1
|
Martín‐González J, Montero‐Bullón J, Lacal J. Dictyostelium discoideum as a non-mammalian biomedical model. Microb Biotechnol 2021; 14:111-125. [PMID: 33124755 PMCID: PMC7888446 DOI: 10.1111/1751-7915.13692] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Dictyostelium discoideum is one of eight non-mammalian model organisms recognized by the National Institute of Health for the study of human pathology. The use of this slime mould is possible owing to similarities in cell structure, behaviour and intracellular signalling with mammalian cells. Its haploid set of chromosomes completely sequenced amenable to genetic manipulation, its unique and short life cycle with unicellular and multicellular stages, and phenotypic richness encoding many human orthologues, make Dictyostelium a representative and simple model organism to unveil cellular processes in human disease. Dictyostelium studies within the biomedical field have provided fundamental knowledge in the areas of bacterial infection, immune cell chemotaxis, autophagy/phagocytosis and mitochondrial and neurological disorders. Consequently, Dictyostelium has been used to the development of related pharmacological treatments. Herein, we review the utilization of Dictyostelium as a model organism in biomedicine.
Collapse
Affiliation(s)
- Javier Martín‐González
- Molecular Genetics of Human Diseases GroupDepartment of Microbiology and GeneticsFaculty of BiologyUniversity of SalamancaCampus Miguel de UnamunoSalamancaE‐37007Spain
| | - Javier‐Fernando Montero‐Bullón
- Metabolic Engineering GroupDepartment of Microbiology and GeneticsUniversity of SalamancaCampus Miguel de UnamunoSalamancaE‐37007Spain
| | - Jesus Lacal
- Molecular Genetics of Human Diseases GroupDepartment of Microbiology and GeneticsFaculty of BiologyUniversity of SalamancaCampus Miguel de UnamunoSalamancaE‐37007Spain
| |
Collapse
|
2
|
Perissinotti PP, Rivero-Echeto MC, Garcia-Rill E, Bisagno V, Urbano FJ. Leptin alters somatosensory thalamic networks by decreasing gaba release from reticular thalamic nucleus and action potential frequency at ventrobasal neurons. Brain Struct Funct 2018. [PMID: 29520482 DOI: 10.1007/s00429-018-1645-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Leptin is an adipose-derived hormone that controls appetite and energy expenditure. Leptin receptors are expressed on extra-hypothalamic ventrobasal (VB) and reticular thalamic (RTN) nuclei from embryonic stages. Here, we studied the effects of pressure-puff, local application of leptin on both synaptic transmission and action potential properties of thalamic neurons in thalamocortical slices. We used whole-cell patch-clamp recordings of thalamocortical VB neurons from wild-type (WT) and leptin-deficient obese (ob/ob) mice. We observed differences in VB neurons action potentials and synaptic currents kinetics when comparing WT vs. ob/ob. Leptin reduced GABA release onto VB neurons throughout the activation of a JAK2-dependent pathway, without affecting excitatory glutamate transmission. We observed a rapid and reversible reduction by leptin of the number of action potentials of VB neurons via the activation of large conductance Ca2+-dependent potassium channels. These leptin effects were observed in thalamocortical slices from up to 5-week-old WT but not in leptin-deficient obese mice. Results described here suggest the existence of a leptin-mediated trophic modulation of thalamocortical excitability during postnatal development. These findings could contribute to a better understanding of leptin within the thalamocortical system and sleep deficits in obesity.
Collapse
Affiliation(s)
- Paula P Perissinotti
- Departamento de Fisiología, Facultad de Ciencias Exactas y Naturales, Biología Molecular y Celular "Dr. Héctor Maldonado", Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Celeste Rivero-Echeto
- Departamento de Fisiología, Facultad de Ciencias Exactas y Naturales, Biología Molecular y Celular "Dr. Héctor Maldonado", Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Edgar Garcia-Rill
- Department of Neurobiology and Developmental Sciences, Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Verónica Bisagno
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Instituto de Investigaciones Farmacológicas (ININFA), CONICET-Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Francisco J Urbano
- Departamento de Fisiología, Facultad de Ciencias Exactas y Naturales, Biología Molecular y Celular "Dr. Héctor Maldonado", Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
3
|
Tipping the scales: Lessons from simple model systems on inositol imbalance in neurological disorders. Eur J Cell Biol 2017; 96:154-163. [PMID: 28153412 DOI: 10.1016/j.ejcb.2017.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 11/20/2022] Open
Abstract
Inositol and inositol-containing compounds have signalling and regulatory roles in many cellular processes, suggesting that inositol imbalance may lead to wide-ranging changes in cellular functions. Indeed, changes in inositol-dependent signalling have been implicated in various diseases and cellular functions such as autophagy, and these changes have often been proposed as therapeutic targets. However, few studies have highlighted the links between inositol depletion and the downstream effects on inositol phosphates and phosphoinositides in disease states. For this research, many advances have employed simple model systems that include the social amoeba D. discoideum and the yeast S. cerevisiae, since these models enable a range of experimental approaches that are not possible in mammalian models. In this review, we discuss recent findings initiated in simple model systems and translated to higher model organisms where the effect of altered inositol, inositol phosphate and phosphoinositide levels impact on bipolar disorder, Alzheimer disease, epilepsy and autophagy.
Collapse
|
4
|
Gavello D, Carbone E, Carabelli V. Leptin-mediated ion channel regulation: PI3K pathways, physiological role, and therapeutic potential. Channels (Austin) 2016; 10:282-96. [PMID: 27018500 DOI: 10.1080/19336950.2016.1164373] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Leptin is produced by adipose tissue and identified as a "satiety signal," informing the brain when the body has consumed enough food. Specific areas of the hypothalamus express leptin receptors (LEPRs) and are the primary site of leptin action for body weight regulation. In response to leptin, appetite is suppressed and energy expenditure allowed. Beside this hypothalamic action, leptin targets other brain areas in addition to neuroendocrine cells. LEPRs are expressed also in the hippocampus, neocortex, cerebellum, substantia nigra, pancreatic β-cells, and chromaffin cells of the adrenal gland. It is intriguing how leptin is able to activate different ionic conductances, thus affecting excitability, synaptic plasticity and neurotransmitter release, depending on the target cell. Most of the intracellular pathways activated by leptin and directed to ion channels involve PI3K, which in turn phosphorylates different downstream substrates, although parallel pathways involve AMPK and MAPK. In this review we will describe the effects of leptin on BK, KATP, KV, CaV, TRPC, NMDAR and AMPAR channels and clarify the landscape of pathways involved. Given the ability of leptin to influence neuronal excitability and synaptic plasticity by modulating ion channels activity, we also provide a short overview of the growing potentiality of leptin as therapeutic agent for treating neurological disorders.
Collapse
Affiliation(s)
- Daniela Gavello
- a Department of Drug Science , Lab of Cellular Physiology and Molecular Neuroscience, NIS Center of Excellence, University of Torino , Torino , Italy
| | - Emilio Carbone
- a Department of Drug Science , Lab of Cellular Physiology and Molecular Neuroscience, NIS Center of Excellence, University of Torino , Torino , Italy
| | - Valentina Carabelli
- a Department of Drug Science , Lab of Cellular Physiology and Molecular Neuroscience, NIS Center of Excellence, University of Torino , Torino , Italy
| |
Collapse
|
5
|
Chang RCA, Shi L, Huang CCY, Kim AJ, Ko ML, Zhou B, Ko GYP. High-Fat Diet-Induced Retinal Dysfunction. Invest Ophthalmol Vis Sci 2015; 56:2367-2380. [PMID: 25788653 PMCID: PMC4407693 DOI: 10.1167/iovs.14-16143] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/12/2015] [Indexed: 02/03/2023] Open
Abstract
PURPOSE The purpose of this study was to investigate the impact of obesity-induced prediabetes/early diabetes on the retina to provide new evidence on the pathogenesis of type 2 diabetes-associated diabetic retinopathy (DR). METHODS A high-fat diet (HFD)-induced obesity mouse model (male C57BL/6J) was used in this study. At the end of the 12-week HFD feeding regimen, mice were evaluated for glucose and insulin tolerance, and retinal light responses were recorded by electroretinogram (ERG). Western immunoblot and immunohistochemical staining were used to determine changes in elements regulating calcium homeostasis between HFD and control retinas, as well as unstained human retinal sections from DR patients and age-appropriate controls. RESULTS Compared to the control, the scotopic and photopic ERGs from HFD mice were decreased. There were significant decreases in molecules related to cell signaling, calcium homeostasis, and glucose metabolism from HFD retinas, including phosphorylated protein kinase B (pAKT), glucose transporter 4, L-type voltage-gated calcium channel (L-VGCC), and plasma membrane calcium ATPase (PMCA). Similar changes for pAKT, PMCA, and L-VGCC were also observed in human retinal sections from DR patients. CONCLUSIONS Obesity-induced hyperglycemic and prediabetic/early diabetic conditions caused detrimental impacts on retinal light sensitivities and health. The decrease of the ERG components in early diabetes reflects the decreased neuronal activity of retinal light responses, which may be caused by a decrease in neuronal calcium signaling. Since PI3K-AKT is important in regulating calcium homeostasis and neural survival, maintaining proper PI3K-AKT signaling in early diabetes or at the prediabetic stage might be a new strategy for DR prevention.
Collapse
Affiliation(s)
- Richard Cheng-An Chang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Liheng Shi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Cathy Chia-Yu Huang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Andy Jeesu Kim
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Michael L. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Beiyan Zhou
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Gladys Y.-P. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
- Texas A&M Institute of Neuroscience, Texas A&M University, College Station, Texas, United States
| |
Collapse
|
6
|
Rhes regulates dopamine D2 receptor transmission in striatal cholinergic interneurons. Neurobiol Dis 2015; 78:146-61. [PMID: 25818655 DOI: 10.1016/j.nbd.2015.03.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/12/2015] [Accepted: 03/17/2015] [Indexed: 11/22/2022] Open
Abstract
Ras homolog enriched in striatum (Rhes) is highly expressed in striatal medium spiny neurons (MSNs) of rodents. In the present study, we characterized the expression of Rhes mRNA across species, as well as its functional role in other striatal neuron subtypes. Double in situ hybridization analysis showed that Rhes transcript is selectively localized in striatal cholinergic interneurons (ChIs), but not in GABAergic parvalbumin- or in neuropeptide Y-positive cell populations. Rhes is closely linked to dopamine-dependent signaling. Therefore, we recorded ChIs activity in basal condition and following dopamine receptor activation. Surprisingly, instead of an expected dopamine D2 receptor (D2R)-mediated inhibition, we observed an aberrant excitatory response in ChIs from Rhes knockout mice. Conversely, the effect of D1R agonist on ChIs was less robust in Rhes mutants than in controls. Although Rhes deletion in mutants occurs throughout the striatum, we demonstrate that the D2R response is altered specifically in ChIs, since it was recorded in pharmacological isolation, and prevented either by intrapipette BAPTA or by GDP-β-S. Moreover, we show that blockade of Cav2.2 calcium channels prevented the abnormal D2R response. Finally, we found that the abnormal D2R activation in ChIs was rescued by selective PI3K inhibition thus suggesting that Rhes functionally modulates PI3K/Akt signaling pathway in these neurons. Our findings reveal that, besides its expression in MSNs, Rhes is localized also in striatal ChIs and, most importantly, lack of this G-protein, significantly alters D2R modulation of striatal cholinergic excitability.
Collapse
|
7
|
Chang P, Walker MC, Williams RSB. Seizure-induced reduction in PIP3 levels contributes to seizure-activity and is rescued by valproic acid. Neurobiol Dis 2013; 62:296-306. [PMID: 24148856 PMCID: PMC3898270 DOI: 10.1016/j.nbd.2013.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/11/2013] [Accepted: 10/11/2013] [Indexed: 12/31/2022] Open
Abstract
Phosphatidylinositol (3–5) trisphosphate (PIP3) is a central regulator of diverse neuronal functions that are critical for seizure progression, however its role in seizures is unclear. We have recently hypothesised that valproic acid (VPA), one of the most commonly used drugs for the treatment of epilepsy, may target PIP3 signalling as a therapeutic mode of action. Here, we show that seizure induction using kainic acid in a rat in vivo epilepsy model resulted in a decrease in hippocampal PIP3 levels and reduced protein kinase B (PKB/AKT) phosphorylation, measured using ELISA mass assays and Western blot analysis, and both changes were restored following VPA treatment. These finding were reproduced in cultured rat hippocampal primary neurons and entorhinal cortex–hippocampal slices during exposure to the GABA(A) receptor antagonist pentylenetetrazol (PTZ), which is widely used to generate seizures and seizure-like (paroxysmal) activity. Moreover, VPA's effect on paroxysmal activity in the PTZ slice model is blocked by phosphatidylinositol 3-kinase (PI3K) inhibition or PIP2 sequestration by neomycin, indicating that VPA's efficacy is dependent upon PIP3 signalling. PIP3 depletion following PTZ treatment may also provide a positive feedback loop, since enhancing PIP3 depletion increases, and conversely, reducing PIP3 dephosphorylation reduces paroxysmal activity and this effect is dependent upon AMPA receptor activation. Our results therefore indicate that PIP3 depletion occurs with seizure activity, and that VPA functions to reverse these effects, providing a novel mechanism for VPA in epilepsy treatment. In vivo seizure induction (using kainic acid) reduces hippocampal PIP3 levels. In vivo seizure induction (using kainic acid) reduces hippocampal phospho-PKB levels. Valproic acid protects against these reductions under seizure conditions only. Similar regulation is seen with PTZ-induced in vitro seizure activity. Seizure-induced PIP3 reduction causes a feedback activation of seizure activity.
Collapse
Affiliation(s)
- Pishan Chang
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, WC1N 3BG, UK.
| | - Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK.
| |
Collapse
|
8
|
Huang CCY, Ko ML, Ko GYP. A new functional role for mechanistic/mammalian target of rapamycin complex 1 (mTORC1) in the circadian regulation of L-type voltage-gated calcium channels in avian cone photoreceptors. PLoS One 2013; 8:e73315. [PMID: 23977383 PMCID: PMC3747127 DOI: 10.1371/journal.pone.0073315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/19/2013] [Indexed: 01/10/2023] Open
Abstract
In the retina, the L-type voltage-gated calcium channels (L-VGCCs) are responsible for neurotransmitter release from photoreceptors and are under circadian regulation. Both the current densities and protein expression of L-VGCCs are significantly higher at night than during the day. However, the underlying mechanisms of circadian regulation of L-VGCCs in the retina are not completely understood. In this study, we demonstrated that the mechanistic/mammalian target of rapamycin complex (mTORC) signaling pathway participated in the circadian phase-dependent modulation of L-VGCCs. The activities of the mTOR cascade, from mTORC1 to its downstream targets, displayed circadian oscillations throughout the course of a day. Disruption of mTORC1 signaling dampened the L-VGCC current densities, as well as the protein expression of L-VGCCs at night. The decrease of L-VGCCs at night by mTORC1 inhibition was in part due to a reduction of L-VGCCα1 subunit translocation from the cytosol to the plasma membrane. Finally, we showed that mTORC1 was downstream of the phosphatidylionositol 3 kinase-protein kinase B (PI3K-AKT) signaling pathway. Taken together, mTORC1 signaling played a role in the circadian regulation of L-VGCCs, in part through regulation of ion channel trafficking and translocation, which brings to light a new functional role for mTORC1: the modulation of ion channel activities.
Collapse
Affiliation(s)
- Cathy Chia-Yu Huang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Michael Lee Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Gladys Yi-Ping Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
9
|
Huang CCY, Ko ML, Vernikovskaya DI, Ko GYP. Calcineurin serves in the circadian output pathway to regulate the daily rhythm of L-type voltage-gated calcium channels in the retina. J Cell Biochem 2012; 113:911-22. [PMID: 22371971 DOI: 10.1002/jcb.23419] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The L-type voltage-gated calcium channels (L-VGCCs) in avian retinal cone photoreceptors are under circadian control, in which the protein expression of the α1 subunits and the current density are greater at night than during the day. Both Ras-mitogen-activated protein kinase (MAPK) and Ras-phosphatidylionositol 3 kinase-protein kinase B (PI3K-AKT) signaling pathways are part of the circadian output that regulate the L-VGCC rhythm, while cAMP-dependent signaling is further upstream of Ras to regulate the circadian outputs in photoreceptors. However, there are missing links between cAMP-dependent signaling and Ras in the circadian output regulation of L-VGCCs. In this study, we report that calcineurin, a Ca2+/calmodulin-dependent serine (ser)/threonine (thr) phosphatase, participates in the circadian output pathway to regulate L-VGCCs through modulating both Ras-MAPK and Ras-PI3K-AKT signaling. The activity of calcineurin, but not its protein expression, was under circadian regulation. Application of a calcineurin inhibitor, FK-506 or cyclosporine A, reduced the L-VGCC current density at night with a corresponding decrease in L-VGCCα1D protein expression, but the circadian rhythm of L-VGCCα1D mRNA levels were not affected. Inhibition of calcineurin further reduced the phosphorylation of ERK and AKT (at thr 308) and inhibited the activation of Ras, but inhibitors of MAPK or PI3K signaling did not affect the circadian rhythm of calcineurin activity. However, inhibition of adenylate cyclase significantly dampened the circadian rhythm of calcineurin activity. These results suggest that calcineurin is upstream of MAPK and PI3K-AKT but downstream of cAMP in the circadian regulation of L-VGCCs.
Collapse
Affiliation(s)
- Cathy Chia-Yu Huang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458, USA
| | | | | | | |
Collapse
|
10
|
PI3-kinase/Akt pathway-regulated membrane insertion of acid-sensing ion channel 1a underlies BDNF-induced pain hypersensitivity. J Neurosci 2012; 32:6351-63. [PMID: 22553040 DOI: 10.1523/jneurosci.4479-11.2012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Central neural plasticity plays a key role in pain hypersensitivity. This process is modulated by brain-derived neurotrophic factor (BDNF) and also involves the type 1a acid-sensing ion channel (ASIC1a). However, the interactions between the BDNF receptor, tropomyosin-related kinase B (TrkB), and ASIC1a are unclear. Here, we show that deletion of ASIC1 gene suppressed the sustained mechanical hyperalgesia induced by intrathecal BDNF application in mice. In both rat spinal dorsal horn neurons and heterologous cell cultures, the BDNF/TrkB pathway enhanced ASIC1a currents via phosphoinositide 3-kinase (PI3K)-protein kinase B (PKB/Akt) cascade and phosphorylation of cytoplasmic residue Ser-25 of ASIC1a, resulting in enhanced forward trafficking and increased surface expression. Moreover, in both rats and mice, this enhanced ASIC1a activity was required for BDNF-mediated hypersensitivity of spinal dorsal horn nociceptive neurons and central mechanical hyperalgesia, a process that was abolished by intrathecal application of a peptide representing the N-terminal region of ASIC1a encompassing Ser-25. Thus, our results reveal a novel mechanism underlying central sensitization and pain hypersensitivity, and reinforce the critical role of ASIC1a channels in these processes.
Collapse
|
11
|
Conserved BK channel-protein interactions reveal signals relevant to cell death and survival. PLoS One 2011; 6:e28532. [PMID: 22174833 PMCID: PMC3235137 DOI: 10.1371/journal.pone.0028532] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 11/09/2011] [Indexed: 12/28/2022] Open
Abstract
The large-conductance Ca2+-activated K+ (BK) channel and its β-subunit underlie tuning in non-mammalian sensory or hair cells, whereas in mammals its function is less clear. To gain insights into species differences and to reveal putative BK functions, we undertook a systems analysis of BK and BK-Associated Proteins (BKAPS) in the chicken cochlea and compared these results to other species. We identified 110 putative partners from cytoplasmic and membrane/cytoskeletal fractions, using a combination of coimmunoprecipitation, 2-D gel, and LC-MS/MS. Partners included 14-3-3γ, valosin-containing protein (VCP), stathmin (STMN), cortactin (CTTN), and prohibitin (PHB), of which 16 partners were verified by reciprocal coimmunoprecipitation. Bioinformatics revealed binary partners, the resultant interactome, subcellular localization, and cellular processes. The interactome contained 193 proteins involved in 190 binary interactions in subcellular compartments such as the ER, mitochondria, and nucleus. Comparisons with mice showed shared hub proteins that included N-methyl-D-aspartate receptor (NMDAR) and ATP-synthase. Ortholog analyses across six species revealed conserved interactions involving apoptosis, Ca2+ binding, and trafficking, in chicks, mice, and humans. Functional studies using recombinant BK and RNAi in a heterologous expression system revealed that proteins important to cell death/survival, such as annexinA5, γ-actin, lamin, superoxide dismutase, and VCP, caused a decrease in BK expression. This revelation led to an examination of specific kinases and their effectors relevant to cell viability. Sequence analyses of the BK C-terminus across 10 species showed putative binding sites for 14-3-3, RAC-α serine/threonine-protein kinase 1 (Akt), glycogen synthase kinase-3β (GSK3β) and phosphoinositide-dependent kinase-1 (PDK1). Knockdown of 14-3-3 and Akt caused an increase in BK expression, whereas silencing of GSK3β and PDK1 had the opposite effect. This comparative systems approach suggests conservation in BK function across different species in addition to novel functions that may include the initiation of signals relevant to cell death/survival.
Collapse
|
12
|
Andersen MN, Olesen SP, Rasmussen HB. Kv7.1 surface expression is regulated by epithelial cell polarization. Am J Physiol Cell Physiol 2011; 300:C814-24. [DOI: 10.1152/ajpcell.00390.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The potassium channel KV7.1 is expressed in the heart where it contributes to the repolarization of the cardiac action potential. In addition, KV7.1 is expressed in epithelial tissues where it plays a role in salt and water transport. Mutations in the kcnq1 gene can lead to long QT syndrome and deafness, and several mutations have been described as trafficking mutations. To learn more about the basic mechanisms that regulate KV7.1 surface expression, we have investigated the trafficking of KV7.1 during the polarization process of the epithelial cell line Madin-Darby Canine Kidney (MDCK) using a modified version of the classical calcium switch. We discovered that KV7.1 exhibits a very dynamic localization pattern during the calcium switch. When MDCK cells are kept in low calcium medium, KV7.1 is mainly observed at the plasma membrane. During the first hours of the switch, KV7.1 is removed from the plasma membrane and an intracellular accumulation in the endoplasmic reticulum (ER) is observed. The channel is retained in the ER until the establishment of the lateral membranes at which point KV7.1 is released from the ER and moves to the plasma membrane. Our data furthermore suggest that while the removal of KV7.1 from the cell surface and its accumulation in the ER could involve activation of protein kinase C, the subsequent release of KV7.1 from the ER depends on phosphoinositide 3-kinase (PI3K) activation. In conclusion, our results demonstrate that KV7.1 surface expression is regulated by signaling mechanisms involved in epithelial cell polarization in particular signaling cascades involving protein kinase C and PI3K.
Collapse
Affiliation(s)
- Martin N. Andersen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren-Peter Olesen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hanne B. Rasmussen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Chiu YH, Alvarez-Baron C, Kim EY, Dryer SE. Dominant-negative regulation of cell surface expression by a pentapeptide motif at the extreme COOH terminus of an Slo1 calcium-activated potassium channel splice variant. Mol Pharmacol 2010; 77:497-507. [PMID: 20051533 PMCID: PMC2845944 DOI: 10.1124/mol.109.061929] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Accepted: 01/04/2010] [Indexed: 11/22/2022] Open
Abstract
Large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels regulate the physiology of many cell types. A single vertebrate gene variously known as Slo1, KCa1.1, or KCNMA1 encodes the pore-forming subunits of BK(Ca) channel but is expressed in a potentially very large number of alternative splice variants. Two splice variants of Slo1, Slo1(VEDEC) and Slo1(QEERL), which differ at the extreme COOH terminus, show markedly different steady-state expression levels on the cell surface. Here we show that Slo1(VEDEC) and Slo1(QEERL) can reciprocally coimmunoprecipitate, indicating that they form heteromeric complexes. Moreover, coexpression of even small amounts of Slo1(VEDEC) markedly reduces surface expression of Slo1(QEERL) and total Slo1 as indicated by cell-surface biotinylation assays. The effects of Slo1(VEDEC) on steady-state surface expression can be attributed primarily to the last five residues of the protein based on surface expression of motif-swapped constructs of Slo1 in human embryonic kidney (HEK) 293T cells. In addition, the presence of the VEDEC motif at the COOH terminus of Slo1 channels is sufficient to confer a dominant-negative effect on cell surface expression of itself or other types of Slo1 subunits. Treating cells with short peptides containing the VEDEC motif increased surface expression of Slo1(VEDEC) channels transiently expressed in HEK293T cells and increased current through endogenous BK(Ca) channels in mouse podocytes. Slo1(VEDEC) and Slo1(QEERL) channels are removed from the HEK293T cell surface with similar kinetics and to a similar extent, which suggests that the inhibitory effect of the VEDEC motif is exerted primarily on forward trafficking into the plasma membrane.
Collapse
Affiliation(s)
- Yu-Hsin Chiu
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun, Houston, TX 77204-5001, USA
| | | | | | | |
Collapse
|
14
|
Li Y, Atkin GM, Morales MM, Liu LQ, Tong M, Duncan RK. Developmental expression of BK channels in chick cochlear hair cells. BMC DEVELOPMENTAL BIOLOGY 2009; 9:67. [PMID: 20003519 PMCID: PMC2803478 DOI: 10.1186/1471-213x-9-67] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 12/15/2009] [Indexed: 12/19/2022]
Abstract
Background Cochlear hair cells are high-frequency sensory receptors. At the onset of hearing, hair cells acquire fast, calcium-activated potassium (BK) currents, turning immature spiking cells into functional receptors. In non-mammalian vertebrates, the number and kinetics of BK channels are varied systematically along the frequency-axis of the cochlea giving rise to an intrinsic electrical tuning mechanism. The processes that control the appearance and heterogeneity of hair cell BK currents remain unclear. Results Quantitative PCR results showed a non-monotonic increase in BK α subunit expression throughout embryonic development of the chick auditory organ (i.e. basilar papilla). Expression peaked near embryonic day (E) 19 with six times the transcript level of E11 sensory epithelia. The steady increase in gene expression from E11 to E19 could not explain the sudden acquisition of currents at E18-19, implicating post-transcriptional mechanisms. Protein expression also preceded function but progressed in a sequence from diffuse cytoplasmic staining at early ages to punctate membrane-bound clusters at E18. Electrophysiology data confirmed a continued refinement of BK trafficking from E18 to E20, indicating a translocation of BK clusters from supranuclear to subnuclear domains over this critical developmental age. Conclusions Gene products encoding BK α subunits are detected up to 8 days before the acquisition of anti-BK clusters and functional BK currents. Therefore, post-transcriptional mechanisms seem to play a key role in the delayed emergence of calcium-sensitive currents. We suggest that regulation of translation and trafficking of functional α subunits, near voltage-gated calcium channels, leads to functional BK currents at the onset of hearing.
Collapse
Affiliation(s)
- Yi Li
- University of Illinois at Chicago, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Generating diversity: Mechanisms regulating the differentiation of autonomic neuron phenotypes. Auton Neurosci 2009; 151:17-29. [PMID: 19819195 DOI: 10.1016/j.autneu.2009.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sympathetic and parasympathetic postganglionic neurons innervate a wide range of target tissues. The subpopulation of neurons innervating each target tissue can express unique combinations of neurotransmitters, neuropeptides, ion channels and receptors, which together comprise the chemical phenotype of the neurons. The target-specific chemical phenotype shown by autonomic postganglionic neurons arises during development. In this review, we examine the different mechanisms that generate such a diversity of neuronal phenotypes from the pool of apparently homogenous neural crest progenitor cells that form the sympathetic ganglia. There is evidence that the final chemical phenotype of autonomic postganglionic neurons is generated by both signals at the level of the cell body that trigger cell-autonomous programs, as well as signals from the target tissues they innervate.
Collapse
|
16
|
Jha S, Dryer SE. The beta1 subunit of Na+/K+-ATPase interacts with BKCa channels and affects their steady-state expression on the cell surface. FEBS Lett 2009; 583:3109-14. [PMID: 19729011 PMCID: PMC2757478 DOI: 10.1016/j.febslet.2009.08.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 08/21/2009] [Accepted: 08/24/2009] [Indexed: 02/05/2023]
Abstract
Large conductance Ca2+-activated K+ channels (BKCa) encoded by the Slo1 gene play a role in the physiological regulation of many cell types. Here, we show that the beta1 subunit of Na+/K+-ATPase (NKbeta1) interacts with the cytoplasmic COOH-terminal region of Slo1 proteins. Reduced expression of endogenous NKbeta1 markedly inhibits evoked BKCa currents with no apparent effect on their gating. In addition, NKbeta1 down-regulated cells show decreased density of Slo1 subunits on the cell surface.
Collapse
Affiliation(s)
- Smita Jha
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001
| | - Stuart E. Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001
| |
Collapse
|
17
|
Kim EY, Chiu YH, Dryer SE. Neph1 regulates steady-state surface expression of Slo1 Ca(2+)-activated K(+) channels: different effects in embryonic neurons and podocytes. Am J Physiol Cell Physiol 2009; 297:C1379-88. [PMID: 19794150 DOI: 10.1152/ajpcell.00354.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels encoded by the Slo1 gene are often components of large multiprotein complexes in excitable and nonexcitable cells. Here we show that Slo1 proteins interact with Neph1, a member of the immunoglobulin superfamily expressed in slit diaphragm domains of podocytes and in vertebrate and invertebrate nervous systems. This interaction was established by reciprocal coimmunoprecipitation of endogenous proteins from differentiated cells of a podocyte cell line, from parasympathetic neurons of the embryonic chick ciliary ganglion, and from HEK293T cells heterologously expressing both proteins. Neph1 can interact with all three extreme COOH-terminal variants of Slo1 (Slo1(VEDEC), Slo1(QEERL), and Slo1(EMVYR)) as ascertained by glutathione S-transferase (GST) pull-down assays and by coimmunoprecipitation. Neph1 is partially colocalized in intracellular compartments with endogenous Slo1 in podocytes and ciliary ganglion neurons. Coexpression in HEK293T cells of Neph1 with any of the Slo1 extreme COOH-terminal splice variants suppresses their steady-state expression on the cell surface, as assessed by cell surface biotinylation assays, confocal microscopy, and whole cell recordings. Consistent with this, small interfering RNA (siRNA) knockdown of endogenous Neph1 in embryonic day 10 ciliary ganglion neurons causes an increase in steady-state surface expression of Slo1 and an increase in whole cell Ca(2+)-dependent K(+) current. Surprisingly, a comparable Neph1 knockdown in podocytes causes a decrease in surface expression of Slo1 and a decrease in whole cell BK(Ca) currents. In podocytes, Neph1 siRNA also caused a decrease in nephrin, even though the Neph1 siRNA had no sequence homology with nephrin. However, we could not detect nephrin in ciliary ganglion neurons.
Collapse
Affiliation(s)
- Eun Young Kim
- Dept. of Biology and Biochemistry, Univ. of Houston, TX 77204-5001, USA
| | | | | |
Collapse
|
18
|
Abstract
Ion channels are the gatekeepers to neuronal excitability. Retinal neurons of vertebrates and invertebrates, neurons of the suprachiasmatic nucleus (SCN) of vertebrates, and pinealocytes of non-mammalian vertebrates display daily rhythms in their activities. The interlocking transcription-translation feedback loops with specific post-translational modulations within individual cells form the molecular clock, the basic mechanism that maintains the autonomic approximately 24-h rhythm. The molecular clock regulates downstream output signaling pathways that further modulate activities of various ion channels. Ultimately, it is the circadian regulation of ion channel properties that govern excitability and behavior output of these neurons. In this review, we focus on the recent development of research in circadian neurobiology mainly from 1980 forward. We will emphasize the circadian regulation of various ion channels, including cGMP-gated cation channels, various voltage-gated calcium and potassium channels, Na(+)/K(+)-ATPase, and a long-opening cation channel. The cellular mechanisms underlying the circadian regulation of these ion channels and their functions in various tissues and organisms will also be discussed. Despite the magnitude of chronobiological studies in recent years, the circadian regulation of ion channels still remains largely unexplored. Through more investigation and understanding of the circadian regulation of ion channels, the future development of therapeutic strategies for the treatment of sleep disorders, cardiovascular diseases, and other illnesses linked to circadian misalignment will benefit.
Collapse
Affiliation(s)
- Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA.
| | | | | |
Collapse
|
19
|
Ridgway LD, Kim EY, Dryer SE. MAGI-1 interacts with Slo1 channel proteins and suppresses Slo1 expression on the cell surface. Am J Physiol Cell Physiol 2009; 297:C55-65. [PMID: 19403801 DOI: 10.1152/ajpcell.00073.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Large conductance Ca(2+)-activated K(+) (BK(Ca)) channels encoded by the Slo1 gene (also known as KCNMA1) are physiologically important in a wide range of cell types and form complexes with a number of other proteins that affect their function. We performed a yeast two-hybrid screen to identify proteins that interact with BK(Ca) channels using a bait construct derived from domains in the extreme COOH-terminus of Slo1. A protein known as membrane-associated guanylate kinase with inverted orientation protein-1 (MAGI-1) was identified in this screen. MAGI-1 is a scaffolding protein that allows formation of complexes between certain transmembrane proteins, actin-binding proteins, and other regulatory proteins. MAGI-1 is expressed in a number of tissues, including podocytes and the brain. The interaction between MAGI-1 and BK(Ca) channels was confirmed by coimmunoprecipitation and glutathione S-transferase pull-down assays in differentiated cells of a podocyte cell line and in human embryonic kidneys (HEK)293T cells transiently coexpressing MAGI-1a and three different COOH-terminal Slo1 variants. Coexpression of MAGI-1 with Slo1 channels in HEK-293T cells results in a significant reduction in the surface expression of Slo1, as assessed by cell-surface biotinylation assays, confocal microscopy, and whole cell recordings. Partial knockdown of endogenous MAGI-1 expression by small interfering RNA (siRNA) in differentiated podocytes increased the surface expression of endogenous Slo1 as assessed by electrophysiology and cell-surface biotinylation assays, whereas overexpression of MAGI-1a reduced steady-state voltage-evoked outward current through podocyte BK(Ca) channels. These data suggest that MAGI-1 plays a role in regulation of surface expression of BK(Ca) channels in the kidney and possibly in other tissues.
Collapse
Affiliation(s)
- Lon D Ridgway
- Dept. of Biology and Biochemistry, Univ. of Houston, Houston, TX 77204-5001, USA
| | | | | |
Collapse
|
20
|
Ko ML, Jian K, Shi L, Ko GYP. Phosphatidylinositol 3 kinase-Akt signaling serves as a circadian output in the retina. J Neurochem 2009; 108:1607-20. [PMID: 19166512 DOI: 10.1111/j.1471-4159.2009.05931.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The daily rhythm of L-type voltage-gated calcium channels (L-VGCCs) is part of the cellular mechanism underlying the circadian regulation of retina physiology and function. However, it is not completely understood how the circadian clock regulates L-VGCC current amplitudes without affecting channel gating properties. The phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt) signaling pathway has been implicated in many vital cellular functions especially in trophic factor-induced ion channel trafficking and membrane insertion. Here, we report that PI3K-Akt signaling participates in the circadian phase-dependent modulation of L-VGCCs. We found that there was a circadian regulation of Akt phosphorylation on Thr308 that peaked at night. Inhibition of PI3K or Akt significantly decreased L-VGCC current amplitudes and the expression of membrane-bound L-VGCCalpha1D subunit only at night but not during the subjective day. Photoreceptors transfected with a dominant negative Ras had significantly less expression of phosphorylated Akt and L-VGCCalpha1D subunit compared with non-transfected photoreceptors. Interestingly, both PI3K-Akt and extracellular signal-related kinase were downstream of Ras, and they appeared to be parallel and equally important pathways to regulate L-VGCC rhythms. Inhibition of either pathway abolished the L-VGCC rhythm indicating that there were multiple mechanisms involved in the circadian regulation of L-VGCC rhythms in retina photoreceptors.
Collapse
Affiliation(s)
- Michael L Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | | | | | | |
Collapse
|
21
|
Kim EY, Choi KJ, Dryer SE. Nephrin binds to the COOH terminus of a large-conductance Ca2+-activated K+ channel isoform and regulates its expression on the cell surface. Am J Physiol Renal Physiol 2008; 295:F235-46. [PMID: 18480178 DOI: 10.1152/ajprenal.00140.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We carried out a yeast two-hybrid screen to identify proteins that interact with large-conductance Ca2+-activated K+ (BKCa) channels encoded by the Slo1 gene. Nephrin, an essential adhesion and scaffolding molecule expressed in podocytes, emerged in this screen. The Slo1-nephrin interaction was confirmed by coimmunoprecipitation from the brain and kidney, from HEK-293T cells expressing both proteins, and by glutathione S-transferase pull-down assays. We detected nephrin binding to the Slo1 VEDEC splice variant, which is typically retained in intracellular stores, and to the beta4-subunit. However, we did not detect significant binding of nephrin to the Slo1 QEERL or Slo1 EMVYR splice variants. Coexpression of nephrin with Slo1 VEDEC increased expression of functional BKCa channels on the surface of HEK-293T cells but did not affect steady-state surface expression of the other COOH-terminal Slo1 variants. Nephrin did not affect the kinetics or voltage dependence of channel activation in HEK-293T cells expressing Slo1. Stimulation of Slo1 VEDEC surface expression in HEK-293T cells was also observed by coexpressing a small construct encoding only the distal COOH-terminal domains of nephrin that interact with Slo1. Reduction of endogenous nephrin expression by application of small interfering RNA to differentiated cells of an immortalized podocyte cell line markedly reduced the steady-state surface expression of Slo1 as assessed by electrophysiology and cell-surface biotinylation assays. Nephrin therefore plays a role in organizing the surface expression of ion channel proteins in podocytes and may play a role in outside-in signaling to allow podocytes to adapt to mechanical or neurohumoral stimuli originating in neighboring cells.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | | | | |
Collapse
|
22
|
Pachuau J, Martin-Caraballo M. Extrinsic regulation of T-type Ca(2+) channel expression in chick nodose ganglion neurons. Dev Neurobiol 2008; 67:1915-31. [PMID: 17874459 DOI: 10.1002/dneu.20560] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Functional expression of T-type Ca(2+) channels is developmentally regulated in chick nodose neurons. In this study we have tested the hypothesis that extrinsic factors regulate the expression of T-type Ca(2+) channels in vitro. Voltage-gated Ca(2+) currents were measured using whole-cell patch clamp recordings in E7 nodose neurons cultured under various conditions. Culture of E7 nodose neurons for 48 h with a heart extract induced the expression of T-type Ca(2+) channels without any significant effect on HVA currents. T-type Ca(2+) channel expression was not stimulated by survival promoting factors such as BDNF. The stimulatory effect of heart extract was mediated by a heat-labile, trypsin-sensitive factor. Various hematopoietic cytokines including CNTF and LIF mimic the stimulatory effect of heart extract on T-type Ca(2+) channel expression. The stimulatory effect of heart extract and CNTF requires at least 12 h continuous exposure to reach maximal expression and is not altered by culture of nodose neurons with the protein synthesis inhibitor anisomycin, suggesting that T-type Ca(2+) channel expression is regulated by a posttranslational mechanism. Disruption of the Golgi apparatus with brefeldin-A inhibits the stimulatory effect of heart extract and CNTF suggesting that protein trafficking regulates the functional expression of T-type Ca(2+) channels. Heart extract- or CNTF-evoked stimulation of T-type Ca(2+) channel expression is blocked by the Jak/STAT and MAP kinase blockers, AG490 and U0126, respectively. This study provides new insights into the electrical differentiation of placode-derived sensory neurons and the role of extrinsic factors in regulating the functional expression of Ca(2+) channels.
Collapse
Affiliation(s)
- Judith Pachuau
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
23
|
Loureiro SO, Heimfarth L, Pelaez PDL, Vanzin CS, Viana L, Wyse ATS, Pessoa-Pureur R. Homocysteine activates calcium-mediated cell signaling mechanisms targeting the cytoskeleton in rat hippocampus. Int J Dev Neurosci 2008; 26:447-55. [PMID: 18406095 DOI: 10.1016/j.ijdevneu.2008.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/03/2008] [Accepted: 03/03/2008] [Indexed: 01/13/2023] Open
Abstract
Homocysteine is considered to be neurotoxic and a risk factor for neurodegenerative diseases. Despite the increasing evidences of excitotoxic mechanisms of homocysteine (Hcy), little is known about the action of Hcy on the cytoskeleton. In this context, the aim of the present work was to investigate the signaling pathways involved in the mechanism of action of Hcy on cytoskeletal phosphorylation in cerebral cortex and hippocampus of rats during development. Results showed that 100 microM Hcy increased the intermediate filament (IF) phosphorylation only in 17-day-old rat hippocampal slices without affecting the cerebral cortex from 9- to 29-day-old animals. Stimulation of (45)Ca(2+) uptake supported the involvement of NMDA receptors and voltage-dependent channels in extracellular Ca(2+) flux, as well as Ca(2+) release from intracellular stores through inositol-3-phosphate and ryanodine receptors. Moreover, the mechanisms underlying the Hcy effect on hippocampus cytoskeleton involved the participation of phospholipase C, protein kinase C, mitogen-activated protein kinase, phosphoinositol-3 kinase and calcium/calmodulin-dependent protein kinase II. The Hcy-induced IF hyperphosphorylation was also related to G(i) protein and inhibition of cAMP levels. These findings demonstrate that Hcy at a concentration described to induce neurotoxicity activates the IF-associated phosphorylating system during development in hippocampal slices of rats through different cell signaling mechanisms. These results probably suggest that hippocampal rather than cortical cytoskeleton is susceptible to neurotoxical concentrations of Hcy during development and this could be involved in the neural damage characteristic of mild homocystinuric patients.
Collapse
Affiliation(s)
- Samanta Oliveira Loureiro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande so Sul, Rua Ramiro Barcelos 2600, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
24
|
Zou S, Jha S, Kim EY, Dryer SE. A novel actin-binding domain on Slo1 calcium-activated potassium channels is necessary for their expression in the plasma membrane. Mol Pharmacol 2008; 73:359-68. [PMID: 17989352 DOI: 10.1124/mol.107.039743] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels regulate the physiological properties of many cell types. The gating properties of BK(Ca) channels are Ca(2+)-, voltage- and stretch-sensitive, and stretch-sensitive gating of these channels requires interactions with actin microfilaments subjacent to the plasma membrane. Moreover, we have previously shown that trafficking of BK(Ca) channels to the plasma membrane is associated with processes that alter cytoskeletal dynamics. Here, we show that the Slo1 subunits of BK(Ca) channels contain a novel cytoplasmic actin-binding domain (ABD) close to the C terminus, considerably downstream from regions of the channel molecule that play a major role in determining channel-gating properties. Binding of actin to the ABD can occur in a binary mixture in the absence of other proteins. Coexpression of a small ABD-green fluorescent protein fusion protein that competes with full-length Slo1 channels for binding to actin markedly suppresses trafficking of full-length Slo1 channels to the plasma membrane. In addition, Slo1 channels containing deletions of the ABD that eliminate actin binding are retained in intracellular pools, and they are not expressed on the cell surface. At least one point mutation within the ABD (L1020A) reduces surface expression of Slo1 channels to approximately 25% of wild type, but it does not cause a marked effect on the gating of point mutant channels that reach the cell surface. These data suggest that Slo1-actin interactions are necessary for normal trafficking of BK(Ca) channels to the plasma membrane and that the mechanisms of this interaction may be different from those that underlie F-actin and stretch-sensitive gating.
Collapse
Affiliation(s)
- Shengwei Zou
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun, Houston, TX 77204-5001, USA
| | | | | | | |
Collapse
|
25
|
Zou S, Jha S, Kim EY, Dryer SE. The beta 1 subunit of L-type voltage-gated Ca2+ channels independently binds to and inhibits the gating of large-conductance Ca2+-activated K+ channels. Mol Pharmacol 2008; 73:369-78. [PMID: 17989350 DOI: 10.1124/mol.107.040733] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels encoded by the Slo1 gene are ubiquitously expressed, and they play a role in regulation of many cell types. In excitable cells, BK(Ca) channels and voltage-activated Ca(2+) channels often form functional complexes that allow the cytoplasmic domains of BK(Ca) channels to lie within spatially discrete calcium microdomains. Here, we report a novel protein interaction between the beta1-subunit of L-type voltage-activated calcium channels (Ca(v)beta1) and critical regulatory domains of Slo1 that can occur in the absence of other proteins. This interaction was identified by a yeast two-hybrid screen, and it was confirmed by confocal microscopy in native neurons, by coimmunoprecipitation, and by direct binding assays. The Ca(v)beta1 subunit binds within the calcium bowl domain of Slo1 that mediates a portion of high-affinity Ca(2+) binding to BK(Ca) channels and also to a noncanonical Src homology 3 (SH3) domain-binding motif within Slo1. Binding of Ca(v)beta1 markedly slows Slo1 activation kinetics, and it causes a significant decrease in Ca(2+) sensitivity in inside-out and in dialyzed cells, even in the absence of pore-forming subunits of voltage-gated Ca(2+) channels. The guanylate kinase domain of Ca(v)beta1 mediates Slo1 regulation through its binding to calcium bowl domains, and this domain of Ca(v)beta1 is necessary and sufficient for the observed effects on BK(Ca) activation. Binding of Ca(v)beta1 to SH3-binding motifs may stabilize the interaction with Slo1, or it may contribute to formation of other complexes, but it does not seem to affect Ca(2+)-dependent gating of Slo1. Binding of Ca(v)beta1 does not affect cell surface expression of Slo1 in human embryonic kidney 293T cells.
Collapse
Affiliation(s)
- Shengwei Zou
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun, Houston, TX 77204-5001.
| | | | | | | |
Collapse
|
26
|
Ford CP, Wong KV, Lu VB, Posse de Chaves E, Smith PA. Differential neurotrophic regulation of sodium and calcium channels in an adult sympathetic neuron. J Neurophysiol 2008; 99:1319-32. [PMID: 18216230 DOI: 10.1152/jn.00966.2007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adult neuronal phenotype is maintained, at least in part, by the sensitivity of individual neurons to a specific selection of neurotrophic factors and the availability of such factors in the neurons' environment. Nerve growth factor (NGF) increases the functional expression of Na(+) channel currents (I(Na)) and both N- and L-type Ca(2+) currents (I(Ca,N) and I(Ca,L)) in adult bullfrog sympathetic ganglion (BFSG) B-neurons. The effects of NGF on I(Ca) involve the mitogen-activated protein kinase (MAPK) pathway. Prolonged exposure to the ganglionic neurotransmitter luteinizing hormone releasing hormone (LHRH) also increases I(Ca,N) but the transduction mechanism remains to be elucidated as does the transduction mechanism for NGF regulation of Na(+) channels. We therefore exposed cultured BFSG B-neurons to chicken II LHRH (0.45 microM; 6-9 days) or to NGF (200 ng/ml; 9-10 days) and used whole cell recording, immunoblot analysis, and ras or rap-1 pulldown assays to study effects of various inhibitors and activators of transduction pathways. We found that 1) LHRH signals via ras-MAPK to increase I(Ca,N), 2) this effect is mediated via protein kinase C-beta (PKC-beta-IotaIota), 3) protein kinase A (PKA) is necessary but not sufficient to effect transduction, 4) NGF signals via phosphatidylinositol 3-kinase (PI3K) to increase I(Na), and 5) long-term exposure to LHRH fails to affect I(Na). Thus downstream signaling from LHRH has access to the ras-MAPK pathway but not to the PI3K pathway. This allows for differential retrograde and anterograde neurotrophic regulation of sodium and calcium channels in an adult sympathetic neuron.
Collapse
Affiliation(s)
- Christopher P Ford
- Centre for Neuroscience and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
27
|
Kim EY, Ridgway LD, Dryer SE. Interactions with filamin A stimulate surface expression of large-conductance Ca2+-activated K+ channels in the absence of direct actin binding. Mol Pharmacol 2007; 72:622-30. [PMID: 17586600 DOI: 10.1124/mol.107.038026] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels play an important role in the regulation of cell physiology in a wide variety of excitable and nonexcitable tissues. Filamin A is a conserved and ubiquitous actin-binding protein that forms perpendicular actin cross-links and contributes to changes in cell shape, stiffness, and motility. A variety of membrane proteins bind to filamin A, which regulates their trafficking in and out of the plasma membrane. Filamin A is therefore believed to couple membrane dynamics with those of the underlying cytoskeleton. Filamin A was identified in a yeast two-hybrid screen of a neuronal transcriptome using a subunit of BK(Ca) channels as bait, and the interaction was confirmed by a variety of biochemical assays in native neuronal cells and in human embryonic kidney 293T cells expressing BK(Ca) channels. BK(Ca) channels do not traffic to the plasma membrane in M2 melanoma cells, which lack filamin A, but normal trafficking is seen in A7 cells, which express filamin A, or in M2 cells transiently transfected with filamin A. It is noteworthy that stimulation of plasma membrane expression of BK(Ca) channels also occurs when M2 cells are transfected with filamin A constructs that lack the actin binding domain and that do not bind actin in vivo or in vitro. Filamin A is necessary for normal trafficking of BK(Ca) channels to the plasma membrane, but this effect does not require interactions with actin microfilaments, and it is possible that other actions of the filamin family of scaffolding proteins are independent of effects on actin.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | | | | |
Collapse
|
28
|
Kim EY, Ridgway LD, Zou S, Chiu YH, Dryer SE. Alternatively spliced C-terminal domains regulate the surface expression of large conductance calcium-activated potassium channels. Neuroscience 2007; 146:1652-61. [PMID: 17478049 PMCID: PMC1995407 DOI: 10.1016/j.neuroscience.2007.03.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 03/09/2007] [Accepted: 03/13/2007] [Indexed: 01/31/2023]
Abstract
The Slo1 gene, also known as KCNMA1, encodes the pore-forming subunits of large-conductance Ca2+-activated K+ (BK(Ca)) channels. Products of this gene are widely expressed in vertebrate tissues, and occur in a large number (>or=20) of alternatively spliced variants that vary in their gating properties, susceptibility to modulation, and trafficking to the plasma membrane. Motifs in the large cytoplasmic C-terminal are especially important in determining the functional properties of BK(Ca) channels. Here we report that chick ciliary ganglion neurons express transcripts and proteins of two Slo1 splice variants that differ at the extreme C-terminal. We refer to these variants as VEDEC and QEDRL (or QEERL for the orthologous mammalian versions), after the five terminal amino acid residues in each isoform. Individual ciliary ganglion neurons preferentially express these variants in different subcellular compartments. Moreover, QEERL channels show markedly higher levels of constitutive expression on the plasma membrane than VEDEC channels in HEK293T and NG108-15 cells. However, growth factor treatment can stimulate surface expression of VEDEC channels to levels comparable to those seen with QEERL. In addition, we show that co-expression of a soluble protein composed of VEDEC C-terminal tail residues markedly increases cell surface expression of full-length VEDEC channels, suggesting that this region binds to proteins that cause retention of the these channels in intracellular stores.
Collapse
Affiliation(s)
| | | | | | | | - Stuart E. Dryer
- Author for correspondence: , +1 713-743-2697 (ph), +1 713-743-2632 (FAX)
| |
Collapse
|
29
|
Kim EY, Zou S, Ridgway LD, Dryer SE. Beta1-subunits increase surface expression of a large-conductance Ca2+-activated K+ channel isoform. J Neurophysiol 2007; 97:3508-16. [PMID: 17329633 DOI: 10.1152/jn.00009.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Auxiliary (beta) subunits of large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels regulate the gating properties of the functional channel complex. Here we show that an avian beta1-subunit also stimulates the trafficking of BK(Ca) channels to the plasma membrane in HEK293T cells and in a native population of developing vertebrate neurons. One C-terminal variant of BK(Ca) alpha-subunits, called the VEDEC isoform after its five last residues, is largely retained in intracellular compartments when it is heterologously expressed in HEK293T cells. A closely related splice variant, called QEERL, shows high levels of constitutive trafficking to the plasma membrane. Co-expression of beta1-subunits with the VEDEC isoform resulted in a large increase in surface BK(Ca) channels as assessed by cell-surface biotinylation assays, whole cell recordings of membrane current, and confocal microscopy in HEK293T cells. Co-expression of beta1-subunits slowed the gating kinetics of BK(Ca) channels, as reported previously. Consistent with this, overexpression of beta1-subunits in a native cell type that expresses intracellular VEDEC channels, embryonic day 9 chick ciliary ganglion neurons, resulted in a significant increase in macroscopic Ca(2+)-activated K(+) current. Both the cytoplasmic N- and C-terminal domains of avian beta1 are able to bind directly to VEDEC and QEERL channels. However, overexpression of the N-terminal domain by itself is sufficient to stimulate trafficking of VEDEC channels to the plasma membrane, whereas overexpression of either the cytoplasmic C-terminal domain or the extracellular loop domain did not affect surface expression of VEDEC.
Collapse
Affiliation(s)
- Eun Young Kim
- Dept. of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | | | | | | |
Collapse
|
30
|
Luther JA, Birren SJ. Nerve growth factor decreases potassium currents and alters repetitive firing in rat sympathetic neurons. J Neurophysiol 2006; 96:946-58. [PMID: 16707716 DOI: 10.1152/jn.01078.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The sympathetic nervous system is an essential regulator of the cardiovascular system and interactions with target tissue regulate sympathetic neuronal properties. The heart produces nerve growth factor (NGF), which promotes sympathetic noradrenergic innervation of cardiac tissue and affects sympathetic synaptic strength. Neurotrophins, including NGF, are important modulators of synaptic plasticity and membrane electrical properties. Here we show that acute application of NGF causes a change in the repetitive firing pattern of cultured sympathetic neurons of the rat superior cervical ganglion. Neurons fire fewer action potentials in NGF, but with increased frequency, demonstrating an NGF-dependent change from a tonic to a phasic firing pattern. Additionally, NGF decreases the spike time variance, making spikes more tightly time locked to stimulus onset. NGF causes a decrease in the amplitude of both calcium-dependent and -independent potassium currents, and inhibition of calcium-dependent potassium currents using CdCl(2) reproduces some, but not all, of the firing properties induced by NGF. This study suggests that NGF release from cardiac tissue may act to modulate the repetitive firing properties of sympathetic neurons to tune their output to meet the physiological needs of the organism.
Collapse
Affiliation(s)
- Jason A Luther
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
31
|
Olschewski A, Li Y, Tang B, Hanze J, Eul B, Bohle RM, Wilhelm J, Morty RE, Brau ME, Weir EK, Kwapiszewska G, Klepetko W, Seeger W, Olschewski H. Impact of TASK-1 in human pulmonary artery smooth muscle cells. Circ Res 2006; 98:1072-80. [PMID: 16574908 DOI: 10.1161/01.res.0000219677.12988.e9] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The excitability of pulmonary artery smooth muscle cells (PASMC) is regulated by potassium (K+) conductances. Although studies suggest that background K+ currents carried by 2-pore domain K+ channels are important regulators of resting membrane potential in PASMC, their role in human PASMC is unknown. Our study tested the hypothesis that TASK-1 leak K+ channels contribute to the K+ current and resting membrane potential in human PASMC. We used the whole-cell patch-clamp technique and TASK-1 small interfering RNA (siRNA). Noninactivating K+ current performed by TASK-1 K+ channels were identified by current characteristics and inhibition by anandamide and acidosis (pH 6.3), each resulting in significant membrane depolarization. Moreover, we showed that TASK-1 is blocked by moderate hypoxia and activated by treprostinil at clinically relevant concentrations. This is mediated via protein kinase A (PKA)-dependent phosphorylation of TASK-1. To further confirm the role of TASK-1 channels in regulation of resting membrane potential, we knocked down TASK-1 expression using TASK-1 siRNA. The knockdown of TASK-1 was reflected by a significant depolarization of resting membrane potential. Treatment of human PASMC with TASK-1 siRNA resulted in loss of sensitivity to anandamide, acidosis, alkalosis, hypoxia, and treprostinil. These results suggest that (1) TASK-1 is expressed in human PASMC; (2) TASK-1 is hypoxia-sensitive and controls the resting membrane potential, thus implicating an important role for TASK-1 K+ channels in the regulation of pulmonary vascular tone; and (3) treprostinil activates TASK-1 at clinically relevant concentrations via PKA, which might represent an important mechanism underlying the vasorelaxing properties of prostanoids and their beneficial effect in vivo.
Collapse
Affiliation(s)
- Andrea Olschewski
- Department of Anaesthesiology, Intensive Care Medicine, Medical University Graz, A-8029 Graz, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jaworski J, Spangler S, Seeburg DP, Hoogenraad CC, Sheng M. Control of dendritic arborization by the phosphoinositide-3'-kinase-Akt-mammalian target of rapamycin pathway. J Neurosci 2006; 25:11300-12. [PMID: 16339025 PMCID: PMC6725892 DOI: 10.1523/jneurosci.2270-05.2005] [Citation(s) in RCA: 475] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The molecular mechanisms that determine the size and complexity of the neuronal dendritic tree are unclear. Here, we show that the phosphoinositide-3' kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway promotes the growth and branching of dendrites in cultured hippocampal neurons. Constitutively active mutants of Ras, PI3K, and Akt, or RNA interference (RNAi) knockdown of lipid phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome Ten), induced growth and elaboration of dendrites that was blocked by mTOR inhibitor rapamycin and/or by overexpression of eIF-4E binding protein 1 (4E-BP1), which inhibits translation of 5' capped mRNAs. The effect of PI3K on dendrites was lost in more mature neurons (>14 d in vitro). Dendritic complexity was reduced by inhibition of PI3K and by RNAi knockdown of mTOR or p70 ribosomal S6 kinase (p70S6K, an effector of mTOR). A rapamycin-resistant mutant of mTOR "rescued" the morphogenetic effects of PI3K in the presence of rapamycin. By regulating global and/or local protein translation, and as a convergence point for multiple signaling pathways, mTOR could play a central role in the control of dendrite growth and branching during development and in response to activity.
Collapse
Affiliation(s)
- Jacek Jaworski
- The Picower Institute for Learning and Memory, The Institute of Physical and Chemical Research (RIKEN), Massachusetts Institute of Technology Neuroscience Research Center, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
33
|
Chapman H, Ramström C, Korhonen L, Laine M, Wann KT, Lindholm D, Pasternack M, Törnquist K. Downregulation of the HERG (KCNH2) K+ channel by ceramide: evidence for ubiquitin-mediated lysosomal degradation. J Cell Sci 2005; 118:5325-34. [PMID: 16263765 DOI: 10.1242/jcs.02635] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The HERG (KCNH2) potassium channel underlies the rapid component of the delayed rectifier current (Ikr), a current contributing to the repolarisation of the cardiac action potential. Mutations in HERG can cause the hereditary forms of the short-QT and long-QT syndromes, predisposing to ventricular arrhythmias and sudden cardiac death. HERG is expressed mainly in the cell membrane of cardiac myocytes, but has also been identified in cell membranes of a range of other cells, including smooth muscle and neurones. The mechanisms regulating the surface expression have however not yet been elucidated. Here we show, using stable HERG-expressing HEK 293 cells, that ceramide evokes a time-dependent decrease in HERG current which was not attributable to a change in gating properties of the channel. Surface expression of the HERG channel protein was reduced by ceramide as shown by biotinylation of surface proteins, western blotting and immunocytochemistry. The rapid decline in HERG protein after ceramide stimulation was due to protein ubiquitylation and its association with lysosomes. The results demonstrate that the surface expression of HERG is strictly regulated, and that ceramide modifies HERG currents and targets the protein for lysosomal degradation.
Collapse
Affiliation(s)
- Hugh Chapman
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Haartmaninkatu 8, FI-00290, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Glioma cells show up-regulation and constitutive activation of erbB2, and its expression correlates positively with increased malignancy. A similar correlation has been demonstrated for the expression of gBK, a calcium-sensitive, large-conductance K(+) channel. We show here that glioma BK channels are a downstream target of erbB2/neuregulin signaling. Tyrphostin AG825 was able to disrupt the constituitive erbB2 activation in a dose-dependent manner, causing a 30-mV positive shift in gBK channel activation in cell-attached patches. Conversely, maximal stimulation of erbB2 with a recombinant neuregulin (NRG-1beta) caused a 12-mV shift in the opposite direction. RT-PCR studies reveal no change in the BK splice variants expressed in treated glioma cells. Furthermore, isolation of surface proteins through biotinylation did not show a change in gBK channel expression, and probing with phospho-specific antibodies showed no alteration in channel phosphorylation. However, fura-II Ca(2+) fluorescence imaging revealed a 35% decrease in the free intracellular Ca(2+) concentration after erbB2 inhibition and an increase in NRG-1beta-treated cells, suggesting that the observed changes most likely were due to alterations in [Ca(2+)](i). Consistent with this conclusion, neither tyrphostin AG825 nor NRG-1beta was able to modulate gBK channels under inside-out or whole-cell recording conditions when intracellular Ca(2+) was fixed. Thus, gBK channels are a downstream target for the abundantly expressed neuregulin-1 receptor erbB2 in glioma cells. However, unlike the case in other systems, this modulation appears to occur via changes in [Ca(2+)](i) without changes in channel expression or phosphorylation. The enhanced sensitivity of gBK channels in glioma cells to small, physiological Ca(2+) changes appears to be a prerequisite for this modulation.
Collapse
Affiliation(s)
- M L Olsen
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
35
|
Chae KS, Dryer SE. Regulation of neuronal K(Ca) channels by beta-neuregulin-1 does not require activation of Ras-MEK-extracellular signal-regulated kinase signaling cascades. Neuroscience 2005; 135:1013-6. [PMID: 16165293 DOI: 10.1016/j.neuroscience.2005.06.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 06/24/2005] [Indexed: 11/25/2022]
Abstract
Endogenous beta-neuregulin-1 is required for the plasma membrane expression of large-conductance (BK-type) Ca2+-activated K+ channels in developing chick ciliary neurons of the chick ciliary ganglion. During normal development, beta-neuregulin-1 acts in concert with transforming growth factor-beta1 to stimulate movement of large-conductance Ca2+-activated K+ channels from intracellular stores into the plasma membrane, although these two growth factors preferentially act on different intracellular pools. We have previously shown that actions of transforming growth factor-beta1 on ciliary neurons require activation of phosphoinositol 3-kinase and Akt, as well as a parallel cascade composed of the small GTPase Ras and a mitogen-activated protein kinase (extracellular signal-regulated kinase). In addition, we have shown that the actions of beta-neuregulin-1 require activation of phosphoinositol 3-kinase and the protein kinase Akt. Here we examine whether beta-neuregulin-1-evoked mobilization of large-conductance Ca2+-activated K+ channels also requires activation of a Ras-extracellular signal-regulated kinase signaling cascade. We observed that application of beta-neuregulin-1 caused a robust and MEK1/2-dependent increase in extracellular signal-regulated kinase diphosphorylation that indicates activation of this signaling cascade in ciliary ganglion neurons, similar to what we have previously observed for transforming growth factor-beta1. However, activation of this cascade is not necessary for beta-neuregulin-1-evoked mobilization because stimulation of macroscopic large-conductance Ca2+-activated K+ channels persisted in cells treated with the MEK1/2 inhibitors PD98059 or U0126, in cells over-expressing dominant-negative forms of extracellular signal-regulated kinase, and in cells treated with the Ras inhibitor FTI-277. These results indicate that the mechanisms that underlie beta-neuregulin-1 and transforming growth factor-beta1 mobilization of large-conductance Ca2+-activated K+ channels are only partly overlapping, possibly because they cause recruitment of spatially distinct signaling complexes.
Collapse
Affiliation(s)
- K-S Chae
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77205-5001, USA
| | | |
Collapse
|
36
|
Chae KS, Dryer SE. The p38 mitogen-activated protein kinase pathway negatively regulates Ca2+-activated K+ channel trafficking in developing parasympathetic neurons. J Neurochem 2005; 94:367-79. [PMID: 15998288 DOI: 10.1111/j.1471-4159.2005.03201.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The trafficking of large-conductance Ca2+-activated K+ channels (K(Ca)) in chick ciliary ganglion neurons is regulated by growth factors. Here we show that a canonical p38 cascade inhibits K(Ca) trafficking in ciliary ganglion neurons. Two different p38 inhibitors (SB202190 or SB203580) or over-expression of dominant-negative forms of several components of the p38 cascade increased K(Ca) in ciliary neurons. Inhibition of protein synthesis or Golgi processing had no effect on this phenomenon, suggesting that p38 is acting at a distal step of the trafficking pathway. Depolymerization of filamentous actin (F-actin) increased functional expression of K(Ca), whereas stabilization of F-actin inhibited the effect of SB202190 on K(Ca) trafficking. SB202190 also caused an immunochemically detectable increase in K(Ca) on the plasma membrane. Inhibition of p38 decreased the extent of cortical F-actin in ciliary neurons. Macroscopic K(Ca) is suppressed by transforming growth factor (TGF) beta3. Application of TGFbeta3 increased the phosphorylation of p38 in ciliary neurons and increased cortical F-actin. Thus, the p38 signaling cascade endogenously suppresses development of functional K(Ca), in part by stabilizing an F-actin barrier that prevents plasma membrane insertion of functional channel complexes. This cascade also appears to mediate inhibitory effects of TGFbeta3 on the expression of K(Ca).
Collapse
Affiliation(s)
- Kwon-Seok Chae
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5513, USA
| | | |
Collapse
|
37
|
Chen L, Tian L, MacDonald SHF, McClafferty H, Hammond MSL, Huibant JM, Ruth P, Knaus HG, Shipston MJ. Functionally Diverse Complement of Large Conductance Calcium- and Voltage-activated Potassium Channel (BK) α-Subunits Generated from a Single Site of Splicing. J Biol Chem 2005; 280:33599-609. [PMID: 16081418 DOI: 10.1074/jbc.m505383200] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The pore-forming alpha-subunits of large conductance calcium- and voltage-activated potassium (BK) channels are encoded by a single gene that undergoes extensive alternative pre-mRNA splicing. However, the extent to which differential exon usage at a single site of splicing may confer functionally distinct properties on BK channels is largely unknown. Here we demonstrated that alternative splicing at site of splicing C2 in the mouse BK channel C terminus generates five distinct splice variants: ZERO, e20, e21(STREX), e22, and a novel variant deltae23. Splice variants display distinct patterns of tissue distribution with e21(STREX) expressed at the highest levels in adult endocrine tissues and e22 at embryonic stages of mouse development. deltae23 is not functionally expressed at the cell surface and acts as a dominant negative of cell surface expression by trapping other BK channel splice variant alpha-subunits in the endoplasmic reticulum and perinuclear compartments. Splice variants display a range of biophysical properties. e21(STREX) and e22 variants display a significant left shift (>20 mV at 1 microM [Ca2+]i) in half-maximal voltage of activation compared with ZERO and e20 as well as considerably slower rates of deactivation. Splice variants are differentially sensitive to phosphorylation by endogenous cAMP-dependent protein kinase; ZERO, e20, and e22 variants are all activated, whereas e21 (STREX) is the only variant that is inhibited. Thus alternative pre-mRNA splicing from a single site of splicing provides a mechanism to generate a physiologically diverse complement of BK channel alpha-subunits that differ dramatically in their tissue distribution, trafficking, and regulation.
Collapse
Affiliation(s)
- Lie Chen
- Centre for Integrative Physiology, Membrane Biology Group, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, Scotland, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chae KS, Oh KS, Dryer SE. Growth Factors Mobilize Multiple Pools ofKCaChannels in Developing Parasympathetic Neurons: Role of ADP-Ribosylation Factors and Related Proteins. J Neurophysiol 2005; 94:1597-605. [PMID: 15843480 DOI: 10.1152/jn.00296.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In developing ciliary ganglion (CG) neurons, movement of functional large-conductance (BK type) Ca2+-activated K+( KCa) channels to the cell surface is stimulated by the endogenous growth factors TGFβ1 and β-neuregulin-1 (NRG1). Here we show that a brief NRG1 treatment (0.5–1.5 h) mobilizes KCachannels in a post-Golgi compartment, but longer treatments (>3.5 h) mobilize KCachannels located in the endoplasmic reticulum or Golgi apparatus. Specifically, the effects of 3.5 h NRG1 treatment were completely blocked by treatments that disrupt Golgi apparatus function. These include inhibition of microtubules, or inhibition of the ADP-ribosylation factor-1 (ARF1) system by brefeldin A, by over-expression of dominant-negative ARF1, or over-expression of an ARF1 GTPase-activating protein that blocks ARF1 cycling between GTP- and GDP-bound states. These treatments had no effect on stimulation of KCaevoked by 1.5 h treatment with NRG1, indicating that short-term responses to NRG1 do not require an intact Golgi apparatus. By contrast, both the acute and sustained effects of NRG1 were inhibited by treatments that block trafficking processes that occur close to the plasma membrane. Thus mobilization of KCawas blocked by treatments than inhibit ADP-ribosylation factor-6 (ARF6) signaling, including overexpression of dominant-negative ARF6, dominant-negative ARNO, or dominant-negative phospholipase D1. TGFβ1, the effects of which on KCaare much slower in onset, is unable to selectively mobilize channels in the post-Golgi pool, and its effects on KCaare completely blocked by inhibition of microtubules, Golgi function and also by plasma membrane ARF6 and phospholipase D1 signaling.
Collapse
Affiliation(s)
- Kwon-Seok Chae
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5513, USA
| | | | | |
Collapse
|
39
|
Chae KS, Martin-Caraballo M, Anderson M, Dryer SE. Akt Activation Is Necessary for Growth Factor–Induced Trafficking of Functional KCaChannels in Developing Parasympathetic Neurons. J Neurophysiol 2005; 93:1174-82. [PMID: 15509648 DOI: 10.1152/jn.00796.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The protein kinase Akt is a crucial regulator of neuronal survival and apoptosis. Here we show that Akt activation is necessary for mobilization of large-conductance KCachannels in ciliary ganglion (CG) neurons evoked by β-neuregulin-1 (NRG1) and transforming growth factor-β1 (TGFβ1). Application of NRG1 to embryonic day 9 (E9) CG neurons increased Akt phosphorylation, as observed previously for TGFβ1. NRG1- and TGFβ1-evoked stimulation of KCais blocked by inhibitors of PI3K by overexpression of a dominant-negative form of Akt, by overexpression of CTMP, an endogenous negative regulator of Akt, and by application of the Akt inhibitor 1L-6-hydroxymethyl-chiro-inositol 2-( R)-2- O-methyl-3- O-octadecylcarbonate (HIMO). Conversely, overexpression of a constitutively-active form of Akt was sufficient by itself to increase mobilization of functional KCachannels. NRG1 and TGFβ1 evoked an Akt-dependent increase in cell-surface SLO α-subunits. These procedures have no effect on voltage-activated Ca2+currents. Thus Akt plays an essential role in the developmental regulation of excitability in CG neurons.
Collapse
Affiliation(s)
- Kwon-Seok Chae
- Deptartment of Biology and Biochemistry, University of Houston, Houston, TX 77204-5513, USA
| | | | | | | |
Collapse
|
40
|
Weaver AK, Liu X, Sontheimer H. Role for calcium-activated potassium channels (BK) in growth control of human malignant glioma cells. J Neurosci Res 2004; 78:224-34. [PMID: 15378515 PMCID: PMC2561220 DOI: 10.1002/jnr.20240] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Voltage-dependent large-conductance Ca(2+)-activated K(+) channels, often referred to as BK channels, are a unique class of ion channels coupling intracellular chemical signaling to electrical signaling. BK channel expression has been shown to be up-regulated in human glioma biopsies, and expression levels correlate positively with the malignancy grade of the tumor. Glioma BK channels (gBK) are a splice variant of the hslo gene, are characterized by enhanced sensitivity to [Ca(2+)](i), and are the target of modulation by growth factors. By using the selective pharmacological BK channel inhibitor iberiotoxin, we examined the potential role of these channels in tumor growth. Cell survival assays examined the ability of glioma cells to grow in nominally serum-free medium. Under such conditions, BK channel inhibition by iberiotoxin caused a dose- and time-dependent decrease in cell number discernible as early as 72 hr after exposure and maximal growth inhibition after 4-5 days. FACS analysis shows that IbTX treatment arrests glioma cells in S phase of the cell cycle, whereupon cells undergo cell death. Interestingly, IbTX effects were nullified when cells were maintained in 7% fetal calf serum. Electrophysiological analysis, in conjunction with biotinylation studies, demonstrates that serum starvation caused a significant translocation of BK channel protein to the plasma membrane, corresponding to a two- to threefold increase in whole-cell conductance, but without a change in total gBK protein. Hence, expression of functional gBK channels appears to be regulated in a growth-factor-dependent manner, with enhanced surface expression promoting tumor cell growth under conditions of growth factor deprivation as might occur under in vivo conditions.
Collapse
Affiliation(s)
- Amy K Weaver
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|
41
|
Viard P, Butcher AJ, Halet G, Davies A, Nürnberg B, Heblich F, Dolphin AC. PI3K promotes voltage-dependent calcium channel trafficking to the plasma membrane. Nat Neurosci 2004; 7:939-46. [PMID: 15311280 DOI: 10.1038/nn1300] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 07/07/2004] [Indexed: 01/01/2023]
Abstract
Phosphatidylinositol 3-kinase (PI3K) has been shown to enhance native voltage-dependent calcium channel (Ca(v)) currents both in myocytes and in neurons; however, the mechanism(s) responsible for this regulation were not known. Here we show that PI3K promotes the translocation of GFP-tagged Ca(v) channels to the plasma membrane in both COS-7 cells and neurons. We show that the effect of PI3K is mediated by Akt/PKB and specifically requires Ca(v)beta(2) subunits. The mutations S574A and S574E in Ca(v)beta(2a) prevented and mimicked, respectively, the effect of PI3K/Akt-PKB, indicating that phosphorylation of Ser574 on Ca(v)beta(2a) is necessary and sufficient to promote Ca(v) channel trafficking.
Collapse
Affiliation(s)
- Patricia Viard
- Department of Pharmacology, University College London, London WC1E 6BT, UK.
| | | | | | | | | | | | | |
Collapse
|
42
|
Tong Q, Gamper N, Medina JL, Shapiro MS, Stockand JD. Direct Activation of the Epithelial Na+ Channel by Phosphatidylinositol 3,4,5-Trisphosphate and Phosphatidylinositol 3,4-Bisphosphate Produced by Phosphoinositide 3-OH Kinase. J Biol Chem 2004; 279:22654-63. [PMID: 15028718 DOI: 10.1074/jbc.m401004200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) is accepted to be a direct modulator of ion channel activity. The products of phosphoinositide 3-OH kinase (PI3K), PtdIns(3,4)P(2) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), in contrast, are not. We report here activation of the epithelial Na(+) channel (ENaC) reconstituted in Chinese hamster ovary cells by PI3K. Insulin-like growth factor-I also activated reconstituted ENaC and increased Na(+) reabsorption across renal A6 epithelial cell monolayers via PI3K. Neither IGF-I nor PI3K affected the levels of ENaC in the plasma membrane. The effects of PI3K and IGF-I on ENaC activity paralleled changes in the plasma membrane levels of the PI3K product phospholipids, PtdIns(3,4)P(2)/PtdIns(3,4,5)P(3), as measured by evanescent field fluorescence microscopy. Both PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) activated ENaC in excised patches. Activation of ENaC by PI3K and its phospholipid products corresponded to changes in channel open probability. We conclude that PI3K directly modulates ENaC activity via PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3). This represents a novel transduction pathway whereby growth factors, such as IGF-I, rapidly modulate target proteins independent of signaling elicited by kinases downstream of PI3K.
Collapse
Affiliation(s)
- Qiusheng Tong
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | | | |
Collapse
|
43
|
Budas GR, Jovanovic S, Crawford RM, Jovanovic A. Hypoxia-induced preconditioning in adult stimulated cardiomyocytes is mediated by the opening and trafficking of sarcolemmal KATP channels. FASEB J 2004; 18:1046-8. [PMID: 15084521 PMCID: PMC2128706 DOI: 10.1096/fj.04-1602fje] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The opening of sarcolemmal and mitochondrial ATP-sensitive K(+) (KATP) channels in the heart is believed to mediate ischemic preconditioning, a phenomenon whereby brief periods of ischemia/reperfusion protect the heart against myocardial infarction. Here, we have applied digital epifluorescent microscopy, immunoprecipitation and Western blotting, perforated patch clamp electrophysiology, and immunofluorescence/laser confocal microscopy to examine the involvement of KATP channels in cardioprotection afforded by preconditioning. We have shown that adult, stimulated-to-beat, guinea-pig cardiomyocytes survived in sustained hypoxia for approximately 17 min. An episode of 5-min-long hypoxia/5-min-long reoxygenation before sustained hypoxia dramatically increased the duration of cellular survival. Experiments with different antagonists of KATP channels, applied at different times during the experimental protocol, suggested that the opening of sarcolemmal KATP channels at the beginning of sustained hypoxia mediate preconditioning. This conclusion was supported by perforated patch clamp experiments that revealed activation of sarcolemmal KATP channels by preconditioning. Immunoprecipitation and Western blotting as well as immunofluorescence and laser confocal microscopy showed that the preconditioning is associated with the increase in KATP channel proteins in sarcolemma. Inhibition of trafficking of KATP channel subunits prevented preconditioning without affecting sensitivity of cardiomyocytes to hypoxia in the absence of preconditioning. We conclude that the preconditioning is mediated by the activation and trafficking of sarcolemmal KATP channels.
Collapse
Affiliation(s)
- Grant R Budas
- Maternal and Child Health Sciences, Tayside Institute of Child Health, Ninewells Hospital & Medical School, University of Dundee, Dundee, Scotland, UK
| | | | | | | |
Collapse
|
44
|
Xu Z, Ma DZ, Wang LY, Su JM, Zha XL. Transforming growth factor-β1 stimulated protein kinase B serine-473 and focal adhesion kinase tyrosine phosphorylation dependent on cell adhesion in human hepatocellular carcinoma SMMC-7721 cells. Biochem Biophys Res Commun 2003; 312:388-96. [PMID: 14637150 DOI: 10.1016/j.bbrc.2003.10.130] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transforming growth factor-beta1 (TGF-beta1) is a potent growth inhibitor and apoptosis inducer for most normal cells. However, tumor cells are commonly nevertheless sensitive to the tumor-suppressing effects of TGF-beta1. In this paper, we focus on the effects of TGF-beta1 on two important anti-apoptotic protein kinases, protein kinase B (PKB), and focal adhesion kinase (FAK), in SMMC-7721 cells. We found that PKB-Ser-473 phosphorylation was apparently up-regulated by TGF-beta1. In the meantime, PKB-Thr-308 phosphorylation was slightly up-regulated by TGF-beta1. TGF-beta1 could also enhance FAK-Tyr phosphorylation. We observed that integrin-linked kinase (ILK) was also up-regulated by TGF-beta1 in good accordance with PKB-Ser-473 phosphorylation. We first found that TGF-beta1 could stimulate PKB-Ser-473 phosphorylation possibly via up-regulating ILK expression. Furthermore, we also failed to detect PKB-Ser-473 and FAK-Tyr phosphorylation with various concentrations of TGF-beta1 treatment when cells were kept in suspension. The above results indicate that PKB-Ser-473 and FAK-Tyr phosphorylation stimulated by TGF-beta1 are both dependent on cell adhesion.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Biochemistry and Molecular Biology, Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | | | | | | | | |
Collapse
|
45
|
Lhuillier L, Dryer SE. Ras is a mediator of TGFbeta1 signaling in developing chick ciliary ganglion neurons. Brain Res 2003; 982:119-24. [PMID: 12915246 DOI: 10.1016/s0006-8993(03)03020-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Large-conductance Ca(2+)-activated K(+) channels (K(Ca)) in chick ciliary ganglion neurons are regulated by target-derived TGFbeta1. Here we show that TGFbeta1 stimulation of K(Ca) expression was blocked by the structurally dissimilar Ras protein farnesyl transferase inhibitors manumycin-A and FTI-277. A similar effect was produced in ciliary neurons overexpressing RasN17, a widely used dominant-negative form of Ras. Moreover, TGFbeta1-evoked increases in phosphorylation of SMAD2 were reduced by manumycin-A, suggesting that Ras-dependent transduction cascades activated by TGFbeta1 feed back onto SMAD signaling. Thus, Ras is a mediator of pleiotropic TGFbeta1 signaling in developing neurons.
Collapse
Affiliation(s)
- Loic Lhuillier
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5513, USA
| | | |
Collapse
|
46
|
Phosphatidylinositol 3-kinase regulates the induction of long-term potentiation through extracellular signal-related kinase-independent mechanisms. J Neurosci 2003. [PMID: 12736339 DOI: 10.1523/jneurosci.23-09-03679.2003] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibitors of both phosphatidylinositol-3-kinase (PI3-kinase) and MAPK/ERK (mitogen-activate protein kinase/extracellular signal-related kinase) activation inhibit NMDA receptor-dependent long-term potentiation (LTP). PI3-kinase inhibitors also block activation of ERK by NMDA receptor stimulation, suggesting that PI3-kinase inhibitors block LTP because PI3-kinase is an essential upstream regulator of ERK activation. To examine this hypothesis, we investigated the effects of PI3-kinase inhibitors on ERK activation and LTP induction in the CA1 region of mouse hippocampal slices. Consistent with the notion that ERK activation by NMDA receptor stimulation is PI3-kinase dependent, the PI3-kinase inhibitor wortmannin partially inhibited ERK2 activation induced by bath application of NMDA and strongly suppressed ERK2 activation by high-frequency synaptic stimulation. PI3-kinase and MEK (MAP kinase kinase) inhibitors had very different effects on LTP, however. Both types of inhibitors suppressed LTP induced by theta-frequency trains of synaptic stimulation, but only PI3-kinase inhibitors suppressed the induction of LTP by high-frequency stimulation or low-frequency stimulation paired with postsynaptic depolarization. Concentrations of PI3-kinase inhibitors that inhibited LTP when present during high-frequency stimulation had no effect on potentiated synapses when applied after high-frequency stimulation, suggesting that PI3-kinase is specifically involved in the induction of LTP. Finally, we found that LTP induced by theta-frequency stimulation was MEK inhibitor insensitive but still PI3-kinase dependent in hippocampal slices from PSD-95 (postsynaptic density-95) mutant mice. Together, our results indicate that the role of PI3-kinase in LTP is not limited to its role as an upstream regulator of MAPK signaling but also includes signaling through ERK-independent pathways that regulate LTP induction.
Collapse
|
47
|
Wang Q, Liu L, Pei L, Ju W, Ahmadian G, Lu J, Wang Y, Liu F, Wang YT. Control of synaptic strength, a novel function of Akt. Neuron 2003; 38:915-28. [PMID: 12818177 DOI: 10.1016/s0896-6273(03)00356-8] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Akt (also known as PKB), a serine/threonine kinase involved in diverse signal-transduction pathways, is highly expressed in the brain. Akt is known to have a strong antiapoptotic action and thereby to be critically involved in neuronal survival, but its potential role in the dynamic modulation of synaptic transmission is unknown. Here we report that Akt phosphorylates, both in vitro and in vivo, the type A gamma-aminobutyric acid receptor (GABA(A)R), the principal receptor mediating fast inhibitory synaptic transmission in the mammalian brain. Akt-mediated phosphorylation increases the number of GABA(A)Rs on the plasma membrane surface, thereby increasing the receptor-mediated synaptic transmission in neurons. These results identify the GABA(A)R as a novel substrate of Akt, thereby linking Akt to the regulation of synaptic strength. This work also provides evidence for the rapid regulation of neurotransmitter receptor numbers in the postsynaptic domain by direct receptor phosphorylation as an important means of producing synaptic plasticity.
Collapse
Affiliation(s)
- Qinghua Wang
- Programme in Brain and Behaviour Research, Research Institute of the Hospital for Sick Children, University of Toronto, 555 University Avenue, M5G 1X8, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Glial cell line-derived neurotrophic factor and target-dependent regulation of large-conductance KCa channels in developing chick lumbar motoneurons. J Neurosci 2002. [PMID: 12451121 DOI: 10.1523/jneurosci.22-23-10201.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The functional expression of large-conductance Ca2+-activated K+ (K(Ca)) channels in lumbar motoneurons (LMNs) of the developing chick embryo is regulated in part by interactions with striated muscle target tissues. Here we show that the functional expression of K(Ca) channels in LMNs developing in vitro can be stimulated by application of a skeletal muscle extract (MEX) or by coculture with hindlimb myotubes. A similar stimulation of K(Ca) channels in vitro can be produced by the trophic factors glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor but not by neurotrophin (NT)-3 or NT-4. The actions of MEX and hindlimb myotubes are blocked by a GDNF-neutralizing antiserum. Moreover, injection of this same antiserum into the embryonic hindlimb reduced the functional expression of K(Ca) channels in vivo to levels seen in LMNs deprived of interactions with the hindlimb. The effects of GDNF on K(Ca) channel expression in LMNs require 24 hr of continuous exposure to reach maximum and are blocked by the translation inhibitor anisomycin, indicating the need for synthesis of new proteins. GDNF actions are also blocked by the farnesyl transferase inhibitor manumycin, suggesting a role for Ras in the actions of GDNF. Finally, the actions of GDNF are inhibited by PP2, an inhibitor of Src family tyrosine kinases, and by LY29003, an inhibitor of phosphatidylinositol 3 kinases, but not by PD98059, an inhibitor of the Erk signaling cascade. None of these treatments alter expression of voltage-activated Ca2+ channels. Thus, the actions of GDNF on LMN K(Ca) channel expression appear to use a transduction pathway similar to that used for regulation of apoptosis.
Collapse
|