1
|
Fatima M, Boonruamkaew P, Yang M, Jaisi A. Biotechnological approaches for the production of neuroactive huperzine A. J Biotechnol 2025; 404:S0168-1656(25)00106-3. [PMID: 40311807 DOI: 10.1016/j.jbiotec.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/19/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Huperzine A (HupA), a natural Lycopodium alkaloid primarily derived from Huperzia serrata, has gained attention for its potent neuroprotective properties, particularly its ability to inhibit acetylcholinesterase and modulate key neurological pathways. This review highlights HupA's therapeutic potential in managing neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, epilepsy, and myasthenia gravis drawing on a comprehensive literature survey of in vitro, in vivo, and clinical investigation data. Given the limited yield from natural sources, this review also focuses on biotechnological strategies to enhance HupA production. These include chemical synthesis, microbial fermentation using endophytic fungi, plant tissue culture, and emerging synthetic biology approaches. Key biosynthetic intermediates and enzymes, such as lysine decarboxylase, copper amine oxidase, and cytochrome P450s, are discussed in the context of metabolic pathway elucidation and engineering. The review emphasizes the need to bridge current knowledge gaps in HupA biosynthesis to develop cost-effective, sustainable production methods. Advances in metabolic pathway elucidation and engineering hold immense potential for scalable biosynthetic production. Ultimately, the integration of HupA into neurotherapeutic regimens, coupled with innovations in its production, could revolutionize the management of neurodegenerative disorders and position it as a cornerstone of future multi-targeted treatment strategies.
Collapse
Affiliation(s)
- Mubeen Fatima
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand; College of Graduate Studies, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand.
| | | | - Mengquan Yang
- National Tobacco Cultivation, Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Amit Jaisi
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand; Biomass and Oil Palm Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
2
|
Mehrnoosh F, Rezaei D, Pakmehr SA, Nataj PG, Sattar M, Shadi M, Ali-Khiavi P, Zare F, Hjazi A, Al-Aouadi RFA, Sapayev V, Zargari F, Alkhathami AG, Ahmadzadeh R, Khedmatgozar M, Hamzehzadeh S. The role of Panax ginseng in neurodegenerative disorders: mechanisms, benefits, and future directions. Metab Brain Dis 2025; 40:183. [PMID: 40232582 DOI: 10.1007/s11011-025-01610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Multiple sclerosis (MS), and Huntington's disease (HD) represent a growing global health challenge, especially with aging populations. Characterized by progressive neuronal loss, these diseases lead to cognitive, motor, and behavioral impairments, significantly impacting patients' quality of life. Current therapies largely address symptoms without halting disease progression, underscoring the need for innovative, disease-modifying treatments. Ginseng, a traditional herbal medicine with well-known adaptogenic and neuroprotective properties, has gained attention as a potential therapeutic agent for neurodegeneration. Rich in bioactive compounds called ginsenosides, ginseng exhibits antioxidant, anti-inflammatory, and anti-apoptotic effects, making it a promising candidate for addressing the complex pathology of neurodegenerative diseases. Recent studies demonstrate that ginsenosides modulate disease-related processes such as oxidative stress, protein aggregation, mitochondrial dysfunction, and inflammation. In AD models, ginsenosides have been shown to reduce amyloid-beta accumulation and tau hyperphosphorylation, while in PD, they help protect dopaminergic neurons and mitigate motor symptoms. Ginseng's effects in ALS, MS, and HD models include improving motor function, extending neuronal survival, and reducing cellular toxicity. This review provides a comprehensive overview of the neuroprotective mechanisms of ginseng, emphasizing its therapeutic potential across various neurodegenerative diseases and discussing future research directions for its integration into clinical practice.
Collapse
Affiliation(s)
- Faranak Mehrnoosh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | | | | | | | - Mustafa Sattar
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Melina Shadi
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Payam Ali-Khiavi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farshad Zare
- Student Research Committee, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | | | - Valisher Sapayev
- General Professional Science Department, Mamun University, Khiva, Uzbekistan
| | - Faranak Zargari
- Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran
| | - Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha, 9088, Saudi Arabia
| | - Roya Ahmadzadeh
- Medicine Faculty, Zahedan University of Medical Sciences, Zahedan, Iran.
| | | | | |
Collapse
|
3
|
Akbari M. Interaction of some phytochemical compounds with Er2O3 nanoparticle: First principle study. J Mol Model 2025; 31:132. [PMID: 40178631 PMCID: PMC11968471 DOI: 10.1007/s00894-025-06361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
CONTEXT The interaction between phytochemicals and nanoparticles plays a crucial role in nanotechnology and biomedical applications. This study investigates the binding behavior and stability of six phytochemicals-Catechin, Limonene, Sabinene, Sinapic Acid, Vanillic Acid, and Luteolin 7-O-ß-glucuronide-with Er₂O₃ nanoparticles using Density Functional Theory (DFT) and Molecular Dynamics (MD) simulations. The findings indicate that Luteolin, Catechin, and Sinapic Acid exhibit the strongest binding affinities and highest structural stability with Er2O3, attributed to their balanced hydrophilicity-lipophilicity and favorable electronic properties. These insights contribute to the design and functionalization of phytochemical-based nanomaterials, with potential applications in drug delivery, bioimaging, and photodynamic therapy. METHODS DFT calculations were conducted using Gaussian 09 at the B3LYP/6-311 + + G(d,p) level to determine HOMO-LUMO energy gaps, dipole moments, and polarizability of the phytochemicals. MD simulations, performed using GROMACS 2019 with the CHARMM36 force field and TIP3P water model, analyzed the dynamics of phytochemical adsorption on a 5 nm Er2O3 nanoparticle over 50 ns. Key parameters such as interaction energies, root mean square deviations (RMSD), radial distribution functions (RDF), and water solubility (logS) were evaluated using ALOPGPS 2.1 software.
Collapse
Affiliation(s)
- Mahmood Akbari
- UNESCO‑UNISA‑ITL/NRF Africa Chair in Nanoscience & Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa.
| |
Collapse
|
4
|
Lakshminarayanan A, Kannan S, Kuppusamy MK, Sankaranarayanan K, Godla U, Punnoose AM. The effect of curcumin, catechin and resveratrol on viability, proliferation and cytotoxicity of human umbilical cord Wharton's jelly derived mesenchymal stem cells. Tissue Cell 2025; 93:102742. [PMID: 39874919 DOI: 10.1016/j.tice.2025.102742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/11/2025] [Accepted: 01/11/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Mesenchymal stem cells possess the capability to proliferate and differentiate into diverse lineages. Their beneficial properties have been explored widely to treat various disorders. Phytochemicals like curcumin, catechin and resveratrol have been evaluated for their medicinal values and have promising potential in treating numerous diseases. In this study, we have elucidated the in vitro survival, proliferative and cytotoxic effects of these phytochemicals at selected range of concentrations on human umbilical cord derived Wharton's jelly mesenchymal stem cells (WJ-MSCs). METHODS The human WJ-MSCs were extracted using explant culture method and characterized as per International Society for Cellular Therapy (ISCT) guidelines. To analyse the effect of different phytochemicals, the WJ-MSCs were treated with various concentrations ranging from 0.1 to 1000 µM and the viability, proliferative and toxicity effects were assayed using (3-(4,5-dimethylthioazolyl-2,5-diphenyltetrozolium bromide) MTT. RESULTS Curcumin and catechin elicited no cytotoxic effect on WJ-MSCs after 48 hours of treatment between the concentrations ranging from 0.1 to 10 µM and the viability was maintained above 80 %. For both the phytochemicals, there was a significant decrease in the viability of WJ-MSCs after 50 µM. Resveratrol was well tolerated at higher doses till 100 µM with a viability above 90 % and cytotoxic effect was observed above 250 µM. CONCLUSION Curcumin, catechin and resveratrol, affect the viability and proliferation of WJ-MSCs differently at varying concentrations. This data will be useful in deciding the dose of phytochemicals when employed concomitantly with stem cells to increase their efficiency.
Collapse
Affiliation(s)
- Aishwarya Lakshminarayanan
- Stem Cell and Regenerative Biology Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, India
| | | | - M Kalaivani Kuppusamy
- Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, India
| | | | - Usharani Godla
- Obstetrics and Gynecology, Sri Ramachandra Medical Centre, India
| | - Alan M Punnoose
- Stem Cell and Regenerative Biology Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, India.
| |
Collapse
|
5
|
Naoi M, Wu Y, Maruyama W, Shamoto-Nagai M. Phytochemicals Modulate Biosynthesis and Function of Serotonin, Dopamine, and Norepinephrine for Treatment of Monoamine Neurotransmission-Related Psychiatric Diseases. Int J Mol Sci 2025; 26:2916. [PMID: 40243512 PMCID: PMC11988947 DOI: 10.3390/ijms26072916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Serotonin (5-HT), dopamine (DA), and norepinephrine (NE) are key monoamine neurotransmitters regulating behaviors, mood, and cognition. 5-HT affects early brain development, and its dysfunction induces brain vulnerability to stress, raising the risk of depression, anxiety, and autism in adulthood. These neurotransmitters are synthesized from tryptophan and tyrosine via hydroxylation and decarboxylation, and are metabolized by monoamine oxidase (MAO). This review aims to summarize the current findings on the role of dietary phytochemicals in modulating monoamine neurotransmitter biosynthesis, metabolism, and function, with an emphasis on their potential therapeutic applications in neuropsychiatric disorders. Phytochemicals exert antioxidant, neurotrophic, and neurohormonal activities, regulate gene expression, and induce epigenetic modifications. Phytoestrogens activate the estrogen receptors or estrogen-responsive elements of the promoter of target genes, enhance transcription of tryptophan hydroxylase and tyrosine hydroxylase, while inhibiting that of MAO. These compounds also influence the interaction between genetic and environmental factors, potentially reversing dysregulated neurotransmission and the brain architecture associated with neuropsychiatric conditions. Despite promising preclinical findings, clinical applications of phytochemicals remain challenging. Advances in nanotechnology and targeted delivery systems offer potential solutions to enhance clinical efficacy. This review discusses mechanisms, challenges, and strategies, underscoring the need for further research to advance phytochemical-based interventions for neuropsychiatric diseases.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin 320-195, Aichi, Japan; (Y.W.); (W.M.); (M.S.-N.)
| | | | | | | |
Collapse
|
6
|
Kopalli SR, Behl T, Kyada A, Rekha MM, Kundlas M, Rani P, Nathiya D, Satyam Naidu K, Gulati M, Bhise M, Gupta P, Wal P, Fareed M, Ramniwas S, Koppula S, Gasmi A. Synaptic plasticity and neuroprotection: The molecular impact of flavonoids on neurodegenerative disease progression. Neuroscience 2025; 569:161-183. [PMID: 39922366 DOI: 10.1016/j.neuroscience.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/11/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Flavonoids are a broad family of polyphenolic chemicals that are present in a wide variety of fruits, vegetables, and medicinal plants. Because of their neuroprotective qualities, flavonoids have attracted a lot of interest. The potential of flavonoids to control synaptic plasticity-a crucial process underlying memory, learning, and cognitive function-is becoming more and more clear. Dysregulation of synaptic plasticity is a feature of neurodegenerative diseases such as amyotrophic lateral sclerosis (0.4 %), Parkinson's (1-2 %), Alzheimer's (5-7 %), and Huntington's ((0.2 %)). This review discusses the molecular mechanisms via which flavonoids influence synaptic plasticity as well as their therapeutic potential in neurodegenerative diseases. Flavonoids modulate key signaling pathways such as MAPK/ERK and PI3K/Akt/mTOR to support neuroprotection, synaptic plasticity, and neuronal health, while also influencing neurotrophic factors (BDNF, NGF) and their receptors (TrkB, TrkA). They regulate neurotransmitter receptors like GABA, AMPA, and NMDA to balance excitatory and inhibitory transmission, and exert antioxidant effects via the Nrf2-ARE pathway and anti-inflammatory actions by inhibiting NF-κB signaling, highlighting their potential for treating neurodegenerative diseases. These varied reactions support the preservation of synapse function and neuronal integrity in the face of neurodegenerative insults. Flavonoids can reduce the symptoms of neurodegeneration, prevent synaptic loss, and enhance cognitive function, according to experimental studies. However, there are still obstacles to using these findings in clinical settings, such as limited bioavailability and the need for consistent dose. The focus of future research should be on improving flavonoid delivery systems and combining them with conventional medications.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006 Republic of Korea
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab 140306, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot 360003 Gujarat, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401 Punjab, India
| | - Pooja Rani
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307 Punjab, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | | | | | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology, Pharmacy Kanpur UP, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia
| | - Seema Ramniwas
- University Centre for Research and Development, Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413 Punjab, India
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| | - Amin Gasmi
- Societe Francophone de Nutritherapie et de Nutrigenetique Appliquee, Villeurbanne, France; International Institute of Nutrition and Micronutrient Sciences, Saint-Etienne, France
| |
Collapse
|
7
|
Bhattacharya RS, Singh R, Panghal A, Thakur A, Singh L, Verma RK, Singh C, Goyal M, Kumar J. Multi-Targeting Phytochemicals for Alzheimer's Disease. Phytother Res 2025; 39:1453-1483. [PMID: 39815655 DOI: 10.1002/ptr.8435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/23/2024] [Accepted: 12/28/2024] [Indexed: 01/18/2025]
Abstract
Alzheimer's disease (AD) is a type of neurodegenerative illness in which β-amyloid (Aβ) and tau protein accumulate in neurons in the form of tangles. The pathophysiological pathway of AD consists of Aβ-amyloid peptides, tau proteins, and oxidative stress in neurons and increased neuro-inflammatory response. Food and Drug Administration in the United States has authorized various drugs for the effective treatment of AD, which include galantamine, rivastigmine, donepezil, memantine, sodium oligomannate, lecanemab, and aducanumab. The major disadvantage of these drugs is that they only provide "symptomatic" relief. They are most effective in the early stages or for mild to moderate cases of the disease, but are not suitable for long-term use. Besides conventional therapies, phytochemicals have the potential to stop the progression of AD. According to research, the use of potential phytochemicals against AD has gained attention due to their potent anti-inflammatory, antioxidant, anti-hyperphosphorylation of the tau protein, metal chelation, and anti-amyloid properties. This study seeks to provide an up-to-date compilation of the most current and promising breakthroughs in AD therapy using phytochemicals. It could be concluded that phytochemicals light serve as an effective therapy for AD. However, more mechanistic investigations are needed to determine the clinical implications of phytochemicals in AD treatment.
Collapse
Affiliation(s)
- Radha Shree Bhattacharya
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, India
| | - Raghuraj Singh
- Institute of Nano Science and Technology (INST), Mohali, Punjab, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Archna Panghal
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Punjab, India
| | - Ashima Thakur
- Faculty of Pharmaceutical Sciences, Himachal Pradesh, India
| | - Lachhman Singh
- Faculty of Pharmacy, Government Pharmacy College, Seraj, V.P.O. Bagsaid, Mandi, Himachal Pradesh, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology (INST), Mohali, Punjab, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, India
| | - Manoj Goyal
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, India
| | - Jayant Kumar
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, India
| |
Collapse
|
8
|
Singh AA, Katiyar S, Song M. Phytochemicals Targeting BDNF Signaling for Treating Neurological Disorders. Brain Sci 2025; 15:252. [PMID: 40149774 PMCID: PMC11939912 DOI: 10.3390/brainsci15030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Neurological disorders are defined by a deterioration or disruption of the nervous system's structure and function. These diseases, which include multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, and schizophrenia, are caused by intricate pathological processes that include excitotoxicity, neuroinflammation, oxidative stress, genetic mutations, and compromised neurotrophic signaling. Although current pharmaceutical treatments relieve symptoms, their long-term efficacy is limited due to adverse side effects and weak neuroprotective properties. However, when combined with other neuroprotective drugs or adjunct therapy, they may offer additional benefits and improve treatment outcomes. Phytochemicals have emerged as attractive therapeutic agents due to their ability to regulate essential neurotrophic pathways, especially the brain-derived neurotrophic factor (BDNF) signaling cascade. BDNF is an important target for neurodegenerative disease (ND) treatment since it regulates neuronal survival, synaptic plasticity, neurogenesis, and neuroprotection. This review emphasizes the molecular pathways through which various phytochemicals-such as flavonoids, terpenoids, alkaloids, and phenolic compounds-stimulate BDNF expression and modulate its downstream signaling pathways, including GSK-3β, MAPK/ERK, PI3K/Akt/mTOR, CREB, and Wnt/β-catenin. This paper also highlights how phytochemical combinations may interact to enhance BDNF activity, offering new therapeutic options for ND treatment. Despite their potential for neuroprotection, phytochemicals face challenges related to pharmacokinetics, blood-brain barrier (BBB) permeability, and absorption, highlighting the need for further research into combination therapies and improved formulations. Clinical assessment and mechanistic understanding of BDNF-targeted phytotherapy should be the main goals of future studies. The therapeutic efficacy of natural compounds in regulating neurotrophic signaling is highlighted in this review, providing a viable approach to the prevention and treatment of NDs.
Collapse
Affiliation(s)
- Alka Ashok Singh
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Shweta Katiyar
- Department of Botany, SBN Government PG College, Barwani 451551, MP, India;
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
9
|
de Lima EP, Laurindo LF, Catharin VCS, Direito R, Tanaka M, Jasmin Santos German I, Lamas CB, Guiguer EL, Araújo AC, Fiorini AMR, Barbalho SM. Polyphenols, Alkaloids, and Terpenoids Against Neurodegeneration: Evaluating the Neuroprotective Effects of Phytocompounds Through a Comprehensive Review of the Current Evidence. Metabolites 2025; 15:124. [PMID: 39997749 PMCID: PMC11857241 DOI: 10.3390/metabo15020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/26/2025] Open
Abstract
Neurodegenerative diseases comprise a group of chronic, usually age-related, disorders characterized by progressive neuronal loss, deformation of neuronal structure, or loss of neuronal function, leading to a substantially reduced quality of life. They remain a significant focus of scientific and clinical interest due to their increasing medical and social importance. Most neurodegenerative diseases present intracellular protein aggregation or their extracellular deposition (plaques), such as α-synuclein in Parkinson's disease and amyloid beta (Aβ)/tau aggregates in Alzheimer's. Conventional treatments for neurodegenerative conditions incur high costs and are related to the development of several adverse effects. In addition, many patients are irresponsive to them. For these reasons, there is a growing tendency to find new therapeutic approaches to help patients. This review intends to investigate some phytocompounds' effects on neurodegenerative diseases. These conditions are generally related to increased oxidative stress and inflammation, so phytocompounds can help prevent or treat neurodegenerative diseases. To achieve our aim to provide a critical assessment of the current literature about phytochemicals targeting neurodegeneration, we reviewed reputable databases, including PubMed, EMBASE, and COCHRANE, seeking clinical trials that utilized phytochemicals against neurodegenerative conditions. A few clinical trials investigated the effects of phytocompounds in humans, and after screening, 13 clinical trials were ultimately included following PRISMA guidelines. These compounds include polyphenols (flavonoids such as luteolin and quercetin, phenolic acids such as rosmarinic acid, ferulic acid, and caffeic acid, and other polyphenols like resveratrol), alkaloids (such as berberine, huperzine A, and caffeine), and terpenoids (such as ginkgolides and limonene). The gathered evidence underscores that quercetin, caffeine, ginkgolides, and other phytochemicals are primarily anti-inflammatory, antioxidant, and neuroprotective, counteracting neuroinflammation, neuronal oxidation, and synaptic dysfunctions, which are crucial aspects of neurodegenerative disease intervention in various included conditions, such as Alzheimer's and other dementias, depression, and neuropsychiatric disorders. In summary, they show that the use of these compounds is related to significant improvements in cognition, memory, disinhibition, irritability/lability, aberrant behavior, hallucinations, and mood disorders.
Collapse
Affiliation(s)
- Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Vitor Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos Krt. 113, H-6725 Szeged, Hungary
| | - Iris Jasmin Santos German
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Adriana Maria Ragassi Fiorini
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| |
Collapse
|
10
|
Sakarwal A, Sen K, Ram H, Chowdhury S, Kashyap P, Shukla SD, Panwar A. Neuroprotective Efficacy of Phytoconstituents of Methanolic Shoots Extract of Calligonum polygonoides L. in Hypercholesterolemia-associated Neurodegenerations. Endocr Metab Immune Disord Drug Targets 2025; 25:152-172. [PMID: 38571361 DOI: 10.2174/0118715303283666240319062925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Small molecule phytocompounds can potentially ameliorate degenerative changes in cerebral tissues. Thus, the current study aimed to evaluate the neuroprotective efficacy of phytocompounds of methanolic shoots extract of Calligonum polygonoides L. (MSECP) in hypercholesterolemia-associated neurodegenerations. METHODS Phytochemical screening of the extract was made by LCMS/MS and validated by a repository of the chemical library. The hypercholesterolemia was induced through the intraperitoneal administration of poloxamer-407 with a high-fat diet. The in silico assessments were accomplished by following the molecular docking, ADME and molecular dynamics. MMPBSA and PCA (Principal Component Analysis) analyzed the molecular dynamics simulations. Consequently, in-vivo studies were examined by lipid metabolism, free radical scavenging capabilities and histopathology of brain tissues (cortex and hippocampus). RESULTS 22 leading phytocompounds were exhibited in the test extract, as revealed by LCMS/ MS scrutiny. Molecular docking evaluated significant interactions of apigenin triacetate with target proteins (HMGCR (HMG-CoA reductase), (AChE-Acetylcholinesterase) and (BuChE- Butyrylcholinesterase). Molecular dynamics examined the interactions through assessments of the radius of gyration, RSMD, RSMF and SASA at 100 ns, which were further analyzed by MMPBSA (Molecular Mechanics Poisson-Boltzmann) and PCA (Principal Component Analysis). Accordingly, the treatment of test extract caused significant alterations in lipid profile, dyslipidemia indices, antioxidant levels and histopathology of brain tissues. CONCLUSION It can be concluded that apigenin triacetate is a potent phytoconstituent of MSEPC and can interact with HMGCR, AChE, and BuChE, which resulted in improved hypercholesterolemia along with neuroprotective ameliorations in the cortex and hippocampus.
Collapse
Affiliation(s)
- Anita Sakarwal
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan, 342001, India
| | - Karishma Sen
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan, 342001, India
| | - Heera Ram
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan, 342001, India
| | - Suman Chowdhury
- University School of Biotechnology, GGS Indraprastha University, New Delhi, India
| | - Priya Kashyap
- University School of Biotechnology, GGS Indraprastha University, New Delhi, India
| | | | - Anil Panwar
- Department of Bioinformatics and Computational Biology, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
11
|
Kraskovskaya N, Linkova N, Sakhenberg E, Krieger D, Polyakova V, Medvedev D, Krasichkov A, Khotin M, Ryzhak G. Short Peptides Protect Fibroblast-Derived Induced Neurons from Age-Related Changes. Int J Mol Sci 2024; 25:11363. [PMID: 39518916 PMCID: PMC11546785 DOI: 10.3390/ijms252111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Neurons become more vulnerable to stress factors with age, which leads to increased oxidative DNA damage, decreased activity of mitochondria and lysosomes, increased levels of p16, decreased LaminB1 proteins, and the depletion of the dendritic tree. These changes are exacerbated in vulnerable neuronal populations during the development of neurodegenerative diseases. Glu-Asp-Arg (EDR) and Lys-Glu-Asp (KED), and Ala-Glu-Asp-Gly (AEDG) peptides have previously demonstrated neuroprotective effects in various models of Alzheimer's disease. In this study, we investigated the influence of EDR, KED, and AEDG peptides on the aging of fibroblast-derived induced neurons. We used a new in vitro cellular model of human neuronal aging based on the transdifferentiation of aged dermal fibroblasts from elderly donors into induced cortical neurons. All peptides promote the arborization of the dendritic tree, increasing both the number of primary processes and the total length of dendrites. Tripeptides have no effect on the activity of mitochondria and lysosomes and the level of p16 protein in induced neurons. EDR peptide reduces oxidative DNA damage in induced neurons derived from elderly donor fibroblasts. Short peptides partially protect induced neurons from age-related changes and stimulate dendritogenesis in neurons. They can be recommended for use as neuroprotective agents.
Collapse
Affiliation(s)
- Nina Kraskovskaya
- Institute of Cytology RAS, Tikhoretski Pr., 4, St. Petersburg 194064, Russia; (N.K.); (E.S.); (D.K.); (M.K.)
| | - Natalia Linkova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Pr., 2−4, St. Petersburg 191036, Russia;
| | - Elena Sakhenberg
- Institute of Cytology RAS, Tikhoretski Pr., 4, St. Petersburg 194064, Russia; (N.K.); (E.S.); (D.K.); (M.K.)
| | - Daria Krieger
- Institute of Cytology RAS, Tikhoretski Pr., 4, St. Petersburg 194064, Russia; (N.K.); (E.S.); (D.K.); (M.K.)
| | - Victoria Polyakova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Pr., 2−4, St. Petersburg 191036, Russia;
| | - Dmitrii Medvedev
- St. Petersburg Institute of Bioregulation and Gerontology, 3 Dynamo Ave., St. Petersburg 197110, Russia; (D.M.); (G.R.)
- The Department of Social Rehabilitation and Occupational Therapy, St. Petersburg Medical and Social Institute, Kondratievsky St., 72A, St. Petersburg 195271, Russia
| | - Alexander Krasichkov
- Department of Radio Engineering Systems, Saint Petersburg Electrotechnical University ‘LETI’, 5F Prof. Popova St., St. Petersburg 197376, Russia;
| | - Mikhail Khotin
- Institute of Cytology RAS, Tikhoretski Pr., 4, St. Petersburg 194064, Russia; (N.K.); (E.S.); (D.K.); (M.K.)
| | - Galina Ryzhak
- St. Petersburg Institute of Bioregulation and Gerontology, 3 Dynamo Ave., St. Petersburg 197110, Russia; (D.M.); (G.R.)
| |
Collapse
|
12
|
Piras F, Sogos V, Pollastro F, Rosa A. Protective Effect of Arzanol against H 2O 2-Induced Oxidative Stress Damage in Differentiated and Undifferentiated SH-SY5Y Cells. Int J Mol Sci 2024; 25:7386. [PMID: 39000492 PMCID: PMC11242736 DOI: 10.3390/ijms25137386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Oxidative stress can damage neuronal cells, greatly contributing to neurodegenerative diseases (NDs). In this study, the protective activity of arzanol, a natural prenylated α-pyrone-phloroglucinol heterodimer, was evaluated against the H2O2-induced oxidative damage in trans-retinoic acid-differentiated (neuron-like) human SH-SY5Y cells, widely used as a neuronal cell model of neurological disorders. The pre-incubation (for 2 and 24 h) with arzanol (5, 10, and 25 μM) significantly preserved differentiated SH-SY5Y cells from cytotoxicity (MTT assay) and morphological changes induced by 0.25 and 0.5 mM H2O2. Arzanol reduced the generation of reactive oxygen species (ROS) induced by 2 h oxidation with H2O2 0.5 mM, established by 2',7'-dichlorodihydrofluorescein diacetate assay. The 2 h incubation of differentiated SH-SY5Y cells with H2O2 determined a significant increase in the number of apoptotic cells versus control cells, evaluated by propidium iodide fluorescence assay (red fluorescence) and NucView® 488 assay (green fluorescence). Arzanol pre-treatment (2 h) exerted a noteworthy significant protective effect against apoptosis. In addition, arzanol was tested, for comparison, in undifferentiated SH-SY5Y cells for cytotoxicity and its ability to protect against H2O2-induced oxidative stress. Furthermore, the PubChem database and freely accessible web tools SwissADME and pkCSM-pharmacokinetics were used to assess the physicochemical and pharmacokinetic properties of arzanol. Our results qualify arzanol as an antioxidant agent with potential neuroprotective effects against neuronal oxidative stress implicated in NDs.
Collapse
Affiliation(s)
- Franca Piras
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy;
| | - Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy;
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont “Amedeo Avogadro”, 28100 Novara, Italy;
| | - Antonella Rosa
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy;
| |
Collapse
|
13
|
Bernardes CP, Lopes Pinheiro E, Ferreira IG, de Oliveira IS, dos Santos NAG, Sampaio SV, Arantes EC, dos Santos AC. Fraction of C. d. collilineatus venom containing crotapotin protects PC12 cells against MPP + toxicity by activating the NGF-signaling pathway. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230056. [PMID: 38915449 PMCID: PMC11194915 DOI: 10.1590/1678-9199-jvatitd-2023-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/08/2024] [Indexed: 06/26/2024] Open
Abstract
Background Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. There is no effective treatment for neurodegenerative diseases. Snake venoms are a cocktail of proteins and peptides with great therapeutic potential and might be useful in the treatment of neurodegenerative diseases. Crotapotin is the acid chain of crotoxin, the major component of Crotalus durissus collilineatus venom. PD is characterized by low levels of neurotrophins, and synaptic and axonal degeneration; therefore, neurotrophic compounds might delay the progression of PD. The neurotrophic potential of crotapotin has not been studied yet. Methods We evaluated the neurotrophic potential of crotapotin in untreated PC12 cells, by assessing the induction of neurite outgrowth. The activation of the NGF signaling pathway was investigated through pharmacological inhibition of its main modulators. Additionally, its neuroprotective and neurorestorative effects were evaluated by assessing neurite outgrowth and cell viability in PC12 cells treated with the dopaminergic neurotoxin MPP+ (1-methyl-4-phenylpyridinium), known to induce Parkinsonism in humans and animal models. Results Crotapotin induced neuritogenesis in PC12 cells through the NGF-signaling pathway, more specifically, by activating the NGF-selective receptor trkA, and the PI3K/Akt and the MAPK/ERK cascades, which are involved in neuronal survival and differentiation. In addition, crotapotin had no cytotoxic effect and protected PC12 cells against the inhibitory effects of MPP+ on cell viability and differentiation. Conclusion These findings show, for the first time, that crotapotin has neurotrophic/neuroprotective/neurorestorative potential and might be beneficial in Parkinson's disease. Additional studies are necessary to evaluate the toxicity of crotapotin in other cell models.
Collapse
Affiliation(s)
- Carolina Petri Bernardes
- Department of Clinical Analyses, Toxicology and Food Science, School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP),
Ribeirão Preto, SP, Brazil
| | - Ernesto Lopes Pinheiro
- Department of Biomolecular Sciences, School of Pharmaceutical
Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP,
Brazil
| | - Isabela Gobbo Ferreira
- Department of Biomolecular Sciences, School of Pharmaceutical
Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP,
Brazil
| | - Isadora Sousa de Oliveira
- Department of Biomolecular Sciences, School of Pharmaceutical
Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP,
Brazil
| | - Neife Aparecida Guinaim dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP),
Ribeirão Preto, SP, Brazil
| | - Suely Vilela Sampaio
- Department of Clinical Analyses, Toxicology and Food Science, School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP),
Ribeirão Preto, SP, Brazil
| | - Eliane Candiani Arantes
- Department of Biomolecular Sciences, School of Pharmaceutical
Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP,
Brazil
| | - Antonio Cardozo dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP),
Ribeirão Preto, SP, Brazil
| |
Collapse
|
14
|
Martemucci G, Khalil M, Di Luca A, Abdallah H, D’Alessandro AG. Comprehensive Strategies for Metabolic Syndrome: How Nutrition, Dietary Polyphenols, Physical Activity, and Lifestyle Modifications Address Diabesity, Cardiovascular Diseases, and Neurodegenerative Conditions. Metabolites 2024; 14:327. [PMID: 38921462 PMCID: PMC11206163 DOI: 10.3390/metabo14060327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Several hallmarks of metabolic syndrome, such as dysregulation in the glucose and lipid metabolism, endothelial dysfunction, insulin resistance, low-to-medium systemic inflammation, and intestinal microbiota dysbiosis, represent a pathological bridge between metabolic syndrome and diabesity, cardiovascular, and neurodegenerative disorders. This review aims to highlight some therapeutic strategies against metabolic syndrome involving integrative approaches to improve lifestyle and daily diet. The beneficial effects of foods containing antioxidant polyphenols, intestinal microbiota control, and physical activity were also considered. We comprehensively examined a large body of published articles involving basic, animal, and human studie, as well as recent guidelines. As a result, dietary polyphenols from natural plant-based antioxidants and adherence to the Mediterranean diet, along with physical exercise, are promising complementary therapies to delay or prevent the onset of metabolic syndrome and counteract diabesity and cardiovascular diseases, as well as to protect against neurodegenerative disorders and cognitive decline. Modulation of the intestinal microbiota reduces the risks associated with MS, improves diabetes and cardiovascular diseases (CVD), and exerts neuroprotective action. Despite several studies, the estimation of dietary polyphenol intake is inconclusive and requires further evidence. Lifestyle interventions involving physical activity and reduced calorie intake can improve metabolic outcomes.
Collapse
Affiliation(s)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70121 Bari, Italy;
| | - Alessio Di Luca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (A.D.L.); (A.G.D.)
| | - Hala Abdallah
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70121 Bari, Italy;
| | | |
Collapse
|
15
|
Dutta K, Ravi L. Molecular dynamic investigation for Roco4 kinase inhibitor as treatment options for parkinsonism. J Mol Model 2024; 30:133. [PMID: 38625397 DOI: 10.1007/s00894-024-05925-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
CONTEXT Parkinson's disease is a neurodegenerative condition characterized by the degeneration of dopaminergic neurons, resulting in motor disabilities such as rigidity, bradykinesia, postural instability, and resting tremors. While the exact cause of Parkinson's remains uncertain, both familial and sporadic forms are often associated with the G2019S mutation found in the kinase domain of LRRK2. Roco4 is an analogue of LRRK2 protein in Dictyostelium discoideum which is an established model organism to investigate LRRK2 inhibitors. In this study, the potential treatment of Parkinson's was explored by inhibiting the activity of the mutated LRRK2 protein using Roco4 as the base protein structure. Mongolicain-A and Bacoside-A exhibited significant selectivity towards the G2019S mutation, displaying a binding affinity of - 12.3 Kcal/mol and - 11.4 Kcal/mol respectively. Mongolicain-A demonstrated increased specificity towards Roco4, while Bacoside-A demonstrated significant binding affinity to all 34 kinases proteins alike. The Molecular Dynamics Studies (MDS) results strongly suggests that Mongolicain-A is a significant inhibitor of Roco4 kinase. ADMET and drugability analysis also suggests that among the two best ligands, Mongolicain-A demonstrates significant physicochemical properties to be suitable for best drug like molecule. Based on the in-silico molecular docking, molecular dynamic simulation, ADMET and drugability analyses, it is strongly suggested that, Mongolicain-A could be a potential candidate for treatment and management of Parkinson's disease via inhibition of LRRK2 protein. Further in-vitro and in-vivo investigations are in demand to validate these findings. METHODS To identify potential inhibitors, 3069 phytochemicals were screened using molecular docking via AutoDock Vina. Molecular Dynamics Simulation was carried out using GROMACS 2022.2 for a duration of 100ns per complex to study the stability and inhibition potential of the protein ligand complexes. ADMET analysis was carriedout using Molinspiration and preADMET web tool.
Collapse
Affiliation(s)
- Kankana Dutta
- Department of Life Sciences, University of Trieste, 34132, Trieste, Italy
| | - Lokesh Ravi
- Department of Food Technology, Faculty of Life and Allied Health Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, 560054, Karnataka, India.
| |
Collapse
|
16
|
Oyeniran OH, Omotosho OPI, Ademola II, Ibraheem O, Nwagwe OR, Onodugo CA. Lemon (Citrus limon) leaf alkaloid-rich extracts ameliorate cognitive and memory deficits in scopolamine-induced amnesic rats. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2024; 10:100395. [DOI: 10.1016/j.prmcm.2024.100395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Tavan M, Hanachi P, de la Luz Cádiz-Gurrea M, Segura Carretero A, Mirjalili MH. Natural Phenolic Compounds with Neuroprotective Effects. Neurochem Res 2024; 49:306-326. [PMID: 37940760 DOI: 10.1007/s11064-023-04046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 11/10/2023]
Abstract
Neurodegenerative disorders are characterized by mitochondrial dysfunction and subsequently oxidative stress, inflammation, and apoptosis that contribute to neuronal cytotoxicity and degeneration. Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) diseases are three of the major neurodegenerative diseases. To date, researchers have found various natural phytochemicals that could potentially be used to treat neurodegenerative diseases. Particularly, the application of natural phenolic compounds has gained significant traction in recent years, driven by their various biological activities and therapeutic efficacy in human health. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and can neutralize the effects of oxidative stress, inflammation, and apoptosis in animal models. This review focuses on the current state of knowledge on phenolic compounds, including phenolic acids, flavonoids, stilbenes, and coumarins, as well as their beneficial effects on human health. We further provide an overview of the therapeutic potential and mechanisms of action of natural dietary phenolics in curing neurodegenerative diseases in animal models.
Collapse
Affiliation(s)
- Mansoureh Tavan
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran.
| | - Parichehr Hanachi
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | | | | | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| |
Collapse
|
18
|
Chaves N, Nogales L, Montero-Fernández I, Blanco-Salas J, Alías JC. Mediterranean Shrub Species as a Source of Biomolecules against Neurodegenerative Diseases. Molecules 2023; 28:8133. [PMID: 38138621 PMCID: PMC10745362 DOI: 10.3390/molecules28248133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neurodegenerative diseases are associated with oxidative stress, due to an imbalance in the oxidation-reduction reactions at the cellular level. Various treatments are available to treat these diseases, although they often do not cure them and have many adverse effects. Therefore, it is necessary to find complementary and/or alternative drugs that replace current treatments with fewer side effects. It has been demonstrated that natural products derived from plants, specifically phenolic compounds, have a great capacity to suppress oxidative stress and neutralize free radicals thus, they may be used as alternative alternative pharmacological treatments for pathological conditions associated with an increase in oxidative stress. The plant species that dominate the Mediterranean ecosystems are characterized by having a wide variety of phenolic compound content. Therefore, these species might be important sources of neuroprotective biomolecules. To evaluate this potential, 24 typical plant species of the Mediterranean ecosystems were selected, identifying the most important compounds present in them. This set of plant species provides a total of 403 different compounds. Of these compounds, 35.7% are phenolic acids and 55.6% are flavonoids. The most relevant of these compounds are gallic, vanillic, caffeic, chlorogenic, p-coumaric, and ferulic acids, apigenin, kaempferol, myricitrin, quercetin, isoquercetin, quercetrin, rutin, catechin and epicatechin, which are widely distributed among the analyzed plant species (in over 10 species) and which have been involved in the literature in the prevention of different neurodegenerative pathologies. It is also important to mention that three of these plant species, Pistacea lentiscus, Lavandula stoechas and Thymus vulgaris, have most of the described compounds with protective properties against neurodegenerative diseases. The present work shows that the plant species that dominate the studied geographic area can provide an important source of phenolic compounds for the pharmacological and biotechnological industry to prepare extracts or isolated compounds for therapy against neurodegenerative diseases.
Collapse
Affiliation(s)
- Natividad Chaves
- Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, Universidad de Extremadura, 06080 Badajoz, Spain; (L.N.); (I.M.-F.); (J.B.-S.); (J.C.A.)
| | | | | | | | | |
Collapse
|
19
|
Lee TH, Yoon DH, Park KJ, Hong SM, Kim M, Kim SY, Kim CS, Lee KR. Neurotrophic phenolic glycosides from the roots of Armoracia rusticana. PHYTOCHEMISTRY 2023; 216:113886. [PMID: 37806466 DOI: 10.1016/j.phytochem.2023.113886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Armoracia rusticana P. G. Gaertner. belongs to the Brassicaceae family and has aroused scientific interest for its anti-inflammatory and anticancer activities. In a continuing investigation to discover bioactive constituents from A. rusticana, we isolated 19 phenolic glycosides including three undescribed flavonol glycosides and one undescribed neolignan glycoside from MeOH extract of this plant. Their structures were elucidated based on NMR spectroscopic analysis (1H, 13C, 1H-1H COSY, HSQC, and HMBC), HRESIMS, and chemical methods. The determination of their absolute configuration was accomplished by ECD and LC-MS analysis. All the compounds were assessed for their potential neurotrophic activity through induction of nerve growth factor in C6 glioma cell lines and for their anti-neuroinflammatory activity based on the measurement of inhibition levels of nitric oxide production and pro-inflammatory cytokines (i.e., IL-1β, IL-6, and TNF-α) in lipopolysaccharide-activated microglia BV-2 cells.
Collapse
Affiliation(s)
- Tae Hyun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Da Hye Yoon
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, 21936, Republic of Korea; College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Kyoung Jin Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seong-Min Hong
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Minji Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sun Yeou Kim
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, 21936, Republic of Korea; College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Chung Sub Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Kang Ro Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
20
|
Han JH, Lee EJ, Park W, Ha KT, Chung HS. Natural compounds as lactate dehydrogenase inhibitors: potential therapeutics for lactate dehydrogenase inhibitors-related diseases. Front Pharmacol 2023; 14:1275000. [PMID: 37915411 PMCID: PMC10616500 DOI: 10.3389/fphar.2023.1275000] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
Lactate dehydrogenase (LDH) is a crucial enzyme involved in energy metabolism and present in various cells throughout the body. Its diverse physiological functions encompass glycolysis, and its abnormal activity is associated with numerous diseases. Targeting LDH has emerged as a vital approach in drug discovery, leading to the identification of LDH inhibitors among natural compounds, such as polyphenols, alkaloids, and terpenoids. These compounds demonstrate therapeutic potential against LDH-related diseases, including anti-cancer effects. However, challenges concerning limited bioavailability, poor solubility, and potential toxicity must be addressed. Combining natural compounds with LDH inhibitors has led to promising outcomes in preclinical studies. This review highlights the promise of natural compounds as LDH inhibitors for treating cancer, cardiovascular, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jung Ho Han
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
| | - Eun-Ji Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
| | - Wonyoung Park
- Korean Convergence Medical Science Major, KIOM Campus, University of Science and Technology (UST), Daegu, Republic of Korea
| | - Ki-Tae Ha
- Korean Convergence Medical Science Major, KIOM Campus, University of Science and Technology (UST), Daegu, Republic of Korea
| | - Hwan-Suck Chung
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
21
|
Mishra K, Rana R, Tripathi S, Siddiqui S, Yadav PK, Yadav PN, Chourasia MK. Recent Advancements in Nanocarrier-assisted Brain Delivery of Phytochemicals Against Neurological Diseases. Neurochem Res 2023; 48:2936-2968. [PMID: 37278860 DOI: 10.1007/s11064-023-03955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
Despite ongoing advancements in research, the inability of therapeutics to cross the blood-brain barrier (BBB) makes the treatment of neurological disorders (NDs) a challenging task, offering only partial symptomatic relief. Various adverse effects associated with existing approaches are another significant barrier that prompts the usage of structurally diverse phytochemicals as preventive/therapeutic lead against NDs in preclinical and clinical settings. Despite numerous beneficial properties, phytochemicals suffer from poor pharmacokinetic profile which limits their pharmacological activity and necessitates the utility of nanotechnology for efficient drug delivery. Nanocarriers have been shown to be proficient carriers that can enhance drug delivery, bioavailability, biocompatibility, and stability of phytochemicals. We, thus, conducted a meticulous literature survey using several electronic databases to gather relevant studies in order to provide a comprehensive summary about the use of nanocarriers in delivering phytochemicals as a treatment approach for NDs. Additionally, the review highlights the mechanisms of drug transport of nanocarriers across the BBB and explores their potential future applications in this emerging field.
Collapse
Affiliation(s)
- Keerti Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Rafquat Rana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Shourya Tripathi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Shumaila Siddiqui
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Prem N Yadav
- Division of Neuro Science & Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India.
| |
Collapse
|
22
|
Carrera I, Corzo L, Martínez-Iglesias O, Naidoo V, Cacabelos R. Neuroprotective Effect of Nosustrophine in a 3xTg Mouse Model of Alzheimer's Disease. Pharmaceuticals (Basel) 2023; 16:1306. [PMID: 37765114 PMCID: PMC10535028 DOI: 10.3390/ph16091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegeneration, characterized by the progressive deterioration of neurons and glial cells, is a feature of Alzheimer's disease (AD). The present study aims to demonstrate that the onset and early progression of neurodegenerative processes in transgenic mice models of AD can be delayed by a cocktail of neurotrophic factors and derived peptides named Nosustrophine, a nootropic supplement made by a peptide complex extracted from the young porcine brain, ensuring neuroprotection and improving neuro-functional recovery. Experimental 3xTg-APP/Bin1/COPS5 transgenic mice models of AD were treated with Nosustrophine at two different early ages, and their neuropathological hallmark and behavior response were analyzed. Results showed that Nosustrophine increased the activity of the immune system and reduced pathological changes in the hippocampus and cortex by halting the development of amyloid plaques, mainly seen in mice of 3-4 months of age, indicating that its effect is more preventive than therapeutic. Taken together, the results indicate the potent neuroprotective activity of Nosustrophine and its stimulating effects on neuronal plasticity. This study shows for the first time an effective therapy using nootropic supplements against degenerative diseases, although further investigation is needed to understand their molecular pathways.
Collapse
Affiliation(s)
- Iván Carrera
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain; (L.C.); (O.M.-I.); (V.N.); (R.C.)
| | | | | | | | | |
Collapse
|
23
|
da Cunha Germano BC, de Morais LCC, Idalina Neta F, Fernandes ACL, Pinheiro FI, do Rego ACM, Araújo Filho I, de Azevedo EP, de Paiva Cavalcanti JRL, Guzen FP, Cobucci RN. Vitamin E and Its Molecular Effects in Experimental Models of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:11191. [PMID: 37446369 DOI: 10.3390/ijms241311191] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
With the advancement of in vivo studies and clinical trials, the pathogenesis of neurodegenerative diseases has been better understood. However, gaps still need to be better elucidated, which justifies the publication of reviews that explore the mechanisms related to the development of these diseases. Studies show that vitamin E supplementation can protect neurons from the damage caused by oxidative stress, with a positive impact on the prevention and progression of neurodegenerative diseases. Thus, this review aims to summarize the scientific evidence of the effects of vitamin E supplementation on neuroprotection and on neurodegeneration markers in experimental models. A search for studies published between 2000 and 2023 was carried out in the PubMed, Web of Science, Virtual Health Library (BVS), and Embase databases, in which the effects of vitamin E in experimental models of neurodegeneration were investigated. A total of 5669 potentially eligible studies were identified. After excluding the duplicates, 5373 remained, of which 5253 were excluded after checking the titles, 90 articles after reading the abstracts, and 11 after fully reviewing the manuscripts, leaving 19 publications to be included in this review. Experiments with in vivo models of neurodegenerative diseases demonstrated that vitamin E supplementation significantly improved memory, cognition, learning, motor function, and brain markers associated with neuroregeneration and neuroprotection. Vitamin E supplementation reduced beta-amyloid (Aβ) deposition and toxicity in experimental models of Alzheimer's disease. In addition, it decreased tau-protein hyperphosphorylation and increased superoxide dismutase and brain-derived neurotrophic factor (BDNF) levels in rodents, which seems to indicate the potential use of vitamin E in preventing and delaying the progress of degenerative lesions in the central nervous system.
Collapse
Affiliation(s)
- Bianca Caroline da Cunha Germano
- Postgraduate Program in Science Applied to Women's Health, Federal University of Rio Grande do Norte (UFRN), Natal 59072-970, Brazil
| | - Lara Cristina Carlos de Morais
- Postgratuate Program in Health and Society, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
| | - Francisca Idalina Neta
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
- Postgraduate Program in Physiological Sciences, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
| | - Amélia Carolina Lopes Fernandes
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
- Postgraduate Program in Physiological Sciences, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
| | - Francisco Irochima Pinheiro
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
- Medical School, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
| | | | - Irami Araújo Filho
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
- Medical School, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
| | - Eduardo Pereira de Azevedo
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
| | - José Rodolfo Lopes de Paiva Cavalcanti
- Postgratuate Program in Health and Society, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
- Postgraduate Program in Physiological Sciences, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
| | - Fausto Pierdona Guzen
- Postgratuate Program in Health and Society, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
- Postgraduate Program in Physiological Sciences, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
| | - Ricardo Ney Cobucci
- Postgraduate Program in Science Applied to Women's Health, Federal University of Rio Grande do Norte (UFRN), Natal 59072-970, Brazil
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
- Medical School, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| |
Collapse
|
24
|
Rahman MM, Islam MR, Alam Tumpa MA, Shohag S, Shakil Khan Shuvo, Ferdous J, Kajol SA, Aljohani ASM, Al Abdulmonem W, Rauf A, Thiruvengadam M. Insights into the promising prospect of medicinal chemistry studies against neurodegenerative disorders. Chem Biol Interact 2023; 373:110375. [PMID: 36739931 DOI: 10.1016/j.cbi.2023.110375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Medicinal chemistry is an interdisciplinary field that incorporates organic chemistry, biochemistry, physical chemistry, pharmacology, informatics, molecular biology, structural biology, cell biology, and other disciplines. Additionally, it considers molecular factors such as the mode of action of the drugs, their chemical structure-activity relationship (SAR), and pharmacokinetic aspects like absorption, distribution, metabolism, elimination, and toxicity. Neurodegenerative disorders (NDs), which are defined by the breakdown of neurons over time, are affecting an increasing number of people. Oxidative stress, particularly the increased production of Reactive Oxygen Species (ROS), plays a crucial role in the growth of various disorders, as indicated by the identification of protein, lipid, and Deoxyribonucleic acid (DNA) oxidation products in vivo. Because of their inherent nature, most biological molecules are vulnerable to ROS, even if they play a role in metabolic parameters and cell signaling. Due to their high polyunsaturated fatty acid content, low antioxidant barrier, and high oxygen uptake, neurons are particularly vulnerable to oxidation by nature. As a result, excessive ROS generation in neurons looks especially harmful, and the mechanisms associated with biomolecule oxidative destruction are several and complex. This review focuses on the formation and management of ROS, as well as their chemical characteristics (both thermodynamic and kinetic), interactions, and implications in NDs.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Mst Afroza Alam Tumpa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University Buraydah, 52571, Saudi Arabia
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Jannatul Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Saima Akter Kajol
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University Buraydah, 52571, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine Qassim University, Buraydah, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, South Korea; Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
25
|
Bravo-Vázquez LA, Mora-Hernández EO, Rodríguez AL, Sahare P, Bandyopadhyay A, Duttaroy AK, Paul S. Current Advances of Plant-Based Vaccines for Neurodegenerative Diseases. Pharmaceutics 2023; 15:711. [PMID: 36840033 PMCID: PMC9963606 DOI: 10.3390/pharmaceutics15020711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by the progressive degeneration and/or loss of neurons belonging to the central nervous system, and represent one of the major global health issues. Therefore, a number of immunotherapeutic approaches targeting the non-functional or toxic proteins that induce neurodegeneration in NDDs have been designed in the last decades. In this context, due to unprecedented advances in genetic engineering techniques and molecular farming technology, pioneering plant-based immunogenic antigen expression systems have been developed aiming to offer reliable alternatives to deal with important NDDs, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Diverse reports have evidenced that plant-made vaccines trigger significant immune responses in model animals, supported by the production of antibodies against the aberrant proteins expressed in the aforementioned NDDs. Moreover, these immunogenic tools have various advantages that make them a viable alternative for preventing and treating NDDs, such as high scalability, no risk of contamination with human pathogens, cold chain free production, and lower production costs. Hence, this article presents an overview of the current progress on plant-manufactured vaccines for NDDs and discusses its future prospects.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- School of Engineering and Sciences, Campus Querétaro, Tecnologico de Monterrey, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| | - Erick Octavio Mora-Hernández
- School of Engineering and Sciences, Campus Mexico City, Tecnologico de Monterrey, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, Mexico City 14380, Mexico
| | - Alma L. Rodríguez
- School of Engineering and Sciences, Campus Querétaro, Tecnologico de Monterrey, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| | - Padmavati Sahare
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM 3001, Juriquilla, Querétaro 76230, Mexico
| | - Anindya Bandyopadhyay
- International Rice Research Institute, Manila 4031, Philippines
- Reliance Industries Ltd., Navi Mumbai 400701, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046 Blindern, 0317 Oslo, Norway
| | - Sujay Paul
- School of Engineering and Sciences, Campus Querétaro, Tecnologico de Monterrey, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| |
Collapse
|
26
|
Rao MRP, Ghadge I, Kulkarni S, R. Madgulkar A. Importance of Plant Secondary Metabolites in Modern Therapy. REFERENCE SERIES IN PHYTOCHEMISTRY 2023:1-31. [DOI: 10.1007/978-3-031-30037-0_5-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 01/05/2025]
|
27
|
Multi-Target Mechanisms of Phytochemicals in Alzheimer’s Disease: Effects on Oxidative Stress, Neuroinflammation and Protein Aggregation. J Pers Med 2022; 12:jpm12091515. [PMID: 36143299 PMCID: PMC9500804 DOI: 10.3390/jpm12091515] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by a tangle-shaped accumulation of beta-amyloid peptide fragments and Tau protein in brain neurons. The pathophysiological mechanism involves the presence of Aβ-amyloid peptide, Tau protein, oxidative stress, and an exacerbated neuro-inflammatory response. This review aims to offer an updated compendium of the most recent and promising advances in AD treatment through the administration of phytochemicals. The literature survey was carried out by electronic search in the following specialized databases PubMed/Medline, Embase, TRIP database, Google Scholar, Wiley, and Web of Science regarding published works that included molecular mechanisms and signaling pathways targeted by phytochemicals in various experimental models of Alzheimer’s disease in vitro and in vivo. The results of the studies showed that the use of phytochemicals against AD has gained relevance due to their antioxidant, anti-neuroinflammatory, anti-amyloid, and anti-hyperphosphorylation properties of Tau protein. Some bioactive compounds from plants have been shown to have the ability to prevent and stop the progression of Alzheimer’s.
Collapse
|
28
|
Perspectives on the Molecular Mediators of Oxidative Stress and Antioxidant Strategies in the Context of Neuroprotection and Neurolongevity: An Extensive Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7743705. [PMID: 36062188 PMCID: PMC9439934 DOI: 10.1155/2022/7743705] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/09/2022] [Indexed: 12/11/2022]
Abstract
Molecules with at least one unpaired electron in their outermost shell are known as free radicals. Free radical molecules are produced either within our bodies or by external sources such as ozone, cigarette smoking, X-rays, industrial chemicals, and air pollution. Disruption of normal cellular homeostasis by redox signaling may result in cardiovascular, neurodegenerative diseases and cancer. Although ROS (reactive oxygen species) are formed in the GI tract, little is known about how they contribute to pathophysiology and disease etiology. When reactive oxygen species and antioxidants are in imbalance in our bodies, they can cause cell structure damage, neurodegenerative diseases, diabetes, hypercholesterolemia, atherosclerosis, cancer, cardiovascular diseases, metabolic disorders, and other obesity-related disorders, as well as protein misfolding, mitochondrial dysfunction, glial cell activation, and subsequent cellular apoptosis. Neuron cells are gradually destroyed in neurodegenerative diseases. The production of inappropriately aggregated proteins is strongly linked to oxidative stress. This review's goal is to provide as much information as possible about the numerous neurodegenerative illnesses linked to oxidative stress. The possibilities of multimodal and neuroprotective therapy in human illness, using already accessible medications and demonstrating neuroprotective promise in animal models, are highlighted. Neuroprotection and neurolongevity may improve from the use of bioactive substances from medicinal herbs like Allium stadium, Celastrus paniculatus, and Centella asiatica. Many neuroprotective drugs' possible role has been addressed. Preventing neuroinflammation has been demonstrated in several animal models.
Collapse
|
29
|
Diabetes Exacerbates Sepsis-Induced Neuroinflammation and Brain Mitochondrial Dysfunction. Inflammation 2022; 45:2352-2367. [PMID: 35689164 DOI: 10.1007/s10753-022-01697-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/06/2022] [Accepted: 06/01/2022] [Indexed: 11/05/2022]
Abstract
Sepsis is a life-threatening organ dysfunction, which demands notable attention for its treatment, especially in view of the involvement of immunodepressed patients, as the case of patients with diabetes mellitus (DM), who constitute a population susceptible to develop infections. Thus, considering this endocrine pathology as an implicatory role on the immune system, the aim of this study was to show the relationship between this disease and sepsis on neuroinflammatory and neurochemical parameters. Levels of IL-6, IL-10, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and mitochondrial respiratory chain complexes were evaluated in the hippocampus and prefrontal cortex 24 h after sepsis by cecal ligation and perforation (CLP) in Wistar rats induced to type 1 diabetes by alloxan (150 mg/kg). It was verified that diabetes implied immune function after 24 h of sepsis, since it contributed to the increase of the inflammatory process with higher production of IL-6 and decreased levels of IL-10 only in the hippocampus. In the same brain area, a several decrease in NGF level and activity of complexes I and II of the mitochondrial respiratory chain were observed. Thus, diabetes exacerbates neuroinflammation and results in mitochondrial impairment and downregulation of NGF level in the hippocampus after sepsis.
Collapse
|
30
|
New Therapeutic Approaches against Inflammation and Oxidative Stress in Neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9824350. [PMID: 35633881 PMCID: PMC9135532 DOI: 10.1155/2022/9824350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022]
|
31
|
Ly HT, Nguyen TTH, Le VM, Lam BT, Mai TTT, Dang TPT. Therapeutic Potential of Polyscias fruticosa (L.) Harms Leaf Extract for Parkinson's Disease Treatment by Drosophila melanogaster Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5262677. [PMID: 35633880 PMCID: PMC9135533 DOI: 10.1155/2022/5262677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/08/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive locomotive defects and loss of dopaminergic neurons. Polyscias fruticosa leaves are used by Vietnamese as herbal medicines to support the treatment of some diseases related to neurodegeneration such as Parkinson's and Alzheimer's diseases. However, recent scientific data have not provided sufficient evidence for the use of P. fruticosa leaves to treat PD or decelerate PD progression. In the present study, the capacity of P. fruticosa leaf extract for PD treatment on the dietary supplementation was investigated using dUCH-knockdown Drosophila model. The results indicated that P. fruticosa leaf extract decelerated dopaminergic neuron degeneration induced by dUCH knockdown in not only the larval stage but also the adult stage, which might result in the amelioration in locomotor ability of dUCH-knockdown larvae and flies. Furthermore, antioxidant activities and some key phytochemicals such as saponins, polyphenols, and flavonoids that might contribute to the effects of the P. fruticosa leaf extract were identified.
Collapse
Affiliation(s)
- Hai Trieu Ly
- Research Center of Ginseng and Medicinal Materials (CGMM), National Institute of Medicinal Materials, Ho Chi Minh City 700000, Vietnam
| | - Thi Thu Huong Nguyen
- Research Center of Ginseng and Medicinal Materials (CGMM), National Institute of Medicinal Materials, Ho Chi Minh City 700000, Vietnam
| | - Van Minh Le
- Research Center of Ginseng and Medicinal Materials (CGMM), National Institute of Medicinal Materials, Ho Chi Minh City 700000, Vietnam
| | - Bich Thao Lam
- Research Center of Ginseng and Medicinal Materials (CGMM), National Institute of Medicinal Materials, Ho Chi Minh City 700000, Vietnam
| | - Thi Thu Trinh Mai
- Faculty of Biology and Biotechnology, University of Science, Vietnam National University-Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Thi Phuong Thao Dang
- Faculty of Biology and Biotechnology, University of Science, Vietnam National University-Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
- Vietnam National University-Ho Chi Minh City, Vietnam
| |
Collapse
|
32
|
Dietary and nutraceutical-based therapeutic approaches to combat the pathogenesis of Huntington’s disease. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
|
33
|
Semisynthesis and neurotrophic activity studies of novel neomajucin/majucin derivatives as neurotrophin small molecule mimetics. Bioorg Med Chem Lett 2022; 60:128580. [PMID: 35066142 DOI: 10.1016/j.bmcl.2022.128580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/02/2022] [Accepted: 01/16/2022] [Indexed: 11/20/2022]
Abstract
Majucin-type Illicium sesquiterpenes with potent neurotrophic activity are considered to be promising candidates for the treatment of various neurodegenerative disease. Owing to the low-abundance metabolites in Illicium genus, there are few studies on their structural modifications, structure-activity relationships, and pharmacophoric motif. Herein, structural modifications were conducted on the hydroxyl groups at C-3 and C-6 positions of two majucin-type compounds neomajucin (1) and majucin (2), and 39 neomajucin/majucin based esters were synthesized and evaluated for their neurite outgrowth-promoting activities. Among all the target derivatives, compounds 1a, 1j, 1r, 2b, 2d, 3a, 3b, 3d and 3h displayed more potent neurite outgrowth-promoting activity than their precursors. Some interesting structure-activity relationships (SARs) were also observed. Moreover, compound 1a showed good neuroprotective effect on MPP+-induced PC12 cell damage. Finally, compounds 1a and 3a exhibited relatively no cytotoxicity to normal human H9C2 cardiac cells. This work will shed light on the development of neomajucin/majucin derivatives as potential neurotrophic agents.
Collapse
|
34
|
Sharma D, Jaggi AS, Arora K, Bali A. Exploring the role of cAMP in gabapentin- mediated pain attenuating effects in chronic constriction injury model in rats. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Kiran Arora
- Akal College of Pharmacy and Technical education, India
| | - Anjana Bali
- Akal College of Pharmacy and Technical education, India; Central University of Punjab, India
| |
Collapse
|
35
|
Anwar H, Rasul A, Iqbal J, Ahmad N, Imran A, Malik SA, Ijaz F, Akram R, Maqbool J, Sajid F, Sun T, Hussain G, Manzoor MF. Dietary biomolecules as promising regenerative agents for peripheral nerve injury: An emerging nutraceutical-based therapeutic approach. J Food Biochem 2021; 45:e13989. [PMID: 34719796 DOI: 10.1111/jfbc.13989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 12/22/2022]
Abstract
Peripheral nerve damage is a debilitating condition that can result in partial or complete functional loss as a result of axonal degeneration, as well as lifelong dependence. Many therapies have been imbued with a plethora of positive features while posing little risks. It is worth noting that these biomolecules work by activating several intrinsic pathways that are known to be important in peripheral nerve regeneration. Although the underlying mechanism is used for accurate and speedy functional recovery, none of them are without side effects. As a result, it is believed that effective therapy is currently lacking. The dietary biomolecules-based intervention, among other ways, is appealing, safe, and effective. Upregulation of transcription factors, neurotrophic factors, and growth factors such as NGF, GDNF, BDNF, and CTNF may occur as a result of these substances' dietary intake. Upregulation of the signaling pathways ERK, JNK, p38, and PKA has also been seen, which aids in axonal regeneration. Although several mechanistic approaches to understanding their involvement have been suggested, more work is needed to reveal the amazing properties of these biomolecules. We have discussed in this article that how different dietary biomolecules can help with functional recovery and regeneration after an injury. PRACTICAL APPLICATIONS: Based on the information known to date, we may conclude that treatment techniques for peripheral nerve injury have downsides, such as complications, donor shortages, adverse effects, unaffordability, and a lack of precision in efficacy. These difficulties cast doubt on their efficacy and raise severe concerns about the prescription. In this situation, the need for safe and effective therapeutic techniques is unavoidable, and dietary biomolecules appear to be a safe, cost-efficient, and effective way to promote nerve regeneration following an injury. The information on these biomolecules has been summarized here. Upregulation of transcription factors, neurotrophic factors, and growth factors, such as NGF, GDNF, BDNF, and CTNF, as well as the ERK, JNK, p38, and PKA, signaling pathways, may stimulate axonal regeneration.
Collapse
Affiliation(s)
- Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Javed Iqbal
- Department of Neurology, Allied Hospital, Faisalabad Medical University, Faisalabad, Pakistan
| | - Nazir Ahmad
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Shoaib Ahmad Malik
- Department of Biochemistry, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Fazeela Ijaz
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Rabia Akram
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Javeria Maqbool
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Faiqa Sajid
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
36
|
Gupta S, Khan A, Vishwas S, Gulati M, Gurjeet Singh T, Dua K, Kumar Singh S, Najda A, Sayed AA, Almeer R, Abdel-Daim MM. Demethyleneberberine: A possible treatment for Huntington's disease. Med Hypotheses 2021; 153:110639. [PMID: 34229236 DOI: 10.1016/j.mehy.2021.110639] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 10/21/2022]
Abstract
Huntington disease (HD) is a type of neurodegenerative disease that is characterized by presence of multiple repeats (more than 36) of cytosine-adenine-guanine (CAG) trinucleotides and mutated huntingtin (mHtt). This can further lead to oxidative stress, enhancement in level of ROS/RNS, mitochondrial dysfunction and neuroinflammations. Many clinical and preclinical trials have been conducted so far for the effective treatment of HD however, none of the drugs has shown complete relief. The regeneration of neurons is a very complicated process and associated with multiple pathological pathways. Hence, finding a unique solution using single drug that could act on multiple pathological pathways is really cumbersome. In the proposed hypothesis the use of demethyleneberberine (DMB) as a potential anti-HD agent has been explained. It is a metabolite of berberine and reported to act on multiple mechanistic pathways that are responsible for HD. Present article highlights new mechanistic insights through which DMB inhibits ROS/RNS, oxidative stress, mitochondrial dysfunctions and neuroinflammation such as NFκB, TNF-α, IL-6 and IL-8, cytokinin. Further its action on cellular apoptosis and neuronal cell death are also reported.
Collapse
Affiliation(s)
- Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Arzoo Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab 144411, India
| | | | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab 144411, India.
| | - Agnieszka Najda
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland.
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
37
|
Uddin MS, Mamun AA, Rahman MM, Jeandet P, Alexiou A, Behl T, Sarwar MS, Sobarzo-Sánchez E, Ashraf GM, Sayed AA, Albadrani GM, Peluso I, Abdel-Daim MM. Natural Products for Neurodegeneration: Regulating Neurotrophic Signals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8820406. [PMID: 34239696 PMCID: PMC8241508 DOI: 10.1155/2021/8820406] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders (NDs) are heterogeneous groups of ailments typically characterized by progressive damage of the nervous system. Several drugs are used to treat NDs but they have only symptomatic benefits with various side effects. Numerous researches have been performed to prove the advantages of phytochemicals for the treatment of NDs. Furthermore, phytochemicals such as polyphenols might play a pivotal role in rescue from neurodegeneration due to their various effects as anti-inflammatory, antioxidative, and antiamyloidogenic agents by controlling apoptotic factors, neurotrophic factors (NTFs), free radical scavenging system, and mitochondrial stress. On the other hand, neurotrophins (NTs) including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), NT4/5, and NT3 might have a crucial neuroprotective role, and their diminution triggers the development of the NDs. Polyphenols can interfere directly with intracellular signaling molecules to alter brain activity. Several natural products also improve the biosynthesis of endogenous genes encoding antiapoptotic Bcl-2 as well as NTFs such as glial cell and brain-derived NTFs. Various epidemiological studies have demonstrated that the initiation of these genes could play an essential role in the neuroprotective function of dietary compounds. Hence, targeting NTs might represent a promising approach for the management of NDs. In this review, we focus on the natural product-mediated neurotrophic signal-modulating cascades, which are involved in the neuroprotective effects.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | - Md Motiar Rahman
- Laboratory of Clinical Biochemistry and Nutritional Sciences (LCBNS), Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, USC INRAe 1488, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, P.O. Box 1039, CEDEX 2, 51687 Reims, France
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, 2770 Hebersham, Australia
- AFNP Med Austria, 1010 Wien, Austria
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507 Santiago, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00142 Rome, Italy
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
38
|
Himalian R, Singh SK, Singh MP. Ameliorative Role of Nutraceuticals on Neurodegenerative Diseases Using the Drosophila melanogaster as a Discovery Model to Define Bioefficacy. J Am Coll Nutr 2021; 41:511-539. [PMID: 34125661 DOI: 10.1080/07315724.2021.1904305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neurodegeneration is the destruction of neurons, and once the neurons degenerate they can't revive. This is one of the most concerned health conditions among aged population, more than ∼70% of the elderly people are suffering from neurodegeneration. Among all of the neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease (PD) and Poly-glutamine disease (Poly-Q) are the major one and affecting most of the people around the world and posing excessive burden on the society. In order to understand this disease in non-human animal models it is pertinent to examine in model organism and various animal model are being used for such diseases like rat, mice and non-vertebrate model like Drosophila. Drosophila melanogaster is one of the best animal proven by several eminent scientist and had received several Nobel prizes for uncovering mechanism of human related genes and highly efficient model for studying neurodegenerative diseases due to its great affinity with human disease-related genes. Another factor is also employed to act as therapeutic or preventive method that is nutraceuticals. Nutraceuticals are functional natural compounds with antioxidant properties and had extensively showed the neuroprotective effect in different organisms. These nutraceuticals having antioxidant properties act through scavenging free radicals or by increasing endogenous cellular antioxidant defense molecules. For the best benefit, we are trying to utilize these nutraceuticals, which will have no or negligible side effects. In this review, we are dealing with various types of such nutraceuticals which have potent value in the prevention and curing of the diseases related to neurodegeneration.HighlightsNeurodegeneration is the silently progressing disease which shows its symptoms when it is well rooted.Many chemical drugs (almost all) have only symptomatic relief with side effects.Potent mechanism of neurodegeneration and improvement effect by nutraceuticals is proposed.Based on the Indian Cuisine scientists are trying to find the medicine from the food or food components having antioxidant properties.The best model to study the neurodegenerative diseases is Drosophila melanogaster.Many nutraceuticals having antioxidant properties have been studied and attenuated various diseases are discussed.
Collapse
Affiliation(s)
- Ranjana Himalian
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology (ISET) Foundation, Lucknow, India
| | - Mahendra Pratap Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
39
|
Chen X, Drew J, Berney W, Lei W. Neuroprotective Natural Products for Alzheimer's Disease. Cells 2021; 10:1309. [PMID: 34070275 PMCID: PMC8225186 DOI: 10.3390/cells10061309] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the number one neurovegetative disease, but its treatment options are relatively few and ineffective. In efforts to discover new strategies for AD therapy, natural products have aroused interest in the research community and in the pharmaceutical industry for their neuroprotective activity, targeting different pathological mechanisms associated with AD. A wide variety of natural products from different origins have been evaluated preclinically and clinically for their neuroprotective mechanisms in preventing and attenuating the multifactorial pathologies of AD. This review mainly focuses on the possible neuroprotective mechanisms from natural products that may be beneficial in AD treatment and the natural product mixtures or extracts from different sources that have demonstrated neuroprotective activity in preclinical and/or clinical studies. It is believed that natural product mixtures or extracts containing multiple bioactive compounds that can work additively or synergistically to exhibit multiple neuroprotective mechanisms might be an effective approach in AD drug discovery.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Joshua Drew
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Wren Berney
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Wei Lei
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Presbyterian College, Clinton, SC 29325, USA
| |
Collapse
|
40
|
Balakrishnan R, Azam S, Cho DY, Su-Kim I, Choi DK. Natural Phytochemicals as Novel Therapeutic Strategies to Prevent and Treat Parkinson's Disease: Current Knowledge and Future Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6680935. [PMID: 34122727 PMCID: PMC8169248 DOI: 10.1155/2021/6680935] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative chronic disease affecting both cognitive performance and motor functions in aged people. Yet despite the prevalence of this disease, the current therapeutic options for the management of PD can only alleviate motor symptoms. Research has explored novel substances for naturally derived antioxidant phytochemicals with potential therapeutic benefits for PD patients through their neuroprotective mechanism, targeting oxidative stress, neuroinflammation, abnormal protein accumulation, mitochondrial dysfunction, endoplasmic reticulum stress, neurotrophic factor deficit, and apoptosis. The aim of the present study is to perform a comprehensive evaluation of naturally derived antioxidant phytochemicals with neuroprotective or therapeutic activities in PD, focusing on their neuropharmacological mechanisms, including modulation of antioxidant and anti-inflammatory activity, growth factor induction, neurotransmitter activity, direct regulation of mitochondrial apoptotic machinery, prevention of protein aggregation via modulation of protein folding, modification of cell signaling pathways, enhanced systemic immunity, autophagy, and proteasome activity. In addition, we provide data showing the relationship between nuclear factor E2-related factor 2 (Nrf2) and PD is supported by studies demonstrating that antiparkinsonian phytochemicals can activate the Nrf2/antioxidant response element (ARE) signaling pathway and Nrf2-dependent protein expression, preventing cellular oxidative damage and PD. Furthermore, we explore several experimental models that evaluated the potential neuroprotective efficacy of antioxidant phytochemical derivatives for their inhibitory effects on oxidative stress and neuroinflammation in the brain. Finally, we highlight recent developments in the nanodelivery of antioxidant phytochemicals and its neuroprotective application against pathological conditions associated with oxidative stress. In conclusion, naturally derived antioxidant phytochemicals can be considered as future pharmaceutical drug candidates to potentially alleviate symptoms or slow the progression of PD. However, further well-designed clinical studies are required to evaluate the protective and therapeutic benefits of phytochemicals as promising drugs in the management of PD.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - In Su-Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
41
|
Bhardwaj K, Silva AS, Atanassova M, Sharma R, Nepovimova E, Musilek K, Sharma R, Alghuthaymi MA, Dhanjal DS, Nicoletti M, Sharma B, Upadhyay NK, Cruz-Martins N, Bhardwaj P, Kuča K. Conifers Phytochemicals: A Valuable Forest with Therapeutic Potential. Molecules 2021; 26:3005. [PMID: 34070179 PMCID: PMC8158490 DOI: 10.3390/molecules26103005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
Conifers have long been recognized for their therapeutic potential in different disorders. Alkaloids, terpenes and polyphenols are the most abundant naturally occurring phytochemicals in these plants. Here, we provide an overview of the phytochemistry and related commercial products obtained from conifers. The pharmacological actions of different phytochemicals present in conifers against bacterial and fungal infections, cancer, diabetes and cardiovascular diseases are also reviewed. Data obtained from experimental and clinical studies performed to date clearly underline that such compounds exert promising antioxidant effects, being able to inhibit cell damage, cancer growth, inflammation and the onset of neurodegenerative diseases. Therefore, an attempt has been made with the intent to highlight the importance of conifer-derived extracts for pharmacological purposes, with the support of relevant in vitro and in vivo experimental data. In short, this review comprehends the information published to date related to conifers' phytochemicals and illustrates their potential role as drugs.
Collapse
Affiliation(s)
- Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Vairão, 4485-655 Vila do Conde, Portugal;
- Center for Study in Animal Science (CECA), ICETA, University of Porto, 4051-401 Porto, Portugal
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, University of Chemical Technology and Metallurgy, 1734 Sofia, Bulgaria;
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (E.N.); (K.M.)
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (E.N.); (K.M.)
| | - Ruchi Sharma
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Mousa A. Alghuthaymi
- Biology Department, Science and Humanities College, Shaqra University, Alquwayiyah 11971, Saudi Arabia;
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, Square Aldo Moro, 5, 00185 Rome, Italy;
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India;
| | - Navneet Kumar Upadhyay
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Prerna Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (E.N.); (K.M.)
| |
Collapse
|
42
|
Nigdelioglu Dolanbay S, Kocanci FG, Aslim B. Neuroprotective effects of allocryptopine-rich alkaloid extracts against oxidative stress-induced neuronal damage. Biomed Pharmacother 2021; 140:111690. [PMID: 34004513 DOI: 10.1016/j.biopha.2021.111690] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Oxidative stress is a significant feature in the pathomechanism of neurodegenerative diseases. Thus, the search for an effective and safe novel antioxidant agent with neuroprotective properties has increased the interest in medicinal plant products as a bioactive phytochemical source. However, little is known about the potential effects of the medically important Glaucium corniculatum as a natural antioxidant. OBJECTIVE In the present study, it was aimed to investigate the anti-oxidative, anti-apoptotic, and cell cycle regulatory mechanisms underlying the neuroprotective effects of alkaloid extracts (chloroform, methanol, and water) from G. corniculatum, which was profiled for major alkaloid/alkaloids, against H2O2-induced neuronal damage in differentiated PC12 cells. MATERIALS AND METHODS The profiles of the alkaloid extracts were analyzed by GC-MS. The effects of the alkaloid extracts on intracellular ROS production, level of apoptotic cells, and cell cycle dysregulation were analyzed by flow cytometry; the effects on mRNA expression of apoptosis-related genes were also analyzed by qRT-PCR. RESULTS The same alkaloid components, allocryptopine, tetrahydropalmatine, and tetrahydroberberine N-oxide were obtained in all three solvents, but the ratios of the components differed according to the solvents. Allocryptopine was determined to be the major alkaloid ingredient in the alkaloid extracts, with the highest amount of allocryptopine (497 μg/mg) being found in the chloroform alkaloid extract (CAE) (*p < 0.05). The best results were obtained from CAE, which has the highest amount of allocryptopine among alkaloid extracts in all studies. CAE suppressed intracellular ROS production (5.7-fold), percentage of apoptotic cells (3.0-fold), and cells in the sub G1 phase (6.8-fold); additionally, it increased cells in the G1 phase (1.5-fold) (**p < 0.01). CAE remarkably reduced the expressions of Bax, Caspase-9/-3 mRNA (2.4-3.5-fold) while increasing the expression of Bcl-2 mRNA (3.0-fold) (*p < 0.05). CONCLUSIONS Our results demonstrated that alkaloid extracts from G. corniculatum, which contain allocryptopine, tetrahydropalmatine, and tetrahydroberberine N-oxide suppressed oxidative stress-induced neuronal apoptosis, possibly by suppressing the mitochondrial apoptotic pathway and regulating the cell cycle. These results are the first report that related alkaloids have played a neuroprotective role by regulating multiple mechanisms. Thus, our study indicated that these alkaloids especially allocryptopine could offer an efficient and novel strategy to explore novel drugs for neuroprotection and cognitive improvement.
Collapse
Affiliation(s)
| | - Fatma Gonca Kocanci
- Alaaddin Keykubat University, Vocational High School of Health Services, Department of Medical Laboratory Techniques, Alanya 07425, Antalya, Turkey
| | - Belma Aslim
- Gazi University, Faculty of Science, Department of Biology, 06500 Ankara, Turkey
| |
Collapse
|
43
|
Paoletti F, Merzel F, Cassetta A, Ogris I, Covaceuszach S, Grdadolnik J, Lamba D, Golič Grdadolnik S. Endogenous modulators of neurotrophin signaling: Landscape of the transient ATP-NGF interactions. Comput Struct Biotechnol J 2021; 19:2938-2949. [PMID: 34136093 PMCID: PMC8164016 DOI: 10.1016/j.csbj.2021.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/02/2022] Open
Abstract
High-resolution solution NMR structure of rhNGF has been determined. Quinary interactions characterize ATP binding to rhNGF. SPR, ITC and STD-NMR reveal ATP binding to rhNGF with mM affinity. NMR and MD analysis pinpoint to the presence of two binding sites of ATP on rhNGF. Stoichiometry of ATP-Mg2+ or Zn2+-rhNGF mixtures affects KD affinity to TrkA/p75NTR.
The Nerve Growth Factor (NGF) neurotrophin acts in the maintenance and growth of neuronal populations. Despite the detailed knowledge of NGF’s role in neuron physiology, the structural and mechanistic determinants of NGF bioactivity modulated by essential endogenous ligands are still lacking. We present the results of an integrated structural and advanced computational approach to characterize the extracellular ATP-NGF interaction. We mapped by NMR the interacting surface and ATP orientation on NGF and revealed the functional role of this interaction in the binding to TrkA and p75NTR receptors by SPR. The role of divalent ions was explored in conjunction with ATP. Our results pinpoint ATP as a likely transient molecular modulator of NGF signaling, in health and disease states.
Collapse
Key Words
- ARIA, Ambiguous Restraints for Iterative Assignment
- ATP modulation
- BDNF, Brain Derived Neurotrophic Factor
- CARA, Computer Aided Resonance Assignment
- CS-E, Chrondroitin Sulfate E
- CSP, Chemical Shift Perturbation
- DSF, Differential Scanning Fluorimetry
- EI-MS, Electron Ionization Mass Spectrometry
- Endogenous ligands
- FGF2, Fibroblast Growth Factor 2
- FT-IR, Fourier Transform Infrared Spectroscopy
- HBD, Heparin Binding Domain
- HSQC, Heteronuclear Single Quantum Coherence
- ITC, Isothermal Titration Calorimetry
- MALDI-TOF MS, Matrix Assisted Laser Desorption Ionization-Time Of Flight Mass Spectrometry
- MD, Molecular Dynamics
- MS, Mass Spectrometry
- NGF interactions
- NGF, Nerve Growth Factor
- NMR, Nuclear Magnetic Resonance
- NOE, Nuclear Overhouser Effect
- NOESY, Nuclear Overhauser Effect Spectroscopy
- NT, NeuroTrophin
- Neurotrophins
- P20, Polysorbate 20
- PME, Particle Mesh Ewald
- RMSD, Root Mean Square Deviation
- SAR, Structure-Activity Relationship
- SPR, Surface Plasmon Resonance
- STD, Saturation-Transfer Difference
- TrkA, Tyrosine Kinase Receptor A
- TrkA, p75NTR receptors
- p75NTR, p75 NeuroTrophin Receptor
- proNGF, proNGF – NGF precursor
- rh-proNGF, recombinant human proNGF – NGF precursor
- rhNGF, recombinant human NGF
- rmNGF, recombinant mouse NGF
Collapse
Affiliation(s)
- Francesca Paoletti
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Franci Merzel
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Alberto Cassetta
- Institute of Crystallography - C.N.R.- Trieste Outstation. Area Science Park - Basovizza, S.S.14 - Km. 163.5, I-34149 Trieste, Italy
| | - Iza Ogris
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Sonia Covaceuszach
- Institute of Crystallography - C.N.R.- Trieste Outstation. Area Science Park - Basovizza, S.S.14 - Km. 163.5, I-34149 Trieste, Italy
| | - Jože Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Doriano Lamba
- Institute of Crystallography - C.N.R.- Trieste Outstation. Area Science Park - Basovizza, S.S.14 - Km. 163.5, I-34149 Trieste, Italy.,Interuniversity Consortium "Biostructures and Biosystems National Institute", Viale delle Medaglie d'Oro 305, I-00136 Roma, Italy
| | - Simona Golič Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
44
|
Potential of N-trans feruloyl tyramine from Lycium barbarum fruit extract on neurogenesis and neurotrophins; targeting TrkA/ERK/CREB signaling pathway. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
45
|
Phenolic Constituents of Chinese Quince Twigs ( Chaenomeles sinensis Koehne) and Their Anti-Neuroinflammatory, Neurotrophic, and Cytotoxic Activities. Antioxidants (Basel) 2021; 10:antiox10040551. [PMID: 33918176 PMCID: PMC8067024 DOI: 10.3390/antiox10040551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Chaenomeles sinensis has been used as a food and traditional medicines. However, most of research on discovering bioactive constituents from this plant have been focused on its yellow fruit, Chinese quince, due to its wide usage. Here, we isolated and characterized three new phenolic compounds (1, 9, and 11) and 21 known compounds (2−8, 10, and 12−24) from the twigs of C. sinensis. Their chemical structures were established by spectroscopic and spectrometric data analysis including 1D and 2D NMR, high-resolution mass spectrometry (HRMS), electronic circular dichroism (ECD), and LC-MS analysis. Some of the isolated compounds (1−24) showed anti-neuroinflammatory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)-activated BV-2 cells, neurotrophic activity in C6 cells through the secretion of nerve growth factor (NGF) and/or cytotoxicity against four human cancer cell lines (A549, SK-OV-3, SK-MEL-2, MKN-1).
Collapse
|
46
|
Sisti FM, Dos Santos NAG, do Amaral L, Dos Santos AC. The Neurotrophic-Like Effect of Carvacrol: Perspective for Axonal and Synaptic Regeneration. Neurotox Res 2021; 39:886-896. [PMID: 33666886 DOI: 10.1007/s12640-021-00341-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
Carvacrol (CARV) is a phytochemical widely used as flavoring, preservative, and fragrance in food and cosmetic industries. CARV is able to cross the blood-brain barrier (BBB) and has demonstrated protective potential against neurodegenerative diseases by several mechanisms, including antioxidant, anti-inflammatory, anticholinesterase, and antiapoptotic effects. However, it is not known whether CARV is able to modulate axonal and synaptic plasticity, crucial events in cognition, memory, and learning. Abnormalities in axonal and synaptic plasticity, low levels of neurotrophins, and bioenergetic failure have been associated with the pathogenesis of neurodegenerative diseases, including Parkinson's (PD) and Alzheimer's diseases (ADs). Small lipophilic molecules with neurotrophic activity might be able to restore the axonal and synaptic networks that are lost in neurodegenerative processes. Therefore, this study investigated the neurotrophic potential of CARV in PC12 cell-based neuronal model. Carvacrol induced neurite outgrowth by activating the NGF high-affinity trkA receptor and the downstream PI3K-AKT and MAPK-ERK pathways, without depending on NGF. In addition, CARV increased the expression of proteins involved in neuronal plasticity (β-tubulin III, F-actin, 200-kDa neurofilament, GAP-43 and synapsin-I) and improved bioenergetics (AMPKα, p-AMPKα, and ATP). Our study showed, for the first time, a promising neurotrophic mechanism of CARV that could be beneficial in neurodegenerative and neurological diseases.
Collapse
Affiliation(s)
- Flávia Malvestio Sisti
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Neife Aparecida Guinaim Dos Santos
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Lilian do Amaral
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Antonio Cardozo Dos Santos
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
47
|
Luthra R, Roy A. Role of medicinal plants against neurodegenerative diseases. Curr Pharm Biotechnol 2021; 23:123-139. [PMID: 33573549 DOI: 10.2174/1389201022666210211123539] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022]
Abstract
Diseases with a significant loss of neurons, structurally and functionally are termed as neurodegenerative diseases. Due to the present therapeutic interventions and progressive nature of diseases, a variety of side effects have risen up, thus leading the patients to go for an alternative medication. The role of medicinal plants in such cases has been beneficial because of their exhibition via different cellular and molecular mechanisms. Alleviation in inflammatory responses, suppression of the functionary aspect of pro-inflammatory cytokines like a tumor, improvement in antioxidative properties is among few neuroprotective mechanisms of traditional plants. Variation in transcription and transduction pathways play a vital role in the preventive measures of plants in such diseases. Neurodegenerative diseases are generally caused by depletion of proteins, oxidative and inflammatory stress, environmental changes and so on, with aging being the most important cause. Natural compounds can be used in order to treat neurodegenerative diseases Medicinal plants such as Ginseng, Withania somnifera, Bacopa monnieri, Ginkgo biloba, etc. are some of the medicinal plants for prevention of neurological symptoms. This review deals with the use of different medicinal plants for the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ritika Luthra
- Department of Biotechnology, Delhi Technological University, Delhi. India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida. India
| |
Collapse
|
48
|
Oboh G, Olatunde DM, Ademosun AO, Ogunsuyi OB. Effect of citrus peels-supplemented diet on longevity, memory index, redox status, cholinergic and monoaminergic enzymes in Drosophila melanogaster model. J Food Biochem 2021; 45:e13616. [PMID: 33533492 DOI: 10.1111/jfbc.13616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 01/23/2023]
Abstract
This study sought to determine the life span promoting effecof orange (Citrus sinensis), tangerine (Citrus maxima) and grapefruit (Citrus paradisi) peels in Drosophila melanogaster model. Flies (both gender, 3 to 5 days old) were divided into seven (7) groups (n = 5) containing 40 flies each; group I (control) flies were fed with basal diet, II-VII were flies were fed with basal diet containing 0.1 and 1.0% of tangerine peel (TP), orange peel (CP), and grapefruit peel (GP) respectively, for 14 days. Locomotor performance and memory index were assessed via negative geotaxis and aversive phototaxis suppression assays, respectively. Thereafter, the fly homogenates were assayed for activities of acetylcholinesterase (AChE), monoamine oxidase (MAO) and antioxidant enzymes as well as other indices of their redox. The results revealed that the citrus peels significantly improved longevity, locomotor performance, memory index, antioxidant status, and modulate cholinesterase and monoamine oxidase enzyme activities in treated flies when compared to the control. The results obtained suggest that the citrus peels offer potentials as dietary supplement with life span promoting properties in D. melanogaster model which could as well serve as a functional food additives. PRACTICAL APPLICATIONS: Citrus peels, although often considered agro-wastes, are used as food supplements and food ingredents especially in production of candies, jams and custards. This study suggests the use of orange (Citrus sinensis), tangerine (Citrus maxima), and grapefruit (Citrus paradisi) peels as dietary supplements which offers potential life span promoting properties.
Collapse
Affiliation(s)
- Ganiyu Oboh
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Damilola M Olatunde
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ayokunle O Ademosun
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Opeyemi B Ogunsuyi
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.,Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
49
|
Uddin MS, Al Mamun A, Kabir MT, Ahmad J, Jeandet P, Sarwar MS, Ashraf GM, Aleya L. Neuroprotective role of polyphenols against oxidative stress-mediated neurodegeneration. Eur J Pharmacol 2020; 886:173412. [DOI: 10.1016/j.ejphar.2020.173412] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022]
|
50
|
Ali AM, Kunugi H. Apitherapy for Parkinson's Disease: A Focus on the Effects of Propolis and Royal Jelly. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1727142. [PMID: 33123309 PMCID: PMC7586183 DOI: 10.1155/2020/1727142] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/27/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023]
Abstract
The vast increase of world's aging populations is associated with increased risk of age-related neurodegenerative diseases such as Parkinson's disease (PD). PD is a widespread disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra, which encompasses a wide range of debilitating motor, emotional, cognitive, and physical symptoms. PD threatens the quality of life of millions of patients and their families. Additionally, public welfare and healthcare systems are burdened with its high cost of care. Available treatments provide only a symptomatic relief and produce a trail of noxious side effects, which increase noncompliance. Hence, researchers have recently focused on the use of nutraceuticals as safe adjunctive treatments of PD to limit its progress and associated damages in affected groups. Propolis is a common product of the beehive, which possesses a large number of therapeutic properties. Royal jelly (RJ) is a bee product that is fed to bee queens during their entire life, and it contributes to their high physical fitness, fertility, and long lifespan. Evidence suggests that propolis and RJ can promote health by preventing the occurrence of age-related debilitating diseases. Therefore, they have been used to treat various serious disorders such as diabetes mellitus, cardiovascular diseases, and cancer. Some evolving studies used these bee products to treat PD in animal models. However, a clear understanding of the collective effect of propolis and RJ as well as their mechanism of action in PD is lacking. This review evaluates the available literature for the effects of propolis and RJ on PD. Whenever possible, it elaborates on the underlying mechanisms through which they function in this disorder and offers insights for fruitful use of bee products in future clinical trials.
Collapse
Affiliation(s)
- Amira Mohammed Ali
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Alexandria, Egypt
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|