1
|
Shepherd JA, Best SM, Cameron RE. Influence of joint deformation on the auxetic behaviour of 3D printed polypropylene structures. J Mech Behav Biomed Mater 2025; 166:106960. [PMID: 39993355 DOI: 10.1016/j.jmbbm.2025.106960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
Auxetic structures studied in the literature are often based on relatively stiff, metallic materials and theories regarding their response to mechanical loading cannot be translated directly to polymeric materials. As "soft" auxetics increase in popularity for applications in tissue engineering further investigation into the joint behaviour and effect on their Poisson's ratio is required. 3D printed polypropylene auxetic mesh structures were produced to compare to the requirements for biological cell-stretching devices while investigating the deformation mechanics. The behaviour of the meshes was characterised with tensile force-strain curves and high-definition imaging and the effect of joint behaviour on the Poisson's ratio was evaluated. Isolated unit cell samples of the re-entrant mesh were produced to characterise the in- and out-of-plane behaviour for geometries comprising re-entrant strut angles of 30, 45, and 60° to the tensile straining direction. Force-strain curves with three distinct phases were observed, with linear, plateau, and terminal regions characteristic of re-entrant honeycomb structures. A constant negative Poisson's ratio was measured up to a critical transition strain, at which point it is theorised that the onset of buckling triggers bending-dominated deformation to occur, out-of-plane. The production of full-scale mesh samples with the same 30, 45, and 60° geometry resulted in consistent values for critical transition strain and Poisson's ratios. An auxetic region of strain was defined, where the force is linear and a homogeneous negative Poisson's ratio can be maintained. This region represents the limit within which a biological cell-stretching device could operate successfully for the current mesh design.
Collapse
Affiliation(s)
- Juliet A Shepherd
- Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Serena M Best
- Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
| | - Ruth E Cameron
- Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| |
Collapse
|
2
|
Jin Q, Pandey D, Thompson CB, Lewis S, Sung HW, Nguyen TD, Kuo S, Wilson KL, Gracias DH, Romer LH. Acute downregulation of emerin alters actomyosin cytoskeleton connectivity and function. Biophys J 2023; 122:3690-3703. [PMID: 37254483 PMCID: PMC10541481 DOI: 10.1016/j.bpj.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/30/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023] Open
Abstract
Fetal lung fibroblasts contribute dynamic infrastructure for the developing lung. These cells undergo dynamic mechanical transitions, including cyclic stretch and spreading, which are integral to lung growth in utero. We investigated the role of the nuclear envelope protein emerin in cellular responses to these dynamic mechanical transitions. In contrast to control cells, which briskly realigned their nuclei, actin cytoskeleton, and extracellular matrices in response to cyclic stretch, fibroblasts that were acutely downregulated for emerin showed incomplete reorientation of both nuclei and actin cytoskeleton. Emerin-downregulated fibroblasts were also aberrantly circular in contrast to the spindle-shaped controls and exhibited an altered pattern of filamentous actin organization that was disconnected from the nucleus. Emerin knockdown was also associated with reduced myosin light chain phosphorylation during cell spreading. Interestingly, emerin-downregulated fibroblasts also demonstrated reduced fibronectin fibrillogenesis and production. These findings indicate that nuclear-cytoskeletal coupling serves a role in the dynamic regulation of cytoskeletal structure and function and may also impact the transmission of traction force to the extracellular matrix microenvironment.
Collapse
Affiliation(s)
- Qianru Jin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Deepesh Pandey
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Carol B Thompson
- Biostatistics Center, Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Shawna Lewis
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Hyun Woo Sung
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Thao D Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Scot Kuo
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland; Microscope Facility, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Katherine L Wilson
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - David H Gracias
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland; Center for MicroPhysiological Systems, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland; Department of Chemistry, Johns Hopkins University, Baltimore, Maryland; Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland
| | - Lewis H Romer
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland; Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
3
|
Baguma-Nibasheka M, Kablar B. Mechanics of Lung Development. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:131-150. [PMID: 37955774 DOI: 10.1007/978-3-031-38215-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
We summarize how skeletal muscle and lung developmental biology fields have been bridged to benefit from mouse genetic engineering technologies and to explore the role of fetal breathing-like movements (FBMs) in lung development, by using skeletal muscle-specific mutant mice. It has been known for a long time that FBMs are essential for the lung to develop properly. However, the cellular and molecular mechanisms transducing the mechanical forces of muscular activity into specific genetic programs that propel lung morphogenesis (development of the shape, form and size of the lung, its airways, and gas exchange surface) as well as its differentiation (acquisition of specialized cell structural and functional features from their progenitor cells) are only starting to be revealed. This chapter is a brief synopsis of the cumulative findings from that ongoing quest. An update on and the rationale for our recent International Mouse Phenotyping Consortium (IMPC) search is also provided.
Collapse
Affiliation(s)
- Mark Baguma-Nibasheka
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| | - Boris Kablar
- Department of Medical Neuroscience, Anatomy and Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
Mechanical stretching of cells and lipid nanoparticles for nucleic acid delivery. J Control Release 2021; 339:208-219. [PMID: 34563590 DOI: 10.1016/j.jconrel.2021.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
Gene therapy has gained popularity in the treatment of incurable diseases. However, cell components, such as surface membrane, cytoskeleton protein, and nuclear envelope, retard the transport of nucleic acids, lowering the transfection efficiency. We developed a physical-chemical hybrid platform (S-RCLs) involving cationic lipid nanoparticles (RCLs) exposed to cyclic stretch. The transfection efficiency and delivery mechanisms of S-RCLs for siRNAs and pDNAs (plasmid DNAs encoding luciferase) were investigated. S-RCLs effectively delivered both siRNAs and pDNAs by overcoming the cell barriers. Mechanistically, S-RCLs promote the cellular uptake mediated by CD44, EH-domain containing 2 (EHD2), and caveolin-1 (CAV-1); intracellular transport via MAP6 Domain Containing 1 (Map6d1) and F-actin; and DNA transcription regulated by LSM3 and Hist1h3e in the nucleus. Thus, S-RCLs are a promising hybrid platform with excellent efficiency and biocompatibility for gene delivery both in vitro and in vivo.
Collapse
|
5
|
Kolb P, Schundner A, Frick M, Gottschalk KE. In Vitro Measurements of Cellular Forces and their Importance in the Lung-From the Sub- to the Multicellular Scale. Life (Basel) 2021; 11:691. [PMID: 34357063 PMCID: PMC8307149 DOI: 10.3390/life11070691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Throughout life, the body is subjected to various mechanical forces on the organ, tissue, and cellular level. Mechanical stimuli are essential for organ development and function. One organ whose function depends on the tightly connected interplay between mechanical cell properties, biochemical signaling, and external forces is the lung. However, altered mechanical properties or excessive mechanical forces can also drive the onset and progression of severe pulmonary diseases. Characterizing the mechanical properties and forces that affect cell and tissue function is therefore necessary for understanding physiological and pathophysiological mechanisms. In recent years, multiple methods have been developed for cellular force measurements at multiple length scales, from subcellular forces to measuring the collective behavior of heterogeneous cellular networks. In this short review, we give a brief overview of the mechanical forces at play on the cellular level in the lung. We then focus on the technological aspects of measuring cellular forces at many length scales. We describe tools with a subcellular resolution and elaborate measurement techniques for collective multicellular units. Many of the technologies described are by no means restricted to lung research and have already been applied successfully to cells from various other tissues. However, integrating the knowledge gained from these multi-scale measurements in a unifying framework is still a major future challenge.
Collapse
Affiliation(s)
- Peter Kolb
- Institute of Experimental Physics, Ulm University, 89069 Ulm, Germany;
| | - Annika Schundner
- Institute of General Physiology, Ulm University, 89069 Ulm, Germany;
| | - Manfred Frick
- Institute of General Physiology, Ulm University, 89069 Ulm, Germany;
| | - Kay-E. Gottschalk
- Institute of Experimental Physics, Ulm University, 89069 Ulm, Germany;
| |
Collapse
|
6
|
Rai N, Shihan M, Seeger W, Schermuly RT, Novoyatleva T. Genetic Delivery and Gene Therapy in Pulmonary Hypertension. Int J Mol Sci 2021; 22:ijms22031179. [PMID: 33503992 PMCID: PMC7865388 DOI: 10.3390/ijms22031179] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive complex fatal disease of multiple etiologies. Hyperproliferation and resistance to apoptosis of vascular cells of intimal, medial, and adventitial layers of pulmonary vessels trigger excessive pulmonary vascular remodeling and vasoconstriction in the course of pulmonary arterial hypertension (PAH), a subgroup of PH. Multiple gene mutation/s or dysregulated gene expression contribute to the pathogenesis of PAH by endorsing the proliferation and promoting the resistance to apoptosis of pulmonary vascular cells. Given the vital role of these cells in PAH progression, the development of safe and efficient-gene therapeutic approaches that lead to restoration or down-regulation of gene expression, generally involved in the etiology of the disease is the need of the hour. Currently, none of the FDA-approved drugs provides a cure against PH, hence innovative tools may offer a novel treatment paradigm for this progressive and lethal disorder by silencing pathological genes, expressing therapeutic proteins, or through gene-editing applications. Here, we review the effectiveness and limitations of the presently available gene therapy approaches for PH. We provide a brief survey of commonly existing and currently applicable gene transfer methods for pulmonary vascular cells in vitro and describe some more recent developments for gene delivery existing in the field of PH in vivo.
Collapse
Affiliation(s)
- Nabham Rai
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Mazen Shihan
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Ralph T. Schermuly
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Tatyana Novoyatleva
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
- Correspondence:
| |
Collapse
|
7
|
Beyeler SA, Hodges MR, Huxtable AG. Impact of inflammation on developing respiratory control networks: rhythm generation, chemoreception and plasticity. Respir Physiol Neurobiol 2020; 274:103357. [PMID: 31899353 DOI: 10.1016/j.resp.2019.103357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/17/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
The respiratory control network in the central nervous system undergoes critical developmental events early in life to ensure adequate breathing at birth. There are at least three "critical windows" in development of respiratory control networks: 1) in utero, 2) newborn (postnatal day 0-4 in rodents), and 3) neonatal (P10-13 in rodents, 2-4 months in humans). During these critical windows, developmental processes required for normal maturation of the respiratory control network occur, thereby increasing vulnerability of the network to insults, such as inflammation. Early life inflammation (induced by LPS, chronic intermittent hypoxia, sustained hypoxia, or neonatal maternal separation) acutely impairs respiratory rhythm generation, chemoreception and increases neonatal risk of mortality. These early life impairments are also greater in young males, suggesting sex-specific impairments in respiratory control. Further, neonatal inflammation has a lasting impact on respiratory control by impairing adult respiratory plasticity. This review focuses on how inflammation alters respiratory rhythm generation, chemoreception and plasticity during each of the three critical windows. We also highlight the need for additional mechanistic studies and increased investigation into how glia (such as microglia and astrocytes) play a role in impaired respiratory control after inflammation. Understanding how inflammation during critical windows of development disrupt respiratory control networks is essential for developing better treatments for vulnerable neonates and preventing adult ventilatory control disorders.
Collapse
Affiliation(s)
- Sarah A Beyeler
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, United States
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Adrianne G Huxtable
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, United States.
| |
Collapse
|
8
|
Varma R, Soleas JP, Waddell TK, Karoubi G, McGuigan AP. Current strategies and opportunities to manufacture cells for modeling human lungs. Adv Drug Deliv Rev 2020; 161-162:90-109. [PMID: 32835746 PMCID: PMC7442933 DOI: 10.1016/j.addr.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Chronic lung diseases remain major healthcare burdens, for which the only curative treatment is lung transplantation. In vitro human models are promising platforms for identifying and testing novel compounds to potentially decrease this burden. Directed differentiation of pluripotent stem cells is an important strategy to generate lung cells to create such models. Current lung directed differentiation protocols are limited as they do not 1) recapitulate the diversity of respiratory epithelium, 2) generate consistent or sufficient cell numbers for drug discovery platforms, and 3) establish the histologic tissue-level organization critical for modeling lung function. In this review, we describe how lung development has formed the basis for directed differentiation protocols, and discuss the utility of available protocols for lung epithelial cell generation and drug development. We further highlight tissue engineering strategies for manipulating biophysical signals during directed differentiation such that future protocols can recapitulate both chemical and physical cues present during lung development.
Collapse
Affiliation(s)
- Ratna Varma
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - John P Soleas
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Thomas K Waddell
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Alison P McGuigan
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada.
| |
Collapse
|
9
|
Muschter D, Beiderbeck AS, Späth T, Kirschneck C, Schröder A, Grässel S. Sensory Neuropeptides and their Receptors Participate in Mechano-Regulation of Murine Macrophages. Int J Mol Sci 2019; 20:ijms20030503. [PMID: 30682804 PMCID: PMC6386869 DOI: 10.3390/ijms20030503] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 12/29/2022] Open
Abstract
This study aimed to analyze if the sensory neuropeptide SP (SP) and the neurokinin receptor 1 (NK1R) are involved in macrophage mechano-transduction, similar to chondrocytes, and if alpha-calcitonin gene-related peptide (αCGRP) and the CGRP receptor (CRLR/Ramp1) show comparable activity. Murine RAW264.7 macrophages were subjected to a cyclic stretch for 1–3 days and 4 h/day. Loading and neuropeptide effects were analyzed for gene and protein expression of neuropeptides and their receptors, adhesion, apoptosis, proliferation and ROS activity. Murine bone marrow-derived macrophages (BMM) were isolated after surgical osteoarthritis (OA) induction and proliferation, apoptosis and osteoclastogenesis were analyzed in response to loading. Loading induced NK1R and CRLR/Ramp1 gene expression and altered protein expression in RAW264.7 macrophages. SP protein and mRNA level decreased after loading whereas αCGRP mRNA expression was stabilized. SP reduced adhesion in loaded RAW264.7 macrophages and both neuropeptides initially increased the ROS activity followed by a time-dependent suppression. OA induction sensitized BMM to caspase 3/7 mediated apoptosis after loading. Both sensory neuropeptides, SP and αCGRP, and their receptors are involved in murine macrophage mechano-transduction affecting neuropeptide impact on adhesion and ROS activity. OA induction altered BMM apoptosis in response to loading indicate that OA-associated biomechanical alterations might affect the macrophage population.
Collapse
Affiliation(s)
- Dominique Muschter
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology, University of Regensburg, 93053 Regensburg, Germany.
| | - Anna-Sophie Beiderbeck
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology, University of Regensburg, 93053 Regensburg, Germany.
| | - Tanja Späth
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology, University of Regensburg, 93053 Regensburg, Germany.
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany.
| | - Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany.
| | - Susanne Grässel
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
10
|
O'Sullivan MJ, Lan B. The Aftermath of Bronchoconstriction. ACTA ACUST UNITED AC 2019; 2:0108031-108036. [PMID: 32328569 DOI: 10.1115/1.4042318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/30/2018] [Indexed: 11/08/2022]
Abstract
Asthma is characterized by chronic airway inflammation, airway remodeling, and excessive constriction of the airway. Detailed investigation exploring inflammation and the role of immune cells has revealed a variety of possible mechanisms by which chronic inflammation drives asthma development. However, the underlying mechanisms of asthma pathogenesis still remain poorly understood. New evidence now suggests that mechanical stimuli that arise during bronchoconstriction may play a critical role in asthma development. In this article, we review the mechanical effect of bronchoconstriction and how these mechanical stresses contribute to airway remodeling independent of inflammation.
Collapse
Affiliation(s)
- Michael J O'Sullivan
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, 1-G07, Boston, MA 02115
| | - Bo Lan
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, 1-G07, Boston, MA 02115 e-mail:
| |
Collapse
|
11
|
Fegaras E, Forer A. Precocious cleavage furrows simultaneously move and ingress when kinetochore microtubules are depolymerized in Mesostoma ehrenbergii spermatocytes. PROTOPLASMA 2018; 255:1401-1411. [PMID: 29564559 DOI: 10.1007/s00709-018-1239-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
A "precocious" cleavage furrow develops and ingresses during early prometaphase in Mesostoma ehrenbergii spermatocytes (Forer and Pickett-Heaps Eur J Cell Biol 89:607-618, 2010). In response to chromosome movements which regularly occur during prometaphase and that alter the balance of chromosomes in the two half-spindles, the precocious furrow shifts its position along the cell, moving 2-3 μm towards the half cell with fewer chromosomes (Ferraro-Gideon et al. Cell Biol Int 37:892-898, 2013). This process continues until proper segregation is achieved and the cell enters anaphase with the cleavage furrow again in the middle of the cell. At anaphase, the furrow recommences ingression. Spindle microtubules (MTs) are implicated in various furrow positioning models, and our experiments studied the responses of the precocious furrows to the absence of spindle MTs. We depolymerized spindle MTs during prometaphase using various concentrations of nocodazole (NOC) and colcemid. The expected result is that the furrow should regress and chromosomes remain in the midzone of the cell (Cassimeris et al. J Cell Sci 96:9-15, 1990). Instead, the furrows commenced ingression and all three bivalent chromosomes moved to one pole while the univalent chromosomes, that usually reside at the two poles, either remained at their poles or moved to the opposite pole along with the bivalents, as described elsewhere (Fegaras and Forer 2018). The microtubules were completely depolymerized by the drugs, as indicated by immunofluorescence staining of treated cells (Fegaras and Forer 2018), and in the absence of microtubules, the furrows often ingressed (in 33/61 cells) at a rate similar to normal anaphase ingression (~ 1 μm/min), while often simultaneously moving toward one pole. Thus, these results indicate that in the absence of anaphase and of spindle microtubules, cleavage furrows resume ingression.
Collapse
Affiliation(s)
- Eleni Fegaras
- Department of Biology, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - Arthur Forer
- Department of Biology, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
12
|
Chen Y, Feng J, Zhao S, Han L, Yang H, Lin Y, Rong Z. Long-Term Engraftment Promotes Differentiation of Alveolar Epithelial Cells from Human Embryonic Stem Cell Derived Lung Organoids. Stem Cells Dev 2018; 27:1339-1349. [PMID: 30009668 DOI: 10.1089/scd.2018.0042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human embryonic stem cell (hESC) derived 3D human lung organoids (HLOs) provide a promising model to study human lung development and disease. HLOs containing proximal or/and immature distal airway epithelial cells have been successfully generated in vitro, such as early staged alveolar type 2 (AT2) cells (SPC+/SOX9+) and immature alveolar type 1 (AT1) cells (HOPX+/SOX9+). When HLOs were transplanted into immunocompromised mice for further differentiation in vivo, only few distal epithelial cells could be observed. In this study, we transplanted different stages of HLOs into immunocompromised mice to assess whether HLOs could expand and mature in vivo. We found that short-term transplanted HLOs contained lung progenitor cells (NKX2.1+, SOX9+, and P63+), but not SPC+ AT2 cells or AQP5+ AT1 cells. Meanwhile, long-term engrafted HLOs could differentiate into lung distal bipotent progenitor cells (PDPN+/SPC+/SOX9+), AT2 cells (SPC+, SPB+), and immature AT1 cells (PDPN+, AQP5-). However, HLOs at late in vitro stage turned into mature AT1-like cells (AQP5+/SPB-/SOX9-) in vivo. Immunofluorescence staining and transmission electron microscopy (TEM) results revealed that transplanted HLOs contained mesenchymal cells (collagen I+), vasculature (ACTA2+), neuroendocrine-like cells (PGP9.5+), and nerve fiber structures (myelin sheath structure). Together, these data reveal that hESC-derived HLOs would be useful for human lung development modeling, and transplanted HLOs could mimic lung organ-like structures in vivo by possessing vascular network and neuronal network.
Collapse
Affiliation(s)
- Yong Chen
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University , Guangzhou, China
| | - Jianqi Feng
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University , Guangzhou, China
| | - Shanshan Zhao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University , Guangzhou, China
| | - Le Han
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University , Guangzhou, China
| | - Hongcheng Yang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University , Guangzhou, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University , Guangzhou, China
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University , Guangzhou, China
| |
Collapse
|
13
|
Li J, Wang Z, Chu Q, Jiang K, Li J, Tang N. The Strength of Mechanical Forces Determines the Differentiation of Alveolar Epithelial Cells. Dev Cell 2018; 44:297-312.e5. [PMID: 29408236 DOI: 10.1016/j.devcel.2018.01.008] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 11/17/2022]
Abstract
The differentiation of alveolar epithelial type I (AT1) and type II (AT2) cells is essential for the lung gas exchange function. Disruption of this process results in neonatal death or in severe lung diseases that last into adulthood. We developed live imaging techniques to characterize the mechanisms that control alveolar epithelial cell differentiation. We discovered that mechanical forces generated from the inhalation of amniotic fluid by fetal breathing movements are essential for AT1 cell differentiation. We found that a large subset of alveolar progenitor cells is able to protrude from the airway epithelium toward the mesenchyme in an FGF10/FGFR2 signaling-dependent manner. The cell protrusion process results in enrichment of myosin in the apical region of protruded cells; this myosin prevents these cells from being flattened by mechanical forces, thereby ensuring their AT2 cell fate. Our study demonstrates that mechanical forces and local growth factors synergistically control alveolar epithelial cell differentiation.
Collapse
Affiliation(s)
- Jiao Li
- China Agricultural University, Beijing 100083, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Zheng Wang
- National Institute of Biological Sciences, Beijing 102206, China; Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Qiqi Chu
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Beijing Normal University, Beijing 100875 China
| | - Kewu Jiang
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Beijing Normal University, Beijing 100875 China
| | - Juan Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Nan Tang
- National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
14
|
Alvira CM, Morty RE. Can We Understand the Pathobiology of Bronchopulmonary Dysplasia? J Pediatr 2017; 190:27-37. [PMID: 29144252 PMCID: PMC5726414 DOI: 10.1016/j.jpeds.2017.08.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/28/2017] [Accepted: 08/16/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Cristina M. Alvira
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California 94305
| | - Rory E. Morty
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center campus of the German Center for Lung Research, Giessen, Germany,Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW This article aims to review previous research reports and to summarize current strategies for the optimal duration of voice rest and the effect of phonatory stimulation after phonomicrosurgery. RECENT FINDINGS Voice rest is commonly recommended after laryngeal surgery to prevent worsening of vocal fold injuries. However, there are no established standard protocol for voice rest, and the type and duration of voice rest vary among clinicians. The most effective duration of voice rest is unknown. Recently, early vocal stimulation was recommended as a means to improve wound healing, on the basis of the basic and clinical researches. SUMMARY It seems that early vocal stimulation may enhance the wound healing process in the vocal fold. More basic and clinical researches are warranted to investigate appropriate timing of initiation of stimulation, as well as the type and amount of stimulation that are available for human.
Collapse
|
16
|
Pelizzo G, Mimmi MC, Peiro JL, Marotta M, Amoroso F, Fusillo M, Carlini V, Calcaterra V. Congenital diaphragmatic hernia: endotracheal fluid phospholipidic profile following tracheal occlusion in an experimental model. J Perinat Med 2017; 45:219-225. [PMID: 27514074 DOI: 10.1515/jpm-2015-0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 07/18/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To compare endotracheal fluid (EF) and amniotic fluid (AF) phospholipidic profile changes following tracheal occlusion (TO) in the congenital diaphragmatic hernia (CDH) fetal lamb model, in order to support the efficacy of TO on lung maturity. METHODS A diaphragmatic defect was induced at 70 days' gestation, TO was carried out at day 102 and cesarean section at 136 days' gestation. EF and AF samples, collected at delivery, were evaluated using mass spectrometry (the analysis focused on palmitoyloleoyl-phosphatidylcholine [POPC, PC(18:1/16:0)], dipalmitoyl-phosphatidylcholine [DPPC, PC(16:0/16:0)] and sphingomyelins [SMs]). RESULTS The effects of CDH and TO were different on AF and EF. POPC levels were higher than DPPC levels in AF of healthy lambs. Following induction of the diaphragmatic malformation, an evident decrease in POPC was noted, while a substantial return to normal POPC levels and an increased DPPC peak were prompted by the TO. After CDH induction, a decrease in N-palmitoyl-D-sphingomyelin [SM(d18:1/16:0)] was revealed (P<0.01) and an increased peak in SMs in AF was prompted by the TO (P=0.05). While the most represented phosphatidylcholine (PC) species in EF of healthy lambs was DPPC, CDH induced a decrease in the DPPC peak and treatment with TO induced its partial recovery. SMs were detectable only in healthy EF samples. CONCLUSION The phospholipid recovery profile following TO suggests the potential role of this therapy in restoring processes involved in surfactant-mediated lung maturation, even though other interactions involved in AF turnover should be considered. Moreover, these metabolites could be used as biomarkers of fetal pulmonary development.
Collapse
|
17
|
Pulmonary Hypoplasia Induced by Oligohydramnios: Findings from Animal Models and a Population-Based Study. Pediatr Neonatol 2017; 58:3-7. [PMID: 27324123 DOI: 10.1016/j.pedneo.2016.04.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/26/2015] [Accepted: 04/21/2016] [Indexed: 10/21/2022] Open
Abstract
Pulmonary hypoplasia is a substantial cause of death in newborn infants, and oligohydramnios is one of the most commonly associated abnormalities. Lung growth is influenced by physical factors such as the intrauterine space, lung liquid volume and pressure, and fetal breathing movements. During lung development, the main physical force experienced by the lungs is stretching induced by breathing movements and the lung fluid in the airspaces. Oligohydramnios reduces the intrathoracic cavity size, thus disrupting fetal lung growth and leading to pulmonary hypoplasia. The exact mechanism by which oligohydramnios alters the respiratory system structure and the effect of oligohydramnios on long-term respiratory outcomes remain unknown. In this review, we summarize the effects of oligohydramnios on lung development, discuss the mechanisms of oligohydramnios-induced pulmonary hypoplasia identified in various animal studies, and describe the long-term respiratory outcomes in childhood of oligohydramnios-exposed fetuses reported by a population-based study.
Collapse
|
18
|
Kaneko M, Shiromoto O, Fujiu-Kurachi M, Kishimoto Y, Tateya I, Hirano S. Optimal Duration for Voice Rest After Vocal Fold Surgery: Randomized Controlled Clinical Study. J Voice 2017; 31:97-103. [DOI: 10.1016/j.jvoice.2016.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/10/2016] [Indexed: 12/22/2022]
|
19
|
Bokka KK, Jesudason EC, Warburton D, Lubkin SR. Quantifying cellular and subcellular stretches in embryonic lung epithelia under peristalsis: where to look for mechanosensing. Interface Focus 2016; 6:20160031. [PMID: 27708758 DOI: 10.1098/rsfs.2016.0031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Peristalsis begins in the lung as soon as the smooth muscle (SM) forms, and persists until birth. As the prenatal lung is filled with liquid, SM action can, through lumen pressure, deform tissues far from the immediately adjacent tissues. Stretching of embryonic tissues has been shown to have potent morphogenetic effects. We hypothesize that these effects are at work in lung morphogenesis. In order to refine that broad hypothesis in a quantitative framework, we geometrically analyse cell shapes in an epithelial tissue, and individual cell deformations resulting from peristaltic waves that completely occlude the airway. Typical distortions can be very large, with opposite orientations in the stalk and tip regions. Apical distortions are always greater than basal distortions. We give a quantitative estimate of the relationship between length of occluded airway and the resulting tissue stretch in the distal tip. We refine our analysis of cell stresses and strains from peristalsis with a simple mechanical model of deformation of cells within an epithelium, which accounts for basic subcellular geometry and material properties. The model identifies likely stress concentrations near the nucleus and at the apical cell-cell junction. The surprisingly large strains of airway peristalsis may serve to rearrange cells and stimulate other mechanosensitive processes by repeatedly aligning cytoskeletal components and/or breaking and reforming lateral cell-cell adhesions. Stress concentrations between nuclei of adjacent cells may serve as a mechanical control mechanism guiding the alignment of nuclei as an epithelium matures.
Collapse
Affiliation(s)
| | - Edwin C Jesudason
- Paediatric Surgery , University of Liverpool , Liverpool L69 3BX , UK
| | - David Warburton
- Saban Research Institute , 4650 Sunset Boulevard, MS# 35, Los Angeles, CA 90027 , USA
| | | |
Collapse
|
20
|
Adenosine monophosphate-activated protein kinase activation and suppression of inflammatory response by cell stretching in rabbit synovial fibroblasts. Mol Cell Biochem 2016; 423:175-185. [PMID: 27686453 DOI: 10.1007/s11010-016-2835-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022]
Abstract
Joint mobilization is known to be beneficial in osteoarthritis (OA) patients. This study aimed to investigate the effect of stretching on adenosine monophosphate-activated protein kinase (AMPK) activity and its role in modulating inflammation in rabbit synovial fibroblasts. Uniaxial stretching of isolated rabbit synovial fibroblasts for ten min was performed. Stretching-induced AMPK activation, its underlying mechanism, and its anti-inflammatory effect were investigated using Western blot. Static stretching at 20 % of initial length resulted in AMPK activation characterized by expression of phosphorylated AMPK and phosphorylated acetyl-Co A carboxylase. AMP-activated protein kinase phosphorylation peaked 1 h after stretching and declined toward resting activity. Using cell viability assays, static stretching did not appear to cause cellular damage. Activation of AMPK involves Ca2+ influx via a mechanosensitive L-type Ca2+ channel, which subsequently raises intracellular Ca2+ and activates AMPK via Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ). Interestingly, stretching suppressed TNFα-induced expression of COX-2, iNOS, and phosphorylated NF-κB. These effects were prevented by pretreatment with compound C, an AMPK inhibitor. These results suggest that mechanical stretching suppressed inflammatory responses in synovial fibroblasts via a L-type Ca2+-channel-CaMKKβ-AMPK-dependent pathway which may underlie joint mobilization's ability to alleviate OA symptoms.
Collapse
|
21
|
Vitzthum C, Clauss WG, Fronius M. Mechanosensitive activation of CFTR by increased cell volume and hydrostatic pressure but not shear stress. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2942-51. [PMID: 26357939 DOI: 10.1016/j.bbamem.2015.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/03/2015] [Accepted: 09/05/2015] [Indexed: 12/20/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl(-) channel that is essential for electrolyte and fluid homeostasis. Preliminary evidence indicates that CFTR is a mechanosensitive channel. In lung epithelia, CFTR is exposed to different mechanical forces such as shear stress (Ss) and membrane distention. The present study questioned whether Ss and/or stretch influence CFTR activity (wild type, ∆F508, G551D). Human CFTR (hCFTR) was heterologously expressed in Xenopus oocytes and the response to the mechanical stimulus and forskolin/IBMX (FI) was measured by two-electrode voltage-clamp experiments. Ss had no influence on hCFTR activity. Injection of an intracellular analogous solution to increase cell volume alone did not affect hCFTR activity. However, hCFTR activity was augmented by injection after pre-stimulation with FI. The response to injection was similar in channels carrying the common mutations ∆F508 and G551D compared to wild type hCFTR. Stretch-induced CFTR activation was further assessed in Ussing chamber measurements using Xenopus lung preparations. Under control conditions increased hydrostatic pressure (HP) decreased the measured ion current including activation of a Cl(-) secretion that was unmasked by the CFTR inhibitor GlyH-101. These data demonstrate activation of CFTR in vitro and in a native pulmonary epithelium in response to mechanical stress. Mechanosensitive regulation of CFTR is highly relevant for pulmonary physiology that relies on ion transport processes facilitated by pulmonary epithelial cells.
Collapse
Affiliation(s)
- Constanze Vitzthum
- Institute of Animal Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Wolfgang G Clauss
- Institute of Animal Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Martin Fronius
- Department of Physiology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
22
|
Geng Y, Wang Z. Review of cellular mechanotransduction on micropost substrates. Med Biol Eng Comput 2015; 54:249-71. [PMID: 26245253 DOI: 10.1007/s11517-015-1343-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 07/07/2015] [Indexed: 01/09/2023]
Abstract
As physical entities, living cells can sense and respond to various stimulations within and outside the body through cellular mechanotransduction. Any deviation in cellular mechanotransduction will not only undermine the orchestrated regulation of mechanical responses, but also lead to the breakdown of their physiological function. Therefore, a quantitative study of cellular mechanotransduction needs to be conducted both in experiments and in computational simulations to investigate the underlying mechanisms of cellular mechanotransduction. In this review, we present an overview of the current knowledge and significant progress in cellular mechanotransduction via micropost substrates. In the aspect of experimental studies, we summarize significant experimental progress and place an emphasis on the coupled relationship among cellular spreading, focal adhesion and contractility as well as the influence of substrate properties on force-involved cellular behaviors. In the other aspect of computational investigations, we outline a coupled framework including the biochemically motivated stress fiber model and thermodynamically motivated adhesion model and present their predicted biomechanical responses and then compare predicted simulation results with experimental observations to further explore the mechanisms of cellular mechanotransduction. At last, we discuss the future perspectives both in experimental technologies and in computational models, as well as facing challenges in the area of cellular mechanotransduction.
Collapse
Affiliation(s)
- Yuxu Geng
- State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, China
| | - Zhanjiang Wang
- State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
23
|
Abstract
Asthma is characterized by chronic inflammation, airway hyperresponsiveness, and progressive airway remodeling. The airway epithelium is known to play a critical role in the initiation and perpetuation of these processes. Here, we review how excessive epithelial stress generated by bronchoconstriction is sufficient to induce airway remodeling, even in the absence of inflammatory cells.
Collapse
Affiliation(s)
- Jin-Ah Park
- Harvard T. H. Chan School of Public Health, Boston, Massachussetts
| | | | - Jeffrey M Drazen
- Harvard T. H. Chan School of Public Health, Boston, Massachussetts
| |
Collapse
|
24
|
McWhorter FY, Davis CT, Liu WF. Physical and mechanical regulation of macrophage phenotype and function. Cell Mol Life Sci 2015; 72:1303-16. [PMID: 25504084 PMCID: PMC4795453 DOI: 10.1007/s00018-014-1796-8] [Citation(s) in RCA: 320] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/11/2014] [Accepted: 11/27/2014] [Indexed: 12/12/2022]
Abstract
Macrophages are tissue-resident immune cells that play a critical role in maintaining homeostasis and fighting infection. In addition, these cells are involved in the progression of many pathologies including cancer and atherosclerosis. In response to a variety of microenvironmental stimuli, macrophages can be polarized to achieve a spectrum of functional phenotypes. This review will discuss some emerging evidence in support of macrophage phenotypic regulation by physical and mechanical cues. As alterations in the physical microenvironment often underlie pathophysiological states, an understanding of their effects on macrophage phenotype and function may help provide mechanistic insights into disease pathogenesis.
Collapse
Affiliation(s)
- Frances Y. McWhorter
- Department of Biomedical Engineering, University of California Irvine, 3120 Natural Sciences II, Irvine, CA 92697 USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, 2400 Engineering Hall, Irvine, CA 92697 USA
| | - Chase T. Davis
- Department of Biomedical Engineering, University of California Irvine, 3120 Natural Sciences II, Irvine, CA 92697 USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, 2400 Engineering Hall, Irvine, CA 92697 USA
| | - Wendy F. Liu
- Department of Biomedical Engineering, University of California Irvine, 3120 Natural Sciences II, Irvine, CA 92697 USA
- Department of Chemical Engineering and Materials Science, University of California Irvine, 916 Engineering Tower, Irvine, CA 92697 USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, 2400 Engineering Hall, Irvine, CA 92697 USA
| |
Collapse
|
25
|
Dutta SM, Mustafi SB, Raha S, Chakraborty SK. Assessment of thermal stress adaptation by monitoring Hsp70 and MnSOD in the freshwater gastropod, Bellamya bengalensis (Lamark 1882). ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:8961-8967. [PMID: 25240497 DOI: 10.1007/s10661-014-4057-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/11/2014] [Indexed: 06/03/2023]
Abstract
Expression of the stress biomarkers 70-kDa heat shock proteins (Hsp70) and manganese superoxide dismutase (MnSOD) was measured as the molecular basis of adaptive response against increased experimental temperatures (32-40 °C for a span of 24-72 h) on the fresh water molluscan species, Bellamya bengalensis (Lamark 1882). The experimental snail specimens were collected during summer and winter seasons from two contrasting wetlands: an ecorestored (free from human interference) site (SI) and other experiencing anthropogenic stresses (SII). The mortality rate of the B. bengalensis and the immunoblotting of MnSOD and Hsp70 of their digestive glands were performed at regular intervals during the period of heat stress. The SI provided a lower stress environment based on physicochemical parameters such as pH, dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), and alkalinity for the survival of test species, although both sites experienced mortality due to thermal stresses. The parity in protein expressions displayed a uniform mode of adaptive impact to temperature elevations in both field and laboratory exposure. The Hsp70 expression was minimal at lower thermal stress, but increased with a rise in temperature. It is very likely that higher Hsp70 levels are not directly related to survival or adaptation. In contrast, MnSOD levels appeared to be an indicator of adaptive responses vis-a-vis survival of the animals. So, the expression levels of a universal free radical scavenger like MnSOD are recognized as a potential biomarker in a bioindicator species like Bellamya.
Collapse
|
26
|
Kneyber MCJ, Zhang H, Slutsky AS. Ventilator-induced lung injury. Similarity and differences between children and adults. Am J Respir Crit Care Med 2014; 190:258-65. [PMID: 25003705 DOI: 10.1164/rccm.201401-0168cp] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is well established that mechanical ventilation can injure the lung, producing an entity known as ventilator-induced lung injury (VILI). There are various forms of VILI, including volutrauma (i.e., injury caused by overdistending the lung), atelectrauma (injury due to repeated opening/closing of lung units), and biotrauma (release of mediators that can induce lung injury or aggravate pre-existing injury, potentially leading to multiple organ failure). Experimental data in the pediatric context are in accord with the importance of VILI, and appear to show age-related susceptibility to VILI, although a conclusive link between use of large Vts and mortality has not been demonstrated in this population. The relevance of VILI in the pediatric intensive care unit population is thus unclear. Given the physiological and biological differences in the respiratory systems of infants, children, and adults, it is difficult to directly extrapolate clinical practice from adults to children. This Critical Care Perspective analyzes the relevance of VILI to the pediatric population, and addresses why pediatric patients might be less susceptible than adults to VILI.
Collapse
Affiliation(s)
- Martin C J Kneyber
- 1 Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
27
|
Abstract
INTRODUCTION OR BACKGROUND The incidence of chronic lung disease is increasing worldwide due to the spread of risk factors and ageing population. An important advance in treatment would be the development of a bioartificial lung where the blood-gas exchange surface is manufactured from a synthetic or natural scaffold material that is seeded with the appropriate stem or progenitor cells to mimic the functional tissue of the natural lung. SOURCES OF DATA Articles relating to bioartificial lungs were sourced through PubMed and ISI Web of Knowledge. AREAS OF AGREEMENT There is a consensus that advances in bioartificial lung engineering will be beneficial to patients with chronic lung failure. Ultimate success will require the concerted efforts of researchers drawn from a broad range of disciplines, including clinicians, cell biologists, materials scientists and engineers. AREAS OF CONTROVERSY As a source of cells for use in bioartificial lungs it is proposed to use human embryonic stem cells; however, there are ethical and safety concerns regarding the use of these cells. GROWING POINTS There is a need to identify the optimum strategies for differentiating progenitor cells into functional lung cells; a need to better understand cell-biomaterial/ECM interactions and a need to understand how to harness the body's natural capacity to regenerate the lung. AREAS TIMELY FOR DEVELOPING RESEARCH Biomaterial technologies for recreating the natural lung ECM and architecture need further development. Mathematical modelling techniques should be developed for determining optimal scaffold seeding strategies and predicting gas exchange performance.
Collapse
Affiliation(s)
- Greg Lemon
- Department of Clinical Science, Intervention and Technology (CLINTEC), Advanced Center for Translational Regenerative Medicine (ACTREM), Karolinska Institutet, Stockholm, Sweden
| | - Mei Ling Lim
- Department of Clinical Science, Intervention and Technology (CLINTEC), Advanced Center for Translational Regenerative Medicine (ACTREM), Karolinska Institutet, Stockholm, Sweden Division of Ear, Nose and Throat, Karolinska University Hospital, Stockholm, Sweden
| | - Fatemeh Ajalloueian
- Department of Clinical Science, Intervention and Technology (CLINTEC), Advanced Center for Translational Regenerative Medicine (ACTREM), Karolinska Institutet, Stockholm, Sweden
| | - Paolo Macchiarini
- Department of Clinical Science, Intervention and Technology (CLINTEC), Advanced Center for Translational Regenerative Medicine (ACTREM), Karolinska Institutet, Stockholm, Sweden Division of Ear, Nose and Throat, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
28
|
Tsuchiya T, Sivarapatna A, Rocco K, Nanashima A, Nagayasu T, Niklason LE. Future prospects for tissue engineered lung transplantation: decellularization and recellularization-based whole lung regeneration. Organogenesis 2014; 10:196-207. [PMID: 24488093 PMCID: PMC4154954 DOI: 10.4161/org.27846] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/13/2014] [Accepted: 01/13/2014] [Indexed: 01/16/2023] Open
Abstract
The shortage of donor lungs for transplantation causes a significant number of patient deaths. The availability of laboratory engineered, functional organs would be a major advance in meeting the demand for organs for transplantation. The accumulation of information on biological scaffolds and an increased understanding of stem/progenitor cell behavior has led to the idea of generating transplantable organs by decellularizing an organ and recellularizing using appropriate cells. Recellularized solid organs can perform organ-specific functions for short periods of time, which indicates the potential for the clinical use of engineered solid organs in the future. The present review provides an overview of progress and recent knowledge about decellularization and recellularization-based approaches for generating tissue engineered lungs. Methods to improve decellularization, maturation of recellularized lung, candidate species for transplantation and future prospects of lung bioengineering are also discussed.
Collapse
Affiliation(s)
- Tomoshi Tsuchiya
- Division of Surgical Oncology; Department of Surgery; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki, Japan
| | - Amogh Sivarapatna
- Departments of Anesthesia and Biomedical Engineering; Yale University; New Haven, CT USA
| | - Kevin Rocco
- Departments of Anesthesia and Biomedical Engineering; Yale University; New Haven, CT USA
| | - Atsushi Nanashima
- Division of Surgical Oncology; Department of Surgery; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki, Japan
| | - Takeshi Nagayasu
- Division of Surgical Oncology; Department of Surgery; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki, Japan
| | - Laura E Niklason
- Departments of Anesthesia and Biomedical Engineering; Yale University; New Haven, CT USA
| |
Collapse
|
29
|
Sanchez-Esteban J. Mechanical forces in fetal lung development: opportunities for translational research. Front Pediatr 2013; 1:51. [PMID: 24400295 PMCID: PMC3872295 DOI: 10.3389/fped.2013.00051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/11/2013] [Indexed: 12/29/2022] Open
Affiliation(s)
- Juan Sanchez-Esteban
- Department of Pediatrics, Alpert Medical School of Brown University , Providence, RI , USA
| |
Collapse
|
30
|
Abstract
Breathing movements have been demonstrated in the fetuses of every mammalian species investigated and are a critical component of normal fetal development. The classic sheep preparations instrumented for chronic fetal monitoring determined that fetal breathing movements (FBMs) occur in aggregates interspersed with long periods of quiescence that are strongly associated with neurophysiological state. The fetal sheep model also provided data regarding the neurochemical modulation of behavioral state and FBMs under a variety of in utero conditions. Subsequently, in vitro rodent models have been developed to advance our understanding of cellular, synaptic, network, and more detailed neuropharmacological aspects of perinatal respiratory neural control. This includes the ontogeny of the inspiratory rhythm generating center, the preBötzinger complex (preBötC), and the anatomical and functional development of phrenic motoneurons (PMNs) and diaphragm during the perinatal period. A variety of newborn animal models and studies of human infants have provided insights into age-dependent changes in state-dependent respiratory control, responses to hypoxia/hypercapnia and respiratory pathologies.
Collapse
Affiliation(s)
- John J Greer
- Department of Physiology, Centre for Neuroscience, Women and Children Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
31
|
Richter K, Kiefer KP, Grzesik BA, Clauss WG, Fronius M. Hydrostatic pressure activates ATP-sensitive K+ channels in lung epithelium by ATP release through pannexin and connexin hemichannels. FASEB J 2013; 28:45-55. [PMID: 24048216 DOI: 10.1096/fj.13-229252] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lungs of air-breathing vertebrates are constantly exposed to mechanical forces and therefore are suitable for investigation of mechanotransduction processes in nonexcitable cells and tissues. Freshly dissected Xenopus laevis lungs were used for transepithelial short-circuit current (ISC) recordings and were exposed to increased hydrostatic pressure (HP; 5 cm fluid column, modified Ussing chamber). I(SC) values obtained under HP (I(5cm)) were normalized to values before HP (I(0cm)) application (I(5cm)/I(0cm)). Under control conditions, HP decreased I(SC) (I(5cm)/I(0cm)=0.84; n=68; P<0.0001). This effect was reversible and repeatable ≥30 times. Preincubation with ATP-sensitive K(+) channel (K(ATP)) inhibitors (HMR1098 and glibenclamide) prevented the decrease in I(SC) (I(5cm)/I(0cm): HMR1098=1.19, P<0.0001; glibenclamide=1.11, P<0.0001). Similar effects were observed with hemichannel inhibitors (I(5cm)/I(0cm): meclofenamic acid=1.09, P<0.0001; probenecid=1.0, P<0.0001). The HP effect was accompanied by release of ATP (P<0.05), determined by luciferin-luciferase luminescence in perfusion solution from the luminal side of an Ussing chamber. ATP release was abrogated by both meclofenamic acid and probenecid. RT-PCR experiments revealed the expression of pannexin and connexin hemichannels and KATP subunit transcripts in X. laevis lung. These data show an activation of KATP in pulmonary epithelial cells in response to HP that is induced by ATP release through mechanosensitive pannexin and connexin hemichannels. These findings represent a novel mechanism of mechanotransduction in nonexcitable cells.
Collapse
Affiliation(s)
- Katrin Richter
- 2Institute of Animal Physiology, Justus Liebig University, Giessen, Heinrich Buff Ring 26, D-35392 Giessen, Germany.
| | | | | | | | | |
Collapse
|
32
|
Wang Y, Huang Z, Nayak PS, Matthews BD, Warburton D, Shi W, Sanchez-Esteban J. Strain-induced differentiation of fetal type II epithelial cells is mediated via the integrin α6β1-ADAM17/tumor necrosis factor-α-converting enzyme (TACE) signaling pathway. J Biol Chem 2013; 288:25646-25657. [PMID: 23888051 DOI: 10.1074/jbc.m113.473777] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mechanical forces are critical for normal fetal lung development. However, the mechanisms regulating this process are not well-characterized. We hypothesized that strain-induced release of HB-EGF and TGF-α is mediated via integrin-ADAM17/TACE interactions. Employing an in vitro system to simulate mechanical forces in fetal lung development, we showed that mechanical strain of fetal epithelial cells actives TACE, releases HB-EGF and TGF-α, and promotes differentiation. In contrast, in samples incubated with the TACE inhibitor IC-3 or in cells isolated from TACE knock-out mice, mechanical strain did not release ligands or promote cell differentiation, which were both rescued after transfection of ADAM17. Cell adhesion assay and co-immunoprecipitation experiments in wild-type and TACE knock-out cells using several TACE constructs demonstrated not only that integrins α6 and β1 bind to TACE via the disintegrin domain but also that mechanical strain enhances these interactions. Furthermore, force applied to these integrin receptors by magnetic beads activated TACE and shed HB-EGF and TGF-α. The contribution of integrins α6 and β1 to differentiation of fetal epithelial cells by strain was demonstrated by blocking their binding site with specific antibodies and by culturing the cells on membranes coated with anti-integrin α6 and β1 antibodies. In conclusion, mechanical strain releases HB-EGF and TGF-α and promotes fetal type II cell differentiation via α6β1 integrin-ADAM17/TACE signaling pathway. These investigations provide novel mechanistic information on how mechanical forces promote fetal lung development and specifically differentiation of epithelial cells. This information could be also relevant to other tissues exposed to mechanical forces.
Collapse
Affiliation(s)
- Yulian Wang
- From the Department of Pediatrics, Women & Infants Hospital of Rhode Island and the Warren Alpert Medical School, Brown University, Providence, Rhode Island 02905
| | - Zheping Huang
- From the Department of Pediatrics, Women & Infants Hospital of Rhode Island and the Warren Alpert Medical School, Brown University, Providence, Rhode Island 02905
| | - Pritha S Nayak
- From the Department of Pediatrics, Women & Infants Hospital of Rhode Island and the Warren Alpert Medical School, Brown University, Providence, Rhode Island 02905
| | - Benjamin D Matthews
- the Vascular Biology Program, Departments of Medicine, Pathology, and Surgery, Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts 02115, and
| | - David Warburton
- the Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027
| | - Wei Shi
- the Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027
| | - Juan Sanchez-Esteban
- From the Department of Pediatrics, Women & Infants Hospital of Rhode Island and the Warren Alpert Medical School, Brown University, Providence, Rhode Island 02905,.
| |
Collapse
|
33
|
Govitvattana N, Osathanon T, Taebunpakul S, Pavasant P. IL-6 regulated stress-induced Rex-1 expression in stem cells from human exfoliated deciduous teeth. Oral Dis 2012; 19:673-82. [DOI: 10.1111/odi.12052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/08/2012] [Accepted: 11/24/2012] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - S Taebunpakul
- Pediatric Dentistry Section; Phramongkutklao Hospital; Bangkok; Thailand
| | | |
Collapse
|
34
|
Ornitz DM, Yin Y. Signaling networks regulating development of the lower respiratory tract. Cold Spring Harb Perspect Biol 2012; 4:4/5/a008318. [PMID: 22550231 DOI: 10.1101/cshperspect.a008318] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The lungs serve the primary function of air-blood gas exchange in all mammals and in terrestrial vertebrates. Efficient gas exchange requires a large surface area that provides intimate contact between the atmosphere and the circulatory system. To achieve this, the lung contains a branched conducting system (the bronchial tree) and specialized air-blood gas exchange units (the alveoli). The conducting system brings air from the external environment to the alveoli and functions to protect the lung from debris that could obstruct airways, from entry of pathogens, and from excessive loss of fluids. The distal lung enables efficient exchange of gas between the alveoli and the conducting system and between the alveoli and the circulatory system. In this article, we highlight developmental and physiological mechanisms that specify, pattern, and regulate morphogenesis of this complex and essential organ. Recent advances have begun to define molecular mechanisms that control many of the important processes required for lung organogenesis; however, many questions remain. A deeper understanding of these molecular mechanisms will aid in the diagnosis and treatment of congenital lung disease and in the development of strategies to enhance the reparative response of the lung to injury and eventually permit regeneration of functional lung tissue.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
35
|
Huang Z, Wang Y, Nayak PS, Dammann CE, Sanchez-Esteban J. Stretch-induced fetal type II cell differentiation is mediated via ErbB1-ErbB4 interactions. J Biol Chem 2012; 287:18091-102. [PMID: 22493501 DOI: 10.1074/jbc.m111.313163] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stretch-induced differentiation of lung fetal type II epithelial cells is mediated through EGFR (ErbB1) via release of HB-EGF and TGF-α ligands. Employing an EGFR knock-out mice model, we further investigated the role of the ErbB family of receptors in mechanotranduction during lung development. Deletion of EGFR prevented endogenous and mechanical stretch-induced type II cell differentiation via the ERK pathway, which was rescued by overexpression of a constitutively active MEK. Interestingly, the expression of ErbB4, the only ErbB receptor that EGFR co-precipitates in wild-type cells, was decreased in EGFR-deficient type II cells. Similar to EGFR, ErbB4 was activated by stretch and participated in ERK phosphorylation and type II cell differentiation. However, neuregulin (NRG) or stretch-induced ErbB4 activation were blunted in EGFR-deficient cells and not rescued after ErbB4 overexpression, suggesting that induction of ErbB4 phosphorylation is EGFR-dependent. Finally, we addressed how shedding of ligands is regulated by EGFR. In knock-out cells, TGF-α, a ligand for EGFR, was not released by stretch, while HB-EGF, a ligand for EGFR and ErbB4, was shed by stretch although to a lower magnitude than in normal cells. Release of these ligands was inhibited by blocking EGFR and ERK pathway. In conclusion, our studies show that EGFR and ErbB4 regulate stretch-induced type II cell differentiation via ERK pathway. Interactions between these two receptors are important for mechanical signals in lung fetal type II cells. These studies provide novel insights into the cell signaling mechanisms regulating ErbB family receptors in lung cell differentiation.
Collapse
Affiliation(s)
- Zheping Huang
- Department of Pediatrics, Women & Infants Hospital of Rhode Island and the Warren Alpert Medical School of Brown University, Providence, Rhode Island 02905, USA
| | | | | | | | | |
Collapse
|
36
|
Mangner N, Adams V, Sandri M, Hoellriegel R, Hambrecht R, Schuler G, Gielen S. Muscle function and running activity in mouse models of hereditary muscle dystrophy: Impact of double knockout for dystrophin and the transcription factor MyoD. Muscle Nerve 2012; 45:544-51. [DOI: 10.1002/mus.22318] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Abstract
End-stage organ failure is a key challenge for the medical community because of the ageing population and the severe shortage of suitable donor organs available. Equally, injuries to or congenital absence of complex tissues such as the trachea, oesophagus, or skeletal muscle have few therapeutic options. A new approach to treatment involves the use of three-dimensional biological scaffolds made of allogeneic or xenogeneic extracellular matrix derived from non-autologous sources. These scaffolds can act as an inductive template for functional tissue and organ reconstruction after recellularisation with autologous stem cells or differentiated cells. Such an approach has been used successfully for the repair and reconstruction of several complex tissues such as trachea, oesophagus, and skeletal muscle in animal models and human beings, and, guided by appropriate scientific and ethical oversight, could serve as a platform for the engineering of whole organs and other tissues.
Collapse
Affiliation(s)
- Stephen F Badylak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel J Weiss
- Vermont Lung Center, University of Vermont College of Medicine, Burlington, VT, USA
| | - Arthur Caplan
- Center for Bioethics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Paolo Macchiarini
- Advanced Center of Translational Regenerative Medicine, Stockholm, Sweden.
| |
Collapse
|
38
|
Lau AN, Goodwin M, Kim CF, Weiss DJ. Stem cells and regenerative medicine in lung biology and diseases. Mol Ther 2012; 20:1116-30. [PMID: 22395528 DOI: 10.1038/mt.2012.37] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A number of novel approaches for repair and regeneration of injured lung have developed over the past several years. These include a better understanding of endogenous stem and progenitor cells in the lung that can function in reparative capacity as well as extensive exploration of the potential efficacy of administering exogenous stem or progenitor cells to function in lung repair. Recent advances in ex vivo lung engineering have also been increasingly applied to the lung. The current status of these approaches as well as initial clinical trials of cell therapies for lung diseases are reviewed below.
Collapse
Affiliation(s)
- Allison N Lau
- Department of Genetics, Stem Cell Program, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
39
|
Akopova I, Tatur S, Grygorczyk M, Luchowski R, Gryczynski I, Gryczynski Z, Borejdo J, Grygorczyk R. Imaging exocytosis of ATP-containing vesicles with TIRF microscopy in lung epithelial A549 cells. Purinergic Signal 2012; 8:59-70. [PMID: 21881960 PMCID: PMC3286538 DOI: 10.1007/s11302-011-9259-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 08/16/2011] [Indexed: 12/11/2022] Open
Abstract
Nucleotide release constitutes the first step of the purinergic signaling cascade, but its underlying mechanisms remain incompletely understood. In alveolar A549 cells much of the experimental data is consistent with Ca(2+)-regulated vesicular exocytosis, but definitive evidence for such a release mechanism is missing, and alternative pathways have been proposed. In this study, we examined ATP secretion from A549 cells by total internal reflection fluorescence microscopy to directly visualize ATP-loaded vesicles and their fusion with the plasma membrane. A549 cells were labeled with quinacrine or Bodipy-ATP, fluorescent markers of intracellular ATP storage sites, and time-lapse imaging of vesicles present in the evanescent field was undertaken. Under basal conditions, individual vesicles showed occasional quasi-instantaneous loss of fluorescence, as expected from spontaneous vesicle fusion with the plasma membrane and dispersal of its fluorescent cargo. Hypo-osmotic stress stimulation (osmolality reduction from 316 to 160 mOsm) resulted in a transient, several-fold increment of exocytotic event frequency. Lowering the temperature from 37°C to 20°C dramatically diminished the fraction of vesicles that underwent exocytosis during the 2-min stimulation, from ~40% to ≤1%, respectively. Parallel ATP efflux experiments with luciferase bioluminescence assay revealed that pharmacological interference with vesicular transport (brefeldin, monensin), or disruption of the cytoskeleton (nocodazole, cytochalasin), significantly suppressed ATP release (by up to ~80%), whereas it was completely blocked by N-ethylmaleimide. Collectively, our data demonstrate that regulated exocytosis of ATP-loaded vesicles likely constitutes a major pathway of hypotonic stress-induced ATP secretion from A549 cells.
Collapse
Affiliation(s)
- Irina Akopova
- Center for Commercialization of Fluorescence Technologies, Department of Molecular Biology and Immunology, University of North Texas, Fort Worth, TX USA
| | - Sabina Tatur
- Research Centre, Centre hospitalier de l’Université de Montréal (CRCHUM)—Hôtel-Dieu, 3850 St. Urbain St., Montreal, QC Canada H2W 1T7
| | - Mariusz Grygorczyk
- Research Centre, Centre hospitalier de l’Université de Montréal (CRCHUM)—Hôtel-Dieu, 3850 St. Urbain St., Montreal, QC Canada H2W 1T7
| | - Rafał Luchowski
- Center for Commercialization of Fluorescence Technologies, Department of Molecular Biology and Immunology, University of North Texas, Fort Worth, TX USA
| | - Ignacy Gryczynski
- Center for Commercialization of Fluorescence Technologies, Department of Molecular Biology and Immunology, University of North Texas, Fort Worth, TX USA
- Department of Cell Biology and Anatomy, University of North Texas, Fort Worth, TX USA
| | - Zygmunt Gryczynski
- Center for Commercialization of Fluorescence Technologies, Department of Molecular Biology and Immunology, University of North Texas, Fort Worth, TX USA
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX USA
| | - Julian Borejdo
- Center for Commercialization of Fluorescence Technologies, Department of Molecular Biology and Immunology, University of North Texas, Fort Worth, TX USA
| | - Ryszard Grygorczyk
- Research Centre, Centre hospitalier de l’Université de Montréal (CRCHUM)—Hôtel-Dieu, 3850 St. Urbain St., Montreal, QC Canada H2W 1T7
- Department of Medicine, Université de Montréal, Montreal, Quebec Canada
| |
Collapse
|
40
|
Schmitt S, Hendricks P, Weir J, Somasundaram R, Sittampalam GS, Nirmalanandhan VS. Stretching mechanotransduction from the lung to the lab: approaches and physiological relevance in drug discovery. Assay Drug Dev Technol 2012; 10:137-47. [PMID: 22352900 DOI: 10.1089/adt.2011.418] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent years have shown a great deal of interest and research into the understanding of the biological and physiological roles of mechanical forces on cellular behavior. Despite these reports, in vitro screening of new molecular entities for lung ailments is still performed in static cell culture models. Failure to incorporate the effects of mechanical forces during early stages of screening could significantly reduce the success rate of drug candidates in the highly expensive clinical phases of the drug discovery pipeline. The objective of this review is to expand our current understanding of lung mechanotransduction and extend its applicability to cellular physiology and new drug screening paradigms. This review covers early in vivo studies and the importance of mechanical forces in normal lung development, use of different types of bioreactors that simulate in vivo movements in a controlled in vitro cell culture environment, and recent research using dynamic cell culture models. The cells in lungs are subjected to constant stretching (mechanical forces) in regular cycles due to involuntary expansion and contraction during respiration. The effects of stretch on normal and abnormal (disease) lung cells under pathological conditions are discussed. The potential benefits of extending dynamic cell culture models (screening in the presence of forces) and the associated challenges are also discussed in this review. Based on this review, the authors advocate the development of dynamic high throughput screening models that could facilitate the rapid translation of in vitro biology to animal models and clinical efficacy. These concepts are translatable to cardiovascular, digestive, and musculoskeletal tissues and in vitro cell systems employed routinely in drug-screening applications.
Collapse
Affiliation(s)
- Sarah Schmitt
- School of Engineering, The University of Kansas, Lawrence, Kansas 66160, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Kong BW, Lee JY, Bottje WG, Lassiter K, Lee J, Foster DN. Genome-wide differential gene expression in immortalized DF-1 chicken embryo fibroblast cell line. BMC Genomics 2011; 12:571. [PMID: 22111699 PMCID: PMC3258366 DOI: 10.1186/1471-2164-12-571] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 11/23/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND When compared to primary chicken embryo fibroblast (CEF) cells, the immortal DF-1 CEF line exhibits enhanced growth rates and susceptibility to oxidative stress. Although genes responsible for cell cycle regulation and antioxidant functions have been identified, the genome-wide transcription profile of immortal DF-1 CEF cells has not been previously reported. Global gene expression in primary CEF and DF-1 cells was performed using a 4X44K chicken oligo microarray. RESULTS A total of 3876 differentially expressed genes were identified with a 2 fold level cutoff that included 1706 up-regulated and 2170 down-regulated genes in DF-1 cells. Network and functional analyses using Ingenuity Pathways Analysis (IPA, Ingenuity® Systems, http://www.ingenuity.com) revealed that 902 of 3876 differentially expressed genes were classified into a number of functional groups including cellular growth and proliferation, cell cycle, cellular movement, cancer, genetic disorders, and cell death. Also, the top 5 gene networks with intermolecular connections were identified. Bioinformatic analyses suggested that DF-1 cells were characterized by enhanced molecular mechanisms for cell cycle progression and proliferation, suppressing cell death pathways, altered cellular morphogenesis, and accelerated capacity for molecule transport. Key molecules for these functions include E2F1, BRCA1, SRC, CASP3, and the peroxidases. CONCLUSIONS The global gene expression profiles provide insight into the cellular mechanisms that regulate the unique characteristics observed in immortal DF-1 CEF cells.
Collapse
Affiliation(s)
- Byung-Whi Kong
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas 72701, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Li N, Li Q, Zhou XD, Kolosov VP, Perelman JM. Chronic mechanical stress induces mucin 5AC expression in human bronchial epithelial cells through ERK dependent pathways. Mol Biol Rep 2011; 39:1019-28. [PMID: 21556755 DOI: 10.1007/s11033-011-0827-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 05/03/2011] [Indexed: 11/24/2022]
Abstract
Mucus hypersecretion is a common pathological change in chronic inflammatory diseases of the airway. These conditions are usually accompanied by chronic mechanical stress due to airway constriction. Our objective was to study the molecular mechanisms and physical effects of chronic mechanical stress on mucin 5AC (MUC5AC) expression in airway epithelial cells. We exposed normal human bronchial epithelial (NHBE) cells cultured at an air-liquid interface to different degrees of chronic compressive mechanical stress (10, 20, 30 cmH(2)O) for 7 days(1 h per day). MUC5AC protein content was detected by enzyme-linked immunosorbent assay (ELISA). MUC5AC mRNA expression was detected by reverse transcription PCR (RT-PCR) and real-time PCR. The effects of chronic mechanical stress on phosphorylated ERK1/2 (p-ERK1/2), phosphorylated JNK (p-JNK), phosphorylated P38 (p-P38), and phosphorylation of FAK at Tyr397 (p-FAK-Y397), were assessed by Western blot. We also assessed the impact of, an EGFR kinase inhibitor (AG1478), an ERK kinase inhibitor (PD-98059), and short interfering RNA (siRNA) targeted to FAK. We found that transcriptional and protein expression levels of MUC5AC were elevated significantly in the 30 cmH(2)O compressive stress group. p-ERK1/2 increased significantly in response to compressive stress and PD-98059 could attenuated stress-induced MUC5AC expression. p-FAK-Y397 increased significantly in response to compressive stress and FAK siRNA attenuated stress-induced ERK activation strongly. AG1478 attenuated stress-induced ERK activation and MUC5AC expression significantly, but incompletely. Combination of FAK siRNA and AG1478 led to complete attenuation of ERK activation and MUC5AC expression. These results suggest that chronic mechanical stress can enhance MUC5AC expression in human bronchial epithelial cells through the ERK signal transduction pathway. Both FAK and EGFR mediate the mitogenic response induced by mechanical stress in human bronchial epithelial cells through an ERK signaling cascade.
Collapse
Affiliation(s)
- Na Li
- Division of Respiratory Medicine, Second Affiliated Hospital, Chongqing Medical University, No.74, Linjiang Road, Chongqing 400010, China
| | | | | | | | | |
Collapse
|
43
|
Ramsingh R, Grygorczyk A, Solecki A, Cherkaoui LS, Berthiaume Y, Grygorczyk R. Cell deformation at the air-liquid interface induces Ca2+-dependent ATP release from lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2011; 300:L587-95. [PMID: 21239538 DOI: 10.1152/ajplung.00345.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extracellular nucleotides regulate mucociliary clearance in the airways and surfactant secretion in alveoli. Their release is exquisitely mechanosensitive and may be induced by stretch as well as airflow shear stress acting on lung epithelia. We hypothesized that, in addition, tension forces at the air-liquid interface (ALI) may contribute to mechanosensitive ATP release in the lungs. Local depletion of airway surface liquid, mucins, and surfactants, which normally protect epithelial surfaces, facilitate such release and trigger compensatory mucin and fluid secretion processes. In this study, human bronchial epithelial 16HBE14o(-) and alveolar A549 cells were subjected to tension forces at the ALI by passing an air bubble over the cell monolayer in a flow-through chamber, or by air exposure while tilting the cell culture dish. Such stimulation induced significant ATP release not involving cell lysis, as verified by ethidium bromide staining. Confocal fluorescence microscopy disclosed reversible cell deformation in the monolayer part in contact with the ALI. Fura 2 fluorescence imaging revealed transient intracellular Ca(2+) elevation evoked by the ALI, which did not entail nonspecific Ca(2+) influx from the extracellular space. ATP release was reduced by ∼40 to ∼90% from cells loaded with the Ca(2+) chelator BAPTA-AM and was completely abolished by N-ethylmalemide (1 mM). These experiments demonstrate that in close proximity to the ALI, surface tension forces are transmitted directly on cells, causing their mechanical deformation and Ca(2+)-dependent exocytotic ATP release. Such a signaling mechanism may contribute to the detection of local deficiency of airway surface liquid and surfactants on the lung surface.
Collapse
Affiliation(s)
- Ronaldo Ramsingh
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM) — Hôtel-Dieu, and Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Han B, Xiao H, Xu J, Lodyga M, Bai XH, Jin T, Liu M. Actin filament associated protein mediates c-Src related SRE/AP-1 transcriptional activation. FEBS Lett 2011; 585:471-7. [PMID: 21236256 DOI: 10.1016/j.febslet.2011.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 12/26/2010] [Accepted: 01/03/2011] [Indexed: 10/18/2022]
Abstract
AFAP is an adaptor protein involved in cytoskeletal organization and intracellular signaling. AFAP binds and activates c-Src; however, the downstream signals of this interaction remain unknown. Here we show that co-expression of AFAP and c-Src induce transcriptional activation of SRE and AP-1 in a c-Src activity dependent fashion. Structural-functional studies suggest that the proline-rich motif in the N-terminus of AFAP is critical for c-Src activation, and subsequent SRE/AP-1 transactivation and the actin-binding domain in the AFAP C-terminus is negatively involved in the regulation of AFAP/c-Src mediated SRE/AP-1 transactivation. Selective deletion of this domain enhances transactivation of SRE. We conclude that in addition to its role in the regulation of cytoskeletal structures, AFAP may also be involved in the c-Src related transcriptional activities.
Collapse
Affiliation(s)
- Bing Han
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Kaufman CD, Geiger RC, Dean DA. Electroporation- and mechanical ventilation-mediated gene transfer to the lung. Gene Ther 2010; 17:1098-104. [PMID: 20428212 PMCID: PMC3483646 DOI: 10.1038/gt.2010.57] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/05/2010] [Accepted: 01/06/2010] [Indexed: 12/27/2022]
Abstract
Our laboratory has previously demonstrated that cytoplasmic trafficking and subsequent nuclear entry of nonviral plasmid DNA can be significantly enhanced through the application of cyclic stretch after transfection in vitro. In this study, we show that cyclic stretching of the murine lung using ventilation immediately after endotracheal administration and transthoracic electroporation of plasmid DNA increases exogenous gene expression up to fourfold in mice that were not ventilated after plasmid administration and transfection by electroporation in vivo. This increase is both time and sequence specific (that is, the ventilation must occur immediately after the transfection event). The ventilation-enhanced gene transfer is also amplitude dependent, confirming similar studies completed in vitro, and is mediated, at least in part, through the cytoplasmic tubulin deacetylase, HDAC6. Using immunohistochemistry, we show that this increase in expression is due to an increase in the number of cells expressing the exogenous protein rather than an increase in the amount of protein produced per cell. These studies show the potential mechanical stimulation has in vivo in significantly increasing nonviral DNA gene expression, and may ultimately pave the way for more successful clinical trials using this type of therapy in the future.
Collapse
Affiliation(s)
- Christopher D. Kaufman
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine,, Northwestern University, Chicago, IL 60611
| | - R. Christopher Geiger
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine,, Northwestern University, Chicago, IL 60611
- Department of Bioengineering, U.A. Whitaker School of Engineering, Florida Gulf Coast University, Fort Myers, FL 33965
| | - David A. Dean
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine,, Northwestern University, Chicago, IL 60611
| |
Collapse
|
46
|
Ishikawa K, Thibeault S. Voice rest versus exercise: a review of the literature. J Voice 2010; 24:379-87. [PMID: 19660903 PMCID: PMC2925639 DOI: 10.1016/j.jvoice.2008.10.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 10/22/2008] [Indexed: 12/12/2022]
Abstract
Voice rest is commonly prescribed after vocal fold surgery to promote wound healing of the vocal fold. Currently, there is no standard protocol that is established based on biological evidence. In orthopedic rehabilitation, long-term rest is found to be less effective for connective tissue healing than exercise. Connective tissue healing is also an important factor for successful voice rehabilitation; however, whether this concept can be extrapolated to voice rehabilitation is unknown. The purpose of this article is to review current clinical and basic science literature to examine the effect of voice rest in postsurgical rehabilitation. First, we present a summary of clinical literature that pertains to voice rest. Second, we present description of connective tissues that are involved in orthopedic and voice rehabilitation, specifically, ligament and lamina propria, respectively, and their wound healing process. Third, a summary of the literature from orthopedic research on the effect of rest versus exercise is presented. Lastly, it summarizes in vitro and in vivo studies that examined the effect of mechanical stress on vocal fold tissue. Current literature suggests that there is a lack of clinical evidence that supports a specific type and duration of voice rest, and extrapolation of the findings from orthopedic research may be unreasonable due to the morphological and biochemical difference between the tissues. To determine the effect of voice rest, further elucidation of vocal fold wound healing process and the effect of mechanical stress on vocal fold tissue remodeling are needed.
Collapse
Affiliation(s)
- Keiko Ishikawa
- Division of Otolaryngology -- Head and Neck Surgery University of Wisconsin-Madison 5th Floor Wisconsin Institute of Medical Research 1111 Highland Ave Madison, Wisconsin 53705-2275
| | - Susan Thibeault
- Division of Otolaryngology – Head and Neck Surgery University of Wisconsin – Madison 5107 Wisconsin Institute of Medical Research 1111 Highland Ave Madison, Wisconsin 53705-2275 Phone (608)263-6751
| |
Collapse
|
47
|
Foster CD, Varghese LS, Gonzales LW, Margulies SS, Guttentag SH. The Rho pathway mediates transition to an alveolar type I cell phenotype during static stretch of alveolar type II cells. Pediatr Res 2010; 67:585-90. [PMID: 20220547 PMCID: PMC3063400 DOI: 10.1203/pdr.0b013e3181dbc708] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Stretch is an essential mechanism for lung growth and development. Animal models in which fetal lungs have been chronically over or underdistended demonstrate a disrupted mix of type II and type I cells, with static overdistention typically promoting a type I cell phenotype. The Rho GTPase family, key regulators of cytoskeletal signaling, are known to mediate cellular differentiation in response to stretch in other organs. Using a well-described model of alveolar epithelial cell differentiation and a validated stretch device, we investigated the effects of supraphysiologic stretch on human fetal lung alveolar epithelial cell phenotype. Static stretch applied to epithelial cells suppressed type II cell markers (SP-B and Pepsinogen C, PGC), and induced type I cell markers (Caveolin-1, Claudin 7 and Plasminogen Activator Inhibitor-1, PAI-1) as predicted. Static stretch was also associated with Rho A activation. Furthermore, the Rho kinase inhibitor Y27632 decreased Rho A activation and blunted the stretch-induced changes in alveolar epithelial cell marker expression. Together these data provide further evidence that mechanical stimulation of the cytoskeleton and Rho activation are key upstream events in mechanotransduction-associated alveolar epithelial cell differentiation.
Collapse
Affiliation(s)
- Cherie D Foster
- Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
48
|
Clause KC, Liu LJ, Tobita K. Directed stem cell differentiation: the role of physical forces. CELL COMMUNICATION & ADHESION 2010; 17:48-54. [PMID: 20560867 PMCID: PMC3285265 DOI: 10.3109/15419061.2010.492535] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A number of factors contribute to the control of stem cell fate. In particular, the evidence for how physical forces control the stem cell differentiation program is now accruing. In this review, the authors discuss the types of physical forces: mechanical forces, cell shape, extracellular matrix geometry/properties, and cell-cell contacts and morphogenic factors, which evidence suggests play a role in influencing stem cell fate.
Collapse
Affiliation(s)
- Kelly C. Clause
- Cardiovascular Development Research Program, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Li J. Liu
- Cardiovascular Development Research Program, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA
- Developmental Biology, University of Pittsburgh, Pittsburgh, PA
| | - Kimimasa Tobita
- Cardiovascular Development Research Program, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
- Developmental Biology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
49
|
Wang Y, Maciejewski BS, Drouillard D, Santos M, Hokenson MA, Hawwa RL, Huang Z, Sanchez-Esteban J. A role for caveolin-1 in mechanotransduction of fetal type II epithelial cells. Am J Physiol Lung Cell Mol Physiol 2010; 298:L775-83. [PMID: 20172952 DOI: 10.1152/ajplung.00327.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mechanical forces are critical for fetal lung development. Using surfactant protein C (SP-C) as a marker, we previously showed that stretch-induced fetal type II cell differentiation is mediated via the ERK pathway. Caveolin-1, a major component of the plasma membrane microdomains, is important as a signaling protein in blood vessels exposed to shear stress. Its potential role in mechanotransduction during fetal lung development is unknown. Caveolin-1 is a marker of type I epithelial cell phenotype. In this study, using immunocytochemistry, Western blotting, and immunogold electron microscopy, we first demonstrated the presence of caveolin-1 in embryonic day 19 (E19) rat fetal type II epithelial cells. By detergent-free purification of lipid raft-rich membrane fractions and fluorescence immunocytochemistry, we found that mechanical stretch translocates caveolin-1 from the plasma membrane to the cytoplasm. Disruption of the lipid rafts with cholesterol-chelating agents further increased stretch-induced ERK activation and SP-C gene expression compared with stretch samples without disruptors. Similar results were obtained when caveolin-1 gene was knocked down by small interference RNA. In contrast, adenovirus overexpression of the wild-type caveolin-1 or delivery of caveolin-1 scaffolding domain peptide inside the cells decreased stretch-induced ERK phosphorylation and SP-C mRNA expression. In conclusion, our data suggest that caveolin-1 is present in E19 fetal type II epithelial cells. Caveolin-1 is translocated from the plasma membrane to the cytoplasm by mechanical stretch and functions as an inhibitory protein in stretch-induced type II cell differentiation via the ERK pathway.
Collapse
Affiliation(s)
- Yulian Wang
- Department of Pediatrics, Women & Infants Hospital of Rhode Island and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02905, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Pang Q, Zu JW, Siu GM, Li RK. Design and Development of a Novel Biostretch Apparatus for Tissue Engineering. J Biomech Eng 2009; 132:014503. [DOI: 10.1115/1.3005154] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A uniaxial cyclic stretch apparatus is designed and developed for tissue engineering research. The biostretch apparatus employs noncontact electromagnetic force to uniaxially stretch a rectangular Gelfoam® or RTV silicon scaffold. A reliable controller is implemented to control four stretch parameters independently: extent, frequency, pattern, and duration of the stretch. The noncontact driving force together with the specially designed mount allow researchers to use standard Petri dishes and commercially available CO2 incubators to culture an engineered tissue patch under well-defined mechanical conditions. The culture process is greatly simplified over existing processes. Further, beyond traditional uniaxial stretch apparatuses, which provide stretch by fixing one side of the scaffolds and stretching the other side, the new apparatus can also apply uniaxial stretch from both ends simultaneously. Using the biostretch apparatus, the distributions of the strain on the Gelfoam® and GE RTV 6166 silicon scaffolds are quantitatively analyzed.
Collapse
Affiliation(s)
- Qiming Pang
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, ON, M5S 3G8, Canada
| | - Jean W. Zu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, ON, M5S 3G8, Canada
| | - Geoffrey M. Siu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, ON, M5S 3G8, Canada
| | - Ren-Ke Li
- Department of Surgery, University of Toronto, 5 King’s College Road, Toronto, ON, M5S 3G8, Canada
| |
Collapse
|