1
|
Dimeji IY, Abass KS, Audu NM, Ayodeji AS. L-Arginine and immune modulation: A pharmacological perspective on inflammation and autoimmune disorders. Eur J Pharmacol 2025; 997:177615. [PMID: 40216179 DOI: 10.1016/j.ejphar.2025.177615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
L- Arginine (2-Amino-5-guanidinovaleric acid, L-Arg) is a semi-essential amino acid that is mainly produced within the urea cycle. It acts as a key precursor in the synthesis of proteins, urea, creatine, prolamines (including putrescine, spermine, and spermidine), proline, and nitric oxide (NO). WhenL-Arg is metabolized, it produces NO, glutamate, and prolamines, which all play important regulatory roles in various physiological functions. In addition to its metabolic roles,L-Arg significantly influences immune responses, especially in the context of inflammation and autoimmune diseases. It affects the activity of immune cells by modulating T-cell function, the polarization of macrophages, and the release of cytokines. Importantly,L-Arg plays a dual role in immune regulation, functioning as both an immunostimulatory and immunosuppressive agent depending on the specific cellular and biochemical environments. This review examines the immunopharmacological mechanisms of L-Arg, emphasizing its involvement in inflammatory responses and its potential therapeutic uses in autoimmune conditions like rheumatoid arthritis, multiple sclerosis, and inflammatory bowel disease. By influencing the pathways of nitric oxide synthase (NOS) and arginase (ARG), L-Arg helps maintain immune balance and contributes to the pathophysiology of diseases. Gaining a better understanding of the pharmacological effects of L-Arg on immune regulation could yield new perspectives on targeted treatments for immune-related diseases. Exploring its impact on immune signaling and metabolic pathways may result in novel therapeutic approaches for chronic inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Igbayilola Yusuff Dimeji
- Department of Human Physiology, College of Medicine and Health Sciences, Baze University, Nigeria.
| | - Kasim Sakran Abass
- Department of Physiology, Biochemistry, and Pharmacology, College of Veterinary Medicine, University of Kirkuk, Kirkuk 36001, Iraq
| | - Ngabea Murtala Audu
- Department of Medicine Maitama District Hospital/ College of Medicine Baze University, Abuja, Nigeria
| | - Adekola Saheed Ayodeji
- Department of Chemical Pathology, Medical Laboratory Science Program, Faculty of Nursing and Allied Health Sciences, University of Abuja, Abuja, Nigeria.
| |
Collapse
|
2
|
Rispoli RM, Popolo A, De Fabrizio V, d’Emmanuele di Villa Bianca R, Autore G, Dalli J, Marzocco S. Targeting Inflammatory Imbalance in Chronic Kidney Disease: Focus on Anti-Inflammatory and Resolution Mediators. Int J Mol Sci 2025; 26:3072. [PMID: 40243751 PMCID: PMC11989065 DOI: 10.3390/ijms26073072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Chronic kidney disease (CKD) is a condition caused by the gradual decline of renal function that approximatively affects 10-12% of the world population, thus representing a public health priority. In CKD patients, chronic and systemic low-grade inflammation is observed, and it significantly contributes to disease development and progression, especially for patients with advanced disease. It also results in CKD-associated complications and increased mortality. The low-grade inflammation is due to different factors, such as the decline of glomerular filtration rate, increased immune system activation, reactive oxygen species release, and intestinal homeostasis. Therefore, the possibility to control chronic low-grade inflammation in CKD deserves great attention. In this review, we will examine the current possible pharmacological approaches to counteract the inflammatory state in CKD, focusing our attention both on the pro-inflammatory factors and the pro-resolving mediators involved in CKD inflammatory state.
Collapse
Affiliation(s)
- Rosaria Margherita Rispoli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.M.R.); (A.P.); (V.D.F.); (G.A.)
- PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Ada Popolo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.M.R.); (A.P.); (V.D.F.); (G.A.)
| | - Vincenzo De Fabrizio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.M.R.); (A.P.); (V.D.F.); (G.A.)
- PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | | | - Giuseppina Autore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.M.R.); (A.P.); (V.D.F.); (G.A.)
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London E1 4NS, UK;
- Centre of Inflammation and Therapeutic Innovation, Queen Mary University of London, London E1 4NS, UK
| | - Stefania Marzocco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.M.R.); (A.P.); (V.D.F.); (G.A.)
| |
Collapse
|
3
|
Dasinger JH, Abais-Battad JM, McCrorey MK, Van Beusecum JP. Recent advances on immunity and hypertension: the new cells on the kidney block. Am J Physiol Renal Physiol 2025; 328:F301-F315. [PMID: 39853324 DOI: 10.1152/ajprenal.00309.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 01/20/2025] [Indexed: 01/26/2025] Open
Abstract
Over the past 50 years, the contribution of the immune system has been identified in the development of hypertension and renal injury. Both human and experimental animal models of hypertension have demonstrated that innate and adaptive immune cells, along with their cytokines and chemokines, modulate blood pressure fluctuations and end organ renal damage. Numerous cell types of the innate immune system, specifically monocytes, macrophages, and dendritic cells, present antigenic peptides to T cells, promoting inflammation and the elevation of blood pressure. These T cells and other adaptive immune cells migrate to vascular and tubular cells of the kidney and promote end-organ fibrosis, damage, and ultimately hypertensive injury. Through the development of high-throughput screening, novel renal and immune cell subsets have been identified as possible contributors and regulators of renal injury and hypertension. In this review, we will consider classical immunological cells and their contribution to renal inflammation, and novel cell subsets, including renal stromal cells, that could potentially shed new light on renal injury and hypertension. Finally, we will discuss how interorgan inflammation contributes to the development of hypertension and hypertension-related multiorgan damage, and explore the clinical implications of the immunological components of renal injury and hypertension.
Collapse
Affiliation(s)
- John Henry Dasinger
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Justine M Abais-Battad
- Department of Physiology, Medical College of Georgia, August University, Augusta, Georgia, United States
| | - Marice K McCrorey
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Justin P Van Beusecum
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Department of Research and Development, Ralph H. Johnson VA Healthcare System, Charleston, South Carolina, United States
| |
Collapse
|
4
|
Budiastuti B, Noviana Thesia NL, Plumeriastuti H, Effendi MH, Ugbo EN, Khairullah AR, Moses IB, Priscilia Riwu KH, Ahmad RZ, Yanestria SM, Wasito W, Pratama BP, Awwanah M, Prasetyo A. Effect of cinnamon oil ( Cinnamomum burmannii) on the histological kidney of male diabetic rats ( Rattus norvegicus). Open Vet J 2025; 15:923-930. [PMID: 40201834 PMCID: PMC11974283 DOI: 10.5455/ovj.2025.v15.i2.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/22/2025] [Indexed: 04/10/2025] Open
Abstract
Background Chronic systemic disease known as diabetes mellitus is defined by elevated blood glucose levels and problems with fat, carbohydrate, and protein metabolism. In Indonesia, the cinnamon species found include Cinnamomum burmannii, which also has hypoglycemic activity. The primary antioxidant chemicals found in C. burmannii bark extract are polyphenols, which include tannins and flavonoids. Aim The antidiabetic activity of cinnamon essential oil (C. burmannii) against streptozotocin (STZ) was examined in this study. Methods STZ (45 mg/kg BW) was administered intraperitoneally as a single dose. Twenty male rats were employed in this investigation. The rats were divided into five groups: treatment 1 (P1) was administered with STZ and provided with 100 mg/kg BW; treatment 2 (P2) was administered with STZ and provided with 200 mg/kg BW; and treatment 3 (P3) was administered with STZ and provided with 400 mg/kg BW. The negative control group (K-) was not treated with STZ and was treated with 1% Tween 80. For 14 days, the medication was administered daily. Results The essential oil of cinnamon may lessen glomerulosclerosis, tubular necrosis, tubular degeneration, and glomerular necrosis. The kidney P3 treatment (400 mg/kg BW) produced negligible effects. Conclusion It is possible to create cinnamon essential oil as an herbal antidiabetic medication by lowering the degree of kidney cell damage.
Collapse
Affiliation(s)
- Budiastuti Budiastuti
- Study Program of Pharmacy Science, Faculty of Health Science, Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
| | - Naomi Lan Noviana Thesia
- Master Program of Veterinary Science and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Hani Plumeriastuti
- Study Program of Pharmacy Science, Faculty of Health Science, Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Emmanuel Nnabuike Ugbo
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| | - Riza Zainuddin Ahmad
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | - Wasito Wasito
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Bima Putra Pratama
- Study Program of Pharmacy Science, Faculty of Health Science, Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
| | - Mo Awwanah
- Research Center for Applied Botany, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Agung Prasetyo
- Research Center for Estate Crops, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| |
Collapse
|
5
|
Yeter B, Suleyman Z, Bulut S, Cicek B, Coban TA, Demir O, Suleyman H. Effect of adenosine triphosphate on methylphenidate-induced oxidative and inflammatory kidney damage in rats. Drug Chem Toxicol 2025:1-9. [PMID: 39881661 DOI: 10.1080/01480545.2025.2457386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
The purpose of this trial was to assess the effects of methylphenidate on the kidney tissues and to investigate the protective effect of adenosine triphosphate (ATP) against possible methylphenidate nephrotoxicity in rats. The rats were separated into; healthy control (HG), methylphenidate (MPHG), ATP (ATPG), and ATP+ methylphenidate (AMPG). The ATPG and AMPG groups were administered ATP 4 mg/kg bw/d, and the HG and MPHG groups received distilled water intraperitoneally. One hour from, ATP and distilled water administration, methylphenidate 10 mg/kg bw/d was applied via oral gavage to the AMPG and MPHG groups once daily for 30 d (1 × 1). Animals were euthanized after 30 d and tissues were collected. The levels of certain oxidant/antioxidant parameters, pro-inflammatory cytokines, and Blood urea nitrogen (BUN) and creatinine levels were measured. Kidneys were also examined histopathologically. ATP inhibited the increase in oxidant and decrease antioxidant levels induced by methylphenidate. The amounts of pro-inflammatory cytokines were increased in methylphenidate-treated kidney tissue compared with the HG and AMPG groups. However, ATP increased oxidative damage markers and cytokines levels close to the healthy group. Serum BUN and creatinine levels increased with methylphenidate but ATP prevented BUN and creatinine from rising in the ATPG and MPHG groups. ATP also reduced the histopathological damage increased by methylphenidate. The potential efficacy of ATP in treating kidney damage induced by methylphenidate use.
Collapse
Affiliation(s)
- Bahtinur Yeter
- Department of Child Health and Diseases, Faculty of Health Sciences, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Zeynep Suleyman
- Department of Nursing, Faculty of Health Sciences, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Seval Bulut
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Betul Cicek
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Taha Abdulkadir Coban
- Department of Medical Biochemistry, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Ozlem Demir
- Department of Histology and Embryology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| |
Collapse
|
6
|
Sands M, Zhang X, Irudayaraj J. Kidney toxicology of a novel compound Lithium Bis(trifluoromethanesulfonyl)imide (LiTFSI, ie. HQ-115) used in energy applications: An epigenetic perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177019. [PMID: 39447891 DOI: 10.1016/j.scitotenv.2024.177019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Exposure to emerging energy-based environmental contaminants such as lithium bis(trifluoromethanesulfonyl)imide (LiTFSI, trade name HQ-115), poses a significant threat to human health, yet its impact on kidney function and epigenetic regulation remains poorly understood. Here, we investigated the effects of LiTFSI exposure on kidney-related biochemical indicators, renal injuries, and epigenetic alterations in male CD-1 mice under both 14-day and 30-day exposure durations. Our study revealed that LiTFSI exposure led to changes in kidney-related markers, notably affecting serum bicarbonate levels, while relative kidney weight remained unaffected. Histological analysis revealed tubule dilation, inflammation, and loss of kidney structure in LiTFSI-exposed mice, alongside dysregulated expression of genes associated with inflammation, renal function, and uric acid metabolism. Epigenetic analysis further identified widespread DNA methylation changes in the two exposure regimes. Functional analysis revealed that differentially methylated regions are implicated in cell apoptosis and cancer-related pathways and are enriched with development-related transcription factor binding motifs, suggesting a potential mechanism of action underlying exposure induced kidney damage. These findings underscore the intricate interplay between environmental exposures, epigenetic modulation, and kidney health, emphasizing the need for additional research to unravel precise mechanisms and develop targeted interventions to mitigate the adverse effects of LiTFSI and exposure of similar clean energy compounds on human health.
Collapse
Affiliation(s)
- Mia Sands
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Carl Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Xing Zhang
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, Beckman Institute, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA.
| |
Collapse
|
7
|
Strużyna J, Tomaka P, Surowiecka A, Korzeniowski T, Wilhelm G, Łączyk M, Mądry R, Bugaj-Tobiasz M, Antonov S, Drozd Ł, Stachura AS. Ten-Year Retrospective Analysis of Continuous Renal Replacement Therapy in Burn Patients: Impact on Survival and Timing of Initiation. Ann Transplant 2024; 29:e945815. [PMID: 39558554 PMCID: PMC11587641 DOI: 10.12659/aot.945815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/19/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a common issue in intensive care units and is a potentially lethal consequence of severe burns. In severely burned patients with non-renal indications, renal replacement treatment is frequently used. This study's aim was to compile a 10-year summary of continuous renal replacement therapy (CRRT) experience at a single burn center, including patient outcomes, effectiveness, and potential complications in the context of severe burns. MATERIAL AND METHODS This retrospective analysis included the clinical data from 723 burned patients. The data analysis of 300 patients with CRRT therapy included clinical data, laboratory tests, and CRRT parameters. The study group was split into 2 subgroups regarding onset of CRRT: early (up to 7 days after the trauma) and late. RESULTS Age, burn extent, length of stay, and inhalation injury all had an impact on survival. Early CRRT was linked to a greater probability of death (P<0.005). Upon admission to the burn center, patients with early CRRT exhibited a bigger burn area, higher Baux and SOFA scores, and were younger (P<0.05). Sepsis was diagnosed more frequently in the late CRRT group. CONCLUSIONS Our findings show that patients who require CRRT within the first 7 days following a burn injury have a poorer prognosis; however, this is not due to CRRT's effect, but rather to the trauma's severity. Future studies should explore long-term patient outcomes of CRRT among burn patients.
Collapse
Affiliation(s)
- Jerzy Strużyna
- Department of Plastic, Reconstructive Surgery and Burn Treatment, Medical University of Lublin, Lublin, Poland
| | - Piotr Tomaka
- Department of Anesthesiology and Intensive Care, District Hospital, Łęczna, Poland
| | - Agnieszka Surowiecka
- Department of Plastic, Reconstructive Surgery and Microsurgery, Medical University of Lublin, Lublin, Poland
| | - Tomasz Korzeniowski
- Department of Plastic, Reconstructive Surgery and Burn Treatment, Medical University of Lublin, Lublin, Poland
| | - Grzegorz Wilhelm
- Department of Plastic, Reconstructive Surgery and Microsurgery, Medical University of Lublin, Lublin, Poland
| | - Maciej Łączyk
- East Center of Burns Treatment and Reconstructive Surgery, District Hospital, Łęczna, Poland
| | - Ryszard Mądry
- East Center of Burns Treatment and Reconstructive Surgery, District Hospital, Łęczna, Poland
| | - Magdalena Bugaj-Tobiasz
- East Center of Burns Treatment and Reconstructive Surgery, District Hospital, Łęczna, Poland
| | - Sergey Antonov
- Department of Plastic, Reconstructive Surgery and Microsurgery, Medical University of Lublin, Lublin, Poland
| | - Łukasz Drozd
- East Center of Burns Treatment and Reconstructive Surgery, District Hospital, Łęczna, Poland
| | - Aldona S. Stachura
- East Center of Burns Treatment and Reconstructive Surgery, District Hospital, Łęczna, Poland
| |
Collapse
|
8
|
Kundo NK, Kitada K, Fujisawa Y, Xi C, Akumwami S, Rahman MM, Seishima R, Nakamura K, Matsunaga T, Hossain A, Morishita A, Titze J, Rahman A, Nishiyama A. Blood pressure alteration associated with abnormal body electrolyte and water balance in colitis mice. Hypertens Res 2024; 47:3147-3157. [PMID: 39256526 DOI: 10.1038/s41440-024-01874-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/24/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024]
Abstract
Previous studies reported that there is an association between abnormal body fluid balance and prognosis in colitis patients. However, it remains to be clarified the effects of colitis on characteristics of body electrolytes or water content, including alternation in blood pressure. In this study, we examined the effects of colon injury on body water balance and blood pressure in the dextran sodium sulfate (DSS)-induced colitis mouse model. We evaluated body electrolytes and water content, blood pressure, and urea-associated water conservation in DSS mice. By 5 days after the treatment, DSS mice exhibited diarrhea but relatively maintained body weight and total body sodium, potassium, and water content by increases in water intake and hepatic ureagenesis. On 7 days after DSS treatment, when colitis becomes severe, DSS mice significantly decreased food and water intake, and body weight but significantly increased relative total body sodium, potassium, and water content per dry mass. Notably, DSS induced more total body dry mass loss relative to water loss. These body electrolytes and water accumulation on day 7 were associated with a reduction in urinary osmole excretion and urine volume accompanied by renal urea accumulation. DSS mice significantly increased blood pressure by day 5 and then decreased on day 7. These findings suggest that body electrolyte and fluid imbalance and alternations in blood pressure in colitis vary with the stage and severity of the condition. Assessment and correction of electrolyte and water content at the tissue level would be important to improve the prognosis of colitis.
Collapse
Affiliation(s)
- Netish Kumar Kundo
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan
- Department of Pharmacy, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan.
| | - Yoshihide Fujisawa
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan
| | - Chen Xi
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan
| | - Steeve Akumwami
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan
- Department of Anaesthesiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Md Moshiur Rahman
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan
| | - Ryo Seishima
- Department of Surgery, Keio University School of Medicine, 1608582, Tokyo, Japan
| | - Kimihiko Nakamura
- Department of Surgery, Kanto Central Hospital, 1588531, Tokyo, Japan
| | - Toru Matsunaga
- Division of Hospital Pathology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan
| | - Akram Hossain
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan
| | - Jens Titze
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857, Singapore, Singapore
- Division of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremberg, 91054, Erlangen, Germany
- Division of Nephrology, Duke University Medical Center, Durham, 27705 NC, NC, USA
| | - Asadur Rahman
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan
| |
Collapse
|
9
|
Bulut EC, Erol Kutucu D, Üstünova S, Ağırbaşlı M, Dedeakayoğulları H, Tarhan Ç, Kapucu A, Yeğen BÇ, Demirci Tansel C, Gürel Gürevin E. Synbiotic supplementation ameliorates anxiety and myocardial ischaemia-reperfusion injury in hyperglycaemic rats by modulating gut microbiota. Exp Physiol 2024; 109:1882-1895. [PMID: 39264256 PMCID: PMC11522816 DOI: 10.1113/ep092052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
Hyperglycaemia, hyperlipidaemia, hypertension and obesity are the main risk factors affecting the development and prognosis of ischaemic heart disease, which is still an important cause of death today. In our study, male Sprague-Dawley rats were fed either a standard diet (SD) or a high fat and high carbohydrate diet (HF-HCD) for 8 weeks and streptozotocin (STZ) was injected at the seventh week of the feeding period. In one set of rats, a mixture of a prebiotic and probiotics (synbiotic, SYN) was administered by gavage starting from the beginning of the feeding period. Experimental myocardial ischaemia-reperfusion (30 min/60 min) was induced at the end of 8 weeks. Hyperglycaemia, hypertension and increased serum low-density lipoprotein levels occurred in SD- and HF-HCD-fed and STZ-treated rats followed for 8 weeks. Increased density of the Proteobacteria phylum was observed in rats with increased blood glucose levels, indicating intestinal dysbiosis. The severity of cardiac damage was highest in the dysbiotic HF-HCD-fed hyperglycaemic rats, which was evident with increased serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), tumour necrosis factor-α, and interleukin-6 levels, along with a decrease in ST-segment resolution index. SYN supplementation to either a normal or a high-fat high-carbohydrate diet improved gut dysbiosis, reduced anxiety, decreased CK-MB and cTnI levels, and alleviated myocardial ischaemia-reperfusion injury in hyperglycaemic rats.
Collapse
Affiliation(s)
- Erman Caner Bulut
- Department of Biology, Institute of Graduate Studies in SciencesIstanbul UniversityIstanbulTurkey
| | - Deniz Erol Kutucu
- Department of Biology, Faculty of ScienceIstanbul UniversityIstanbulTurkey
| | - Savaş Üstünova
- Department of Physiology, School of MedicineBezmialem Vakıf UniversityIstanbulTurkey
| | - Mehmet Ağırbaşlı
- Department of Cardiology, School of MedicineIstanbul Medeniyet UniversityIstanbulTurkey
| | - Huri Dedeakayoğulları
- Department of Medical Biochemistry, Faculty of MedicineBiruni UniversityIstanbulTurkey
| | - Çağatay Tarhan
- Department of Molecular Biology and Genetics, Faculty of ScienceIstanbul UniversityIstanbulTurkey
| | - Ayşegül Kapucu
- Department of Biology, Faculty of ScienceIstanbul UniversityIstanbulTurkey
| | - Berrak Ç. Yeğen
- Department of Physiology, School of MedicineMarmara UniversityIstanbulTurkey
| | | | - Ebru Gürel Gürevin
- Department of Biology, Faculty of ScienceIstanbul UniversityIstanbulTurkey
| |
Collapse
|
10
|
Carneiro Junior WDO, Guimarães MLR, Freitas KM, Pereira RS, Pádua RMD, Campana PRV, Braga FC. Structural characterization of a proanthocyanidin-rich fraction from Hancornia speciosa leaves and its effect on the release of pro-inflammatory cytokines and oxidative stress in THP-1 cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118471. [PMID: 38901680 DOI: 10.1016/j.jep.2024.118471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Brazil, the leaves of Hancornia speciosa Gomes have a traditional use for treating hypertension and diabetes. Experimental investigations have confirmed the anti-hypertensive and hypoglycemic properties of extracts derived from H. speciosa leaves across various experimental models. These biological activities have been mostly ascribed to its major constituent, bornesitol, along with other cyclitols, flavonoids, and cinnamic acid derivatives. AIM OF STUDY The objective of this study was to characterize the chemical structure of proanthocyanidins from H. speciosa leaves and explore their in vitro activity on the release of pro-inflammatory cytokines and oxidative stress. MATERIAL AND METHODS The acetone/water (7:3) extract of H. speciosa leaves (HsE) was prepared by percolation and fractionated by column chromatography over Sephadex LH20 to afford the proanthocyanidin-rich fraction HsFr3. Structure characterization of the proanthocyanidins constituents of HsFr3 was accomplished by extensive UPLC-DAD-ESI-MS/MS analysis coupled to degradation reaction through thiolysis. The effect of HsE, HsFr3, and bornesitol on the release of TNF, IL-1β and IL-6 in LPS-stimulated THP-1 cells was assayed by ELISA. The effect of the samples on oxidative stress induced by LPS in THP-1 cell was investigated using a DCFH-DA fluorescent assay. RESULTS Fractionation of HsE afforded HsFr3, primarily composed of six proanthocyanidins. Their chemical structures were characterized as dimeric (4 isomers) and trimeric (2 isomers) procyanidins C-glycosides of the B-type. HsE, HsFr3, and bornesitol reduced the release of pro-inflammatory cytokines TNF and IL-1β in LPS-stimulated THP-1 cells, while no significant effect was observed on IL-6. All samples reduced the oxidative stress induced by LPS in THP-1 cells, whereas bornesitol, tested at lower concentrations, induced an equivalent response to HsE and HsFr3. CONCLUSIONS Our findings provide additional evidence to support the ethnomedical use of H. speciosa in managing hypertension and hyperglycemia, due to the direct association of oxidative stress, TNF, and IL-1β with the maintenance and aggravation of these deleterious conditions. The dimeric and trimeric procyanidin C-glycosides, characterized in the species, contribute to diminish oxidative stress and the release or pro-inflammatory cytokines, whereas bornesitol was shown to induce similar effect at lower concentrations.
Collapse
Affiliation(s)
- Wellerson de Oliveira Carneiro Junior
- Department of Pharmaceutical Products Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, 31270-901, Belo Horizonte, Brazil.
| | - Maria Luiza Rocha Guimarães
- Department of Pharmaceutical Products Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, 31270-901, Belo Horizonte, Brazil.
| | - Kátia Michelle Freitas
- Department of Pharmaceutical Products Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, 31270-901, Belo Horizonte, Brazil.
| | - Rosângela Santos Pereira
- Department of Pharmaceutical Products Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, 31270-901, Belo Horizonte, Brazil.
| | - Rodrigo Maia de Pádua
- Department of Pharmaceutical Products Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, 31270-901, Belo Horizonte, Brazil.
| | - Priscilla Rodrigues Valadares Campana
- Department of Pharmaceutical Products Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, 31270-901, Belo Horizonte, Brazil.
| | - Fernão Castro Braga
- Department of Pharmaceutical Products Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, 31270-901, Belo Horizonte, Brazil.
| |
Collapse
|
11
|
Wojtacha P, Bogdańska-Chomczyk E, Majewski MK, Obremski K, Majewski MS, Kozłowska A. Renal Inflammation, Oxidative Stress, and Metabolic Abnormalities During the Initial Stages of Hypertension in Spontaneously Hypertensive Rats. Cells 2024; 13:1771. [PMID: 39513878 PMCID: PMC11545559 DOI: 10.3390/cells13211771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Hypertension is a major cause of mortality worldwide. The kidneys play a crucial role in regulating blood pressure and fluid volume. The relationship between the kidneys and hypertension is complex, involving factors such as the renin-angiotensin system, oxidative stress, and inflammation. This study aims to assess the levels of inflammatory markers, oxidative stress, and metabolic factors in the kidneys, focusing on their potential role in early renal damage and their association with the development of hypertension. Methods: This study was designed to compare the levels of selected inflammatory markers, e.g., interleukins, tumor necrosis factor-α (TNF-α), transforming growth factor, and serine/threonine-protein (mTOR); oxidative stress markers such as malondialdehyde, sulfhydryl group, and glucose (GLC); and metabolic markers among other enzymes, such as alanine transaminase (ALT), aspartate transaminase (AST), hexokinase II (HK-II), and hypoxia-inducible factor-1α (HIF-1α), as well as creatinine in the kidneys of spontaneously hypertensive rats (SHR/NCrl, n = 12) and Wistar Kyoto rats (WKY/NCrl, n = 12). Both juvenile (5 weeks old) and maturing (10 weeks old) specimens were examined using spectrophotometric methods, e.g., ELISA. Results: Juvenile SHRs exhibited reduced renal levels of all studied cytokines and chemokines, with lower oxidative stress and deficits in the mTOR and HK-II levels compared to the age-matched WKYs. Maturing SHRs showed increased renal levels of interleukin-1β (IL-1β), IL-6, IL-18, and TNF-α, alongside elevated carbonyl stress and increased HIF-1α as opposed to their control peers. The levels of all other studied markers were normalized in these animals, except for ALT (increased), ALP, and GLC (both reduced). Conclusions: This study underscores the significant impact of inflammatory, oxidative stress, and metabolic marker changes on renal function. Juvenile SHRs display lower marker levels, indicating an immature immune response and potential subclinical kidney damage that may contribute to hypertension development. In contrast, mature SHRs exhibit chronic inflammation, oxidative dysregulation, and metabolic disturbances, suggesting cellular damage. These changes create a feedback loop that worsens kidney function and accelerates hypertension progression, highlighting the kidneys' crucial role in both initiating and exacerbating this condition.
Collapse
Affiliation(s)
- Paweł Wojtacha
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury, Warszawska Av, 10-082 Olsztyn, Poland
| | - Ewelina Bogdańska-Chomczyk
- Department of Human Physiology and Pathophysiology, Collegium Medicum, University of Warmia and Mazury, Warszawska Av, 30, 10-082 Olsztyn, Poland; (E.B.-C.); (M.K.M.)
| | - Mariusz Krzysztof Majewski
- Department of Human Physiology and Pathophysiology, Collegium Medicum, University of Warmia and Mazury, Warszawska Av, 30, 10-082 Olsztyn, Poland; (E.B.-C.); (M.K.M.)
| | - Kazimierz Obremski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13/29, 10-718 Olsztyn, Poland;
| | - Michał Stanisław Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury, Warszawska Av, 30, 10-082 Olsztyn, Poland;
| | - Anna Kozłowska
- Department of Human Physiology and Pathophysiology, Collegium Medicum, University of Warmia and Mazury, Warszawska Av, 30, 10-082 Olsztyn, Poland; (E.B.-C.); (M.K.M.)
| |
Collapse
|
12
|
Kumar K, Bosch K, Vemuri V, Kratholm N, Rane M, Kakar SS. Withaferin A ameliorates ovarian cancer-induced renal damage through the regulation of expression of inflammatory cytokines. J Ovarian Res 2024; 17:199. [PMID: 39394174 PMCID: PMC11468018 DOI: 10.1186/s13048-024-01519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Cachexia a multifactorial syndrome is a common sequala in patients with cancer. It varies from 42 to 80% depending upon the oncological stage and is directly responsible for 30% of deaths in these patients. Previous research from our laboratory demonstrated that peritoneal ovarian cancer generated in NSG mice resulted in skeletal and cardiac muscle atrophy - leading to loss of skeletal muscle mass and strength, and cardiac dysfunction (cachexia). Treatment of mice bearing i.p. tumors with withaferin A (WFA) showed reversal of skeletal muscle and cardiac cachexia. The present study is focused on determining effects of peritoneal ovarian tumors on kidney damage and effects of WFA treatment on ameliorating kidney damage. METHODS We generated intraperitoneal ovarian cancer by injecting female NSG mice with ovarian cancer cell line (A2780). After one week of injecting cancer cells, mice were treated with WFA (4 mg/kg) every third day, for three weeks. After 4 weeks of injection of cancer cells, the mice were sacrificed and various tissues including kidney and blood were collected, snap-frozen in liquid nitrogen, and stored at -800C. The presence of kidney biomarker creatinine, was measured in the plasma by an ELISA. The mRNA was isolated from mouse kidneys and was used to examine the expression levels of signaling proteins, inflammatory cytokines, and genes responsible for inducing cachexia (IL-1β, IL-6, TNF-α, TGF-β, GDF-15, and MYD88). RESULTS Our results showed a significant increase in levels of expression of inflammatory cytokine IL-1 β (p < 0.01), IL-6 (p < 0.001), TNF-α (p < 0.001), and other related genes including TRAF6 (p < 0.01), MYD88 (p < 0.01), and GDF-15 (p = 0.005) in tumor-bearing mice compared to controls. Treatment of mice bearing tumors with WFA attenuated the increase in expression of each gene. In addition, our results showed a significant increase in creatinine levels in circulation in tumor-bearing mice compared to control mice. Treatment of tumor-bearing mice with WFA resulted in a significant decrease in plasma creatinine levels compared to tumor-bearing mice. CONCLUSIONS Our results conclude that ovarian tumors in NSG mice caused kidney damage and renal dysfunction, which was effectively ameliorated by WFA treatment, suggesting a protective effect of WFA on kidney injury induced by ovarian cancer.
Collapse
Affiliation(s)
- Kusum Kumar
- Deparment of Biology, University of Louisville, Louisville, KY, USA
| | - Katherine Bosch
- Department of Biology and Chemistry, Liberty University, Lynchburg, VA, USA
| | - Vasa Vemuri
- Deparment of Biology, University of Louisville, Louisville, KY, USA
| | - Nicholas Kratholm
- Department of Physiology, School of Medicine, University of Louisville, 500 South Floyd Street, Louisville, KY, 40202, USA
| | - Madhavi Rane
- Department of Medicine, Division Nephrology, University of Louisville, Louisville, KY, USA
| | - Sham S Kakar
- Department of Physiology, School of Medicine, University of Louisville, 500 South Floyd Street, Louisville, KY, 40202, USA.
- Department of Medicine, Brown Cancer Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
13
|
Lee OYA, Wong ANN, Ho CY, Tse KW, Chan AZ, Leung GPH, Kwan YW, Yeung MHY. Potentials of Natural Antioxidants in Reducing Inflammation and Oxidative Stress in Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:751. [PMID: 38929190 PMCID: PMC11201162 DOI: 10.3390/antiox13060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic kidney disease (CKD) presents a substantial global public health challenge, with high morbidity and mortality. CKD patients often experience dyslipidaemia and poor glycaemic control, further exacerbating inflammation and oxidative stress in the kidney. If left untreated, these metabolic symptoms can progress to end-stage renal disease, necessitating long-term dialysis or kidney transplantation. Alleviating inflammation responses has become the standard approach in CKD management. Medications such as statins, metformin, and GLP-1 agonists, initially developed for treating metabolic dysregulation, demonstrate promising renal therapeutic benefits. The rising popularity of herbal remedies and supplements, perceived as natural antioxidants, has spurred investigations into their potential efficacy. Notably, lactoferrin, Boerhaavia diffusa, Amauroderma rugosum, and Ganoderma lucidum are known for their anti-inflammatory and antioxidant properties and may support kidney function preservation. However, the mechanisms underlying the effectiveness of Western medications and herbal remedies in alleviating inflammation and oxidative stress occurring in renal dysfunction are not completely known. This review aims to provide a comprehensive overview of CKD treatment strategies and renal function preservation and critically discusses the existing literature's limitations whilst offering insight into the potential antioxidant effects of these interventions. This could provide a useful guide for future clinical trials and facilitate the development of effective treatment strategies for kidney functions.
Collapse
Affiliation(s)
- On Ying Angela Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Alex Ngai Nick Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Ching Yan Ho
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Ka Wai Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Angela Zaneta Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China;
| | - Yiu Wa Kwan
- The School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Martin Ho Yin Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
14
|
Mousa LN, Jarrar Y, Gharaibeh M, Alhawari H. Effects of tumor necrosis factor- α rs1800629 and interleukin- 10 rs1800872 genetic variants on type 2 diabetes mellitus susceptibility and metabolic parameters among Jordanians. Drug Metab Pers Ther 2024; 39:81-87. [PMID: 38741519 DOI: 10.1515/dmpt-2024-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/01/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVES Diabetes mellitus (DM) is a complex chronic illness with diverse pathogenesis and associations with health complications. Genetic factors significantly contribute to DM development, and tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) genes play major roles. This study aims to explore the influence of TNF-α rs1800629 and IL-10 rs1800872 genetic variants on T2DM development in Jordanian patients at Jordan University Hospital. METHODS One-hundred and 60 diabetic and 159 non-diabetic subjects were genotyped for TNF-α rs1800629. Additionally, 181 diabetic and 191 non-diabetic subjects were genotyped for IL-10 rs1800872 using PCR-RFLP genotyping method. The demographic, lipid, and glycemic parameters of the patients were obtained from the computer records in the hospital. RESULTS TNF-α rs1800629 and IL-10 rs1800872 genetic variants exhibited significant different frequencies in non-T2DM subjects and T2DM patients. The difference in TNF-α rs1800629 genotype frequency between non-T2DM and T2DM participants was significant under the dominant model, while the IL-10 rs1800872 genotype frequency was significant under the recessive model. A significant association (p<0.05) was observed between TNF-α rs1800629 and total cholesterol levels, and between IL-10 rs1800872 polymorphism and glycosylated hemoglobin (HbA1c) and creatinine levels among T2DM patients. CONCLUSIONS TNF-α rs1800629 and IL-10 rs1800872 are identified as genetic risk factors for T2DM. These variants also correlate with variations in cholesterol, HbA1c, and creatinine levels among T2DM patients. Larger clinical studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Lana Nasrallah Mousa
- Department of Pharmacology, Faculty of Medicine, 54658 The University of Jordan , Amman, Jordan
| | - Yazun Jarrar
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| | - Munir Gharaibeh
- Department of Pharmacology, Faculty of Medicine, 54658 The University of Jordan , Amman, Jordan
| | - Hussam Alhawari
- Department of Internal Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
15
|
Mohamed AA, Elmotaleb Hussein MA, Nabil Hanna I, Japer Nashwan AJ, Saleh M, Abdel Wahed WY, Mohamed Mansour AM, Ezz Al Arab MR, Fawzy N, Sakr Y, Shalby H, AlHussain E, Kamal Darwish M, El-Osaily H, Naguib M, Mohamed AA, Farouk Mohamed W, Hafez W. The potential impact and diagnostic value of inflammatory markers on diabetic foot progression in type II diabetes mellitus: A case-control study. Med Clin (Barc) 2024; 162:e33-e39. [PMID: 38458959 DOI: 10.1016/j.medcli.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/19/2023] [Accepted: 01/25/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND The wound-healing process in diabetic foot is affected by pro and anti-inflammatory markers, and any disruption in the inflammatory reaction interferes with tissue homeostasis, leading to chronic non-wound healing. AIM This study aimed to determine the diagnostic value and effect of CRP, IL-6, TNF, and HbA1c on initiation the and progression of diabetic foot ulcers. METHOD ELISA was used to quantify IL-6, TNF, CRP, and HbA1c in 205 patients with diabetes, and 105 were diabetic foot free. The prevalence and progression of diabetic foot were also evaluated. The area under the curve (AUC) was calculated using the receiver operating characteristic (ROC) curve to analyze the predictive values. Forward stepwise logistic regression analysis was used to compute the odds ratio (OR) and the corresponding 95% confidence intervals (CIs). RESULTS CRP, IL-6, and FBS were found to be significant predictors of diabetic foot (OR=1.717, 95% CI=1.250-2.358, P=0.001; OR=1.434, 95% CI=1.142-1.802, P=0.002; and OR=1.040, 95% CI=1.002-1.080, P=0.037), respectively. The AUCs for CRP, IL-6, and HbA1c in predicting diabetic foot were 0.839, 0.728, and 0.834, respectively, demonstrating a good predictive value for each diagnostic marker. CONCLUSION The current study demonstrated that IL-6, CRP, and HbA1c may be useful biomarkers to indicate diabetic foot progression. Furthermore, our findings showed a substantial relationship between CRP and HbA1c in individuals with diabetic foot conditions.
Collapse
Affiliation(s)
- Amal Ahmed Mohamed
- Biochemistry Department, National Hepatology and Tropical Medicine Research Institute, Gothi, Egypt
| | | | - Ihab Nabil Hanna
- Surgical Department, National Institute of Diabetes and Endocrinology, Egypt
| | | | - Mohamed Saleh
- Gastroentrology Department, National Hepatology and Tropical Medicine Research Institute, Egypt
| | | | | | | | - Naglaa Fawzy
- Clinical and Chemical Pathology Department, National Institute of Diabetes and Endocrinology, Egypt
| | - Yasser Sakr
- Clinical and Chemical Pathology Department, National Institute of Diabetes and Endocrinology, Egypt
| | - Hassan Shalby
- Internal Medicine Department, Faculty of Medicine, Misr University for Science and Technology, Egypt
| | - Eman AlHussain
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Egypt
| | - Marwa Kamal Darwish
- Chemistry Department (Biochemistry Branch), Faculty of Science, Suez University, Suez 43518, Egypt
| | - Heba El-Osaily
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, Egypt
| | - Mervat Naguib
- Internal Medicine Department, Faculty of Medicine, Cairo University, Egypt
| | - Ahmed Ali Mohamed
- Intensive Care Unit, Theodor Bilharz Research Institute, Giza, Egypt
| | | | - Wael Hafez
- Internal Medicine Department, National Research Centre, Elbohoos Street, Dokki, Giza, Egypt
| |
Collapse
|
16
|
Bayoumi AA, Ahmad EA, Ibrahim IAAEH, Mahmoud MF, Elbatreek MH. Inhibition of both NOX and TNF-α exerts substantial renoprotective effects in renal ischemia reperfusion injury rat model. Eur J Pharmacol 2024; 970:176507. [PMID: 38492877 DOI: 10.1016/j.ejphar.2024.176507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND AND AIMS Acute kidney injury (AKI) due to renal ischemia-reperfusion injury (RIRI) is associated with high morbidity and mortality, with no renoprotective drug available. Previous research focused on single drug targets, yet this approach has not reached translational success. Given the complexity of this condition, we aimed to identify a disease module and apply a multitarget network pharmacology approach. METHODS Identification of a disease module with potential drug targets was performed utilizing Disease Module Detection algorithm using NADPH oxidases (NOXs) as seeds. We then assessed the protective effect of a multitarget network pharmacology targeting the identified module in a rat model of RIRI. Rats were divided into five groups; sham, RIRI, and RIRI treated with setanaxib (NOX inhibitor, 10 mg/kg), etanercept (TNF-α inhibitor, 10 mg/kg), and setanaxib and etanercept (5 mg/kg each). Kidney functions, histopathological changes and oxidative stress markers (MDA and reduced GSH) were assessed. Immunohistochemistry of inflammatory (TNF-α, NF-κB) apoptotic (cCasp-3, Bax/Bcl 2), fibrotic (α-SMA) and proteolysis (MMP-9) markers was performed. RESULTS Our in-silico analysis yielded a disease module with TNF receptor 1 (TNFR1A) as the closest target to both NOX1 and NOX2. Targeting this module by a low-dose combination of setanaxib, and etanercept, resulted in a synergistic effect and ameliorated ischemic AKI in rats. This was evidenced by improved kidney function and reduced expression of inflammatory, apoptotic, proteolytic and fibrotic markers. CONCLUSIONS Our findings show that applying a multitarget network pharmacology approach allows synergistic renoprotective effect in ischemic AKI and might pave the way towards translational success.
Collapse
Affiliation(s)
- Amina A Bayoumi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Enssaf Ahmad Ahmad
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Islam A A E-H Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mahmoud H Elbatreek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
17
|
Kutbi D, Almalki RS. Valsartan Mitigates the Progression of Methotrexate-Induced Acute Kidney Injury in Rats via the Attenuation of Renal Inflammation and Oxidative Stress. J Inflamm Res 2024; 17:2233-2243. [PMID: 38623467 PMCID: PMC11017984 DOI: 10.2147/jir.s456610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Background Methotrexate (MTX) is a folic acid antagonist, commonly administered for the treatment of a variety of cancers. However, methotrexate toxicity including bone marrow suppression and hepatic and renal toxicity limits its use. Angiotensin AT1 receptor blockers including Valsartan (Val) possess the ability to ameliorate MTX-induced toxicity through various mechanisms. In this study, we explored the potential reno-protective effects of Val against MTX-induced acute kidney injury in rats. Methods Twenty-four Wistar rats were randomly segregated into 3 groups. Group 1 served as the control group and received an oral dose of 1mL/kg of normal saline. Group 2 received a single dose of 20 mg/kg of MTX intraperitoneally (IP) for 5 days. Group 3 received a single IP dose of 20 mg/kg of MTX followed by an oral dose of 10 mg/kg of Valsartan for 5 days. At the end of the experiment, the levels of serum kidney biomarkers, inflammatory and oxidative stress markers were accessed. Furthermore, the effect of MTX on kidney tissue histology was examined. Results and discussion Our results showed that MTX treatment increased the level of serum kidney and inflammatory biomarkers and decreased the level of antioxidants SOD and GSH while increasing the lipid peroxidation contents. Furthermore, MTX treatment caused structural changes to kidney histology. However, the administration of Val significantly prevented these changes. Conclusion Valsartan possesses nephroprotective potential and might serve as a potential therapeutic strategy against MTX-induced kidney injury.
Collapse
Affiliation(s)
- Dina Kutbi
- Department of Pharmacy, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Riyadh S Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm AL-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
18
|
Lee YS, Kim AR, Jeon YE, Bak EJ, Yoo YJ. Periodontitis deteriorates renal fibrosis and macrophage infiltration in rats with chronic kidney disease. Oral Dis 2024; 30:1497-1505. [PMID: 36905098 DOI: 10.1111/odi.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
OBJECTIVE The objective of this study was to examine the effect of periodontitis on renal function and morphology in rats with or without nephrectomy (Nx)-induced chronic kidney disease (CKD). METHODS Rats were divided into sham surgery (Sham), Sham with tooth ligation (ShamL), Nx, and NxL groups. Periodontitis was induced by tooth ligation at 16-week olds. Creatinine, alveolar bone area, and renal histopathology were analyzed at 20-week olds. RESULTS Creatinine did not differ between the Sham and ShamL groups or between the Nx and NxL groups. The ShamL and NxL groups (both p = 0.002) had less alveolar bone area than the Sham group. The NxL group had fewer glomeruli than the Nx group (p < 0.000). The periodontitis groups demonstrated more tubulointerstitial fibrosis (Sham vs. ShamL p = 0.002, Nx vs. NxL p < 0.000) and macrophage infiltration (Sham vs. ShamL p = 0.002, Nx vs. NxL p = 0.006) than the groups without periodontitis. Only the NxL group had greater renal TNFα expression than the Sham group (p < 0.003). CONCLUSIONS These suggest that periodontitis increases renal fibrosis and inflammation in the presence or absence of CKD but does not affect renal function. Periodontitis also increases TNFα expression in the presence of CKD.
Collapse
Affiliation(s)
- Youn Soo Lee
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
- Department of Dentistry, The Graduate School, Yonsei University, Seoul, South Korea
| | - Ae Ri Kim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Yeong-Eui Jeon
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Eun-Jung Bak
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Yun-Jung Yoo
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
- Department of Dentistry, The Graduate School, Yonsei University, Seoul, South Korea
| |
Collapse
|
19
|
Valencia LJ, Tseng M, Chu ML, Yu L, Adedeji AO, Kiyota T. Zoledronic acid and ibandronate-induced nephrotoxicity in 2D and 3D proximal tubule cells derived from human and rat. Toxicol Sci 2024; 198:86-100. [PMID: 38059598 DOI: 10.1093/toxsci/kfad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Drug-induced proximal tubule (PT) injury remains a serious safety concern throughout drug development. Traditional in vitro 2-dimensional (2D) and preclinical in vivo models often fail to predict drug-related injuries presented in clinical trials. Various 3-dimensional (3D) microphysiological systems (MPSs) have been developed to mimic physiologically relevant properties, enabling them to be more predictive toward nephrotoxicity. To explore the capabilities of an MPS across species, we compared cytotoxicity in hRPTEC/TERT1s and rat primary proximal tubular epithelial cells (rPPTECs) following exposure to zoledronic acid and ibandronate (62.5-500 µM), and antibiotic polymyxin B (PMB) (50 and 250 µM, respectively). For comparison, we investigated cytotoxicity using 2D cultured hRPTEC/TERT1s and rPPTECs following exposure to the same drugs, including overlapping concentrations, as their 3D counterparts. Regardless of the in vitro model, bisphosphonate-exposed rPPTECs exhibited cytotoxicity quicker than hRPTEC/TERT1s. PMB was less sensitive toward nephrotoxicity in rPPTECs than hRPTEC/TERT1s, demonstrating differences in species sensitivity within both 3D and 2D models. Generally, 2D cultured cells experienced faster drug-induced cytotoxicity compared to the MPSs, suggesting that MPSs can be advantageous for longer-term drug-exposure studies, if warranted. Furthermore, ibandronate-exposed hRPTEC/TERT1s and rPPTECs produced higher levels of inflammatory and kidney injury biomarkers compared to zoledronic acid, indicating that ibandronate induces acute kidney injury, but also a potential protective response since ibandronate is less toxic than zoledronic acid. Our study suggests that the MPS model can be used for preclinical screening of compounds prior to animal studies and human clinical trials.
Collapse
Affiliation(s)
- Leslie J Valencia
- Investigative Toxicology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
- Pathology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
| | - Min Tseng
- Investigative Toxicology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
| | - Mei-Lan Chu
- Pathology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
| | - Lanlan Yu
- Investigative Toxicology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
| | - Adeyemi O Adedeji
- Pathology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
| | - Tomomi Kiyota
- Investigative Toxicology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
| |
Collapse
|
20
|
Gao J, Deng Q, Yu J, Wang C, Wei W. Role of renal tubular epithelial cells and macrophages in cisplatin-induced acute renal injury. Life Sci 2024; 339:122450. [PMID: 38262575 DOI: 10.1016/j.lfs.2024.122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/30/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a sudden and continuous decline in renal function. The drug cisplatin is commonly used as chemotherapy for solid tumors, and cisplatin-induced acute kidney injury (CI-AKI), which is characterized by acute tubular necrosis and inflammation, frequently occurs in tumor patients. Renal tubular epithelial cells (RTECs) are severely damaged early in this process and play an important role in renal tubular injury and the recruitment of immune cells. Macrophages are the most common infiltrating immune cells in the kidney and have a significant impact on CI-AKI and subsequent repair. This article reviews the latest research progress on the effects of RTECs and macrophages on CI-AKI and their interactions in AKI to provide a direction for identifying therapeutic targets for treating AKI.
Collapse
Affiliation(s)
- Jinzhang Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| | - Qinxiang Deng
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Third Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Jun Yu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China.
| |
Collapse
|
21
|
Tan Y, Huang Z, Li H, Yao H, Fu Y, Wu X, Lin C, Lai Z, Yang G, Jing C. Association between Psoriasis and Renal Functions: An Integration Study of Observational Study and Mendelian Randomization. Biomedicines 2024; 12:249. [PMID: 38275420 PMCID: PMC10813483 DOI: 10.3390/biomedicines12010249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
Psoriasis is an autoimmune-mediated disease with several comorbidities in addition to typical skin lesions. Increasing evidence shows the relationships between psoriasis and renal functions, but the relationship and causality remain unclear. We aimed to investigate the associations and causality between psoriasis and four renal functions, including the estimated glomerular filtration rate (eGFR), blood urea nitrogen (BUN), urine albumin to creatinine ratio (UACR), and chronic kidney disease (CKD). For the population-based study, we analyzed the National Health and Nutrition Examination Survey (NHANES) data from five cycles (2003-2006 and 2009-2014) on psoriasis and renal functions. Subgroup analyses were conducted among different categories of participants. Meanwhile, a bidirectional two-sample Mendelian randomization (TSMR) study in European populations was also performed using summary-level genetic datasets. Causal effects were derived by conducting an inverse-variance weighted (MR-IVW) method. A series of pleiotropy-robust MR methods was employed to validate the robustness. Multivariable MR (MVMR) was conducted to complement the result when five competing risk factors were considered. A total of 20,244 participants were enrolled in the cross-sectional study, where 2.6% of them had psoriasis. In the fully adjusted model, participants with psoriasis had significantly lower eGFR (p = 0.025) compared with the healthy group. Individuals who are nonoverweight are more likely to be affected by psoriasis, leading to an elevation of BUN (Pint = 0.018). In the same line, TSMR showed a negative association between psoriasis and eGFR (p = 0.016), and sensitive analysis also consolidated the finding. No causality was identified between psoriasis and other renal functions, as well as the inverse causality (p > 0.05). The MVMR method further provided quite consistent results when adjusting five confounders (p = 0.042). We detected a significant negative effect of psoriasis on eGFR, with marginal association between BUN, UACR, and CKD. The adverse of psoriasis on the renal should merit further attention in clinical cares.
Collapse
Affiliation(s)
- Yuxuan Tan
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Ave. West, Guangzhou 510632, China
| | - Zhizhuo Huang
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Ave. West, Guangzhou 510632, China
- Department of Pathogen Biology, School of Medicine, Jinan University, No. 601 Huangpu Ave. West, Guangzhou 510632, China
| | - Haiying Li
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Ave. West, Guangzhou 510632, China
| | - Huojie Yao
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Ave. West, Guangzhou 510632, China
| | - Yingyin Fu
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Ave. West, Guangzhou 510632, China
| | - Xiaomei Wu
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Ave. West, Guangzhou 510632, China
| | - Chuhang Lin
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Ave. West, Guangzhou 510632, China
| | - Zhengtian Lai
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Ave. West, Guangzhou 510632, China
| | - Guang Yang
- Department of Pathogen Biology, School of Medicine, Jinan University, No. 601 Huangpu Ave. West, Guangzhou 510632, China
| | - Chunxia Jing
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Ave. West, Guangzhou 510632, China
| |
Collapse
|
22
|
Otoda T, Sekine A, Uemoto R, Tsuji S, Hara T, Tamaki M, Yuasa T, Tamaki T, Matsuhisa M, Aihara KI. Albuminuria and Serum Tumor Necrosis Factor Receptor Levels in Patients with Type 2 Diabetes on SGLT2 Inhibitors: A Prospective Study. Diabetes Ther 2024; 15:127-143. [PMID: 37883001 PMCID: PMC10786751 DOI: 10.1007/s13300-023-01488-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023] Open
Abstract
INTRODUCTION Large-scale clinical trials of sodium-glucose cotransporter 2 inhibitors (SGLT2i) demonstrate proteinuria-reducing effects in diabetic kidney disease, even after treatment with renin-angiotensin inhibitors. The precise mechanism for this favorable effect remains unclear. This prospective open-label single-arm study investigated factors associated with a reduction in proteinuria after SGLT2i administration. METHODS Patients with type 2 diabetes (T2DM) who had glycated hemoglobin (HbA1c) levels ≥ 6.5% despite dietary and/or oral hypoglycemic monotherapy were recruited and administered the recommended daily dose of SGLT2i for 4 months. Dual primary outcomes were changes in the urine albumin-to-creatinine ratio (uACR) and urine liver-type fatty acid-binding protein (L-FABP)-to-creatinine ratio (uL-FABPCR) at month 4 from baseline. Changes in kidney injury, inflammation, and oxidative stress biomarkers were investigated as secondary endpoints to examine the effects of this treatment on the kidney. The correlation between renal outcomes and clinical indicators, including circulating tumor necrosis factor receptors (TNFR) 1 and 2, was evaluated using univariate and multivariate analyses. RESULTS Participants (n = 123) had a mean age of 64.1 years (SD 13.4), with 50.4% being male. The median BMI was 25.8 kg/m2 (interquartile range (IQR) 23.1-28.9), and the median HbA1c level was 7.3% (IQR 6.9-8.3). After SGLT2i administration, the uACR declined from 19.2 mg/gCr (IQR 7.1-48.7) to 13.3 mg/gCr (IQR 7.5-31.6), whereas the uL-FABPCR was not influenced. In univariate analysis, the change in log-transformed uACR due to SGLT2i administration showed a positive correlation with the change in serum TNFR1 level (R = 0.244, p < 0.01). Multivariate regression analysis, including confounding factors, showed that the changes in serum TNFR1 level were independently associated with the changes in the log-transformed uACR (independent t = 2.102, p < 0.05). CONCLUSION After the 4-month SGLT2i administration, decreased albuminuria level was associated with decreased serum TNFR level in patients with T2DM. TRIAL REGISTRATION NUMBER UMIN000031947.
Collapse
Affiliation(s)
- Toshiki Otoda
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, 18-15, 3 Chome, Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Akiko Sekine
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, 18-15, 3 Chome, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ryoko Uemoto
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, 18-15, 3 Chome, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Seijiro Tsuji
- Department of Internal Medicine, Anan Medical Center, 6-1, Kawahara, Takarada-cho, Anan City, Tokushima, 774-0045, Japan
| | - Tomoyo Hara
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 18-15, 3 Chome, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Motoyuki Tamaki
- Department of Diabetes and Endocrinology, Tamaki Aozora Hospital, 56-1, Kitakashiya, Aza Hayabuchi, Kokufu-cho, Tokushima, 779-3125, Japan
| | - Tomoyuki Yuasa
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, 18-15, 3 Chome, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Toshiaki Tamaki
- Department of Urology, Anan Medical Center, 6-1, Kawahara, Takarada-cho, Anan City, Tokushima, 774-0045, Japan
| | - Munehide Matsuhisa
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, 18-15, 3 Chome, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ken-Ichi Aihara
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, 18-15, 3 Chome, Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
23
|
Roghani M, Golchoobian R, Mohammadian M, Shanehbandpour-Tabari F, Salehi Z, Gilaki-Bisheh S. Time-Dependent Molecular Changes Following MDMA-Induced Nephrotoxicity. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e145483. [PMID: 39830664 PMCID: PMC11742579 DOI: 10.5812/ijpr-145483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/04/2024] [Accepted: 04/13/2024] [Indexed: 01/22/2025]
Abstract
The increasing recreational use of ecstasy (MDMA) poses significant risks to human health, including reports of fatal renal failure due to its adverse renal effects. While MDMA-induced renal toxicity might result from systemic effects, there is also substantial evidence of direct harm to renal tissues by MDMA or its metabolites. The precise mechanisms underlying renal toxicity remain unclear. This study explored the impact of a single intraperitoneal dose of MDMA (20 mg/kg) on rat kidneys. Serum BUN and creatinine levels were evaluated to assess renal function, while TNF-α and TGF-β protein concentrations were measured using ELISA. mRNA levels of Bax, Bcl-xl, and Bcl-2 were quantified using quantitative RT-PCR. Additionally, apoptosis and histopathological changes in renal tissue were examined. Results showed a transient increase in serum BUN and creatinine in MDMA-treated rats. There were decreases in TNF-α and TGF-β levels in the renal tissue. Both pro-apoptotic Bax and anti-apoptotic Bcl-xl gene expressions were significantly reduced, whereas Bcl-2 expression and apoptosis did not show significant changes. No structural alterations were observed in the renal tissues. Overall, this study suggests that the renal adverse effects of MDMA may be mediated through the disruption of cytokine pathways, with notable reductions in TGF-β possibly linked to decreased TNF-α levels.
Collapse
Affiliation(s)
- Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Ravieh Golchoobian
- Department of Physiology, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Mohammadian
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farzane Shanehbandpour-Tabari
- Department of Physiology, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Gilaki-Bisheh
- Department of Pathology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Trivedi A, Bose D, Saha P, Roy S, More M, Skupsky J, Klimas NG, Chatterjee S. Prolonged Antibiotic Use in a Preclinical Model of Gulf War Chronic Multisymptom-Illness Causes Renal Fibrosis-like Pathology via Increased micro-RNA 21-Induced PTEN Inhibition That Is Correlated with Low Host Lachnospiraceae Abundance. Cells 2023; 13:56. [PMID: 38201260 PMCID: PMC10777912 DOI: 10.3390/cells13010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Gulf War (GW) veterans show gastrointestinal disturbances and gut dysbiosis. Prolonged antibiotic treatments commonly employed in veterans, especially the use of fluoroquinolones and aminoglycosides, have also been associated with dysbiosis. This study investigates the effect of prolonged antibiotic exposure on risks of adverse renal pathology and its association with gut bacterial species abundance in underlying GWI and aims to uncover the molecular mechanisms leading to possible renal dysfunction with aging. Using a GWI mouse model, administration of a prolonged antibiotic regimen involving neomycin and enrofloxacin treatment for 5 months showed an exacerbated renal inflammation with increased NF-κB activation and pro-inflammatory cytokines levels. Involvement of the high mobility group 1 (HMGB1)-mediated receptor for advanced glycation end products (RAGE) activation triggered an inflammatory phenotype and increased transforming growth factor-β (TGF-β) production. Mechanistically, TGF-β- induced microRNA-21 upregulation in the renal tissue leads to decreased phosphatase and tensin homolog (PTEN) expression. The above event led to the activation of protein kinase-B (AKT) signaling, resulting in increased fibronectin production and fibrosis-like pathology. Importantly, the increased miR-21 was associated with low levels of Lachnospiraceae in the host gut which is also a key to heightened HMGB1-mediated inflammation. Overall, though correlative, the study highlights the complex interplay between GWI, host gut dysbiosis, prolonged antibiotics usage, and renal pathology via miR-21/PTEN/AKT signaling.
Collapse
Affiliation(s)
- Ayushi Trivedi
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | - Dipro Bose
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | - Punnag Saha
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | - Subhajit Roy
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | - Madhura More
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | | | - Nancy G. Klimas
- Institute for Neuro-Immune Medicine, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
- Long Beach VA Medical Center, Long Beach, CA 90822, USA;
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
25
|
Qiu J, Zhao L, Cheng Y, Chen Q, Xu Y, Lu Y, Gao J, Lei W, Yan C, Ling Z, Wu S. Exploring the gut mycobiome: differential composition and clinical associations in hypertension, chronic kidney disease, and their comorbidity. Front Immunol 2023; 14:1317809. [PMID: 38162661 PMCID: PMC10755858 DOI: 10.3389/fimmu.2023.1317809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Background Hypertension (HTN) and chronic kidney disease (CKD) pose significant global health challenges and often coexist, amplifying cardiovascular risks. Recent attention has turned to the gut mycobiome as a potential factor in their pathophysiology. Our study sought to examine the gut fungal profile in individuals with HTN, CKD, and the concurrent HTN+CKD condition, investigating its connections with serum cytokines, renal function, and blood pressure. Methods and materials We investigated three distinct participant groups: a cohort of 50 healthy controls (HC), 50 individuals diagnosed with HTN-only, and 50 participants suffering from both HTN and CKD (HTN+CKD). To facilitate our research, we gathered fecal and blood samples and conducted a comprehensive analysis of serum cytokines. Moreover, fungal DNA extraction was conducted with meticulous care, followed by sequencing of the Internal Transcribed Spacer (ITS) region. Results HTN+CKD patients displayed distinctive fungal composition with increased richness and diversity compared to controls. In contrast, HTN-only patients exhibited minimal fungal differences. Specific fungal genera were notably altered in HTN+CKD patients, characterized by increased Apiotrichum and Saccharomyces levels and reduced Candida abundance. Our correlation analyses revealed significant associations between fungal genera and serum cytokines. Moreover, certain fungal taxa, such as Apiotrichum and Saccharomyces, exhibited positive correlations with renal function, while others, including Septoria, Nakaseomyces, and Saccharomyces, were linked to blood pressure, particularly diastolic pressure. Conclusion Gut mycobiome dysbiosis in individuals with comorbid HTN and CKD differs significantly from that observed in HTN-only and healthy controls. The interactions between serum cytokines, renal function, and blood pressure emphasize the potential impact of the fungal microbiome on these conditions. Additional research is required to clarify the underlying mechanisms and identify therapeutic opportunities associated with mycobiome dysbiosis in HTN and CKD.
Collapse
Affiliation(s)
- Juan Qiu
- Prenatal Diagnosis Center, Longhua Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Longyou Zhao
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Qiaoxia Chen
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Yiran Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingfeng Lu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Department of Laboratory Medicine, Shandong First Medical University, Jinan, Shandong, China
| | - Chengmin Yan
- Department of Intensive Unit, Hangzhou Jiaye Rehabilitation Hospital, Hangzhou, Zhejing, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Shaochang Wu
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| |
Collapse
|
26
|
Gremese E, Tolusso B, Bruno D, Paglionico AM, Perniola S, Ferraccioli G, Alivernini S. COVID-19 illness: Different comorbidities may require different immunological therapeutic targets. Eur J Clin Invest 2023; 53:e14096. [PMID: 37724937 DOI: 10.1111/eci.14096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/02/2023] [Accepted: 07/26/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND The SARS-CoV-2 pandemic has led to more than 6,870.000 deaths worldwide. Despite recent therapeutic advances, deaths in Intensive Care Units still range between 34 and 72%, comprising substantial unmet need as we move to an endemic phase. The general agreement is that in the first few days of infection, antiviral drugs and neutralizing monoclonal antibodies should be adopted. When the patient is hospitalized and develops severe pneumonia, progressing to a systemic disease, immune modifying therapy with corticosteroids is indicated. Such interventions, however, are less effective in the context of comorbidities (e.g., diabetes, hypertension, heart failure, atrial fibrillation, obesity and central nervous system-CNS diseases) which are by themselves associated with poor outcomes. Such comorbidities comprise common and some distinct underlying inflammatory pathobiology regulated by differential cytokine taxonomy. METHODS Searching in the PubMed database, literature pertaining to the biology underlying the different comorbidities, and the data from the studies related to various immunological treatments for the Covid-19 disease were carefully analyzed. RESULTS Several experimental and clinical data have demonstrated that hypertension and atrial fibrillation present an IL-6 dependent signature, whereas diabetes, obesity, heart failure and CNS diseases may exhibit an IL-1a/b predominant signature. Distinct selective cytokine targeting may offer advantage in treating severe COVID-19 illness based on single or multiple associated comorbidities. When the patient does not immediately respond, a broader target range through JAKs pathway inhibitors may be indicated. CONCLUSIONS Herein, we discuss the biological background associated with distinct comorbidities which might impact the SARS-CoV-2 infection course and how these should to be addressed to improve the current therapeutic outcome.
Collapse
Affiliation(s)
- Elisa Gremese
- Clinical Immunology Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
- Immunology Core Facility, GSTEP, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Barbara Tolusso
- Immunology Core Facility, GSTEP, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Dario Bruno
- Clinical Immunology Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Anna Maria Paglionico
- Clinical Immunology Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Simone Perniola
- Clinical Immunology Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | | | - Stefano Alivernini
- Catholic University of the Sacred Heart, Rome, Italy
- Immunology Core Facility, GSTEP, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Rheumatology Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| |
Collapse
|
27
|
Almassabi RF, Mir R, Javid J, AbuDuhier FM, Almotairi R, Alhelali MH, Algehainy N, Alsaedi BSO, Albalawi SO, Elfaki I. Differential Expression of Serum Proinflammatory Cytokine TNF-α and Genetic Determinants of TNF-α, CYP2C19*17, miR-423 Genes and Their Effect on Coronary Artery Disease Predisposition and Progression. Life (Basel) 2023; 13:2142. [PMID: 38004282 PMCID: PMC10672292 DOI: 10.3390/life13112142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death and hospitalization worldwide and represents a problem for public health systems everywhere. In Saudi Arabia, the prevalence of CAD is estimated to be 5.5%. Risk factors for CAD include older age, male gender, obesity, high blood pressure, smoking, diabetes, hyperlipidemia, and genetic factors. Reducing the risk factors in susceptible individuals will decrease the prevalence of CAD. Genome wide association studies have helped to reveal the association of many loci with diseases like CAD. In this study, we examined the link between single nucleotide variations (SNVs) of TNF-α-rs1800629 G>A, CYP2C19*17 (rs12248560) C>T, and miR-423 rs6505162 C>A and the expression of TNF-α with CAD. We used the mutation specific PCR, ARMS-PCR, and ELISA. The results showed that the A allele of the TNF-α rs1800629 G>A SNP is linked to CAD with odd ratio (OR) (95% CI) = 2.10, p-value = 0.0013. The T allele of the CYP2C19*17 (rs12248560) C>T is linked to CAD with OR (95% CI) = 2.02, p-value = 0.003. In addition, the A allele of the miR-423 rs6505162 C>A SNV is linked to CAD with OR (95% CI) = 1.49, p-value = 0.036. The ELISA results indicated that the TNF-α serum levels are significantly increased in CAD patients compared to healthy controls. We conclude the TNF-α rs1800629 G>A, CYP2C19*17, and miR-423 rs6505162 C>A are potential genetic loci for CAD in the Saudi population. These findings require further verification in future studies. After being verified, our results might be utilized in genetic testing to identify individuals that are susceptible to CAD and, therefore, for whom reducing modifiable risk factors (e.g., poor diet, diabetes, obesity, and smoking) would result in prevention or delay of CAD.
Collapse
Affiliation(s)
- Rehab F. Almassabi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Rashid Mir
- Department of Medical Lab Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (J.J.); (F.M.A.); (R.A.); (N.A.)
| | - Jamsheed Javid
- Department of Medical Lab Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (J.J.); (F.M.A.); (R.A.); (N.A.)
| | - Faisel M. AbuDuhier
- Department of Medical Lab Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (J.J.); (F.M.A.); (R.A.); (N.A.)
| | - Reema Almotairi
- Department of Medical Lab Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (J.J.); (F.M.A.); (R.A.); (N.A.)
| | - Marwan H. Alhelali
- Department of Statistics, University of Tabuk, Tabuk 47512, Saudi Arabia; (M.H.A.); (B.S.O.A.)
| | - Naseh Algehainy
- Department of Medical Lab Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (J.J.); (F.M.A.); (R.A.); (N.A.)
| | - Basim S. O. Alsaedi
- Department of Statistics, University of Tabuk, Tabuk 47512, Saudi Arabia; (M.H.A.); (B.S.O.A.)
| | - Salem Owaid Albalawi
- Department of Cardiology, King Fahd Specialist Hospital, Tabuk 71491, Saudi Arabia;
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
28
|
Shams S, Lubbad LI, Simjee SU, Jabeen A. N-(2-hydroxy phenyl) acetamide ameliorate inflammation and doxorubicin-induced nephrotoxicity in rats. Int Immunopharmacol 2023; 123:110741. [PMID: 37572504 DOI: 10.1016/j.intimp.2023.110741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023]
Abstract
Doxorubicin (DOX) is an anthracyclin antibiotic used for the treatment of various cancers. Nephrotoxicity is among the serious side effects of DOX, therefore, DOX-induced nephrotoxic model has been widely used to study nephropathies. The objectives of this study is to investigate the possible anti-inflammatory and nephroprotective effects of salicylic acid derivative, N-(2-hydroxy phenyl) acetamide (NA-2), in a rat model of DOX-induced nephrotoxicity. The in vitro anti-inflammatory potential of NA-2 was manifested by whole blood oxidative burst and nitric oxide (NO) assays with no toxicity on normal human fibroblast (BJ) cells, human embryonic kidney (HEK-293) cells, and normal monkey kidney epithelial (Vero) cells. The in vivo study included five groups: Normal control, DOX (6 mg/kg DOX-i.v.via tail vein), NA-2 treated control-i.p., NA-2/DOX treated-i.p., and prednisolone/DOX treated. After 7 days of DOX administration, rats with urinary protein level of >50 mg/kg/day were selected. Treatment group rats received i.p. doses of NA-2 (10 mg/kg/day) for 3 weeks with weekly monitoring of urinary protein excretion and body weights. mRNA expression of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, monocyte chemoattractant protein (MCP)-1, and kidney injury molecule (KIM)-1 was analyzed by quantitative polymerase chain reaction (qPCR). Protein expressions were analyzed by immunohistochemistry. NA-2 attenuated DOX-induced changes in serum and urine levels, and improved inflammatory profile of the renal tissue. Histopathological findings revealed protective effects of NA-2 showing lesser lesions. We conclude that NA-2 is able to protect against DOX-induced renal damage functionally, biochemically and histopathologically with corresponding improvement in the kidney inflammatory profile.
Collapse
Affiliation(s)
- Sidrah Shams
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | | | - Shabana U Simjee
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
29
|
Vares-Lum DL, Gangcuangco LMA, Park J, Manzano E, Ortega M, Chow DC, Shikuma C. Plasma galectin-3 is associated with decreased glomerular filtration rate in chronic HIV. HIV Res Clin Pract 2023; 24:2261753. [PMID: 37783570 PMCID: PMC10695702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
BACKGROUND People living with HIV (PLWH) have higher rates of chronic kidney disease (CKD) compared with HIV-uninfected individuals. The pathogenesis of CKD in HIV remains poorly understood but is likely from a combination of various factors, such as traditional comorbidities, prolonged antiretroviral therapy, immune dysregulation, and direct HIV effect on the kidneys. We evaluated plasma galectin-3 (Gal-3), a circulating marker of fibrosis, and its association with renal function. METHODS Estimated glomerular filtration rate (eGFR) was assessed by CKD-EPI. Plasma galectin-3 was obtained from banked specimens by ELISA. Factors associated with eGFR were analyzed using step-wise multiple linear regression. RESULTS A total of 45 PLWH and 58 HIV-uninfected participants were included with similar demographic parameters. Among PLWH, majority had undetectable plasma HIV RNA (82.2%). Gal-3 was significantly higher in PLWH than in HIV-uninfected participants (6.4 [IQR 4.0, 8.5] ng/mL and 4.5 [IQR 2.3, 6.5] ng/mL, respectively; p = 0.020) while a trend towards lower eGFR was found in PLWH compared to the HIV-uninfected cohort (86.8 [IQR 71.3, 91.8] and 89.0 [IQR 78.6, 97.4] mL/min/1.73 m2, respectively; p = 0.071). In univariable analysis, HIV status was marginally associated with decreased eGFR (β coefficient= -0.035, p = 0.051). In the final multivariable regression model adjusted for traditional risk factors of CKD, Gal-3 independently predicted a decrease in eGFR (unstandardized B= -0.008, p < 0.001) while HIV status did not demonstrate any significant association. CONCLUSION Gal-3 was higher in PLWH compared with HIV-uninfected participants. In multivariable adjusted analyses, Gal-3, but not HIV status, was associated with decreased eGFR. The role of Gal-3 as a biomarker of kidney function needs to be further elucidated.
Collapse
Affiliation(s)
- Diana L Vares-Lum
- Hawaii Center for AIDS, John A Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Louie Mar A Gangcuangco
- Hawaii Center for AIDS, John A Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
- Department of Medicine, John A Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Juwon Park
- Hawaii Center for AIDS, John A Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
- Department of Tropical Medicine, John A Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Eduardo Manzano
- Hawaii Center for AIDS, John A Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Michael Ortega
- Center for Biomedical Research, The Queen's Medical Center, Honolulu, Hawaii, USA
| | - Dominic C Chow
- Hawaii Center for AIDS, John A Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
- Department of Medicine, John A Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Cecilia Shikuma
- Hawaii Center for AIDS, John A Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
- Department of Medicine, John A Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
- Department of Tropical Medicine, John A Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
30
|
Copur S, Peltek IB, Mutlu A, Tanriover C, Kanbay M. A new immune disease: systemic hypertension. Clin Kidney J 2023; 16:1403-1419. [PMID: 37664577 PMCID: PMC10469084 DOI: 10.1093/ckj/sfad059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Indexed: 09/05/2023] Open
Abstract
Systemic hypertension is the most common medical comorbidity affecting the adult population globally, with multiple associated outcomes including cerebrovascular diseases, cardiovascular diseases, vascular calcification, chronic kidney disease, metabolic syndrome and mortality. Despite advancements in the therapeutic field approximately one in every five adult patients with hypertension is classified as having treatment-resistant hypertension, indicating the need for studies to provide better understanding of the underlying pathophysiology and the need for more therapeutic targets. Recent pre-clinical studies have demonstrated the role of the innate and adaptive immune system including various cell types and cytokines in the pathophysiology of hypertension. Moreover, pre-clinical studies have indicated the potential beneficial effects of immunosuppressant medications in the control of hypertension. Nevertheless, it is unclear whether such pathophysiological mechanisms and therapeutic alternatives are applicable to human subjects, while this area of research is undoubtedly a rapidly growing field.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ibrahim B Peltek
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ali Mutlu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Mehmet Kanbay
- Department of Medicine, Section of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
31
|
Xia Y, Yang Q, Wu SY, Wu Z, Li Q, Du J. Interferon lambda modulates proinflammatory cytokines production in PBMCs from patients with chronic kidney disease. Hum Immunol 2023; 84:464-470. [PMID: 37394297 DOI: 10.1016/j.humimm.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND CKD is a major cause of morbidity and mortality worldwide. Considerable evidence now indicates that renal inflammation plays a central role in the initiation and progression of CKD. Recent investigations have demonstrated that IFNλ plays an important role in the pathogenesis of autoimmune and inflammatory diseases. However, the association of IFNλ with CKD is still poorly understood. OBJECTIVE To analyze the correlation between IFNλ levels and pro-inflammatory cytokines, and to investigate the effect of IFNλ on PBMCs in patients with CKD. METHODS PBMCs were harvested from patients with CKD and healthy controls for measuring the expression level of inflammatory cytokines by RT-qPCR. Spearman correlation test was used to analyze correlation between IFNλ and cytokines as well as eGFR. PBMCs from healthy individuals and CKD patients were subjected to IFNλ protein stimulation. IL6, TNFα, IL10, ISG15 and MX1 mRNA level were measured by RT-PCR, STAT1 and phosphorylated STAT1 protein level were measured by Western blot. RESULTS Patients with CKD showed higher levels of IFNλ in PBMCs compared to healthy controls. IFNλ mRNA levels were associated with cytokines and eGFR. The transcription of IL6, TNFα, and IL10 was significantly increased in healthy human PBMCs after IFNλ stimulation. In addition, IFNλ acts on PBMCs by p-STAT1 and ISG15 as well as MX1. CONCLUSION High expression of IFNλ was found in CKD patients and was associated with eGFR and disease-related cytokines. More importantly, IFNλ promoted the expression of pro-inflammatory cytokines in PBMCs, suggesting a potential pro-inflammatory role of IFNλ in CKD.
Collapse
Affiliation(s)
- Yuhao Xia
- Weifang Medical University, Shandong, China; Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Qiannan Yang
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Shang Ying Wu
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Zhicheng Wu
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Qian Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Jing Du
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
32
|
Pejchinovski I, Turkkan S, Pejchinovski M. Recent Advances of Proteomics in Management of Acute Kidney Injury. Diagnostics (Basel) 2023; 13:2648. [PMID: 37627907 PMCID: PMC10453063 DOI: 10.3390/diagnostics13162648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Acute Kidney Injury (AKI) is currently recognized as a life-threatening disease, leading to an exponential increase in morbidity and mortality worldwide. At present, AKI is characterized by a significant increase in serum creatinine (SCr) levels, typically followed by a sudden drop in glomerulus filtration rate (GFR). Changes in urine output are usually associated with the renal inability to excrete urea and other nitrogenous waste products, causing extracellular volume and electrolyte imbalances. Several molecular mechanisms were proposed to be affiliated with AKI development and progression, ultimately involving renal epithelium tubular cell-cycle arrest, inflammation, mitochondrial dysfunction, the inability to recover and regenerate proximal tubules, and impaired endothelial function. Diagnosis and prognosis using state-of-the-art clinical markers are often late and provide poor outcomes at disease onset. Inappropriate clinical assessment is a strong disease contributor, actively driving progression towards end stage renal disease (ESRD). Proteins, as the main functional and structural unit of the cell, provide the opportunity to monitor the disease on a molecular level. Changes in the proteomic profiles are pivotal for the expression of molecular pathways and disease pathogenesis. Introduction of highly-sensitive and innovative technology enabled the discovery of novel biomarkers for improved risk stratification, better and more cost-effective medical care for the ill patients and advanced personalized medicine. In line with those strategies, this review provides and discusses the latest findings of proteomic-based biomarkers and their prospective clinical application for AKI management.
Collapse
Affiliation(s)
- Ilinka Pejchinovski
- Department of Quality Assurance, Nikkiso Europe GmbH, 30885 Langenhagen, Germany; (I.P.); (S.T.)
| | - Sibel Turkkan
- Department of Quality Assurance, Nikkiso Europe GmbH, 30885 Langenhagen, Germany; (I.P.); (S.T.)
| | - Martin Pejchinovski
- Department of Analytical Instruments Group, Thermo Fisher Scientific, 82110 Germering, Germany
| |
Collapse
|
33
|
Fitzgerald S, Deer E, Hogg J, Cornelius DC, Turner T, Amaral LM, Hoang N, Edwards K, Herrock O, Campbell N, Ibrahim T, LaMarca B. RUPP Th17s cause hypertension and mitochondrial dysfunction in the kidney and placenta during pregnancy. Pregnancy Hypertens 2023; 32:50-56. [PMID: 37104924 PMCID: PMC11494691 DOI: 10.1016/j.preghy.2023.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Preeclampsia (PE), new-onset hypertension (HTN), and organ dysfunction during the second half of pregnancy, is associated with an increase in inflammatory immune cells, including T helper 17 (Th17) cells. Studies have demonstrated that mitochondrial (mt) dysfunction is important in the pathogenesis of PE though causative factors have yet to be fully identified. Although Th17 cells, natural killer (NK) cells, and mt dysfunction contribute to HTN in the reduced uterine perfusion pressure (RUPP) rat model, the role of Th17 cells or IL-17 in mt dysfunction is unknown. Therefore, we hypothesize that RUPP stimulated Th17 cells cause HTN and mt dysfunction, which is alleviated with the blockade of IL-17. METHODS On gestational day 12 (GD12), RUPP Th17 cells were transferred into normal pregnant (NP) Sprague Dawley rats. A subset of NP + RUPPTh17 rats received IL-17RC (100 pg/day) on GD14-19. Blood pressure (MAP), NK cells, and mt function were measured on GD19 in all groups. RESULTS MAP increased in response to NP + RUPP Th17 compared to NP rats and was lowered with IL-17RC. Circulating and placental NK cells increased with NP + RUPP Th17 compared to NP and were lowered with IL-17RC. Renal mtROS increased in NP + RUPP Th17 compared to NP and was normalized with IL-17RC. Similar to PE women, placental mtROS decreased in NP + RUPP Th17 and was normalized with IL-17RC. CONCLUSION Our results indicate that IL-17RC inhibition normalizes HTN, NK cell activation, and multi-organ mt dysfunction caused by Th17 cells stimulated in response to placental ischemia.
Collapse
Affiliation(s)
- Sarah Fitzgerald
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Evangeline Deer
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - James Hogg
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Denise C Cornelius
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ty Turner
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Lorena M Amaral
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ngoc Hoang
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Kristin Edwards
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Owen Herrock
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Nathan Campbell
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Tarek Ibrahim
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Babbette LaMarca
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States; Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS, United States.
| |
Collapse
|
34
|
Mapuskar KA, Vasquez Martinez G, Pulliam CF, Petronek MS, Steinbach EJ, Monga V, Furqan M, Jetton JG, Saunders DP, Pearce A, Davidson S, Pitre L, Dunlap NE, Fairbanks R, Lee CM, Mott SL, Bodeker KL, Cl H, Buatti JM, Anderson CM, Beardsley RA, Holmlund JT, Zepeda-Orozco D, Spitz DR, Allen BG. Avasopasem manganese (GC4419) protects against cisplatin-induced chronic kidney disease: An exploratory analysis of renal metrics from a randomized phase 2b clinical trial in head and neck cancer patients. Redox Biol 2023; 60:102599. [PMID: 36640725 PMCID: PMC9852651 DOI: 10.1016/j.redox.2022.102599] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) patients treated with high-dose cisplatin concurrently with radiotherapy (hdCis-RT) commonly suffer kidney injury leading to acute and chronic kidney disease (AKD and CKD, respectively). We conducted a retrospective analysis of renal function and kidney injury-related plasma biomarkers in a subset of HNSCC subjects receiving hdCis-RT in a double-blinded, placebo-controlled clinical trial (NCT02508389) evaluating the superoxide dismutase mimetic, avasopasem manganese (AVA), an investigational new drug. We found that 90 mg AVA treatment prevented a significant reduction in estimated glomerular filtration rate (eGFR) three months as well as six and twelve months after treatment compared to 30 mg AVA and placebo. Moreover, AVA treatment may have allowed renal repair in the first 22 days following cisplatin treatment as evidenced by an increase in epithelial growth factor (EGF), known to aid in renal recovery. An upward trend was also observed in plasma iron homeostasis proteins including total iron (Fe-blood) and iron saturation (Fe-saturation) in the 90 mg AVA group versus placebo. These data support the hypothesis that treatment with 90 mg AVA mitigates cisplatin-induced CKD by inhibiting hdCis-induced renal changes and promoting renal recovery.
Collapse
Affiliation(s)
- K A Mapuskar
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA, USA
| | - G Vasquez Martinez
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - C F Pulliam
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA, USA
| | - M S Petronek
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA, USA
| | - E J Steinbach
- The University of Iowa Stead Family Department of Pediatrics, Iowa City, IA, USA
| | - V Monga
- University of Iowa Hospitals and Clinics, Department of Internal Medicine, Iowa City, IA, USA
| | - M Furqan
- University of Iowa Hospitals and Clinics, Department of Internal Medicine, Iowa City, IA, USA
| | - J G Jetton
- Medical College of Wisconsin, Department of Pediatrics, Milwaukee, WI, USA
| | - D P Saunders
- Northeast Cancer Centre, Health Sciences North, Northern Ontario School of Medicine, Sudbury, Canada
| | - A Pearce
- Northeast Cancer Centre, Health Sciences North, Northern Ontario School of Medicine, Sudbury, Canada
| | - S Davidson
- Northeast Cancer Centre, Health Sciences North, Northern Ontario School of Medicine, Sudbury, Canada
| | - L Pitre
- Northeast Cancer Centre, Health Sciences North, Northern Ontario School of Medicine, Sudbury, Canada
| | - N E Dunlap
- University of Louisville, School of Medicine, Louisville, KY, 40202, USA
| | | | - C M Lee
- Cancer Care Northwest, Spokane, WA, USA
| | - S L Mott
- University of Iowa Holden Comprehensive Cancer Center, Iowa City, IA, USA
| | - K L Bodeker
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA, USA
| | - Huang Cl
- University of Iowa Carver College of Medicine, Department of Internal Medicine, Iowa City, IA, USA
| | - J M Buatti
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA, USA
| | - C M Anderson
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA, USA
| | | | | | - D Zepeda-Orozco
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - D R Spitz
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA, USA.
| | - B G Allen
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA, USA.
| |
Collapse
|
35
|
Interaction between Butyrate and Tumor Necrosis Factor α in Primary Rat Colonocytes. Biomolecules 2023; 13:biom13020258. [PMID: 36830627 PMCID: PMC9953264 DOI: 10.3390/biom13020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/15/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Butyrate, a short-chain fatty acid, is utilized by the gut epithelium as energy and it improves the gut epithelial barrier. More recently, it has been associated with beneficial effects on immune and cardiovascular homeostasis. Conversely, tumor necrosis factor alpha (TNFα) is a pro-inflammatory and pro-hypertensive cytokine. While butyrate and TNFα are both linked with hypertension, studies have not yet addressed their interaction in the colon. Here, we investigated the capacity of butyrate to modulate a host of effects of TNFα in primary rodent colonic cells in vitro. We measured ATP levels, cell viability, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), mitochondrial oxidative phosphorylation, and glycolytic activity in colonocytes following exposure to either butyrate or TNFα, or both. To address the potential mechanisms, transcripts related to oxidative stress, cell fate, and cell metabolism (Pdk1, Pdk2, Pdk4, Spr, Slc16a1, Slc16a3, Ppargc1a, Cs, Lgr5, Casp3, Tnfr2, Bax, Bcl2, Sod1, Sod2, and Cat) were measured, and untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed to profile the metabolic responses of colonocytes following exposure to butyrate and TNFα. We found that both butyrate and TNFα lowered cellular ATP levels towards a quiescent cell energy phenotype, characterized by decreased oxygen consumption and extracellular acidification. Co-treatment with butyrate ameliorated TNFα-induced cytotoxicity and the reduction in cell viability. Butyrate also opposed the TNFα-mediated decrease in MMP and mitochondrial-to-intracellular calcium ratios, suggesting that butyrate may protect colonocytes against TNFα-induced cytotoxicity by decreasing mitochondrial calcium flux. The relative expression levels of pyruvate dehydrogenase kinase 4 (Pdk4) were increased via co-treatment of butyrate and TNFα, suggesting the synergistic inhibition of glycolysis. TNFα alone reduced the expression of monocarboxylate transporters slc16a1 and slc16a3, suggesting effects of TNFα on butyrate uptake into colonocytes. Of the 185 metabolites that were detected with LC-MS, the TNFα-induced increase in biopterin produced the only significant change, suggesting an alteration in mitochondrial biogenesis in colonocytes. Considering the reports of elevated colonic TNFα and reduced butyrate metabolism in many conditions, including in hypertension, the present work sheds light on cellular interactions between TNFα and butyrate in colonocytes that may be important in understanding conditions of the colon.
Collapse
|
36
|
Li H, Dixon EE, Wu H, Humphreys BD. Comprehensive single-cell transcriptional profiling defines shared and unique epithelial injury responses during kidney fibrosis. Cell Metab 2022; 34:1977-1998.e9. [PMID: 36265491 PMCID: PMC9742301 DOI: 10.1016/j.cmet.2022.09.026] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/19/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
The underlying cellular events driving kidney fibrogenesis and metabolic dysfunction are incompletely understood. Here, we employed single-cell combinatorial indexing RNA sequencing to analyze 24 mouse kidneys from two fibrosis models. We profiled 309,666 cells in one experiment, representing 50 cell types/states encompassing epithelial, endothelial, immune, and stromal populations. Single-cell analysis identified diverse injury states of the proximal tubule, including two distinct early-phase populations with dysregulated lipid and amino acid metabolism, respectively. Lipid metabolism was defective in the chronic phase but was transiently activated in the very early stages of ischemia-induced injury, where we discovered increased lipid deposition and increased fatty acid β-oxidation. Perilipin 2 was identified as a surface marker of intracellular lipid droplets, and its knockdown in vitro disrupted cell energy state maintenance during lipid accumulation. Surveying epithelial cells across nephron segments identified shared and unique injury responses. Stromal cells exhibited high heterogeneity and contributed to fibrogenesis by epithelial-stromal crosstalk.
Collapse
Affiliation(s)
- Haikuo Li
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Eryn E Dixon
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA; Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
37
|
da Silva MC, dos Santos VM, da Silva MVB, Prazeres TCMM, Cartágenes MDSS, Calzerra NTM, de Queiroz TM. Involvement of shedding induced by ADAM17 on the nitric oxide pathway in hypertension. Front Mol Biosci 2022; 9:1032177. [PMID: 36310604 PMCID: PMC9614329 DOI: 10.3389/fmolb.2022.1032177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/04/2022] [Indexed: 11/15/2022] Open
Abstract
A Disintegrin and Metalloprotease 17 (ADAM17), also called tumor necrosis factor-ɑ (TNF-ɑ) convertase (TACE), is a well-known protease involved in the sheddase of growth factors, chemokines and cytokines. ADAM17 is also enrolled in hypertension, especially by shedding of angiotensin converting enzyme type 2 (ACE2) leading to impairment of angiotensin 1–7 [Ang-(1–7)] production and injury in vasodilation, induction of renal damage and cardiac hypertrophy. Activation of Mas receptor (MasR) by binding of Ang-(1–7) induces an increase in the nitric oxide (NO) gaseous molecule, which is an essential factor of vascular homeostasis and blood pressure control. On the other hand, TNF-ɑ has demonstrated to stimulate a decrease in nitric oxide bioavailability, triggering a disrupt in endothelium-dependent vasorelaxation. In spite of the previous studies, little knowledge is available about the involvement of the metalloprotease 17 and the NO pathways. Here we will provide an overview of the role of ADAM17 and Its mechanisms implicated with the NO formation.
Collapse
Affiliation(s)
- Mirelly Cunha da Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Vanessa Maria dos Santos
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Matheus Vinícius B. da Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | | | | | | | - Thyago Moreira de Queiroz
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
- *Correspondence: Thyago Moreira de Queiroz,
| |
Collapse
|
38
|
Martín Giménez VM, Rukavina Mikusic NL, Lee HJ, García Menéndez S, Choi MR, Manucha W. Physiopathological mechanisms involved in the development of hypertension associated with gut dysbiosis and the effect of nutritional/pharmacological interventions. Biochem Pharmacol 2022; 204:115213. [PMID: 35985404 DOI: 10.1016/j.bcp.2022.115213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
The gut microbiota dysbiosis represents a triggering factor for cardiovascular diseases, including hypertension. In addition to the harmful impact caused by hypertension on different target organs, gut dysbiosis is capable of causing direct damage to critical organs such as the brain, heart, blood vessels, and kidneys. In this sense, it should be noted that pharmacological and nutritional interventions may influence gut microbiota composition, either inducing or preventing the development of hypertension. Some of the most important nutritional interventions at this level are represented by pro-, pre-, post- and/or syn-biotics, as well as polysaccharides, polyunsaturated fatty acids ω-3, polyphenols and fiber contained in different foods. Meanwhile, certain natural and synthetic active pharmaceutical ingredients, including antibiotics, antihypertensive and immunosuppressive drugs, vegetable extracts and vitamins, may also have a key role in the modulation of both gut microbiota and cardiovascular health. Additionally, gut microbiota may influence drugs and food-derived bioactive compounds metabolism, positively or negatively affecting their biological behavior facing established hypertension. The understanding of the complex interactions between gut microbiome and drug/food response results of great importance to developing improved pharmacological therapies for hypertension prevention and treatment. The purpose of this review is to critically outline the most relevant and recent findings on cardiovascular, renal and brain physiopathological mechanisms involved in the development of hypertension associated with changes in gut microbiota, besides the nutritional and pharmacological interventions potentially valuable for the prevention and treatment of this prevalent pathology. Finally, harmful food/drug interventions on gut microbiota are also described.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | - Natalia Lucía Rukavina Mikusic
- Universidad de Buenos Aires. CONICET. Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina; Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Cátedra de Anatomía e Histología, Buenos Aires, Argentina
| | - Hyun Jin Lee
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Cátedra de Anatomía e Histología, Buenos Aires, Argentina
| | - Sebastián García Menéndez
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina
| | - Marcelo Roberto Choi
- Universidad de Buenos Aires. CONICET. Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina; Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Cátedra de Anatomía e Histología, Buenos Aires, Argentina
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina.
| |
Collapse
|
39
|
Theofilis P, Sagris M, Oikonomou E, Antonopoulos AS, Siasos G, Tsioufis K, Tousoulis D. The impact of SGLT2 inhibitors on inflammation: A systematic review and meta-analysis of studies in rodents. Int Immunopharmacol 2022; 111:109080. [PMID: 35908505 DOI: 10.1016/j.intimp.2022.109080] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Inhibition of sodium-glucose cotransporter-2 (SGLT2) has received remarkable attention due to the beneficial effects observed in diabetes mellitus, heart failure, and kidney disease. Several mechanisms have been proposed for these pleiotropic effects, including anti-inflammatory ones. Our systematic review and meta-analysis aimed to assess the effect of SGLT2 inhibition on inflammatory markers in experimental models. METHODS A literature search was conducted to detect studies examining the effect of SGLT2 inhibitors on inflammatory markers [interleukin-6 (IL-6), C reactive protein (CRP), tumor necrosis factor-α (TNF-α), and monocyte chemoattractant protein-1 (MCP-1)]. Consequently, a meta-analysis of the included studies was performed, assessing the differences in the levels of the inflammatory markers between the treatment groups as its primary outcome. Moreover, risk of bias, sensitivity analysis and publication bias were evaluated. RESULTS The systematic literature review yielded 30 studies whose meta-analysis suggested that treatment with an SGLT2 inhibitor resulted in decreases of IL-6 [standardized mean difference (SMD): -1.56, 95% CI -2.06 to -1.05), CRP (SMD: -2.17, 95% CI -2.80 to -1.53), TNF-α (SMD: -1.75, 95% CI -2.14 to -1.37), and MCP-1 (SMD: -2.04, 95% CI -2.91 to -1.17). The effect on CRP and TNF-α was of lesser magnitude in cases of empagliflozin use. Moderate-to-substantial heterogeneity and possible publication bias were noted. The findings remained largely unaffected after the sensitivity analyses, the exclusion of outlying studies, and trim-and-fill analyses. CONCLUSION The present meta-analysis suggests that SGLT2 inhibition results in reduction of inflammatory markers in animal models, further validating the suggested anti-inflammatory mechanism of action.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Marios Sagris
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece; 3rd Cardiology Department, "Sotiria" Regional Hospital for Chest Diseases, University of Athens Medical School, 11527 Athens, Greece
| | - Alexios S Antonopoulos
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Gerasimos Siasos
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece; 3rd Cardiology Department, "Sotiria" Regional Hospital for Chest Diseases, University of Athens Medical School, 11527 Athens, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece.
| |
Collapse
|
40
|
Martin K, Deleveaux S, Cunningham M, Ramaswamy K, Thomas B, Lerma E, Madariaga H. The presentation, etiologies, pathophysiology, and treatment of pulmonary renal syndrome: A review of the literature. Dis Mon 2022; 68:101465. [PMID: 36008166 DOI: 10.1016/j.disamonth.2022.101465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Pulmonary renal syndrome (PRS) is a constellation of different disorders that cause both rapidly progressive glomerulonephritis and diffuse alveolar hemorrhage. While antineutrophil cytoplasmic antibody associated vasculitis and anti-glomerular basement membrane disease are the predominant causes of PRS, numerous other mechanisms have been shown to cause this syndrome, including thrombotic microangiopathies, drug exposures, and infections, among others. This syndrome has high morbidity and mortality, and early diagnosis and treatment is imperative to improve outcomes. Treatment generally involves glucocorticoids and immunosuppressive agents, but treatment targeted to the underlying disorder can improve outcomes and mitigate side effects. Familiarity with the wide range of possible causes of PRS can aid the clinician in workup, diagnosis and early initiation of treatment. This review provides a summary of the clinical presentation, etiologies, pathophysiology, and treatment of PRS.
Collapse
Affiliation(s)
| | | | | | | | - Beje Thomas
- Medstar Georgetown University Hospital, United States
| | - Edgar Lerma
- Advocate Christ Medical Center, United States
| | | |
Collapse
|
41
|
Fei Q, Tan Y, Yi M, Zhao W, Zhang Y. Associations between cardiometabolic phenotypes and levels of TNF-α, CRP, and interleukins in obstructive sleep apnea. Sleep Breath 2022; 27:1033-1042. [DOI: 10.1007/s11325-022-02697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/08/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
|
42
|
Lu X, Crowley SD. The Immune System in Hypertension: a Lost Shaker of Salt 2021 Lewis K. Dahl Memorial Lecture. Hypertension 2022; 79:1339-1347. [PMID: 35545942 DOI: 10.1161/hypertensionaha.122.18554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The seminal observations of Dr Lewis Dahl regarding renal mechanisms of hypertension remain highly relevant in light of more recent experiments showing that immune system dysfunction contributes to hypertension pathogenesis. Dr Dahl established that inappropriate salt retention in the kidney plays a central role via Ohm's Law in permitting blood pressure elevation. Nevertheless, inflammatory cytokines whose expression is induced in the early stages of hypertension can alter renal blood flow and sodium transporter expression and activity to foster renal sodium retention. By elaborating these cytokines and reactive oxygen species, myeloid cells and T lymphocytes can connect systemic inflammatory signals to aberrant kidney functions that allow sustained hypertension. By activating T lymphocytes, antigen-presenting cells such as dendritic cells represent an afferent sensing mechanism triggering T cell activation, cytokine generation, and renal salt and water reabsorption. Manipulating these inflammatory signals to attenuate hypertension without causing prohibitive systemic immunosuppression will pose a challenge, but disrupting actions of inflammatory mediators locally within the kidney may offer a path through which to target immune-mediated mechanisms of hypertension while capitalizing on Dr Dahl's key recognition of the kidney's importance in blood pressure regulation.
Collapse
Affiliation(s)
- Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC
| |
Collapse
|
43
|
Li S, Li S, Zhang W, Ma T, Wang N, Sun T, Li T, Shao S, Li D. Fibroblast Growth Factor 21 Ameliorates Endothelin I-Induced Hypertension Partly Through PPAR γ Pathway. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10408-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Ibrahim NA, Elmorshedy KE, Radwan DA, Buabeid MA. The impact of oral ciprofloxacin on the structure and functions of rat gastric mucosa. Saudi J Biol Sci 2022; 29:2187-2198. [PMID: 35531231 PMCID: PMC9073028 DOI: 10.1016/j.sjbs.2021.11.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/07/2021] [Accepted: 11/17/2021] [Indexed: 11/27/2022] Open
Abstract
Ciprofloxacin (CPX), is a fluoroquinolone antibiotic used to treat a number of gram-negative and gram-positive bacterial infections. Ciprofloxacin can cause severe side effects, ranging from tendon problems, nerve damage, to serious mood or behavior changes. The purpose of this study was to investigate how ciprofloxacin affects gastric cell lines in rats with a distinctive emphasis on physiological, histopathological, and bacteriological changes. Male albino rats (n = 21) were distributed into three groups; control, CPX, and CPX-withdrawal groups. The treated rats were given CPX tablets (12.5 mg/kg) dissolved in carboxymethyl cellulose (CMC) 0.5% orally once daily via gavage for sixty consecutive days. Control rats received only the vehicle. The withdrawal group was treated for 60 days and the drug was withdrawn for another sixty days. After completion of the experiment, all rats were sacrificed and gastric tissues were treated for light, immunohistochemical, and scanning electron microscopic examination. Image J software was used to measure immune-labeled gastric epithelial cells. Blood samples were also collected for H. Pylori immunoglobulins IgM, IgA, and IgG. Results showed that treated rats acquired significantly strongly positive tumor necrosis factor (TNFα) and significant reduction of serum level of H. pylori IgM, IgA, and IgG in all the study groups. It could be concluded that prolonged oral CPX administration to albino rats changes the gastric mucosal architecture and bacteriology.
Collapse
Affiliation(s)
- Nihal A Ibrahim
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, United Arab Emirates.,Centre of Medical and Bio-allied Health Sciences Research (CMBAHSR), Ajman University, Ajman, United Arab Emirates
| | - Kadreya E Elmorshedy
- Anatomy Department, Tanta College of Medicine, Egypt.,Almaakal University, Basra, Iraq
| | - Doaa A Radwan
- Anatomy Department, Tanta College of Medicine, Egypt
| | - Manal A Buabeid
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, United Arab Emirates.,Centre of Medical and Bio-allied Health Sciences Research (CMBAHSR), Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
45
|
Zolfaghari N, Monajemi R, ShahaniPour K, Ahadi AM. Regulatory effects and anti‐inflammatory activity of
Trachyspermum ammi
(L.) Sprague seeds extract on alleviation of kidney injury in diabetic rats. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Najimeh Zolfaghari
- Department of Biochemistry Falavarjan Branch Islamic Azad University Isfahan Iran
| | - Ramesh Monajemi
- Department of Biology Falavarjan Branch Islamic Azad University Isfahan Iran
| | - Kahin ShahaniPour
- Department of Biochemistry Falavarjan Branch Islamic Azad University Isfahan Iran
| | | |
Collapse
|
46
|
YEŞİLOT Ş, AŞÇI H, ÖZGÖÇMEN M, SAYGIN M, ARMAĞAN İ, ÇİÇEK E. The ameliorative effect of Acetylsalicylic acid plus Ascorbic acid against renal injury in Corn Syrup-fed rats. MEHMET AKIF ERSOY ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2022. [DOI: 10.24880/maeuvfd.981913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
47
|
Lu X, Zhang J, Wen Y, Ren J, Griffiths R, Rudemiller NP, Ide S, Souma T, Crowley SD. Type 1 Angiotensin Receptors on CD11c-Expressing Cells Protect Against Hypertension by Regulating Dendritic Cell-Mediated T Cell Activation. Hypertension 2022; 79:1227-1236. [PMID: 35430875 DOI: 10.1161/hypertensionaha.121.18734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Type 1 angiotensin (AT1) receptors are expressed on immune cells, and we previously found that bone marrow-derived AT1 receptors protect against Ang (angiotensin) II-induced hypertension. CD11c is expressed on myeloid cells derived from the bone marrow, including dendritic cells (DCs) that activate T lymphocytes. Here, we examined the role of AT1 receptors on CD11c+ cells in hypertension pathogenesis. METHODS Mice lacking the dominant murine AT1 receptor isoform, AT1a, on CD11c+ cells (dendritic cell [DC] AT1aR knockout [KO]) and wild-type (WT) littermates were subjected to Ang II-induced hypertension. Blood pressures were measured by radiotelemetry. RESULTS DC AT1aR KO mice had exaggerated hypertensive responses to chronic Ang II infusion with enhanced renal accumulation of effector memory T cells and CD40+ DCs. CCL5 (C-C motif chemokine ligand 5) recruits T cells into injured tissues, and CCR7 (C-C motif chemokine receptor 7) facilitates DC and T cell interactions in the kidney lymph node to allow T cell activation. DCs from the hypertensive DC AT1aR KO kidneys expressed higher levels of CCL5 and CCR7. mRNA expressions for CCR7 and tumor necrosis factor-α were increased in CD4+ T cells from the renal lymph nodes of DC AT1aR KO mice. During the second week of Ang II infusion when blood pressures between groups diverged, DC AT1aR KO mice excreted less sodium than WTs. Expressions for epithelial sodium channel subunits were increased in DC AT1aR KO kidneys. CONCLUSIONS Following activation of the renin angiotensin system, AT1aR stimulation on DCs suppresses renal DC maturation and T cell activation with consequent protection from sodium retention and blood pressure elevation.
Collapse
Affiliation(s)
- Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., Y.W., J.R., R.G., N.P.R., S.I., T.S., S,D.C.)
| | - Jiandong Zhang
- Division of Cardiology, Department of Medicine, University of North Carolina at Chapel Hill (J.Z.)
| | - Yi Wen
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., Y.W., J.R., R.G., N.P.R., S.I., T.S., S,D.C.)
| | - Jiafa Ren
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., Y.W., J.R., R.G., N.P.R., S.I., T.S., S,D.C.)
| | - Robert Griffiths
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., Y.W., J.R., R.G., N.P.R., S.I., T.S., S,D.C.)
| | - Nathan P Rudemiller
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., Y.W., J.R., R.G., N.P.R., S.I., T.S., S,D.C.)
| | - Shintaro Ide
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., Y.W., J.R., R.G., N.P.R., S.I., T.S., S,D.C.)
| | - Tomokazu Souma
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., Y.W., J.R., R.G., N.P.R., S.I., T.S., S,D.C.)
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., Y.W., J.R., R.G., N.P.R., S.I., T.S., S,D.C.)
| |
Collapse
|
48
|
Early Effects of Extracellular Vesicles Secreted by Adipose Tissue Mesenchymal Cells in Renal Ischemia Followed by Reperfusion: Mechanisms Rely on a Decrease in Mitochondrial Anion Superoxide Production. Int J Mol Sci 2022; 23:ijms23062906. [PMID: 35328327 PMCID: PMC8955255 DOI: 10.3390/ijms23062906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
Acute kidney injury (AKI) caused by ischemia followed by reperfusion (I/R) is characterized by intense anion superoxide (O2•−) production and oxidative damage. We investigated whether extracellular vesicles secreted by adipose tissue mesenchymal cells (EVs) administered during reperfusion can suppress the exacerbated mitochondrial O2•− formation after I/R. We used Wistar rats subjected to bilateral renal arterial clamping (30 min) followed by 24 h of reperfusion. The animals received EVs (I/R + EVs group) or saline (I/R group) in the kidney subcapsular space. The third group consisted of false-operated rats (SHAM). Mitochondria were isolated from proximal tubule cells and used immediately. Amplex Red™ was used to measure mitochondrial O2•− formation and MitoTracker™ Orange to evaluate inner mitochondrial membrane potential (Δψ). In vitro studies were carried out on human renal proximal tubular cells (HK-2) co-cultured or not with EVs under hypoxic conditions. Administration of EVs restored O2•− formation to SHAM levels in all mitochondrial functional conditions. The gene expression of catalase and superoxide dismutase-1 remained unmodified; transcription of heme oxygenase-1 (HO-1) was upregulated. The co-cultures of HK-2 cells with EVs revealed an intense decrease in apoptosis. We conclude that the mechanisms by which EVs favor long-term recovery of renal structures and functions after I/R rely on a decrease of mitochondrial O2•− formation with the aid of the upregulated antioxidant HO-1/Nuclear factor erythroid 2-related factor 2 system, thus opening new vistas for the treatment of AKI.
Collapse
|
49
|
Connor AE, Dibble KE, Boone SD, Baumgartner KB, Baumgartner RN. Systemic inflammation and risk of all-cause mortality after invasive breast cancer diagnosis among Hispanic and non-Hispanic white women from New Mexico. Cancer Epidemiol 2022; 76:102092. [PMID: 34995871 PMCID: PMC9128602 DOI: 10.1016/j.canep.2021.102092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/22/2021] [Accepted: 12/22/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Soluble tumor necrosis factor receptor-II (sTNF-R2), a pro-inflammatory biomarker, is associated with obesity and breast cancer (BC). The association between sTNF-R2 and risk of mortality after BC has not been studied, specifically among Hispanic women, an at-risk population due to their high prevalence of obesity and poor prognosis. We examined the association between sTNF-R2 and mortality among Hispanic and non-Hispanic white (NHW) BC survivors. METHODS A total of 397 invasive BC survivors (96 Hispanic, 301 NHW) contributed baseline interview data and blood samples. Hazard ratios (HR) and 95% confidence intervals (CI) were calculated using Cox proportional hazards regression models adjusting for clinical factors including body mass index. RESULTS After a median follow-up time of 13 years, 133 deaths occurred. The association between high vs low levels of plasma sTNF-R2 and mortality was not statistically significant overall (HR, 1.32; 95% CI 0.89-1.98). However, when stratified the mortality risk among Hispanic women was nearly 3-fold (HR, 2.83; 95% CI 1.21-6.63), while risk among NHW women was attenuated (HR, 0.99; 95% CI 0.61-1.61) (p-interaction=0.10). CONCLUSION Our results suggest Hispanic BC survivors with high sTNF-R2 levels may have increased risk of mortality and could inform targeted interventions to reduce inflammation and improve outcomes.
Collapse
Affiliation(s)
- Avonne E. Connor
- Department of Epidemiology, Johns Hopkins Bloomberg School
of Public Health, Baltimore, Maryland,Johns Hopkins Sidney Kimmel Comprehensive Cancer Center,
Baltimore, Maryland
| | - Kate E. Dibble
- Department of Epidemiology, Johns Hopkins Bloomberg School
of Public Health, Baltimore, Maryland
| | - Stephanie D. Boone
- Department of Epidemiology and Population Health and the
James Graham Brown Cancer Center, University of Louisville, Louisville,
Kentucky
| | - Kathy B. Baumgartner
- Department of Epidemiology and Population Health and the
James Graham Brown Cancer Center, University of Louisville, Louisville,
Kentucky
| | - Richard N. Baumgartner
- Department of Epidemiology and Population Health and the
James Graham Brown Cancer Center, University of Louisville, Louisville,
Kentucky
| |
Collapse
|
50
|
The Association of Tumor Necrosis Factor Inhibitor Use With Incident Hypertension in Ankylosing Spondylitis: Data From the PSOAS Cohort. J Rheumatol 2021; 49:274-280. [PMID: 34853088 PMCID: PMC10404976 DOI: 10.3899/jrheum.210332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Individuals with ankylosing spondylitis (AS) have a greater cardiovascular (CV) risk than those in the general population. The effect of tumor necrosis factor inhibitors (TNFis) on CV risk, including on the development of hypertension (HTN), remains unclear, with some data suggesting higher risk. We assessed the association of TNFi use with incident HTN in a longitudinal AS cohort. METHODS Adults with AS enrolled in a prospective cohort in 2002-2018 were examined every 4-6 months. TNFi use during the preceding 6 months was ascertained at each study visit. We defined HTN by patient-reported HTN, antihypertensive medication use, or, on 2 consecutive visits, systolic blood pressure (BP) ≥ 140 mmHg or diastolic BP ≥ 90 mmHg. We evaluated the association between TNFi use and the development of HTN with marginal structural models, estimated by inverse probability-of-treatment weighting, to account for time-dependent confounders and informative censoring. Potential confounders included age, sex, race, site, nonsteroidal antiinflammatory drug use, and disease activity. RESULTS We included 630 patients without baseline HTN and with at least 1 year of follow-up. Of these, 72% were male, mean age was 39 ± 13 years, and 43% used TNFi at baseline. On follow-up (median 5 yrs), 129 developed incident HTN and 163 started on TNFi during follow-up. TNFi use was not associated with incident HTN (adjusted HR 1.10, 95% CI 0.83-1.37). CONCLUSION In our prospective AS cohort, TNFi use was not significantly associated with incident HTN.
Collapse
|