1
|
Benito‐Martínez S, Pérez‐Köhler B, Rodríguez M, Rivas‐Santos C, María Izco J, Recalde JI, Pascual G. Assessing New Collagen Therapies for Wound Healing: A Murine Model Approach. Int Wound J 2025; 22:e70589. [PMID: 40258681 PMCID: PMC12011449 DOI: 10.1111/iwj.70589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/24/2025] [Accepted: 04/10/2025] [Indexed: 04/23/2025] Open
Abstract
Collagen proteins play important roles in wound healing and are of great interest in regenerative medicine. This study evaluated the efficacy of new collagen-based products and compared them to commercial products in a murine model of cutaneous healing. Circular excisional defects were generated on 72 Wistar rats. Six study groups were established according to the administered collagen treatment: Control (without treatment), SD-C (semidenatured), Catrix, Hy-C (hydrolyzed), N-C (native) and Helix3-CP. Seven and eighteen days post-surgery, animals were euthanized. Wound closure was macroscopically assessed by taking zenithal images of the defects. Morphological, histological and immunohistochemical studies were performed to evaluate the healing process. After 7 days, open areas and degree of epithelialization were similar among the groups. Significant differences were observed in contraction between control and the N-C and Helix3-CP groups. Untreated animals exhibited a more pronounced granulation tissue with a high number of inflammatory cells and a disorganised extracellular matrix with type III collagen deposition. After 18 days, animals treated with new collagen (Hy-C and N-C) exhibited accelerated wound closure, increased epithelialization and a more organised granulation tissue. Local administration of new collagen treatments promotes the progression of the reparative process and significantly accelerates wound closure compared with nontreated wounds.
Collapse
Affiliation(s)
- Selma Benito‐Martínez
- Departamento de Medicina y Especialidades Médicas, Facultad de Medicina y Ciencias de la SaludUniversidad de AlcaláAlcalá de HenaresMadridSpain
- Biomedical Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)MadridSpain
- Ramón y Cajal Health Research Institute (IRYCIS)MadridSpain
| | - Bárbara Pérez‐Köhler
- Departamento de Medicina y Especialidades Médicas, Facultad de Medicina y Ciencias de la SaludUniversidad de AlcaláAlcalá de HenaresMadridSpain
- Biomedical Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)MadridSpain
- Ramón y Cajal Health Research Institute (IRYCIS)MadridSpain
| | - Marta Rodríguez
- Biomedical Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)MadridSpain
- Ramón y Cajal Health Research Institute (IRYCIS)MadridSpain
- Departamento de Cirugía, Ciencias Médicas y Sociales, Facultad de Medicina y Ciencias de la SaludUniversidad de AlcaláAlcalá de HenaresMadridSpain
| | - Celia Rivas‐Santos
- Departamento de Medicina y Especialidades Médicas, Facultad de Medicina y Ciencias de la SaludUniversidad de AlcaláAlcalá de HenaresMadridSpain
- Ramón y Cajal Health Research Institute (IRYCIS)MadridSpain
| | | | | | - Gemma Pascual
- Departamento de Medicina y Especialidades Médicas, Facultad de Medicina y Ciencias de la SaludUniversidad de AlcaláAlcalá de HenaresMadridSpain
- Biomedical Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)MadridSpain
- Ramón y Cajal Health Research Institute (IRYCIS)MadridSpain
| |
Collapse
|
2
|
Jin W, Li Y, Yu M, Ren D, Han C, Guo S. Advances of exosomes in diabetic wound healing. BURNS & TRAUMA 2025; 13:tkae078. [PMID: 39980588 PMCID: PMC11836438 DOI: 10.1093/burnst/tkae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/11/2024] [Accepted: 11/09/2024] [Indexed: 02/22/2025]
Abstract
Poor wound healing is a refractory process that places an enormous medical and financial burden on diabetic patients. Exosomes have recently been recognized as crucial players in the healing of diabetic lesions. They have excellent stability, homing effects, biocompatibility, and reduced immunogenicity as novel cell-free therapies. In addition to transporting cargos to target cells to enhance intercellular communication, exosomes are beneficial in nearly every phase of diabetic wound healing. They participate in modulating the inflammatory response, accelerating proliferation and reepithelization, increasing angiogenesis, and regulating extracellular matrix remodeling. Accumulating evidence indicates that hydrogels or dressings in conjunction with exosomes can prolong the duration of exosome residency in diabetic wounds. This review provides an overview of the mechanisms, delivery, clinical application, engineering, and existing challenges of the use of exosomes in diabetic wound repair. We also propose future directions for biomaterials incorporating exosomes: 2D or 3D scaffolds, biomaterials loaded with wound healing-promoting gases, intelligent biomaterials, and the prospect of systematic application of exosomes. These findings may might shed light on future treatments and enlighten some studies to improve quality of life among diabetes patients.
Collapse
Affiliation(s)
- Weixue Jin
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jiang Hong Road, Binjiang District, Hangzhou 310009, Zhejiang, China
| | - Yi Li
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jiang Hong Road, Binjiang District, Hangzhou 310009, Zhejiang, China
| | - Meirong Yu
- Center for Basic and Translational Research, Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jie Fang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
| | - Danyang Ren
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jiang Hong Road, Binjiang District, Hangzhou 310009, Zhejiang, China
| | - Chunmao Han
- Department of Burns and Wound Repair, Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jie Fang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, 88 Jie Fang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
| | - Songxue Guo
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jiang Hong Road, Binjiang District, Hangzhou 310009, Zhejiang, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, 88 Jie Fang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
3
|
Das SC, Biswas S, Khan O, Akter R, Azad MAK, Sarkar SK, Masum MA, Bedoura S. Evaluation of anti-inflammatory and wound healing properties of Tinospora cordifolia extract. PLoS One 2025; 20:e0317928. [PMID: 39879164 PMCID: PMC11778766 DOI: 10.1371/journal.pone.0317928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
Tinospora cordifolia extract exhibits diverse benefits-anti-arthritis, anti-malarial, anti-allergic, anti-diabetic, antihepatotoxic, and antipyretic effects. Its specific anti-inflammatory and healing capacities remain unexplored, prompting a study utilizing a mouse skin wound model and direct T. cordifolia extraction. UV-Vis spectroscopy depicted an absorption range of 200-400 nm, while FTIR analysis identified alcohols, phenols, amines, amides, aldehydes, ketones, alkanes, and alkenes. GC-MS analysis revealed the presence of components: 5methyl-5-Hexen-2-Ol, n-hexadecenoic acid, cholesta-4,6-dien-3beta-ol, stigmasterol, β-sitosterol, stearate which are present in the extract. Histopathological examination confirmed accelerated wound healing, showcasing reduced inflammation, restored blood vessels, collagen fibers, and swift epidermal closure. T. cordifolia extract exhibits promise in enhancing wound healing through its antibacterial, anti-inflammatory properties.
Collapse
Affiliation(s)
- Shohag Chandra Das
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Subrato Biswas
- Department of Anatomy, Histology & Physiology, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Olin Khan
- Department of Wet Process Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Rupa Akter
- Department of Anatomy, Histology & Physiology, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Md Abul Kalam Azad
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Sujan Kumar Sarkar
- Department of Anatomy, Histology & Physiology, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Md. Abdul Masum
- Department of Anatomy, Histology & Physiology, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Sultana Bedoura
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| |
Collapse
|
4
|
Alizadeh S, Nasiri M, Saraei M, Zahiri M, Khosrowpour Z, Sineh Sepehr K, Nouri M, Zarrabi M, Kalantari N, Shafikhani SH, Gholipourmalekabadi M. Optimization of an Affordable and Efficient Skin Allograft Composite with Excellent Biomechanical and Biological Properties Suitable for the Regeneration of Deep Skin Wounds: A Preclinical Study. ACS APPLIED BIO MATERIALS 2024; 7:7378-7390. [PMID: 39475164 DOI: 10.1021/acsabm.4c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Deep skin wounds require grafting with a skin substitute for treatment. Despite many attempts in the development of an affordable and efficient skin substitute, the repair of deep skin wounds still remains challenging. In the current study, we present a 3D sponge composite made from human placenta (a disposable organ) and sodium alginate with exceptional properties for skin tissue engineering applications. Toward this goal, different proportions of alginate (Alg) and decellularized placenta scaffold (DPS) were composited and freeze-dried to generate a 3D sponge with the desired biomechanical and biological features. Comprehensive in vitro, in ovo, and in vivo characterizations were performed to assess the morphology, physical structure, mechanical behaviors, angiogenic potential, and wound healing properties of the composites. Through these analyses, the scaffold with optimal proportions of Alg (50%) and DPS (50%) was found to have superior properties. The optimized scaffold (Alg50/DPS50) was applied to the full-thickness wounds created in rats. Our data revealed that the addition of DPS to the Alg solution caused a significant improvement in the mechanical characteristics of the scaffold. Remarkably, the fabricated composite scaffold exhibited mechanical properties similar to those of native skin tissue. When implanted into the full-thickness wounds, the Alg50/DPS50 composite scaffold promoted angiogenesis, re-epithelialization, and granulation tissue formation, as compared to the group without a scaffold. Overall, our findings underscore the potential value of this hybrid scaffold for enhancing skin wound healing and suggest an Alg50/DPS50 composite for clinical investigations.
Collapse
Affiliation(s)
- Sanaz Alizadeh
- R & D Department, Royan Stem Cell Technology Co, Tehran 1665666311, Iran
| | - Modara Nasiri
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran 1651153311, Iran
| | - Mohadese Saraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1416753955, Iran
| | - Maria Zahiri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 6715847141, Iran
- Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr 75614, Iran
| | - Zahra Khosrowpour
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Koushan Sineh Sepehr
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan 49341-74515, Iran
| | - Masoumeh Nouri
- R & D Department, Royan Stem Cell Technology Co, Tehran 1665666311, Iran
| | - Morteza Zarrabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Nikta Kalantari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Sasha H Shafikhani
- Department of Dermatology, University of California, Davis, School of Medicine, Sacramento, California 95817-2305, United States
| | - Mazaher Gholipourmalekabadi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1416753955, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- NanoBiotechnology & Regenerative Medicine Innovation Group, Noavaran Salamat ZHINO (PHC), Tehran 1949635882, Iran
| |
Collapse
|
5
|
Heidari R, Assadollahi V, Shakib Manesh MH, Mirzaei SA, Elahian F. Recent advances in mesoporous silica nanoparticles formulations and drug delivery for wound healing. Int J Pharm 2024; 665:124654. [PMID: 39244073 DOI: 10.1016/j.ijpharm.2024.124654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Wound healing is a natural process that can be disrupted by disease. Nanotechnology is a promising platform for the development of new therapeutic agents to accelerate acute and chronic wound healing. Drug delivery by means of nanoparticles as well as wound dressings have emerged as suitable options to improving the healing process. The characteristics of mesoporous silica nanoparticles (MSNs) make them efficient carriers of pharmaceutical agents alone or in combination with dressings. In order to maximize the effect of a drug and minimize its adverse consequences, it may be possible to include targeted and intelligent release of the drug into the design of MSNs. Its use to facilitate closure of adjacent sides of a cut as a tissue adhesive, local wound healing, controlled drug release and induction of blood coagulation are possible applications of MSNs. This review summarizes research on MSN applications for wound healing. It includes a general overview, wound healing phases, MSN formulation, therapeutic possibilities of MSNs and MSN-based drug delivery systems for wound healing.
Collapse
Affiliation(s)
- Razieh Heidari
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vahideh Assadollahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Hossein Shakib Manesh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Omran SA, Ghani BA. Effect of fenugreek oil on healing of experimentally induced buccal mucosal ulcer by immunohistochemical evaluation of Ki-67 expression. Cell Biochem Biophys 2024; 82:2363-2371. [PMID: 38869686 DOI: 10.1007/s12013-024-01347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2024] [Indexed: 06/14/2024]
Abstract
Wound healing involves multiple populations of cells, the extracellular matrix, and soluble mediators' actions like growth factors and cytokines. Wound care was the target of many research, utilizing new therapy techniques and the progression of acute and chronic wound treatments with techniques involving plants to improve healing and decrease the side effects of drugs. When fenugreek is applied to an ulcer, its anti-inflammatory components are released, reducing unnecessary inflammation and accelerating the healing process. Healing is controlled by growth factors that naturally activate and boost the proliferation of cells, such as Ki-67, which is associated with the growth fraction and represents the cell's ability to proliferate. The current study aims to assess the expression of Ki-67 in rat mucosal ulcers treated with fenugreek leave oil. Twenty-four male Wistar albino rats of 350-450 gm weight were used. The rats were grouped as follows; normal group (normal tissue without ulcer induction), control group (tissue with surgical ulcer induction on the right side), and study group (ulcer treated with fenugreek leave oil on the left side), and had been sacrificed at 3- and 7-day healing durations. Thereafter, the tissue specimens were used for immunohistochemical analysis of Ki-67. The obtained outcomes showed that expression of Ki-67 increased in groups where ulcers were induced, with significant differences between control and study groups on the 3rd day. It was concluded that the application of fenugreek oil had an accelerating effect on the healing process of mucosal ulcers, as indicated by the elevated expression level of Ki-67.
Collapse
Affiliation(s)
- Sarah A Omran
- Department of Oral Diagnostic Sciences, College of Dentistry, University of Baghdad, Baghdad, Iraq.
| | - Ban A Ghani
- Department of Oral Diagnostic Sciences, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
7
|
Karimi F, Montazeri-Najafabady N, Mohammadi F, Azadi A, Koohpeyma F, Gholami A. A potential therapeutic strategy of an innovative probiotic formulation toward topical treatment of diabetic ulcer: an in vivo study. Nutr Diabetes 2024; 14:66. [PMID: 39164243 PMCID: PMC11335896 DOI: 10.1038/s41387-024-00320-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND The probiotic potential of Lacticacid bacteria has been studied in various medical complications, from gastrointestinal diseases to antibiotic resistance infections recently. Moreover, diabetic ulcer (DU) is known as one of the most significant global healthcare concerns, which comprehensively impacts the quality of life for these patients. Given that the conventional treatments of DUs have failed to prevent later complications completely, developing alternative therapies seems to be crucial. METHODS We designed the stable oleogel-based formulation of viable probiotic cells, including Lactobacillus rhamnosus (L. rhamnosus), Lactobacillus casei (L. casei), Lactobacillus fermentum (L. fermentum), and Lactobacillus acidophilus (L. acidophilus) individually to investigate their effect on wound healing process as an in vivo study. The wound repair process was closely monitored regarding morphology, biochemical, and histopathological changes over two weeks and compared it with the effects of topical tetracycline as an antibiotic approach. Furthermore, the antibiofilm activity of probiotic bacteria was assessed against some common pathogens. RESULTS The findings indicated that all tested lactobacillus groups (excluded L. casei) included in the oleogel-based formulation revealed a high potential for repairing damaged skin due to the considerably more levels of hydroxyproline content of tissue samples along with the higher numerical density of mature fibroblasts cell and volume density of hair follicles, collagen fibrils, and neovascularization in comparison with antibiotic and control groups. L. acidophilus and L. rhamnosus showed the best potential of wound healing among all lactobacillus species, groups treated by tetracycline and control groups. Besides, L. rhamnosus showed a significant biofilm inhibition activity against tested pathogens. CONCLUSIONS This experiment demonstrated that the designed formulations containing probiotics, particularly L. acidophilus and L. rhamnosus, play a central role in manipulating diabetic wound healing. It could be suggested as an encouraging nominee for diabetic wound-healing alternative approaches, though further studies in detailed clinical trials are needed.
Collapse
Affiliation(s)
- Farkhonde Karimi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Nima Montazeri-Najafabady
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Endocrine and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Mohammadi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Koohpeyma
- Endocrine and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran.
| |
Collapse
|
8
|
Kumar S, Chu A, Theis T, Rastogi S, Costea DM, Banerjee R, Das BC, Yarmush ML, Hsia H, Cohen R, Schachner M, Berthiaume F. Self-Assembled Fibroblast Growth Factor Nanoparticles as a Therapeutic for Oxidant-Induced Neuronal and Skin Cell Injury. ACS APPLIED BIO MATERIALS 2024; 7:5158-5170. [PMID: 39038169 DOI: 10.1021/acsabm.4c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Traumatic brain injury (TBI) and spinal cord injury (SCI) are neurological conditions that result from immediate mechanical injury, as well as delayed injury caused by local inflammation. Furthermore, TBI and SCI often lead to secondary complications, including pressure wounds of the skin, which can heal slowly and are prone to infection. Pressure wounds are localized areas of damaged tissue caused by prolonged pressure on the skin due to immobility and loss of neurological sensation. With the aim to ameliorate these symptoms, we investigated whether fibroblast growth factors 2 (FGF-2) could contribute to recovery. FGF-2 plays a significant role in both neurogenesis and skin wound healing. We developed a recombinant fusion protein containing FGF-2 linked to elastin-like polypeptides (FGF-ELP) that spontaneously self-assembles into nanoparticles at around 33 °C. The nanoparticle's size was ranging between 220 and 250 nm in diameter at 2 μM. We tested this construct for its ability to address neuronal and skin cell injuries. Hydrogen peroxide was used to induce oxidant-mediated injury on cultured neuronal cells to mimic the impact of reactive oxidants released during the inflammatory response in vivo. We found that FGF-ELP nanoparticles protected against hydrogen peroxide-mediated injury and promoted neurite outgrowth. In the skin cell models, cells were depleted from serum to mimic the reduced levels of nutrients and growth factors in chronic skin wounds. FGF-ELP increased the proliferation and migration of human keratinocytes, fibroblasts, and endothelial cells. FGF-ELP is, therefore, a potentially useful agent to provide both neuroprotection and promotion of cellular processes involved in skin wound healing.
Collapse
Affiliation(s)
- Suneel Kumar
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Alexa Chu
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Thomas Theis
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Shikhar Rastogi
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
- School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Denisa M Costea
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
- School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Roshni Banerjee
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Biraja C Das
- Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut 06519, United States
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Henry Hsia
- Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut 06519, United States
| | - Rick Cohen
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
9
|
Goswami P, Kumar V, Gupta G. Biomedical prospects and challenges of metal dichalcogenides nanomaterials. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:033001. [PMID: 39655850 DOI: 10.1088/2516-1091/ad6abb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/02/2024] [Indexed: 12/18/2024]
Abstract
The biomedical applications of metal dichalcogenides (MDCs) nanomaterials (NMs) are an emerging discipline because of their unique attributes like high surface-to-volume ratio, defect sites, superb catalytic performance, and excitation-dependent emission, which is helpful in bio-imaging and cancer cell killing. Due to the compatibility of sensing material with cells and tissues, MoS2, WS2, and SnS2NMs have piqued the interest of researchers in various biomedical applications like photothermal therapy used in killing cancer cells, drug delivery, photoacoustic tomography (PAT) used in bio-imaging, nucleic acid or gene delivery, tissue engineering, wound healing, etc. Furthermore, these NMs' functionalization and defect engineering can enhance therapeutic efficacy, biocompatibility, high drug transport efficiency, adjustable drug release, dispersibility, and biodegradability. Among the aforementioned materials, MoS2NMs have extensively been explored via functionalization and defects engineering to improve biosensing properties. However, further enhancement is still available. Aside from MoS2, the distinct chemo-physical and optical features of WS2and SnS2NMs promise considerable potential in biosensing, nanomedicine, and pharmaceuticals. This article mainly focuses on the challenges and future aspects of two-dimensional MDCs NMs in biomedical applications, along with their advancements in various medical diagnosis processes.
Collapse
Affiliation(s)
- Preeti Goswami
- CSIR-National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi 110012, India
- Academy of Scientific & Innovative Research, CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - Videsh Kumar
- CSIR-National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi 110012, India
- Delhi Technological University, New Delhi 110042, India
| | - Govind Gupta
- CSIR-National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi 110012, India
- Academy of Scientific & Innovative Research, CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
10
|
Chen JM, Ruan ZB, Chen GC, Zhu JG, Ren Y, Zhu L. Risk factors of incomplete endothelialization after left atrial appendage occlusion in patients with atrial fibrillation. Arch Med Sci 2024; 21:75-83. [PMID: 40190301 PMCID: PMC11969505 DOI: 10.5114/aoms/188529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 05/09/2024] [Indexed: 04/09/2025] Open
Abstract
Introduction We aimed to investigate the risk factors of incomplete device endothelialization (IDE) following left atrial appendage occlusion (LAAO) and provide a nomogram model for predicting the risks of IDE in patients with atrial fibrillation (AF). Material and methods A total of 145 patients with AF who underwent LAAO were included. The endothelialization of the occluder was assessed by computed tomography angiography (CTA) at 3 months after LAAO. Logistic regression analysis was used to explore the risk factors of IDE after LAAO. A nomogram model was constructed to predict the risks of IDE. Results 53 cases with complete endothelialization (CDE group) and 92 cases with IDE (IDE group) were detected at 3 months after LAAO. There was a significant difference in mitral regurgitation (MR) (37.7% vs. 55.4%, p = 0.040), left atrial appendage (LAA) diameter ((2.22 ±0.36) cm vs. (2.61± 2.11) cm, p = 0.003), occluder size ((2.76 ±0.36) cm vs. (2.93 ±0.34) cm, p = 0.005) and the level of serum urea ((5.78 ±1.72) mmol/l vs. (6.67 ±2.82) mmol/l, p = 0.020) between the two groups. Serum urea level, MR, LAA diameter and large occluder size were independent risk factors for IDE (p = 0.038, 0.041, 0.007 and 0.006, respectively). A nomogram prediction model based on MR, LAA diameter, occluder size and serum urea was constructed with a C-index of 0.70, while the C-index of verification was 0.708. Conclusions MR, higher serum urea level, LAA diameter and large occluder size may contribute to IDE after LAAO. The nomogram model based on MR, LAA diameter, occluder size and serum urea can be used to predict the IDE after LAAO.
Collapse
Affiliation(s)
- Jia-Min Chen
- Department of Cardiology, the Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- Dalian Medical University, Dalian, China
| | - Zhong-Bao Ruan
- Department of Cardiology, the Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Ge-Cai Chen
- Department of Cardiology, the Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Jun-Guo Zhu
- Department of Cardiology, the Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Yin Ren
- Department of Cardiology, the Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Li Zhu
- Department of Cardiology, the Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| |
Collapse
|
11
|
Mamun AA, Shao C, Geng P, Wang S, Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol 2024; 15:1395479. [PMID: 38835782 PMCID: PMC11148235 DOI: 10.3389/fimmu.2024.1395479] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
The skin, being a multifaceted organ, performs a pivotal function in the complicated wound-healing procedure, which encompasses the triggering of several cellular entities and signaling cascades. Aberrations in the typical healing process of wounds may result in atypical scar development and the establishment of a persistent condition, rendering patients more vulnerable to infections. Chronic burns and wounds have a detrimental effect on the overall quality of life of patients, resulting in higher levels of physical discomfort and socio-economic complexities. The occurrence and frequency of prolonged wounds are on the rise as a result of aging people, hence contributing to escalated expenditures within the healthcare system. The clinical evaluation and treatment of chronic wounds continue to pose challenges despite the advancement of different therapeutic approaches. This is mainly owing to the prolonged treatment duration and intricate processes involved in wound healing. Many conventional methods, such as the administration of growth factors, the use of wound dressings, and the application of skin grafts, are used to ease the process of wound healing across diverse wound types. Nevertheless, these therapeutic approaches may only be practical for some wounds, highlighting the need to advance alternative treatment modalities. Novel wound care technologies, such as nanotherapeutics, stem cell treatment, and 3D bioprinting, aim to improve therapeutic efficacy, prioritize skin regeneration, and minimize adverse effects. This review provides an updated overview of recent advancements in chronic wound healing and therapeutic management using innovative approaches.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Gu Y, Zhan Y, Guo Y, Hua W, Qi X, Gu Z, Cao S, Chen Y, Xue Z, Wang W. Potential Targets and Signaling Mechanisms of Cinnamaldehyde Enhancing Intestinal Function and Nutritional Regulation in Fat Greenling ( Hexagrammos otakii). AQUACULTURE NUTRITION 2024; 2024:5566739. [PMID: 39555553 PMCID: PMC11074912 DOI: 10.1155/2024/5566739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 11/19/2024]
Abstract
Cinnamaldehyde is an ideal feed additive with good immune enhancement and anti-inflammatory regulation effects. However, the anti-inflammatory regulation mechanism in fat greenling (Hexagrammos otakii, H. otakii) remains unclear. The nine targets of cinnamaldehyde were gathered in identified by the Traditional Chinese Medicine Systems Pharmacology database and Uniprot database, and 1,320 intestinal inflammation disease (IIF)-related proteins were screened from DrugBank, Online Mendelian Inheritance in Man (OMIM), Genecards, and Pharmacogenetics and Pharmacogenomics Knowledge Base (PHARMGKB) Databases. According to the Gene Ontology enrichment results and Kyoto Encyclopedia of Genes and Genomes pathway results, cinnamaldehyde may regulated the responses to bacteria, lipopolysaccharide, an inflammatory cytokine, and external stimuli via the nuclear factor kappa-B (NFκB) signaling pathway within on inflammatory network. In addition, the protein-protein interaction analysis assisted in obtaining the closely related inflammatory regulatory proteins, including the C5a anaphylatoxin chemotactic receptor 1 (C5aR1), transcription factor p65 (RELA), prostaglandin G/H synthase 2 (PTGS2), and toll-like receptor 4 (TLR4), which were confirmed as the bottleneck nodes of the network to be more deeply verified via the molecular docking. Moreover, a cinnamaldehyde feeding model was established for evaluating the anti-inflammatory effect of cinnamaldehyde in vivo. According to the current findings implied that cinnamaldehyde may play a protective role against IIF H. otakii by reducing inflammation through the C5 complement (C5)/C5aR1/interleukin-6 (IL-6) and TLR4/NFκB/PTGS2 pathway. The study focused on investigating the action mechanism of cinnamaldehyde on IIF through combining pharmacology and experimental verification in vivo, which provided a fresh perspective on the promoting effect of cinnamaldehyde on IIF in fish.
Collapse
Affiliation(s)
- Yixin Gu
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yu Zhan
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yafeng Guo
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Wenyuan Hua
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Xin Qi
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhizhi Gu
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Shengnan Cao
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yan Chen
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhuang Xue
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
13
|
Kumari P, Panigrahi AR, Yadav P, Beura SK, Singh SK. Platelets and inter-cellular communication in immune responses: Dialogue with both professional and non-professional immune cells. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:347-379. [PMID: 38762274 DOI: 10.1016/bs.apcsb.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Platelets, derived from bone marrow megakaryocytes, are essential for vascular integrity and play multifaceted roles in both physiological and pathological processes within the vasculature. Despite their small size and absence of a nucleus, platelets are increasingly recognized for their diverse immune functions. Recent research highlights their pivotal role in interactions with various immune cells, including professional cells like macrophages, dendritic cells, natural killer cells, T cells, and B cells, influencing host immune responses. Platelets also engage with non-professional immune cells, contributing to immune responses and structural maintenance, particularly in conditions like inflammation and atherosclerosis. This review underscores the emerging significance of platelets as potent immune cells, elucidating their interactions with the immune system. We explore the mechanisms of platelet activation, leading to diverse functions, such as aggregation, immunity, activation of other immune cells, and pathogen clearance. Platelets have become the predominant immune cells in circulation, involved in chronic inflammation, responses to infections, and autoimmune disorders. Their immunological attributes, including bioactive granule molecules and immune receptors, contribute to their role in immune responses. Unlike professional antigen-presenting cells, platelets process and present antigens through an MHC-I-dependent pathway, initiating T-cell immune responses. This review illuminates the unique features of platelets and their central role in modulating host immune responses in health and disease.
Collapse
Affiliation(s)
- Puja Kumari
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | | | - Pooja Yadav
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Samir Kumar Beura
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Sunil Kumar Singh
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India; Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
14
|
Larsson S, Holmgren S, Jenndahl L, Ulfenborg B, Strehl R, Synnergren J, Ghosheh N. Proteome of Personalized Tissue-Engineered Veins. ACS OMEGA 2024; 9:14805-14817. [PMID: 38585136 PMCID: PMC10993322 DOI: 10.1021/acsomega.3c07098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024]
Abstract
Vascular diseases are the largest cause of death globally and impose a major global burden on healthcare. The gold standard for treating vascular diseases is the transplantation of autologous veins, if applicable. Alternative treatments still suffer from shortcomings, including low patency, lack of growth potential, the need for repeated intervention, and a substantial risk of developing infections. The use of a vascular ECM scaffold reconditioned with the patient's own cells has shown successful results in preclinical and clinical studies. In this study, we have compared the proteomes of personalized tissue-engineered veins of humans and pigs. By applying tandem mass tag (TMT) labeling LC/MS-MS, we have investigated the proteome of decellularized (DC) veins from humans and pigs and reconditioned (RC) DC veins produced through perfusion with the patient's whole blood in STEEN solution, applying the same technology as used in the preclinical studies. The results revealed high similarity between the proteomes of human and pig DC and RC veins, including the ECM texture after decellularization and reconditioning. In addition, functional enrichment analysis showed similarities in signaling pathways and biological processes involved in the immune system response. Furthermore, the classification of proteins involved in immune response activity that were detected in human and pig RC veins revealed proteins that evoke immunogenic responses, which may lead to graft rejection, thrombosis, and inflammation. However, the results from this study imply the initiation of wound healing rather than an immunogenic response, as both systems share the same processes, and no immunogenic response was reported in the preclinical and clinical studies. Finally, our study assessed the application of STEEN solution in tissue engineering and identified proteins that may be useful for the prediction of successful transplantations.
Collapse
Affiliation(s)
- Susanna Larsson
- Systems
Biology Research Center, School of Bioscience, University of Skövde, SE-541 28 Skövde, Sweden
| | - Sandra Holmgren
- VERIGRAFT, Arvid Wallgrens Backe 20, SE-413 46 Gothenburg, Sweden
| | - Lachmi Jenndahl
- VERIGRAFT, Arvid Wallgrens Backe 20, SE-413 46 Gothenburg, Sweden
| | - Benjamin Ulfenborg
- Systems
Biology Research Center, School of Bioscience, University of Skövde, SE-541 28 Skövde, Sweden
| | - Raimund Strehl
- VERIGRAFT, Arvid Wallgrens Backe 20, SE-413 46 Gothenburg, Sweden
| | - Jane Synnergren
- Systems
Biology Research Center, School of Bioscience, University of Skövde, SE-541 28 Skövde, Sweden
- Department
of Molecular and Clinical Medicine, Institute
of Medicine, Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Nidal Ghosheh
- Systems
Biology Research Center, School of Bioscience, University of Skövde, SE-541 28 Skövde, Sweden
| |
Collapse
|
15
|
Ansari M, Darvishi A. A review of the current state of natural biomaterials in wound healing applications. Front Bioeng Biotechnol 2024; 12:1309541. [PMID: 38600945 PMCID: PMC11004490 DOI: 10.3389/fbioe.2024.1309541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Skin, the largest biological organ, consists of three main parts: the epidermis, dermis, and subcutaneous tissue. Wounds are abnormal wounds in various forms, such as lacerations, burns, chronic wounds, diabetic wounds, acute wounds, and fractures. The wound healing process is dynamic, complex, and lengthy in four stages involving cells, macrophages, and growth factors. Wound dressing refers to a substance that covers the surface of a wound to prevent infection and secondary damage. Biomaterials applied in wound management have advanced significantly. Natural biomaterials are increasingly used due to their advantages including biomimicry of ECM, convenient accessibility, and involvement in native wound healing. However, there are still limitations such as low mechanical properties and expensive extraction methods. Therefore, their combination with synthetic biomaterials and/or adding bioactive agents has become an option for researchers in this field. In the present study, the stages of natural wound healing and the effect of biomaterials on its direction, type, and level will be investigated. Then, different types of polysaccharides and proteins were selected as desirable natural biomaterials, polymers as synthetic biomaterials with variable and suitable properties, and bioactive agents as effective additives. In the following, the structure of selected biomaterials, their extraction and production methods, their participation in wound healing, and quality control techniques of biomaterials-based wound dressings will be discussed.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | | |
Collapse
|
16
|
Alven S, Aderibigbe BA. Chitosan-Based Scaffolds Incorporated with Silver Nanoparticles for the Treatment of Infected Wounds. Pharmaceutics 2024; 16:327. [PMID: 38543221 PMCID: PMC10974229 DOI: 10.3390/pharmaceutics16030327] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 02/21/2024] [Indexed: 06/13/2025] Open
Abstract
Bacterial infections are major problems in wound care due to their impact on the retarded process of wound healing, leading to chronic wounds. Most of the presently utilized wound dressing products exhibit poor antimicrobial properties. Wound dressings formulated from chitosan have been reported to be effective for treating infected wounds, resulting from the antibacterial properties of chitosan. The antibacterial properties of chitosan-based wound dressings can be further enhanced by incorporating metallic nanoparticles into them, such as silver, zinc, titanium, etc. The incorporation of silver nanoparticles into chitosan-based wound dressings has been widely explored in the design of antimicrobial wound dressings. The incorporation of silver nanoparticles into chitosan-based wound dressings promotes accelerated wound-healing processes due to enhanced antimicrobial activity. The accelerated wound healing by these metal-based nanoparticles is via the regulation of re-epithelialization and inflammation without affecting the viability of normal cells. However, there have been few reports that evaluate these wound dressings in infectious animal models to prove their efficacy. The in vivo toxicity of silver nanoparticles still needs to be addressed, revealing the need for further preclinical and clinical trials. The fabrication of wound dressings incorporated with silver nanoparticles has not been fully explored, especially for wounds requiring immediate treatment. The possible interactions between silver nanoparticles and chitosan scaffolds that result in synergistic effects still need to be understood and studied. This review provides a comprehensive report on the preclinical outcomes of chitosan wound dressing materials loaded with silver nanoparticles for managing infected wounds.
Collapse
Affiliation(s)
- Sibusiso Alven
- Department of Chemistry, University of Fort Hare, Alice 5700, South Africa;
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| | | |
Collapse
|
17
|
Hashemi A, Ezati M, Nasr MP, Zumberg I, Provaznik V. Extracellular Vesicles and Hydrogels: An Innovative Approach to Tissue Regeneration. ACS OMEGA 2024; 9:6184-6218. [PMID: 38371801 PMCID: PMC10870307 DOI: 10.1021/acsomega.3c08280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 02/20/2024]
Abstract
Extracellular vesicles have emerged as promising tools in regenerative medicine due to their inherent ability to facilitate intercellular communication and modulate cellular functions. These nanosized vesicles transport bioactive molecules, such as proteins, lipids, and nucleic acids, which can affect the behavior of recipient cells and promote tissue regeneration. However, the therapeutic application of these vesicles is frequently constrained by their rapid clearance from the body and inability to maintain a sustained presence at the injury site. In order to overcome these obstacles, hydrogels have been used as extracellular vesicle delivery vehicles, providing a localized and controlled release system that improves their therapeutic efficacy. This Review will examine the role of extracellular vesicle-loaded hydrogels in tissue regeneration, discussing potential applications, current challenges, and future directions. We will investigate the origins, composition, and characterization techniques of extracellular vesicles, focusing on recent advances in exosome profiling and the role of machine learning in this field. In addition, we will investigate the properties of hydrogels that make them ideal extracellular vesicle carriers. Recent studies utilizing this combination for tissue regeneration will be highlighted, providing a comprehensive overview of the current research landscape and potential future directions.
Collapse
Affiliation(s)
- Amir Hashemi
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Masoumeh Ezati
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Minoo Partovi Nasr
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Inna Zumberg
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Valentine Provaznik
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| |
Collapse
|
18
|
Bahadur S, Fatima S. Essential Oils of Some Potential Medicinal Plants and their Wound Healing Activities. Curr Pharm Biotechnol 2024; 25:1818-1834. [PMID: 38310452 DOI: 10.2174/0113892010282605231218064053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 02/05/2024]
Abstract
The wound has been recognised as a deep cut or tearing of the epidermis, which is also referred to as trauma and harm to the body tissues. Healing of wounds requires a coordinated series of cellular processes, including cell attraction, proliferation, differentiation, and angiogenesis. These processes involve interactions between various cells, such as macrophages, endothelial cells, keratinocytes, fibroblasts, growth hormones, and proteases. The outcome of wounds can be fatal if not treated properly, resulting in chronic wounds, chronic pain, and even death. Wound healing is replacing missing tissue with tissue repairs and regeneration. Some local variables are the presence of tissue maceration, foreign objects, biofilm, hypoxia, ischemia, and wound infection. Sustained growth factor delivery, siRNA delivery, micro-RNA targeting, and stem cell therapy are all emerging possible therapeutic approaches for wound healing. Traditional approaches, such as Ayurveda, Siddha, and Unani medicines, are also being used for treatment. The therapeutic application of nanoformulations in wound infections has shown various beneficial effects. Several herbal medicines, especially essential oils have shown potential wound healing activities, such as lavender, tea tree, sesame, olive, etc. Various nanoparticles and their nanoformulations have been explored in wound healing therapy. The present review article highlights several aspects of essential oils for wound healing activity through a novel drug delivery system. Further, some patents on wound healing through herbal medicine have been listed.
Collapse
Affiliation(s)
- Shiv Bahadur
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Sana Fatima
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| |
Collapse
|
19
|
Abstract
The landscape of exosome research has undergone a significant paradigm shift, with a departure from early conceptions of exosomes as vehicles for cellular waste disposal towards their recognition as integral components of cellular communication with therapeutic potential. This chapter presents an exhaustive elucidation of exosome biology, detailing the processes of exosome biogenesis, release, and uptake, and their pivotal roles in signal transduction, tissue repair, regeneration, and intercellular communication. Additionally, the chapter highlights recent innovations and anticipates future directions in exosome research, emphasizing their applicability in clinical settings. Exosomes have the unique ability to navigate through tissue spaces to enter the circulatory system, positioning them as key players in tissue repair. Their contributory role in various processes of tissue repair, although in the nascent stages of investigation, stands out as a promising area of research. These vesicles function as a complex signaling network for intracellular and organ-level communication, critical in both pathological and physiological contexts. The chapter further explores the tissue-specific functionality of exosomes and underscores the advancements in methodologies for their isolation and purification, which have been instrumental in expanding the scope of exosome research. The differential cargo profiles of exosomes, dependent on their cellular origin, position them as prospective diagnostic biomarkers for tissue damage and regenerative processes. Looking ahead, the trajectory of exosome research is anticipated to bring transformative changes to biomedical fields. This includes advancing diagnostic and prognostic techniques that utilize exosomes as non-invasive biomarkers for a plethora of diseases, such as cancer, neurodegenerative, and cardiovascular conditions. Additionally, engineering exosomes through alterations of their native content or surface properties presents a novel frontier, including the synthesis of artificial or hybrid variants with enhanced functional properties. Concurrently, the ethical and regulatory frameworks surrounding exosome research, particularly in clinical translation, will require thorough deliberation. In conclusion, the diverse aspects of exosome research are coalescing to redefine the frontiers of diagnostic and therapeutic methodologies, cementing its importance as a discipline of considerable consequence in the biomedical sciences.
Collapse
Affiliation(s)
- Anita Yadav
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aparajita Nandy
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anu Sharma
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
20
|
Hunt M, Torres M, Bachar-Wikström E, Wikström JD. Multifaceted roles of mitochondria in wound healing and chronic wound pathogenesis. Front Cell Dev Biol 2023; 11:1252318. [PMID: 37771375 PMCID: PMC10523588 DOI: 10.3389/fcell.2023.1252318] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Mitochondria are intracellular organelles that play a critical role in numerous cellular processes including the regulation of metabolism, cellular stress response, and cell fate. Mitochondria themselves are subject to well-orchestrated regulation in order to maintain organelle and cellular homeostasis. Wound healing is a multifactorial process that involves the stringent regulation of several cell types and cellular processes. In the event of dysregulated wound healing, hard-to-heal chronic wounds form and can place a significant burden on healthcare systems. Importantly, treatment options remain limited owing to the multifactorial nature of chronic wound pathogenesis. One area that has received more attention in recent years is the role of mitochondria in wound healing. With regards to this, current literature has demonstrated an important role for mitochondria in several areas of wound healing and chronic wound pathogenesis including metabolism, apoptosis, and redox signalling. Additionally, the influence of mitochondrial dynamics and mitophagy has also been investigated. However, few studies have utilised patient tissue when studying mitochondria in wound healing, instead using various animal models. In this review we dissect the current knowledge of the role of mitochondria in wound healing and discuss how future research can potentially aid in the progression of wound healing research.
Collapse
Affiliation(s)
- Matthew Hunt
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Monica Torres
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Etty Bachar-Wikström
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Jakob D. Wikström
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Bushmeleva K, Vyshtakalyuk A, Terenzhev D, Belov T, Nikitin E, Zobov V. Aronia melanocarpa Flavonol Extract-Antiradical and Immunomodulating Activities Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2976. [PMID: 37631187 PMCID: PMC10458422 DOI: 10.3390/plants12162976] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
The study of Aronia melanocarpa's (A. melanocarpa) biological activity is focused on obtaining the crude extract and separation of the flavonol compounds. The extraction and fractionation of A. melanocarpa fruits, followed by quantitative analysis, were accomplished using high-performance liquid chromatography and Darco G-60 filtering. This approach enabled the quantification of flavonoids within each fraction. The antioxidative, immunomodulating activities and cytotoxicity with respect to the lymphoblast cell line RPMI-1788 were studied. The flavonol extract of A. melanocarpa has been shown to have a high capacity to neutralize free DPPH and AAPH radicals in vitro. It also caused an accelerated 'respiratory burst' formation of neutrophils and an increase in the metabolic reserves of cells in rats exposed to cyclophosphamide. The reference solution (an equivalent quercetin-rutin blend) contributed to a decrease in lipid peroxidation, intensifying phagocytosis processes. The studied compounds demonstrated their low influence on the leukocyte blood profile in animals.
Collapse
Affiliation(s)
- Kseniya Bushmeleva
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russia; (A.V.); (D.T.); (T.B.); (E.N.); (V.Z.)
| | | | | | | | | | | |
Collapse
|
22
|
Tan ST, Aisyah PB, Firmansyah Y, Nathasia N, Budi E, Hendrawan S. Effectiveness of Secretome from Human Umbilical Cord Mesenchymal Stem Cells in Gel (10% SM-hUCMSC Gel) for Chronic Wounds (Diabetic and Trophic Ulcer) - Phase 2 Clinical Trial. J Multidiscip Healthc 2023; 16:1763-1777. [PMID: 37383529 PMCID: PMC10295509 DOI: 10.2147/jmdh.s408162] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Background Chronic wounds carry financial burdens and increase morbidity and mortality, especially in diabetic ulcers and Hansen's Morbus. More than 50% of chronic ulcers are difficult to heal with regular treatment and require new types of therapy such as the use of secretome of human umbilical cord mesenchymal stem cells (SM-hUCMSC). Methods This experimental study was carried out to see the effectiveness of using SM-hUCMSC in diabetic ulcers and Hansen's Morbus in four medical facilities (multicentre). The level of active secretion has been measured by default in 10% SM-hUCMSC gel, used as a treatment intervention. The primary outcome is wound healing in terms of the length, width, and extent of the wound. The secondary is the side effects of treatment 2 weeks after administration. Follow-up visits will be scheduled at 1 and 2 weeks post-treatment. Results Forty-one chronic ulcers successfully followed the study until the end. In patients with chronic ulcers, the mean ulcer length, width, and area were 1.60 (0,50-13,0), 1.3 (0,5-6,0), and 2.21 (0,25-78) cm square, respectively, before interventions and 1 (0-12), 0,8 (0-6,0), and 1 (0-72) square cm after interventions at the second follow-up. The change between the beginning and end of the intervention was significant (p-value <0.05). Conclusion The use of 10% SM-hUCMSC gel topically has been proven effective in accelerating the process of wound healing, especially chronic ulcers with side effects that are not present in this study.
Collapse
Affiliation(s)
- Sukmawati Tansil Tan
- Department of Dermatology and Venereology, Faculty of Medicine, Tarumanagara University, Jakarta, Indonesia
| | | | | | | | - Erwin Budi
- Faculty of Medicine, Tarumanagara University, Jakarta, Indonesia
| | - Siufui Hendrawan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Tarumanagara University, Jakarta, Indonesia
- Tarumanagara Human Cell Technology Laboratory, Tarumanagara University, Jakarta, Indonesia
| |
Collapse
|
23
|
Walther M, Vestweber PK, Kühn S, Rieger U, Schäfer J, Münch C, Vogel-Kindgen S, Planz V, Windbergs M. Bioactive Insulin-Loaded Electrospun Wound Dressings for Localized Drug Delivery and Stimulation of Protein Expression Associated with Wound Healing. Mol Pharm 2023; 20:241-254. [PMID: 36538353 DOI: 10.1021/acs.molpharmaceut.2c00610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Effective therapy of wounds is difficult, especially for chronic, non-healing wounds, and novel therapeutics are urgently needed. This challenge can be addressed with bioactive wound dressings providing a microenvironment and facilitating cell proliferation and migration, ideally incorporating actives, which initiate and/or progress effective healing upon release. In this context, electrospun scaffolds loaded with growth factors emerged as promising wound dressings due to their biocompatibility, similarity to the extracellular matrix, and potential for controlled drug release. In this study, electrospun core-shell fibers were designed composed of a combination of polycaprolactone and polyethylene oxide. Insulin, a proteohormone with growth factor characteristics, was successfully incorporated into the core and was released in a controlled manner. The fibers exhibited favorable mechanical properties and a surface guiding cell migration for wound closure in combination with a high uptake capacity for wound exudate. Biocompatibility and significant wound healing effects were shown in interaction studies with human skin cells. As a new approach, analysis of the wound proteome in treated ex vivo human skin wounds clearly demonstrated a remarkable increase in wound healing biomarkers. Based on these findings, insulin-loaded electrospun wound dressings bear a high potential as effective wound healing therapeutics overcoming current challenges in the clinics.
Collapse
Affiliation(s)
- Marcel Walther
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| | - Pia Katharina Vestweber
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| | - Shafreena Kühn
- Clinic for Plastic and Aesthetic Surgery, Reconstructive and Hand Surgery, Agaplesion Markus Clinic, Wilhelm-Epstein-Straße 4, 60431Frankfurt am Main, Germany
| | - Ulrich Rieger
- Clinic for Plastic and Aesthetic Surgery, Reconstructive and Hand Surgery, Agaplesion Markus Clinic, Wilhelm-Epstein-Straße 4, 60431Frankfurt am Main, Germany
| | - Jasmin Schäfer
- Institute of Biochemistry II, University Hospital Frankfurt, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7 / Building 75, 60590Frankfurt am Main, Germany
| | - Christian Münch
- Institute of Biochemistry II, University Hospital Frankfurt, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7 / Building 75, 60590Frankfurt am Main, Germany
| | - Sarah Vogel-Kindgen
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| | - Viktoria Planz
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| |
Collapse
|
24
|
Anti-Platelet and Anticoagulation Medications. Regen Med 2023. [DOI: 10.1007/978-3-030-75517-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
25
|
Van Bruggen S, Martinod K. The coming of age of neutrophil extracellular traps in thrombosis: Where are we now and where are we headed? Immunol Rev 2022; 314:376-398. [PMID: 36560865 DOI: 10.1111/imr.13179] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thrombosis remains a major problem in our society, manifesting across multiple demographic groups and with high associated morbidity and mortality. Thrombus development is the result of a complex mechanism in which multiple cell types and soluble factors play a crucial role. One cell that has gained the most attention in recent years is the neutrophil. This key member of the innate immune system can form neutrophil extracellular traps (NETs) in response to activating stimuli in circulation. NETs form a scaffold for thrombus formation, both initiating the process and stabilizing the final product. As the first responders of the host immune system, neutrophils have the flexibility to recognize a variety of molecules and can quickly interact with a range of different cell types. This trait makes them sensitive to exogenous stimuli. NET formation in response to pathogens is well established, leading to immune-mediated thrombus formation or immunothrombosis. NETs can also be formed during sterile inflammation through the activation of neutrophils by fellow immune cells including platelets, or activated endothelium. In chronic inflammatory settings, NETs can ultimately promote the development of tissue fibrosis, with organ failure as an end-stage outcome. In this review, we discuss the different pathways through which neutrophils can be activated toward NET formation and how these processes can result in a shared outcome: thrombus formation. Finally, we evaluate these different interactions and mechanisms for their potential as therapeutic targets, with neutrophil-targeted therapies providing a future approach to treating thrombosis. In contrast to current practices, such treatment could result in reduced pathogenic blood clot formation without increasing the risk of bleeding.
Collapse
Affiliation(s)
- Stijn Van Bruggen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Pang J, Maienschein-Cline M, Koh TJ. Monocyte/Macrophage Heterogeneity during Skin Wound Healing in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1999-2011. [PMID: 36426946 PMCID: PMC9643652 DOI: 10.4049/jimmunol.2200365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/07/2022] [Indexed: 12/31/2022]
Abstract
Monocytes (Mos)/macrophages (Mϕs) orchestrate biological processes critical for efficient skin wound healing. However, current understanding of skin wound Mo/Mϕ heterogeneity is limited by traditional experimental approaches such as flow cytometry and immunohistochemistry. Therefore, we sought to more fully explore Mo/Mϕ heterogeneity and associated state transitions during the course of excisional skin wound healing in mice using single-cell RNA sequencing. The live CD45+CD11b+Ly6G- cells were isolated from skin wounds of C57BL/6 mice on days 3, 6, and 10 postinjury and captured using the 10x Genomics Chromium platform. A total of 2813 high-quality cells were embedded into a uniform manifold approximation and projection space, and eight clusters of distinctive cell populations were identified. Cluster dissimilarity and differentially expressed gene analysis categorized those clusters into three groups: early-stage/proinflammatory, late-stage/prohealing, and Ag-presenting phenotypes. Signature gene and Gene Ontology analysis of each cluster provided clues about the different functions of the Mo/Mϕ subsets, including inflammation, chemotaxis, biosynthesis, angiogenesis, proliferation, and cell death. Quantitative PCR assays validated characteristics of early- versus late-stage Mos/Mϕs inferred from our single-cell RNA sequencing dataset. Additionally, cell trajectory analysis by pseudotime and RNA velocity and adoptive transfer experiments indicated state transitions between early- and late-state Mos/Mϕs as healing progressed. Finally, we show that the chemokine Ccl7, which was a signature gene for early-stage Mos/Mϕs, preferentially induced the accumulation of proinflammatory Ly6C+F4/80lo/- Mos/Mϕs in mouse skin wounds. In summary, our data demonstrate the complexity of Mo/Mϕ phenotypes, their dynamic behavior, and diverse functions during normal skin wound healing.
Collapse
Affiliation(s)
- Jingbo Pang
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| | | | - Timothy J. Koh
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| |
Collapse
|
27
|
Luo Y, Xu X, Ye Z, Xu Q, Li J, Liu N, Du Y. 3D bioprinted mesenchymal stromal cells in skin wound repair. Front Surg 2022; 9:988843. [PMID: 36311952 PMCID: PMC9614372 DOI: 10.3389/fsurg.2022.988843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
Skin tissue regeneration and repair is a complex process involving multiple cell types, and current therapies are limited to promoting skin wound healing. Mesenchymal stromal cells (MSCs) have been proven to enhance skin tissue repair through their multidifferentiation and paracrine effects. However, there are still difficulties, such as the limited proliferative potential and the biological processes that need to be strengthened for MSCs in wound healing. Recently, three-dimensional (3D) bioprinting has been applied as a promising technology for tissue regeneration. 3D-bioprinted MSCs could maintain a better cell ability for proliferation and expression of biological factors to promote skin wound healing. It has been reported that 3D-bioprinted MSCs could enhance skin tissue repair through anti-inflammatory, cell proliferation and migration, angiogenesis, and extracellular matrix remodeling. In this review, we will discuss the progress on the effect of MSCs and 3D bioprinting on the treatment of skin tissue regeneration, as well as the perspective and limitations of current research.
Collapse
|
28
|
Palanisamy CP, Cui B, Zhang H, Gunasekaran VP, Ariyo AL, Jayaraman S, Rajagopal P, Long Q. A critical review on starch-based electrospun nanofibrous scaffolds for wound healing application. Int J Biol Macromol 2022; 222:1852-1860. [PMID: 36195229 DOI: 10.1016/j.ijbiomac.2022.09.274] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
Starch-based nanofibrous scaffolds exhibit a potential wound healing processes as they are cost-effective, flexible, and biocompatible. Recently, natural polymers have received greater importance in regenerative medicine, mainly in the process of healing wounds and burns due to their unique properties which also include safety, biocompatibility, and biodegradability. In this respect, starch is considered to be one of the reliable natural polymers to promote the process of wound healing at a significantly faster rate. Starch and starch-based electrospun nanofibrous scaffolds have been used for the wound healing process which includes the process of adhesion, proliferation, differentiation, and regeneration of cells. It also possesses significant activity to encapsulate and deliver biomaterials at a specific site which persuades the wound healing process at an increased rate. As the aforementioned scaffolds mimic the native extracellular matrix more closely, may help in the acceleration of wound closure, which in turn may lead to the promotion of tissue reorganization and remodeling. In-depth knowledge in understanding the properties of nanofibrous scaffolds paves a way to unfold novel methods and therapies, also to overcome challenges associated with wound healing. This review is intended to provide comprehensive information and recent advances in starch-based electrospun nanofibrous scaffolds for wound healing.
Collapse
Affiliation(s)
- Chella Perumal Palanisamy
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an 710003, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China.
| | - Hongxia Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | | | - Adeniran Lateef Ariyo
- Department of Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Abuja, FCT, Abuja, Nigeria
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakhsi Academy of Higher Education and Research, West K.K. Nagar, Chennai 600 078, India
| | - Qianfa Long
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an 710003, China.
| |
Collapse
|
29
|
Al Sadoun H. Macrophage Phenotypes in Normal and Diabetic Wound Healing and Therapeutic Interventions. Cells 2022; 11:2430. [PMID: 35954275 PMCID: PMC9367932 DOI: 10.3390/cells11152430] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Macrophage differentiation and polarization are essential players in the success of the wound-healing process. Acute simple wounds progress from inflammation to proliferation/regeneration and, finally, to remodeling. In injured skin, macrophages either reside in the epithelium or are recruited from monocytes. Their main role is supported by their plasticity, which allows them to adopt different phenotypic states, such as the M1-inflammatory state, in which they produce TNF and NO, and the M2-reparative state, in which they resolve inflammation and exhibit a reparative function. Reparative macrophages are an essential source of growth factors such as TGF-β and VEGF and are not found in nonhealing wounds. This review discusses the differences between macrophage phenotypes in vitro and in vivo, how macrophages originate, and how they cross-communicate with other cellular components in a wound. This review also highlights the dysregulation of macrophages that occurs in nonhealing versus overhealing wounds and fibrosis. Then, the therapeutic manipulation of macrophages is presented as an attractive strategy for promoting healing through the secretion of growth factors for angiogenesis, keratinocyte migration, and collagen production. Finally, Hoxa3 overexpression is discussed as an example of the therapeutic repolarization of macrophages to the normal maturation state and phenotype with better healing outcomes.
Collapse
Affiliation(s)
- Hadeel Al Sadoun
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; ; Tel.: +966-(12)-6400000 (ext. 24277)
- Stem Cell Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
30
|
Brown BA, Guda PR, Zeng X, Anthony A, Couse A, Barnes LF, Sharon EM, Trinidad JC, Sen CK, Jarrold MF, Ghatak S, Clemmer DE. Analysis of Keratinocytic Exosomes from Diabetic and Nondiabetic Mice by Charge Detection Mass Spectrometry. Anal Chem 2022; 94:8909-8918. [PMID: 35699514 PMCID: PMC9450994 DOI: 10.1021/acs.analchem.2c00453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unresolved inflammation compromises diabetic wound healing. Recently, we reported that inadequate RNA packaging in murine wound-edge keratinocyte-originated exosomes (Exoκ) leads to persistent inflammation [Zhou, X. ACS Nano 2020, 14(10), 12732-12748]. Herein, we use charge detection mass spectrometry (CDMS) to analyze intact Exoκ isolated from a 5 day old wound-edge tissue of diabetic mice and a heterozygous nondiabetic littermate control group. In CDMS, the charge (z) and mass-to-charge ratio (m/z) of individual exosome particles are measured simultaneously, enabling the direct analysis of masses in the 1-200 MDa range anticipated for exosomes. These measurements reveal a broad mass range for Exoκ from ∼10 to >100 MDa. The m and z values for these exosomes appear to fall into families (subpopulations); a statistical modeling analysis partially resolves ∼10-20 Exoκ subpopulations. Complementary proteomics, immunofluorescence, and electron microscopy studies support the CDMS results that Exoκ from diabetic and nondiabetic mice vary substantially. Subpopulations having high z (>650) and high m (>44 MDa) are more abundant in nondiabetic animals. We propose that these high m and z particles may arise from differences in cargo packaging. The veracity of this idea is discussed in light of other recent CDMS results involving genome packaging in vaccines, as well as exosome imaging experiments. Characterization of intact exosome particles based on the physical properties of m and z provides a new means of investigating wound healing and suggests that CDMS may be useful for other pathologies.
Collapse
Affiliation(s)
- Brooke A Brown
- Department of Chemistry, Indiana University, Bloomington, Indiana 47505, United States
| | - Poornachander R Guda
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Xuyao Zeng
- Department of Chemistry, Indiana University, Bloomington, Indiana 47505, United States
| | - Adam Anthony
- Department of Chemistry, Indiana University, Bloomington, Indiana 47505, United States
| | - Andrew Couse
- Department of Chemistry, Indiana University, Bloomington, Indiana 47505, United States
| | - Lauren F Barnes
- Department of Chemistry, Indiana University, Bloomington, Indiana 47505, United States
| | - Edie M Sharon
- Department of Chemistry, Indiana University, Bloomington, Indiana 47505, United States
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University, Bloomington, Indiana 47505, United States
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana 47505, United States
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47505, United States
| |
Collapse
|
31
|
Mawhinney M, Kulle A, Thanabalasuriar A. From infection to repair: Understanding the workings of our innate immune cells. WIREs Mech Dis 2022; 14:e1567. [PMID: 35674186 DOI: 10.1002/wsbm.1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 11/06/2022]
Abstract
In a world filled with microbes, some posing a threat to our body, our immune system is key to living a healthy life. The innate immune system is made of various cell types that act to guard our bodies. Unlike the adaptive immune system that has a specific response, our innate immune system encompasses cells that elicit unspecific immune responses, triggered whenever the right signals are detected. Our understanding of immunity started with the concept of our immune system only responding to "nonself" like the pathogens that invade our body. However, over the past few decades, we have learned that the immune system is more than an on/off switch that recognizes nonself. The innate immune system regularly patrols our bodies for pathogens and tissue damage. Our innate immune system not only seeks to resolve infection but also repair tissue injury, through phagocytosing debris and initiating the release of growth factors. Recently, we are starting to see that it is not just recognizing danger, our innate immune system plays a crucial role in repair. Innate immune cells phenotypically change during repair. In the context of severe injury or trauma, our innate immune system is modified quite drastically to help repair, resulting in reduced infection control. Moreover, these changes in immune cell function can be modified by sex as a biological variable. From past to present, in this overview, we provide a summary of the innate immune cells and pathways in infection and tissue repair. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Martin Mawhinney
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Amelia Kulle
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ajitha Thanabalasuriar
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
32
|
Sources, production and commercial applications of fungal chitosan: A review. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2022. [DOI: 10.1016/j.jobab.2022.01.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
33
|
Loo HL, Goh BH, Lee LH, Chuah LH. Application of chitosan nanoparticles in skin wound healing. Asian J Pharm Sci 2022; 17:299-332. [PMID: 35782330 PMCID: PMC9237591 DOI: 10.1016/j.ajps.2022.04.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022] Open
Abstract
The rising prevalence of impaired wound healing and the consequential healthcare burdens have gained increased attention over recent years. This has prompted research into the development of novel wound dressings with augmented wound healing functions. Nanoparticle (NP)-based delivery systems have become attractive candidates in constructing such wound dressings due to their various favourable attributes. The non-toxicity, biocompatibility and bioactivity of chitosan (CS)-based NPs make them ideal candidates for wound applications. This review focusses on the application of CS-based NP systems for use in wound treatment. An overview of the wound healing process was presented, followed by discussion on the properties and suitability of CS and its NPs in wound healing. The wound healing mechanisms exerted by CS-based NPs were then critically analysed and discussed in sections, namely haemostasis, infection prevention, inflammatory response, oxidative stress, angiogenesis, collagen deposition, and wound closure time. The results of the studies were thoroughly reviewed, and contradicting findings were identified and discussed. Based on the literature, the gap in research and future prospects in this research area were identified and highlighted. Current evidence shows that CS-based NPs possess superior wound healing effects either used on their own, or as drug delivery vehicles to encapsulate wound healing agents. It is concluded that great opportunities and potentials exist surrounding the use of CSNPs in wound healing.
Collapse
|
34
|
Wang Z, Qi F, Luo H, Xu G, Wang D. Inflammatory Microenvironment of Skin Wounds. Front Immunol 2022; 13:789274. [PMID: 35300324 PMCID: PMC8920979 DOI: 10.3389/fimmu.2022.789274] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
Wound healing is a dynamic and highly regulated process that can be separated into three overlapping and interdependent phases: inflammation, proliferation, and remodelling. This review focuses on the inflammation stage, as it is the key stage of wound healing and plays a vital role in the local immune response and determines the progression of wound healing. Inflammatory cells, the main effector cells of the inflammatory response, have been widely studied, but little attention has been paid to the immunomodulatory effects of wound healing in non-inflammatory cells and the extracellular matrix. In this review, we attempt to deepen our understanding of the wound-healing microenvironment in the inflammatory stage by focusing on the interactions between cells and the extracellular matrix, as well as their role in regulating the immune response during the inflammatory stage. We hope our findings will provide new ideas for promoting tissue regeneration through immune regulation.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Fang Qi
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Han Luo
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Guangchao Xu
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Dali Wang
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
35
|
Kushwaha A, Goswami L, Kim BS. Nanomaterial-Based Therapy for Wound Healing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:618. [PMID: 35214947 PMCID: PMC8878029 DOI: 10.3390/nano12040618] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Poor wound healing affects millions of people globally, resulting in increased mortality rates and associated expenses. The three major complications associated with wounds are: (i) the lack of an appropriate environment to enable the cell migration, proliferation, and angiogenesis; (ii) the microbial infection; (iii) unstable and protracted inflammation. Unfortunately, existing therapeutic methods have not solved these primary problems completely, and, thus, they have an inadequate medical accomplishment. Over the years, the integration of the remarkable properties of nanomaterials into wound healing has produced significant results. Nanomaterials can stimulate numerous cellular and molecular processes that aid in the wound microenvironment via antimicrobial, anti-inflammatory, and angiogenic effects, possibly changing the milieu from nonhealing to healing. The present article highlights the mechanism and pathophysiology of wound healing. Further, it discusses the current findings concerning the prospects and challenges of nanomaterial usage in the management of chronic wounds.
Collapse
Affiliation(s)
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Korea; (A.K.); (L.G.)
| |
Collapse
|
36
|
Viaña‐Mendieta P, Sánchez ML, Benavides J. Rational selection of bioactive principles for wound healing applications: Growth factors and antioxidants. Int Wound J 2022; 19:100-113. [PMID: 33951280 PMCID: PMC8684881 DOI: 10.1111/iwj.13602] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022] Open
Abstract
Wound healing is a complex process of communication between growth factors, reactive species of oxygen, cells, signalling pathways, and cytokines in the extracellular matrix, in which growth factors are the key regulators. In humans, the main regulators of the cellular responses in wound healing are five growth factors, namely EGF, bFGF, VEGF, and TGF-β1. On the other hand, antioxidants such as astaxanthin, beta-carotene, epigallocatechin gallate, delphinidin, and curcumin have been demonstrated to stimulate cell proliferation, migration and angiogenesis, and control inflammation, to suggest a practical approach to design new strategies to treat non-healing cutaneous conditions. Based on the individual effects of growth factors and antioxidants, it may be envisioned that the use of both types of bioactives in wound healing formulations may have an additive or synergistic effect on the healing potential. This review addresses the effect of growth factors and antioxidants on wound healing-related processes. Furthermore, a prospective on their potential additive or synergistic effect on wound healing formulations, based on their individual effects, is presented. This may serve as a guide for the development of a new generation of wound healing formulations.
Collapse
Affiliation(s)
| | - Mirna Lorena Sánchez
- Laboratorio de Materiales Biotecnológicos Departamento de Ciencia y TecnologíaUniversidad Nacional de Quilmes, IMBICE‐ConicetBernalBuenos AiresArgentina
| | - Jorge Benavides
- Tecnologico de MonterreyEscuela de Ingeniería y CienciasMonterreyNuevo LeónMexico
| |
Collapse
|
37
|
Chavez-Dominguez R, Perez-Medina M, Aguilar-Cazares D, Galicia-Velasco M, Meneses-Flores M, Islas-Vazquez L, Camarena A, Lopez-Gonzalez JS. Old and New Players of Inflammation and Their Relationship With Cancer Development. Front Oncol 2021; 11:722999. [PMID: 34881173 PMCID: PMC8645998 DOI: 10.3389/fonc.2021.722999] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022] Open
Abstract
Pathogens or genotoxic agents continuously affect the human body. Acute inflammatory reaction induced by a non-sterile or sterile environment is triggered for the efficient elimination of insults that caused the damage. According to the insult, pathogen-associated molecular patterns, damage-associated molecular patterns, and homeostasis-altering molecular processes are released to facilitate the arrival of tissue resident and circulating cells to the injured zone to promote harmful agent elimination and tissue regeneration. However, when inflammation is maintained, a chronic phenomenon is induced, in which phagocytic cells release toxic molecules damaging the harmful agent and the surrounding healthy tissues, thereby inducing DNA lesions. In this regard, chronic inflammation has been recognized as a risk factor of cancer development by increasing the genomic instability of transformed cells and by creating an environment containing proliferation signals. Based on the cancer immunoediting concept, a rigorous and regulated inflammation process triggers participation of innate and adaptive immune responses for efficient elimination of transformed cells. When immune response does not eliminate all transformed cells, an equilibrium phase is induced. Therefore, excessive inflammation amplifies local damage caused by the continuous arrival of inflammatory/immune cells. To regulate the overstimulation of inflammatory/immune cells, a network of mechanisms that inhibit or block the cell overactivity must be activated. Transformed cells may take advantage of this process to proliferate and gradually grow until they become preponderant over the immune cells, preserving, increasing, or creating a microenvironment to evade the host immune response. In this microenvironment, tumor cells resist the attack of the effector immune cells or instruct them to sustain tumor growth and development until its clinical consequences. With tumor development, evolving, complex, and overlapping microenvironments are arising. Therefore, a deeper knowledge of cytokine, immune, and tumor cell interactions and their role in the intricated process will impact the combination of current or forthcoming therapies.
Collapse
Affiliation(s)
- Rodolfo Chavez-Dominguez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico.,Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Perez-Medina
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico.,Laboratorio de Quimioterapia Experimental, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Dolores Aguilar-Cazares
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Miriam Galicia-Velasco
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Manuel Meneses-Flores
- Departamento de Patología, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Lorenzo Islas-Vazquez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Angel Camarena
- Laboratorio de Human Leukocyte Antigen (HLA), Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Jose S Lopez-Gonzalez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| |
Collapse
|
38
|
Shehwana H, Ijaz S, Fatima A, Walton S, Sheikh ZI, Haider W, Naz S. Transcriptome Analysis of Host Inflammatory Responses to the Ectoparasitic Mite Sarcoptes scabiei var. hominis. Front Immunol 2021; 12:778840. [PMID: 34925353 PMCID: PMC8671885 DOI: 10.3389/fimmu.2021.778840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Scabies, a human skin infestation caused by the ectoparasitic mite Sarcoptes scabiei var. hominis, affects more than 200 million people globally. The prevailing knowledge of the disease process and host immune response mechanisms is limited. A better understanding of the host-parasite relationship is essential for the identification of novel vaccine and drug targets. Here we aimed to interrogate the transcriptomic profiles of mite-infested human skin biopsies with clinical manifestations of ordinary scabies subjects ("OS"; n = 05) and subjects naive to scabies ("control"; n = 03) using RNASeq data analysis. A combined clustering, network, and pathway mapping approach enabled us to identify key signaling events in the host immune and pro-inflammatory responses to S. scabiei infestation. The clustering patterns showed various differentially expressed genes including inflammatory responses and innate immunity genes (DEFB4A, IL-19, CXCL8, CSF3, SERPINB4, S100A7A, HRNR) and notably upregulation of the JAK-STAT pathway in scabies-infested samples. Mite-infested human skin biopsies (GSE178563) were compared with an ex-vivo porcine infested model (E-MTAB-6433) and human skin equivalents (GSE48459). Marked enrichment of immune response pathways (JAK-STAT signaling, IL-4 and IL-13 pathway, and Toll receptor cascade), chemokine ligands and receptors (CCL17, CCL18, CCL3L1, CCL3L3, CCR7), and cytokines (IL-13 and IL-20) were observed. Additionally, genes known for their role in psoriasis and atopic dermatitis were upregulated, e.g., IL-19. The detailed transcriptomic profile has provided an insight into molecular functions, biological processes, and immunological responses and increased our understanding about transcriptomic regulation of scabies in human.
Collapse
Affiliation(s)
- Huma Shehwana
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Sadaf Ijaz
- Research Centre for Modelling & Simulation, National University of Science and Technology, Islamabad, Pakistan
| | - Abeera Fatima
- Research Centre for Modelling & Simulation, National University of Science and Technology, Islamabad, Pakistan
| | - Shelley Walton
- Inflammation and Healing Research Cluster, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Zafar Iqbal Sheikh
- Department of Dermatology, Pak-Emirates Military Hospital, Rawalpindi, Pakistan
| | - Waseem Haider
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Shumaila Naz
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
39
|
de Souza de Aguiar P, Correa ÁP, Antunes FTT, de Barros Ferraz AF, Vencato SB, Amado GJV, Wiiland E, Corrêa DS, Grivicich I, de Souza AH. Benefits of Stryphnodendron adstringens when associated with hydrogel on wound healing in diabetic rats. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
The plant Stryphnodendron adstringens is a species of legume in the genus Stryphnodendron that is found in Brazil. It is also known as “barbatimão-verdadeiro” and it is popularly used in folk medicine due to its healing properties. Purpose: The aim of this study was to evaluate the healing activity of hydrogel, together with an S. adstringens hydroalcoholic extract, in diabetic and non-diabetic rats. Methods: The phytochemical analysis of the S. adstringens hydroalcoholic extract was evaluated through HPLC and its antioxidant activity was measured by the DPPH assay. The cytotoxicity, the scratch assay, and the fibroblast cell proliferation were also evaluated. Forty (40) Wistar rats were submitted to an excision for a full-thickness wound of 1.5 cm × 1.5 cm in their dorsum. The animals were treated twice a day over 16 days, with a rich layer of the corresponding treatment: Hydrogel; Hydrogel associated with 5% S. adstringens hydroalcoholic extract (H + SAHE); S. adstringens hydroalcoholic extract (SAHE); Collagenase with Chloramphenicol; or Carbopol. Morphological and histological analyses of the injury were performed. Results: The phytochemical analysis of SAHE indicated the presence of phenolic compounds, tannins, and flavonoids. The hydroalcoholic extract showed strong antioxidant activities (IC50 = 25.56 ± 1.04 μg/mL). H + SAHE induced the fibroblast proliferation (148 ± 6.9%) and it was not cytotoxic. The association with H + SAHE showed a more pronounced healing activity than did the other treatments in the non-diabetic animals and in the diabetic animals, hence, promoting angiogenesis and reepithelialization. Conclusion: Under these scenarios, this study has demonstrated effectiveness in the recovering wounds of diabetic rats.
Graphical abstract
Collapse
|
40
|
Araujo-Gutierrez R, Van Eps JL, Scherba JC, Anastasio AT, Cabrera F, Vatsaas CJ, Youker K, Fernandez Moure JS. Platelet rich plasma concentration improves biologic mesh incorporation and decreases multinucleated giant cells in a dose dependent fashion. J Tissue Eng Regen Med 2021; 15:1037-1046. [PMID: 34551456 DOI: 10.1002/term.3247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 11/09/2022]
Abstract
Platelet rich plasma (PRP) has been shown to improve incorporation and reduce inflammation in ventral hernia repair (VHR) with acellular dermal matrix (ADM). The concentration of platelets in PRP varies in clinical studies and an ideal concentration has yet to be defined. The effects of varied concentrations of PRP on ADM incorporation and inflammatory cell infiltration in a rat model of VHR. We hypothesized that increasing concentration of PRP would lead to improved incorporation, decreased CD8+ and multinucleated giant cell (MNGC) infiltrate. Lewis rats underwent ventral hernia creation and repair 30 days later with porcine non-crosslinked ADM. PRP was applied to the mesh prior to skin closure at concentrations of 1 × 104 plt/μL (PRP-LOW), 1 × 106 plt/μL (PRP-MID), or 1 × 107 plt/μL (PRP-HIGH) and tissue harvested at 2 and 4 weeks. Cellularization, tissue deposition, and mesh thickness using hematoxylin and eosin and Masson's trichrome, and neovascularization was assessed with VVG staining, to establish the relationship of PRP concentration to metrics of incorporation. MNGC and CD8+ T-cell infiltration were quantified to establish the relationship of inflammatory cell infiltration in response to PRP concentration. Lymphocyte infiltration was assessed using immunohistochemical staining for CD8. PRP-HIGH treated had significantly greater tissue deposition at 4 weeks. PRP-MID showed increasing mesh thickness at 2 weeks. Cell infiltration was significantly higher with PRP-HIGH at both 2 and 4 weeks while PRP-LOW showed increased cell infiltration only at 4 weeks. At both time points there was a trend towards a dose dependent response in cell infiltration to PRP concentration. Neovascularization was highest with MID-plt at 2 weeks, yet no significant differences were noted compared to controls. CD8+ cell infiltrate was significantly decreased at 2 and 4 weeks in PRP-LOW and PRP-MID treated groups. PRP at all concentrations significantly decreased MNGC infiltration at 2 weeks while only PRP-HIGH and PRP-MID had significant reductions in MNGC at 4 weeks. Both MNGC and CD8+ cell infiltration demonstrated dose dependent reduction in relation to PRP concentration. Increasing platelet concentrations of PRP correlated with improved incorporation, tissue deposition, and decreased scaffold degradation. These findings were associated with a blunted foreign body response. These findings suggest PRP reduces inflammation which may be beneficial for ADM incorporation in VHR.
Collapse
Affiliation(s)
| | - Jeffrey L Van Eps
- Department of Surgery, Section of Colon & Rectal Surgery, UTHealth at McGovern Medical School, Houston, Texas, USA
| | - Jacob C Scherba
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Albert Thomas Anastasio
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Fernando Cabrera
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Cory J Vatsaas
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Keith Youker
- Department of Cardiovascular Science, Houston Methodist Hospital, Houston, Texas, USA
| | - Joseph S Fernandez Moure
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
41
|
Tazeze H, Mequanente S, Nigussie D, Legesse B, Makonnen E, Mengie T. Investigation of Wound Healing and Anti-Inflammatory Activities of Leaf Gel of Aloe trigonantha L.C. Leach in Rats. J Inflamm Res 2021; 14:5567-5580. [PMID: 34737605 PMCID: PMC8560176 DOI: 10.2147/jir.s339289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Traditionally Aloe trigonantha leaf is used for the treatment of different diseases. However, there were no in vivo studies which prove its claimed use for wound healing and anti-inflammatory activity. Therefore, the present study aimed at evaluating the in vivo wound healing and anti-inflammatory effects of the leaf gel of the plant in rats. METHODS The leaf gel powder of the Aloe trigonantha was prepared after the gel gets lyophilized. It was evaluated for wound healing activity topically by incorporating it in a simple ointment base at a concentration of 5% (w/w) and 10% (w/w). Excision and incision models were used for wound healing activity in rats. For the excision wound model, wound contraction and period of epithelialization were evaluated, while wound tensile strength was evaluated using an incision wound model. A Xylene-induced ear edema model and cotton pellet-induced granuloma model were used for anti-inflammatory study. The leaf gel powder of Aloe trigonantha was given orally at a dose of 100, 200, and 400 mg/kg in both models of anti-inflammatory studies. An anti-inflammatory effect was measured by reduction of ear edema weight and reduction of wet exudate and dry granuloma weight in both of xylene-induced ear edema and cotton pellet-induced granuloma models, respectively. RESULTS Treatment of wounds with ointment containing 5% and 10% (w/w) of the gel exhibited a significantly increased wound contraction rate, shorter epithelialization time, and higher skin breaking strength (p<0.05) compared to controls. Aloe trigonantha leaf gel powder also produced dose-dependent significant reductions (p<0.05) of inflammation compared to control in both models. CONCLUSION Data obtained from this study collectively indicated that Aloe trigonantha is a potential wound-healing and anti-inflammatory agent in rat models of wound and inflammation which provides evidence for the traditional claim.
Collapse
Affiliation(s)
- Haile Tazeze
- Department of Pharmacy, Kidus Petros TB Specialized Hospital, Addis Ababa, Ethiopia
| | - Solomon Mequanente
- Department of Pharmacology & Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Belete Legesse
- Center for Innovative Drug Development & Therapeutics Trial in Africa (CDT-Africa), College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eyasu Makonnen
- Department of Pharmacology & Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
- Center for Innovative Drug Development & Therapeutics Trial in Africa (CDT-Africa), College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Teklie Mengie
- Department of Pharmacy, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
42
|
Nanostructured Lipid Carrier Gel Formulation of Recombinant Human Thrombomodulin Improve Diabetic Wound Healing by Topical Administration. Pharmaceutics 2021; 13:pharmaceutics13091386. [PMID: 34575462 PMCID: PMC8469737 DOI: 10.3390/pharmaceutics13091386] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022] Open
Abstract
Recombinant human thrombomodulin (rhTM), an angiogenesis factor, has been demonstrated to stimulate cell proliferation, keratinocyte migration and wound healing. The objective of this study was to develop nanostructured lipid carrier (NLC) formulations encapsulating rhTM for promoting chronic wound healing. RhTM-loaded NLCs were prepared and characterized. Encapsulation efficiency was more than 92%. The rate of rhTM release from different NLC formulations was influenced by their lipid compositions and was sustained for more than 72 h. Studies on diabetic mouse wound model suggested that rhTM-NLC 1.2 µg accelerated wound healing and was similar to recombinant human epidermal growth factor-NLC (rhEGF-NLC) 20 µg. By incorporating 0.085% carbopol (a highly crosslinked polyacrylic acid polymer) into rhTM NLC, the NLC-gel presented similar particle characteristics, and demonstrated physical stability, sustained release property and stability within 12 weeks. Both rhTM NLC and rhTM NLC-gel improved wound healing of diabetic mice and cell migration of human epidermal keratinocyte cell line (HaCaT) significantly. In comparison with rhTM solution, plasma concentrations of rhTM post applications of NLC and NLC-gel formulations were lower and more sustained in 24 h. The developed rhTM NLC and rhTM NLC-gel formulations are easy to prepare, stable and convenient to apply to the wound with reduced systemic exposure, which may warrant potential delivery systems for the care of chronic wound patients.
Collapse
|
43
|
Gazi U, Taylan-Ozkan A, Mumcuoglu KY. The effect of Lucilia sericata larval excretion/secretion (ES) products on cellular responses in wound healing. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:257-266. [PMID: 33314340 DOI: 10.1111/mve.12497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Chronic wounds are still regarded as a serious public health concern, which are on the increase mainly due to the changes in life styles and aging of the human population. There are different types of chronic wounds, each of which requires slightly different treatment strategies. Nevertheless, wound bed preparation is included in treatment of all types of chronic wounds and involves tissue debridement, inflammation, and infection control, as well as moisture balance and epithelial edge advancement. Maggot therapy (MT) is a form of biological debridement which involves the application of live medical grade Lucilia sericata (Meigen, 1826) (Diptera: Calliphoridae) larvae. Whereas it was initially thought to act mainly through debridement, today MT is known to influence all four overlapping physiological phases of wound repair: homeostasis, inflammation, proliferation, and remodelling/maturing. During MT, medical-grade larvae are applied either freely or enclosed in tea-bag like devices (biobag) inside the wounds, which suggests that larva excretion/secretion (ES) products can facilitate the healing processes directly without the need of direct contact with the larvae. This review summarizes the relevant literature on ES-mediated effects on the cellular responses involved in wound healing.
Collapse
Affiliation(s)
- U Gazi
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - A Taylan-Ozkan
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia, Cyprus
- Department of Medical Microbiology, Faculty of Medicine, Hitit University, Corum, Turkey
| | - K Y Mumcuoglu
- Parasitology Unit, Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
44
|
Mohd Zaid MH, Hanafi MF, Haris MS. review of black seed extract as an agent in the wound healing process. JOURNAL OF PHARMACY 2021. [DOI: 10.31436/jop.v1i2.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Introduction: Nigella Sativa or Black Cumin is an annual flowering plant that can be used for wound treatment. In the treatment for wound healing, this plant contains many beneficial components that can help with the treatment but this plant utilisation in the medical field is still limited. This review will provide an overview of the advantages when this plant is used in the wound healing treatment.
Method: The review was based on the ROSES protocol, and the databases used were ScienceDirect, PubMed, and Google Scholar. After the search, only 11 papers had been chosen to be included in the results and they were divided into four main themes that were used for the analysis of the results.
Results: The themes were gross analysis, microscopic analysis, biochemical analysis and antimicrobial analysis.
Conclusion: In conclusion, the black seed extract contains several valuable properties, such as antimicrobial and antioxidant properties, which help improve the wound healing process. Further study needs to be done to discover more potential of Nigella Sativa in treating the wound.
Collapse
|
45
|
Deciphering the role of cartilage protein 1 in human dermal fibroblasts: a transcriptomic approach. Funct Integr Genomics 2021; 21:503-511. [PMID: 34269961 DOI: 10.1007/s10142-021-00792-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 10/20/2022]
Abstract
Cartilage acidic protein 1A (hCRTAC1-A) is an extracellular matrix protein (ECM) of human hard and soft tissue that is associated with matrix disorders. The central role of fibroblasts in tissue integrity and ECM health made primary human dermal fibroblasts (NHDF) the model for the present study, which aimed to provide new insight into the molecular function of hCRTAC1-A. Specifically, we explored the differential expression patterns of specific genes associated with the presence of hCRTAC1-A by RNA-seq and RT-qPCR analysis. Functional enrichment analysis demonstrated, for the very first time, that hCRTAC1-A is involved in extracellular matrix organization and development, through its regulatory effect on asporin, decorin, and complement activity, in cell proliferation, regeneration, wound healing, and collagen degradation. This work provides a better understanding of putative hCRTAC1-A actions in human fibroblasts and a fundamental insight into its function in tissue biology.
Collapse
|
46
|
Leite MN, Frade MAC. Efficacy of 0.2% hyaluronic acid in the healing of skin abrasions in rats. Heliyon 2021; 7:e07572. [PMID: 34345742 PMCID: PMC8319016 DOI: 10.1016/j.heliyon.2021.e07572] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/09/2021] [Accepted: 07/10/2021] [Indexed: 01/13/2023] Open
Abstract
Acute injuries, such as surgical and traumatic, heal normally in an organized and rapid manner. Studies point to the healing activity of hyaluronic acid in all phases of healing. The aim was to evaluate the effectiveness of hyaluronic acid in skin abrasions on the dorsum of rats to compare to usual products on the market. Seventy-two Wistar rats were subjected to excoriation of approximately 2.0 cm2 on the back by dermabrasion. According to the treatment, 3 groups were established: saline, chlorhexidine digluconate and 0.2% hyaluronic acid for 14 days. Animals were photographed on the 2nd, 7th, 10th and 14th postinjury days, and the index of healing of the abrasions was calculated. Biochemically, myeloperoxidase measurements of skin biopsies in addition to histological studies to assess the crust and epidermal layers were performed. The group treated with hyaluronic acid showed better re-epithelialization from the other groups (p < 0.05) on the 7th and 10th days. For the thickness of the crust, the hyaluronic acid group presented thinner crust than other groups on the 10th and 14th days (p < 0.05), but in the epidermis, no difference was observed between the groups studied. All groups showed an increase in myeloperoxidase enzyme on the 2nd day, but a decreasing on the 7th day. On the 10th day, there was a difference in the hyaluronic acid group compared to the other groups (p < 0.05). The application of 0.2% hyaluronic acid significantly accelerated the re-epithelialization of skin abrasions compared to saline and chlorhexidine digluconate.
Collapse
Affiliation(s)
- Marcel Nani Leite
- Division of Dermatology, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marco Andrey Cipriani Frade
- Division of Dermatology, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
47
|
Riwaldt S, Corydon TJ, Pantalone D, Sahana J, Wise P, Wehland M, Krüger M, Melnik D, Kopp S, Infanger M, Grimm D. Role of Apoptosis in Wound Healing and Apoptosis Alterations in Microgravity. Front Bioeng Biotechnol 2021; 9:679650. [PMID: 34222218 PMCID: PMC8248797 DOI: 10.3389/fbioe.2021.679650] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Functioning as the outermost self-renewing protective layer of the human organism, skin protects against a multitude of harmful biological and physical stimuli. Consisting of ectodermal, mesenchymal, and neural crest-derived cell lineages, tissue homeostasis, and signal transduction are finely tuned through the interplay of various pathways. A health problem of astronauts in space is skin deterioration. Until today, wound healing has not been considered as a severe health concern for crew members. This can change with deep space exploration missions and commercial spaceflights together with space tourism. Albeit the molecular process of wound healing is not fully elucidated yet, there have been established significant conceptual gains and new scientific methods. Apoptosis, e.g., programmed cell death, enables orchestrated development and cell removal in wounded or infected tissue. Experimental designs utilizing microgravity allow new insights into the role of apoptosis in wound healing. Furthermore, impaired wound healing in unloading conditions would depict a significant challenge in human-crewed exploration space missions. In this review, we provide an overview of alterations in the behavior of cutaneous cell lineages under microgravity in regard to the impact of apoptosis in wound healing. We discuss the current knowledge about wound healing in space and simulated microgravity with respect to apoptosis and available therapeutic strategies.
Collapse
Affiliation(s)
- Stefan Riwaldt
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark
| | - Desiré Pantalone
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Petra Wise
- The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto-von-Guericke University, Magdeburg, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela Melnik
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Sascha Kopp
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto-von-Guericke University, Magdeburg, Germany
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
48
|
Xu J, Gong X, Chen C, Xing J, Wang Q, Shen W, Zhang Q. Reduced plasma level of basic fibroblast growth factor is associated with incomplete device endothelialization at six months following left atrial appendage closure. BMC Cardiovasc Disord 2021; 21:242. [PMID: 33993866 PMCID: PMC8126129 DOI: 10.1186/s12872-021-02059-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/07/2021] [Indexed: 11/30/2022] Open
Abstract
Objectives To investigate whether inflammatory and growth factors (IGFs) were associated with incomplete device endothelialization (IDE) at 6 months after successful left atrial appendage closure (LAAC). Background IDE after LAAC is correlated with device-related thrombus (DRT) formation and subsequent thromboembolic events. However, biomarkers for early detection of IDE remain lacking. Methods Plasma levels of IGFs including basic fibroblast growth factor (bFGF), platelet derived growth factor (PDGF), stromal cell derived factor (SDF)-1a, transforming growth factor (TGF)-β1, vascular growth factor receptor-1 (VEGF-R1) and von Willebrand factor (vWF) were determined using ELISA kits in 55 consecutive patients with atrial fibrillation (AF) at 6 months after LAAC with Watchman devices. The status of device endothelialization was assessed by transesophageal echocardiography and cardiac CT. Results IDE and complete device endothelialization(CDE)were detected in 38 and 17 patients, respectively. Among the six IGFs, only plasma level of bFGF was significantly lower in patients with IDE compared to those with CDE (303.49 ± 246.84 vs. 556.31 ± 197.84 pg/ml, p < 0.001). C-statistics of plasma bFGF for discriminating patients with IDE from those with CDE was 0.785 (95 % CI: 0.663–0.907, p < 0.001), with a cut-off value of 440.52pg/ml (sensitivity 0.765; specificity 0.789). Multivariate logistic regression model showed that lower bFGF was an independent factor for IDE (OR: 11.752, 95 % CI: 2.869–48.144, P = 0.001). bFGF improved the classification of patients (NRI: 0.677,95 % CI: 0.320–1.033, p = 0.004). Conclusions Reduced plasma bFGF level confers an increased risk for IDE after LAAC. Further prospective studies are warranted to examine if bFGF could serve as a biomarker for IDE post LAAC.
Collapse
Affiliation(s)
- Jing Xu
- Department of Cardiology, Shanghai East Hospital, Shanghai, Tongji University School of Medicine, No. 150 Ji Mo Rd, Shanghai, 200120, People's Republic of China
| | - Xin Gong
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chuanzhi Chen
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jun Xing
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Qi Wang
- Department of Ultrasonography, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Weifeng Shen
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Qi Zhang
- Department of Cardiology, Shanghai East Hospital, Shanghai, Tongji University School of Medicine, No. 150 Ji Mo Rd, Shanghai, 200120, People's Republic of China.
| |
Collapse
|
49
|
Mathew-Steiner SS, Roy S, Sen CK. Collagen in Wound Healing. Bioengineering (Basel) 2021; 8:63. [PMID: 34064689 PMCID: PMC8151502 DOI: 10.3390/bioengineering8050063] [Citation(s) in RCA: 397] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
Normal wound healing progresses through inflammatory, proliferative and remodeling phases in response to tissue injury. Collagen, a key component of the extracellular matrix, plays critical roles in the regulation of the phases of wound healing either in its native, fibrillar conformation or as soluble components in the wound milieu. Impairments in any of these phases stall the wound in a chronic, non-healing state that typically requires some form of intervention to guide the process back to completion. Key factors in the hostile environment of a chronic wound are persistent inflammation, increased destruction of ECM components caused by elevated metalloproteinases and other enzymes and improper activation of soluble mediators of the wound healing process. Collagen, being central in the regulation of several of these processes, has been utilized as an adjunct wound therapy to promote healing. In this work the significance of collagen in different biological processes relevant to wound healing are reviewed and a summary of the current literature on the use of collagen-based products in wound care is provided.
Collapse
Affiliation(s)
| | | | - Chandan K. Sen
- Indiana Center for Regenerative Medicine and Engineering, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (S.S.M.-S.); (S.R.)
| |
Collapse
|
50
|
HMGB1-RAGE, A Useful Partnership in Vital Response? ARS MEDICA TOMITANA 2021. [DOI: 10.2478/arsm-2021-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Introduction: In forensic practice, it is well known that the mechanism and dating of traumatic injuries is one of the primary responsibilities of this specialty. Currently, it is a subject still debated by researchers, and so far, an infallible marker that would objectively support their intravitam/postmortem occurrence has not yet been identified. However, studies have shown that the HMGB1-RAGE axis is rapidly activated after trauma and might be an essential element to help solve the forensic problem of wound dating.
Purpose: To compare the values of HMGB1-RAGE expression occurring in wounds produced intravitally shortly before death and in wounds produced postmortem and to quantify the differences arising between them.
Material and method: For this prospective study, skin fragments were collected from the site of wounds in autopsied cadavers at the County Clinical Service of Forensic Medicine Constanta (SCJML Constanta), wounds produced intravitally and with a maximum survival time of 60 minutes. Postmortem wounds and control fragments from volunteers undergoing surgery for skin tumours were also collected. The main conditions were: chronological documentation of the lesion and absence of neoplastic or inflammatory conditions. Ninety-six autopsy cases between 2021–2022 met the criteria for inclusion in the study. A control fragment accompanied each fragment from the wound. Routine Hematoxylin-Eosin (HE), Perls and Van Gieson Werhoeffstaining, as well as immunohistochemistry with HMGB1 and RAGE markers were performed on each fragment and a score based on staining intensity was determined.
Results: Routine staining was not useful in assessing vitality in segments with survival time up to 30 min. Immunohistochemically, both markers showed increased values compared to control values (p<0.0001) and to lesions produced postmortem. An interesting aspect is the lack of reactivity in the lesion’s margins for both markers.
Conclusions: Although further research is needed, the results of our study support the hypothesis that the HMGB1-RAGE axis is useful in assessing the vital reaction in skin wounds.
Collapse
|