1
|
Sanches EF, Dos Santos TM, do Carmo MB, Carvalho AVS, Ramires Junior OV, Sizonenko SV, Netto CA, Wyse ATS. Environmental enrichment reverses cognitive impairments and hippocampus tissue loss without altering the redox state in rats exposed to severe chronic hyperhomocysteinemia. Behav Brain Res 2025; 485:115522. [PMID: 40054505 DOI: 10.1016/j.bbr.2025.115522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 04/06/2025]
Abstract
INTRODUCTION Classical homocystinuria is a genetic disease caused by partial or total deficiency of cystathionine-β synthase (CβS) enzyme activity, ultimately leading to brain alterations and early atherosclerotic disease. Currently, there is no cure for the disease and the treatments consist in reducing homocysteine levels through diet, however not all patients respond to therapy. Due to its ability to increase neurotrophins production and decrease oxidative stress in the brain, environmental enrichment (EE) has been used with success as an adjuvant non-pharmacological therapy for CNS disorders. Here, we investigated the effects of 4 weeks enriched environment in a severe chronic chemically-induced model of hyperhomocysteinemia (HHCY) in Wistar rats. METHODS Animals of both sexes were subjected to homocysteine administration subcutaneously (12 h intervals) from day 6 of life (P6) to P28. After this period, animals were continuously exposed to the enriched environment (or standard cages) for 30 days. Animals were tested for cognition and locomotor abilities and hippocampi were collected for the assessment of oxidative stress and histological damage. RESULTS Animals in the HHCY group showed impaired learning in the reference memory assessment in the Morris water maze with no effects in the novel objects recognition test. HHCY did not impair locomotion in the open field nor in the horizontal ladder task. HHCY rats presented decreased hippocampal volume reversed by EE. Enrichment was also able to reverse cognitive impairments in the spatial memory, improve coordination in the ladder walking and recognition memory in the NOR test. HHCY altered redox balance, with no protective effects of EE. CONCLUSIONS Due to its benefits and no side effects reported in literature, EE can be suggested as potential complimentary therapy to improve memory and motricity impairments in homocystinuric patients, however the mechanisms involved in this neuroprotection needs further investigation.
Collapse
Affiliation(s)
- E F Sanches
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Post Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland; Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - T M Dos Santos
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Post Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - M B do Carmo
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Post Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A V S Carvalho
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Post Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - O V Ramires Junior
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Post Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - S V Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland; Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - C A Netto
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Post Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A T S Wyse
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Post Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Gazerani P. The neuroplastic brain: current breakthroughs and emerging frontiers. Brain Res 2025:149643. [PMID: 40280532 DOI: 10.1016/j.brainres.2025.149643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/01/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Neuroplasticity, the brain's capacity to reorganize itself by forming new neural connections, is central to modern neuroscience. Once believed to occur only during early development, research now shows that plasticity continues throughout the lifespan, supporting learning, memory, and recovery from injury or disease. Substantial progress has been made in understanding the mechanisms underlying neuroplasticity and their therapeutic applications. This overview article examines synaptic plasticity, structural remodeling, neurogenesis, and functional reorganization, highlighting both adaptive (beneficial) and maladaptive (harmful) processes across different life stages. Recent strategies to harness neuroplasticity, ranging from pharmacological agents and lifestyle interventions to cutting-edge technologies like brain-computer interfaces (BCIs) and targeted neuromodulation are evaluated in light of current empirical evidence. Contradictory findings in the literature are addressed, and methodological limitations that hamper widespread clinical adoption are discussed. The ethical and societal implications of deploying novel neuroplasticity-based interventions, including issues of equitable access, data privacy, and the blurred line between treatment and enhancement, are then explored in a structured manner. By integrating mechanistic insights, empirical data, and ethical considerations, the aim is to provide a comprehensive and balanced perspective for researchers, clinicians, and policymakers working to optimize brain health across diverse populations.
Collapse
Affiliation(s)
- Parisa Gazerani
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Pilestredet 50, 0167 Oslo, Norway.
| |
Collapse
|
3
|
Ramakrishnan M, Gandrakota N, Kamdar Y, Kulshreshtha A. Association of psychological stress and subjective cognitive decline. JAR LIFE 2025; 14:100012. [PMID: 40270575 PMCID: PMC12017927 DOI: 10.1016/j.jarlif.2025.100012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025]
Abstract
Psychological stress is associated with several long-term consequences, including cognitive decline. Our study examined the relationship between psychological stress levels and subjective cognitive decline (SCD) using cross-sectional data from CDC's Behavioral Risk Factor Surveillance System (BRFSS 2020-2022) for participants aged 45 years and older. Among 881,479 participants, 7.5 % were African American, and 10.7 % reported high psychological stress, with 29 % experiencing SCD. High psychological stress had a 3-fold risk of SCD compared to low psychological stress (OR: 3.3; 95 % CI: 2.8, 4.0). A significant interaction between psychological stress and BMI was found in their association with SCD (p = 0.013). Individuals with high psychological stress and a BMI ≥ 25 had 4.3 times higher SCD risk (OR: 4.3; 95 % CI: 3.9, 4.7) compared to those with low psychological stress and a BMI < 25 (OR: 0.23, 95 % CI: 0.2, 0.3). These results highlight the importance of addressing stress to prevent cognitive decline.
Collapse
Affiliation(s)
- Manju Ramakrishnan
- Department of Epidemiology, Rollins School of Public Health, Emory University, US 1518 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Nikhila Gandrakota
- Department of Family and Preventive Medicine, Emory University School of Medicine, US 2021 Pernoshal Ct, Dunwoody, Atlanta, GA 30338, USA
| | - Yash Kamdar
- College of Arts and Sciences, Emory University, US 550 Asbury Circle, Atlanta, GA 30322, USA
| | - Ambar Kulshreshtha
- Department of Epidemiology, Rollins School of Public Health, Emory University, US 1518 Clifton Rd NE, Atlanta, GA 30322, USA
- Department of Family and Preventive Medicine, Emory University School of Medicine, US 2021 Pernoshal Ct, Dunwoody, Atlanta, GA 30338, USA
| |
Collapse
|
4
|
Ratne N, Jari S, Tadas M, Katariya R, Kale M, Kotagale N, Madia D, Umekar M, Taksande B. Neurobiological role and therapeutic potential of exercise-induced irisin in Alzheimer's disease management. Ageing Res Rev 2025; 105:102687. [PMID: 39938597 DOI: 10.1016/j.arr.2025.102687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Alzheimer's disease (AD) poses a significant obstacle in today's healthcare landscape, with limited effective treatments. Recent studies have revealed encouraging findings about how exercise-triggered irisin might help slow down the advancement of AD. Irisin, a myokine, released during physical activity, has garnered significant attention for its pleiotropic effects, extending beyond its traditional role in metabolic regulation. This review explores irisin's multifaceted potential in combating AD. Research indicates that irisin enhances synaptic plasticity, crucial for learning and memory, and exhibits neuroprotective properties that may slow AD progression by safeguarding neurons from degeneration. Additionally, irisin's ability to modulate inflammatory responses is significant, as neuroinflammation is a key feature of AD pathology. Irisin may also influence the metabolism and clearance of amyloid-beta plaques and tau tangles, hallmark pathological markers of AD. Furthermore, irisin boosts brain-derived neurotrophic factor expression, vital for neuronal health, and improves insulin glucose regulation, addressing impaired brain insulin signaling observed in AD. Exercise-induced irisin presents a non-pharmacological strategy, leveraging physical activity's brain health benefits. Future research should focus on elucidating irisin's mechanisms and conducting clinical trials to assess its therapeutic efficacy and safety in AD patients. Overall, irisin therapy offers a promising avenue for AD treatment, potentially slowing disease progression and enhancing cognitive function, paving the way for innovative therapeutic strategies in the fight against AD.
Collapse
Affiliation(s)
- Nandini Ratne
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS 441 002, India
| | - Sakshi Jari
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS 441 002, India
| | - Manasi Tadas
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS 441 002, India
| | - Raj Katariya
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS 441 002, India
| | - Mayur Kale
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS 441 002, India
| | | | - Dilip Madia
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DMIHER), Deemed to be University, Sawangi (Meghe), Wardha, MS 442 001, India
| | - Milind Umekar
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS 441 002, India
| | - Brijesh Taksande
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS 441 002, India.
| |
Collapse
|
5
|
Statsenko Y, Kuznetsov NV, Ljubisaljevich M. Hallmarks of Brain Plasticity. Biomedicines 2025; 13:460. [PMID: 40002873 PMCID: PMC11852462 DOI: 10.3390/biomedicines13020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/15/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Cerebral plasticity is the ability of the brain to change and adapt in response to experience or learning. Its hallmarks are developmental flexibility, complex interactions between genetic and environmental influences, and structural-functional changes comprising neurogenesis, axonal sprouting, and synaptic remodeling. Studies on brain plasticity have important practical implications. The molecular characteristics of changes in brain plasticity may reveal disease course and the rehabilitative potential of the patient. Neurological disorders are linked with numerous cerebral non-coding RNAs (ncRNAs), in particular, microRNAs; the discovery of their essential role in gene regulation was recently recognized and awarded a Nobel Prize in Physiology or Medicine in 2024. Herein, we review the association of brain plasticity and its homeostasis with ncRNAs, which make them putative targets for RNA-based diagnostics and therapeutics. New insight into the concept of brain plasticity may provide additional perspectives on functional recovery following brain damage. Knowledge of this phenomenon will enable physicians to exploit the potential of cerebral plasticity and regulate eloquent networks with timely interventions. Future studies may reveal pathophysiological mechanisms of brain plasticity at macro- and microscopic levels to advance rehabilitation strategies and improve quality of life in patients with neurological diseases.
Collapse
Affiliation(s)
- Yauhen Statsenko
- ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nik V. Kuznetsov
- ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Milos Ljubisaljevich
- ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
6
|
Oliver BG, Wang J, Yarak RA, Hikasem T, Wang B, Feng M, Wang X, Gorrie CA, Yi C, Chen H. Exposure to third hand e-cigarette vapour impairs cognitive function in young mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117885. [PMID: 39954623 DOI: 10.1016/j.ecoenv.2025.117885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Indoor vaping can lead to third-hand vapour exposure, evidenced by the presence of nicotine and carcinogenic nitrosamines on indoor surfaces. Children are at high risk of such exposure. This study aimed to investigate the effects of third-hand vapour exposure on cognitive function in young mice. Male mice (Balb/c, 4 weeks) were exposed to cotton towels treated with e-cigarette vapour with and without nicotine (9 L chamber filled with 20 puffs of vapour for 2 hours) and changed daily for four weeks. Vapour was generated from tobacco-flavoured e-cigarette liquids (50 % propylene glycol, 50 % vegetable glycerine, 18 mg or 0 mg nicotine) using a human e-cigarette device. Mice exposed to nicotine-free vapour showed impaired short-term memory, while those exposed to nicotine-containing vapour exhibited significantly increased anxiety-like behaviours. Both exposure groups had reduced neuron numbers in the cortex and increased microglia numbers and pro-inflammatory cytokine expression in the brain. Third-hand exposure to vapour can impair memory function and increase anxiety, with some effects being nicotine-independent. These findings highlight the potential risks of indoor vaping, especially in environments frequented by younger people, including children and adolescents, and the need for further research to identify the underlying mechanisms. SYNOPSIS: This is the first study highlighting the risks of cognitive impairment due to third-hand exposure to e-cigarette residues in a mouse model.
Collapse
Affiliation(s)
- Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Macquarie Univerity, NSW 2113, Australia
| | - Jingyu Wang
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Rochelle A Yarak
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Tharathip Hikasem
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Baoming Wang
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Min Feng
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Xichen Wang
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Catherine A Gorrie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Chenju Yi
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China.
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
7
|
Chen L, Jiao J, Lei F, Zhou B, Li H, Liao P, Li X, Kang Y, Liu J, Jiang R. Ezrin-mediated astrocyte-synapse signaling regulates cognitive function via astrocyte morphological changes in fine processes in male mice. Brain Behav Immun 2025; 124:177-191. [PMID: 39580057 DOI: 10.1016/j.bbi.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024] Open
Abstract
Astrocytes, which actively participate in cognitive processes, have a complex spongiform morphology, highlighted by extensive ramified fine processes that closely enwrap the pre- and post-synaptic compartments, forming tripartite synapses. However, the role of astrocyte morphology in cognitive processes remains incompletely understood and even controversial. The actin-binding protein Ezrin is highly expressed in astrocytes and is a key structural determinant of astrocyte morphology. Here, we found that Ezrin expression and astrocyte fine process volume in the hippocampus of male mice increased after learning but decreased after lipopolysaccharide injection and in a mouse model of postoperative cognitive dysfunction, both of which involved models with impaired cognitive function. Additionally, astrocytic Ezrin knock-out led to significantly decreased astrocytic fine process volumes, decreased astrocyte-neuron proximity, and induced anxiety-like behaviors and cognitive dysfunction. Astrocytic Ezrin deficiency in the hippocampus was achieved by using a microRNA silencing technique delivered by adeno-associated viruses. Down-regulation of Ezrin in hippocampal astrocytes led to disrupted astrocyte-synapse interactions and impaired synaptic functions, including synaptic transmission and synaptic plasticity, which could be rescued by exogenous administration of D-serine. Remarkably, decreased Ezrin expression and reduced astrocyte fine processes volumes were also observed in aged mice with decreased cognitive function. Moreover, overexpression of astrocytic Ezrin increased astrocyte fine process volumes and improved cognitive function in aged mice. Overall, our results indicate Ezrin-mediated astrocyte fine processes integrity shapes astrocyte-synapse signaling contributing to cognitive function.
Collapse
Affiliation(s)
- Lingmin Chen
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiao Jiao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fan Lei
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bin Zhou
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Liao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Kang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Ruotian Jiang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
8
|
Balsamo F, Meneo D, Berretta E, Baglioni C, Gelfo F. Could sleep be a brain/cognitive/neural reserve-builder factor? A systematic review on the cognitive effects of sleep modulation in animal models. Neurosci Biobehav Rev 2025; 169:106015. [PMID: 39828234 DOI: 10.1016/j.neubiorev.2025.106015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
The brain/cognitive/neural reserve concept suggests that lifelong experiences, from early life through adulthood, make the brain more resilient to neuronal damage. Modifiable lifestyle factors, such as sleep, can support the development and enhance such a reserve, helping to counteract age- or disease-related brain changes and their impact on cognition. Sleep plays a crucial role in cognitive functioning, and disruptions or disorders may increase neurodegenerative risks. This systematic review aims to explore how functional and disturbed sleep impacts cognitive functions and neuromorphological mechanisms in rodents, aiming to better understand its role in brain/cognitive/neural reserve development. This systematic review, registered on PROSPERO (ID: CRD42023423901) and conducted according to PRISMA-P guidelines, searched PubMed, Scopus, Web of Science, and Embase databases for studies up to June 2022, with terms related to sleep, rodents, and cognitive functions. Of the 28,666 articles identified, 142 met the inclusion criteria. Main results showed significant cognitive decline after sleep deprivation, especially in memory performance. These findings supports the importance of sleep as a critical factor in modulating brain/cognitive/neural reserve.
Collapse
Affiliation(s)
- Francesca Balsamo
- Department of Human Sciences, Guglielmo Marconi University, Rome 00193, Italy; IRCCS Fondazione Santa Lucia, Rome 00179, Italy.
| | - Debora Meneo
- Department of Human Sciences, Guglielmo Marconi University, Rome 00193, Italy
| | | | - Chiara Baglioni
- Department of Human Sciences, Guglielmo Marconi University, Rome 00193, Italy; Department of Clinical Psychology and Psychophysiology/Sleep, Medicine, Centre for Mental Disorders, University Medical Centre, Freiburg, Germany
| | - Francesca Gelfo
- Department of Human Sciences, Guglielmo Marconi University, Rome 00193, Italy; IRCCS Fondazione Santa Lucia, Rome 00179, Italy.
| |
Collapse
|
9
|
Hong S, Baek SH, Lai MKP, Arumugam TV, Jo DG. Aging-associated sensory decline and Alzheimer's disease. Mol Neurodegener 2024; 19:93. [PMID: 39633396 PMCID: PMC11616278 DOI: 10.1186/s13024-024-00776-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Multisensory decline is common as people age, and aging is the primary risk of Alzheimer's Disease (AD). Recent studies have begun to shed light on the possibility that age-related sensory decline could accelerate AD pathogenesis, or be a prodromal indicator of AD. Sensory impairments, specifically in taste and smell, often emerge before cognitive symptoms in AD, indicating their potential as early biomarkers. Olfactory dysfunction has been frequently associated with AD and may offer valuable insights into early detection. Hearing impairment is significantly associated with AD, but its causal impact on AD progression remains unclear. The review also discusses visual and tactile deficits in AD, including retinal thinning and changes in tactile perception, highlighting their links to disease progression. Focusing on molecular mechanisms, the review explores the roles of amyloid-β (Aβ) accumulation and tau protein pathology in sensory decline and their bidirectional relationship with AD. In summary, the evidence presented conclusively supports advocating for an integrated approach to understanding AD and sensory decline, to enhance early detection, implementing preventive strategies, and developing therapeutic interventions for AD. This approach underscores the significance of sensory health in addressing neurodegenerative diseases, particularly AD.
Collapse
Affiliation(s)
- Suji Hong
- The School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung-Hyun Baek
- The School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, Singapore, 117600, Singapore
| | - Thiruma V Arumugam
- The School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, 3086, Australia.
| | - Dong-Gyu Jo
- The School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Biomedical Institute for Convergence at SKKU (BICS), Suwon, 16419, Republic of Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea.
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
10
|
Zhao F, Guan W. Defects of parvalbumin-positive interneurons are implicated in psychiatric disorders. Biochem Pharmacol 2024; 230:116599. [PMID: 39481655 DOI: 10.1016/j.bcp.2024.116599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Psychiatric disorders are a common cause of severe long-term disability and socioeconomic burden worldwide. Although our understanding of these disorders has advanced substantially over the last few years, little has changed the standards of care for these illnesses. Fast-spiking parvalbumin-positive interneurons (PVIs), a subpopulation of gamma-aminobutyric acid (GABA)ergic interneurons, are widely distributed in the hippocampus and have been reported to play an important role in various mental disorders. However, the mechanisms underlying the regulation of the molecular networks relevant to depression and schizophrenia (SCZ) are unknown. Here, we discuss the functions of PVIs in psychiatric disorders, including depression and SCZ. After reviewing several studies, we concluded that dysfunction in PVIs could cause depression-like behavior, as well as cognitive categories in SCZ, which might be mediated in large part by greater synaptic variability. In summary, this scientific review aims to discuss the current knowledge regarding the function of PVIs in depression and SCZ. Moreover, we highlight the importance of neurogenesis and synaptic plasticity in the pathogenesis of depression and SCZ, which seem to be mediated by PVIs activity. These findings provide a better understanding of the role of PVIs in psychiatric disorders.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Pharmacology, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin 214400, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
11
|
Ciumărnean L, Sârb OF, Drăghici NC, Sălăgean O, Milaciu MV, Orășan OH, Vlad CV, Vlad IM, Alexescu T, Para I, Țărmure SF, Hirișcău EI, Dogaru GB. Obesity Control and Supplementary Nutraceuticals as Cofactors of Brain Plasticity in Multiple Sclerosis Populations. Int J Mol Sci 2024; 25:10909. [PMID: 39456690 PMCID: PMC11507128 DOI: 10.3390/ijms252010909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammation, demyelination, and neurodegeneration within the central nervous system. Brain plasticity, the brain's ability to adapt its structure and function, plays a crucial role in mitigating MS's impact. This paper explores the potential benefits of lifestyle changes and nutraceuticals on brain plasticity in the MS population. Lifestyle modifications, including physical activity and dietary adjustments, can enhance brain plasticity by upregulating neurotrophic factors, promoting synaptogenesis, and reducing oxidative stress. Nutraceuticals, such as vitamin D, omega-3 fatty acids, and antioxidants like alpha lipoic acid, have shown promise in supporting brain health through anti-inflammatory and neuroprotective mechanisms. Regular physical activity has been linked to increased levels of brain-derived neurotrophic factor and improved cognitive function. Dietary interventions, including caloric restriction and the intake of polyphenols, can also positively influence brain plasticity. Integrating these lifestyle changes and nutraceuticals into the management of MS can provide a complementary approach to traditional therapies, potentially improving neurological outcomes and enhancing the quality of life for the MS population.
Collapse
Affiliation(s)
- Lorena Ciumărnean
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Oliviu-Florențiu Sârb
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
| | - Nicu-Cătălin Drăghici
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
- “IMOGEN” Institute, Centre of Advanced Research Studies, Emergency Clinical County Hospital Cluj, 400347 Cluj-Napoca, Romania
| | - Octavia Sălăgean
- Department of Nursing, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.S.); (E.-I.H.)
| | - Mircea-Vasile Milaciu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Olga-Hilda Orășan
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Călin-Vasile Vlad
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Irina-Maria Vlad
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
| | - Teodora Alexescu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Ioana Para
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Simina-Felicia Țărmure
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Elisabeta-Ioana Hirișcău
- Department of Nursing, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.S.); (E.-I.H.)
| | - Gabriela-Bombonica Dogaru
- Department of Medical Rehabilitation, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Drigas A, Sideraki A. Brain Neuroplasticity Leveraging Virtual Reality and Brain-Computer Interface Technologies. SENSORS (BASEL, SWITZERLAND) 2024; 24:5725. [PMID: 39275636 PMCID: PMC11397861 DOI: 10.3390/s24175725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
This study explores neuroplasticity through the use of virtual reality (VR) and brain-computer interfaces (BCIs). Neuroplasticity is the brain's ability to reorganize itself by forming new neural connections in response to learning, experience, and injury. VR offers a controlled environment to manipulate sensory inputs, while BCIs facilitate real-time monitoring and modulation of neural activity. By combining VR and BCI, researchers can stimulate specific brain regions, trigger neurochemical changes, and influence cognitive functions such as memory, perception, and motor skills. Key findings indicate that VR and BCI interventions are promising for rehabilitation therapies, treatment of phobias and anxiety disorders, and cognitive enhancement. Personalized VR experiences, adapted based on BCI feedback, enhance the efficacy of these interventions. This study underscores the potential for integrating VR and BCI technologies to understand and harness neuroplasticity for cognitive and therapeutic applications. The researchers utilized the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) method to conduct a comprehensive and systematic review of the existing literature on neuroplasticity, VR, and BCI. This involved identifying relevant studies through database searches, screening for eligibility, and assessing the quality of the included studies. Data extraction focused on the effects of VR and BCI on neuroplasticity and cognitive functions. The PRISMA method ensured a rigorous and transparent approach to synthesizing evidence, allowing the researchers to draw robust conclusions about the potential of VR and BCI technologies in promoting neuroplasticity and cognitive enhancement.
Collapse
Affiliation(s)
- Athanasios Drigas
- Net Media Lab & Mind & Brain R&D, Institute of Informatics & Telecommunications, National Centre of Scientific Research ‘Demokritos’, 15341 Athens, Greece
| | - Angeliki Sideraki
- Department of Secondary Education, Kapodistrian University of Athens, 15772 Athens, Greece;
| |
Collapse
|
13
|
Gawryluk A, Cybulska-Klosowicz A, Charzynska A, Zakrzewska R, Sobolewska A, Kossut M, Liguz-Lecznar M. Mitigation of aging-related plasticity decline through taurine supplementation and environmental enrichment. Sci Rep 2024; 14:19546. [PMID: 39174711 PMCID: PMC11341750 DOI: 10.1038/s41598-024-70261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
Aging-related biochemical changes in nerve cells lead to dysfunctional synapses and disrupted neuronal circuits, ultimately affecting vital processes such as brain plasticity, learning, and memory. The imbalance between excitation and inhibition in synaptic function during aging contributes to cognitive impairment, emphasizing the importance of compensatory mechanisms. Fear conditioning-related plasticity of the somatosensory barrel cortex, relying on the proper functioning and extensive up regulation of the GABAergic system, in particular interneurons containing somatostatin, is compromised in aging (one-year-old) mice. The present research explores two potential interventions, taurine supplementation, and environmental enrichment, revealing their effectiveness in supporting learning-induced plasticity in the aging mouse brain. They do not act through a mechanism normalizing the Glutamate/GABA balance that is disrupted in aging. Still, they allow for increased somatostatin levels, an effect observed in young animals after learning. These findings highlight the potential of lifestyle interventions and diet supplementation to mitigate age-related cognitive decline by promoting experience-dependent plasticity.
Collapse
Affiliation(s)
- Aleksandra Gawryluk
- Laboratory of Epileptogenesis, Polish Academy of Sciences, Nencki Institute of Experimental Biology, 3 Pasteur Str., 02-093, Warsaw, Poland
| | - Anita Cybulska-Klosowicz
- Laboratory of Emotions Neurobiology, Polish Academy of Sciences, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Agata Charzynska
- Laboratory of Language Neurobiology, Polish Academy of Sciences, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Renata Zakrzewska
- Laboratory of Behavioral Methods, Polish Academy of Sciences, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Alicja Sobolewska
- Department of Experimental and Clinical Neuroscience, Institute of Psychiatry and Neurology , Warsaw, Poland
| | - Malgorzata Kossut
- Science Diplomacy Board, Polish Academy of Sciences, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Monika Liguz-Lecznar
- Laboratory of Epileptogenesis, Polish Academy of Sciences, Nencki Institute of Experimental Biology, 3 Pasteur Str., 02-093, Warsaw, Poland.
| |
Collapse
|
14
|
Balsamo F, Berretta E, Meneo D, Baglioni C, Gelfo F. The Complex Relationship between Sleep and Cognitive Reserve: A Narrative Review Based on Human Studies. Brain Sci 2024; 14:654. [PMID: 39061395 PMCID: PMC11274941 DOI: 10.3390/brainsci14070654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Sleep and brain/cognitive/neural reserve significantly impact well-being and cognition throughout life. This review aims to explore the intricate relationship between such factors, with reference to their effects on human cognitive functions. The specific goal is to understand the bidirectional influence that sleep and reserve exert on each other. Up to 6 February 2024, a methodical search of the literature was conducted using the PubMed database with terms related to brain, cognitive or neural reserve, and healthy or disturbed sleep. Based on the inclusion criteria, 11 articles were selected and analyzed for this review. The articles focus almost exclusively on cognitive reserve, with no explicit connection between sleep and brain or neural reserve. The results evidence sleep's role as a builder of cognitive reserve and cognitive reserve's role as a moderator in the effects of physiological and pathological sleep on cognitive functions. In conclusion, the findings of the present review support the notion that both sleep and cognitive reserve are critical factors in cognitive functioning. Deepening comprehension of the interactions between them is essential for devising strategies to enhance brain health and resilience against age- and pathology-related conditions.
Collapse
Affiliation(s)
- Francesca Balsamo
- Department of Human Sciences, Guglielmo Marconi University, 00193 Rome, Italy
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | | | - Debora Meneo
- Department of Human Sciences, Guglielmo Marconi University, 00193 Rome, Italy
| | - Chiara Baglioni
- Department of Human Sciences, Guglielmo Marconi University, 00193 Rome, Italy
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Francesca Gelfo
- Department of Human Sciences, Guglielmo Marconi University, 00193 Rome, Italy
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
15
|
Shallow MC, Tian L, Lin H, Lefton KB, Chen S, Dougherty JD, Culver JP, Lambo ME, Hengen KB. At the onset of active whisking, the input layer of barrel cortex exhibits a 24 h window of increased excitability that depends on prior experience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597353. [PMID: 38895408 PMCID: PMC11185658 DOI: 10.1101/2024.06.04.597353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The development of motor control over sensory organs is a critical milestone in sensory processing, enabling active exploration and shaping of the sensory environment. However, whether the onset of sensory organ motor control directly influences the development of corresponding sensory cortices remains unknown. Here, we exploit the late onset of whisking behavior in mice to address this question in the somatosensory system. Using ex vivo electrophysiology, we discovered a transient increase in the intrinsic excitability of excitatory neurons in layer IV of the barrel cortex, which processes whisker input, precisely coinciding with the onset of active whisking at postnatal day 14 (P14). This increase in neuronal gain was specific to layer IV, independent of changes in synaptic strength, and required prior sensory experience. Strikingly, the effect was not observed in layer II/III of the barrel cortex or in the visual cortex upon eye opening, suggesting a unique interaction between the development of active sensing and the thalamocortical input layer in the somatosensory system. Predictive modeling indicated that changes in active membrane conductances alone could reliably distinguish P14 neurons in control but not whisker-deprived hemispheres. Our findings demonstrate an experience-dependent, lamina-specific refinement of neuronal excitability tightly linked to the emergence of active whisking. This transient increase in the gain of the thalamic input layer coincides with a critical period for synaptic plasticity in downstream layers, suggesting a role in facilitating cortical maturation and sensory processing. Together, our results provide evidence for a direct interaction between the development of motor control and sensory cortex, offering new insights into the experience-dependent development and refinement of sensory systems. These findings have broad implications for understanding the interplay between motor and sensory development, and how the mechanisms of perception cooperate with behavior.
Collapse
Affiliation(s)
| | - Lucy Tian
- Department of Biology, Washington University in Saint Louis
| | - Hudson Lin
- Department of Biology, Washington University in Saint Louis
| | - Katheryn B Lefton
- Department of Biology, Washington University in Saint Louis
- Department of Neuroscience, Washington University in Saint Louis
| | - Siyu Chen
- Department of Genetics, Washington University in Saint Louis
| | | | - Joe P Culver
- Department of Radiology, Washington University in Saint Louis
| | - Mary E Lambo
- Department of Biology, Washington University in Saint Louis
| | - Keith B Hengen
- Department of Biology, Washington University in Saint Louis
| |
Collapse
|
16
|
Flores-Prieto B, Caycho-Salazar F, Manzo J, Hernández-Aguilar ME, Coria-Avila AG, Herrera-Covarrubias D, Rojas-Dúran F, Aranda-Abreu GE, Pérez-Estudillo CA, Toledo-Cárdenas MR. Effect of Enriched Environment on Cerebellum and Social Behavior of Valproic Zebrafish. NEUROSCI 2024; 5:128-140. [PMID: 39483495 PMCID: PMC11477906 DOI: 10.3390/neurosci5020009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 11/03/2024] Open
Abstract
The etiology of autism spectrum disorder (ASD) has been linked to both genetic and epigenetic factors. Among the epigenetic factors, exposure to valproic acid (VPA), an antiepileptic and mood-modulating drug, has been shown to induce characteristic traits of ASD when exposed to during embryogenesis. Conversely, in animal models, enriched environment (EE) has demonstrated positive behavioral and neural effects, suggesting its potential as a complementary treatment to pharmacological approaches in central nervous system disorders. In this study, we utilized zebrafish to model ASD characteristics induced by VPA and hypothesized that sensory stimulation through EE could ameliorate the behavioral and neuroanatomical features associated with ASD. To test this hypothesis, we assessed social behavior, cerebellar volume, and Purkinje cell populations via histology and immunohistochemistry after exposing the fish to EE. The results revealed that zebrafish exposed to VPA exhibited social deficits, reduced cerebellar cortex volume, and a decrease in c-Fos-positive cells in the Purkinje layer. In contrast, VPA-exposed fish treated with EE showed increased socialization, augmented cerebellar cortex volume, and an elevation in c-Fos-positive Purkinje cells. These findings suggest that alterations induced by VPA may be ameliorated through EE treatment, highlighting the potential therapeutic impact of sensory stimulation in conditions related to ASD.
Collapse
Affiliation(s)
| | - Flower Caycho-Salazar
- Doctorate in Brain Research, Universidad Veracruzana, Veracruz 91190, Mexico; (B.F.-P.)
| | - Jorge Manzo
- Institute of Brain Research, Universidad Veracruzana, Veracruz 91190, Mexico
| | | | | | | | - Fausto Rojas-Dúran
- Institute of Brain Research, Universidad Veracruzana, Veracruz 91190, Mexico
| | | | | | | |
Collapse
|
17
|
Gaynor AM, Gazes Y, Haynes CR, Babukutty RS, Habeck C, Stern Y, Gu Y. Childhood engagement in cognitively stimulating activities moderates relationships between brain structure and cognitive function in adulthood. Neurobiol Aging 2024; 138:36-44. [PMID: 38522385 PMCID: PMC11363693 DOI: 10.1016/j.neurobiolaging.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024]
Abstract
Greater engagement in cognitively stimulating activities (CSA) during adulthood has been shown to protect against neurocognitive decline, but no studies have investigated whether CSA during childhood protects against effects of brain changes on cognition later in life. The current study tested the moderating role of childhood CSA in the relationships between brain structure and cognitive performance during adulthood. At baseline (N=250) and 5-year follow-up (N=204) healthy adults aged 20-80 underwent MRI to assess four structural brain measures and completed neuropsychological tests to measure three cognitive domains. Participants were categorized into low and high childhood CSA based on self-report questionnaires. Results of multivariable linear regressions analyzing interactions between CSA, brain structure, and cognition showed that higher childhood CSA was associated with a weaker relationship between cortical thickness and memory at baseline, and attenuated the effects of change in cortical thickness and brain volume on decline in processing speed over time. These findings suggest higher CSA during childhood may mitigate the effects of brain structure changes on cognitive function later in life.
Collapse
Affiliation(s)
- Alexandra M Gaynor
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States; Montclair State University, Department of Psychology, Montclair, NJ, United States
| | - Yunglin Gazes
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States; Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States
| | - Caleb R Haynes
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States
| | - Reshma S Babukutty
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States
| | - Christian Habeck
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States; Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States
| | - Yaakov Stern
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States; Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States; Department of Psychiatry, Columbia University, New York, NY, United States
| | - Yian Gu
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States; Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States; Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, United States.
| |
Collapse
|
18
|
Chen G, Zhang Y, Li R, Jin L, Hao K, Rong J, Duan H, Du Y, Yao L, Xiang D, Liu Z. Environmental enrichment attenuates depressive-like behavior in maternal rats by inhibiting neuroinflammation and apoptosis and promoting neuroplasticity. Neurobiol Stress 2024; 30:100624. [PMID: 38524250 PMCID: PMC10958482 DOI: 10.1016/j.ynstr.2024.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 03/26/2024] Open
Abstract
Gestational stress can exacerbate postpartum depression (PPD), for which treatment options remain limited. Environmental enrichment (EE) may be a therapeutic intervention for neuropsychiatric disorders, including depression, but the specific mechanisms by which EE might impact PPD remain unknown. Here we examined the behavioral, molecular, and cellular impact of EE in a stable PPD model in rats developed through maternal separation (MS). Maternal rats subjected to MS developed depression-like behavior and cognitive dysfunction together with evidence of significant neuroinflammation including microglia activation, neuronal apoptosis, and impaired synaptic plasticity. Expanding the duration of EE to throughout pregnancy and lactation, we observed an EE-associated reversal of MS-induced depressive phenotypes, inhibition of neuroinflammation and neuronal apoptosis, and improvement in synaptic plasticity in maternal rats. Thus, EE effectively alleviates neuroinflammation, neuronal apoptosis, damage to synaptic plasticity, and consequent depression-like behavior in mother rats experiencing MS-induced PPD, paving the way for new preventive and therapeutic strategies for PPD.
Collapse
Affiliation(s)
- Guopeng Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuhui Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ruiling Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liuyin Jin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Keke Hao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jingtong Rong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hao Duan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yiwei Du
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Dan Xiang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
19
|
Shmal D, Mantero G, Floss T, Benfenati F, Maya-Vetencourt JF. Restoring vision in adult amblyopia by enhancing plasticity through deletion of the transcriptional repressor REST. iScience 2024; 27:109507. [PMID: 38591011 PMCID: PMC11000024 DOI: 10.1016/j.isci.2024.109507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/30/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Visual cortical plasticity is high during early life, but gradually decreases with development. This is due to the Otx2-driven maturation of intracortical inhibition that parallels the condensation of extracellular matrix components into perineuronal nets mainly around parvalbumin-positive GABAergic neurons. Repressor Element 1 Silencing Transcription (REST) epigenetically controls the expression of a plethora of neuron-specific genes. We demonstrate that the conditional knockout of REST in the primary visual cortex of adult mice induces a shift of ocular dominance after short-term monocular deprivation and promotes the recovery of vision in long-term deprived animals after reverse suture. These phenomena paralleled a reduction of perineuronal net density and increased expression of REST target genes, but not of the homeoprotein Otx2 in the visual cortex contralateral to the deprived eye. This shows that REST regulates adult visual cortical plasticity and is a potential therapeutic target to restore vision in adult amblyopia by enhancing V1 plasticity.
Collapse
Affiliation(s)
- Dmytro Shmal
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Giulia Mantero
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Thomas Floss
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - José Fernando Maya-Vetencourt
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
20
|
Poggini S, Matte Bon G, Ciano Albanese N, Karpova N, Castrén E, D'Andrea I, Branchi I. Subjective experience of the environment determines serotoninergic antidepressant treatment outcome in male mice. J Affect Disord 2024; 350:900-908. [PMID: 38246279 DOI: 10.1016/j.jad.2024.01.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND The effects of the selective serotonin reuptake inhibitors (SSRIs), the first-line antidepressant treatment, have been proposed to be affected, at least in part, by the living environment. Since the quality of the environment depends not only on its objective features, but also on the subjective experience, we hypothesized that the latter plays a key role in determining SSRI treatment outcome. METHODS We chronically administered the SSRI fluoxetine to two groups of adult CD-1 male mice that reportedly show distinct subjective experiences of the environment measured as consistent and significantly different responses to the same emotional and social stimuli. These distinct socioemotional profiles were generated by rearing mice either in standard laboratory conditions (SN) or in a communal nest (CN) where three dams breed together their offspring, sharing caregiving behavior. RESULTS At adulthood, CN mice displayed higher levels of agonistic and anxiety-like behaviors than SN mice, indicating that they experience the environment as more socially challenging and potentially dangerous. We then administered fluoxetine, which increased offensive and anxious response in SN, while producing opposite effects in CN mice. BDNF regulation was modified by the treatment accordingly. LIMITATIONS Subjective experience in mice was assessed as behavioral response to the environment. CONCLUSIONS These results show that the subjective experience of the environment determines fluoxetine outcome. In a translational perspective, our findings suggest considering not only the objective quality, but also the subjective appraisal, of the patient's living environment for developing effective personalized therapeutic approaches in psychiatry.
Collapse
Affiliation(s)
- Silvia Poggini
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Gloria Matte Bon
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy; Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - Naomi Ciano Albanese
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Nina Karpova
- Neuroscience Center, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
| | - Eero Castrén
- Neuroscience Center, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
| | - Ivana D'Andrea
- Institut national de la santé et de la recherche médicale (INSERM) UMR-S 1270, Sorbonne Université, Sciences and Engineering Faculty, Institut du Fer à Moulin, Paris, France
| | - Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
21
|
Dupuis O, Girardie J, Van Gaever M, Garnier P, Coq JO, Canu MH, Dupont E. Early Movement Restriction Affects FNDC5/Irisin and BDNF Levels in Rat Muscle and Brain. Int J Mol Sci 2024; 25:3918. [PMID: 38612728 PMCID: PMC11011789 DOI: 10.3390/ijms25073918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Interaction with the environment appears necessary for the maturation of sensorimotor and cognitive functions in early life. In rats, a model of sensorimotor restriction (SMR) from postnatal day 1 (P1) to P28 has shown that low and atypical sensorimotor activities induced the perturbation of motor behavior due to muscle weakness and the functional disorganization of the primary somatosensory and motor cortices. In the present study, our objective was to understand how SMR affects the muscle-brain dialogue. We focused on irisin, a myokine secreted by skeletal muscles in response to exercise. FNDC5/irisin expression was determined in hindlimb muscles and brain structures by Western blotting, and irisin expression in blood and cerebrospinal fluid was determined using an ELISA assay at P8, P15, P21 and P28. Since irisin is known to regulate its expression, Brain-Derived Neurotrophic Factor (BDNF) levels were also measured in the same brain structures. We demonstrated that SMR increases FNDC5/irisin levels specifically in the soleus muscle (from P21) and also affects this protein expression in several brain structures (as early as P15). The BDNF level was increased in the hippocampus at P8. To conclude, SMR affects FNDC5/irisin levels in a postural muscle and in several brain regions and has limited effects on BDNF expression in the brain.
Collapse
Affiliation(s)
- Orlane Dupuis
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369, URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France (J.G.); (E.D.)
| | - Julien Girardie
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369, URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France (J.G.); (E.D.)
| | - Mélanie Van Gaever
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369, URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France (J.G.); (E.D.)
| | - Philippe Garnier
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR Des Sciences de Santé, F-21000 Dijon, France
- Département Génie Biologique, IUT, F-21000 Dijon, France
| | - Jacques-Olivier Coq
- Institut des Sciences du Mouvement, UMR7287, Aix-Marseille Université, F-13000 Marseille, France;
- Centre National de la Recherche Scientifique (CNRS), UMR7287, F-13000 Marseille, France
| | - Marie-Hélène Canu
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369, URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France (J.G.); (E.D.)
| | - Erwan Dupont
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369, URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France (J.G.); (E.D.)
| |
Collapse
|
22
|
Fóz A, Nassar L. Fostering Emotional Plasticity in Acquired Brain Injury Rehabilitation. JOURNAL OF PSYCHOSOCIAL REHABILITATION AND MENTAL HEALTH 2024; 11:115-119. [DOI: 10.1007/s40737-023-00380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2025]
|
23
|
Zhang L, Xu C, Chen L, Liu Y, Xiao N, Wu X, Chen Y, Hou W. Abnormal interlimb coordination of motor developmental delay during infant crawling based on kinematic synergy analysis. Biomed Eng Online 2024; 23:16. [PMID: 38326806 PMCID: PMC10851483 DOI: 10.1186/s12938-024-01207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Previous studies have reported that abnormal interlimb coordination is a typical characteristic of motor developmental delay (MDD) during human movement, which can be visually manifested as abnormal motor postures. Clinically, the scale assessments are usually used to evaluate interlimb coordination, but they rely heavily on the subjective judgements of therapists and lack quantitative analysis. In addition, although abnormal interlimb coordination of MDD have been studied, it is still unclear how this abnormality is manifested in physiology-related kinematic features. OBJECTIVES This study aimed to evaluate how abnormal interlimb coordination of MDD during infant crawling was manifested in the stability of joints and limbs, activation levels of synergies and intrasubject consistency from the kinematic synergies of tangential velocities of joints perspective. METHODS Tangential velocities of bilateral shoulder, elbow, wrist, hip, knee and ankle over time were computed from recorded three-dimensional joint trajectories in 40 infants with MDD [16 infants at risk of developmental delay, 11 infants at high risk of developmental delay, 13 infants with confirmed developmental delay (CDD group)] and 20 typically developing infants during hands-and-knees crawling. Kinematic synergies and corresponding activation coefficients were derived from those joint velocities using the non-negative matrix factorization algorithm. The variability accounted for yielded by those synergies and activation coefficients, and the synergy weightings in those synergies were used to measure the stability of joints and limbs. To quantify the activation levels of those synergies, the full width at half maximum and center of activity of activation coefficients were calculated. In addition, the intrasubject consistency was measured by the cosine similarity of those synergies and activation coefficients. RESULTS Interlimb coordination patterns during infant crawling were the combinations of four types of single-limb movements, which represent the dominance of each of the four limbs. MDD mainly reduced the stability of joints and limbs, and induced the abnormal activation levels of those synergies. Meanwhile, MDD generally reduced the intrasubject consistency, especially in CDD group. CONCLUSIONS These features have the potential for quantitatively evaluating abnormal interlimb coordination in assisting the clinical diagnosis and motor rehabilitation of MDD.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
- Chongqing Engineering Research Center of Medical Electronics Technology, Chongqing, 400044, China
| | - Chong Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
- Chongqing Engineering Research Center of Medical Electronics Technology, Chongqing, 400044, China
| | - Lin Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
- Chongqing Engineering Research Center of Medical Electronics Technology, Chongqing, 400044, China
| | - Yuan Liu
- Department of Rehabilitation Center, Children's Hospital, Chongqing Medical University, Chongqing, 400014, China
| | - Nong Xiao
- Department of Rehabilitation Center, Children's Hospital, Chongqing Medical University, Chongqing, 400014, China
| | - Xiaoying Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China.
- Chongqing Engineering Research Center of Medical Electronics Technology, Chongqing, 400044, China.
| | - Yuxia Chen
- Department of Rehabilitation Center, Children's Hospital, Chongqing Medical University, Chongqing, 400014, China.
| | - Wensheng Hou
- Chongqing Engineering Research Center of Medical Electronics Technology, Chongqing, 400044, China
| |
Collapse
|
24
|
Benvenuti F, De Carlo S, Rullo L, Caffino L, Losapio L, Morosini C, Ubaldi M, Soverchia L, Cannella N, Domi E, Candeletti S, Mottarlini F, Fattore L, Romualdi P, Fumagalli F, Trezza V, Roberto M, Ciccocioppo R. Early social isolation differentially affects the glucocorticoid receptor system and alcohol-seeking behavior in male and female Marchigian Sardinian alcohol-preferring rats. Neurobiol Stress 2024; 28:100598. [PMID: 38115888 PMCID: PMC10727952 DOI: 10.1016/j.ynstr.2023.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 12/21/2023] Open
Abstract
Adverse early life experiences during postnatal development can evoke long-lasting neurobiological changes in stress systems, thereby affecting subsequent behaviors including propensity to develop alcohol use disorder. Here, we exposed genetically selected male and female Marchigian Sardinian alcohol-preferring (msP) and Wistar rats to mild, repeated social deprivation from postnatal day 14 (PND14) to PND21 and investigated the effect of the early social isolation (ESI) on the glucocorticoid receptor (GR) system and on the propensity to drink and seek alcohol in adulthood. We found that ESI resulted in higher levels of GR gene and protein expression in the prefrontal cortex (PFC) in male but not female msP rats. In female Wistars, ESI resulted in significant downregulation of Nr3c1 mRNA levels and lower GR protein levels. In male and female msP rats, plasma corticosterone levels on PND35 were similar and unaffected by ESI. Wistar females exhibited higher levels of corticosterone compared with males, independently from ESI. In alcohol self-administration experiments we found that the pharmacological stressor yohimbine (0.0, 0.312, 0.625, and 1.25 mg/kg) increased alcohol self-administration in both rat lines, regardless of ESI. After extinction, 0.625 mg/kg yohimbine significantly reinstated alcohol seeking in female rats only. ESI enhanced reinstatement in female msP rats. Overall, the present results indicate that repeated social deprivation during the third week of postnatal life affects GR expression in a strain- and sex-dependent manner: such effect may contribute, at least partially, to the heightened sensitivity of female msP rats to the effects of yohimbine-induced alcohol seeking.
Collapse
Affiliation(s)
- F. Benvenuti
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - S. De Carlo
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - L. Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - L. Caffino
- Department of Pharmacological and Biomolecular Sciences, ‘Rodolfo Paoletti’, University of Milan, Milan, Italy
| | - L.M. Losapio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - C. Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - M. Ubaldi
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - L. Soverchia
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - N. Cannella
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - E. Domi
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - S. Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - F. Mottarlini
- Department of Pharmacological and Biomolecular Sciences, ‘Rodolfo Paoletti’, University of Milan, Milan, Italy
| | - L. Fattore
- CNR Institute of Neuroscience-Cagliari, National Research Council, Cagliari, Italy
| | - P. Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - F. Fumagalli
- Department of Pharmacological and Biomolecular Sciences, ‘Rodolfo Paoletti’, University of Milan, Milan, Italy
| | - V. Trezza
- Department of Science, University “Roma Tre”, Rome, Italy
| | - M. Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - R. Ciccocioppo
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
25
|
Chen J, Wang T, Zhou Y, Hong Y, Zhang S, Zhou Z, Jiang A, Liu D. Microglia trigger the structural plasticity of GABAergic neurons in the hippocampal CA1 region of a lipopolysaccharide-induced neuroinflammation model. Exp Neurol 2023; 370:114565. [PMID: 37806513 DOI: 10.1016/j.expneurol.2023.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/23/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
It is well-established that microglia-mediated neuroinflammatory response involves numerous neuropsychiatric and neurodegenerative diseases. While the role of microglia in excitatory synaptic transmission has been widely investigated, the impact of innate immunity on the structural plasticity of GABAergic inhibitory synapses is not well understood. To investigate this, we established an inflammation model using lipopolysaccharide (LPS) and observed a prolonged microglial response in the hippocampal CA1 region of mice, which was associated with cognitive deficits in the open field test, Y-maze test, and novel object recognition test. Furthermore, we found an increased abundance of GABAergic interneurons and GABAergic synapse formation in the hippocampal CA1 region. The cognitive impairment caused by LPS injection could be reversed by blocking GABA receptor activity with (-)-Bicuculline methiodide. These findings suggest that the upregulation of GABAergic synapses induced by LPS-mediated microglial activation leads to cognitive dysfunction. Additionally, the depletion of microglia by PLX3397 resulted in a decrease in GABAergic interneurons and GABAergic inhibitory synapses, which blocked the cognitive decline induced by LPS. In conclusion, our findings indicate that excessive reinforcement of GABAergic inhibitory synapse formation via microglial activation contributes to LPS-induced cognitive impairment.
Collapse
Affiliation(s)
- Juan Chen
- School of Mental Health, Bengbu Medical College, Bengbu 233030, China
| | - Tao Wang
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yuting Zhou
- School of Mental Health, Bengbu Medical College, Bengbu 233030, China
| | - Yiming Hong
- School of Mental Health, Bengbu Medical College, Bengbu 233030, China
| | - Shiyong Zhang
- School of Clinical Medicine, Bengbu Medical College, Bengbu 233030, China
| | - Zhongtao Zhou
- School of Nursing, Bengbu Medical College, Bengbu 233030, China
| | - Ao Jiang
- School of Mental Health, Bengbu Medical College, Bengbu 233030, China
| | - Danyang Liu
- Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
26
|
Réus GZ, Abitante MS, Manosso LM, de Moura AB, Borba LA, Botelho MEM, Darabas AC, Demo JP, Behenck JP, Arent CO, Garbossa L, Joaquim L, Cardoso TA, Petronilho F, Quevedo J. Environmental Enrichment Rescues Oxidative Stress and Behavioral Impairments Induced by Maternal Care Deprivation: Sex- and Developmental-Dependent Differences. Mol Neurobiol 2023; 60:6757-6773. [PMID: 34665408 DOI: 10.1007/s12035-021-02588-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/29/2021] [Indexed: 12/27/2022]
Abstract
Stress is related to major depressive disorder (MDD). This study investigated the action that early stress, represented by maternal deprivation (MD), has on the behavior and oxidative stress of Wistar female and male rats. Also, it was evaluated whether changes induced by MD could be reversed by environmental enrichment (EE). Male and female rats were divided into a non-MD and MD group. The MD group was subdivided into 3 groups: (1) assessed on the 31st day after exposure to EE for 10 days, (2) assessed on the 41st day after exposure to EE for 20 days, and (3) assessed on the 61st day after exposure to EE for 40 days. Behavioral tests were performed (memory habituation and elevated plus maze). Oxidative stress parameters were evaluated peripherally. MD was able to promote anxiety-like behavior at postnatal day (PND) 41 and impair memory at PND 31 and PND 61 in male and PND 41 and PND 61 in female rats. MD was associated with increased oxidative stress parameters (reactive species to thiobarbituric acid levels (TBARS), carbonylated proteins, nitrite/nitrate concentration), and altered antioxidant defenses (superoxide dismutase (SOD) and catalase (CAT), and sulfhydryl content) in different stages of development. The EE was able to reverse almost all behavioral and biochemical changes induced by MD; however, EE effects were sex and developmental period dependent. These findings reinforce the understanding of the gender variable as a biological factor in MDD related to MD and EE could be considered a treatment option for MDD treatment and its comorbidities.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, 88806-000, Brazil.
| | - Morgana S Abitante
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, 88806-000, Brazil
| | - Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, 88806-000, Brazil
| | - Airam B de Moura
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, 88806-000, Brazil
| | - Laura A Borba
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, 88806-000, Brazil
| | - Maria Eduarda M Botelho
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, 88806-000, Brazil
| | - Ana Caroline Darabas
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, 88806-000, Brazil
| | - Julia P Demo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, 88806-000, Brazil
| | - João Paulo Behenck
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, 88806-000, Brazil
| | - Camila O Arent
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, 88806-000, Brazil
| | - Leandro Garbossa
- Laboratory of Clinical and Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Clinical and Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, SC, Brazil
| | - Taiane A Cardoso
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Fabricia Petronilho
- Laboratory of Clinical and Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, 88806-000, Brazil
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Center of Excellence On Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
27
|
Liu Y, Wang Z, Wei T, Zhou S, Yin Y, Mi Y, Liu X, Tang Y. Alterations of Audiovisual Integration in Alzheimer's Disease. Neurosci Bull 2023; 39:1859-1872. [PMID: 37812301 PMCID: PMC10661680 DOI: 10.1007/s12264-023-01125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/22/2023] [Indexed: 10/10/2023] Open
Abstract
Audiovisual integration is a vital information process involved in cognition and is closely correlated with aging and Alzheimer's disease (AD). In this review, we evaluated the altered audiovisual integrative behavioral symptoms in AD. We further analyzed the relationships between AD pathologies and audiovisual integration alterations bidirectionally and suggested the possible mechanisms of audiovisual integration alterations underlying AD, including the imbalance between energy demand and supply, activity-dependent degeneration, disrupted brain networks, and cognitive resource overloading. Then, based on the clinical characteristics including electrophysiological and imaging data related to audiovisual integration, we emphasized the value of audiovisual integration alterations as potential biomarkers for the early diagnosis and progression of AD. We also highlighted that treatments targeted audiovisual integration contributed to widespread pathological improvements in AD animal models and cognitive improvements in AD patients. Moreover, investigation into audiovisual integration alterations in AD also provided new insights and comprehension about sensory information processes.
Collapse
Affiliation(s)
- Yufei Liu
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Zhibin Wang
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Tao Wei
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Shaojiong Zhou
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Yunsi Yin
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Yingxin Mi
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Xiaoduo Liu
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Yi Tang
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China.
| |
Collapse
|
28
|
Haley M, Bertrand J, Anderson VT, Fuad M, Frenguelli BG, Corrêa SAL, Wall MJ. Arc expression regulates long-term potentiation magnitude and metaplasticity in area CA1 of the hippocampus in ArcKR mice. Eur J Neurosci 2023; 58:4166-4180. [PMID: 37821126 DOI: 10.1111/ejn.16172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Expression of the immediate early gene Arc/Arg3.1 (Arc), a key mediator of synaptic plasticity, is enhanced by neural activity and then reduced by proteasome-dependent degradation. We have previously shown that the disruption of Arc degradation, in an Arc knock-in mouse (ArcKR), where the predominant Arc ubiquitination sites were mutated, reduced the threshold to induce, and also enhanced, the strength of Group I metabotropic glutamate receptor-mediated long-term depression (DHPG-LTD). Here, we have investigated if ArcKR expression changes long-term potentiation (LTP) in CA1 area of the hippocampus. As previously reported, there was no change in basal synaptic transmission at Schaffer collateral/commissural-CA1 (SC-CA1) synapses in ArcKR versus wild-type (WT) mice. There was, however, a significant increase in the amplitude of synaptically induced (with low frequency paired-pulse stimulation) LTD in ArcKR mice. Theta burst stimulation (TBS)-evoked LTP at SC-CA1 synapses was significantly reduced in ArcKR versus WT mice (after 2 h). Group 1 mGluR priming of LTP was abolished in ArcKR mice, which could also potentially contribute to a depression of LTP. Although high frequency stimulation (HFS)-induced LTP was not significantly different in ArcKR compared with WT mice (after 1 h), there was a phenotype in environmentally enriched mice, with the ratio of LTP to short-term potentiation (STP) significantly reduced in ArcKR mice. These findings support the hypothesis that Arc ubiquitination supports the induction and expression of LTP, likely via limiting Arc-dependent removal of AMPA receptors at synapses.
Collapse
Affiliation(s)
- Maisy Haley
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Jeanri Bertrand
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | - Mukattar Fuad
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | - Sonia A L Corrêa
- Faculty of Science and Engineering, Department of Life Sciences, John Dalton Building, Room E210, Manchester Metropolitan University, Manchester, UK
| | - Mark J Wall
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
29
|
Purpura G, Fumagalli S, Nacinovich R, Riva A, Ornaghi S, Serafini M, Nespoli A. Effects of social and sensory deprivation in newborns: A lesson from the Covid-19 experience. Early Hum Dev 2023; 185:105853. [PMID: 37666054 DOI: 10.1016/j.earlhumdev.2023.105853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Infancy is a complex period of human life, in which environmental experiences have a fundamental role for neurodevelopment. Although conditions of social and sensory deprivation are uncommon in high income countries, the Covid-19 pandemic abruptly modified this condition, by depriving people of their social stimuli of daily life. AIM To understand the impact of this deprivation on infants' behaviour, we investigated the short-term effects of isolation and use of individual protective systems by mothers during the first two weeks of life. METHODS The study included 11 mother-infant dyads with mothers tested positive to SARS-CoV-2 at the time of delivery (Covid group) and 11 dyads with a SARS-CoV-2 negative mother as controls. Neurobehavioral, visual, and sensory processing assessments were performed from birth to 3 months of age. RESULTS Findings showed the effect of deprivation on some neurobehavioral abilities of infants in the Covid group; in addition, differences in sensory maturation trends were observed, although they tended to gradually decrease until disappearance at 3 months of age. CONCLUSION These findings suggest the significant effects of early sensory and social deprivation during the first two weeks of life, but also provide several insights on the ability of the brain to restore its aptitudes by deleting or reducing the effects of early deprivation before the critical periods' closure.
Collapse
Affiliation(s)
- Giulia Purpura
- University of Milano Bicocca, School of Medicine and Surgery, Monza, Italy.
| | - Simona Fumagalli
- University of Milano Bicocca, School of Medicine and Surgery, Monza, Italy; Department of Obstetrics and Gynecology, Unit of Obstetrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Renata Nacinovich
- University of Milano Bicocca, School of Medicine and Surgery, Monza, Italy; Child and Adolescent Health Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Anna Riva
- University of Milano Bicocca, School of Medicine and Surgery, Monza, Italy; Child and Adolescent Health Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Sara Ornaghi
- University of Milano Bicocca, School of Medicine and Surgery, Monza, Italy; Department of Obstetrics and Gynecology, Unit of Obstetrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Marzia Serafini
- University of Milano Bicocca, School of Medicine and Surgery, Monza, Italy; Department of Obstetrics and Gynecology, Unit of Obstetrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Antonella Nespoli
- University of Milano Bicocca, School of Medicine and Surgery, Monza, Italy; Department of Obstetrics and Gynecology, Unit of Obstetrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
30
|
Tao M, Liu H, Cheng J, Yu C, Zhao L. Motor-Cognitive Interventions May Effectively Improve Cognitive Function in Older Adults with Mild Cognitive Impairment: A Randomized Controlled Trial. Behav Sci (Basel) 2023; 13:737. [PMID: 37754015 PMCID: PMC10525591 DOI: 10.3390/bs13090737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023] Open
Abstract
Mild cognitive impairment (MCI) is a syndrome that occurs in the preclinical stage of Alzheimer's disease. Early intervention can be effective in preventing Alzheimer's disease, but further research is needed on intervention methods. To identify interventions that are more suitable for Chinese characteristics and to investigate the effects of motor-cognitive intervention on the cognitive functions of older adults with MCI, we screened 103 community-dwelling older adults with MCI aged 65 years and older in Qingdao, Shandong, China; divided them into an intervention group and a control group; and administered a motor-cognitive intervention to the intervention group for 12 weeks. The study used the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA) to assess the initial cognitive level of the MCI participants and detect the effects of the intervention. We found that the cognitive abilities of the intervention group were significantly improved at the end of the intervention, as well as at the end of the follow-up, compared with the control group. The results of the current study suggest that the motor-cognitive intervention we used may improve the cognition of older people with MCI in the Chinese community.
Collapse
Affiliation(s)
| | | | - Jinxuan Cheng
- Normal College, Qingdao University, Qingdao 266071, China; (M.T.); (H.L.); (C.Y.); (L.Z.)
| | | | | |
Collapse
|
31
|
Swanson CW, Fling BW. Links between Neuroanatomy and Neurophysiology with Turning Performance in People with Multiple Sclerosis. SENSORS (BASEL, SWITZERLAND) 2023; 23:7629. [PMID: 37688084 PMCID: PMC10490793 DOI: 10.3390/s23177629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Multiple sclerosis is accompanied by decreased mobility and various adaptations affecting neural structure and function. Therefore, the purpose of this project was to understand how motor cortex thickness and corticospinal excitation and inhibition contribute to turning performance in healthy controls and people with multiple sclerosis. In total, 49 participants (23 controls, 26 multiple sclerosis) were included in the final analysis of this study. All participants were instructed to complete a series of turns while wearing wireless inertial sensors. Motor cortex gray matter thickness was measured via magnetic resonance imaging. Corticospinal excitation and inhibition were assessed via transcranial magnetic stimulation and electromyography place on the tibialis anterior muscles bilaterally. People with multiple sclerosis demonstrated reduced turning performance for a variety of turning variables. Further, we observed significant cortical thinning of the motor cortex in the multiple sclerosis group. People with multiple sclerosis demonstrated no significant reductions in excitatory neurotransmission, whereas a reduction in inhibitory activity was observed. Significant correlations were primarily observed in the multiple sclerosis group, demonstrating lateralization to the left hemisphere. The results showed that both cortical thickness and inhibitory activity were associated with turning performance in people with multiple sclerosis and may indicate that people with multiple sclerosis rely on different neural resources to perform dynamic movements typically associated with fall risk.
Collapse
Affiliation(s)
- Clayton W. Swanson
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL 32608, USA;
- Department of Neurology, University of Florida, Gainesville, FL 32608, USA
| | - Brett W. Fling
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80521, USA
- Molecular, Cellular, and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80521, USA
| |
Collapse
|
32
|
Lobina C, Maccioni P, Gessa GL, Colombo G. Exposure to an enriched environment exerts anxiolytic effects in Sardinian alcohol-preferring rats. Behav Brain Res 2023; 452:114557. [PMID: 37390968 DOI: 10.1016/j.bbr.2023.114557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Exposure to an enriched environment (EE) has been reported to generate multiple beneficial effects in rodents, including - among the many - amelioration of anxiety-related behaviors. The present study investigated whether living in an EE produced anxiolytic effects also in selectively bred Sardinian alcohol-preferring (sP) rats. The relevance of this research question relied on two factors: sP rats displayed an inherent, high anxiety-like state under different experimental conditions; exposure to EE reduced operant, oral alcohol self-administration in sP rats. Starting from weaning, male sP rats were kept under 3 different housing conditions: impoverished environment (IE; single housing with no environmental enrichment); standard environment (SE; 3 rats/cage with no environmental enrichment); EE (6 rats/cage with various elements of environmental enrichment). At the age of approximately 80 days, rats were exposed to an elevated plus maze test for assessment of anxiety-related behaviors. Compared to IE and SE rats, EE rats displayed higher basal levels of exploratory activity (i.e., increased number of entries into closed arms). Compared to IE and SE rats, EE rats also displayed a less "anxious" profile, as suggested by the increase in percent number of entries into open arms (OAs), percent time spent in OAs, number of head dips, and number of end-arm explorations in OAs. These data extend the protective (anxiolytic) effects of EE to a proposed animal model of comorbid alcohol use disorder and anxiety disorders.
Collapse
Affiliation(s)
- Carla Lobina
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato, CA, Italy
| | - Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato, CA, Italy
| | - Gian Luigi Gessa
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato, CA, Italy
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato, CA, Italy.
| |
Collapse
|
33
|
Valero-Aracama MJ, Zheng F, Alzheimer C. Dorsal-Ventral Gradient of Activin Regulates Strength of GABAergic Inhibition along Longitudinal Axis of Mouse Hippocampus in an Activity-Dependent Fashion. Int J Mol Sci 2023; 24:13145. [PMID: 37685952 PMCID: PMC10487617 DOI: 10.3390/ijms241713145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The functional and neurophysiological distinction between the dorsal and ventral hippocampus affects also GABAergic inhibition. In line with this notion, ventral CA1 pyramidal cells displayed a more dynamic and effective response to inhibitory input compared to their dorsal counterparts. We posit that this difference is effected by the dorsal-ventral gradient of activin A, a member of the transforming growth factor-β family, which is increasingly recognized for its modulatory role in brain regions involved in cognitive functions and affective behavior. Lending credence to this hypothesis, we found that in slices from transgenic mice expressing a dominant-negative mutant of activin receptor IB (dnActRIB), inhibitory transmission was enhanced only in CA1 neurons of the dorsal hippocampus, where the basal activin A level is much higher than in the ventral hippocampus. We next asked how a rise in endogenous activin A would affect GABAergic inhibition along the longitudinal axis of the hippocampus. We performed ex vivo recordings in wild-type and dnActRIB mice after overnight exposure to an enriched environment (EE), which engenders a robust increase in activin A levels in both dorsal and ventral hippocampi. Compared to control mice from standard cages, the behaviorally induced surge in activin A produced a decline in ventral inhibition, an effect that was absent in slices from dnActRIB mice. Underscoring the essential role of activin in the EE-associated modulation of ventral inhibition, this effect was mimicked by acute application of recombinant activin A in control slices. In summary, both genetic and behavioral manipulations of activin receptor signaling affected the dorsal-ventral difference in synaptic inhibition, suggesting that activin A regulates the strength of GABAergic inhibition in a region-specific fashion.
Collapse
|
34
|
Costa GA, de Gusmão Taveiros Silva NK, Marianno P, Chivers P, Bailey A, Camarini R. Environmental Enrichment Increased Bdnf Transcripts in the Prefrontal Cortex: Implications for an Epigenetically Controlled Mechanism. Neuroscience 2023; 526:277-289. [PMID: 37419403 DOI: 10.1016/j.neuroscience.2023.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Environmental enrichment (EE) is a condition characterized by its complexity regarding social contact, exposure to novelty, tactile stimuli and voluntary exercise, also is considered as a eustress model. The impact of EE on brain physiology and behavioral outcomes may be at least partly underpinned by mechanisms involving the modulation of the brain-derived neurotrophic factor (BDNF), but the connection between specific Bdnf exon expression and their epigenetic regulation remain poorly understood. This study aimed to dissect the transcriptional and epigenetic regulatory effect of 54-day exposure to EE on BDNF by analysing individual BDNF exons mRNA expression and the DNA methylation profile of a key transcriptional regulator of the Bdnf gene, exon IV, in the prefrontal cortex (PFC) of C57BL/6 male mice (sample size = 33). Bdnf exons II, IV, VI and IX mRNA expression were upregulated and methylation levels at two CpG sites of exon IV were reduced in the PFC of EE mice. As deficit in exon IV expression has also been causally implicated in stress-related psychopathologies, we also assessed anxiety-like behavior and plasma corticosterone levels in these mice to determine any potential correlation. However, no changes were observed in EE mice. The findings may suggest an EE-induced epigenetic control of BDNF exon expression via a mechanism involving exon IV methylation. The findings of this study contribute to the current literature by dissecting the Bdnf gene topology in the PFC where transcriptional and epigenetic regulatory effect of EE takes place.
Collapse
Affiliation(s)
- Gabriel Araújo Costa
- Pharmacology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Priscila Marianno
- Pharmacology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Priti Chivers
- School of Biosciences & Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Alexis Bailey
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, London, UK.
| | - Rosana Camarini
- Pharmacology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
35
|
Morè L, Privitera L, Cooper DD, Tsogka M, Arthur JSC, Frenguelli BG. MSK1 is required for the beneficial synaptic and cognitive effects of enriched experience across the lifespan. Aging (Albany NY) 2023; 15:6031-6072. [PMID: 37432063 PMCID: PMC10373962 DOI: 10.18632/aging.204833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/31/2023] [Indexed: 07/12/2023]
Abstract
Positive experiences, such as social interaction, cognitive training and physical exercise, have been shown to ameliorate some of the harms to cognition associated with ageing. Animal models of positive interventions, commonly known as environmental enrichment, strongly influence neuronal morphology and synaptic function and enhance cognitive performance. While the profound structural and functional benefits of enrichment have been appreciated for decades, little is known as to how the environment influences neurons to respond and adapt to these positive sensory experiences. We show that adult and aged male wild-type mice that underwent a 10-week environmental enrichment protocol demonstrated improved performance in a variety of behavioural tasks, including those testing spatial working and spatial reference memory, and an enhancement in hippocampal LTP. Aged animals in particular benefitted from enrichment, performing spatial memory tasks at levels similar to healthy adult mice. Many of these benefits, including in gene expression, were absent in mice with a mutation in an enzyme, MSK1, which is activated by BDNF, a growth factor implicated in rodent and human cognition. We conclude that enrichment is beneficial across the lifespan and that MSK1 is required for the full extent of these experience-induced improvements of cognitive abilities, synaptic plasticity and gene expression.
Collapse
Affiliation(s)
- Lorenzo Morè
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Lucia Privitera
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Daniel D. Cooper
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Marianthi Tsogka
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
36
|
Lepow L, Morishita H, Yehuda R. Critical Period Plasticity as a Framework for Psychedelic-Assisted Psychotherapy. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2023; 21:329-336. [PMID: 37404962 PMCID: PMC10316207 DOI: 10.1176/appi.focus.23021012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
As psychedelic compounds gain traction in psychiatry, there is a need to consider the active mechanism to explain the effect observed in randomized clinical trials. Traditionally, biological psychiatry has asked how compounds affect the causal pathways of illness to reduce symptoms and therefore focus on analysis of the pharmacologic properties. In psychedelic-assisted psychotherapy (PAP), there is debate about whether ingestion of the psychedelic alone is thought to be responsible for the clinical outcome. A question arises how the medication and psychotherapeutic intervention together might lead to neurobiological changes that underlie recovery from illness such as post-traumatic stress disorder (PTSD). This paper offers a framework for investigating the neurobiological basis of PAP by extrapolating from models used to explain how a pharmacologic intervention might create an optimal brain state during which environmental input has enduring effects. Specifically, there are developmental "critical" periods (CP) with exquisite sensitivity to environmental input; the biological characteristics are largely unknown. We discuss a hypothesis that psychedelics may remove the brakes on adult neuroplasticity, inducing a state similar to that of neurodevelopment. In the visual system, progress has been made both in identifying the biological conditions which distinguishes the CP and in manipulating the active ingredients with the idea that we might pharmacologically reopen a critical period in adulthood. We highlight ocular dominance plasticity (ODP) in the visual system as a model for characterizing CP in limbic systems relevant to psychiatry. A CP framework may help to integrate the neuroscientific inquiry with the influence of the environment both in development and in PAP. Appeared originally in Front Neurosci 2021; 15:710004.
Collapse
Affiliation(s)
- Lauren Lepow
- Department of Psychiatry, Icahn School of Medicine Mount Sinai, New York, NY, United States (all authors). Department of Neuroscience, Icahn School of Medicine Mount Sinai, New York, NY, United States (Lepow, Morishita). Department of Ophthalmology, Icahn School of Medicine Mount Sinai, New York, NY, United States (Morishita). Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States (Yehuda)
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine Mount Sinai, New York, NY, United States (all authors). Department of Neuroscience, Icahn School of Medicine Mount Sinai, New York, NY, United States (Lepow, Morishita). Department of Ophthalmology, Icahn School of Medicine Mount Sinai, New York, NY, United States (Morishita). Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States (Yehuda)
| | - Rachel Yehuda
- Department of Psychiatry, Icahn School of Medicine Mount Sinai, New York, NY, United States (all authors). Department of Neuroscience, Icahn School of Medicine Mount Sinai, New York, NY, United States (Lepow, Morishita). Department of Ophthalmology, Icahn School of Medicine Mount Sinai, New York, NY, United States (Morishita). Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States (Yehuda)
| |
Collapse
|
37
|
Li Q, Kang X, Liu L, Xiao Y, Xu D, Zhuang H, Liu H, Zhao J, Zou H, Yang J, Zhan X, Li T, Wang X, Liu L. Adult mice with noise-induced hearing loss exhibited temporal ordering memory deficits accompanied by microglia-associated neuroplastic changes in the medial prefrontal cortex. Neurobiol Dis 2023:106181. [PMID: 37271287 DOI: 10.1016/j.nbd.2023.106181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023] Open
Abstract
Acquired peripheral hearing loss in midlife is considered the primary modifiable risk factor for dementia, while the underlying pathological mechanism remains poorly understood. Excessive noise exposure is the most common cause of acquired peripheral hearing loss in modern society. This study was designed to investigate the impact of noise-induced hearing loss (NIHL) on cognition, with a focus on the medial prefrontal cortex (mPFC), a brain region that is involved in both auditory and cognitive processes and is highly affected in patients with cognitive impairment. Adult C57BL/6 J mice were randomly assigned to a control group and seven noise groups: 0HPN, 12HPN, 1DPN, 3DPN, 7DPN, 14DPN, and 28DPN, which were exposed to broadband noise at a 123 dB sound pressure level (SPL) for 2 h and sacrificed immediately (0 h), 12 h, or 1, 3, 7, 14, or 28 days post-noise exposure (HPN, DPN), respectively. Hearing assessment, behavioral tests, and neuromorphological studies in the mPFC were performed in control and 28DPN mice. All experimental animals were included in the time-course analysis of serum corticosterone (CORT) levels and mPFC microglial morphology. The results illustrated that noise exposure induced early-onset transient serum CORT elevation and permanent moderate-to-severe hearing loss in mice. 28DPN mice, in which permanent NIHL has been verified, exhibited impaired performance in temporal order object recognition tasks concomitant with reduced structural complexity of mPFC pyramidal neurons. The time-course immunohistochemical analysis in the mPFC revealed significantly higher morphological microglial activation at 14 and 28 DPN, preceded by a remarkably higher amount of microglial engulfed postsynaptic marker PSD95 at 7 DPN. Additionally, lipid accumulation in microglia was observed in 7DPN, 14DPN and 28DPN mice, suggesting a driving role of lipid handling deficits following excessive phagocytosis of synaptic elements in delayed and sustained microglial abnormalities. These findings provide fundamentally novel information concerning mPFC-related cognitive impairment in mice with NIHL and empirical evidence suggesting the involvement of microglial malfunction in the mPFC neurodegenerative consequences of NIHL.
Collapse
Affiliation(s)
- Qian Li
- Medical College, Southeast University, Nanjing 210009, China
| | - Xiaomin Kang
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Linchen Liu
- Department of Rheumatology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yu Xiao
- Medical College, Southeast University, Nanjing 210009, China
| | - Dan Xu
- School of Public Health, Southeast University, Nanjing 210009, China
| | - Hong Zhuang
- Medical College, Southeast University, Nanjing 210009, China
| | - Haiqing Liu
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Jingyi Zhao
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Han Zou
- Medical College, Southeast University, Nanjing 210009, China
| | - Jianing Yang
- Medical College, Southeast University, Nanjing 210009, China
| | - Xindi Zhan
- Medical College, Southeast University, Nanjing 210009, China
| | - Tianxiao Li
- Medical College, Southeast University, Nanjing 210009, China
| | - Xinchen Wang
- Medical College, Southeast University, Nanjing 210009, China
| | - Lijie Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
38
|
Sale A, Noale M, Cintoli S, Tognoni G, Braschi C, Berardi N, Maggi S, Maffei L. Long-term beneficial impact of the randomised trial 'Train the Brain', a motor/cognitive intervention in mild cognitive impairment people: effects at the 14-month follow-up. Age Ageing 2023; 52:7160021. [PMID: 37167616 DOI: 10.1093/ageing/afad067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/23/2023] [Indexed: 05/13/2023] Open
Abstract
No treatment options are currently available to counteract cognitive deficits and/or delay progression towards dementia in older people with mild cognitive impairment (MCI). The 'Train the Brain' programme is a combined motor and cognitive intervention previously shown to markedly improve cognitive functions in MCI individuals compared to non-trained MCI controls, as assessed at the end of the 7-month intervention. Here, we extended the previous analyses to include the long-term effects of the intervention and performed a data disaggregation by gender, education and age of the enrolled participants. We report that the beneficial impact on cognitive functions was preserved at the 14-month follow-up, with greater effects in low-educated compared to high-educated individuals, and in women than in men.
Collapse
Affiliation(s)
- Alessandro Sale
- Neuroscience Institute CNR (National Research Council), Via Moruzzi 1, Pisa 56124, Italy
| | - Marianna Noale
- Neuroscience Institute CNR (National Research Council), Via Giustiniani 2, Padua 35128, Italy
| | - Simona Cintoli
- Department of Clinical and Experimental Medicine-Neurology Unit, University of Pisa and AOU Pisa, Pisa, Italy
| | - Gloria Tognoni
- Department of Clinical and Experimental Medicine-Neurology Unit, University of Pisa and AOU Pisa, Pisa, Italy
| | - Chiara Braschi
- Neuroscience Institute CNR (National Research Council), Via Moruzzi 1, Pisa 56124, Italy
| | - Nicoletta Berardi
- Neuroscience Institute CNR (National Research Council), Via Moruzzi 1, Pisa 56124, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, Florence University, Via San Salvi, Florence 50100, Italy
| | - Stefania Maggi
- Neuroscience Institute CNR (National Research Council), Via Giustiniani 2, Padua 35128, Italy
| | - Lamberto Maffei
- Neuroscience Institute CNR (National Research Council), Via Moruzzi 1, Pisa 56124, Italy
| |
Collapse
|
39
|
Ballarini T, Kuhn E, Röske S, Altenstein S, Bartels C, Buchholz F, Buerger K, Dechent P, Dobisch L, Ewers M, Fliessbach K, Freiesleben SD, Frommann I, Gabelin T, Glanz W, Görß D, Haynes JD, Incesoy EI, Janowitz D, Kilimann I, Kleineidam L, Kobeleva X, Laske C, Lohse A, Maier F, Munk MH, Perneczky R, Peters O, Priller J, Rauchmann BS, Roy N, Scheffler K, Schneider A, Schott BH, Spottke A, Spruth EJ, Teipel S, Wiltfang J, Wolfsgruber S, Düzel E, Jessen F, Wagner M. Linking early-life bilingualism and cognitive advantage in older adulthood. Neurobiol Aging 2023; 124:18-28. [PMID: 36706574 DOI: 10.1016/j.neurobiolaging.2022.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Previous studies have identified bilingualism as a protective factor against dementia. Here we aimed to test whether being bilingual at different life stages impacts cognition and brain structure in older adulthood. We included 746 participants from the DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE). Assessment of bilingualism at 3 life stages (early: 13-30, middle: 30-65 and late: over 65 years old) was determined with the Lifetime of Experiences Questionnaire. Individuals reporting bilingualism (i.e., daily use of L2) in the early life stage outperformed monolinguals on learning & memory, working-memory, executive functions and language. Bilingualism in middle life stage showed a significant advantage on learning & memory, while no effect of bilingualism in old life stage was identified. Brain gray matter volume was not associated with L2 use and did not differ between groups. However, stronger correlations between brain gray matter volume in selected brain regions and cognitive performance were found in bilingual participants in the early and middle life stages. Our results indicate that bilingualism in early life might provide a long-lasting protective effect on cognition and shape the brain to sustain cognitive performance in older adulthood.
Collapse
Affiliation(s)
| | - Elizabeth Kuhn
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sandra Röske
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | - Friederike Buchholz
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, LMU, Munich, Germany
| | - Peter Dechent
- MR-Research in Neurosciences, Department of Cognitive Neurology, Georg-August-University Goettingen, Goettingen, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, LMU, Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Silka Dawn Freiesleben
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ingo Frommann
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Tatjana Gabelin
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Doreen Görß
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - John Dylan Haynes
- Bernstein Center for Computational Neuroscience, Charité - Universitätsmedizin, Berlin, Germany
| | - Enise I Incesoy
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU, Munich, Germany
| | - Ingo Kilimann
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany; German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Xenia Kobeleva
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Andrea Lohse
- Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Franziska Maier
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Department of Psychiatry and Psychotherapy, University Hospital, LMU, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany; Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany; University of Edinburgh and UK DRI, Edinburgh, UK
| | | | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Björn H Schott
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurology, University of Bonn, Bonn, Germany
| | - Eike Jakob Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Stefan Teipel
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany; German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany; Department of Medical Sciences, Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), University of Aveiro, Portugal
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | | |
Collapse
|
40
|
Chen G, Ma S, Gong Q, Xie X, Wu P, Guo W, Kang L, Li M, Zhang H, Zhou E, Zhang Y, Rong J, Duan H, Jin L, Xu S, Zhang N, Sun S, Li R, Yao L, Xiang D, Bu L, Liu Z. Assessment of brain imaging and cognitive function in a modified rhesus monkey model of depression. Behav Brain Res 2023; 445:114382. [PMID: 36871905 DOI: 10.1016/j.bbr.2023.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Depression incurs a huge personal and societal burden, impairing cognitive and social functioning and affecting millions of people worldwide. A better understanding of the biological basis of depression could facilitate the development of new and improved therapies. Rodent models have limitations and do not fully recapitulate human disease, hampering clinical translation. Primate models of depression help to bridge this translational gap and facilitate research into the pathophysiology of depression. Here we optimized a protocol for administering unpredictable chronic mild stress (UCMS) to non-human primates and evaluated the influence of UCMS on cognition using the classical Wisconsin General Test Apparatus (WGTA) method. We used resting-state functional MRI to explore changes in amplitude of low-frequency fluctuations and regional homogeneity in rhesus monkeys. Our work highlights that the UCMS paradigm effectively induces behavioral and neurophysiological (functional MRI) changes in monkeys but without significantly impacting cognition. The UCMS protocol requires further optimization in non-human primates to authentically simulate changes in cognition associated with depression.
Collapse
Affiliation(s)
- Guopeng Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Simeng Ma
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qian Gong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xinhui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Peng Wu
- Hubei Topgene Xinsheng Technology Co., Ltd, Wuhan 430000, China
| | - Wenbi Guo
- Department of Rehabilitation Medicine, Central Theater General Hospital, Wuhan 430070, China
| | - Lijun Kang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Meng Li
- PET-CT/MRI Center and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Honghan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Enqi Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuhui Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jingtong Rong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hao Duan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Liuyin Jin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shuxian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Nan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Siqi Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ruiling Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dan Xiang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lihong Bu
- PET-CT/MRI Center and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
41
|
Breast Cancer: How Hippotherapy Bridges the Gap between Healing and Recovery-A Randomized Controlled Clinical Trial. Cancers (Basel) 2023; 15:cancers15041317. [PMID: 36831658 PMCID: PMC9953804 DOI: 10.3390/cancers15041317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Breast cancer is the most diagnosed women's cancer, and has a high survival rate. Despite great progress in detection and treatment, life reconstruction requires comprehensive cross-sectoral approaches between different disciplines and deeper consideration of the patient's challenges. Hippotherapy is an emerging specialized rehabilitation approach, performed by accredited health professionals and equine specialists, on specially trained horses via their movement, activating major paths for physical, mental, psychic and social reinforcement, and is synergistic to rehabilitative and supportive care. METHODS We conducted a randomized open, prospective, two-armed, controlled trial on the effectiveness of hippotherapy versus conventional supportive care on adult women with a diagnosis of breast cancer, after the period of primary treatment (surgery, chemotherapy, radiotherapy). The 6-month program included, in the treated group, an initial 1-week daily hippotherapy session, followed by three short 2-day sessions with an interval of 2 months between each, where the patients received conventional supportive care. The control group received 6 months of conventional supportive care. The primary end point was quality of life. Cognitive performances, fatigue, anxiety, depression, and body image were the secondary end points. Measurements were done through self-reported questionnaires. RESULTS We observed statistical differences in the evolution of the measured parameters over time between the two groups. The hippotherapy group showed a much faster, favorable and continuous improvement until the end of the program for each function assessed. The most striking improvements were observed in global quality of life, and fatigue, while breast cancer-specific quality of life, cognitive performance, anxiety and depression and body image showed a less marked but still statistically significant difference at the final post-treatment evaluation. CONCLUSIONS We demonstrate the therapeutic relevance of hippotherapy, a one-health approach, as a key initial stage after cancer diagnosis and treatment to foster recovery. Furthermore, hippotherapy has a strong impact on cancer treatments' efficiency and reconstruction of patient's life and ecosystem. This work reveals a layer of complexity that needs to be broadly considered. TRIAL REGISTRATION ClincalTrials.gov NCT04350398 accessed on 1 January 2022. Registered 17 April 2020, retrospectively registered; French Clinical Trials in Cancer Register RECF3818. Registered 18 March 2019, retrospectively registered.
Collapse
|
42
|
Dahlmanns M, Dahlmanns JK, Schmidt CC, Valero-Aracama MJ, Zheng F, Alzheimer C. Environmental enrichment recruits activin A to recalibrate neural activity in mouse hippocampus. Cereb Cortex 2023; 33:663-675. [PMID: 35257169 DOI: 10.1093/cercor/bhac092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 02/03/2023] Open
Abstract
The TGF-β family member activin A modulates neural underpinnings of cognitive and affective functions in an activity-dependent fashion. We have previously shown that exploration of a novel and enriched environment (EE) strongly enhanced activin signaling. Whereas the many beneficial effects of EE are amply documented, the underlying mechanisms remain largely elusive. Here, we examined the hypothesis that EE recruits activin to regulate synaptic plasticity in a coordinated, cognition-promoting manner. Elevated activin levels after EE enhanced CA1 pyramidal cell excitability, facilitated synaptic transmission, and promoted long-term potentiation. These EE-induced changes were largely absent in mice expressing a dominant-negative mutant of activin receptor IB. We then interrogated the impact of activin on network oscillations and functional connectivity, using high-speed Ca 2+ imaging to study spike routing within networks formed by dissociated primary hippocampal cultures. Activin facilitated Ca2+ signaling, enhanced the network strength, and shortened the weighted characteristic path length. In the slice preparation, activin promoted theta oscillations during cholinergic stimulation. Thus, we advance activin as an activity-dependent and very early molecular effector that translates behavioral stimuli experienced during EE exposure into a set of synchronized changes in neuronal excitability, synaptic plasticity, and network activity that are all tuned to improve cognitive functions.
Collapse
Affiliation(s)
- Marc Dahlmanns
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jana Katharina Dahlmanns
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Carla C Schmidt
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Maria Jesus Valero-Aracama
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Fang Zheng
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
43
|
Dioli C, Papadimitriou G, Megalokonomou A, Marques C, Sousa N, Sotiropoulos I. Chronic Stress, Depression, and Alzheimer's Disease: The Triangle of Oblivion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1423:303-315. [PMID: 37525058 DOI: 10.1007/978-3-031-31978-5_31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Chronic stress and high levels of the main stress hormones, and glucocorticoids (GC), are implicated in susceptibility to brain pathologies such as depression and Alzheimer's disease (AD), as they promote neural plasticity damage and glial reactivity, which can lead to dendritic/synaptic loss, reduced neurogenesis, mood deficits, and impaired cognition. Moreover, depression is implicated in the development of AD with chronic stress being a potential link between both disorders via common neurobiological underpinnings. Hereby, we summarize and discuss the clinical and preclinical evidence related to the detrimental effect of chronic stress as a precipitator of AD through the activation of pathological mechanisms leading to the accumulation of amyloid β (Aβ) and Tau protein. Given that the modern lifestyle increasingly exposes individuals to high stress loads, it is clear that understanding the mechanistic link(s) between chronic stress, depression, and AD pathogenesis may facilitate the treatment of AD and other stress-related disorders.
Collapse
Affiliation(s)
- Chrysoula Dioli
- Institute of Biosciences and Applications, NCSR Demokritos, Athens, Greece
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | - Carlos Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ioannis Sotiropoulos
- Institute of Biosciences and Applications, NCSR Demokritos, Athens, Greece.
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
44
|
Exercise does not enhance short-term deprivation-induced ocular dominance plasticity: evidence from dichoptic surround suppression. Vision Res 2022; 201:108123. [PMID: 36193605 DOI: 10.1016/j.visres.2022.108123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/09/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022]
Abstract
The input from the two eyes is combined in the brain. In this combination, the relative strength of the input from each eye is determined by the ocular dominance. Recent work has shown that this dominance can be temporarily shifted. Covering one eye with an eye patch for a few hours makes its contribution stronger. It has been proposed that this shift can be enhanced by exercise. Here, we test this hypothesis using a dichoptic surround suppression task, and with exercise performed according to American College of Sport Medicine guidelines. We measured detection thresholds for patches of sinusoidal grating shown to one eye. When an annular mask grating was shown simultaneously to the other eye, thresholds were elevated. The difference in the elevation found in each eye is our measure of relative eye dominance. We made these measurements before and after 120 min of monocular deprivation (with an eye patch). In the control condition, subjects rested during this time. For the exercise condition, 30 min of exercise were performed at the beginning of the patching period. This was followed by 90 min of rest. We find that patching results in a shift in ocular dominance that can be measured using dichoptic surround suppression. However, we find no effect of exercise on the magnitude of this shift. We further performed a meta-analysis on the four studies that have examined the effects of exercise on the dominance shift. Looking across these studies, we find no evidence for such an effect.
Collapse
|
45
|
Wei F, Xian D, He Y, Yan Z, Deng X, Chen Y, Zhao L, Zhang Y, Li W, Ma B, Zhang J, Jing Y. Effects of maternal deprivation and environmental enrichment on anxiety-like and depression-like behaviors correlate with oxytocin system and CRH level in the medial-lateral habenula. Peptides 2022; 158:170882. [PMID: 36150631 DOI: 10.1016/j.peptides.2022.170882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/25/2022] [Accepted: 09/17/2022] [Indexed: 12/01/2022]
Abstract
The medial-lateral habenula (LHbM)'s role in anxiety and depression behaviors in female mice remains unclear. Here, we used neonatal maternal deprivation (MD) and post-weaning environmental enrichment (EE) to treat female BALB/c offspring and checked anxiety-like and depression-like behaviors as well as the corticotropin-releasing hormone (CRH), oxytocin receptor (OTR), estrogen receptor-beta (ERβ) levels in their LHbM at adulthood. We found that MD enhanced state anxiety-like behaviors in the elevated plus-maze test, and EE caused trait anxiety-like behaviors in the open field test and depression-like behaviors in the tail suspension test. The immunochemistry showed that MD reduced OT immunoreactive neuron numbers in the hypothalamic paraventricular nucleus but increased OTR levels in the LHbM; EE increased CRH levels in the LHbM but decreased OTR levels in the LHbM. The additive effects of EE and MD maintained the behavioral parameters, OT-ir neuronal numbers, CRH levels, and OTR levels similar to the additive of non-MD and non-EE. The correlation analysis showed that CRH levels correlated with synaptic connection levels, OTR levels correlated with nucleus densities, and ERβ levels correlated with Nissl body levels and body weights in female mice. Neither MD nor EE affected ERβ levels in the LHbM. Together, the study revealed the relationships between behaviors and neuroendocrine and neuronal alterations in female LHbM and the effects of experiences including MD and EE on them.
Collapse
Affiliation(s)
- Fengmei Wei
- Department of Physiology and Psychology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China; Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| | - Donghua Xian
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yunqing He
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Ziqing Yan
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xiao Deng
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yajie Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Long Zhao
- Department of Orthopedics, Lanzhou University First Affiliated Hospital, Lanzhou, Gansu Province 730000, PR China
| | - Yishu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Wenhao Li
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Bo Ma
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Junfeng Zhang
- Department of Human Anatomy & Shanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shanxi, 710021, PR China.
| | - Yuhong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
46
|
Jiang S, Zheng C, Wen G, Bu B, Zhao S, Xu X. Down-regulation of NR2B receptors contributes to the analgesic and antianxiety effects of enriched environment mediated by endocannabinoid system in the inflammatory pain mice. Behav Brain Res 2022; 435:114062. [PMID: 35985400 DOI: 10.1016/j.bbr.2022.114062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
Chronic pain states are highly prevalent and yet poorly controlled by currently available analgesics. It has been reported that enriched environment (EE), as a new way of endogenous pharmacotherapy, is effective in attenuating chronic inflammatory pain. However, the underlying molecular mechanisms are still not fully understood. NMDA NR2B receptor plays a critical role in pain transmission and modulation. Thus, in this study, we aimed at the effect of EE on the NR2B receptors expression in the prefrontal cortex, hippocampus and thalamus in the inflammatory pain mice. The results showed a significant increase of NR2B receptors in the thalamus of mice at 7 d following injection of CFA in the subcutaneous of the bottom of the left hind paw. EE significantly reduced the duration of mechanical hypersensitivity and anxiety-related behavior and the expression of NR2B receptors as compared to the standard condition. Furthermore, EE significantly increased 2-arachidonoylglycero (2-AG) levels at 7 d in the inflammatory pain mice as compared to the standard condition, and the effect of EE on the behavior and the expression of NR2B receptors was abolished by intraperitoneal injection of AM281 (a selective antagonist of CB1 receptor). Elevated 2-AG levels by intraperitoneal injection of JZL184 (a selective inhibitor of MAGL, the enzyme responsible for 2-AG hydrolysis) produced the same effect as EE. Results from this study provide the evidence that EE mimics endocannabinoids to take analgesic and anti-anxiety activities by decreasing the expression of the NR2B receptors via the CB1 receptor in the thalamus, pending further studies.
Collapse
Affiliation(s)
- Shukun Jiang
- Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China
| | - Chuanfei Zheng
- Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China
| | - Gehua Wen
- Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China
| | - Bin Bu
- Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China
| | - Shuang Zhao
- China Medical University Center of Forensic Investigation, Shenyang, PR China
| | - Xiaoming Xu
- Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China.
| |
Collapse
|
47
|
Cell-type-specific epigenetic effects of early life stress on the brain. Transl Psychiatry 2022; 12:326. [PMID: 35948532 PMCID: PMC9365848 DOI: 10.1038/s41398-022-02076-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023] Open
Abstract
Early life stress (ELS) induces long-term phenotypic adaptations that contribute to increased vulnerability to a host of neuropsychiatric disorders. Epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNA, are a proposed link between environmental stressors, alterations in gene expression, and phenotypes. Epigenetic modifications play a primary role in shaping functional differences between cell types and can be modified by environmental perturbations, especially in early development. Together with contributions from genetic variation, epigenetic mechanisms orchestrate patterns of gene expression within specific cell types that contribute to phenotypic variation between individuals. To date, many studies have provided insights into epigenetic changes resulting from ELS. However, most of these studies have examined heterogenous brain tissue, despite evidence of cell-type-specific epigenetic modifications in phenotypes associated with ELS. In this review, we focus on rodent and human studies that have examined epigenetic modifications induced by ELS in select cell types isolated from the brain or associated with genes that have cell-type-restricted expression in neurons, microglia, astrocytes, and oligodendrocytes. Although significant challenges remain, future studies using these approaches can enable important mechanistic insight into the role of epigenetic variation in the effects of ELS on brain function.
Collapse
|
48
|
Min C, Ling R, Chen M, Xia D, Chen R, Li X. Enriched environment rescues neonatal pain induced cognitive deficits and the impaired hippocampal synaptic plasticity later in life. Dev Neurobiol 2022; 82:545-561. [PMID: 35945168 DOI: 10.1002/dneu.22898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/04/2022] [Accepted: 07/27/2022] [Indexed: 11/06/2022]
Abstract
Although extensive and untreated pain that occurs during a critical developmental window may impair cognition later in life, environmental interventions at early might promote. However, the underlying mechanism is poorly understood. Our current study utilized a rat model of "repetitive needle pricks" from the day of birth (P0) to postnatal day 7 (P7) to mimic the painful experience of preterm neonates in the Neonatal intensive care unit (NICU). Enriched environment (EE) during development period (from P15 to P70) was implemented as a nonpharmacological intervention approach. Electrophysiological recording, behavioral tests and biochemical analysis were performed after the end of EE (between P71 and P80). Results showed neonatal repetitive pain resulted in a reduction in mechanical withdrawal thresholds by the von Frey test in P70 (P < 0.001). Furthermore, neonatal repetitive pain impaired spatial learning and memory (P < 0.05) and even led to dysfunction in fear memory (P < 0.01). In contrast, EE rescued neonatal pain induced cognitive deficits and normalized hippocampal long-term potentiation in rats exposed to neonatal pain (P < 0.05). The beneficial effect of EE might be the improvements in hippocampal synaptic plasticity via up-regulating neurotrophic factors and N-methyl-D-aspartate (NMDA) receptors in the hippocampus. Our findings provide evidence that early environmental intervention might be a safe strategy to overcome neurodevelopmental abnormalities in preterm infants who experienced multiple procedural painful events during the early critical period. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Cuiting Min
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu Province, 210008, P.R. China
| | - Ru Ling
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu Province, 210008, P.R. China
| | - Mengying Chen
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu Province, 210008, P.R. China
| | - Dongqing Xia
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu Province, 210008, P.R. China
| | - Ran Chen
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu Province, 210008, P.R. China
| | - Xiaonan Li
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu Province, 210008, P.R. China
| |
Collapse
|
49
|
Kent MH, Jacob JC, Bowen G, Bhalerao J, Desinor S, Vavra D, Leserve D, Ott KR, Angeles B, Martis M, Sciandra K, Gillenwater K, Glory C, Meisel E, Choe A, Olivares-Navarrete R, Puetzer JL, Lambert K. Disrupted development from head to tail: Pervasive effects of postnatal restricted resources on neurobiological, behavioral, and morphometric outcomes. Front Behav Neurosci 2022; 16:910056. [PMID: 35990727 PMCID: PMC9389412 DOI: 10.3389/fnbeh.2022.910056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
When a maternal rat nurtures her pups, she relies on adequate resources to provide optimal care for her offspring. Accordingly, limited environmental resources may result in atypical maternal care, disrupting various developmental outcomes. In the current study, maternal Long-Evans rats were randomly assigned to either a standard resource (SR) group, provided with four cups of bedding and two paper towels for nesting material or a limited resource (LR) group, provided with a quarter of the bedding and nesting material provided for the SR group. Offspring were monitored at various developmental phases throughout the study. After weaning, pups were housed in same-sex dyads in environments with SRs for continued observations. Subsequent behavioral tests revealed a sex × resource interaction in play behavior on PND 28; specifically, LR reduced play attacks in males while LR increased play attacks in females. A sex × resource interaction was also observed in anxiety-related responses in the open field task with an increase in thigmotaxis in LR females and, in the social interaction task, females exhibited more external rears oriented away from the social target. Focusing on morphological variables, tail length measurements of LR males and females were shorter on PND 9, 16, and 21; however, differences in tail length were no longer present at PND 35. Following the behavioral assessments, animals were perfused at 56 days of age and subsequent immunohistochemical assays indicated increased glucocorticoid receptors in the lateral habenula of LR offspring and higher c-Fos immunoreactivity in the basolateral amygdala of SR offspring. Further, when tail vertebrae and tail tendons were assessed via micro-CT and hydroxyproline assays, results indicated increased trabecular separation, decreased bone volume fraction, and decreased connectivity density in bones, along with reduced collagen concentration in tendons in the LR animals. In sum, although the restricted resources only persisted for a brief duration, the effects appear to be far-reaching and pervasive in this early life stress animal model.
Collapse
Affiliation(s)
- Molly H. Kent
- Department of Biology, Virginia Military Institute, Lexington, VA, United States
| | - Joanna C. Jacob
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Gabby Bowen
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Janhavi Bhalerao
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Stephanie Desinor
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Dylan Vavra
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Danielle Leserve
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Kelly R. Ott
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Benjamin Angeles
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael Martis
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Katherine Sciandra
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | | | - Clark Glory
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Eli Meisel
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Allison Choe
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer L. Puetzer
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Kelly Lambert
- Department of Psychology, University of Richmond, Richmond, VA, United States
- *Correspondence: Kelly Lambert,
| |
Collapse
|
50
|
Han Y, Yuan M, Guo YS, Shen XY, Gao ZK, Bi X. The role of enriched environment in neural development and repair. Front Cell Neurosci 2022; 16:890666. [PMID: 35936498 PMCID: PMC9350910 DOI: 10.3389/fncel.2022.890666] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
In addition to genetic information, environmental factors play an important role in the structure and function of nervous system and the occurrence and development of some nervous system diseases. Enriched environment (EE) can not only promote normal neural development through enhancing neuroplasticity but also play a nerve repair role in restoring functional activities during CNS injury by morphological and cellular and molecular adaptations in the brain. Different stages of development after birth respond to the environment to varying degrees. Therefore, we systematically review the pro-developmental and anti-stress value of EE during pregnancy, pre-weaning, and “adolescence” and analyze the difference in the effects of EE and its sub-components, especially with physical exercise. In our exploration of potential mechanisms that promote neurodevelopment, we have found that not all sub-components exert maximum value throughout the developmental phase, such as animals that do not respond to physical activity before weaning, and that EE is not superior to its sub-components in all respects. EE affects the developing and adult brain, resulting in some neuroplastic changes in the microscopic and macroscopic anatomy, finally contributing to enhanced learning and memory capacity. These positive promoting influences are particularly prominent regarding neural repair after neurobiological disorders. Taking cerebral ischemia as an example, we analyzed the molecular mediators of EE promoting repair from various dimensions. We found that EE does not always lead to positive effects on nerve repair, such as infarct size. In view of the classic issues such as standardization and relativity of EE have been thoroughly discussed, we finally focus on analyzing the essentiality of the time window of EE action and clinical translation in order to devote to the future research direction of EE and rapid and reasonable clinical application.
Collapse
Affiliation(s)
- Yu Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Mei Yuan
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yi-Sha Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xin-Ya Shen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Graduate School, Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Kun Gao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Graduate School, Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- *Correspondence: Xia Bi
| |
Collapse
|