1
|
Therapeutic potential of highly functional codon-optimized microutrophin for muscle-specific expression. Sci Rep 2022; 12:848. [PMID: 35039573 PMCID: PMC8764061 DOI: 10.1038/s41598-022-04892-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/03/2022] [Indexed: 12/26/2022] Open
Abstract
High expectations have been set on gene therapy with an AAV-delivered shortened version of dystrophin (µDys) for Duchenne muscular dystrophy (DMD), with several drug candidates currently undergoing clinical trials. Safety concerns with this therapeutic approach include the immune response to introduced dystrophin antigens observed in some DMD patients. Recent reports highlighted microutrophin (µUtrn) as a less immunogenic functional dystrophin substitute for gene therapy. In the current study, we created a human codon-optimized µUtrn which was subjected to side-by-side characterization with previously reported mouse and human µUtrn sequences after rAAV9 intramuscular injections in mdx mice. Long-term studies with systemic delivery of rAAV9-µUtrn demonstrated robust transgene expression in muscles, with localization to the sarcolemma, functional improvement of muscle performance, decreased creatine kinase levels, and lower immunogenicity as compared to µDys. An extensive toxicity study in wild-type rats did not reveal adverse changes associated with high-dose rAAV9 administration and human codon-optimized µUtrn overexpression. Furthermore, we verified that muscle-specific promoters MHCK7 and SPc5-12 drive a sufficient level of rAAV9-µUtrn expression to ameliorate the dystrophic phenotype in mdx mice. Our results provide ground for taking human codon-optimized µUtrn combined with muscle-specific promoters into clinical development as safe and efficient gene therapy for DMD.
Collapse
|
2
|
Soblechero-Martín P, López-Martínez A, de la Puente-Ovejero L, Vallejo-Illarramendi A, Arechavala-Gomeza V. Utrophin modulator drugs as potential therapies for Duchenne and Becker muscular dystrophies. Neuropathol Appl Neurobiol 2021; 47:711-723. [PMID: 33999469 PMCID: PMC8518368 DOI: 10.1111/nan.12735] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/28/2021] [Accepted: 05/10/2021] [Indexed: 12/25/2022]
Abstract
Utrophin is an autosomal paralogue of dystrophin, a protein whose deficit causes Duchenne and Becker muscular dystrophies (DMD/BMD). Utrophin is naturally overexpressed at the sarcolemma of mature dystrophin‐deficient fibres in DMD and BMD patients as well as in the mdx Duchenne mouse model. Dystrophin and utrophin can co‐localise in human foetal muscle, in the dystrophin‐competent fibres from DMD/BMD carriers, and revertant fibre clusters in biopsies from DMD patients. These findings suggest that utrophin overexpression could act as a surrogate, compensating for the lack of dystrophin, and, as such, it could be used in combination with dystrophin restoration therapies. Different strategies to overexpress utrophin are currently under investigation. In recent years, many compounds have been reported to modulate utrophin expression efficiently in preclinical studies and ameliorate the dystrophic phenotype in animal models of the disease. In this manuscript, we discuss the current knowledge on utrophin protein and the different mechanisms that modulate its expression in skeletal muscle. We also include a comprehensive review of compounds proposed as utrophin regulators and, as such, potential therapeutic candidates for these muscular dystrophies.
Collapse
Affiliation(s)
- Patricia Soblechero-Martín
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Clinical Laboratory Service, Osakidetza Basque Health Service, Bilbao-Basurto Integrated Health Organisation, Basurto University Hospital, Bilbao, Spain
| | - Andrea López-Martínez
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | | | | | - Virginia Arechavala-Gomeza
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
3
|
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Biomedical, Biological & Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
4
|
Davies KE, Guiraud S. Micro-dystrophin Genes Bring Hope of an Effective Therapy for Duchenne Muscular Dystrophy. Mol Ther 2019; 27:486-488. [PMID: 30765324 DOI: 10.1016/j.ymthe.2019.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Kay E Davies
- MDUK Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
| | - Simon Guiraud
- MDUK Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
5
|
Shahnoor N, Siebers EM, Brown KJ, Lawlor MW. Pathological Issues in Dystrophinopathy in the Age of Genetic Therapies. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:105-126. [PMID: 30148687 DOI: 10.1146/annurev-pathmechdis-012418-012945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dystrophinopathy is a class of genetic skeletal muscle disease characterized by myofiber degeneration and regeneration due to insufficient levels or functioning of dystrophin. Pathological evaluation for dystrophinopathy includes the identification of dystrophic skeletal muscle pathology and the immunohistochemical evaluation of dystrophin epitopes, but biopsies have become rare in recent years. However, the evaluation of dystrophin expression in the research setting has become critically important due to recent advances in genetic therapies, including exon skipping and gene therapy. Given the number of these therapies under evaluation in patients, it is likely that the traditional methods of evaluating dystrophinopathy will need to evolve in the near future. This review discusses current muscle biopsy diagnostic practices in dystrophinopathy and further focuses on how these practices have evolved in the context of therapeutic interventions for dystrophinopathy.
Collapse
Affiliation(s)
- Nazima Shahnoor
- Department of Pathology and Laboratory Medicine, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA; , ,
| | - Emily M Siebers
- Department of Pathology and Laboratory Medicine, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA; , ,
| | - Kristy J Brown
- Solid Biosciences, Inc., Cambridge, Massachusetts 02139, USA;
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA; , ,
| |
Collapse
|
6
|
Guiraud S, Roblin D, Kay DE. The potential of utrophin modulators for the treatment of Duchenne muscular dystrophy. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1438261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Simon Guiraud
- Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Davies. E. Kay
- Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Van Ry PM, Fontelonga TM, Barraza-Flores P, Sarathy A, Nunes AM, Burkin DJ. ECM-Related Myopathies and Muscular Dystrophies: Pros and Cons of Protein Therapies. Compr Physiol 2017; 7:1519-1536. [PMID: 28915335 DOI: 10.1002/cphy.c150033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Extracellular matrix (ECM) myopathies and muscular dystrophies are a group of genetic diseases caused by mutations in genes encoding proteins that provide critical links between muscle cells and the extracellular matrix. These include structural proteins of the ECM, muscle cell receptors, enzymes, and intracellular proteins. Loss of adhesion within the myomatrix results in progressive muscle weakness. For many ECM muscular dystrophies, symptoms can occur any time after birth and often result in reduced life expectancy. There are no cures for the ECM-related muscular dystrophies and treatment options are limited to palliative care. Several therapeutic approaches have been explored to treat muscular dystrophies including gene therapy, gene editing, exon skipping, embryonic, and adult stem cell therapy, targeting genetic modifiers, modulating inflammatory responses, or preventing muscle degeneration. Recently, protein therapies that replace components of the defective myomatrix or enhance muscle and/or extracellular matrix integrity and function have been explored. Preclinical studies for many of these biologics have been promising in animal models of these muscle diseases. This review aims to summarize the ECM muscular dystrophies for which protein therapies are being developed and discuss the exciting potential and possible limitations of this approach for treating this family of devastating genetic muscle diseases. © 2017 American Physiological Society. Compr Physiol 7:1519-1536, 2017.
Collapse
Affiliation(s)
- Pam M Van Ry
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Tatiana M Fontelonga
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Pamela Barraza-Flores
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Apurva Sarathy
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Andreia M Nunes
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA.,Departamento de Biologia Animal, Centro de Ecologia, Evolucao e Alteracoes Ambientais, Faculdade de Ciencias, Universidade de Lisboa, Lisbon, Portugal
| | - Dean J Burkin
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| |
Collapse
|
8
|
McGreevy JW, Hakim CH, McIntosh MA, Duan D. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech 2015; 8:195-213. [PMID: 25740330 PMCID: PMC4348559 DOI: 10.1242/dmm.018424] [Citation(s) in RCA: 363] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder. It is caused by loss-of-function mutations in the dystrophin gene. Currently, there is no cure. A highly promising therapeutic strategy is to replace or repair the defective dystrophin gene by gene therapy. Numerous animal models of DMD have been developed over the last 30 years, ranging from invertebrate to large mammalian models. mdx mice are the most commonly employed models in DMD research and have been used to lay the groundwork for DMD gene therapy. After ~30 years of development, the field has reached the stage at which the results in mdx mice can be validated and scaled-up in symptomatic large animals. The canine DMD (cDMD) model will be excellent for these studies. In this article, we review the animal models for DMD, the pros and cons of each model system, and the history and progress of preclinical DMD gene therapy research in the animal models. We also discuss the current and emerging challenges in this field and ways to address these challenges using animal models, in particular cDMD dogs.
Collapse
Affiliation(s)
- Joe W McGreevy
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Mark A McIntosh
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
9
|
Manning J, O'Malley D. What has the mdx mouse model of Duchenne muscular dystrophy contributed to our understanding of this disease? J Muscle Res Cell Motil 2015; 36:155-167. [PMID: 25669899 DOI: 10.1007/s10974-015-9406-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/28/2015] [Indexed: 12/20/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-chromosome linked recessive disorder caused by the truncation or deletion of the dystrophin gene. The most widely used animal model of this disease is the dystrophin-deficient mdx mouse which was first discovered 30 years ago. Despite its extensive use in DMD research, no effective treatment has yet been developed for this devastating disease. This review explores what we have learned from this mouse model regarding the pathophysiology of DMD and asks if it has a future in providing a better more thorough understanding of this disease or if it will bring us any closer to improving the outlook for DMD patients.
Collapse
Affiliation(s)
- Jennifer Manning
- Department of Physiology, University College Cork, 4.23 Western Gateway Building, Cork, Ireland
| | | |
Collapse
|
10
|
Boisgérault F, Mingozzi F. The Skeletal Muscle Environment and Its Role in Immunity and Tolerance to AAV Vector-Mediated Gene Transfer. Curr Gene Ther 2015; 15:381-94. [PMID: 26122097 PMCID: PMC4515578 DOI: 10.2174/1566523215666150630121750] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 02/08/2023]
Abstract
Since the early days of gene therapy, muscle has been one the most studied tissue targets for the correction of enzyme deficiencies and myopathies. Several preclinical and clinical studies have been conducted using adeno-associated virus (AAV) vectors. Exciting progress has been made in the gene delivery technologies, from the identification of novel AAV serotypes to the development of novel vector delivery techniques. In parallel, significant knowledge has been generated on the host immune system and its interaction with both the vector and the transgene at the muscle level. In particular, the role of underlying muscle inflammation, characteristic of several diseases affecting the muscle, has been defined in terms of its potential detrimental impact on gene transfer with AAV vectors. At the same time, feedback immunomodulatory mechanisms peculiar of skeletal muscle involving resident regulatory T cells have been identified, which seem to play an important role in maintaining, at least to some extent, muscle homeostasis during inflammation and regenerative processes. Devising strategies to tip this balance towards unresponsiveness may represent an avenue to improve the safety and efficacy of muscle gene transfer with AAV vectors.
Collapse
Affiliation(s)
| | - Federico Mingozzi
- Genethon, Evry, France
- University Pierre and Marie Curie, Paris, France
| |
Collapse
|
11
|
Seto JT, Ramos JN, Muir L, Chamberlain JS, Odom GL. Gene replacement therapies for duchenne muscular dystrophy using adeno-associated viral vectors. Curr Gene Ther 2012; 12:139-51. [PMID: 22533379 DOI: 10.2174/156652312800840603] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 12/12/2022]
Abstract
The muscular dystrophies collectively represent a major health challenge, as few significant treatment options currently exist for any of these disorders. Recent years have witnessed a proliferation of novel approaches to therapy, spanning increased testing of existing and new pharmaceuticals, DNA delivery (both anti-sense oligonucleotides and plasmid DNA), gene therapies and stem cell technologies. While none of these has reached the point of being used in clinical practice, all show promise for being able to impact different types of muscular dystrophies. Our group has focused on developing direct gene replacement strategies to treat recessively inherited forms of muscular dystrophy, particularly Duchenne and Becker muscular dystrophy (DMD/BMD). Both forms of dystrophy are caused by mutations in the dystrophin gene and all cases can in theory be treated by gene replacement using synthetic forms of the dystrophin gene. The major challenges for success of this approach are the development of a suitable gene delivery shuttle, generating a suitable gene expression cassette able to be carried by such a shuttle, and achieving safe and effective delivery without elicitation of a destructive immune response. This review summarizes the current state of the art in terms of using adeno-associated viral vectors to deliver synthetic dystrophin genes for the purpose of developing gene therapy for DMD.
Collapse
Affiliation(s)
- Jane T Seto
- Department of Neurology, University of Washington, Seattle, WA 98195-7720, USA.
| | | | | | | | | |
Collapse
|
12
|
Singh SM, Molas JF, Kongari N, Bandi S, Armstrong GS, Winder SJ, Mallela KM. Thermodynamic stability, unfolding kinetics, and aggregation of the N-terminal actin-binding domains of utrophin and dystrophin. Proteins 2012; 80:1377-92. [PMID: 22275054 PMCID: PMC3439503 DOI: 10.1002/prot.24033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/21/2011] [Accepted: 01/02/2012] [Indexed: 12/12/2022]
Abstract
Muscular dystrophy (MD) is the most common genetic lethal disorder in children. Mutations in dystrophin trigger the most common form of MD, Duchenne, and its allelic variant Becker MD. Utrophin is the closest homologue and has been shown to compensate for the loss of dystrophin in human disease animal models. However, the structural and functional similarities and differences between utrophin and dystrophin are less understood. Both proteins interact with actin through their N-terminal actin-binding domain (N-ABD). In this study, we examined the thermodynamic stability and aggregation of utrophin N-ABD and compared with that of dystrophin. Our results show that utrophin N-ABD has spectroscopic properties similar to dystrophin N-ABD. However, utrophin N-ABD has decreased denaturant and thermal stability, unfolds faster, and is correspondingly more susceptible to proteolysis, which might account for its decreased in vivo half-life compared to dystrophin. In addition, utrophin N-ABD aggregates to a lesser extent compared with dystrophin N-ABD, contrary to the general behavior of proteins in which decreased stability enhances protein aggregation. Despite these differences in stability and aggregation, both proteins exhibit deleterious effects of mutations. When utrophin N-ABD mutations analogous in position to the dystrophin disease-causing mutations were generated, they behaved similarly to dystrophin mutants in terms of decreased stability and the formation of cross-β aggregates, indicating a possible role for utrophin mutations in disease mechanisms.
Collapse
Affiliation(s)
- Surinder M. Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Justine F. Molas
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Narsimulu Kongari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Swati Bandi
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Geoffrey S. Armstrong
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Steve J. Winder
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Krishna M.G. Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
13
|
Abstract
The primary function of skeletal muscle is to generate force. Muscle force production is compromised in various forms of acquired and/or inherited muscle diseases. An important goal of muscle gene therapy is to recover muscle strength. Genetically engineered mice and spontaneous mouse mutants are readily available for preclinical muscle gene therapy studies. In this chapter, we outlined the methods commonly used for measuring murine skeletal muscle function. These include ex vivo and in situ analysis of the contractile profile of a single intact limb muscle (the extensor digitorium longus for ex vivo assay and the tibialis anterior muscle for in situ assay), grip force analysis, and downhill treadmill exercise. Force measurement in a single muscle is extremely useful for pilot testing of new gene therapy protocols by local gene transfer. Grip force and treadmill assessments offer body-wide evaluation following systemic muscle gene therapy.
Collapse
Affiliation(s)
- Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, 1 Hospital Drive, M610, Columbia, MO, USA
| | | | | |
Collapse
|
14
|
Biglycan recruits utrophin to the sarcolemma and counters dystrophic pathology in mdx mice. Proc Natl Acad Sci U S A 2010; 108:762-7. [PMID: 21187385 DOI: 10.1073/pnas.1013067108] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in dystrophin and the subsequent disruption of the dystrophin-associated protein complex (DAPC). Utrophin is a dystrophin homolog expressed at high levels in developing muscle that is an attractive target for DMD therapy. Here we show that the extracellular matrix protein biglycan regulates utrophin expression in immature muscle and that recombinant human biglycan (rhBGN) increases utrophin expression in cultured myotubes. Systemically delivered rhBGN up-regulates utrophin at the sarcolemma and reduces muscle pathology in the mdx mouse model of DMD. RhBGN treatment also improves muscle function as judged by reduced susceptibility to eccentric contraction-induced injury. Utrophin is required for the rhBGN therapeutic effect. Several lines of evidence indicate that biglycan acts by recruiting utrophin protein to the muscle membrane. RhBGN is well tolerated in animals dosed for as long as 3 months. We propose that rhBGN could be a therapy for DMD.
Collapse
|
15
|
Dystrophins, utrophins, and associated scaffolding complexes: role in mammalian brain and implications for therapeutic strategies. J Biomed Biotechnol 2010; 2010:849426. [PMID: 20625423 PMCID: PMC2896903 DOI: 10.1155/2010/849426] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/14/2010] [Indexed: 12/23/2022] Open
Abstract
Two decades of molecular, cellular, and functional studies considerably increased our understanding of dystrophins function and unveiled the complex etiology of the cognitive deficits in Duchenne muscular dystrophy (DMD), which involves altered expression of several dystrophin-gene products in brain. Dystrophins are normally part of critical cytoskeleton-associated membrane-bound molecular scaffolds involved in the clustering of receptors, ion channels, and signaling proteins that contribute to synapse physiology and blood-brain barrier function. The utrophin gene also drives brain expression of several paralogs proteins, which cellular expression and biological roles remain to be elucidated. Here we review the structural and functional properties of dystrophins and utrophins in brain, the consequences of dystrophins loss-of-function as revealed by numerous studies in mouse models of DMD, and we discuss future challenges and putative therapeutic strategies that may compensate for the cognitive impairment in DMD based on experimental manipulation of dystrophins and/or utrophins brain expression.
Collapse
|
16
|
Hnia K, Gayraud J, Hugon G, Ramonatxo M, De La Porte S, Matecki S, Mornet D. L-arginine decreases inflammation and modulates the nuclear factor-kappaB/matrix metalloproteinase cascade in mdx muscle fibers. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1509-19. [PMID: 18458097 DOI: 10.2353/ajpath.2008.071009] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked disorder associated with dystrophin deficiency that results in chronic inflammation, sarcolemma damage, and severe skeletal muscle degeneration. Recently, the use of L-arginine, the substrate of nitric oxide synthase (nNOS), has been proposed as a pharmacological treatment to attenuate the dystrophic pattern of DMD. However, little is known about signaling events that occur in dystrophic muscle with l-arginine treatment. Considering the implication of inflammation in dystrophic processes, we asked whether L-arginine inhibits inflammatory signaling cascades. We demonstrate that L-arginine decreases inflammation and enhances muscle regeneration in the mdx mouse model. Classic stimulatory signals, such as proinflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha, are significantly decreased in mdx mouse muscle, resulting in lower nuclear factor (NF)-kappaB levels and activity. NF-kappaB serves as a pivotal transcription factor with multiple levels of regulation; previous studies have shown perturbation of NF-kappaB signaling in both mdx and DMD muscle. Moreover, L-arginine decreases the activity of metalloproteinase (MMP)-2 and MMP-9, which are transcriptionally activated by NF-kappaB. We show that the inhibitory effect of L-arginine on the NF-kappaB/MMP cascade reduces beta-dystroglycan cleavage and translocates utrophin and nNOS throughout the sarcolemma. Collectively, our results clarify the molecular events by which L-arginine promotes muscle membrane integrity in dystrophic muscle and suggest that NF-kappaB-related signaling cascades could be potential therapeutic targets for DMD management.
Collapse
Affiliation(s)
- Karim Hnia
- INSERM ERI 25 Muscle et Pathologies, CHU A. de Villeneuve, Université de Montpellier1, EA 4202, 34295 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Okazaki T, Ebihara S, Asada M, Yamanda S, Saijo Y, Shiraishi Y, Ebihara T, Niu K, Mei H, Arai H, Yambe T. Macrophage colony-stimulating factor improves cardiac function after ischemic injury by inducing vascular endothelial growth factor production and survival of cardiomyocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1093-103. [PMID: 17717142 PMCID: PMC1988861 DOI: 10.2353/ajpath.2007.061191] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macrophage colony-stimulating factor (M-CSF), known as a hematopoietic growth factor, induces vascular endothelial growth factor (VEGF) production from skeletal muscles. However, the effects of M-CSF on cardiomyocytes have not been reported. Here, we show M-CSF increases VEGF production from cardiomyocytes, protects cardiomyocytes and myotubes from cell death, and improves cardiac function after ischemic injury. In mice, M-CSF increased VEGF production in hearts and in freshly isolated cardiomyocytes, which showed M-CSF receptor expression. In rat cell line H9c2 cardiomyocytes and myotubes, M-CSF induced VEGF production via the Akt signaling pathway, and M-CSF pretreatment protected these cells from H(2)O(2)-induced cell death. M-CSF activated Akt and extracellular signal-regulated kinase signaling pathways and up-regulated downstream anti-apoptotic Bcl-xL expression in these cells. Using goats as a large animal model of myocardial infarction, we found that M-CSF treatment after the onset of myocardial infarction by permanent coronary artery ligation promoted angiogenesis in ischemic hearts but did not reduce the infarct area. M-CSF pretreatment of the goat myocardial infarction model by coronary artery occlusion-reperfusion improved cardiac function, as assessed by hemodynamic parameters and echocardiography. These results suggest M-CSF might be a novel therapeutic agent for ischemic heart disease.
Collapse
Affiliation(s)
- Tatsuma Okazaki
- Department of Geriatrics and Gerontology, Tohoku University School of Medicine, Seiryo-machi 1-1, Aoba-ku, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Odom GL, Gregorevic P, Chamberlain JS. Viral-mediated gene therapy for the muscular dystrophies: successes, limitations and recent advances. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1772:243-62. [PMID: 17064882 PMCID: PMC1894910 DOI: 10.1016/j.bbadis.2006.09.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 09/16/2006] [Accepted: 09/20/2006] [Indexed: 02/07/2023]
Abstract
Much progress has been made over the past decade elucidating the molecular basis for a variety of muscular dystrophies (MDs). Accordingly, there are examples of mouse models of MD whose disease progression has been halted in large part with the use of viral vector technology. Even so, we must acknowledge significant limitations of present vector systems that must be overcome prior to successful treatment of humans with such approaches. This review will present a variety of viral-mediated therapeutic strategies aimed at counteracting the muscle-wasting symptoms associated with muscular dystrophy. We include viral vector systems used for muscle gene transfer, with a particular emphasis on adeno-associated virus. Findings of several encouraging studies focusing on repair of the mutant dystrophin gene are also included. Lastly, we present a discussion of muscle compensatory therapeutics being considered that include pathways involved in the up-regulation of utrophin, promotion of cellular adhesion, enhancement of muscle mass, and antagonism of the inflammatory response. Considering the complexity of the muscular dystrophies, it appears likely that a multilayered approach tailored to a patient sub-group may be warranted in order to effectively contest the progression of this devastating disease.
Collapse
Affiliation(s)
- Guy L. Odom
- Department of Neurology Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195-7720, USA
| | - Paul Gregorevic
- Department of Neurology Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195-7720, USA
| | - Jeffrey S. Chamberlain
- Department of Neurology Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195-7720, USA
| |
Collapse
|
19
|
Stupka N, Plant DR, Schertzer JD, Emerson TM, Bassel-Duby R, Olson EN, Lynch GS. Activated calcineurin ameliorates contraction-induced injury to skeletal muscles of mdx dystrophic mice. J Physiol 2006; 575:645-56. [PMID: 16793906 PMCID: PMC1819459 DOI: 10.1113/jphysiol.2006.108472] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 06/15/2006] [Indexed: 11/08/2022] Open
Abstract
Utrophin expression is regulated by calcineurin and up-regulating utrophin can decrease the susceptibility of dystrophic skeletal muscle to contraction-induced injury. We overexpressed the constitutively active calcineurin-A alpha in skeletal muscle of mdx dystrophic mice (mdx CnA*) and examined the tibialis anterior muscle to determine whether the presence of activated calcineurin promotes resistance to muscle damage after lengthening contractions. Two stretches (10 s apart) of 40% strain relative to muscle fibre length were initiated from the plateau of a maximal isometric tetanic contraction. Muscle damage was assessed 1, 5 and 15 min later by the deficit in maximum isometric force and by quantifying the proportion of muscle fibres staining positive for intracytoplasmic albumin. The force deficit at all time points after the lengthening contractions was approximately 80% in mdx muscles and 30% in mdx CnA* muscles. The proportion of albumin-positive fibres was significantly less in control and injured muscles from mdx CnA* mice than from mdx mice. Compared with mdx mice, mean fibre cross-sectional area was 50% less in muscles from mdx CnA* mice. Furthermore, muscles from mdx CnA* mice exhibited a higher proportion of fibres expressing the slow(er) myosin heavy chain (MyHC) I and IIa isoforms, prolonged contraction and relaxation times, lower absolute and normalized maximum forces, and a clear leftward shift of the frequency-force relationship with greater force production at lower stimulation frequencies. These are structural and functional markers of a slower muscle phenotype. Taken together, our findings show that muscles from mdx CnA* mice have a smaller mean fibre cross-sectional area, a greater sarcolemmal to cytoplasmic volume ratio, and an increase in utrophin expression, promoting an attenuated susceptibility to contraction-induced injury. We conclude that increased calcineurin activity may confer functional benefits to dystrophic skeletal muscles.
Collapse
Affiliation(s)
- Nicole Stupka
- Department of Physiology, the University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
20
|
Miura P, Jasmin BJ. Utrophin upregulation for treating Duchenne or Becker muscular dystrophy: how close are we? Trends Mol Med 2006; 12:122-9. [PMID: 16443393 DOI: 10.1016/j.molmed.2006.01.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 12/16/2005] [Accepted: 01/13/2006] [Indexed: 12/30/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disorder for which there is currently no effective treatment. This disorder is caused by mutations or deletions in the gene encoding dystrophin that prevent expression of dystrophin at the sarcolemma. A promising pharmacological treatment for DMD aims to increase levels of utrophin, a homolog of dystrophin, in muscle fibers of affected patients to compensate for the absence of dystrophin. Here, we review recent developments in our understanding of the regulatory pathways that govern utrophin expression, and highlight studies that have used activators of these pathways to alleviate the dystrophic symptoms in DMD animal models. The results of these preclinical studies are promising and bring us closer to implementing appropriate utrophin-based drug therapies for DMD patients.
Collapse
Affiliation(s)
- Pedro Miura
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | | |
Collapse
|
21
|
Matecki S, Dudley RWR, Divangahi M, Gilbert R, Nalbantoglu J, Karpati G, Petrof BJ. Therapeutic gene transfer to dystrophic diaphragm by an adenoviral vector deleted of all viral genes. Am J Physiol Lung Cell Mol Physiol 2004; 287:L569-76. [PMID: 15155269 DOI: 10.1152/ajplung.00117.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Duchenne muscular dystrophy is caused by defects in the dystrophin gene, and the mdx mouse is the most frequently employed genetic model of this disease. It is well known that different muscle groups do not respond in the same way to dystrophin deficiency. In particular, the mdx mouse diaphragm exhibits severe morphological and functional changes not found in other mdx muscles. Use of early generation adenoviral vectors to deliver genes to the diaphragm in immunocompetent mdx mice has been associated with substantial functional toxicity and a rapid loss of transgene expression. Here we determined the response to dystrophin gene replacement in the mdx diaphragm using a "gutted" adenoviral vector that contains the coding sequence of two full-length dystrophin genes and is deleted of most viral DNA sequences. At 1 wk postdelivery of the vector, 23.6 +/- 4% of total fibers in the injected diaphragm bundle expressed dystrophin at the sarcolemma, which remained stable over the study duration of 30 days without the need for continuous immunosuppression. Treated diaphragms showed a significantly improved resistance to the abnormal force deficits induced by high-stress muscle contractions, the latter being a functional hallmark of dystrophin-deficient muscle. This functional amelioration was achieved despite the presence of mildly increased inflammation (CD4+ and CD8+ lymphocytes) within the vector-treated diaphragms. To our knowledge, this is the first demonstration that a viral vector can achieve reversal of functional abnormalities in the dystrophic diaphragm via therapeutic dystrophin gene transfer without the need for sustained immunosuppressive therapy.
Collapse
Affiliation(s)
- Stefan Matecki
- Respiratory Division, Rm. L411, Royal Victoria Hospital, 687 Pine Ave. W., Montréal, Québec, Canada H3A 1A1
| | | | | | | | | | | | | |
Collapse
|
22
|
Dudley RWR, Lu Y, Gilbert R, Matecki S, Nalbantoglu J, Petrof BJ, Karpati G. Sustained Improvement of Muscle Function One Year After Full-Length Dystrophin Gene Transfer intomdxMice by a Gutted Helper-Dependent Adenoviral Vector. Hum Gene Ther 2004; 15:145-56. [PMID: 14975187 DOI: 10.1089/104303404772679959] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Dystrophin gene transfer using helper-dependent adenoviral vectors (HDAd) deleted of all viral genes is a promising option to treat muscles in Duchenne muscular dystrophy (DMD). Previously, we reported high-level dystrophin expression and functional correction of dystrophin-deficient (mdx) mouse muscle 60 days after gene transfer with an HDAd encoding two full-length murine dystrophin cDNAs (referred to as HDCBDysM). In the present study, we tested the long-term efficacy of HDCBDysM by examining muscle contractility parameters and the stability of dystrophin expression 1 year after injection into neonatal mdx muscles. At this point, HDCBDysM-treated muscles averaged 52% dystrophin-positive fibers. Treated muscles also displayed significantly greater isometric force production as well as greater resistance to the force deficits and damage caused by eccentric contractions. The level of protection against eccentric contraction-induced force deficits correlated with the percentage of dystrophin-positive fibers. Furthermore, HDCBDysM treatment restored the dystrophin-glycoprotein complex (DGC) to the sarcolemma and improved other aspects of mdx muscle histopathology examined (central nucleation, muscle hypertrophy, and mononuclear [phagocytic] cell infiltration). These improvements occurred despite the induction of a humoral response against murine dystrophin. Our results indicate that major therapeutic benefits of HDCBDysM are maintained for a long period of the animals' lifespan and suggest that HDCBDys holds promise for treating DMD by gene therapy.
Collapse
Affiliation(s)
- Roy W R Dudley
- Respiratory Division, McGill University Health Center and Meakins-Christie Laboratories, McGill University, Montréal, Québec, Canada, H3A 1A1
| | | | | | | | | | | | | |
Collapse
|
23
|
Karpati G. Molecular therapies for the nervous system and muscle. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2004:159-78. [PMID: 12894456 DOI: 10.1007/978-3-662-05352-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- G Karpati
- Montreal Neurological Institute and Hospital, 3801 rue University Montreal, Quebec, H3A 2B4, Canada.
| |
Collapse
|
24
|
Voisin V, de la Porte S. Therapeutic Strategies for Duchenne and Becker Dystrophies. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:1-30. [PMID: 15548414 DOI: 10.1016/s0074-7696(04)40001-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Duchenne muscular dystrophy (DMD), a severe X-linked genetic disease affecting one in 3500 boys, is the most common myopathy in children. DMD is due to a lack of dystrophin, a submembrane protein of the cytoskeleton, which leads to the progressive degeneration of skeletal, cardiac, and smooth muscle tissue. A milder form of the disease, Becker muscular dystrophy (BMD), is characterized by the presence of a semifunctional truncated dystrophin, or reduced levels of full-length dystrophin. DMD is the focus of three different supportive or therapeutic approaches: gene therapy, cell therapy, and drug therapy. Here we consider these approaches in terms of three potential goals: improvement of dystrophic phenotype, expression of dystrophin, and overexpression of utrophin. Utrophin exhibits 80% homology with dystrophin and is able to perform similar functions. Pharmacological strategies designed to overexpress utrophin appear promising and may circumvent many obstacles to gene and cell-based therapies.
Collapse
Affiliation(s)
- Vincent Voisin
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, 91198 Gif sur Yvette, France
| | | |
Collapse
|
25
|
Bonuccelli G, Sotgia F, Schubert W, Park DS, Frank PG, Woodman SE, Insabato L, Cammer M, Minetti C, Lisanti MP. Proteasome inhibitor (MG-132) treatment of mdx mice rescues the expression and membrane localization of dystrophin and dystrophin-associated proteins. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1663-75. [PMID: 14507673 PMCID: PMC1868305 DOI: 10.1016/s0002-9440(10)63523-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene, is absent in the skeletal muscle of DMD patients and mdx mice. At the plasma membrane of skeletal muscle fibers, dystrophin associates with a multimeric protein complex, termed the dystrophin-glycoprotein complex (DGC). Protein members of this complex are normally absent or greatly reduced in dystrophin-deficient skeletal muscle fibers, and are thought to undergo degradation through an unknown pathway. As such, we reasoned that inhibition of the proteasomal degradation pathway might rescue the expression and subcellular localization of dystrophin-associated proteins. To test this hypothesis, we treated mdx mice with the well-characterized proteasomal inhibitor MG-132. First, we locally injected MG-132 into the gastrocnemius muscle, and observed the outcome after 24 hours. Next, we performed systemic treatment using an osmotic pump that allowed us to deliver different concentrations of the proteasomal inhibitor, over an 8-day period. By immunofluorescence and Western blot analysis, we show that administration of the proteasomal inhibitor MG-132 effectively rescues the expression levels and plasma membrane localization of dystrophin, beta-dystroglycan, alpha-dystroglycan, and alpha-sarcoglycan in skeletal muscle fibers from mdx mice. Furthermore, we show that systemic treatment with the proteasomal inhibitor 1) reduces muscle membrane damage, as revealed by vital staining (with Evans blue dye) of the diaphragm and gastrocnemius muscle isolated from treated mdx mice, and 2) ameliorates the histopathological signs of muscular dystrophy, as judged by hematoxylin and eosin staining of muscle biopsies taken from treated mdx mice. Thus, the current study opens new and important avenues in our understanding of the pathogenesis of DMD. Most importantly, these new findings may have clinical implications for the pharmacological treatment of patients with DMD.
Collapse
Affiliation(s)
- Gloria Bonuccelli
- Department of Molecular Pharmacology and The Albert Einstein Cancer Center, Albert Einstein School of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cerletti M, Negri T, Cozzi F, Colpo R, Andreetta F, Croci D, Davies KE, Cornelio F, Pozza O, Karpati G, Gilbert R, Mora M. Dystrophic phenotype of canine X-linked muscular dystrophy is mitigated by adenovirus-mediated utrophin gene transfer. Gene Ther 2003; 10:750-7. [PMID: 12704413 DOI: 10.1038/sj.gt.3301941] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Utrophin is highly homologous and structurally similar to dystrophin, and in gene delivery experiments in mdx mice was able to functionally replace dystrophin. We performed mini-utrophin gene transfer in Golden Retriever dogs with canine muscular dystrophy (CXMD). Unlike the mouse model, the clinicopathological phenotype of CXMD is similar to that of Duchenne muscular dystrophy (DMD). We injected an adenoviral vector expressing a synthetic utrophin into tibialis anterior muscles of newborn dogs affected with CXMD and examined transgene expression by RNA and protein analysis at 10, 30 and 60 days postinjection in cyclosporin-treated and -untreated animals. Immunosuppression by cyclosporin was required to mitigate the immune response to viral and transgene antigens. RT-PCR analysis showed the presence of the exogenous transcript in the muscle of cyclosporin-treated and -untreated animals. The transgenic utrophin was efficiently expressed at the extrajunctional membrane in immunosuppressed dogs and this expression was stable for at least 60 days. We found reduced fibrosis and increased expression of dystrophin-associated proteins (DAPs) in association with muscle areas expressing the utrophin minigene, indicating that mini-utrophin can functionally compensate for lack of dystrophin in injected muscles. For this reason, utrophin transfer to dystrophin-deficient muscle appears as a promising therapeutic approach to DMD.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- CD4 Lymphocyte Count
- Cyclosporine/therapeutic use
- Cytoskeletal Proteins/genetics
- Dog Diseases/immunology
- Dog Diseases/pathology
- Dog Diseases/therapy
- Dogs
- Dystrophin/metabolism
- Female
- Fibrosis
- Gene Expression
- Genetic Therapy/methods
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- Immunohistochemistry/methods
- Immunosuppressive Agents/therapeutic use
- Male
- Membrane Proteins/genetics
- Models, Animal
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/immunology
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/therapy
- Muscular Dystrophy, Duchenne/immunology
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Transduction, Genetic/methods
- Transgenes
- Utrophin
Collapse
Affiliation(s)
- M Cerletti
- Department of Neuromuscular Diseases, Istituto Nazionale Neurologico 'C. Besta' Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bogdanovich S, Krag TOB, Barton ER, Morris LD, Whittemore LA, Ahima RS, Khurana TS. Functional improvement of dystrophic muscle by myostatin blockade. Nature 2002; 420:418-21. [PMID: 12459784 DOI: 10.1038/nature01154] [Citation(s) in RCA: 627] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2002] [Accepted: 09/16/2002] [Indexed: 01/17/2023]
Abstract
Mice and cattle with mutations in the myostatin (GDF8) gene show a marked increase in body weight and muscle mass, indicating that this new member of the TGF-beta superfamily is a negative regulator of skeletal muscle growth. Inhibition of the myostatin gene product is predicted to increase muscle mass and improve the disease phenotype in a variety of primary and secondary myopathies. We tested the ability of inhibition of myostatin in vivo to ameliorate the dystrophic phenotype in the mdx mouse model of Duchenne muscular dystrophy (DMD). Blockade of endogenous myostatin by using intraperitoneal injections of blocking antibodies for three months resulted in an increase in body weight, muscle mass, muscle size and absolute muscle strength in mdx mouse muscle along with a significant decrease in muscle degeneration and concentrations of serum creatine kinase. The functional improvement of dystrophic muscle by myostatin blockade provides a novel, pharmacological strategy for treatment of diseases associated with muscle wasting such as DMD, and circumvents the major problems associated with conventional gene therapy in these disorders.
Collapse
MESH Headings
- Animals
- Antibodies/immunology
- Antibodies/pharmacology
- Antibodies/therapeutic use
- Body Weight/drug effects
- Creatine Kinase/blood
- Male
- Mice
- Mice, Inbred mdx
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/physiology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiology
- Muscular Dystrophy, Animal/drug therapy
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/physiopathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Myostatin
- Organ Size/drug effects
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/immunology
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Sasha Bogdanovich
- Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, Richards A-601, Philadelphia, Pennsylvania 19104-6085, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Wells DJ, Wells KE. Gene transfer studies in animals: what do they really tell us about the prospects for gene therapy in DMD? Neuromuscul Disord 2002; 12 Suppl 1:S11-22. [PMID: 12206790 DOI: 10.1016/s0960-8966(02)00077-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is a pressing need to develop new therapeutic approaches to Duchenne muscular dystrophy, an X-linked fatal disease primarily affecting skeletal and cardiac muscle. Gene therapy is an approach that has attracted much interest since the description of the Duchenne muscular dystrophy gene and its mutations in 1987. Since 1990 numerous reporter and dystrophin gene transfer studies have been conducted on muscles of animals but mostly in mice. Experimental protocols have ranged from germ-line gene transfer (via the production of transgenics) to somatic gene transfer studies using viral or non-viral vectors. But what have we actually learned from such studies that can be applied to patients with Duchenne muscular dystrophy? Various dystrophin, utrophin and integrin recombinant cDNAs have been shown to prevent the development of muscular dystrophy in transgenic dystrophic (mdx) mice. Somatic gene transfer prior to the onset of pathology have been shown to prevent the development of the muscular dystrophy in the mdx mouse but the data is less convincing for the beneficial effects of somatic gene transfer following the establishment of pathology. The time of onset and the course of the disease differ substantially between mouse and man and raise concerns about the applicability of gene therapy in man where the disease manifests in utero and the progression is more severe. The other major concern relates to uncertainty over the efficiency of the different vectors in man, particularly as many patients are likely to have encountered the infectious forms of the viruses that are proposed as vectors.
Collapse
Affiliation(s)
- Dominic J Wells
- Gene Targeting Unit, Department of Neuromuscular Diseases, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College, Charing Cross Campus, St. Dunstan's Road, London W6 8RP, UK.
| | | |
Collapse
|
29
|
Gilbert R, Liu A, Petrof B, Nalbantoglu J, Karpati G. Improved performance of a fully gutted adenovirus vector containing two full-length dystrophin cDNAs regulated by a strong promoter. Mol Ther 2002; 6:501-9. [PMID: 12377192 DOI: 10.1006/mthe.2002.0689] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dystrophin gene transfer using gutted or helper-dependent adenoviruses (HDAd), which have most of their genes deleted, is a promising approach to treat Duchenne muscular dystrophy. In an attempt to boost the amount of dystrophin produced after gene transfer, we have constructed a fully deleted HDAd (HDCBDys2x) containing two human dystrophin cDNAs controlled by the powerful hybrid cytomegalovirus enhancer/beta-actin promoter. We demonstrated high dystrophin expression after infection of muscle cultures with HDCBDys2x. Similarly, high (mean=583) and moderate (mean=124) numbers of muscle fibers were transduced in anterior tibialis muscle after intramuscular injection of HDCBDys2x in neonate and adult dystrophindeficient (mdx) mice 10 days postinjection. In fact, in the neonatally injected mdx mice, the transferred dystrophin was five times more abundant than in normal human muscle. However, the high early transduction level was transient in both animal groups, and we observed a humoral response against the human dystrophin. In contrast, we demonstrated sustained dystrophin expression in immunodeficient mouse muscles. Dystrophin expression of HDCBDys2x could be further increased in the presence of an E1/E3-deleted (first-generation) adenovirus, thus demonstrating that the latter vector synthesizes trans-acting enhancing factors. We have achieved abundant dystrophin expression with our new, improved HDAd. It is anticipated that high longterm transgene expression will be possible by employing weaker immunogenic transgenes.
Collapse
Affiliation(s)
- Rénald Gilbert
- Neuromuscular Research Group, Montreal Neurological Institute, McGill University, Montréal, Québec, H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
30
|
Gilchrist SC, Ontell MP, Kochanek S, Clemens PR. Immune response to full-length dystrophin delivered to Dmd muscle by a high-capacity adenoviral vector. Mol Ther 2002; 6:359-68. [PMID: 12231172 DOI: 10.1006/mthe.2002.0675] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenoviral vector-mediated gene transfer to skeletal muscle is a promising potential treatment for Duchenne muscular dystrophy. However, the immunological response to viral antigens and the therapeutic protein expressed by the delivered gene could prevent effective treatment. In this study, we investigated the immune response induced by adenoviral and dystrophin antigens presented by high-capacity adenoviral vector-mediated dystrophin and beta-galactosidase delivery to skeletal muscle of a mouse model that is both dystrophin-deficient and lacZ transgenic. Direct intramuscular gene delivery of the high-capacity adenoviral vector encoding full-length murine dystrophin resulted in stable expression of recombinant dystrophin for 5 months in mice treated as neonates and for 4 weeks in mice treated as adults. We observed neutralizing antibody to adenoviral antigens only in mice treated as adults and not in mice treated as neonates. This suggested that adenoviral antigens were only presented at the time of vector administration when the neonatal immune system was not yet mature. In contrast, antibodies to dystrophin were observed both in mice treated as neonates and in mice treated as adults. The development of an anti-dystrophin antibody response in mice treated with the high-capacity adenoviral vector as neonates suggested that dystrophin antigens were presented to the immune system at a time remote from the gene delivery, when the immune system was mature. Interestingly, an antibody response against beta-galactosidase developed late in the course of mice treated with the high-capacity adenoviral vector as neonates, suggesting a loss of tolerance to beta-galactosidase, a self-antigen in these transgenic mice. Our results suggest that future human trials of dystrophin gene delivery will need to address the potential for immunity induced by ongoing segmental degeneration of partially treated muscle fibers and presentation of recombinant dystrophin antigens in the context of a Duchenne muscular dystrophy patient.
Collapse
Affiliation(s)
- Soyoung C Gilchrist
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
31
|
Dellorusso C, Crawford RW, Chamberlain JS, Brooks SV. Tibialis anterior muscles in mdx mice are highly susceptible to contraction-induced injury. J Muscle Res Cell Motil 2002; 22:467-75. [PMID: 11964072 DOI: 10.1023/a:1014587918367] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Skeletal muscles of patients with Duchenne muscular dystrophy (DMD) and mdx mice lack dystrophin and are more susceptible to contraction-induced injury than control muscles. Our purpose was to develop an assay based on the high susceptibility to injury of limb muscles in mdx mice for use in evaluating therapeutic interventions. The assay involved two stretches of maximally activated tibialis anterior (TA) muscles in situ. Stretches of 40% strain relative to muscle fiber length were initiated from the plateau of isometric contractions. The magnitude of damage was assessed one minute later by the deficit in isometric force. At all ages (2-19 months), force deficits were four- to seven-fold higher for muscles in mdx compared with control mice. For control muscles, force deficits were unrelated to age, whereas force deficits increased dramatically for muscles in mdx mice after 8 months of age. The increase in susceptibility to injury of muscles from older mdx mice did not parallel similar adverse effects on muscle mass or force production. The in situ stretch protocol of TA muscles provides a valuable assay for investigations of the mechanisms of injury in dystrophic muscle and to test therapeutic interventions for reversing DMD.
Collapse
Affiliation(s)
- C Dellorusso
- Department of Human Genetics, University of Michigan, Ann Arbor 48109-2007, USA
| | | | | | | |
Collapse
|
32
|
Mueller GM, O'Day T, Watchko JF, Ontell M. Effect of injecting primary myoblasts versus putative muscle-derived stem cells on mass and force generation in mdx mice. Hum Gene Ther 2002; 13:1081-90. [PMID: 12067441 DOI: 10.1089/104303402753812485] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is well established that the injection of normal myoblasts or of muscle-derived stem cells (MDSCs) into the muscle of dystrophin-deficient mdx mice results in the incorporation of a number of donor myoblasts into the host muscle. However, the effect of the injected exogenous cells on mdx muscle mass and functional capacity has not been evaluated. This study evaluates the mass and functional capacity of the extensor digitorum longus (EDL) muscles of adult, male mdx mice that received intramuscular injections of primary myoblasts or of MDSCs (isolated by a preplating technique; Qu, Z., Balkir, L., van Deutekom, J.C., Robbins, P.D., Pruchnic, R., and Huard, J., J. Cell Biol. 1998;142:1257-1267) derived from normal mice. Evaluations were made 9 weeks after cell transplantation. Uninjected mdx EDL muscles have a mass 50% greater than that of age-matched C57BL/10J (normal) EDL muscles. Injections of either primary myoblasts or MDSCs have no effect on the mass of mdx EDL muscles. EDL muscles of mdx mice generate 43% more absolute twitch tension and 43% less specific tetanic tension then do EDL muscles of C57BL/10J mice. However, the absolute tetanic and specific twitch tension of mdx and C57BL/10J EDL muscles are similar. Injection of either primary myoblasts or MDSCs has no effect on the absolute or specific twitch and tetanic tensions of mdx muscle. Approximately 25% of the myofibers in mdx EDL muscles that received primary myoblasts react positively with antibody to dystrophin. There is no significant difference in the number of dystrophin-positive myofibers when MDSCs are injected. Regardless of the source of donor cells, dystrophin is limited to short distances (60-900 microm) along the length of the myofibers. This may, in part, explain the failure of cellular therapy to alter the contractile properties of murine dystrophic muscle.
Collapse
Affiliation(s)
- Gunhild M Mueller
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
33
|
Skog J, Mei YF, Wadell G. Human adenovirus serotypes 4p and 11p are efficiently expressed in cell lines of neural tumour origin. J Gen Virol 2002; 83:1299-1309. [PMID: 12029144 DOI: 10.1099/0022-1317-83-6-1299] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most currently used adenovirus vectors are based upon adenovirus serotypes 2 and 5 (Ad2 and Ad5), which have limited efficiencies for gene transfer to human neural cells. Both serotypes bind to the known adenovirus receptor, CAR (coxsackievirus and adenovirus receptor), and have restricted cell tropism. The purpose of this study was to find vector candidates that are superior to Ad5 in infecting human neural tumours. Using flow cytometry, the vector candidates Ad4p, Ad11p and Ad17p were compared to the commonly used adenovirus vector Ad5v for their binding capacity to neural cell lines derived from glioblastoma, medulloblastoma and neuroblastoma cell lines. The production of viral structural proteins and the CAR-binding properties of the different serotypes were also assessed in these cells. Computer-based models of the fibre knobs of Ad4p and Ad17 were created based upon the crystallized fibre knob structure of adenoviruses and analysed for putative receptor-interacting regions that differed from the fibre knob of Ad5. The non CAR-binding vector candidate Ad11p showed clearly the best binding capacity to all of the neural cell lines, binding more than 90% of cells of all of the neural cell lines tested, in contrast to 20% or less for the commonly used vector Ad5v. Ad4p and Ad11p were also internalized and produced viral proteins more successfully than Ad5. Ad4p showed a low binding ability but a very efficient capacity for infection in cell culture. Ad17p virions neither bound or efficiently infected any of the neural cell lines studied.
Collapse
Affiliation(s)
- Johan Skog
- Department of Virology, Umeå University, SE-901 85 Umeå, Sweden1
| | - Ya-Fang Mei
- Department of Virology, Umeå University, SE-901 85 Umeå, Sweden1
| | - Göran Wadell
- Department of Virology, Umeå University, SE-901 85 Umeå, Sweden1
| |
Collapse
|
34
|
Blake DJ, Weir A, Newey SE, Davies KE. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 2002; 82:291-329. [PMID: 11917091 DOI: 10.1152/physrev.00028.2001] [Citation(s) in RCA: 846] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The X-linked muscle-wasting disease Duchenne muscular dystrophy is caused by mutations in the gene encoding dystrophin. There is currently no effective treatment for the disease; however, the complex molecular pathology of this disorder is now being unravelled. Dystrophin is located at the muscle sarcolemma in a membrane-spanning protein complex that connects the cytoskeleton to the basal lamina. Mutations in many components of the dystrophin protein complex cause other forms of autosomally inherited muscular dystrophy, indicating the importance of this complex in normal muscle function. Although the precise function of dystrophin is unknown, the lack of protein causes membrane destabilization and the activation of multiple pathophysiological processes, many of which converge on alterations in intracellular calcium handling. Dystrophin is also the prototype of a family of dystrophin-related proteins, many of which are found in muscle. This family includes utrophin and alpha-dystrobrevin, which are involved in the maintenance of the neuromuscular junction architecture and in muscle homeostasis. New insights into the pathophysiology of dystrophic muscle, the identification of compensating proteins, and the discovery of new binding partners are paving the way for novel therapeutic strategies to treat this fatal muscle disease. This review discusses the role of the dystrophin complex and protein family in muscle and describes the physiological processes that are affected in Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Derek J Blake
- Medical Research Council, Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|
35
|
Chaubourt E, Voisin V, Fossier P, Baux G, Israël M, De La Porte S. Muscular nitric oxide synthase (muNOS) and utrophin. JOURNAL OF PHYSIOLOGY, PARIS 2002; 96:43-52. [PMID: 11755782 DOI: 10.1016/s0928-4257(01)00079-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Duchenne muscular dystrophy (DMD), the severe X-linked recessive disorder which results in progressive muscle degeneration, is due to a lack of dystrophin, a membrane cytoskeletal protein. Three types of treatment are envisaged: pharmacological (glucocorticoid), myoblast transplantation, and gene therapy. An alternative to the pharmacological approach is to compensate for dystrophin loss by the upregulation of another cytoskeletal protein, utrophin. Utrophin and dystrophin are part of a complex of proteins and glycoproteins, which links the basal lamina to the cytoskeleton, thus ensuring the stability of the muscle membrane. One protein of the complex, syntrophin, is associated with a muscular isoform of the neuronal nitric oxide synthase (nNOS). We have demonstrated an overexpression of utrophin, visualised by immunofluorescence and quantified by Western blotting, in normal myotubes and in mdx (the animal model of DMD) myotubes, as in normal (C57) and mdx mice, both treated with nitric oxide (NO) donor or L-arginine, the NOS substrate. There is evidence that utrophin may be capable of performing the same cellular functions as dystrophin and may functionally compensate for its lack. Thus, we propose to use NO donors, as palliative treatment of Duchenne and Becker muscular dystrophies, pending, or in combination with, gene and/or cellular therapy. Discussion has focussed on the various isoforms of NOS that could be implicated in the regeneration process. Dystrophic and healthy muscles respond to treatment, suggesting that although NOS is delocalised in the cytoplasm in the case of DMD, it conserves substantial activity. eNOS present in mitochondria and iNOS present in cytoplasm and the neuromuscular junction could also be activated. Lastly, production of NO by endothelial NOS of the capillaries would also be beneficial through increased supply of metabolites and oxygen to the muscles.
Collapse
Affiliation(s)
- Emmanuel Chaubourt
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UPR 9040, Avenue de la Terrasse, 91198 Gif sur Yvette cedex, France
| | | | | | | | | | | |
Collapse
|
36
|
Guibinga GH, Ebihara S, Nalbantoglu J, Holland P, Karpati G, Petrof BJ. Forced myofiber regeneration promotes dystrophin gene transfer and improved muscle function despite advanced disease in old dystrophic mice. Mol Ther 2001; 4:499-507. [PMID: 11708887 DOI: 10.1006/mthe.2001.0482] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by defects in the dystrophin gene. In young dystrophic mdx mice, immature regenerating myofibers represent the principal substrate for adenovirus vector (AdV)-mediated dystrophin gene transfer. However, in DMD patients immature regenerating myofibers are generally sparse. Such a situation also exists in old mdx mice, which may represent a more realistic model. Therefore, here we have used old mdx mice (of 14- to 17 months of age) to test the hypothesis that one-time administration of a myonecrotic agent can transiently re-establish a population of immature myofibers susceptible to AdV-mediated dystrophin gene transfer. This strategy led to upregulation of the coxsackie/adenovirus attachment receptor by means of induction of regenerating myofibers, significantly augmented AdV-mediated dystrophin gene expression, and enhanced force-generating capacity. In addition, it led to an increased resistance to contraction-induced injury compared with untreated controls. The latter protective effect was positively correlated with the number of dystrophin-expressing myofibers (r=0.83, P<0.05). Accordingly, the risk:benefit ratio associated with the sequential use of forced myofiber regeneration and AdV-mediated dystrophin gene transfer was favorable in old mdx mice despite advanced disease. These findings have implications for the potential applicability of AdV-mediated gene therapy to DMD and other muscle diseases in which immature regenerating myofibers are lacking.
Collapse
Affiliation(s)
- G H Guibinga
- Respiratory Division, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada H3A 1A1
| | | | | | | | | | | |
Collapse
|
37
|
Gilbert R, Nalbantoglu J, Howell JM, Davies L, Fletcher S, Amalfitano A, Petrof BJ, Kamen A, Massie B, Karpati G. Dystrophin expression in muscle following gene transfer with a fully deleted ("gutted") adenovirus is markedly improved by trans-acting adenoviral gene products. Hum Gene Ther 2001; 12:1741-55. [PMID: 11560768 DOI: 10.1089/104303401750476249] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Helper-dependent adenoviruses (HDAd) are Ad vectors lacking all or most viral genes. They hold great promise for gene therapy of diseases such as Duchenne muscular dystrophy (DMD), because they are less immunogenic than E1/E3-deleted Ad (first-generation Ad or FGAd) and can carry the full-length (Fl) dystrophin (dys) cDNA (12 kb). We have compared the transgene expression of a HDAd (HDAdCMVDysFl) and a FGAd (FGAdCMV-dys) in cell culture (HeLa, C2C12 myotubes) and in the muscle of mdx mice (the mouse model for DMD). Both vectors encoded dystrophin regulated by the same cytomegalovirus (CMV) promoter. We demonstrate that the amount of dystrophin expressed was significantly higher after gene transfer with FGAdCMV-dys compared to HDAdCMVDysFl both in vitro and in vivo. However, gene transfer with HDAdCMVDysFl in the presence of a FGAd resulted in a significant increase of dystrophin expression indicating that gene products synthesized by the FGAd increase, in trans, the amount of dystrophin produced. This enhancement occurred in cell culture and after gene transfer in the muscle of mdx mice and dystrophic golden retriever (GRMD) dogs, another animal model for DMD. The E4 region of Ad is required for the enhancement, because no increase of dystrophin expression from HDAdCMVDysFl was observed in the presence of an E1/E4-deleted Ad in vitro and in vivo. The characterization of these enhancing gene products followed by their inclusion into an HDAd may be required to produce sufficient dystrophin to mitigate the pathology of DMD by HDAd-mediated gene transfer.
Collapse
Affiliation(s)
- R Gilbert
- Neuromuscular Research Group, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada, H3A 2B4
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Moisset PA, Tremblay JP. Gene therapy: a strategy for the treatment of inherited muscle diseases? Curr Opin Pharmacol 2001; 1:294-9. [PMID: 11712754 DOI: 10.1016/s1471-4892(01)00052-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The emergence of new vectors of viral origin (recombinant adeno-associated viruses, second and third generation adenoviruses) and a new potential source of cells for transplantation (muscle-derived stem cells) are broadening the panel of therapeutic options for myopathies. Although the perfect gene-transfer method(s) have not yet been found, recent findings will certainly constitute a strong knowledge base for future clinical trials.
Collapse
Affiliation(s)
- P A Moisset
- Human Genetics Unit, CHUL Research Center, Laval University, Ste-Foy, Quebec, Canada
| | | |
Collapse
|
39
|
Abstract
Muscular dystrophies (MD) are a clinically and genetically heterogeneous group of skeletal muscle-wasting diseases. Mutations in the dystrophin gene result in dystrophin deficiency, which constitutes the pathogenic basis of Duchenne and Becker MD (DMD and BMD). Several MD are caused by mutations in other recently identified genes coding for proteins linked to the sarcolemma, the nuclear envelope or the contractile apparatus. In addition, several MD have been mapped to different chromosomal loci and for most of them, the identification of the molecular defect is underway. The immediate result is an ongoing reclassification of the MD into disorders defined not by clinical characteristics but specific genetic mutations. At present, therapy of MD is based on symptomatic treatment and supportive care. Convincing evidence for clinical efficacy is only available for corticosteroids that also suffer from frequent and severe side effects. Up to now, curative therapy is not available, although promising new molecular therapies are under investigation in animal models of MD. Current treatment strategies are discussed and a perspective for effective molecular therapy is given.
Collapse
Affiliation(s)
- M C Walter
- Department of Neurology, Friedrich-Baur-Institut and Genzentrum München, Ludwig-Maximilians University, University of Munich, Ziemssenstr. 1a, 80336 München, Germany.
| | | |
Collapse
|
40
|
Abstract
Duchenne muscular dystrophy is a severe X-linked neuromuscular disease that affects approximately 1/3500 live male births in every human population, and is caused by a mutation in the gene that encodes the muscle protein dystrophin. The characterization and cloning of the dystrophin gene in 1987 was a major breakthrough and it was considered that simple replacement of the dystrophin gene would ameliorate the severe and progressive skeletal muscle wasting characteristic of Duchenne muscular dystrophy. After 20 years, attempts at replacing the dystrophin gene either experimentally or clinically have met with little success, but there have been many significant advances in understanding the factors that limit the delivery of a normal dystrophin gene into dystrophic host muscle. This review addresses the host immune response and donor myoblast changes underlying some of the major problems associated with myoblast-mediated dystrophin replacement, presents potential solutions, and outlines other novel therapeutic approaches.
Collapse
Affiliation(s)
- G M Smythe
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA 94304-5235, USA.
| | | | | |
Collapse
|