1
|
Li Y, Hu M, Zhang Z, Wu B, Zheng J, Zhang F, Hao J, Xue T, Li Z, Zhu C, Liu Y, Zhao L, Xu W, Xin P, Feng C, Wang W, Zhao Y, Qiu Q, Wang K. Origin and stepwise evolution of vertebrate lungs. Nat Ecol Evol 2025; 9:672-691. [PMID: 39953253 DOI: 10.1038/s41559-025-02642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2025] [Indexed: 02/17/2025]
Abstract
Lungs are essential respiratory organs in terrestrial vertebrates, present in most bony fishes but absent in cartilaginous fishes, making them an ideal model for studying organ evolution. Here we analysed single-cell RNA sequencing data from adult and developing lungs across vertebrate species, revealing significant similarities in cell composition, developmental trajectories and gene expression patterns. Surprisingly, a large proportion of lung-related genes, coexpression patterns and many lung enhancers are present in cartilaginous fishes despite their lack of lungs, suggesting that a substantial genetic foundation for lung development existed in the last common ancestor of jawed vertebrates. In addition, the 1,040 enhancers that emerged since the last common ancestor of bony fishes probably contain lung-specific elements that led to the development of lungs. We further identified alveolar type 1 cells as a mammal-specific alveolar cell type, along with several mammal-specific genes, including ager and sfta2, that are highly expressed in lungs. Functional validation showed that deletion of sfta2 in mice leads to severe respiratory defects, highlighting its critical role in mammalian lung features. Our study provides comprehensive insights into the evolution of vertebrate lungs, demonstrating how both regulatory network modifications and the emergence of new genes have shaped lung development and specialization across species.
Collapse
Affiliation(s)
- Ye Li
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Mingliang Hu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zhigang Zhang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Baosheng Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiangmin Zheng
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Fenghua Zhang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jiaqi Hao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Tingfeng Xue
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zhaohong Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chenglong Zhu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yuxuan Liu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Lei Zhao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Wenjie Xu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Peidong Xin
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Chenguang Feng
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| | - Wen Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- New Cornerstone Science Laboratory, Xi'an, China.
| | - Yilin Zhao
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China.
| | - Qiang Qiu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| | - Kun Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
2
|
Qadir AS, Das S, Nedunchezian S, Masuhara K, Desai TJ, Rehman J, Kadur Murthy P, Tsukasaki Y, Shao L, Malik AB. Physiological Modeling of the Vascularized Human Lung Organoid. Am J Respir Cell Mol Biol 2025; 72:354-363. [PMID: 39514019 PMCID: PMC12005031 DOI: 10.1165/rcmb.2024-0413ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Human lung organoids (hLOs) derived from induced pluripotent stem cells (iPSCs) are of great interest, as they inform lung development, such as differentiation of lung epithelial subtypes in the distal alveolar unit. An unaddressed question is whether introducing endothelial cells (ECs) and vascularization provides a better representation of hLOs. Here we describe a method in which vessels become integrated with hLOs. hLOs were generated by combining human iPSC-derived lung progenitor cells (LPs) with ECs at varying LP:EC ratios. At the optimal combination of both cells, we observed vessel infiltration of hLOs compared to without ECs. Red blood cells were seen in hLOs implanted into kidney capsules of NOD/SCID mice. Both human and mouse ECs conjoined to form chimeric vessels in hLOs. The vascularized hLOs showed alveolar type II epithelial (ATII) cells and ATI cells, although there was no difference in 1:1 ATII/ATI ratio. We observed primitive airway sacs with alveolar epithelial cells lining the lumen of vascularized hLOs. Electron microscopy revealed surfactant production in ATII cells of vascularized hLOs in contrast to absence of vessels. The vascularized hLOs also mounted a robust inflammatory response characterized by influx of mouse neutrophils after challenging mice with LPS. Thus, interactions of ECs with LPs generated vascularized hLOs that induced ATII and ATI differentiation, although not reaching to the ratio of 1:9 seen in mature human lungs. hLOs also showed the LPS induced inflammatory response upon transplantation into recipient mice. Our results show the potential of vascularized hLOs for studying human lung development and inflammatory lung injury.
Collapse
Affiliation(s)
- Abdul S. Qadir
- Department of Pharmacology and Regenerative Medicine
- The Center for Lung and Vascular Biology, and
| | - Sukanta Das
- Department of Pharmacology and Regenerative Medicine
- The Center for Lung and Vascular Biology, and
| | - Swathi Nedunchezian
- Department of Pharmacology and Regenerative Medicine
- The Center for Lung and Vascular Biology, and
| | - Kaori Masuhara
- Department of Pharmacology and Regenerative Medicine
- The Center for Lung and Vascular Biology, and
| | - Tushar J. Desai
- Department of Medicine, Stanford University School of Medicine, Palo Alto, California; and
| | - Jalees Rehman
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois
| | | | - Yoshikazu Tsukasaki
- Department of Pharmacology and Regenerative Medicine
- The Center for Lung and Vascular Biology, and
| | - Lijian Shao
- Department of Pharmacology and Regenerative Medicine
- Cell Biologic Inc., Chicago, Illinois
| | - Asrar B. Malik
- Department of Pharmacology and Regenerative Medicine
- The Center for Lung and Vascular Biology, and
| |
Collapse
|
3
|
Luna G, Verheyden J, Tan C, Kim E, Hwa M, Sahi J, Shen Y, Chung W, McCulley D, Sun X. MYRF is Essential in Mesothelial Cells to Promote Lung Development and Maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.635155. [PMID: 39990361 PMCID: PMC11844445 DOI: 10.1101/2025.02.13.635155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The mesothelium is a squamous monolayer that ensheathes internal organs, lines the body cavity, and the diaphragm. It serves as a protective barrier, coated in glycocalyx, and secretes lubricants to facilitate tissue movement. How the mesothelium forms is poorly understood. Here, we investigate Myrf , a transcription factor gene expressed in the mesothelium, because it carries variants in patients with Congenital Diaphragmatic Hernia (CDH), a disorder that affects the diaphragm, lung, and other organs. In mice, inactivation of Myrf early in organogenesis resulted in CDH and defective mesothelial specification, compromising its function as a signaling center for lung growth. Inactivation of Myrf later led to enhanced mesothelium differentiation into mesenchymal cell types through partial epithelial-to-mesenchymal transition (EMT), resulting in a unique accumulation of smooth muscle encasing the lung. In this role, MYRF functions in parallel with YAP/TAZ. Together, these findings establish MYRF as a critical regulator of mesothelium development, and when mutated, causes CDH.
Collapse
|
4
|
Zhao Y, Zhou Y, Zhang W, Liu M, Duan J, Zhang X, Ma Q, Wang Y, Zhang Y, Guo Z, Zhang T, Zuo W. Cloned airway basal progenitor cells to repair fibrotic lung through re-epithelialization. Nat Commun 2025; 16:1303. [PMID: 39900892 PMCID: PMC11790844 DOI: 10.1038/s41467-025-56501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025] Open
Abstract
Irreversible damage of the lung epithelium in idiopathic pulmonary fibrosis (IPF) patients causes high mortality worldwide, with no lung repair approaches available currently. Here we show that in murine and monkey models, the KRT5+ P63+ progenitor cells in airway basal layer can enter the alveolar area post fibrotic injury. Aided with an automated culture system, we clone and characterize airway basal progenitor cells from 44 donors with various lung conditions. Transplantation of human progenitor cells into the mouse lung efficiently re-epithelializes the injured alveolar area, forms new respiratory tract and saccule-like structures, which ameliorates fibrotic lesions and improves survival of mice. Mechanistically, the engrafted human progenitor cells do not function by differentiating into mature alveolar cells in mouse lung; instead, they differentiate into saccular cells expressing multiple tight junction proteins such as CLDN4, which help the lung to re-establish epithelial barriers. Furthermore, by cloning P63+ airway basal progenitors from larger mammals and birds, we construct multiple lung-chimerism animals and uncover the evolutionarily conserved roles of these progenitor cells in lung repair. Overall, our data highlight the fate of airway basal progenitor cells in fibrotic lung and provide a potential therapeutic strategy for pulmonary diseases that lack inherent recovery mechanisms.
Collapse
Affiliation(s)
- Yu Zhao
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Tongji Stem Cell Center, School of Medicine, Tongji University, Shanghai, China
| | - Yueqing Zhou
- Super Organ R&D Center, Regend Therapeutics, Shanghai, China
| | - Weipan Zhang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Tongji Stem Cell Center, School of Medicine, Tongji University, Shanghai, China
| | - Mingzhe Liu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Tongji Stem Cell Center, School of Medicine, Tongji University, Shanghai, China
| | - Jun Duan
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Tongji Stem Cell Center, School of Medicine, Tongji University, Shanghai, China
| | - Xiaopeng Zhang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Tongji Stem Cell Center, School of Medicine, Tongji University, Shanghai, China
| | | | - Yujia Wang
- Super Organ R&D Center, Regend Therapeutics, Shanghai, China
- Kiangnan Institute of Stem Cell, Hangzhou, China
| | - Yuzhen Zhang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhongliang Guo
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Ting Zhang
- Super Organ R&D Center, Regend Therapeutics, Shanghai, China.
- Kiangnan Institute of Stem Cell, Hangzhou, China.
| | - Wei Zuo
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
- Tongji Stem Cell Center, School of Medicine, Tongji University, Shanghai, China.
- Super Organ R&D Center, Regend Therapeutics, Shanghai, China.
- Kiangnan Institute of Stem Cell, Hangzhou, China.
| |
Collapse
|
5
|
Li J, Zhou Y, Shu T, Lei W, Tang Q, Yang Y, Zhang J, Chen W, Zhou B, Hu Q, Xing Y, Wang J, Wang C. Differentiation of lung tissue-resident c-Kit + cells into microvascular endothelial cells alleviates pulmonary vascular remodeling. Dev Cell 2025:S1534-5807(25)00030-9. [PMID: 39909047 DOI: 10.1016/j.devcel.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/28/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025]
Abstract
Pulmonary vascular remodeling (PVR), encompassing microvascular loss and muscularization, contributes to multiple respiratory diseases. c-Kit+ cells exhibit differentiation potential into both endothelial cells (ECs) and smooth muscle cells. The potential role of lung c-Kit+ cell differentiation in PVR, however, remains unclear. Lung c-Kit+ cells increase in pulmonary hypertension patients and in the SU5416/hypoxia (SuHx)-induced PVR mouse model. Employing genetic lineage tracing and single-cell RNA sequencing (scRNA-seq), we elucidate that lung-resident c-Kit+ cells display an aerocyte and venular endothelial differentiation in the SuHx model. Ablation of tissue-resident c-Kit+ cells exacerbates PVR. We identify an Nr2f2-expressing c-Kit+ cell subgroup, which exhibitsvenous EC differentiation and increases during PVR. Notably, the elevation of Nr2f2 in c-Kit+ cells via AAV enhances differentiation and mitigates PVR. These findings underscore the protective role of lung tissue-resident c-Kit+ cells in PVR, achieved by differentiating into mature ECs. Targeting NR2F2 expression in c-Kit+ cells emerges as a promising strategy for reversing PVR.
Collapse
Affiliation(s)
- Jinqiu Li
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yitian Zhou
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Ting Shu
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Wenqi Lei
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Qihao Tang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yang Yang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jin Zhang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wenhui Chen
- Department of Lung Transplantation, China-Japan Friendship Hospital, Beijing 100029, China
| | - Bin Zhou
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanjiang Xing
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| | - Jing Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| | - Chen Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
6
|
Iriondo C, Koornneef S, Skarp KP, Buscop-van Kempen M, Boerema-de Munck A, Rottier RJ. Simple-Flow: A 3D-Printed Multiwell Flow Plate to Coculture Primary Human Lung Cells at the Air-Liquid Interface. ACS Biomater Sci Eng 2025; 11:451-462. [PMID: 39719361 PMCID: PMC11734690 DOI: 10.1021/acsbiomaterials.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
Immortalized epithelial cell lines and animal models have been used in fundamental and preclinical research to study pulmonary diseases. However valuable, though, these models incompletely recapitulate the in vivo human lung, which leads to low predictive outcomes in potential respiratory treatments. Advanced technology and cell culture techniques stimulate the development of improved models that more closely mimic the physiology of the human lung. Nonetheless, most of these models are technically demanding and have a low throughput and reproducibility. Here, we describe a robust fluidic device consisting of a biocompatible and customizable 3D-printed cell culture plate, the Simple-Flow, which has medium throughput, is simple to manufacture, and is easy to set up. As a proof of principle, human primary bronchial epithelial cells (hPBECs) and human pulmonary microvascular endothelial cells (hMVECs) were cocultured on the apical and basolateral sides of the inset membranes, respectively. While hPBECs were cultured at the air-liquid interface to induce mucociliary differentiation, hMVECs were exposed to flow medium for up to 2 weeks. We show the versatility of 3D-printing technology in designing in vitro models for cell culturing applications, such as pediatric lung diseases or other pulmonary disorders.
Collapse
Affiliation(s)
- Cinta Iriondo
- Department
of Pediatric Surgery, Sophia Children’s Hospital, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
- Department
of Cell Biology, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
| | - Sem Koornneef
- Department
of Pediatric Surgery, Sophia Children’s Hospital, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
- Department
of Cell Biology, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
| | - Kari-Pekka Skarp
- Department
of Pediatric Surgery, Sophia Children’s Hospital, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
- Department
of Cell Biology, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
| | - Marjon Buscop-van Kempen
- Department
of Pediatric Surgery, Sophia Children’s Hospital, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
- Department
of Cell Biology, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
| | - Anne Boerema-de Munck
- Department
of Pediatric Surgery, Sophia Children’s Hospital, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
- Department
of Cell Biology, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
| | - Robbert J. Rottier
- Department
of Pediatric Surgery, Sophia Children’s Hospital, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
- Department
of Cell Biology, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
| |
Collapse
|
7
|
Zhang Z, Hu H, Xu Z, Shan C, Chen H, Xie K, Wang K, Wang Y, Zhu Q, Yin Y, Cai H, Zhang Y, Li Z. A Chemically Defined Culture for Tooth Reconstitution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404345. [PMID: 39601338 PMCID: PMC11744639 DOI: 10.1002/advs.202404345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/10/2024] [Indexed: 11/29/2024]
Abstract
It is known for decades that dental epithelium and mesenchyme can reconstitute and regenerate a functional tooth. However, the mechanism of tooth reconstitution remains largely unknown due to the lack of an efficient in vitro model. Here, a chemically defined culture system is established that supports tooth reconstitution, further development with normal anatomy, and prompt response to chemical interference in key developmental signaling pathways, termed as toothoids. By using such a system, it is discovered that, during reconstitution, instead of resetting the developmental clock, dental cells reorganized and restarted from the respective developmental stage where they are originally isolated. Moreover, co-stimulation of Activin A and Hedgehog/Smoothened agonist (SAG) sustained the initial induction of tooth fate from the first branchial arch, which would be otherwise quickly lost in culture. Furthermore, activation of Bone Morphogenetic Protein (BMP) signaling triggered efficient enamel formation in the late-stage toothoids, without affecting the normal development of ameloblasts. Together, these data highlight the toothoid culture as a powerful tool to dissect the molecular mechanisms of tooth reconstitution and regeneration.
Collapse
Affiliation(s)
- Ziwei Zhang
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Hong Hu
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Zhiheng Xu
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Ce Shan
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Hanyi Chen
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Kun Xie
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Kun Wang
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Yifu Wang
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Qing Zhu
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
- Department of AnesthesiologyWest China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationSichuan UniversityNo. 20, Section 3, South Renmin RoadChengdu610041China
| | - Yike Yin
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Haoyang Cai
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Yunqiu Zhang
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Zhonghan Li
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
- Department of AnesthesiologyWest China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationSichuan UniversityNo. 20, Section 3, South Renmin RoadChengdu610041China
- State Key Laboratory of Oral DiseaseWest China Hospital of StomatologySichuan UniversityNo. 14, Section 3, South Renmin RoadChengdu610041China
- Yunnan Key Laboratory of StomatologyDepartment of Pediatric DentistryThe Affiliated Stomatology Hospital of Kunming Medical UniversityKunming Medical UniversityNo. 1088, Mid‐Haiyuan RoadKunming650500China
| |
Collapse
|
8
|
Cui X, Fu J. Reinitiating lung development: a novel approach in the management of bronchopulmonary dysplasia. Respir Res 2024; 25:384. [PMID: 39449014 PMCID: PMC11515458 DOI: 10.1186/s12931-024-02996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the predominant chronic lung disease in preterm infants, linked with various adverse long-term outcomes. Multiple prenatal and postnatal risk factors can impede lung development, leading to BPD. Current management of BPD relies heavily on pharmacotherapies and alterations in ventilatory strategies. However, these interventions only mitigate BPD symptoms without addressing underlying alveolar, vascular, structural, and functional deficiencies. Given the retarded lung development in infants with BPD and the limitations of existing modalities, new therapeutic approaches are imperative. The induced differentiation of stem/progenitor cells and the spatiotemporal expression patterns of growth factors associated with lung developmental processes are critical for lung development reactivation in BPD, which focuses on stimulating pulmonary vasculogenesis and alveolarization. This review summarizes the process of lung development and offers a comprehensive overview of advancements in therapies designed to reinitiate lung development in BPD. Furthermore, we assessed the potential of these therapies for maintaining lung homeostasis and effectively restoring pulmonary structure and function through stem/progenitor cells and growth factors, which have been widely researched.
Collapse
Affiliation(s)
- Xuewei Cui
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
9
|
He H, Bell SM, Davis AK, Zhao S, Sridharan A, Na CL, Guo M, Xu Y, Snowball J, Swarr DT, Zacharias WJ, Whitsett JA. PRDM3/16 regulate chromatin accessibility required for NKX2-1 mediated alveolar epithelial differentiation and function. Nat Commun 2024; 15:8112. [PMID: 39284798 PMCID: PMC11405758 DOI: 10.1038/s41467-024-52154-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
While the critical role of NKX2-1 and its transcriptional targets in lung morphogenesis and pulmonary epithelial cell differentiation is increasingly known, mechanisms by which chromatin accessibility alters the epigenetic landscape and how NKX2-1 interacts with other co-activators required for alveolar epithelial cell differentiation and function are not well understood. Combined deletion of the histone methyl transferases Prdm3 and Prdm16 in early lung endoderm causes perinatal lethality due to respiratory failure from loss of AT2 cells and the accumulation of partially differentiated AT1 cells. Combination of single-cell RNA-seq, bulk ATAC-seq, and CUT&RUN data demonstrate that PRDM3 and PRDM16 regulate chromatin accessibility at NKX2-1 transcriptional targets critical for perinatal AT2 cell differentiation and surfactant homeostasis. Lineage specific deletion of PRDM3/16 in AT2 cells leads to lineage infidelity, with PRDM3/16 null cells acquiring partial AT1 fate. Together, these data demonstrate that NKX2-1-dependent regulation of alveolar epithelial cell differentiation is mediated by epigenomic modulation via PRDM3/16.
Collapse
Affiliation(s)
- Hua He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan, China.
| | - Sheila M Bell
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ashley Kuenzi Davis
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Shuyang Zhao
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anusha Sridharan
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Cheng-Lun Na
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Minzhe Guo
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yan Xu
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John Snowball
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel T Swarr
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William J Zacharias
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey A Whitsett
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
10
|
Damianos A, Kalinichenko VV. The Plant Hormone Indole-3-Acetic Acid Helps the Endothelial Barrier Seal after Lung Injury. Am J Respir Cell Mol Biol 2024; 71:264-266. [PMID: 38857531 PMCID: PMC11376239 DOI: 10.1165/rcmb.2024-0209ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024] Open
Affiliation(s)
- Andreas Damianos
- Division of Neonatology and Pulmonary Biology Department of Pediatrics Cincinnati Children's Hospital Medical Center Cincinnati, Ohio
- University of Cincinnati Cincinnati, Ohio
| | - Vladimir V Kalinichenko
- Phoenix Children's Research Institute University of Arizona Phoenix, Arizona
- Division of Neonatology Phoenix Children's Hospital Phoenix, Arizona
| |
Collapse
|
11
|
Hanusrichterova J, Mokry J, Al-Saiedy MR, Koetzler R, Amrein MW, Green FHY, Calkovska A. Factors influencing airway smooth muscle tone: a comprehensive review with a special emphasis on pulmonary surfactant. Am J Physiol Cell Physiol 2024; 327:C798-C816. [PMID: 39099420 DOI: 10.1152/ajpcell.00337.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
A thin film of pulmonary surfactant lines the surface of the airways and alveoli, where it lowers the surface tension in the peripheral lungs, preventing collapse of the bronchioles and alveoli and reducing the work of breathing. It also possesses a barrier function for maintaining the blood-gas interface of the lungs and plays an important role in innate immunity. The surfactant film covers the epithelium lining both large and small airways, forming the first line of defense between toxic airborne particles/pathogens and the lungs. Furthermore, surfactant has been shown to relax airway smooth muscle (ASM) after exposure to ASM agonists, suggesting a more subtle function. Whether surfactant masks irritant sensory receptors or interacts with one of them is not known. The relaxant effect of surfactant on ASM is absent in bronchial tissues denuded of an epithelial layer. Blocking of prostanoid synthesis inhibits the relaxant function of surfactant, indicating that prostanoids might be involved. Another possibility for surfactant to be active, namely through ATP-dependent potassium channels and the cAMP-regulated epithelial chloride channels [cystic fibrosis transmembrane conductance regulators (CFTRs)], was tested but could not be confirmed. Hence, this review discusses the mechanisms of known and potential relaxant effects of pulmonary surfactant on ASM. This review summarizes what is known about the role of surfactant in smooth muscle physiology and explores the scientific questions and studies needed to fully understand how surfactant helps maintain the delicate balance between relaxant and constrictor needs.
Collapse
Affiliation(s)
- Juliana Hanusrichterova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Mustafa R Al-Saiedy
- Department of Internal Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rommy Koetzler
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Matthias W Amrein
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Francis H Y Green
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrea Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
12
|
Wen B, Li E, Wang G, Kalin TR, Gao D, Lu P, Kalin TV, Kalinichenko VV. CRISPR-Cas9 Genome Editing Allows Generation of the Mouse Lung in a Rat. Am J Respir Crit Care Med 2024; 210:167-177. [PMID: 38507610 PMCID: PMC11273307 DOI: 10.1164/rccm.202306-0964oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/20/2024] [Indexed: 03/22/2024] Open
Abstract
Rationale: Recent efforts in bioengineering and embryonic stem cell (ESC) technology allowed the generation of ESC-derived mouse lung tissues in transgenic mice that were missing critical morphogenetic genes. Epithelial cell lineages were efficiently generated from ESC, but other cell types were mosaic. A complete contribution of donor ESCs to lung tissue has never been achieved. The mouse lung has never been generated in a rat. Objective: We sought to generate the mouse lung in a rat. Methods: Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 genome editing was used to disrupt the Nkx2-1 gene in rat one-cell zygotes. Interspecies mouse-rat chimeras were produced by injection of wild-type mouse ESCs into Nkx2-1-deficient rat embryos with lung agenesis. The contribution of mouse ESCs to the lung tissue was examined by immunostaining, flow cytometry, and single-cell RNA sequencing. Measurements and Main Results: Peripheral pulmonary and thyroid tissues were absent in rat embryos after CRISPR-Cas9-mediated disruption of the Nkx2-1 gene. Complementation of rat Nkx2-1-/- blastocysts with mouse ESCs restored pulmonary and thyroid structures in mouse-rat chimeras, leading to a near-99% contribution of ESCs to all respiratory cell lineages. Epithelial, endothelial, hematopoietic, and stromal cells in ESC-derived lungs were highly differentiated and exhibited lineage-specific gene signatures similar to those of respiratory cells from the normal mouse lung. Analysis of receptor-ligand interactions revealed normal signaling networks between mouse ESC-derived respiratory cells differentiated in a rat. Conclusions: A combination of CRISPR-Cas9 genome editing and blastocyst complementation was used to produce mouse lungs in rats, making an important step toward future generations of human lungs using large animals as "bioreactors."
Collapse
Affiliation(s)
- Bingqiang Wen
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
| | - Enhong Li
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
| | | | - Timothy R. Kalin
- College of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Dengfeng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China; and
| | - Peixin Lu
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Tanya V. Kalin
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
- Division of Pulmonary Biology and
| | - Vladimir V. Kalinichenko
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
- Division of Neonatology, Phoenix Children’s Hospital, Phoenix, Arizona
| |
Collapse
|
13
|
El-Atawi K, Abdul Wahab MG, Alallah J, Osman MF, Hassan M, Siwji Z, Saleh M. Beyond Bronchopulmonary Dysplasia: A Comprehensive Review of Chronic Lung Diseases in Neonates. Cureus 2024; 16:e64804. [PMID: 39156276 PMCID: PMC11329945 DOI: 10.7759/cureus.64804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
In neonates, pulmonary diseases such as bronchopulmonary dysplasia and other chronic lung diseases (CLDs) pose significant challenges due to their complexity and high degree of morbidity and mortality. This review discusses the etiology, pathophysiology, clinical presentation, and diagnostic criteria for these conditions, as well as current management strategies. The review also highlights recent advancements in understanding the pathophysiology of these diseases and evolving strategies for their management, including gene therapy and stem cell treatments. We emphasize how supportive care is useful in managing these diseases and underscore the importance of a multidisciplinary approach. Notably, we discuss the emerging role of personalized medicine, enabled by advances in genomics and precision therapeutics, in tailoring therapy according to an individual's genetic, biochemical, and lifestyle factors. We conclude with a discussion on future directions in research and treatment, emphasizing the importance of furthering our understanding of these conditions, improving diagnostic criteria, and exploring targeted treatment modalities. The review underscores the need for multicentric and longitudinal studies to improve preventative strategies and better understand long-term outcomes. Ultimately, a comprehensive, innovative, and patient-centered approach can enhance the quality of care and outcomes for neonates with CLDs.
Collapse
Affiliation(s)
| | | | - Jubara Alallah
- Neonatology, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Neonatology, King Abdulaziz Medical City, Ministry of National Guard - Health Affairs, Jeddah, SAU
| | | | | | | | - Maysa Saleh
- Pediatrics and Child Health, Al Jalila Children's Specialty Hospital, Dubai, ARE
| |
Collapse
|
14
|
Zhang K, Yao E, Aung T, Chuang PT. The alveolus: Our current knowledge of how the gas exchange unit of the lung is constructed and repaired. Curr Top Dev Biol 2024; 159:59-129. [PMID: 38729684 DOI: 10.1016/bs.ctdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The mammalian lung completes its last step of development, alveologenesis, to generate sufficient surface area for gas exchange. In this process, multiple cell types that include alveolar epithelial cells, endothelial cells, and fibroblasts undergo coordinated cell proliferation, cell migration and/or contraction, cell shape changes, and cell-cell and cell-matrix interactions to produce the gas exchange unit: the alveolus. Full functioning of alveoli also involves immune cells and the lymphatic and autonomic nervous system. With the advent of lineage tracing, conditional gene inactivation, transcriptome analysis, live imaging, and lung organoids, our molecular understanding of alveologenesis has advanced significantly. In this review, we summarize the current knowledge of the constituents of the alveolus and the molecular pathways that control alveolar formation. We also discuss how insight into alveolar formation may inform us of alveolar repair/regeneration mechanisms following lung injury and the pathogenic processes that lead to loss of alveoli or tissue fibrosis.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Thin Aung
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States.
| |
Collapse
|
15
|
Watanabe-Takano H, Kato K, Oguri-Nakamura E, Ishii T, Kobayashi K, Murata T, Tsujikawa K, Miyata T, Kubota Y, Hanada Y, Nishiyama K, Watabe T, Fässler R, Ishii H, Mochizuki N, Fukuhara S. Endothelial cells regulate alveolar morphogenesis by constructing basement membranes acting as a scaffold for myofibroblasts. Nat Commun 2024; 15:1622. [PMID: 38438343 PMCID: PMC10912381 DOI: 10.1038/s41467-024-45910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
Alveologenesis is a spatially coordinated morphogenetic event, during which alveolar myofibroblasts surround the terminal sacs constructed by epithelial cells and endothelial cells (ECs), then contract to form secondary septa to generate alveoli in the lungs. Recent studies have demonstrated the important role of alveolar ECs in this morphogenetic event. However, the mechanisms underlying EC-mediated alveologenesis remain unknown. Herein, we show that ECs regulate alveologenesis by constructing basement membranes (BMs) acting as a scaffold for myofibroblasts to induce septa formation through activating mechanical signaling. Rap1, a small GTPase of the Ras superfamily, is known to stimulate integrin-mediated cell adhesions. EC-specific Rap1-deficient (Rap1iECKO) mice exhibit impaired septa formation and hypo-alveolarization due to the decreased mechanical signaling in myofibroblasts. In Rap1iECKO mice, ECs fail to stimulate integrin β1 to recruit Collagen type IV (Col-4) into BMs required for myofibroblast-mediated septa formation. Consistently, EC-specific integrin β1-deficient mice show hypo-alveolarization, defective mechanical signaling in myofibroblasts, and disorganized BMs. These data demonstrate that alveolar ECs promote integrin β1-mediated Col-4 recruitment in a Rap1-dependent manner, thereby constructing BMs acting as a scaffold for myofibroblasts to induce mechanical signal-mediated alveologenesis. Thus, this study unveils a mechanism of organ morphogenesis mediated by ECs through intrinsic functions.
Collapse
Affiliation(s)
- Haruko Watanabe-Takano
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Katsuhiro Kato
- Department of Cardiology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Eri Oguri-Nakamura
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Tomohiro Ishii
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Koji Kobayashi
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takahisa Murata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Koichiro Tsujikawa
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan
| | - Yasuyuki Hanada
- Department of Cardiology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
- Laboratory for Vascular and Cellular Dynamics, Department of Medical Sciences, University of Miyazaki, Miyazaki City, Miyazaki, 889-1962, Japan
| | - Koichi Nishiyama
- Laboratory for Vascular and Cellular Dynamics, Department of Medical Sciences, University of Miyazaki, Miyazaki City, Miyazaki, 889-1962, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate, School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Hirotaka Ishii
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka, 564-8565, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
16
|
Abadir P, Cosarderelioglu C, Damarla M, Malinina A, Dikeman D, Marx R, Nader MM, Abadir M, Walston J, Neptune E. Unlocking the protective potential of the angiotensin type 2 receptor (AT 2R) in acute lung injury and age-related pulmonary dysfunction. Biochem Pharmacol 2024; 220:115978. [PMID: 38081369 PMCID: PMC10880333 DOI: 10.1016/j.bcp.2023.115978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023]
Abstract
Despite its known importance in the cardiovascular system, the specific role and impact of the angiotensin type 2 receptor (AT2R) in lung physiology and pathophysiology remain largely elusive. In this study, we highlight the distinct and specialized lung-specific roles of AT2R, primarily localized to an alveolar fibroblast subpopulation, in contrast to the angiotensin type 1 receptor (AT1R), which is almost exclusively expressed in lung pericytes. Evidence from our research demonstrates that the disruption of AT2R (AT2R-/y), is associated with a surge in oxidative stress and impaired lung permeability, which were further intensified by Hyperoxic Acute Lung Injury (HALI). With aging, AT2R-/y mice show an increase in oxidative stress, premature enlargement of airspaces, as well as increased mortality when exposed to hyperoxia as compared to age-matched WT mice. Our investigation into Losartan, an AT1R blocker, suggests that its primary HALI lung-protective effects are channeled through AT2R, as its protective benefits are absent in AT2R-/y mice. Importantly, a non-peptide AT2R agonist, Compound 21 (C21), successfully reverses lung oxidative stress and TGFβ activation in wild-type (WT) mice exposed to HALI. These findings suggest a possible paradigm shift in the therapeutic approach for lung injury and age-associated pulmonary dysfunction, from targeting AT1R with angiotensin receptor blockers (ARBs) towards boosting the protective function of AT2R.
Collapse
Affiliation(s)
- Peter Abadir
- Johns Hopkins University, Division of Geriatrics Medicine and Gerontology, Department of Medicine, USA.
| | - Caglar Cosarderelioglu
- Johns Hopkins University, Division of Geriatrics Medicine and Gerontology, Department of Medicine, USA
| | - Mahendra Damarla
- Johns Hopkins University, Division of Pulmonary and Critical Care Medicine, USA
| | - Alla Malinina
- Johns Hopkins University, Division of Pulmonary and Critical Care Medicine, USA
| | - Dustin Dikeman
- Johns Hopkins University, Division of Pulmonary and Critical Care Medicine, USA
| | - Ruth Marx
- Johns Hopkins University, Division of Geriatrics Medicine and Gerontology, Department of Medicine, USA
| | - Monica M Nader
- Johns Hopkins University, Division of Geriatrics Medicine and Gerontology, Department of Medicine, USA; Urbana High School, USA
| | | | - Jeremy Walston
- Johns Hopkins University, Division of Geriatrics Medicine and Gerontology, Department of Medicine, USA
| | - Enid Neptune
- Johns Hopkins University, Division of Pulmonary and Critical Care Medicine, USA.
| |
Collapse
|
17
|
Wu M, Zhang X, Tu Y, Cheng W, Zeng Y. Culture and expansion of murine proximal airway basal stem cells. Stem Cell Res Ther 2024; 15:26. [PMID: 38287366 PMCID: PMC10826159 DOI: 10.1186/s13287-024-03642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/21/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND The stem cell characteristic makes basal cells desirable for ex vivo modeling of airway diseases. However, to date, approaches allowing them extensively in vitro serial expansion and maintaining bona fide stem cell property are still awaiting to be established. This study aims to develop a feeder-free culture system of mouse airway basal stem cells (ABSCs) that sustain their stem cell potential in vitro, providing an experimental basis for further in-depth research and mechanism exploration. METHODS We used ROCK inhibitor Y-27632-containing 3T3-CM, MEF-CM, and RbEF-CM to determine the proper feeder-free culture system that could maintain in vitro stem cell morphology of mouse ABSCs. Immunocytofluorescence was used to identify the basal cell markers of obtained cells. Serial propagation was carried out to observe whether the stem cell morphology and basal cell markers could be preserved in this cultivation system. Next, we examined the in vitro expansion and self-renewal ability by evaluating population doubling time and colony-forming efficiency. Moreover, the differentiation potential was detected by an in vitro differentiation culture and a 3D tracheosphere assay. RESULTS When the mouse ABSCs were cultured using 3T3-CM containing ROCK inhibitor Y-27632 in combination with Matrigel-coated culture dishes, they could stably expand and maintain stem cell-like clones. We confirmed that the obtained clones comprised p63/Krt5 double-positive ABSCs. In continuous passage and maintenance culture, we found that it could be subculture to at least 15 passages in vitro, stably maintaining its stem cell morphology, basal cell markers, and in vitro expansion and self-renewal capabilities. Meanwhile, through in vitro differentiation culture and 3D tracheosphere culture, we found that in addition to maintaining self-renewal, mouse ABSCs could differentiate into other airway epithelial cells such as acetylated tubulin (Act-Tub) + ciliated and MUC5AC + mucus-secreting cells. However, they failed to differentiate into alveoli epithelial cells, including alveolar type I and alveolar type II. CONCLUSION We established an in vitro feeder-free culture system that allows mouse ABSCs to maintain their stem cell characteristics, including self-renewal and airway epithelium differentiation potential, while keeping up in vitro expansion stability.
Collapse
Affiliation(s)
- Meirong Wu
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
- Fujian Key Laboratory of Lung Stem Cells, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Xiaojing Zhang
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
- Fujian Key Laboratory of Lung Stem Cells, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Yanjuan Tu
- Department of Pathology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Wenzhao Cheng
- Fujian Key Laboratory of Lung Stem Cells, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.
- Fujian Key Laboratory of Lung Stem Cells, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, People's Republic of China.
| |
Collapse
|
18
|
Talalaev AG, Davydov IS. [Histology of fetal lungs at different gestational age]. Arkh Patol 2024; 86:65-71. [PMID: 38319275 DOI: 10.17116/patol20248601165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The lecture is devoted to the morphological characteristics of the maturation of lung tissue structures in the fetal period. Fetal histology of the lungs presents the intrauterine development of lung tissue in four successive stages: pseudoglandular, canalicular, saccular and alveolar, each has specific morphological criteria. The following morphological features are predetermined: the development of alveolar epithelium, the ratio of mesenchyme towards the area in alveolar spaces, the degree of proliferation and location of vessels of the microcirculatory bed towards prealveolar partitions. During the fetal period the alveolar columnar epithelium is flattened and differentiates into alveolocytes type I and II, the area of the mesenchyme gradually decreases and by the birth of a full-term newborn kid it is present mainly in the thickness between the alveolar septa, microcirculation vessels, initially laying deep in the thickness of the mesenchymal tissue, gradually proliferate, approach the pre-alveolar epithelium, channeling it with the formation of alveolar capillary membranes. Air exchange in the lung tissue is mainly provided with two factors: the presence of second-order alveolocytes capable of producing surfactant, and a sufficient formation of alveoli as well. This work summarizes the basics of fetal lung histology with the demonstration of histological preparations of the lungs at different stages of intrauterine development.
Collapse
Affiliation(s)
- A G Talalaev
- Morozov Children's City Clinical Hospital, Moscow, Russia
| | - I S Davydov
- Peoples' Friendship University of Russia named after Patrice Lumumba, Moscow, Russia
| |
Collapse
|
19
|
Zhang K, Aung T, Yao E, Chuang PT. Lung patterning: Is a distal-to-proximal gradient of cell allocation and fate decision a general paradigm?: A gradient of distal-to-proximal distribution and differentiation of tip progenitors produces distinct compartments in the lung. Bioessays 2024; 46:e2300083. [PMID: 38010492 DOI: 10.1002/bies.202300083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023]
Abstract
Recent studies support a model in which the progeny of SOX9+ epithelial progenitors at the distal tip of lung branches undergo cell allocation and differentiation sequentially along the distal-to-proximal axis. Concomitant with the elongation and ramification of lung branches, the descendants of the distal SOX9+ progenitors are distributed proximally, express SOX2, and differentiate into cell types in the conducting airways. Amid subsequent sacculation, the distal SOX9+ progenitors generate alveolar epithelial cells to form alveoli. Sequential cell allocation and differentiation are integrated with the branching process to generate a functional branching organ. This review focuses on the roles of SOX9+ cells as precursors for new branches, as the source of various cell types in the conducting airways, and as progenitors of the alveolar epithelium. All of these processes are controlled by multiple signaling pathways. Many mouse mutants with defective lung branching contain underlying defects in one or more steps of cell allocation and differentiation of SOX9+ progenitors. This model provides a framework to understand the molecular basis of lung phenotypes and to elucidate the molecular mechanisms of lung patterning. It builds a foundation on which comparing and contrasting the mechanisms employed by different branching organs in diverse species can be made.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Thin Aung
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| |
Collapse
|
20
|
He H, Bell SM, Davis AK, Zhao S, Sridharan A, Na CL, Guo M, Xu Y, Snowball J, Swarr DT, Zacharias WJ, Whitsett JA. PRDM3/16 Regulate Chromatin Accessibility Required for NKX2-1 Mediated Alveolar Epithelial Differentiation and Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.570481. [PMID: 38187557 PMCID: PMC10769259 DOI: 10.1101/2023.12.20.570481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Differential chromatin accessibility accompanies and mediates transcriptional control of diverse cell fates and their differentiation during embryogenesis. While the critical role of NKX2-1 and its transcriptional targets in lung morphogenesis and pulmonary epithelial cell differentiation is increasingly known, mechanisms by which chromatin accessibility alters the epigenetic landscape and how NKX2-1 interacts with other co-activators required for alveolar epithelial cell differentiation and function are not well understood. Here, we demonstrate that the paired domain zinc finger transcriptional regulators PRDM3 and PRDM16 regulate chromatin accessibility to mediate cell differentiation decisions during lung morphogenesis. Combined deletion of Prdm3 and Prdm16 in early lung endoderm caused perinatal lethality due to respiratory failure from loss of AT2 cell function. Prdm3/16 deletion led to the accumulation of partially differentiated AT1 cells and loss of AT2 cells. Combination of single cell RNA-seq, bulk ATAC-seq, and CUT&RUN demonstrated that PRDM3 and PRDM16 enhanced chromatin accessibility at NKX2-1 transcriptional targets in peripheral epithelial cells, all three factors binding together at a multitude of cell-type specific cis-active DNA elements. Network analysis demonstrated that PRDM3/16 regulated genes critical for perinatal AT2 cell differentiation, surfactant homeostasis, and innate host defense. Lineage specific deletion of PRDM3/16 in AT2 cells led to lineage infidelity, with PRDM3/16 null cells acquiring partial AT1 fate. Together, these data demonstrate that NKX2-1-dependent regulation of alveolar epithelial cell differentiation is mediated by epigenomic modulation via PRDM3/16.
Collapse
Affiliation(s)
- Hua He
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital Sichuan University, Chengdu, Sichuan, 610041, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Sichuan 610041, China
| | - Sheila M. Bell
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
| | - Ashley Kuenzi Davis
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
| | - Shuyang Zhao
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
| | - Anusha Sridharan
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
| | - Cheng-Lun Na
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
| | - Minzhe Guo
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Yan Xu
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - John Snowball
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
| | - Daniel T. Swarr
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - William J. Zacharias
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Jeffrey A. Whitsett
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| |
Collapse
|
21
|
Abstract
Pulmonary surfactant is a critical component of lung function in healthy individuals. It functions in part by lowering surface tension in the alveoli, thereby allowing for breathing with minimal effort. The prevailing thinking is that low surface tension is attained by a compression-driven squeeze-out of unsaturated phospholipids during exhalation, forming a film enriched in saturated phospholipids that achieves surface tensions close to zero. A thorough review of past and recent literature suggests that the compression-driven squeeze-out mechanism may be erroneous. Here, we posit that a surfactant film enriched in saturated lipids is formed shortly after birth by an adsorption-driven sorting process and that its composition does not change during normal breathing. We provide biophysical evidence for the rapid formation of an enriched film at high surfactant concentrations, facilitated by adsorption structures containing hydrophobic surfactant proteins. We examine biophysical evidence for and against the compression-driven squeeze-out mechanism and propose a new model for surfactant function. The proposed model is tested against existing physiological and pathophysiological evidence in neonatal and adult lungs, leading to ideas for biophysical research, that should be addressed to establish the physiological relevance of this new perspective on the function of the mighty thin film that surfactant provides.
Collapse
Affiliation(s)
- Fred Possmayer
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
- Department of Obstetrics/Gynaecology, Western University, London, Ontario N6A 3K7, Canada
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manon, Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, United States
| | - Ruud A W Veldhuizen
- Department of Physiology & Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Department of Medicine, Western University, London, Ontario N6A 3K7, Canada
- Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
22
|
Cumplido-Laso G, Benitez DA, Mulero-Navarro S, Carvajal-Gonzalez JM. Transcriptional Regulation of Airway Epithelial Cell Differentiation: Insights into the Notch Pathway and Beyond. Int J Mol Sci 2023; 24:14789. [PMID: 37834236 PMCID: PMC10573127 DOI: 10.3390/ijms241914789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The airway epithelium is a critical component of the respiratory system, serving as a barrier against inhaled pathogens and toxins. It is composed of various cell types, each with specific functions essential to proper airway function. Chronic respiratory diseases can disrupt the cellular composition of the airway epithelium, leading to a decrease in multiciliated cells (MCCs) and an increase in secretory cells (SCs). Basal cells (BCs) have been identified as the primary stem cells in the airway epithelium, capable of self-renewal and differentiation into MCCs and SCs. This review emphasizes the role of transcription factors in the differentiation process from BCs to MCCs and SCs. Recent advancements in single-cell RNA sequencing (scRNAseq) techniques have provided insights into the cellular composition of the airway epithelium, revealing specialized and rare cell types, including neuroendocrine cells, tuft cells, and ionocytes. Understanding the cellular composition and differentiation processes within the airway epithelium is crucial for developing targeted therapies for respiratory diseases. Additionally, the maintenance of BC populations and the involvement of Notch signaling in BC self-renewal and differentiation are discussed. Further research in these areas could provide valuable insights into the mechanisms underlying airway epithelial homeostasis and disease pathogenesis.
Collapse
Affiliation(s)
- Guadalupe Cumplido-Laso
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain; (D.A.B.); (S.M.-N.)
| | | | | | - Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain; (D.A.B.); (S.M.-N.)
| |
Collapse
|
23
|
Ray A, Kale SL, Ramonell RP. Bridging the Gap between Innate and Adaptive Immunity in the Lung: Summary of the Aspen Lung Conference 2022. Am J Respir Cell Mol Biol 2023; 69:266-280. [PMID: 37043828 PMCID: PMC10503303 DOI: 10.1165/rcmb.2023-0057ws] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/12/2023] [Indexed: 04/14/2023] Open
Abstract
Although significant strides have been made in the understanding of pulmonary immunology, much work remains to be done to comprehensively explain coordinated immune responses in the lung. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic only served to highlight the inadequacy of current models of host-pathogen interactions and reinforced the need for current and future generations of immunologists to unravel complex biological questions. As part of that effort, the 64th Annual Thomas L. Petty Aspen Lung Conference was themed "Bridging the Gap between Innate and Adaptive Immunity in the Lung" and featured exciting work from renowned immunologists. This report summarizes the proceedings of the 2022 Aspen Lung Conference, which was convened to discuss the roles played by innate and adaptive immunity in disease pathogenesis, evaluate the interface between the innate and adaptive immune responses, assess the role of adaptive immunity in the development of autoimmunity and autoimmune lung disease, discuss lessons learned from immunologic cancer treatments and approaches, and define new paradigms to harness the immune system to prevent and treat lung diseases.
Collapse
Affiliation(s)
- Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sagar L. Kale
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Richard P. Ramonell
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| |
Collapse
|
24
|
Chen SY, Liu FC. The Fgf9-Nolz1-Wnt2 axis regulates morphogenesis of the lung. Development 2023; 150:dev201827. [PMID: 37497597 DOI: 10.1242/dev.201827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Morphological development of the lung requires complex signal crosstalk between the mesenchymal and epithelial progenitors. Elucidating the genetic cascades underlying signal crosstalk is essential to understanding lung morphogenesis. Here, we identified Nolz1 as a mesenchymal lineage-specific transcriptional regulator that plays a key role in lung morphogenesis. Nolz1 null mutation resulted in a severe hypoplasia phenotype, including a decreased proliferation of mesenchymal cells, aberrant differentiation of epithelial cells and defective growth of epithelial branches. Nolz1 deletion also downregulated Wnt2, Lef1, Fgf10, Gli3 and Bmp4 mRNAs. Mechanistically, Nolz1 regulates lung morphogenesis primarily through Wnt2 signaling. Loss-of-function and overexpression studies demonstrated that Nolz1 transcriptionally activated Wnt2 and downstream β-catenin signaling to control mesenchymal cell proliferation and epithelial branching. Exogenous Wnt2 could rescue defective proliferation and epithelial branching in Nolz1 knockout lungs. Finally, we identified Fgf9 as an upstream regulator of Nolz1. Collectively, Fgf9-Nolz1-Wnt2 signaling represents a novel axis in the control of lung morphogenesis. These findings are relevant to lung tumorigenesis, in which a pathological function of Nolz1 is implicated.
Collapse
Affiliation(s)
- Shih-Yun Chen
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
25
|
Kolesnichenko OA, Flood HM, Zhang Y, Ustiyan V, Cuervo Jimenez HK, Kalin TV, Kalinichenko VV. Endothelial progenitor cells derived from embryonic stem cells prevent alveolar simplification in a murine model of bronchopulmonary dysplasia. Front Cell Dev Biol 2023; 11:1209518. [PMID: 37363726 PMCID: PMC10289167 DOI: 10.3389/fcell.2023.1209518] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: Vascular remodeling and compromised alveolar development are hallmarks of chronic pulmonary diseases such as bronchopulmonary dysplasia (BPD). Despite advances in neonatal healthcare the number of BPD cases worldwide continues to increase. One approach to overcoming the premature arrest in lung development seen in BPD is to stimulate neonatal angiogenesis via delivery and engraftment of endothelial progenitor cells (EPCs). One such population is resident to the pulmonary microvasculature and expresses both FOXF1 and c-KIT. Previous studies have shown that c-KIT+FOXF1+ EPCs are highly sensitive to elevated levels of oxygen (hyperoxia) and are decreased in premature infants with BPD and hyperoxia-induced BPD mouse models. We hypothesize that restoring EPCs through transplantation of c-KIT+FOXF1+ EPCs derived in vitro from pluripotent embryonic stem cells (ESCs), will stimulate neonatal angiogenesis and alveolarization in mice with hyperoxia-induced lung injury. Methods: Utilizing a novel ESC line with a FOXF1:GFP reporter, we generated ESC-derived c-KIT+FOXF1+ EPCs in vitro. Using a second ESC line which contains FOXF1:GFP and tdTomato transgenes, we differentiated ESCs towards c-KIT+FOXF1+ EPCs and tracked them in vivo after injection into the neonatal circulation of hyperoxia-injured mice. After a recovery period in room air conditions, we analyzed c-KIT+FOXF1+ EPC engraftment and quantified the number of resident and circulating endothelial cells, the size of alveolar spaces, and the capillary density after EPC transplantations. Results and conclusion: Herein, we demonstrate that addition of BMP9 to the directed endothelial differentiation protocol results in very efficient generation of c-KIT+FOXF1+ EPCs from pluripotent ESCs. ESC-derived c-KIT+FOXF1+ EPCs effectively engraft into the pulmonary microvasculature of hyperoxia-injured mice, promote vascular remodeling in alveoli, increase the number of resident and circulating endothelial cells, and improve alveolarization. Altogether, these results provide a proof-of-principle that cell therapy with ESC-derived c-KIT+FOXF1+ EPCs can prevent alveolar simplification in a hyperoxia-induced BPD mouse model.
Collapse
Affiliation(s)
- Olena A. Kolesnichenko
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Hannah M. Flood
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Yufang Zhang
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Vladimir Ustiyan
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Hayde K. Cuervo Jimenez
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tanya V. Kalin
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Vladimir V. Kalinichenko
- Phoenix Children’s Health Research Institute, Department of Child Health, University of Arizona College of Medicine—Phoenix, Phoenix, AZ, United States
- Division of Neonatology, Phoenix Children’s Hospital, Phoenix, AZ, United States
| |
Collapse
|
26
|
Gao L, Sun Y, Zhang X, Ma D, Xie A, Wang E, Cheng L, Liu S. Wnt3a-Loaded Extracellular Vesicles Promote Alveolar Epithelial Regeneration after Lung Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206606. [PMID: 37072558 PMCID: PMC10288279 DOI: 10.1002/advs.202206606] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Compromised regeneration resulting from the deactivation of Wnt/β-catenin signaling contributes to the progression of chronic obstructive pulmonary disease (COPD) with limited therapeutic options. Extracellular cytokine-induced Wnt-based signaling provides an alternative option for COPD treatment. However, the hydrophobic nature of Wnt proteins limits their purification and use. This study devises a strategy to deliver the membrane-bound wingless-type MMTV integration site family, member 3A (Wnt3a) over a long distance by anchoring it to the surface of extracellular vesicles (EVs). The newly engineered Wnt3aWG EVs are generated by co-expressing Wnt3a with two genes encoding the membrane protein, WLS, and an engineered glypican, GPC6ΔGPI -C1C2. The bioactivity of Wnt3aWG EVs is validated using a TOPFlash assay and a mesoderm differentiation model of human pluripotent stem cells. Wnt3aWG EVs activate Wnt signaling and promote cell growth following human alveolar epithelial cell injury. In an elastase-induced emphysema model, impaired pulmonary function and enlarged airspace are greatly restored by the intravenous delivery of Wnt3aWG EVs. Single-cell RNA sequencing-based analyses further highlight that Wnt3aWG EV-activated regenerative programs are responsible for its beneficial effects. These findings suggest that EV-based Wnt3a delivery represents a novel therapeutic strategy for lung repair and regeneration after injury.
Collapse
Affiliation(s)
- Lei Gao
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Yongping Sun
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Xinye Zhang
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Ding Ma
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - An Xie
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Enyu Wang
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Linzhao Cheng
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Senquan Liu
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| |
Collapse
|
27
|
Zhou YH, Gallins PJ, Pace RG, Dang H, Aksit MA, Blue EE, Buckingham KJ, Collaco JM, Faino AV, Gordon WW, Hetrick KN, Ling H, Liu W, Onchiri FM, Pagel K, Pugh EW, Raraigh KS, Rosenfeld M, Sun Q, Wen J, Li Y, Corvol H, Strug LJ, Bamshad MJ, Blackman SM, Cutting GR, Gibson RL, O’Neal WK, Wright FA, Knowles MR. Genetic Modifiers of Cystic Fibrosis Lung Disease Severity: Whole-Genome Analysis of 7,840 Patients. Am J Respir Crit Care Med 2023; 207:1324-1333. [PMID: 36921087 PMCID: PMC10595435 DOI: 10.1164/rccm.202209-1653oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Rationale: Lung disease is the major cause of morbidity and mortality in persons with cystic fibrosis (pwCF). Variability in CF lung disease has substantial non-CFTR (CF transmembrane conductance regulator) genetic influence. Identification of genetic modifiers has prognostic and therapeutic importance. Objectives: Identify genetic modifier loci and genes/pathways associated with pulmonary disease severity. Methods: Whole-genome sequencing data on 4,248 unique pwCF with pancreatic insufficiency and lung function measures were combined with imputed genotypes from an additional 3,592 patients with pancreatic insufficiency from the United States, Canada, and France. This report describes association of approximately 15.9 million SNPs using the quantitative Kulich normal residual mortality-adjusted (KNoRMA) lung disease phenotype in 7,840 pwCF using premodulator lung function data. Measurements and Main Results: Testing included common and rare SNPs, transcriptome-wide association, gene-level, and pathway analyses. Pathway analyses identified novel associations with genes that have key roles in organ development, and we hypothesize that these genes may relate to dysanapsis and/or variability in lung repair. Results confirmed and extended previous genome-wide association study findings. These whole-genome sequencing data provide finely mapped genetic information to support mechanistic studies. No novel primary associations with common single variants or rare variants were found. Multilocus effects at chr5p13 (SLC9A3/CEP72) and chr11p13 (EHF/APIP) were identified. Variant effect size estimates at associated loci were consistently ordered across the cohorts, indicating possible age or birth cohort effects. Conclusions: This premodulator genomic, transcriptomic, and pathway association study of 7,840 pwCF will facilitate mechanistic and postmodulator genetic studies and the development of novel therapeutics for CF lung disease.
Collapse
Affiliation(s)
- Yi-Hui Zhou
- Bioinformatics Research Center
- Department of Biological Sciences, and
| | | | - Rhonda G. Pace
- Marsico Lung Institute/UNC CF Research Center, School of Medicine
| | - Hong Dang
- Marsico Lung Institute/UNC CF Research Center, School of Medicine
| | | | - Elizabeth E. Blue
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
- Division of Medical Genetics, Department of Medicine
| | | | | | - Anna V. Faino
- Children’s Core for Biostatistics, Epidemiology and Analytics in Research and
| | | | - Kurt N. Hetrick
- Department of Genetic Medicine, Center for Inherited Disease Research, and
| | - Hua Ling
- Department of Genetic Medicine, Center for Inherited Disease Research, and
| | | | | | - Kymberleigh Pagel
- The Institute for Computational Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth W. Pugh
- Department of Genetic Medicine, Center for Inherited Disease Research, and
| | | | - Margaret Rosenfeld
- Department of Pediatrics, and
- Center for Clinical and Translational Research, Seattle Children’s Research Institute, Seattle, Washington
| | | | | | - Yun Li
- Department of Biostatistics
- Department of Genetics, and
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Harriet Corvol
- Pediatric Pulmonary Department, Assistance Publique-Hôpitaux de Paris, Hôpital Trousseau, Paris, France
- Centre de Recherche Saint Antoine, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Lisa J. Strug
- Division of Biostatistics, Dalla Lana School of Public Health
- Department of Statistical Sciences, and
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada; and
- Program in Genetics and Genome Biology and
- The Center for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael J. Bamshad
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
- Division of Genetic Medicine, Department of Pediatrics
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Scott M. Blackman
- McKusick-Nathans Department of Genetic Medicine
- Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Ronald L. Gibson
- Department of Pediatrics, and
- Center for Clinical and Translational Research, Seattle Children’s Research Institute, Seattle, Washington
| | - Wanda K. O’Neal
- Marsico Lung Institute/UNC CF Research Center, School of Medicine
| | - Fred A. Wright
- Bioinformatics Research Center
- Department of Biological Sciences, and
- Department of Statistics, North Carolina State University, Raleigh, North Carolina
| | | |
Collapse
|
28
|
Alladina J, Smith NP, Kooistra T, Slowikowski K, Kernin IJ, Deguine J, Keen HL, Manakongtreecheep K, Tantivit J, Rahimi RA, Sheng SL, Nguyen ND, Haring AM, Giacona FL, Hariri LP, Xavier RJ, Luster AD, Villani AC, Cho JL, Medoff BD. A human model of asthma exacerbation reveals transcriptional programs and cell circuits specific to allergic asthma. Sci Immunol 2023; 8:eabq6352. [PMID: 37146132 PMCID: PMC10440046 DOI: 10.1126/sciimmunol.abq6352] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/13/2023] [Indexed: 05/07/2023]
Abstract
Asthma is a chronic disease most commonly associated with allergy and type 2 inflammation. However, the mechanisms that link airway inflammation to the structural changes that define asthma are incompletely understood. Using a human model of allergen-induced asthma exacerbation, we compared the lower airway mucosa in allergic asthmatics and allergic non-asthmatic controls using single-cell RNA sequencing. In response to allergen, the asthmatic airway epithelium was highly dynamic and up-regulated genes involved in matrix degradation, mucus metaplasia, and glycolysis while failing to induce injury-repair and antioxidant pathways observed in controls. IL9-expressing pathogenic TH2 cells were specific to asthmatic airways and were only observed after allergen challenge. Additionally, conventional type 2 dendritic cells (DC2 that express CD1C) and CCR2-expressing monocyte-derived cells (MCs) were uniquely enriched in asthmatics after allergen, with up-regulation of genes that sustain type 2 inflammation and promote pathologic airway remodeling. In contrast, allergic controls were enriched for macrophage-like MCs that up-regulated tissue repair programs after allergen challenge, suggesting that these populations may protect against asthmatic airway remodeling. Cellular interaction analyses revealed a TH2-mononuclear phagocyte-basal cell interactome unique to asthmatics. These pathogenic cellular circuits were characterized by type 2 programming of immune and structural cells and additional pathways that may sustain and amplify type 2 signals, including TNF family signaling, altered cellular metabolism, failure to engage antioxidant responses, and loss of growth factor signaling. Our findings therefore suggest that pathogenic effector circuits and the absence of proresolution programs drive structural airway disease in response to type 2 inflammation.
Collapse
Affiliation(s)
- Jehan Alladina
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Neal P. Smith
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Tristan Kooistra
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kamil Slowikowski
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Isabela J. Kernin
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jacques Deguine
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Henry L. Keen
- Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Kasidet Manakongtreecheep
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jessica Tantivit
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Rod A. Rahimi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Susan L. Sheng
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nhan D. Nguyen
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexis M. Haring
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Francesca L. Giacona
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lida P. Hariri
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Ramnik J. Xavier
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew D. Luster
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Josalyn L. Cho
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Benjamin D. Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Bian F, Lan YW, Zhao S, Deng Z, Shukla S, Acharya A, Donovan J, Le T, Milewski D, Bacchetta M, Hozain AE, Tipograf Y, Chen YW, Xu Y, Shi D, Kalinichenko VV, Kalin TV. Lung endothelial cells regulate pulmonary fibrosis through FOXF1/R-Ras signaling. Nat Commun 2023; 14:2560. [PMID: 37137915 PMCID: PMC10156846 DOI: 10.1038/s41467-023-38177-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
Pulmonary fibrosis results from dysregulated lung repair and involves multiple cell types. The role of endothelial cells (EC) in lung fibrosis is poorly understood. Using single cell RNA-sequencing we identified endothelial transcription factors involved in lung fibrogenesis, including FOXF1, SMAD6, ETV6 and LEF1. Focusing on FOXF1, we found that FOXF1 is decreased in EC within human idiopathic pulmonary fibrosis (IPF) and mouse bleomycin-injured lungs. Endothelial-specific Foxf1 inhibition in mice increased collagen depositions, promoted lung inflammation, and impaired R-Ras signaling. In vitro, FOXF1-deficient EC increased proliferation, invasion and activation of human lung fibroblasts, and stimulated macrophage migration by secreting IL-6, TNFα, CCL2 and CXCL1. FOXF1 inhibited TNFα and CCL2 through direct transcriptional activation of Rras gene promoter. Transgenic overexpression or endothelial-specific nanoparticle delivery of Foxf1 cDNA decreased pulmonary fibrosis in bleomycin-injured mice. Nanoparticle delivery of FOXF1 cDNA can be considered for future therapies in IPF.
Collapse
Affiliation(s)
- Fenghua Bian
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Ying-Wei Lan
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Shuyang Zhao
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Zicheng Deng
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Samriddhi Shukla
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Anusha Acharya
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Johnny Donovan
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Tien Le
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - David Milewski
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Matthew Bacchetta
- Departments of Thoracic and Cardiac Surgery, Department of Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ahmed Emad Hozain
- Department of Surgery, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Yuliya Tipograf
- Department of Surgery, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Ya-Wen Chen
- Department of Cell, Developmental, and Regenerative Biology, Department of Otolaryngology, Institute for Airway Sciences, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yan Xu
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Vladimir V Kalinichenko
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
30
|
Damianos A, Kalinichenko VV. Hedgehog and Platelet-derived Growth Factor Collaborate to Guide Fibroblasts during Alveolarization. Am J Respir Cell Mol Biol 2023; 68:472-474. [PMID: 36796088 PMCID: PMC10174160 DOI: 10.1165/rcmb.2023-0031ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Affiliation(s)
- Andreas Damianos
- Division of Neonatology and Pulmonary Biology Perinatal Institute, Department of Pediatrics Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine Cincinnati, Ohio
| | - Vladimir V Kalinichenko
- Division of Neonatology and Pulmonary Biology Perinatal Institute, Department of Pediatrics and Center of Lung Regenerative Medicine Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine Cincinnati, Ohio
| |
Collapse
|
31
|
Pradhan A, Che L, Ustiyan V, Reza AA, Pek NM, Zhang Y, Alber AB, Kalin TR, Wambach JA, Gu M, Kotton DN, Siefert ME, Ziady AG, Kalin TV, Kalinichenko VV. Novel FOXF1-Stabilizing Compound TanFe Stimulates Lung Angiogenesis in Alveolar Capillary Dysplasia. Am J Respir Crit Care Med 2023; 207:1042-1054. [PMID: 36480964 PMCID: PMC10112450 DOI: 10.1164/rccm.202207-1332oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Rationale: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is linked to heterozygous mutations in the FOXF1 (Forkhead Box F1) gene, a key transcriptional regulator of pulmonary vascular development. There are no effective treatments for ACDMPV other than lung transplant, and new pharmacological agents activating FOXF1 signaling are urgently needed. Objectives: Identify-small molecule compounds that stimulate FOXF1 signaling. Methods: We used mass spectrometry, immunoprecipitation, and the in vitro ubiquitination assay to identify TanFe (transcellular activator of nuclear FOXF1 expression), a small-molecule compound from the nitrile group, which stabilizes the FOXF1 protein in the cell. The efficacy of TanFe was tested in mouse models of ACDMPV and acute lung injury and in human vascular organoids derived from induced pluripotent stem cells of a patient with ACDMPV. Measurements and Main Results: We identified HECTD1 as an E3 ubiquitin ligase involved in ubiquitination and degradation of the FOXF1 protein. The TanFe compound disrupted FOXF1-HECTD1 protein-protein interactions and decreased ubiquitination of the FOXF1 protein in pulmonary endothelial cells in vitro. TanFe increased protein concentrations of FOXF1 and its target genes Flk1, Flt1, and Cdh5 in LPS-injured mouse lungs, decreasing endothelial permeability and inhibiting lung inflammation. Treatment of pregnant mice with TanFe increased FOXF1 protein concentrations in lungs of Foxf1+/- embryos, stimulated neonatal lung angiogenesis, and completely prevented the mortality of Foxf1+/- mice after birth. TanFe increased angiogenesis in human vascular organoids derived from induced pluripotent stem cells of a patient with ACDMPV with FOXF1 deletion. Conclusions: TanFe is a novel activator of FOXF1, providing a new therapeutic candidate for treatment of ACDMPV and other neonatal pulmonary vascular diseases.
Collapse
Affiliation(s)
| | | | | | | | - Nicole M. Pek
- Division of Neonatology and Pulmonary Biology
- Center for Stem Cells and Organoid Medicine
| | | | - Andrea B. Alber
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts
| | - Timothy R. Kalin
- College of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio; and
| | - Jennifer A. Wambach
- Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children’s Hospital, St. Louis, Missouri
| | - Mingxia Gu
- Division of Neonatology and Pulmonary Biology
- Center for Stem Cells and Organoid Medicine
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts
| | | | - Assem G. Ziady
- Division of Bone Marrow Transplantation and Immune Deficiency, and
| | | | - Vladimir V. Kalinichenko
- Center for Lung Regenerative Medicine
- Division of Neonatology and Pulmonary Biology
- Center for Stem Cells and Organoid Medicine
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
32
|
Reza AA, Kohram F, Reza HA, Kalin TR, Kannan PS, Zacharias WJ, Kalinichenko VV. FOXF1 Regulates Alveolar Epithelial Morphogenesis through Transcriptional Activation of Mesenchymal WNT5A. Am J Respir Cell Mol Biol 2023; 68:430-443. [PMID: 36542853 PMCID: PMC10112422 DOI: 10.1165/rcmb.2022-0191oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Mutations in the FOXF1 (forkhead box F1) gene, encoding the mesenchymal FOX (forkhead box) transcription factor, are linked to alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), a severe congenital disorder associated with the loss of alveolar capillaries and lung hypoplasia. Although proangiogenic functions of FOXF1 have been extensively studied, the role of FOXF1 in mesenchymal-epithelial signaling during lung development remains uncharacterized. Herein, we used murine lung organoids to demonstrate that the S52F FOXF1 mutation (found in patients with ACDMPV) stimulates canonical WNT/β-catenin signaling in type 2 alveolar epithelial cells (AEC2s), leading to increased proliferation of AEC2s and decreased differentiation of AEC2s into type 1 alveolar epithelial cells (AEC1s). Alveolar organoids containing Foxf1WT/S52F lung fibroblasts and wild-type epithelial cells grew faster on Matrigel and exhibited AEC2 hyperplasia. AEC2 hyperplasia and loss of AEC1s were found in the lungs of Foxf1WT/S52F embryos, a mouse model of ACDMPV. Activation of canonical WNT/β-catenin signaling in AEC2s of lung organoids and Foxf1WT/S52F mice was associated with decreased expression of noncanonical WNT5A (Wnt family member 5A) ligand in lung fibroblasts. Mechanistically, FOXF1 directly activates the Wnt5a gene transcription through an evolutionarily conserved +6320/+6326 region located in the first intron of the Wnt5a gene. Site-directed mutagenesis of the +6320/+6326 region prevented the transcriptional activation of the Wnt5a enhancer by FOXF1. Treatment with exogenous WNT5A ligand inhibited the effects of the S52F FOXF1 mutation on canonical WNT/β-catenin signaling in alveolar organoids, preventing aberrant AEC2 expansion and restoring differentiation of AEC1s. Activation of either FOXF1 or WNT5A may provide an attractive strategy to improve lung function in patients with ACDMPV.
Collapse
Affiliation(s)
| | | | | | | | - Paranthaman S. Kannan
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio; and
| | - William J. Zacharias
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio; and
| | - Vladimir V. Kalinichenko
- Center for Lung Regeneration Medicine
- Division of Developmental Biology, and
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio; and
| |
Collapse
|
33
|
Subramaniyan B, Gurung S, Bodas M, Moore AR, Larabee JL, Reuter D, Georgescu C, Wren JD, Myers DA, Papin JF, Walters MS. The Isolation and In Vitro Differentiation of Primary Fetal Baboon Tracheal Epithelial Cells for the Study of SARS-CoV-2 Host-Virus Interactions. Viruses 2023; 15:v15040862. [PMID: 37112842 PMCID: PMC10146425 DOI: 10.3390/v15040862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
The mucociliary airway epithelium lines the human airways and is the primary site of host-environmental interactions in the lung. Following virus infection, airway epithelial cells initiate an innate immune response to suppress virus replication. Therefore, defining the virus-host interactions of the mucociliary airway epithelium is critical for understanding the mechanisms that regulate virus infection, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Non-human primates (NHP) are closely related to humans and provide a model to study human disease. However, ethical considerations and high costs can restrict the use of in vivo NHP models. Therefore, there is a need to develop in vitro NHP models of human respiratory virus infection that would allow for rapidly characterizing virus tropism and the suitability of specific NHP species to model human infection. Using the olive baboon (Papio anubis), we have developed methodologies for the isolation, in vitro expansion, cryopreservation, and mucociliary differentiation of primary fetal baboon tracheal epithelial cells (FBTECs). Furthermore, we demonstrate that in vitro differentiated FBTECs are permissive to SARS-CoV-2 infection and produce a potent host innate-immune response. In summary, we have developed an in vitro NHP model that provides a platform for the study of SARS-CoV-2 infection and other human respiratory viruses.
Collapse
Affiliation(s)
- Bharathiraja Subramaniyan
- Department of Medicine, Section of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.S.); (M.B.); (A.R.M.)
| | - Sunam Gurung
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.G.); (D.A.M.)
| | - Manish Bodas
- Department of Medicine, Section of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.S.); (M.B.); (A.R.M.)
| | - Andrew R. Moore
- Department of Medicine, Section of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.S.); (M.B.); (A.R.M.)
| | - Jason L. Larabee
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Darlene Reuter
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (D.R.); (J.F.P.)
| | - Constantin Georgescu
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (C.G.); (J.D.W.)
| | - Jonathan D. Wren
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (C.G.); (J.D.W.)
| | - Dean A. Myers
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.G.); (D.A.M.)
| | - James F. Papin
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (D.R.); (J.F.P.)
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Matthew S. Walters
- Department of Medicine, Section of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.S.); (M.B.); (A.R.M.)
- Correspondence:
| |
Collapse
|
34
|
Kohram F, Deng Z, Zhang Y, Al Reza A, Li E, Kolesnichenko OA, Shukla S, Ustiyan V, Gomez-Arroyo J, Acharya A, Shi D, Kalinichenko VV, Kenny AP. Demonstration of Safety in Wild Type Mice of npFOXF1, a Novel Nanoparticle-Based Gene Therapy for Alveolar Capillary Dysplasia with Misaligned Pulmonary Veins. Biologics 2023; 17:43-55. [PMID: 36969329 PMCID: PMC10031269 DOI: 10.2147/btt.s400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Introduction Alveolar Capillary Dysplasia with Misaligned Pulmonary Veins (ACDMPV) is a fatal congenital disease resulting from a pulmonary vascular endothelial deficiency of FOXF1, producing abnormal morphogenesis of alveolar capillaries, malpositioned pulmonary veins and disordered development of lung lobes. Affected neonates suffer from cyanosis, severe breathing insufficiency, pulmonary hypertension, and death typically within days to weeks after birth. Currently, no treatment exists for ACDMPV, although recent murine research in the Kalinichenko lab demonstrates nanoparticle delivery improves survival and reconstitutes normal alveolar-capillary architecture. The aim of the present study is to investigate the safety of intravenous administration of FOXF1-expressing PEI-PEG nanoparticles (npFOXF1), our pioneering treatment for ACDMPV. Methods npFOXF1 was constructed, validated, and subsequently administered in a single dose to postnatal day 14 (P14) mice via retro-orbital injection. Biochemical, serologic, and histologic safety were monitored at postnatal day 16 (P16) and postnatal day 21 (P21). Results With treatment we observed no lethality, and the general condition of mice revealed no obvious abnormalities. Serum chemistry, whole blood, and histologic toxicity was assayed on P16 and P21 and revealed no abnormality. Discussion In conclusion, npFOXF1 has a very good safety profile and combined with preceding studies showing therapeutic efficacy, npFOXF1 can be considered as a good candidate therapy for ACDMPV in human neonates.
Collapse
Affiliation(s)
- Fatemeh Kohram
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Zicheng Deng
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Yufang Zhang
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Abid Al Reza
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Enhong Li
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Olena A Kolesnichenko
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Samriddhi Shukla
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Vladimir Ustiyan
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jose Gomez-Arroyo
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Anusha Acharya
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Vladimir V Kalinichenko
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Alan P Kenny
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
35
|
Yang Y, Cao Y, Han X, Ma X, Li R, Wang R, Xiao L, Xie L. Revealing EXPH5 as a potential diagnostic gene biomarker of the late stage of COPD based on machine learning analysis. Comput Biol Med 2023; 154:106621. [PMID: 36746116 DOI: 10.1016/j.compbiomed.2023.106621] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
Chronic obstructive pulmonary disease is a kind of chronic lung disease characterized by persistent air flow obstruction, which was the third leading cause of death in China. The incidence of COPD is steadily and increasing and has been a globally sever disease. Accordingly, it is urgently needed to explore how to diagnose and treat COPD timely. This study aims to find key genes to diagnose COPD as soon as possible to avoid COPD processing and analyze immune cell infiltration between COPD early stage and late stage. Two GEO datasets were merged as the merge data for analyses. 157 DEGs were used for GSEA analysis to find the pathway between COPD early stage and late stage. Above all, gene EXPH5 stood out from the screen as the most likely candidate diagnosis biomarker of COPD indicating the late-stage by least LASSO and SVM-RFE. ROC curves of EXPH5 were applied to represent the discriminatory ability through the area under the curve which is the gold standard to evaluate the accuracy of diagnosis and survival rate. The CIBERSORT algorithm was used to assess the distribution of tissue-infiltrating immune cells between two COPD stages. The diagnosis biomarker, gene EXPH5 had a positive correlation with NK cells resting; mast cell resting, eosinophils, and negative correlation with T cell gamma delta, macrophages M1, which underscore the role of gene and immune cell infiltration. To make results more reliable, we further analyzed the gene EXPH5 expression in single-cell transcriptome data and showed again that EXPH5 genes significantly downregulated in the late stage of COPD especially in the main lung cell types AT1 and AT2. In a word, our study identified genes EXPH5 as a marker gene, which adds to the knowledge for clinical diagnosis and pharmaceutical design of COPD.
Collapse
Affiliation(s)
- Yuwei Yang
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing, 100091, China; Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Yan Cao
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing, 100091, China; Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Xiaobo Han
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing, 100091, China; Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Xihui Ma
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing, 100091, China; Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Rui Li
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing, 100091, China; Hebei North Universit, Zhangjiakou, 075000, China.
| | - Rentao Wang
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing, 100091, China; Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Li Xiao
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing, 100091, China; Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing, 100091, China; Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| |
Collapse
|
36
|
Crotta S, Villa M, Major J, Finsterbusch K, Llorian M, Carmeliet P, Buescher J, Wack A. Repair of airway epithelia requires metabolic rewiring towards fatty acid oxidation. Nat Commun 2023; 14:721. [PMID: 36781848 PMCID: PMC9925445 DOI: 10.1038/s41467-023-36352-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023] Open
Abstract
Epithelial tissues provide front-line barriers shielding the organism from invading pathogens and harmful substances. In the airway epithelium, the combined action of multiciliated and secretory cells sustains the mucociliary escalator required for clearance of microbes and particles from the airways. Defects in components of mucociliary clearance or barrier integrity are associated with recurring infections and chronic inflammation. The timely and balanced differentiation of basal cells into mature epithelial cell subsets is therefore tightly controlled. While different growth factors regulating progenitor cell proliferation have been described, little is known about the role of metabolism in these regenerative processes. Here we show that basal cell differentiation correlates with a shift in cellular metabolism from glycolysis to fatty acid oxidation (FAO). We demonstrate both in vitro and in vivo that pharmacological and genetic impairment of FAO blocks the development of fully differentiated airway epithelial cells, compromising the repair of airway epithelia. Mechanistically, FAO links to the hexosamine biosynthesis pathway to support protein glycosylation in airway epithelial cells. Our findings unveil the metabolic network underpinning the differentiation of airway epithelia and identify novel targets for intervention to promote lung repair.
Collapse
Affiliation(s)
- Stefania Crotta
- Immunoregulation Laboratory, Francis Crick Institute, London, UK.
| | - Matteo Villa
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jack Major
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| | | | | | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, and Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Joerg Buescher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Andreas Wack
- Immunoregulation Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
37
|
Abstract
The human lung cellular portfolio, traditionally characterized by cellular morphology and individual markers, is highly diverse, with over 40 cell types and a complex branching structure highly adapted for agile airflow and gas exchange. While constant during adulthood, lung cellular content changes in response to exposure, injury, and infection. Some changes are temporary, but others are persistent, leading to structural changes and progressive lung disease. The recent advance of single-cell profiling technologies allows an unprecedented level of detail and scale to cellular measurements, leading to the rise of comprehensive cell atlas styles of reporting. In this review, we chronical the rise of cell atlases and explore their contributions to human lung biology in health and disease.
Collapse
Affiliation(s)
- Taylor S Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA;
| | - Arnaud Marlier
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA;
| |
Collapse
|
38
|
Yang W, Li Y, Shi F, Liu H. Human lung organoid: Models for respiratory biology and diseases. Dev Biol 2023; 494:26-34. [PMID: 36470449 DOI: 10.1016/j.ydbio.2022.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The human respiratory system, consisting of the airway and alveoli, is one of the most complex organs directly interfaced with the external environment. The diverse epithelial cells lining the surface are usually the first cell barrier that comes into contact with pathogens that could lead to deadly pulmonary disease. There is an urgent need to understand the mechanisms of self-renewal and protection of these epithelial cells against harmful pathogens, such as SARS-CoV-2. Traditional models, including cell lines and mouse models, have extremely limited native phenotypic features. Therefore, in recent years, to mimic the complexity of the lung, airway and alveoli organoid technology has been developed and widely applied. TGF-β/BMP/SMAD, FGF and Wnt/β-catenin signaling have been proven to play a key role in lung organoid expansion and differentiation. Thus, we summarize the current novel lung organoid culture strategies and discuss their application for understanding the lung biological features and pathophysiology of pulmonary diseases, especially COVID-19. Lung organoids provide an excellent in vitro model and research platform.
Collapse
Affiliation(s)
- Wenhao Yang
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology Sichuan University, Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yingna Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology Sichuan University, Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fang Shi
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology Sichuan University, Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology Sichuan University, Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
39
|
Snitow ME, Chaudhry FN, Zepp JA. Engineering and Modeling the Lung Mesenchyme. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:139-154. [PMID: 37195530 DOI: 10.1007/978-3-031-26625-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The structure of the mammalian lung controls the flow of air through the airways and into the distal alveolar region where gas exchange occurs. Specialized cells in the lung mesenchyme produce the extracellular matrix (ECM) and growth factors required for lung structure. Historically, characterizing the mesenchymal cell subtypes was challenging due to their ambiguous morphology, overlapping expression of protein markers, and limited cell-surface molecules needed for isolation. The recent development of single-cell RNA sequencing (scRNA-seq) complemented with genetic mouse models demonstrated that the lung mesenchyme comprises transcriptionally and functionally heterogeneous cell-types. Bioengineering approaches that model tissue structure clarify the function and regulation of mesenchymal cell types. These experimental approaches demonstrate the unique abilities of fibroblasts in mechanosignaling, mechanical force generation, ECM production, and tissue regeneration. This chapter will review the cell biology of the lung mesenchyme and experimental approaches to study their function.
Collapse
Affiliation(s)
- Melinda E Snitow
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fatima N Chaudhry
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jarod A Zepp
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Parsons A, Netsanet A, Seedorf G, Abman SH, Taglauer ES. Understanding the role of placental pathophysiology in the development of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2022; 323:L651-L658. [PMID: 36219136 PMCID: PMC9722259 DOI: 10.1152/ajplung.00204.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
The associations between bronchopulmonary dysplasia (BPD) and the gestational pathologies of chorioamnionitis (CA) and hypertensive disorders of pregnancy (HDP) have become increasingly well recognized. However, the mechanisms through which these antenatal conditions cause increased risk of BPD remain less well characterized. The objective of this review is to discuss the role of the placenta in BPD predisposition as a primary driver of intrauterine alterations adversely impacting fetal lung development. We hypothesize that due to similarities in structure and function, placental disorders during pregnancy can uniquely impact the developing fetal lung, creating a unique placental-pulmonary connection. In the current review, we explore this hypothesis through analysis of clinical literature and preclinical model systems evaluating BPD predisposition, discussion of BPD phenotypes, and an overview on strategies to incorporate placental investigation into research on fetal lung development. We also discuss important concepts learned from research on antenatal steroids as a modulator fetal lung development. Finally, we propose that the appropriate selection of animal models and establishment of in vitro lung developmental model systems incorporating primary human placental components are key in continuing to understand and address antenatal predisposition to BPD.
Collapse
Affiliation(s)
- Andrew Parsons
- Boston Combined Residency Program, Boston Children's Hospital, Boston, Massachusetts
| | - Adom Netsanet
- University of Colorado School of Medicine, Aurora, Colorado
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Gregory Seedorf
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Steven H Abman
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Elizabeth S Taglauer
- Department of Pediatrics, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
41
|
Zhuang Y, Yang W, Zhang L, Fan C, Qiu L, Zhao Y, Chen B, Chen Y, Shen H, Dai J. A novel leptin receptor binding peptide tethered-collagen scaffold promotes lung injury repair. Biomaterials 2022; 291:121884. [DOI: 10.1016/j.biomaterials.2022.121884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/10/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
42
|
Eenjes E, Tibboel D, Wijnen RMH, Schnater JM, Rottier RJ. SOX2 and SOX21 in Lung Epithelial Differentiation and Repair. Int J Mol Sci 2022; 23:13064. [PMID: 36361852 PMCID: PMC9657681 DOI: 10.3390/ijms232113064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022] Open
Abstract
The lung originates from the ventral foregut and develops into an intricate branched structure of airways, alveoli, vessels and support tissue. As the lung develops, cells become specified and differentiate into the various cell lineages. This process is controlled by specific transcription factors, such as the SRY-related HMG-box genes SOX2 and SOX21, that are activated or repressed through intrinsic and extrinsic signals. Disturbances in any of these processes during the development of the lung may lead to various pediatric lung disorders, such as Congenital Diaphragmatic Hernia (CDH), Congenital Pulmonary Airway Malformation (CPAM) and Broncho-Pulmonary Dysplasia (BPD). Changes in the composition of the airways and the alveoli may result in reduced respiratory function and eventually lead to chronic lung disorders. In this concise review, we describe different intrinsic and extrinsic cellular processes required for proper differentiation of the epithelium during development and regeneration, and the influence of the microenvironment on this process with special focus on SOX2 and SOX21.
Collapse
Affiliation(s)
- Evelien Eenjes
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Rene M. H. Wijnen
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Johannes Marco Schnater
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Robbert J. Rottier
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
43
|
Sui H, Xu X, Su Y, Gong Z, Yao M, Liu X, Zhang T, Jiang Z, Bai T, Wang J, Zhang J, Xu C, Luo M. Gene therapy for cystic fibrosis: Challenges and prospects. Front Pharmacol 2022; 13:1015926. [PMID: 36304167 PMCID: PMC9592762 DOI: 10.3389/fphar.2022.1015926] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Cystic fibrosis (CF) is a life-threatening autosomal-recessive disease caused by mutations in a single gene encoding cystic fibrosis transmembrane conductance regulator (CFTR). CF effects multiple organs, and lung disease is the primary cause of mortality. The median age at death from CF is in the early forties. CF was one of the first diseases to be considered for gene therapy, and efforts focused on treating CF lung disease began shortly after the CFTR gene was identified in 1989. However, despite the quickly established proof-of-concept for CFTR gene transfer in vitro and in clinical trials in 1990s, to date, 36 CF gene therapy clinical trials involving ∼600 patients with CF have yet to achieve their desired outcomes. The long journey to pursue gene therapy as a cure for CF encountered more difficulties than originally anticipated, but immense progress has been made in the past decade in the developments of next generation airway transduction viral vectors and CF animal models that reproduced human CF disease phenotypes. In this review, we look back at the history for the lessons learned from previous clinical trials and summarize the recent advances in the research for CF gene therapy, including the emerging CRISPR-based gene editing strategies. We also discuss the airway transduction vectors, large animal CF models, the complexity of CF pathogenesis and heterogeneity of CFTR expression in airway epithelium, which are the major challenges to the implementation of a successful CF gene therapy, and highlight the future opportunities and prospects.
Collapse
Affiliation(s)
- Hongshu Sui
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| | - Xinghua Xu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Yanping Su
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Zhaoqing Gong
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Minhua Yao
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Xiaocui Liu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ting Zhang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ziyao Jiang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Tianhao Bai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Junzuo Wang
- The Affiliated Tai’an City Central Hospital of Qingdao University, Tai’an, Shandong, China
| | - Jingjun Zhang
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Changlong Xu
- The Reproductive Medical Center of Nanning Second People’s Hospital, Nanning, China
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| | - Mingjiu Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| |
Collapse
|
44
|
Eenjes E, Tibboel D, Wijnen RM, Rottier RJ. Lung epithelium development and airway regeneration. Front Cell Dev Biol 2022; 10:1022457. [PMID: 36299482 PMCID: PMC9589436 DOI: 10.3389/fcell.2022.1022457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
The lung is composed of a highly branched airway structure, which humidifies and warms the inhaled air before entering the alveolar compartment. In the alveoli, a thin layer of epithelium is in close proximity with the capillary endothelium, allowing for an efficient exchange of oxygen and carbon dioxide. During development proliferation and differentiation of progenitor cells generates the lung architecture, and in the adult lung a proper function of progenitor cells is needed to regenerate after injury. Malfunctioning of progenitors during development results in various congenital lung disorders, such as Congenital Diaphragmatic Hernia (CDH) and Congenital Pulmonary Adenomatoid Malformation (CPAM). In addition, many premature neonates experience continuous insults on the lung caused by artificial ventilation and supplemental oxygen, which requires a highly controlled mechanism of airway repair. Malfunctioning of airway progenitors during regeneration can result in reduction of respiratory function or (chronic) airway diseases. Pathways that are active during development are frequently re-activated upon damage. Understanding the basic mechanisms of lung development and the behavior of progenitor cell in the ontogeny and regeneration of the lung may help to better understand the underlying cause of lung diseases, especially those occurring in prenatal development or in the immediate postnatal period of life. This review provides an overview of lung development and the cell types involved in repair of lung damage with a focus on the airway.
Collapse
Affiliation(s)
- Evelien Eenjes
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Rene M.H. Wijnen
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Robbert J. Rottier
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
- *Correspondence: Robbert J. Rottier,
| |
Collapse
|
45
|
Abstract
The mammalian respiratory system or lung is a tree-like branching structure, and the main site of gas exchange with the external environment. Structurally, the lung is broadly classified into the proximal (or conducting) airways and the distal alveolar region, where the gas exchange occurs. In parallel with the respiratory tree, the pulmonary vasculature starts with large pulmonary arteries that subdivide rapidly ending in capillaries adjacent to alveolar structures to enable gas exchange. The NOTCH signalling pathway plays an important role in lung development, differentiation and regeneration post-injury. Signalling via the NOTCH pathway is mediated through activation of four NOTCH receptors (NOTCH1-4), with each receptor capable of regulating unique biological processes. Dysregulation of the NOTCH pathway has been associated with development and pathophysiology of multiple adult acute and chronic lung diseases. This includes accumulating evidence that alteration of NOTCH3 signalling plays an important role in the development and pathogenesis of chronic obstructive pulmonary disease, lung cancer, asthma, idiopathic pulmonary fibrosis and pulmonary arterial hypertension. Herein, we provide a comprehensive summary of the role of NOTCH3 signalling in regulating repair/regeneration of the adult lung, its association with development of lung disease and potential therapeutic strategies to target its signalling activity.
Collapse
|
46
|
Rankin SA, Zorn AM. The homeodomain transcription factor Ventx2 regulates respiratory progenitor cell number and differentiation timing during
Xenopus
lung development. Dev Growth Differ 2022; 64:347-361. [PMID: 36053777 PMCID: PMC10088502 DOI: 10.1111/dgd.12807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 11/28/2022]
Abstract
Ventx2 is an Antennapedia superfamily/NK-like subclass homeodomain transcription factor best known for its roles in the regulation of early dorsoventral patterning during Xenopus gastrulation and in the maintenance of neural crest multipotency. In this work we characterize the spatiotemporal expression pattern of ventx2 in progenitor cells of the Xenopus respiratory system epithelium. We find that ventx2 is directly induced by BMP signaling in the ventral foregut prior to nkx2-1, the earliest epithelial marker of the respiratory lineage. Functional studies demonstrate that Ventx2 regulates the number of Nkx2-1/Sox9+ respiratory progenitor cells induced during foregut development, the timing and level of surfactant protein gene expression, and proper tracheal-esophageal separation. Our data suggest that Ventx2 regulates the balance of respiratory progenitor cell expansion and differentiation. While the ventx gene family has been lost from the mouse genome during evolution, humans have retained a ventx2-like gene (VENTX). Finally, we discuss how our findings might suggest a possible function of VENTX in human respiratory progenitor cells.
Collapse
Affiliation(s)
- Scott A. Rankin
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center Cincinnati OH
| | - Aaron M. Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center Cincinnati OH
- University of Cincinnati, College of Medicine, Department of Pediatrics Cincinnati OH
| |
Collapse
|
47
|
Ortiz-Zapater E, Signes-Costa J, Montero P, Roger I. Lung Fibrosis and Fibrosis in the Lungs: Is It All about Myofibroblasts? Biomedicines 2022; 10:biomedicines10061423. [PMID: 35740444 PMCID: PMC9220162 DOI: 10.3390/biomedicines10061423] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022] Open
Abstract
In the lungs, fibrosis is a growing clinical problem that results in shortness of breath and can end up in respiratory failure. Even though the main fibrotic disease affecting the lung is idiopathic pulmonary fibrosis (IPF), which affects the interstitial space, there are many fibrotic events that have high and dangerous consequences for the lungs. Asthma, chronic obstructive pulmonary disease (COPD), excessive allergies, clearance of infection or COVID-19, all are frequent diseases that show lung fibrosis. In this review, we describe the different kinds of fibrosis and analyse the main types of cells involved-myofibroblasts and other cells, like macrophages-and review the main fibrotic mechanisms. Finally, we analyse present treatments for fibrosis in the lungs and highlight potential targets for anti-fibrotic therapies.
Collapse
Affiliation(s)
- Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, Faculty of Medicine-IIS INCLIVA, University of Valencia, 46010 Valencia, Spain
- Correspondence:
| | | | - Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (P.M.); (I.R.)
| | - Inés Roger
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (P.M.); (I.R.)
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029 Madrid, Spain
| |
Collapse
|
48
|
Jeong J, Choi J. Quantitative adverse outcome pathway (qAOP) using bayesian network model on comparative toxicity of multi-walled carbon nanotubes (MWCNTs): safe-by-design approach. Nanotoxicology 2022; 16:679-694. [PMID: 36353843 DOI: 10.1080/17435390.2022.2140615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
While the various physicochemical properties of engineered nanomaterials influence their toxicities, their understanding is still incomplete. A predictive framework is required to develop safe nanomaterials, and a Bayesian network (BN) model based on adverse outcome pathway (AOP) can be utilized for this purpose. In this study, to explore the applicability of the AOP-based BN model in the development of safe nanomaterials, a comparative study was conducted on the change in the probability of toxicity pathways in response to changes in the dimensions and surface functionalization of multi-walled carbon nanotubes (MWCNTs). Based on the results of our previous study, we developed an AOP leading to cell death, and the experimental results were collected in human liver cells (HepG2) and bronchial epithelium cells (Beas-2B). The BN model was trained on these data to identify probabilistic causal relationships between key events. The results indicated that dimensions were the main influencing factor for lung cells, whereas -OH or -COOH surface functionalization and aspect ratio were the main influencing factors for liver cells. Endoplasmic reticulum stress was found to be a more sensitive pathway for dimensional changes, and oxidative stress was a more sensitive pathway for surface functionalization. Overall, our results suggest that the AOP-based BN model can be used to provide a scientific basis for the development of safe nanomaterials.
Collapse
Affiliation(s)
- Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, Seoul, Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, Seoul, Korea
| |
Collapse
|
49
|
Ghaddar B, De S. Reconstructing physical cell interaction networks from single-cell data using Neighbor-seq. Nucleic Acids Res 2022; 50:e82. [PMID: 35536255 PMCID: PMC9371920 DOI: 10.1093/nar/gkac333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/19/2022] [Accepted: 05/05/2022] [Indexed: 11/12/2022] Open
Abstract
Cell-cell interactions are the fundamental building blocks of tissue organization and multicellular life. We developed Neighbor-seq, a method to identify and annotate the architecture of direct cell–cell interactions and relevant ligand–receptor signaling from the undissociated cell fractions in massively parallel single cell sequencing data. Neighbor-seq accurately identifies microanatomical features of diverse tissue types such as the small intestinal epithelium, terminal respiratory tract, and splenic white pulp. It also captures the differing topologies of cancer-immune-stromal cell communications in pancreatic and skin tumors, which are consistent with the patterns observed in spatial transcriptomic data. Neighbor-seq is fast and scalable. It draws inferences from routine single-cell data and does not require prior knowledge about sample cell-types or multiplets. Neighbor-seq provides a framework to study the organ-level cellular interactome in health and disease, bridging the gap between single-cell and spatial transcriptomics.
Collapse
Affiliation(s)
- Bassel Ghaddar
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Subhajyoti De
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
50
|
Chan M, Liu Y. Function of epithelial stem cell in the repair of alveolar injury. Stem Cell Res Ther 2022; 13:170. [PMID: 35477551 PMCID: PMC9044382 DOI: 10.1186/s13287-022-02847-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/11/2022] [Indexed: 01/03/2023] Open
Abstract
Alveoli are the functional units of blood-gas exchange in the lung and thus are constantly exposed to outside environments and frequently encounter pathogens, particles and other harmful substances. For example, the alveolar epithelium is one of the primary targets of the SARS-CoV-2 virus that causes COVID-19 lung disease. Therefore, it is essential to understand the cellular and molecular mechanisms by which the integrity of alveoli epithelial barrier is maintained. Alveolar epithelium comprises two cell types: alveolar type I cells (AT1) and alveolar type II cells (AT2). AT2s have been shown to function as tissue stem cells that repair the injured alveoli epithelium. Recent studies indicate that AT1s and subgroups of proximal airway epithelial cells can also participate alveolar repair process through their intrinsic plasticity. This review discussed the potential mechanisms that drive the reparative behaviors of AT2, AT1 and some proximal cells in responses to injury and how an abnormal repair contributes to some pathological conditions.
Collapse
Affiliation(s)
- Manwai Chan
- Department of Biomedical Engineering, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Yuru Liu
- Department of Biomedical Engineering, University of Illinois College of Medicine, Chicago, IL, 60612, USA. .,Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA. .,University of Illinois Cancer Center, Chicago, IL60612, USA.
| |
Collapse
|