)
- Léo Guilbaud
- Louvain
Drug Research Institute, Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Cheng Chen
- Louvain
Drug Research Institute, Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Inês Domingues
- Louvain
Drug Research Institute, Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Espoir K. Kavungere
- Louvain
Drug Research Institute, Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Valentina Marotti
- Louvain
Drug Research Institute, Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Hafsa Yagoubi
- Louvain
Drug Research Institute, Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Wunan Zhang
- Louvain
Drug Research Institute, Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Alessio Malfanti
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Ana Beloqui
- Louvain
Drug Research Institute, Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
- WEL
Research Institute, Avenue
Pasteur, 6, 1300 Wavre, Belgium
| |
Collapse
|
3
|
Chen L, Hu L, Chang H, Mao J, Ye M, Jin X. DNA-RNA hybrids in inflammation: sources, immune response, and therapeutic implications. J Mol Med (Berl) 2025:10.1007/s00109-025-02533-0. [PMID: 40131443 DOI: 10.1007/s00109-025-02533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
Cytoplasmic DNA-RNA hybrids are emerging as important immunogenic nucleic acids, that were previously underappreciated. DNA-RNA hybrids, formed during cellular processes like transcription and replication, or by exogenous pathogens, are recognized by pattern recognition receptors (PRRs), including cGAS, DDX41, and TLR9, which trigger immune responses. Post-translational modifications (PTMs) including ubiquitination, phosphorylation, acetylation, and palmitoylation regulate the activity of PRRs and downstream signaling molecules, fine-tuning the immune response. Targeting enzymes involved in DNA-RNA hybrid metabolism and PTMs regulation offers therapeutic potential for inflammatory diseases. Herein, we discuss the sources, immune response, and therapeutic implications of DNA-RNA hybrids in inflammation, highlighting the significance of DNA-RNA hybrids as potential targets for the treatment of inflammation.
Collapse
Affiliation(s)
- Litao Chen
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Lechen Hu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Han Chang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jianing Mao
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
4
|
Cao Z, Zhang Y, Jia H, Sun X, Feng Y, Wu H, Xu B, Wei Z. Immune checkpoint inhibitors mediate myocarditis by promoting macrophage polarization via cGAS/STING pathway. Cytokine 2025; 187:156873. [PMID: 39884185 DOI: 10.1016/j.cyto.2025.156873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/16/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Immune checkpoint inhibitors has opened up new avenues for cancer treatment, but serious cardiac injury has emerged in their use. A large number of data have shown that abnormal activation of cytosolic DNA-sensing cyclic GMP-AMP synthase-interferon gene activator pathway is closely related to cardiovascular inflammation and autoimmune diseases. However, the pathophysiological function of the cGAS-STING cascade in myocarditis induced by Immune checkpoint inhibitors is unclear. METHODS In order to establish a Immune checkpoint inhibitors-associated myocarditis model, BALB/c mice were injected with mouse cardiac troponin I peptide and anti-mouse programmed death 1 antibody. Echocardiography and HE staining were then performed to assess cardiac function and inflammation. Macrophages and damaged DNA in mouse heart tissue were detected by immunofluorescence. The mitochondrial damage of macrophages was observed by electron microscope. In vitro experiments, RAW264.7 was used to detect macrophage polarization after anti-PD-1 antibody induction and STING inhibition by qPCR and flow cytometry. Mitochondrial damage was detected by immunofluorescence, and activation of the cGAS-STING signaling pathway was evaluated by protein imprinting analysis. RESULTS In the Immune checkpoint inhibitors-associated myocarditis model, DNA damage was found to activate the cGAS-STING pathway and macrophages were polarized to M1 type. In vitro experiments, anti-PD-1 antibody activate the cGAS-STING pathway through the release of damaged DNA from macrophage mitochondrial damage, causing macrophage polarization into a pro-inflammatory phenotype leading to autoimmune myocarditis. CONCLUSION Our results suggested that the cGAS-STING pathway played a key role in myocarditis caused by immune checkpoint inhibitors. It provided a new possibility for Immune checkpoint inhibitors to be widely used in clinic.
Collapse
Affiliation(s)
- Zhenzhu Cao
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China
| | - Yu Zhang
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China
| | - Huihui Jia
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China
| | - Xuan Sun
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China
| | - Yuting Feng
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China
| | - Han Wu
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China.
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China.
| | - Zhonghai Wei
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China; Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China.
| |
Collapse
|
5
|
Jin Z, Zhang Y, Luo X, Geng M, Duan W, Xie Z, Zhang H. Design, synthesis, and evaluation of thiazolecarboxamide derivatives as stimulator of interferon gene inhibitors. Mol Divers 2025; 29:397-423. [PMID: 38683489 DOI: 10.1007/s11030-024-10860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 05/01/2024]
Abstract
Stimulator of interferon gene (STING) plays critical roles in the cytoplasmic DNA-sensing pathway and in the induction of inflammatory response. Aberrant cytoplasmic DNA accumulation and STING activation are implicated in numerous inflammatory and autoimmune diseases. Here, we reported the discovery of a series of thiazolecarboxamide-based STING inhibitors through a molecular planarity/symmetry disruption strategy. The privileged compound 15b significantly inhibited STING signaling and suppressed immune-inflammatory cytokine levels in both human and murine cells. In vivo experiments demonstrated 15b effectively ameliorated immune-inflammatory cytokines upregulation in MSA-2-stimulated and Trex1-D18N mice. Furthermore, compound 15b exhibited enhanced efficacy in suppressing interferon-stimulated gene 15 (ISG15), a critical positive feedback regulator of STING. Overall, compound 15b deserves further development for the treatment of STING-associated inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Zechen Jin
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Xin Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xian Lin Road, Nanjing, 210023, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, Shandong, China
| | - Wenhu Duan
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, Shandong, China
| | - Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| | - Hefeng Zhang
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| |
Collapse
|
6
|
Li Z, Mao C, Zhao Y, Zhao Y, Yi H, Liu J, Liang J. The STING antagonist SN-011 ameliorates cisplatin induced acute kidney injury via suppression of STING/NF-κB-mediated inflammation. Int Immunopharmacol 2025; 146:113876. [PMID: 39709905 DOI: 10.1016/j.intimp.2024.113876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/17/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
Acute kidney injury (AKI) is a critical clinical syndrome associated with both innate and adaptive immune responses and thus increases mortality. Nevertheless, specific therapeutics for AKI are scarce so far. Recent studies have revealed that knockout of STING alleviate AKI, suggesting that STING could be an attractive target for AKI therapy. SN-011, a promising STING inhibitor, has not been reported in studies of its anti-AKI activity. In this study, we sought to examine the effects of SN-011 on AKI and explore its underlying mechanism. Our findings indicate that SN-011 could modulate the NF-κB and MAPK pathways, suppress the expression of inflammatory factors, and decrease ROS release in the cisplatin-induced cell model. In addition, SN-011 blocked the nuclear translocation of NF-κB p65, further mitigating the inflammatory response. In vivo, SN-011 enhanced survival rates and alleviated renal dysfunction. According to gene set enrichment analysis of sequencing data from mouse kidneys, we further confirm that SN-011 modulates the NF-κB and MAPK pathways. Our study suggests that SN-011 could be an attractive anti-inflammatory agent for further anti-AKI research.
Collapse
Affiliation(s)
- Ziyang Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Can Mao
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yixin Zhao
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yanbin Zhao
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Hanyu Yi
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Jin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Jinqiang Liang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| |
Collapse
|
7
|
Hu J, Tian M. The cGAS-STING pathway in ischemia-reperfusion injury in acute cerebral infarction: a new therapeutic opportunities? Front Neurol 2024; 15:1471287. [PMID: 39741707 PMCID: PMC11685085 DOI: 10.3389/fneur.2024.1471287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
The innate immune response is the body's first line of defense against external pathogens and endogenous damage signals. The cGAS-STING pathway is a crucial component of the innate immune response, playing a key role in initiating antiviral and anti-infective immune responses by recognizing cytosolic DNA. Acute cerebral infarction is one of the leading causes of death and disability worldwide, with the primary treatment approach being the restoration of blood flow to ischemic brain tissue. However, reperfusion injury remains a significant challenge during treatment. The overactivation of the cGAS-STING pathway and its association with ischemia-reperfusion injury have been confirmed in numerous studies. This article will systematically elucidate the mechanisms of the cGAS-STING pathway, its role in ischemia-reperfusion injury in acute cerebral infarction, the current research status of cGAS-STING inhibitors, and the application of nanomaterials in this context, evaluating the therapeutic potential of this pathway.
Collapse
Affiliation(s)
- Jun Hu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Mengxiang Tian
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Wang H, Wu X, Li Z, Rong K, Gao S, Tang W, Zhang J. Novel Glycyrrhetin Ureas Possessing 2-Hydroxy-3-enone A Ring: Modification, Anti-inflammatory Activity, and Targeted STING for the Remedy of Acute Kidney Injury. ACS OMEGA 2024; 9:48821-48834. [PMID: 39676967 PMCID: PMC11635493 DOI: 10.1021/acsomega.4c09003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Glycyrrhetin urea has emerged as a privileged scaffold with anti-inflammatory activity for the treatment and prevention of acute kidney injury (AKI). In this study, structural modifications of the A ring of glycyrrhetinic acid yielded a series of urea derivatives, among which compound 7o exhibited the most promising anti-inflammatory activity. 7o was confirmed to interact with STING through a cellular heat shift assay and to inhibit the STING/NF-κB pathway in RAW264.7 cells. It acted on the STING pathway, inhibited NF-κB phosphorylation, and subsequently reduced the level of release of inflammatory factors. Additionally, 7o significantly increased the survival rate of renal tubular epithelial cells, demonstrating a protective effect against cisplatin-induced cell death and mitigating inflammation activation. The in vivo AKI mouse model showed that 7o significantly downregulated serum creatinine (Scr), blood urea nitrogen (BUN), and levels of inflammatory factors (IL-1β, IL-6, and TNF-α), thereby improving renal function. Morphological analysis revealed that 7o attenuated the cisplatin-induced renal tubular injury. Therefore, 7o represents a promising lead for the prevention and treatment of AKI.
Collapse
Affiliation(s)
- Hongbo Wang
- Department
of Pharmacy, Shandong Medical College, Linyi 276000, People’s Republic of China
- School
of Pharmacy, Anhui Medical University, Hefei 230032, People’s Republic of China
| | - Xiaoming Wu
- School
of Pharmacy, Anhui Medical University, Hefei 230032, People’s Republic of China
| | - Ziyun Li
- School
of Pharmacy, Anhui Medical University, Hefei 230032, People’s Republic of China
| | - Kuanrong Rong
- School
of Pharmacy, Anhui Medical University, Hefei 230032, People’s Republic of China
| | - Shan Gao
- School
of Pharmacy, Anhui Medical University, Hefei 230032, People’s Republic of China
| | - Wenjian Tang
- School
of Pharmacy, Anhui Medical University, Hefei 230032, People’s Republic of China
| | - Jing Zhang
- Anhui
Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People’s Hospital, Hefei 230041, People’s Republic of China
| |
Collapse
|
9
|
Xue L, Liu R, Zhang L, Qiu T, Liu L, Yin R, Jiang T. Discovery of novel nitrofuran PROTAC-like compounds as dual inhibitors and degraders targeting STING. Eur J Med Chem 2024; 279:116883. [PMID: 39303513 DOI: 10.1016/j.ejmech.2024.116883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Aberrant activation of the innate immune molecule STING can initiate inflammation and autoimmune diseases. Small molecule inhibitors targeting STING have demonstrated therapeutic efficacy against these conditions. Moreover, employing degradants to target STING represents a novel approach to drug design strategy. Consequently, we have designed and synthesized a series of covalent degradants targeting STING. Among them, compound P8 exhibited the highest degradation capacity, with a 24-h DC50 of 2.58 μM in THP-1 cells. In THP-1 cells, P8 specifically degraded STING proteins through the lysosomal pathway, acting as dual a degrader and inhibitor to manifest anti-inflammatory effects. Conversely, in RAW264.7 cells, P8 solely acted as an inhibitor without exhibiting degradative capacity towards the STING protein level. Additionally, P8 displayed renal-protective properties in a cisplatin-induced acute kidney injury model. These results highlight the significant potential of further investigating compound P8.
Collapse
Affiliation(s)
- Liang Xue
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Ruixue Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Lican Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Tingting Qiu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Lu Liu
- Marine Biomedical Research Institute of Qingdao, Qingdao, 266237, China
| | - Ruijuan Yin
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266237, China.
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Center for Innovative Drug Discovery, Greater Bay Area Institute of Precision Medicine (Guangzhou), Guangzhou, 511455, China.
| |
Collapse
|
10
|
Xia L, Jiang JH, Liu JY, Zhang TY, Dong YX, Liu QH, Chai YF, Liu YC, Shou ST. H-151 attenuates lipopolysaccharide-induced acute kidney injury by inhibiting the STING-TBK1 pathway. Ren Fail 2024; 46:2363591. [PMID: 38856314 PMCID: PMC11168233 DOI: 10.1080/0886022x.2024.2363591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/30/2024] [Indexed: 06/11/2024] Open
Abstract
Sepsis is a severe systemic infectious disease that often leads to multi-organ dysfunction. One of the common and serious complications of sepsis is renal injury. In this study, we aimed to investigate the potential mechanistic role of a novel compound called H-151 in septic kidney injury. We also examined its impact on renal function and mouse survival rates. Initially, we confirmed abnormal activation of the STING-TBK1 signaling pathway in the kidneys of septic mice. Subsequently, we treated the mice with H-151 and observed significant improvement in sepsis-induced renal dysfunction. This was evidenced by reductions in blood creatinine and urea nitrogen levels, as well as a marked decrease in inflammatory cytokine levels. Furthermore, H-151 substantially improved the seven-day survival rate of septic mice, indicating its therapeutic potential. Importantly, H-151 also exhibited an inhibitory effect on renal apoptosis levels, further highlighting its mechanism of protecting against septic kidney injury. These study findings not only offer new insights into the treatment of septic renal injury but also provide crucial clues for further investigations into the regulatory mechanisms of the STING-TBK1 signaling pathway and potential drug targets.
Collapse
Affiliation(s)
- Lei Xia
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Jia-hui Jiang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie-yu Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Tian-yi Zhang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu-xin Dong
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Qi-hui Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-Fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Song-tao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
11
|
Zhu J, Yuan A, Le Y, Chen X, Guo J, Liu J, Chen H, Wang CY, Lu D, Lu K. Yi-Qi-Jian-Pi-Xiao-Yu formula inhibits cisplatin-induced acute kidney injury through suppressing ferroptosis via STING-NCOA4-mediated ferritinophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156189. [PMID: 39515100 DOI: 10.1016/j.phymed.2024.156189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The kidneys are the primary excretory organs for platinum drugs, making them susceptible to damage from these drugs. Cisplatin-induced acute kidney injury (CIAKI) is the most common side effect observed in patients undergoing clinical cisplatin treatment. A traditional Chinese medicinal preparation, the Yi-Qi-Jian-Pi-Xiao-Yu formula (YQJPXY), which is a modified formulation of the classical Chinese medicine formula Buyang Huanwu Decoction, has long been used in the treatment of clinical kidney diseases. It is expected to be used to ameliorate cisplatin-induced acute kidney injury. However, the mechanism of this YQJPXY for the treatment of cisplatin-induced acute kidney injury remains unclear. PURPOSE The objective of this study is to examine the impact of the YQJPXY on the inhibition of ferroptosis in cisplatin-induced acute kidney injury and to elucidate the underlying mechanisms. METHODS The active components of YQJPXY were analysed using UPLC-MS/MS. A comprehensive investigation was conducted to elucidate the effects and regulatory mechanisms of YQJPXY on CIAKI and ferroptosis in mice subjected to acute cisplatin treatment and in mice receiving cisplatin treatment after STING expression was inhibited using the STING inhibitor C176. The renoprotective effect of YQJPXY on cisplatin-treated mice was evaluated by measuring tissue damage, inflammation and pro-fibrosis. In addition, we employed network pharmacology and molecular docking methodologies to analyse the principal regulatory targets of YQJPXY. Furthermore, the expression of key proteins and markers of ferroptosis and iron metabolism, as well as the levels of key indicators related to STING-associated ferritinophagy, were examined by immunoblotting, immunohistochemistry, immunoprecipitation, quantitative real-time PCR (qPCR) and specific probes. RESULTS The results demonstrated that YQJPXY reduced the levels of indicators of injury, inflammation and pro-fibrosis in CIAKI mice, with renoprotective effects. Network pharmacological analyses revealed that ferroptosis might be the main biological process regulated by YQJPXY. Furthermore, molecular docking results indicated that STING might be a potential regulatory target of YQJPXY. Furthermore, YQJPXY treatment resulted in a significant reduction in MDA and 4-HNE levels, as well as the inhibition of ferroptosis and improvement in iron metabolic processes. Concomitantly, YQJPXY exhibited a robust protective effect on ferroptosis and iron metabolism homeostasis, as evidenced by its inhibitory action on ferritinophagy. Validation experiments utilising the cisplatin inhibitor C176 demonstrated that YQJPXY inhibits cisplatin-induced ferroptosis in kidney via STING-mediated ferritinophagy. CONCLUSION These suggest that YQJPXY alleviates cisplatin-induced acute kidney injury through suppressing ferroptosis via STING-NCOA4-mediated Ferritinophagy.
Collapse
Affiliation(s)
- Ji Zhu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou 330061, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Aini Yuan
- Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yifei Le
- Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaohui Chen
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Jianan Guo
- Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jing Liu
- Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hang Chen
- Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Cai-Yi Wang
- Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Dezhao Lu
- Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Keda Lu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou 330061, China.
| |
Collapse
|
12
|
Zhou G, Wang X, Guo M, Qu C, Gao L, Yu J, Li Y, Luo S, Shi Q, Guo Y. Mitophagy deficiency activates stimulator of interferon genes activation and aggravates pathogenetic cardiac remodeling. Genes Dis 2024; 11:101074. [PMID: 39281830 PMCID: PMC11399633 DOI: 10.1016/j.gendis.2023.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/11/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2024] Open
Abstract
Stimulator of interferon genes (STING) has recently been found to play a crucial role in cardiac sterile inflammation and dysfunction. The role of stimulator of interferon genes (STING) in cardiac sterile inflammation and dysfunction has been recently discovered. This study aims to examine the involvement of STING in pathological cardiac remodeling and the mechanisms that govern the activation of the STING pathway. To investigate this, transverse aortic constriction (TAC) was performed on STING knockout mice to induce pressure overload-induced cardiac remodeling. Subsequently, cardiac function, remodeling, and inflammation levels were evaluated. The STING pathway was found to be activated in the pressure overload-stressed heart and angiotensin II (Ang II)-stimulated cardiac fibroblasts. Loss of STING expression led to a significant reduction in inflammatory responses, mitochondrial fragmentation, and oxidative stress in the heart, resulting in attenuated cardiac remodeling and dysfunction. Furthermore, the exacerbation of pressure overload-induced STING-mediated inflammation and pathological cardiac remodeling was observed when mitophagy was suppressed through the silencing of Parkin, an E3 ubiquitin ligase. Taken together, these findings indicate that STING represents a newly identified and significant molecule implicated in the process of pathological cardiac remodeling and that mitophagy is an upstream mechanism that regulates STING activation. Targeting STING may therefore provide a novel therapeutic strategy for pathological cardiac remodeling and heart failure.
Collapse
Affiliation(s)
- Guoxiang Zhou
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mingyu Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Can Qu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lei Gao
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiang Yu
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuanjing Li
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Suxin Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qiong Shi
- The Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medical Diagnostics, Chongqing Medical University, Chongqing 400016, China
| | - Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
13
|
Ewees MGED, Mostafa-Hadeab G, Saber S, El-Meguid EAA, Sree HTA, Abdel Rahman FEZS, Mahmoud NI. Linagliptin mitigates cisplatin-induced kidney impairment via mitophagy regulation in rats, with emphasis on SIRT-3/PGC-1α, PINK-1 and Parkin-2. Toxicol Appl Pharmacol 2024; 491:117048. [PMID: 39102946 DOI: 10.1016/j.taap.2024.117048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Cisplatin (CDDP) often leads to kidney impairment, limiting its effectiveness in cancer treatment. The lack of mitophagy in proximal tubules exacerbates this issue. Hence, targeting SIRT-3 and PGC1-α shows promise in mitigating CDDP-induced kidney damage. The potential renoprotective effects of linagliptin, however, remain poorly understood. This study represents the first exploration of linagliptin's impact on CDDP-induced kidney impairment in rats, emphasizing its potential role in mitophagic pathways. The experiment involved four rat groups: Group (I) received saline only, Group (II) received a single intraperitoneal injection of CDDP at 6 mg/kg. Groups (III) and (IV) received linagliptin at 6 and 10 mg/kg p.o., respectively, seven days before CDDP administration, continuing for an additional four days. Various parameters, including renal function tests, oxidative stress, TNF-α, IL-1β, IL-6, PGC-1α, FOXO-3a, p-ERK1, and the gene expression of SIRT-3 and P62 in renal tissue, were assessed. Linagliptin improved renal function, increased antioxidant enzyme activity, and decreased IL-1β, TNF-α, and IL-6 expression. Additionally, linagliptin significantly upregulated PGC-1α and PINK-1/Parkin-2 expression while downregulating P62 expression. Moreover, linagliptin activated FOXO-3a and SIRT-3, suggesting a potential enhancement of mitophagy. Linagliptin demonstrated a positive impact on various factors related to kidney health in the context of CDDP-induced impairment. These findings suggest a potential role for linagliptin in improving cancer treatment outcomes. Clinical trials are warranted to further investigate and validate its efficacy in a clinical setting.
Collapse
Affiliation(s)
- Mohamed Gamal El-Din Ewees
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 11787, Egypt.
| | - Gomaa Mostafa-Hadeab
- Department of Pharmacology, Medical College, Jouf University, Sakaka 11564, Saudi Arabia.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Eman Ali Abd El-Meguid
- Department of Anatomy and Embryology, Faculty of Medicine, Fayoum University, Fayoum 63511, Egypt.
| | - Haidy Tamer Abo Sree
- Department of Basic Sciences, Biochemistry, Faculty of Oral and Dental Medicine, Nahda University, Beni-Suef 11787, Egypt.
| | | | - Nesreen Ishak Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 11787, Egypt
| |
Collapse
|
14
|
Li Y, Zhao D, Chen D, Sun Q. Targeting protein condensation in cGAS-STING signaling pathway. Bioessays 2024; 46:e2400091. [PMID: 38962845 DOI: 10.1002/bies.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
The cGAS-STING signaling pathway plays a pivotal role in sensing cytosolic DNA and initiating innate immune responses against various threats, with disruptions in this pathway being associated with numerous immune-related disorders. Therefore, precise regulation of the cGAS-STING signaling is crucial to ensure appropriate immune responses. Recent research, including ours, underscores the importance of protein condensation in driving the activation and maintenance of innate immune signaling within the cGAS-STING pathway. Consequently, targeting condensation processes in this pathway presents a promising approach for modulating the cGAS-STING signaling and potentially managing associated disorders. In this review, we provide an overview of recent studies elucidating the role and regulatory mechanism of protein condensation in the cGAS-STING signaling pathway while emphasizing its pathological implications. Additionally, we explore the potential of understanding and manipulating condensation dynamics to develop novel strategies for mitigating cGAS-STING-related disorders in the future.
Collapse
Affiliation(s)
- Yajie Li
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Dongbo Zhao
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Pastora L, Namburu NS, Arora K, Christov PP, Wilson JT. STING-Pathway Inhibiting Nanoparticles (SPINs) as a Platform for Treatment of Inflammatory Diseases. ACS APPLIED BIO MATERIALS 2024; 7:4867-4878. [PMID: 38563162 PMCID: PMC11337154 DOI: 10.1021/acsabm.3c01305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Aberrant activation of the cyclic GMP-AMP synthase (cGAS)/Stimulator of Interferon Genes (STING) pathway has been implicated in the development and progression of a myriad of inflammatory diseases including colitis, nonalcoholic steatohepatitis, amyotrophic lateral sclerosis (ALS), and age-related macular degeneration. Thus, STING pathway inhibitors could have therapeutic application in many of these inflammatory conditions. The cGAS inhibitor RU.521 and the STING inhibitor H-151 have shown promise as therapeutics in mouse models of colitis, ALS, and more. However, these agents require frequent high-dose intraperitoneal injections, which may limit translatability. Furthermore, long-term use of systemically administered cGAS/STING inhibitors may leave patients vulnerable to viral infections and cancer. Thus, localized or targeted inhibition of the cGAS/STING pathway may be an attractive, broadly applicable treatment for a variety of STING pathway-driven ailments. Here we describe STING-Pathway Inhibiting Nanoparticles (SPINS)-poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with RU.521 and H-151-as a platform for enhanced and sustained inhibition of cGAS/STING signaling. We demonstrate that SPINs are equally or more effective at inhibiting type-I interferon responses induced by cytosolic DNA than free H-151 or RU.521. Additionally, we describe a SPIN formulation in which PLGA is coemulsified with poly(benzoyloxypropyl methacrylamide) (P(HPMA-Bz)), which significantly improves drug loading and allows for tunable release of H-151 over a period of days to over a week by varying P(HPMA-Bz) content. Finally, we find that all SPIN formulations were as potent or more potent in inhibiting cGAS/STING signaling in primary murine macrophages, resulting in decreased expression of inflammatory M1-like macrophage markers. Therefore, our study provides an in vitro proof-of-concept for nanoparticle delivery of STING pathway inhibitors and positions SPINs as a potential platform for slowing or reversing the onset or progression of cGAS/STING-driven inflammatory conditions.
Collapse
Affiliation(s)
- Lucinda
E. Pastora
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Neeraj S. Namburu
- School
for Science and Math at Vanderbilt, Vanderbilt
University, Nashville, Tennessee 37212, United States
| | - Karan Arora
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Plamen P. Christov
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37212, United States
| | - John T. Wilson
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37212, United States
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Vanderbilt
Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, Tennessee 37212, United States
- Vanderbilt
Center for Immunobiology, Vanderbilt University
Medical Center, Nashville Tennessee 37232, United States
- Vanderbilt
Ingram Cancer Center, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Digestive Diseases Research Center, Vanderbilt
University Medical Center, Nashville Tennessee 37232, United States
| |
Collapse
|
16
|
Gong W, Lu L, Ma H, Shan M, Fan X, Bai M, Zhang Y, Huang S, Jia Z, Zhang A. DY131 activates ERRγ/TFAM axis to protect against metabolic disorders and acute kidney injury. Clin Sci (Lond) 2024; 138:777-795. [PMID: 38860674 DOI: 10.1042/cs20240242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 06/12/2024]
Abstract
Renal tubular injury is considered as the main pathological feature of acute kidney injury (AKI), and mitochondrial dysfunction in renal tubular cells is implicated in the pathogenesis of AKI. The estrogen-related receptor γ (ERRγ) is a member of orphan nuclear receptors which plays a regulatory role in mitochondrial biosynthesis, energy metabolism and many metabolic pathways. Online datasets showed a dominant expression of ERRγ in renal tubules, but the role of ERRγ in AKI is still unknown. In the present study, we investigated the role of ERRγ in the pathogenesis of AKI and the therapeutic efficacy of ERRγ agonist DY131 in several murine models of AKI. ERRγ expression was reduced in kidneys of AKI patients and AKI murine models along with a negative correlation to the severity of AKI. Consistently, silencing ERRγ in vitro enhanced cisplatin-induced tubular cells apoptosis, while ERRγ overexpression in vivo utilizing hydrodynamic-based tail vein plasmid delivery approach alleviated cisplatin-induced AKI. ERRγ agonist DY131 could enhance the transcriptional activity of ERRγ and ameliorate AKI in various murine models. Moreover, DY131 attenuated the mitochondrial dysfunction of renal tubular cells and metabolic disorders of kidneys in AKI, and promoted the expression of the mitochondrial transcriptional factor A (TFAM). Further investigation showed that TFAM could be a target gene of ERRγ and DY131 might ameliorate AKI by enhancing ERRγ-mediated TFAM expression protecting mitochondria. These findings highlighted the protective effect of DY131 on AKI, thus providing a promising therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Wei Gong
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Lingling Lu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Haoyang Ma
- Department of Geriatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Mingfeng Shan
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Xinwen Fan
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mi Bai
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Tan S, Liu M, Feng F, Li R, Tian R, Nie Z. Exploring the pathogenesis and immunological profiles of psoriasis complicated with MASLD. PLoS One 2024; 19:e0305217. [PMID: 38917217 PMCID: PMC11198785 DOI: 10.1371/journal.pone.0305217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Both psoriasis and metabolic dysfunction-associated steatotic liver disease (MASLD) are immune-mediated chronic inflammatory diseases. Psoriasis manifests itself mainly as skin damage, while MASLD mainly involves the liver promoting liver fibrosis, which has a significant impact on patient health and quality of life. Some clinical studies have shown that there are mutually reinforcing mechanisms between these two diseases, but they are not clearly defined, and this paper aims to further explore their common pathogenesis. METHODS Gene expression profiling datasets (GSE30999, GSE48452) and single cell datasets (GSE151177, GSE186328) for psoriasis and MASLD were downloaded from the Gene Expression Omnibus (GEO) database. Common differential gene sets were obtained by gene differential analysis, and then functional enrichment of differential genes was performed to find associated transcription factors and PPI protein network analysis. Single-cell datasets were validated for gene expression and explored for cellular communication, gene set differential analysis and immune infiltration analysis. RESULTS We identified seven common differential genes, all of which were upregulated.The IL-17 pathway, tumor necrosis factor (TNF-α) pathway were shown in strong association with both diseases, and five transcription factors regulating the differential genes were predicted. Two key genes (MMP9, CXCL10) and three key transcription factors (TF) (IRF1, STAT1, NFKB1) were obtained by PPI protein network analysis. Single cell dataset verified the expression of key genes, and combined with gene set differential analysis, immune infiltration revealed that CD4+ T cells, NK cells and macrophages were heavily infiltrated in both diseases. IL-17, IL-1 and cGAS-STING pathways were highly expressed in both diseases, and both diseases share a similar immune microenvironment. CONCLUSIONS Our study reveals the common pathogenesis of psoriasis and MASLD from gene expression to immune cell similarities and differences, identifies key genes and regulatory pathways common to both, and elucidates the similarities in the immune microenvironment of both diseases, providing new ideas for subsequent studies on targeted therapy.
Collapse
Affiliation(s)
- Shuhui Tan
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingyue Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fei Feng
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruicheng Li
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Rui Tian
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | | |
Collapse
|
18
|
Zhang Q, Xiong Y, Li R, Wang X, Lin X, Tong Y. Targeting cGAS-STING signaling protects retinal ganglion cells from DNA damage-induced cell loss and promotes visual recovery in glaucoma. Aging (Albany NY) 2024; 16:9813-9823. [PMID: 38848144 PMCID: PMC11210238 DOI: 10.18632/aging.205900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/13/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Glaucoma is an optic neurodegenerative disease. Retinal ganglion cells (RGCs) are the fundamental neurons in the trabecular meshwork, and their loss is the main pathological reason for glaucoma. The present study was to investigate mechanisms that regulate RGCs survival. METHODS A mouse model of glaucoma was established by injecting hypertonic saline into the limbal veins. RGCs apoptosis was detected by using flow cytometry. Protein expressions in RGCs in response to DNA damage inducer cisplatin treatment were detected by immunofluorescence and western blot. The expressions of inflammatory cytokines were determined using ELISA and real-time PCR. RESULTS In the hypertonic saline-injected mice, we found visual function was impaired followed by the increased expression of γH2AX and activation of cGAS-STING signaling. We found that DNA damage inducer cisplatin treatment incurred significant DNA damage, cell apoptosis, and inflammatory response. Mechanistically, cisplatin treatment triggered activation of the cGAS-STING signaling by disrupting mitochondrial function. Suppression of cGAS-STING ameliorated inflammation and protected visual function in glaucoma mice. CONCLUSIONS The data demonstrated that cGAS-STING signaling is activated in the damaged retinal ganglion cells, which is associated with increased inflammatory responses, DNA damage, and mitochondrial dysfunction. Targeting the cGAS-STING signaling pathway represents a potential way to alleviate glaucoma-related visual function.
Collapse
Affiliation(s)
- Qiuli Zhang
- Department of Ophthalmology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Yinghuan Xiong
- Biotissue Repository, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Ruizhuang Li
- Department of Ophthalmology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Xiuqin Wang
- Department of Ophthalmology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Xu Lin
- Department of Ophthalmology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Ya’ni Tong
- Department of Ophthalmology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| |
Collapse
|
19
|
Calderón Guzmán D, Osnaya Brizuela N, Ortíz Herrera M, Valenzuela Peraza A, Labra Ruíz N, Juárez Olguín H, Santamaria del Angel D, Barragán Mejía G. N-Acetylcysteine Attenuates Cisplatin Toxicity in the Cerebrum and Lung of Young Rats with Artificially Induced Protein Deficiency. Int J Mol Sci 2024; 25:6239. [PMID: 38892427 PMCID: PMC11172823 DOI: 10.3390/ijms25116239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Neurotoxicity is a major obstacle in the effectiveness of Cisplatin in cancer chemotherapy. In this process, oxidative stress and inflammation are considered to be the main mechanisms involved in brain and lung toxicity. The aim of the present work was to study the influence of the amount of protein on some oxidative parameters in the brain and lungs of rats treated with Cisplatin (CP) and N-Acetylcysteine (NAC) as neuroprotectors. Four groups of Wistar rats, each containing six animals, were fed with a protein diet at 7% for 15 days. Thereafter, the groups were given either a unique dose of CP® 5 mg/kg or NAC® 5 mg/kg as follows: group 1 (control), NaCl 0.9% vehicle; group 2, CP; group 3, NAC; and group 4, NAC + CP. The animals were sacrificed immediately after the treatments. Blood samples were collected upon sacrifice and used to measure blood triglycerides and glucose. The brain and lungs of each animal were obtained and used to assay lipid peroxidation (TBARS), glutathione (GSH), serotonin metabolite (5-HIAA), catalase, and the activity of Ca+2, and Mg+2 ATPase using validated methods. TBARS, H2O2, and GSH were found to be significantly decreased in the cortex and cerebellum/medulla oblongata of the groups treated with CP and NAC. The total ATPase showed a significant increase in the lung and cerebellum/medulla oblongata, while 5-HIAA showed the same tendency in the cortex of the same group of animals. The increase in 5-HIAA and ATPase during NAC and CP administration resulted in brain protection. This effect could be even more powerful when membrane fluidity is increased, thus proving the efficacy of combined NAC and CP drug therapy, which appears to be a promising strategy for future chemotherapy in malnourished patients.
Collapse
Affiliation(s)
- David Calderón Guzmán
- Laboratory of Neurosciences, Instituto Nacional de Pediatria (INP), Mexico City 04530, Mexico; (D.C.G.); (N.O.B.); (A.V.P.); (N.L.R.); (D.S.d.A.)
| | - Norma Osnaya Brizuela
- Laboratory of Neurosciences, Instituto Nacional de Pediatria (INP), Mexico City 04530, Mexico; (D.C.G.); (N.O.B.); (A.V.P.); (N.L.R.); (D.S.d.A.)
| | - Maribel Ortíz Herrera
- Laboratory of Experimental Bacteriology, Instituto Nacional de Pediatria INP, Mexico City 04530, Mexico; (M.O.H.); (G.B.M.)
| | - Armando Valenzuela Peraza
- Laboratory of Neurosciences, Instituto Nacional de Pediatria (INP), Mexico City 04530, Mexico; (D.C.G.); (N.O.B.); (A.V.P.); (N.L.R.); (D.S.d.A.)
| | - Norma Labra Ruíz
- Laboratory of Neurosciences, Instituto Nacional de Pediatria (INP), Mexico City 04530, Mexico; (D.C.G.); (N.O.B.); (A.V.P.); (N.L.R.); (D.S.d.A.)
| | - Hugo Juárez Olguín
- Laboratory of Pharmacology, Instituto Nacional de Pediatría, Avenida Imán N° 1, 3rd piso Colonia Cuicuilco, Mexico City 04530, Mexico
| | - Daniel Santamaria del Angel
- Laboratory of Neurosciences, Instituto Nacional de Pediatria (INP), Mexico City 04530, Mexico; (D.C.G.); (N.O.B.); (A.V.P.); (N.L.R.); (D.S.d.A.)
| | - Gerardo Barragán Mejía
- Laboratory of Experimental Bacteriology, Instituto Nacional de Pediatria INP, Mexico City 04530, Mexico; (M.O.H.); (G.B.M.)
| |
Collapse
|
20
|
Wang Y, Xu G, Wen J, Zhao X, Zhao H, Lv G, Xu Y, Xiu Y, Li J, Chen S, Yao Q, Chen Y, Ma L, Xiao X, Cao J, Bai Z. Flavonoid extracted from Epimedium attenuate cGAS-STING-mediated diseases by targeting the formation of functional STING signalosome. Immunology 2024; 172:295-312. [PMID: 38453210 DOI: 10.1111/imm.13771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
Hyperactivation of the cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signalling pathway has been shown to be associated with the development of a variety of inflammatory diseases, and the discovery of an inhibitor of the cGAS-STING signalling pathway holds great promise in the therapeutic interventions. Epimedium flavonoid (EF), a major active ingredient isolated from the medicinal plant Epimedium, has been reported to have good anti-inflammatory activity, but its exact mechanism of action remains unclear. In the present study, we found that EF in mouse bone marrow-derived macrophages (BMDMs), THP-1 (Tohoku Hospital Pediatrics-1) as well as in human peripheral blood mononuclear cells (hPBMC) inhibited the activation of the cGAS-STING signalling pathway, which subsequently led to a decrease in the expression of type I interferon (IFN-β, CXCL10 and ISG15) and pro-inflammatory cytokines (IL-6 and TNF-α). Mechanistically, EF does not affect STING oligomerization, but inhibits the formation of functional STING signalosome by attenuating the interaction of interferon regulatory factor 3 (IRF3) with STING and TANK-binding kinase 1 (TBK1). Importantly, in vivo experiments, EF has shown promising therapeutic effects on inflammatory diseases mediated by the cGAS-STING pathway, which include the agonist model induced by DMXAA stimulation, the autoimmune inflammatory disease model induced by three prime repair exonuclease 1 (Trex1) deficiency, and the non-alcoholic steatohepatitis (NASH) model induced by a pathogenic amino acid and choline deficiency diet (MCD). To summarize, our study suggests that EF is a potent potential inhibitor component of the cGAS-STING signalling pathway for the treatment of inflammatory diseases mediated by the cGAS-STING signalling pathway.
Collapse
Affiliation(s)
- Yan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guang Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jincai Wen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaomei Zhao
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huanying Zhao
- Core Facilities Center, Capital Medical University, Beijing, China
| | - Guiji Lv
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yingjie Xu
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ye Xiu
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junjie Li
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Simin Chen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qing Yao
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuanyuan Chen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lina Ma
- Department of Pharmacy, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohe Xiao
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junling Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Department of Pharmacy, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Zhaofang Bai
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
21
|
Lee HJ, Park JH, Park IH, Shin OS. Stimulator of Interferon Gene Agonists Induce an Innate Antiviral Response against Influenza Viruses. Viruses 2024; 16:855. [PMID: 38932148 PMCID: PMC11209029 DOI: 10.3390/v16060855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
The devastating effects of COVID-19 have highlighted the importance of prophylactic and therapeutic strategies to combat respiratory diseases. Stimulator of interferon gene (STING) is an essential component of the host defense mechanisms against respiratory viral infections. Although the role of the cGAS/STING signaling axis in the innate immune response to DNA viruses has been thoroughly characterized, mounting evidence shows that it also plays a key role in the prevention of RNA virus infections. In this study, we investigated the role of STING activation during Influenza virus (IFV) infection. In both mouse bone marrow-derived macrophages and monocytic cell line THP-1 differentiated with PMA, we found that dimeric amidobenzimidazole (diABZI), a STING agonist, had substantial anti-IFV activity against multiple strains of IFV, including A/H1N1, A/H3N2, B/Yamagata, and B/Victoria. On the other hand, a pharmacological antagonist of STING (H-151) or the loss of STING in human macrophages leads to enhanced viral replication but suppressed IFN expression. Furthermore, diABZI was antiviral against IFV in primary air-liquid interface cultures of nasal epithelial cells. Our data suggest that STING agonists may serve as promising therapeutic antiviral agents to combat IFV.
Collapse
Affiliation(s)
- Hyun Jung Lee
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Joo-Hoo Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University, Seoul 08308, Republic of Korea
| | - Il-Ho Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University, Seoul 08308, Republic of Korea
| | - Ok Sarah Shin
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| |
Collapse
|
22
|
Li L, Liu F, Feng C, Chen Z, Zhang N, Mao J. Role of mitochondrial dysfunction in kidney disease: Insights from the cGAS-STING signaling pathway. Chin Med J (Engl) 2024; 137:1044-1053. [PMID: 38445370 PMCID: PMC11062705 DOI: 10.1097/cm9.0000000000003022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 03/07/2024] Open
Abstract
ABSTRACT Over the past decade, mitochondrial dysfunction has been investigated as a key contributor to acute and chronic kidney disease. However, the precise molecular mechanisms linking mitochondrial damage to kidney disease remain elusive. The recent insights into the cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) synthetase (cGAS)-stimulator of interferon gene (STING) signaling pathway have revealed its involvement in many renal diseases. One of these findings is that mitochondrial DNA (mtDNA) induces inflammatory responses via the cGAS-STING pathway. Herein, we provide an overview of the mechanisms underlying mtDNA release following mitochondrial damage, focusing specifically on the association between mtDNA release-activated cGAS-STING signaling and the development of kidney diseases. Furthermore, we summarize the latest findings of cGAS-STING signaling pathway in cell, with a particular emphasis on its downstream signaling related to kidney diseases. This review intends to enhance our understanding of the intricate relationship among the cGAS-STING pathway, kidney diseases, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Lu Li
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Fei Liu
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Chunyue Feng
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Zhenjie Chen
- Department of Pediatric Intensive Care Unit, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Nan Zhang
- Department of Pediatric Intensive Care Unit, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Jianhua Mao
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| |
Collapse
|
23
|
Xiu Y, Wang S, Zhang P, Li C, Wu Z, Wen J, Xu Y, Lv G, Zhao X, Dong X, Chen Y, Li J, Wang Y, Zou L, Xiao X, Bai Z. Total glucosides of paeony alleviates cGAS-STING-mediated diseases by blocking the STING-IRF3 interaction. Chin J Nat Med 2024; 22:402-415. [PMID: 38796214 DOI: 10.1016/s1875-5364(24)60572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Indexed: 05/28/2024]
Abstract
In the realm of autoimmune and inflammatory diseases, the cyclic GMP-AMP synthase (cGAS) stimulator of interferon genes (STING) signaling pathway has been thoroughly investigated and established. Despite this, the clinical approval of drugs targeting the cGAS-STING pathway has been limited. The Total glucosides of paeony (TGP) is highly anti-inflammatory and is commonly used in the treatment of rheumatoid arthritis (RA), emerged as a subject of our study. We found that the TGP markedly reduced the activation of the cGAS-STING signaling pathway, triggered by various cGAS-STING agonists, in mouse bone marrow-derived macrophages (BMDMs) and Tohoku Hospital Pediatrics-1 (THP-1) cells. This inhibition was noted alongside the suppression of interferon regulatory factor 3 (IRF3) phosphorylation and the expression of interferon-beta (IFN-β), C-X-C motif chemokine ligand 10 (CXCL10), and inflammatory mediators such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). The mechanism of action appeared to involve the TGP's attenuation of the STING-IRF3 interaction, without affecting STING oligomerization, thereby inhibiting the activation of downstream signaling pathways. In vivo, the TGP hindered the initiation of the cGAS-STING pathway by the STING agonist dimethylxanthenone-4-acetic acid (DMXAA) and exhibited promising therapeutic effects in a model of acute liver injury induced by lipopolysaccharide (LPS) and D-galactosamine (D-GalN). Our findings underscore the potential of the TGP as an effective inhibitor of the cGAS-STING pathway, offering a new treatment avenue for inflammatory and autoimmune diseases mediated by this pathway.
Collapse
Affiliation(s)
- Ye Xiu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Sihao Wang
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Ping Zhang
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100039, China
| | - Chengwei Li
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Zhixin Wu
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Jincai Wen
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yingjie Xu
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Guiji Lv
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Xiaomei Zhao
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Xu Dong
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yichong Chen
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Junjie Li
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yan Wang
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Xiaohe Xiao
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100039, China.
| | - Zhaofang Bai
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
24
|
Fu Y, Xiang Y, Wei Q, Ilatovskaya D, Dong Z. Rodent models of AKI and AKI-CKD transition: an update in 2024. Am J Physiol Renal Physiol 2024; 326:F563-F583. [PMID: 38299215 PMCID: PMC11208034 DOI: 10.1152/ajprenal.00402.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024] Open
Abstract
Despite known drawbacks, rodent models are essential tools in the research of renal development, physiology, and pathogenesis. In the past decade, rodent models have been developed and used to mimic different etiologies of acute kidney injury (AKI), AKI to chronic kidney disease (CKD) transition or progression, and AKI with comorbidities. These models have been applied for both mechanistic research and preclinical drug development. However, current rodent models have their limitations, especially since they often do not fully recapitulate the pathophysiology of AKI in human patients, and thus need further refinement. Here, we discuss the present status of these rodent models, including the pathophysiologic compatibility, clinical translational significance, key factors affecting model consistency, and their main limitations. Future efforts should focus on establishing robust models that simulate the major clinical and molecular phenotypes of human AKI and its progression.
Collapse
Affiliation(s)
- Ying Fu
- Department of Nephrology, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, People's Republic of China
| | - Yu Xiang
- Department of Nephrology, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, People's Republic of China
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
| | - Daria Ilatovskaya
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Zheng Dong
- Department of Nephrology, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, People's Republic of China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
- Research Department, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
| |
Collapse
|
25
|
Cao Y, Chen X, Zhu Z, Luo Z, Hao Y, Yang X, Feng J, Zhang Z, Hu J, Jian Y, Zhu J, Liang W, Chen Z. STING contributes to lipopolysaccharide-induced tubular cell inflammation and pyroptosis by activating endoplasmic reticulum stress in acute kidney injury. Cell Death Dis 2024; 15:217. [PMID: 38485717 PMCID: PMC10940292 DOI: 10.1038/s41419-024-06600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Recently, innate immunity and inflammation were recognized as the key factors for acute kidney injury (AKI) caused by sepsis, which is closely related to high mortality. Stimulator of interferon genes (STING) has emerged as a critical component of innate immune and inflammatory responses. However, the role of STING in the pathogenesis of septic AKI remains unclear. This study demonstrated that the STING was significantly activated in tubular cells induced by lipopolysaccharide (LPS) in vivo and in vitro. Tubule-specific STING knockout attenuated LPS-induced renal dysfunction and pathological changes. Mechanistically, the STING pathway promotes NOD-like receptor protein 3 (NLRP3) activation. STING triggers endoplasmic reticulum (ER) stress to induce mitochondrial reactive oxygen species (mtROS) overproduction, enhancing thioredoxin-interacting protein activation and association with NLRP3. Eventually, the NLRP3 inflammasome leads to tubular cell inflammation and pyroptosis. This study revealed the STING-regulated network and further identified the STING/ER stress/mtROS/NLRP3 inflammasome axis as an emerging pathway contributing to tubular damage in LPS-induced AKI. Hence, targeting STING may be a promising therapeutic strategy for preventing septic AKI.
Collapse
Affiliation(s)
- Yun Cao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical College), Haikou, China
| | - Xinghua Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zilv Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqun Hao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xueyan Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zongwei Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonghong Jian
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiefu Zhu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
26
|
Li Y, Shi L, Zhao F, Luo Y, Zhang M, Wu X, Zhu J. PIM1 attenuates cisplatin-induced AKI by inhibiting Drp1 activation. Cell Signal 2024; 113:110969. [PMID: 37967691 DOI: 10.1016/j.cellsig.2023.110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/23/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Cisplatin, an effective anti-cancer drug, always causes acute kidney injury (AKI) by inducing mitochondrial damage. PIM1 is a serine/threonine kinase, which has been shown to regulate mitochondrial function. However, the role and mechanisms of PIM1 in cisplatin-induced AKI remain unexplored. This study aimed to investigate the effects of PIM1 in cisplatin-induced AKI and its underlying mechanisms. To established Cisplatin-induced AKI model, mice were given a single intraperitoneal injection(20 mg/kg) and BUMPT cells were treated with cisplatin(20 μM). PIM1 inhibitor AZD1208 was used to inhibit PIM1 and PIM1-experssing adenovirus was used to overexpress PIM1. Drp1 inhibitor P110 and pcDNA3-Drp1K38A were used to inhibit the activation of Drp1 and mitochondrial fission. The indicators of renal function, renal morphology, apoptosis and mitochondrial dysfunction were assessed to evaluate cisplatin-induced nephrotoxicity. We observed that PIM1 was activated in cisplatin-induced AKI in vivo and cisplatin-induced tubular cells injury in vitro. PIM1 inhibition aggravated cisplatin-induced AKI in vivo, while PIM1 overexpression attenuated cisplatin-induced kidney injury in vivo and in vitro. Moreover, inhibiting PIM1 exacerbated mitochondrial damage in mice, but overexpressing PIM1 relieved mitochondrial damage in mice and BUMPT cells. In mice and BUMPT cells, inhibiting PIM1 deregulated the expression of p-Drp1S637, overexpressing PIM1 upregulated the ex-pression of p-Drp1S637. And inhibiting Drp1 activity alleviated cell damage in BUMPT cells with PIM1 knockdown or inhibition. This study demonstrated the protective effect of PIM1 in cisplatin-induced AKI, and regulation of Drp1 activation might be the underlying mechanism. Altogether, PIM1 may be a potential therapeutic target for cisplatin-induced AKI.
Collapse
Affiliation(s)
- Yuzhen Li
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Lang Shi
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Fan Zhao
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yanwen Luo
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Mingjiao Zhang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiongfei Wu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| | - Jiefu Zhu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
27
|
Lim S, Jung HR, Lee H, Chu Y, Kim H, Kim E, Lee S. Microtubule-destabilizing agents enhance STING-mediated innate immune response via biased mechanism in human monocyte cells. Biomed Pharmacother 2023; 169:115883. [PMID: 37979373 DOI: 10.1016/j.biopha.2023.115883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023] Open
Abstract
The stimulator of the interferon gene (STING) signaling pathway acts as a primary defense system against DNA pathogens. Because of the crucial role of STING in type I interferon (IFN) response and innate immunity, extensive research has been conducted to elucidate the roles of various effector molecules involved in STING-mediated signal transduction. However, despite the substantial contribution of microtubules to the immune system, the association between the STING signaling pathway and microtubules remains unclear. In this study, we revealed that the modulation of STING via microtubule-destabilizing agents (MDAs) specifically induced type I IFN responses rather than inflammatory responses in human monocytes. Co-treatment of MDAs with STING agonists induced the elevation of phospho-TANK-binding kinase 1 (TBK1), amplifying the innate immune response. However, during the deficiency of TBK1, the non-canonical signaling pathway through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) contributed to MDA-induced STING activation in type I IFN response which suggested the versatile regulation of MDA in STING-mediated immunity.
Collapse
Affiliation(s)
- Songhyun Lim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Hee Ra Jung
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Hyelim Lee
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Yeonjeong Chu
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Hyejin Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea
| | - Eunha Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Sanghee Lee
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
28
|
Ghincea A, Woo S, Sheeline Y, Pivarnik T, Fiorini V, Herzog EL, Ryu C. Mitochondrial DNA Sensing Pathogen Recognition Receptors in Systemic Sclerosis Associated Interstitial Lung Disease: A Review. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2023; 9:204-220. [PMID: 38230363 PMCID: PMC10791121 DOI: 10.1007/s40674-023-00211-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 01/18/2024]
Abstract
Purpose of the review Systemic sclerosis (SSc) is a condition of dermal and visceral scar formation characterized by immune dysregulation and inflammatory fibrosis. Approximately 90% of SSc patients develop interstitial lung disease (ILD), and it is the leading cause of morbidity and mortality. Further understanding of immune-mediated fibroproliferative mechanisms has the potential to catalyze novel treatment approaches in this difficult to treat disease. Recent findings Recent advances have demonstrated the critical role of aberrant innate immune activation mediated by mitochondrial DNA (mtDNA) through interactions with toll-like receptor 9 (TLR9) and cytosolic cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS). Summary In this review, we will discuss how the nature of the mtDNA, whether oxidized or mutated, and its mechanism of release, either intracellularly or extracellularly, can amplify fibrogenesis by activating TLR9 and cGAS, and the novel insights gained by interrogating these signaling pathways. Because the scope of this review is intended to generate hypotheses for future research, we conclude our discussion with several important unanswered questions.
Collapse
Affiliation(s)
- Alexander Ghincea
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Samuel Woo
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Yu Sheeline
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Taylor Pivarnik
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Vitoria Fiorini
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Erica L. Herzog
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
- Department of Experimental Pathology, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Changwan Ryu
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| |
Collapse
|
29
|
Chauhan NR, Kundu S, Bal R, Chattopadhyay D, Sahu R, Mehto S, Yadav R, Krishna S, Jena KK, Satapathy S, Pv A, Murmu KC, Singh B, Patnaik S, Jena S, Harshan KH, Syed GH, Idris MM, Prasad P, Chauhan S. Transgenic mouse models support a protective role of type I IFN response in SARS-CoV-2 infection-related lung immunopathology and neuroinvasion. Cell Rep 2023; 42:113275. [PMID: 37874678 DOI: 10.1016/j.celrep.2023.113275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023] Open
Abstract
Type I interferon (IFN-I) response is the first line of host defense against invading viruses. In the absence of definite mouse models, the role of IFN-I in SARS-CoV-2 infection remains perplexing. Here, we develop two mouse models, one with constitutively high IFN-I response (hACE2; Irgm1-/-) and the other with dampened IFN-I response (hACE2; Ifnar1-/-), to comprehend the role of IFN-I response. We report that hACE2; Irgm1-/- mice are resistant to lethal SARS-CoV-2 infection. In contrast, a severe SARS-CoV-2 infection along with immune cell infiltration, cytokine storm, and enhanced pathology is observed in the lungs and brain of hACE2; Ifnar1-/- mice. The hACE2; Irgm1-/-Ifnar1-/- double-knockout mice display loss of the protective phenotype observed in hACE2; Irgm1-/- mice, suggesting that heightened IFN-I response accounts for the observed immunity. Taking the results together, we demonstrate that IFN-I protects from lethal SARS-CoV-2 infection, and Irgm1 (IRGM) could be an excellent therapeutic target against SARS-CoV-2.
Collapse
Affiliation(s)
- Nishant Ranjan Chauhan
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India.
| | - Soumya Kundu
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
| | - Ramyasingh Bal
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India; School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Diya Chattopadhyay
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Rinku Sahu
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Subhash Mehto
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Rina Yadav
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Sivaram Krishna
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Kautilya Kumar Jena
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Sameekshya Satapathy
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
| | - Anusha Pv
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
| | - Krushna C Murmu
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Bharati Singh
- Virus-Host Interactions Lab, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | | - Sarita Jena
- Experimental Animal Facility, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Krishnan H Harshan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
| | - Gulam Hussain Syed
- Virus-Host Interactions Lab, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Mohammed M Idris
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
| | - Punit Prasad
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Santosh Chauhan
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India; CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India.
| |
Collapse
|
30
|
Tian X, Zeng Y, Tu Q, Jiao Y, Yao S, Chen Y, Sun L, Xia Q, Luo Y, Yuan L, Jiang Q. Butyrate alleviates renal fibrosis in CKD by regulating NLRP3-mediated pyroptosis via the STING/NF-κB/p65 pathway. Int Immunopharmacol 2023; 124:111010. [PMID: 37852118 DOI: 10.1016/j.intimp.2023.111010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Chronic kidney disease (CKD) is a serious and irreversible disease primarily characterized by chronic inflammation and renal fibrosis. Recent studies have suggested that gut microbiota-related metabolites, particularly short-chain fatty acids (SCFAs) are significantly associated with kidney diseases. Notably, butyrate, a type of SCFAs, plays a crucial role in this correlation. However, the effect of butyrate on renal fibrosis in patients with CKD and its potential mechanisms remain unclear. In this study, we demonstrated that butyrate levels are reduced as CKD progresses using a CKD C57BL/6 mouse model established by a 0.2% adenine diet. Exogenous supplementation of butyrate effectively alleviated renal fibrosis and repressed the levels of proteins associated with NLRP3-mediated pyroptosis (NLRP3, IL-1β, caspase-1, and GSDMD). Additionally, we conducted an in vitro experiment using HK-2 cells, which also confirmed that the elevated levels of NLRP3-mediated pyroptosis proteins in TGF-β1-stimulated HK-2 cells are reversed by butyrate intervention. Further, butyrate mitigated the activity of the STING/NF-κB/p65 pathway, and STING overexpression impaired the protective function of butyrate in CKD. Hence, we suggest that butyrate may have a renoprotective role in CKD, alleviating renal fibrosis possibly by regulating NLRP3-mediated pyroptosis via the STING/NF-κB/p65 pathway.
Collapse
Affiliation(s)
- Xiaofang Tian
- Medical College of Soochow University, 215123 Suzhou, Jiangsu, China; The First People's Hospital of Zunyi (the Third Affiliated Hospital of Zunyi Medical University), 563000 Zunyi, Guizhou, China
| | - Yizhou Zeng
- The First People's Hospital of Zunyi (the Third Affiliated Hospital of Zunyi Medical University), 563000 Zunyi, Guizhou, China
| | - Qingxian Tu
- The First People's Hospital of Zunyi (the Third Affiliated Hospital of Zunyi Medical University), 563000 Zunyi, Guizhou, China
| | - Yang Jiao
- The First People's Hospital of Zunyi (the Third Affiliated Hospital of Zunyi Medical University), 563000 Zunyi, Guizhou, China
| | - Song Yao
- The First People's Hospital of Zunyi (the Third Affiliated Hospital of Zunyi Medical University), 563000 Zunyi, Guizhou, China
| | - Ying Chen
- The First People's Hospital of Zunyi (the Third Affiliated Hospital of Zunyi Medical University), 563000 Zunyi, Guizhou, China
| | - Li Sun
- The First People's Hospital of Zunyi (the Third Affiliated Hospital of Zunyi Medical University), 563000 Zunyi, Guizhou, China
| | - Qianhang Xia
- The First People's Hospital of Zunyi (the Third Affiliated Hospital of Zunyi Medical University), 563000 Zunyi, Guizhou, China
| | - Yadan Luo
- The First People's Hospital of Zunyi (the Third Affiliated Hospital of Zunyi Medical University), 563000 Zunyi, Guizhou, China
| | - Liying Yuan
- The First People's Hospital of Zunyi (the Third Affiliated Hospital of Zunyi Medical University), 563000 Zunyi, Guizhou, China
| | - Qianfeng Jiang
- Medical College of Soochow University, 215123 Suzhou, Jiangsu, China; The First People's Hospital of Zunyi (the Third Affiliated Hospital of Zunyi Medical University), 563000 Zunyi, Guizhou, China; Guizhou Aerospace Hospital, 563000 Zunyi, Guizhou, China.
| |
Collapse
|
31
|
Jin L, Yu B, Wang H, Shi L, Yang J, Wu L, Gao C, Pan H, Han F, Lin W, Lai EY, Wang YF, Yang Y. STING promotes ferroptosis through NCOA4-dependent ferritinophagy in acute kidney injury. Free Radic Biol Med 2023; 208:348-360. [PMID: 37634745 DOI: 10.1016/j.freeradbiomed.2023.08.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Ferroptosis in tubules has been implicated in the pathogenesis of acute kidney injury (AKI), whereas the regulatory mechanism remains unclear. The stimulator of interferon genes (STING) is previously recognized as a critical mediator of innate immunity via a DNA-sensing pathway and has been increasingly linked to lipid peroxidation, a hallmark of ferroptosis. Herein we investigated the role and the underlying mechanism of STING in AKI models established by ischemia/reperfusion (IR) in C57BL mice. The expression level of STING was predominantly increased in tubules of kidney after IR treatment. Besides, STING deficiency markedly alleviated IR-induced lipid peroxidation, tissue damage and renal dysfunction. Consistently, in vitro experiments demonstrated that the increase in ferroptotic cell death, lipid ROS production and the decrease in GSH peroxidase 4 (GPX4) expression in renal tubular cells subjected to ferroptosis agonist or hypoxia/reoxygenation intervention were all mitigated by genetic deficiency or pharmacological inhibition of STING, while all exacerbated by STING overexpression. Further, these detrimental effects of STING overexpression relied on the induction of ferritinophagy, i.e. autophagic degradation of ferritin, leading to iron overload. Mechanistically, STING mediated the initiation of ferritinophagy through interacting with nuclear receptor coactivator 4 (NCOA4), a fundamental receptor for the transfer of ferritin into lysosome. Collectively, STING contributes to ferroptosis during ischemic AKI through facilitating NCOA4-mediated ferritinophagy and shows the potential as a promising therapeutic choice for AKI.
Collapse
Affiliation(s)
- Lini Jin
- Department of Nephrology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Binfeng Yu
- Department of Infectious Disease, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongju Wang
- Department of Nephrology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Lingling Shi
- Department of Nephrology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jingjuan Yang
- Department of Nephrology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Longlong Wu
- Department of Nephrology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Cui Gao
- Department of Nephrology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Hong Pan
- Department of Nephrology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Institute of Nephrology, Zhejiang University, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, China
| | - Weiqiang Lin
- Department of Nephrology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - En Yin Lai
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Institute of Nephrology, Zhejiang University, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, China; Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Translational Physiology, Berlin, Germany.
| | - Yong-Fei Wang
- School of Life and Health Sciences, School of Medicine, Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| | - Yi Yang
- Department of Nephrology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China.
| |
Collapse
|
32
|
Amador-Martínez I, Aparicio-Trejo OE, Bernabe-Yepes B, Aranda-Rivera AK, Cruz-Gregorio A, Sánchez-Lozada LG, Pedraza-Chaverri J, Tapia E. Mitochondrial Impairment: A Link for Inflammatory Responses Activation in the Cardiorenal Syndrome Type 4. Int J Mol Sci 2023; 24:15875. [PMID: 37958859 PMCID: PMC10650149 DOI: 10.3390/ijms242115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiorenal syndrome type 4 (CRS type 4) occurs when chronic kidney disease (CKD) leads to cardiovascular damage, resulting in high morbidity and mortality rates. Mitochondria, vital organelles responsible for essential cellular functions, can become dysfunctional in CKD. This dysfunction can trigger inflammatory responses in distant organs by releasing Damage-associated molecular patterns (DAMPs). These DAMPs are recognized by immune receptors within cells, including Toll-like receptors (TLR) like TLR2, TLR4, and TLR9, the nucleotide-binding domain, leucine-rich-containing family pyrin domain-containing-3 (NLRP3) inflammasome, and the cyclic guanosine monophosphate (cGMP)-adenosine monophosphate (AMP) synthase (cGAS)-stimulator of interferon genes (cGAS-STING) pathway. Activation of these immune receptors leads to the increased expression of cytokines and chemokines. Excessive chemokine stimulation results in the recruitment of inflammatory cells into tissues, causing chronic damage. Experimental studies have demonstrated that chemokines are upregulated in the heart during CKD, contributing to CRS type 4. Conversely, chemokine inhibitors have been shown to reduce chronic inflammation and prevent cardiorenal impairment. However, the molecular connection between mitochondrial DAMPs and inflammatory pathways responsible for chemokine overactivation in CRS type 4 has not been explored. In this review, we delve into mechanistic insights and discuss how various mitochondrial DAMPs released by the kidney during CKD can activate TLRs, NLRP3, and cGAS-STING immune pathways in the heart. This activation leads to the upregulation of chemokines, ultimately culminating in the establishment of CRS type 4. Furthermore, we propose using chemokine inhibitors as potential strategies for preventing CRS type 4.
Collapse
Affiliation(s)
- Isabel Amador-Martínez
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (I.A.-M.); (A.K.A.-R.)
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| | - Bismarck Bernabe-Yepes
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Ana Karina Aranda-Rivera
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (I.A.-M.); (A.K.A.-R.)
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Alfredo Cruz-Gregorio
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Edilia Tapia
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| |
Collapse
|
33
|
Sun C, Shi H, Zhao X, Chang YL, Wang X, Zhu S, Sun S. The Activation of cGAS-STING in Acute Kidney Injury. J Inflamm Res 2023; 16:4461-4470. [PMID: 37842189 PMCID: PMC10576462 DOI: 10.2147/jir.s423232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
The activation of the cGAS-STING pathway is associated with many sterile inflammatory and inflammatory conditions, including acute kidney injury. As a cytoplasmic DNA sensor, sensitization of the cGAS-STING pathway can ignite the innate immune response in vivo and trigger a series of biological effects. In recent years, there is increasing evidence showing that the cGAS-STING pathway plays a vital role in acute kidney injury, a non-inflammatory disease induced by activation of innate immune cells, and closely related to intracellular reactive oxygen species, mitochondrial DNA, and the cGAS-STING pathway. This review provides a prospect of the cGAS-STING pathway and its relationship to acute kidney injury.
Collapse
Affiliation(s)
- Chuanchuan Sun
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Heng Shi
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Xinhai Zhao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Yu-Ling Chang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Xianghong Wang
- Department of Endocrinology and Metabolism, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Shiping Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Shengyun Sun
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
34
|
Gao L, Zhang J, Yang T, Jiang L, Liu X, Wang S, Wang X, Huang Y, Wang H, Zhang M, Gong T, Ma L, Li C, He C, Meng XM, Wu Y. STING/ACSL4 axis-dependent ferroptosis and inflammation promote hypertension-associated chronic kidney disease. Mol Ther 2023; 31:3084-3103. [PMID: 37533255 PMCID: PMC10556226 DOI: 10.1016/j.ymthe.2023.07.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023] Open
Abstract
Hypertension is a primary modifiable risk factor for cardiovascular diseases, which often induces renal end-organ damage and complicates chronic kidney disease (CKD). In the present study, histological analysis of human kidney samples revealed that hypertension induced mtDNA leakage and promoted the expression of stimulator of interferon genes (STING) in renal epithelial cells. We used angiotensin II (AngII)- and 2K1C-treated mouse kidneys to elucidate the underlying mechanisms. Abnormal renal mtDNA packing caused by AngII promoted STING-dependent production of inflammatory cytokines, macrophage infiltration, and a fibrogenic response. STING knockout significantly decreased nuclear factor-κB activation and immune cell infiltration, attenuating tubule atrophy and extracellular matrix accumulation in vivo and in vitro. These effects delayed CKD progression. Immunoprecipitation assays and liquid chromatography-tandem mass spectrometry showed that STING and ACSL4 were directly combined at the D53 and K412 amino acids of ACSL4. Furthermore, STING induced renal inflammatory response and fibrosis through ACSL4-dependent ferroptosis. Last, inhibition of ACSL4 using small interfering RNA, rosiglitazone, or Fer-1 downregulated AngII-induced mtDNA-STING-dependent renal inflammation. These results suggest that targeting the STING/ACSL4 axis might represent a potential strategy for treating hypertension-associated CKD.
Collapse
Affiliation(s)
- Li Gao
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Center for Scientific Research of Anhui Medical University, Hefei 230022, China
| | - Junsheng Zhang
- The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China; Anhui Public Health Clinical Center, Hefei 230032, China
| | - Tingting Yang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Ling Jiang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xueqi Liu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Sheng Wang
- Center for Scientific Research of Anhui Medical University, Hefei 230022, China
| | - Xian Wang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yuebo Huang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Huaying Wang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Mengya Zhang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Tingting Gong
- The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Lijuan Ma
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Chao Li
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chaoyong He
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiao-Ming Meng
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Yonggui Wu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Center for Scientific Research of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
35
|
Yu F, Wang L, Yuan H, Gao Z, He L, Hu F. Wasp venom-induced acute kidney injury: current progress and prospects. Ren Fail 2023; 45:2259230. [PMID: 38376456 PMCID: PMC10512847 DOI: 10.1080/0886022x.2023.2259230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/11/2023] [Indexed: 02/21/2024] Open
Abstract
Wasp venom can trigger local and systemic reactions, with the kidneys being commonly affected, potentially causing acute kidney injury (AKI). Despite of the recent advances, our knowledge on the underlying mechanisms of toxicity and targeted therapies remain poor. AKI can result from direct nephrotoxic effects of the wasp venom or secondary rhabdomyolysis and intravascular hemolysis, which will release myoglobin and free hemoglobin. Inflammatory responses play a central role in these pathological mechanisms. Noteworthily, the successful establishment of a suitable experimental model can assist in basic research and clinical advancements related to wasp venom-induced AKI. The combination of therapeutic plasma exchange and continuous renal replacement therapy appears to be the preferred treatment for wasp venom-induced AKI. In addition, studies on cilastatin and varespladib for wasp venom-induced AKI treatment have shown their potential as therapeutic agents. This review summarizes the available evidence on the mechanisms and treatment of wasp venom-induced AKI, with a particular focus on the role of inflammatory responses and potential targets for therapeutic drugs, and, therefore, aiming to support the development of clinical treatment against wasp venom-induced AKI.
Collapse
Affiliation(s)
- Fanglin Yu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ling Wang
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Hai Yuan
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Zhao Gao
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Li He
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Fengqi Hu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
36
|
Nagasaki T, Maeda H, Yanagisawa H, Nishida K, Kobayashi K, Wada N, Noguchi I, Iwakiri R, Taguchi K, Sakai H, Saruwatari J, Watanabe H, Otagiri M, Maruyama T. Carbon Monoxide-Loaded Red Blood Cell Prevents the Onset of Cisplatin-Induced Acute Kidney Injury. Antioxidants (Basel) 2023; 12:1705. [PMID: 37760008 PMCID: PMC10526101 DOI: 10.3390/antiox12091705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Cisplatin-induced acute kidney injury (AKI) is an important factor that limits the clinical use of this drug for the treatment of malignancies. Oxidative stress and inflammation are considered to be the main causes of not only cisplatin-induced death of cancer cells but also cisplatin-induced AKI. Therefore, developing agents that exert antioxidant and anti-inflammatory effects without weakening the anti-tumor effects of cisplatin is highly desirable. Carbon monoxide (CO) has recently attracted interest due to its antioxidant, anti-inflammatory, and anti-tumor properties. Herein, we report that CO-loaded red blood cell (CO-RBC) exerts renoprotective effects on cisplatin-induced AKI. Cisplatin treatment was found to reduce cell viability in proximal tubular cells via oxidative stress and inflammation. Cisplatin-induced cytotoxicity, however, was suppressed by the CO-RBC treatment. The intraperitoneal administration of cisplatin caused an elevation in the blood urea nitrogen and serum creatinine levels. The administration of CO-RBC significantly suppressed these elevations. Furthermore, the administration of CO-RBC also reduced the deterioration of renal histology and tubular cell injury through its antioxidant and anti-inflammatory effects in cisplatin-induced AKI mice. Thus, our data suggest that CO-RBC has the potential to substantially prevent the onset of cisplatin-induced AKI, which, in turn, may improve the usefulness of cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Taisei Nagasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Hiroki Yanagisawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Kento Nishida
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Kazuki Kobayashi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Naoki Wada
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Isamu Noguchi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Ryotaro Iwakiri
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan;
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan;
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| |
Collapse
|
37
|
Jin X, Wang W, Zhao X, Jiang W, Shao Q, Chen Z, Huang C. The battle between the innate immune cGAS-STING signaling pathway and human herpesvirus infection. Front Immunol 2023; 14:1235590. [PMID: 37600809 PMCID: PMC10433641 DOI: 10.3389/fimmu.2023.1235590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
The incidence of human herpesvirus (HHVs) is gradually increasing and has affected a wide range of population. HHVs can result in serious consequences such as tumors, neonatal malformations, sexually transmitted diseases, as well as pose an immense threat to the human health. The cGAS-STING pathway is one of the innate immune pattern-recognition receptors discovered recently. This article discusses the role of the cGAS-STING pathway in human diseases, especially in human herpesvirus infections, as well as highlights how these viruses act on this pathway to evade the host immunity. Moreover, the author provides a comprehensive overview of modulators of the cGAS-STING pathway. By focusing on the small molecule compounds based on the cGAS-STING pathway, novel targets and concepts have been proposed for the development of antiviral drugs and vaccines, while also providing a reference for the investigation of disease models related to the cGAS-STING pathway. HHV is a double-stranded DNA virus that can trigger the activation of intracellular DNA sensor cGAS, after which the host cells initiate a cascade of reactions that culminate in the secretion of type I interferon to restrict the viral replication. Meanwhile, the viral protein can interact with various molecules in the cGAS-STING pathway. Viruses can evade immune surveillance and maintain their replication by inhibiting the enzyme activity of cGAS and reducing the phosphorylation levels of STING, TBK1 and IRF3 and suppressing the interferon gene activation. Activators and inhibitors of the cGAS-STING pathway have yielded numerous promising research findings in vitro and in vivo pertaining to cGAS/STING-related disease models. However, there remains a dearth of small molecule modulators that have been successfully translated into clinical applications, which serves as a hurdle to be overcome in the future.
Collapse
Affiliation(s)
- Ximing Jin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjia Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinwei Zhao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhua Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Shao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Lv Y, Lu L, Yu F, Gao Z, Yuan H, Hu F. STING deficiency protects against wasp venom-induced acute kidney injury. Inflamm Res 2023:10.1007/s00011-023-01749-5. [PMID: 37326694 DOI: 10.1007/s00011-023-01749-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/14/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023] Open
Abstract
OBJECTIVE Recent evidence suggests a key role of the inflammatory responses in wasp venom-induced acute kidney injury (AKI). However, the potential regulatory mechanisms underlying the inflammatory responses in wasp venom-induced AKI remain unclear. STING reportedly plays a critical role in other AKI types and is associated with inflammatory responses and diseases. We aimed to investigate the involvement of STING in inflammatory responses associated with wasp venom-induced AKI. METHODS The role of the STING signaling pathway in wasp venom-induced AKI was studied in vivo using a mouse model of wasp venom-induced AKI with STING knockout or pharmacological inhibition and in vitro using human HK2 cells with STING knockdown. RESULTS STING deficiency or pharmacological inhibition markedly ameliorated renal dysfunction, inflammatory responses, necroptosis, and apoptosis in wasp venom-induced AKI in mice. Moreover, STING knockdown in cultured HK2 cells attenuated the inflammatory response, necroptosis, and apoptosis induced by myoglobin, the major pathogenic factor in wasp venom-induced AKI. Urinary mitochondrial DNA upregulation has also been observed in patients with wasp venom-induced AKI. CONCLUSIONS STING activation mediates the inflammatory response in wasp venom-induced AKI. This may offer a potential therapeutic target for the management of wasp venom-induced AKI.
Collapse
Affiliation(s)
- Ying Lv
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Li Lu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Fanglin Yu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Zhao Gao
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Hai Yuan
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China.
| | - Fengqi Hu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China.
| |
Collapse
|
39
|
Yang X, Chen Z, Luo Z, Yang D, Hao Y, Hu J, Feng J, Zhu Z, Luo Q, Zhang Z, Liang W, Ding G. STING deletion alleviates podocyte injury through suppressing inflammation by targeting NLRP3 in diabetic kidney disease. Cell Signal 2023:110777. [PMID: 37329999 DOI: 10.1016/j.cellsig.2023.110777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
An increasing number of studies have shown that immune inflammatory response plays a vital role in diabetic kidney disease (DKD). Nod-like receptor protein 3 (NLRP3) inflammasome-dependent inflammatory response is a key mechanism in the initiation and development of DKD. The stimulator of interferon genes (STING) is an adaptor protein that can drive noninfectious inflammation and pyroptosis. However, the mechanism of STING regulating immune inflammation and the interaction with NLRP3-dependent pyroptosis in high glucose state still remains unclear. This study evaluated the potential role of STING in high glucose (HG)-induced podocyte inflammation response. STING expression was significantly increased in db/db mice, STZ-treated diabetic mice, and HG-treated podocytes. Podocyte-specific deletion of STING alleviated podocyte injury, renal dysfunction, and inflammation in STZ-induced diabetic mice. STING inhibitor (H151) administration ameliorated inflammation and improved renal function in db/db mice. STING deletion in podocytes attenuated the activation of the NLRP3 inflammasome and podocyte pyroptosis in STZ-induced diabetic mice. In vitro, modulated STING expression by STING siRNA alleviated pyroptosis and NLRP3 inflammasome activation in HG-treated podocytes. NLRP3 over-expression offset the beneficial effects of STING deletion. These results indicate that STING deletion suppresses podocyte inflammation response through suppressing NLRP3 inflammasome activation and provide evidence that STING may be a potential target for podocyte injury in DKD.
Collapse
Affiliation(s)
- Xueyan Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China.
| | - Zilv Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Dingping Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Yiqun Hao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Qiang Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zongwei Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
40
|
Hu Z, Zhang F, Brenner M, Jacob A, Wang P. The protective effect of H151, a novel STING inhibitor, in renal ischemia-reperfusion-induced acute kidney injury. Am J Physiol Renal Physiol 2023; 324:F558-F567. [PMID: 37102684 PMCID: PMC10228668 DOI: 10.1152/ajprenal.00004.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 04/28/2023] Open
Abstract
Renal ischemia-reperfusion (RIR)-induced acute kidney injury (AKI) is a common renal functional disorder with high morbidity and mortality. Stimulator of interferon (IFN) genes (STING) is the cytosolic DNA-activated signaling pathway that mediates inflammation and injury. Our recent study showed that extracellular cold-inducible RNA-binding protein (eCIRP), a newly identified damage-associated molecular pattern, activates STING and exacerbates hemorrhagic shock. H151 is a small molecule that selectively binds to STING and inhibits STING-mediated activity. We hypothesized that H151 attenuates eCIRP-induced STING activation in vitro and inhibits RIR-induced AKI in vivo. In vitro, renal tubular epithelial cells incubated with eCIRP showed increased levels of IFN-β, STING pathway downstream cytokine, IL-6, tumor necrosis factor-α, and neutrophil gelatinase-associated lipocalin, whereas coincubation with eCIRP and H151 diminished those increases in a dose-dependent manner. In vivo, 24 h after bilateral renal ischemia-reperfusion, glomerular filtration rate was decreased in RIR-vehicle-treated mice, whereas glomerular filtration rate was unchanged in RIR-H151-treated mice. In contrast to sham, serum blood urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin were increased in RIR-vehicle, but in RIR-H151, these levels were significantly decreased from RIR-vehicle. In contrast to sham, kidney IFN-β mRNA, histological injury score, and TUNEL staining were also increased in RIR-vehicle, but in RIR-H151, these levels were significantly decreased from RIR-vehicle. Importantly, in contrast to sham, in a 10-day survival study, survival decreased to 25% in RIR-vehicle, but RIR-H151 had a survival of 63%. In conclusion, H151 inhibits eCIRP-induced STING activation in renal tubular epithelial cells. Therefore, STING inhibition by H151 can be a promising therapeutic intervention for RIR-induced AKI.NEW & NOTEWORTHY Renal ischemia-reperfusion (RIR)-induced acute kidney injury (AKI) is a common renal functional disorder with a high morbidity and mortality rate. Stimulator of interferon genes (STING) is the cytosolic DNA-activated signaling pathway responsible for mediating inflammation and injury. Extracellular cold-inducible RNA-binding protein (eCIRP) activates STING and exacerbates hemorrhagic shock. H151, a novel STING inhibitor, attenuated eCIRP-induced STING activation in vitro and inhibited RIR-induced AKI. H151 shows promise as a therapeutic intervention for RIR-induced AKI.
Collapse
Affiliation(s)
- Zhijian Hu
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, United States
| | - Fangming Zhang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, United States
| | - Max Brenner
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States
| | - Asha Jacob
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States
| |
Collapse
|
41
|
Huang C, Li W, Ren X, Tang M, Zhang K, Zhuo F, Dou X, Yu B. The Crucial Roles and Research Advances of cGAS-STING Pathway in Cutaneous Disorders. Inflammation 2023:10.1007/s10753-023-01812-7. [PMID: 37083899 PMCID: PMC10119538 DOI: 10.1007/s10753-023-01812-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/22/2023]
Abstract
The cGAS-STING signaling pathway senses the presence of cytosolic DNA, induces strong type I interferon responses, and enhances inflammatory cytokine production, placing it as an important axis in infection, autoimmunity, and tumor immunity. Recent studies have shown that the abnormalities and/or dysfunctions of cGAS-STING signaling are closely related to the pathogenesis of skin diseases and/or cancers. Additionally, a variety of new therapeutics targeting the cGAS-STING signaling are in development for the treatment of skin disorders. However, the precise molecular mechanisms of cGAS-STING-mediated cutaneous disorders have not been fully elucidated. In this review, we will summarize the regulatory roles and mechanisms of cGAS-STING signaling in skin disorders and recent progresses of cGAS-STING-related drugs as well as their potential clinical applications.
Collapse
Affiliation(s)
- Cong Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Wenting Li
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Xuanyao Ren
- Biomedical Research Institute, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Mindan Tang
- Biomedical Research Institute, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Kaoyuan Zhang
- Biomedical Research Institute, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Fan Zhuo
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Xia Dou
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Bo Yu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China.
| |
Collapse
|
42
|
Kruk L, Mamtimin M, Braun A, Anders HJ, Andrassy J, Gudermann T, Mammadova-Bach E. Inflammatory Networks in Renal Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15082212. [PMID: 37190141 DOI: 10.3390/cancers15082212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Cancer-associated inflammation has been established as a hallmark feature of almost all solid cancers. Tumor-extrinsic and intrinsic signaling pathways regulate the process of cancer-associated inflammation. Tumor-extrinsic inflammation is triggered by many factors, including infection, obesity, autoimmune disorders, and exposure to toxic and radioactive substances. Intrinsic inflammation can be induced by genomic mutation, genome instability and epigenetic remodeling in cancer cells that promote immunosuppressive traits, inducing the recruitment and activation of inflammatory immune cells. In RCC, many cancer cell-intrinsic alterations are assembled, upregulating inflammatory pathways, which enhance chemokine release and neoantigen expression. Furthermore, immune cells activate the endothelium and induce metabolic shifts, thereby amplifying both the paracrine and autocrine inflammatory loops to promote RCC tumor growth and progression. Together with tumor-extrinsic inflammatory factors, tumor-intrinsic signaling pathways trigger a Janus-faced tumor microenvironment, thereby simultaneously promoting or inhibiting tumor growth. For therapeutic success, it is important to understand the pathomechanisms of cancer-associated inflammation, which promote cancer progression. In this review, we describe the molecular mechanisms of cancer-associated inflammation that influence cancer and immune cell functions, thereby increasing tumor malignancy and anti-cancer resistance. We also discuss the potential of anti-inflammatory treatments, which may provide clinical benefits in RCCs and possible avenues for therapy and future research.
Collapse
Affiliation(s)
- Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Medina Mamtimin
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Joachim Andrassy
- Division of General, Visceral, Vascular and Transplant Surgery, Hospital of LMU, 81377 Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- German Center for Lung Research (DZL), 80336 Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| |
Collapse
|
43
|
Zhang S, Zheng R, Pan Y, Sun H. Potential Therapeutic Value of the STING Inhibitors. Molecules 2023; 28:3127. [PMID: 37049889 PMCID: PMC10096477 DOI: 10.3390/molecules28073127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
The stimulator of interferon genes (STING) is a critical protein in the activation of the immune system in response to DNA. It can participate the inflammatory response process by modulating the inflammation-preferred translation program through the STING-PKR-like endoplasmic reticulum kinase (PERK)-eIF2α pathway or by inducing the secretion of type I interferons (IFNs) and a variety of proinflammatory factors through the recruitment of TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) or the regulation of the nuclear factor kappa-B (NF-κB) pathway. Based on the structure, location, function, genotype, and regulatory mechanism of STING, this review summarizes the potential value of STING inhibitors in the prevention and treatment of infectious diseases, psoriasis, systemic lupus erythematosus, non-alcoholic fatty liver disease, and other inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Shangran Zhang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Runan Zheng
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yanhong Pan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| |
Collapse
|
44
|
Lu L, Liu W, Li S, Bai M, Zhou Y, Jiang Z, Jia Z, Huang S, Zhang A, Gong W. Flavonoid derivative DMXAA attenuates cisplatin-induced acute kidney injury independent of STING signaling. Clin Sci (Lond) 2023; 137:435-452. [PMID: 36815438 DOI: 10.1042/cs20220728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 11/17/2022]
Abstract
Cisplatin-induced nephrotoxicity is the main adverse effect of cisplatin-based chemotherapy and highly limits its clinical use. DMXAA, a flavonoid derivative, is a promising vascular disrupting agent and known as an agonist of STING. Although cGAS-STING activation has been demonstrated to mediate cisplatin-induced acute kidney injury (AKI), the role of DMXAA in this condition is unclear. Here, we defined an unexpected and critical role of DMXAA in improving renal function, ameliorating renal tubular injury and cell apoptosis, and suppressing inflammation in cisplatin-induced AKI. Moreover, we confirmed that DMXAA combated AKI in a STING-independent manner, as evidenced by its protective effect in STING global knockout mice subjected to cisplatin. Furthermore, we compared the role of DMXAA with another STING agonist SR717 in cisplatin-treated mice and found that DMXAA but not SR717 protected animals against AKI. To better evaluate the role of DMXAA, we performed transcriptome analyses and observed that both inflammatory and metabolic pathways were altered by DMXAA treatment. Due to the established role of metabolic disorders in AKI, which contributes to kidney injury and recovery, we also performed metabolomics using kidney tissues from cisplatin-induced AKI mice with or without DMXAA treatment. Strikingly, our results revealed that DMXAA improved the metabolic disorders in kidneys of AKI mice, especially regulated the tryptophan metabolism. Collectively, therapeutic administration of DMXAA ameliorates cisplatin-induced AKI independent of STING, suggesting a promising potential for preventing nephrotoxicity induced by cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Lingling Lu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weihua Liu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Shumin Li
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mi Bai
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaohui Jiang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gong
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Pan J, Fei CJ, Hu Y, Wu XY, Nie L, Chen J. Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Zool Res 2023; 44:183-218. [PMID: 36579404 PMCID: PMC9841179 DOI: 10.24272/j.issn.2095-8137.2022.464] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The innate immune system protects the host from external pathogens and internal damage in various ways. The cGAS-STING signaling pathway, comprised of cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and downstream signaling adaptors, plays an essential role in protective immune defense against microbial DNA and internal damaged-associated DNA and is responsible for various immune-related diseases. After binding with DNA, cytosolic cGAS undergoes conformational change and DNA-linked liquid-liquid phase separation to produce 2'3'-cGAMP for the activation of endoplasmic reticulum (ER)-localized STING. However, further studies revealed that cGAS is predominantly expressed in the nucleus and strictly tethered to chromatin to prevent binding with nuclear DNA, and functions differently from cytosolic-localized cGAS. Detailed delineation of this pathway, including its structure, signaling, and regulatory mechanisms, is of great significance to fully understand the diversity of cGAS-STING activation and signaling and will be of benefit for the treatment of inflammatory diseases and cancer. Here, we review recent progress on the above-mentioned perspectives of the cGAS-STING signaling pathway and discuss new avenues for further study.
Collapse
Affiliation(s)
- Jing Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Xiang-Yu Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| |
Collapse
|
46
|
Cisplatin nephrotoxicity: new insights and therapeutic implications. Nat Rev Nephrol 2023; 19:53-72. [PMID: 36229672 DOI: 10.1038/s41581-022-00631-7] [Citation(s) in RCA: 186] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2022] [Indexed: 11/08/2022]
Abstract
Cisplatin is an effective chemotherapeutic agent for various solid tumours, but its use is limited by adverse effects in normal tissues. In particular, cisplatin is nephrotoxic and can cause acute kidney injury and chronic kidney disease. Preclinical studies have provided insights into the cellular and molecular mechanisms of cisplatin nephrotoxicity, which involve intracellular stresses including DNA damage, mitochondrial pathology, oxidative stress and endoplasmic reticulum stress. Stress responses, including autophagy, cell-cycle arrest, senescence, apoptosis, programmed necrosis and inflammation have key roles in the pathogenesis of cisplatin nephrotoxicity. In addition, emerging evidence suggests a contribution of epigenetic changes to cisplatin-induced acute kidney injury and chronic kidney disease. Further research is needed to determine how these pathways are integrated and to identify the cell type-specific roles of critical molecules involved in regulated necrosis, inflammation and epigenetic modifications in cisplatin nephrotoxicity. A number of potential therapeutic targets for cisplatin nephrotoxicity have been identified. However, the effects of renoprotective strategies on the efficacy of cisplatin chemotherapy needs to be thoroughly evaluated. Further research using tumour-bearing animals, multi-omics and genome-wide association studies will enable a comprehensive understanding of the complex cellular and molecular mechanisms of cisplatin nephrotoxicity and potentially lead to the identification of specific targets to protect the kidney without compromising the chemotherapeutic efficacy of cisplatin.
Collapse
|
47
|
He H, Ge J, Yi S, Wang Y, Liu Y, Liu Y, Liu X. Ginkgolide A downregulates transient receptor potential (melastatin) 2 to protect cisplatin-induced acute kidney injury in rats through the TWEAK/Fn14 pathway: Ginkgolide A improve acute renal injury. Hum Exp Toxicol 2023; 42:9603271231200868. [PMID: 37715308 DOI: 10.1177/09603271231200868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
PURPOSE In order to seek effective drugs for treating cisplatin-induced acute renal injury and explore the corresponding potential mechanism. METHODS Mouse kidney injury model was established by intraperitoneal injection of 20 mg/kg cisplatin. The temporal expression of TRPM2 and the regulation of Ginkgolide A on its expression were analyzed by western blot. In order to perform the mechanical analysis, we used TRPM2-KO knockout mice. In this study, we evaluated the repair effect of GA on acute kidney injury through renal function factors, inflammatory factors and calcium and potassium content. Pathological injury and cell apoptosis were detected by H&E and TUNEL, respectively. RESULT Ginkgolide A inhibited inflammatory reaction and excessive oxidative stress, reduced renal function parameters, and improved pathological injury. Meanwhile, we also found that the repair effect of Ginkgolide A on renal injury is related to TRPM2, and Ginkgolide A downregulated TRPM2 expression and inactivated TWEAK/Fn14 pathway in cisplatin-induced renal injury model. We also found that inhibition of TWEAK/Fn14 pathway was more effective in TRPM2-KO mice than TRPM2-WT mice. CONCLUSION Ginkgolide A was the effective therapeutic drug for cisplatin-induced renal injury through acting on TRPM2, and TWEAK/Fn14 pathway was the downstream pathway of Ginkgolide A in acute renal injury, and Ginkgolide A inhibited TWEAK/Fn14 pathway in cisplatin-induced renal injury model.
Collapse
Affiliation(s)
- Haiyan He
- Department of Nephrology, Yantaishan Hospital, Yantai, China
| | - Jun Ge
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shaona Yi
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Yuhong Wang
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Ye Liu
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Ying Liu
- Department of Pathology, Yantaishan Hospital, Yantai, China
| | - Xiaoming Liu
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| |
Collapse
|
48
|
Zheng M, Hu Z, Wang Y, Wang C, Zhong C, Cui W, You J, Gao B, Sun X, La L. Zhen Wu decoction represses renal fibrosis by invigorating tubular NRF2 and TFAM to fuel mitochondrial bioenergetics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154495. [PMID: 36257219 DOI: 10.1016/j.phymed.2022.154495] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Zhen Wu Decoction (ZWD) is a prescription from the classical text "Treatise on Exogenous Febrile Disease" and has been extensively used to control kidney diseases since the time of the Eastern Han Dynasty. HYPOTHESIS We hypothesized that ZWD limits tubular fibrogenesis by reinvigorating tubular bio-energetic capacity. STUDY DESIGN / METHODS A mouse model of chronic kidney disease (CKD) was established using unilateral ureteral obstruction (UUO). Three concentrations of ZWD, namely 25.2 g/kg (high dosage), 12.6 g/kg (middle dosage), and 6.3 g/kg (low dosage), were included to study the dose-effect relationship. Real-time qPCR was used to observe gene transcription in blood samples from patients with CKD. Different siRNAs were designed to study the role of mitochondrial transcription factor A (TFAM) and nuclear factor (erythroid-derived 2)-related factor 2 (NRF2) in transforming growth factor (TGF)-β1 induced fibrogenesis and mitochondrial damage. RESULTS We showed that ZWD efficiently attenuates renal function impairment and reduces renal interstitial fibrosis. TFAM and NRF2 were repressed, and the stimulator of interferon genes (STING) was activated in CKD patient blood sample. We further confirmed that ZWD activated TFAM depended on NRF2 as an important negative regulator of STING in mouse kidneys. Treatment with ZWD significantly reduced oxidative stress and inflammation by regulating the levels of oxidative phosphorylation (OXPHOS) and pro-inflammatory factors, such as interleukin-6, interleukin-1β, tumor necrosis factor receptor 1, and mitochondrial respiratory chain subunits. NRF2 inhibitors can weaken the ability of ZWD to increase TFAM expression and heal injured mitochondria, playing a similar role to that of STING inhibitors. Our study showed that ZWD elevates the expression of TFAM and mitochondrial respiratory chain subunits by promoting NRF2 activation, after suppressing mitochondrial membrane damage and cristae breakdown and restricting mitochondrial DNA (mtDNA) leakage into the cytoplasm to reduce STING activation. CONCLUSION ZWD maintains mitochondrial integrity and improves OXPHOS which represents an innovative insight into "strengthening Yang-Qi" theory. ZWD limits tubular fibrogenesis by reinvigorating tubular bioenergetic capacity.
Collapse
Affiliation(s)
- Min Zheng
- Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhengyang Hu
- Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yibin Wang
- Department of Kidney Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chunyan Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chao Zhong
- Department of Kidney Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weiwei Cui
- Department of Imaging, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junxiong You
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Baogui Gao
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xuegang Sun
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Lei La
- Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
49
|
Feng J, Chen Z, Liang W, Wei Z, Ding G. Roles of Mitochondrial DNA Damage in Kidney Diseases: A New Biomarker. Int J Mol Sci 2022; 23:ijms232315166. [PMID: 36499488 PMCID: PMC9735745 DOI: 10.3390/ijms232315166] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The kidney is a mitochondria-rich organ, and kidney diseases are recognized as mitochondria-related pathologies. Intact mitochondrial DNA (mtDNA) maintains normal mitochondrial function. Mitochondrial dysfunction caused by mtDNA damage, including impaired mtDNA replication, mtDNA mutation, mtDNA leakage, and mtDNA methylation, is involved in the progression of kidney diseases. Herein, we review the roles of mtDNA damage in different setting of kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD). In a variety of kidney diseases, mtDNA damage is closely associated with loss of kidney function. The level of mtDNA in peripheral serum and urine also reflects the status of kidney injury. Alleviating mtDNA damage can promote the recovery of mitochondrial function by exogenous drug treatment and thus reduce kidney injury. In short, we conclude that mtDNA damage may serve as a novel biomarker for assessing kidney injury in different causes of renal dysfunction, which provides a new theoretical basis for mtDNA-targeted intervention as a therapeutic option for kidney diseases.
Collapse
Affiliation(s)
- Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zhongping Wei
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
- Correspondence:
| |
Collapse
|
50
|
Meng L, Feng J, Gao J, Zhang Y, Mo W, Zhao X, Wei H, Guo H. Reactive Oxygen Species- and Cell-Free DNA-Scavenging Mn 3O 4 Nanozymes for Acute Kidney Injury Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50649-50663. [PMID: 36334088 DOI: 10.1021/acsami.2c16305] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reactive oxygen species (ROS) scavenging therapy toward acute kidney injury (AKI) is promising, but no effective ROS scavenging drug has been developed yet. Moreover, cell-free DNA (cfDNA) is also involved in AKI, but the corresponding therapies have not been well developed. To tackle these challenges, Mn3O4 nanoflowers (Nfs) possessing both ROS and cfDNA scavenging activities were developed for better AKI protection as follows. First, Mn3O4 Nfs could protect HK2 cells through cascade ROS scavenging (dismutating ·O2- into H2O2 by superoxide dismutase-like activity and then decomposing H2O2 by catalase-like activity). Second, Mn3O4 Nfs could efficiently adsorb cfDNA and then decrease the inflammation caused by cfDNA. Combined, remarkable therapeutic efficacy was achieved in both cisplatin-induced and ischemia-reperfusion AKI murine models. Furthermore, Mn3O4 Nfs could be used for the T1-MRI real-time imaging of AKI. This study not only offered a promising treatment for AKI but also showed the translational potential of nanozymes.
Collapse
Affiliation(s)
- Longxiyu Meng
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, Nanjing, Jiangsu 210008, China
| | - Jiayuan Feng
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jie Gao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, Nanjing, Jiangsu 210008, China
| | - Yihong Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Wenjing Mo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Xiaozhi Zhao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, Nanjing, Jiangsu 210008, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023 China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, Nanjing, Jiangsu 210008, China
| |
Collapse
|