1
|
Milczarek O, Jarocha D, Starowicz-Filip A, Kasprzycki M, Kijowski J, Mordel A, Kwiatkowski S, Majka M. Bone Marrow Nucleated Cells and Bone Marrow-Derived CD271+ Mesenchymal Stem Cell in Treatment of Encephalopathy and Drug-Resistant Epilepsy. Stem Cell Rev Rep 2024; 20:1015-1025. [PMID: 38483743 DOI: 10.1007/s12015-023-10673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 05/12/2024]
Abstract
The broad spectrum of brain injuries in preterm newborns and the plasticity of the central nervous system prompts us to seek solutions for neurodegeneration to prevent the consequences of prematurity and perinatal problems. The study aimed to evaluate the safety and efficacy of the implantation of autologous bone marrow nucleated cells and bone marrow mesenchymal stem cells in different schemes in patients with hypoxic-ischemic encephalopathy and immunological encephalopathy. Fourteen patients received single implantation of bone marrow nucleated cells administered intrathecally and intravenously, followed by multiple rounds of bone marrow mesenchymal stem cells implanted intrathecally, and five patients were treated only with repeated rounds of bone marrow mesenchymal stem cells. Seizure outcomes improved in most cases, including fewer seizures and status epilepticus and reduced doses of antiepileptic drugs compared to the period before treatment. The neuropsychological improvement was more frequent in patients with hypoxic-ischemic encephalopathy than in the immunological encephalopathy group. Changes in emotional functioning occurred with similar frequency in both groups of patients. In the hypoxic-ischemic encephalopathy group, motor improvement was observed in all patients and the majority in the immunological encephalopathy group. The treatment had manageable toxicity, mainly mild to moderate early-onset adverse events. The treatment was generally safe in the 4-year follow-up period, and the effects of the therapy were maintained after its termination.
Collapse
Affiliation(s)
- Olga Milczarek
- Faculty of Medicine, Department of Children's Neurosurgery, Jagiellonian University Medical College Institute of Pediatrics, Cracow, Poland.
| | - Danuta Jarocha
- Hematology Department, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anna Starowicz-Filip
- Faculty of Medicine, Department of Children's Neurosurgery, Jagiellonian University Medical College Institute of Pediatrics, Cracow, Poland
- Faculty of Medicine, Department of Psychology, Jagiellonian University Medicl College, Cracow, Poland
| | - Maciej Kasprzycki
- Students' Scientific Group at the Department of Pediatric Neurosurgery, Jagiellonian University Medical College Institute of Pediatrics, Cracow, Poland
| | - Jacek Kijowski
- Faculty of Medicine, Department of Transplantation, Jagiellonian University Medical College Institute of Pediatrics, Cracow, Poland
| | - Anna Mordel
- Faculty of Medicine, Department of Transplantation, Jagiellonian University Medical College Institute of Pediatrics, Cracow, Poland
| | - Stanisław Kwiatkowski
- Faculty of Medicine, Department of Children's Neurosurgery, Jagiellonian University Medical College Institute of Pediatrics, Cracow, Poland
| | - Marcin Majka
- Faculty of Medicine, Department of Transplantation, Jagiellonian University Medical College Institute of Pediatrics, Cracow, Poland
| |
Collapse
|
2
|
Kyselovic J, Adamičková A, Gažová A, Valášková S, Chomaničová N, Červenák Z, Madaric J. Atorvastatin Treatment Significantly Increased the Concentration of Bone Marrow-Derived Mononuclear Cells and Transcutaneous Oxygen Pressure and Lowered the Pain Scale after Bone Marrow Cells Treatment in Patients with "No-Option" Critical Limb Ischaemia. Biomedicines 2024; 12:922. [PMID: 38672276 PMCID: PMC11048671 DOI: 10.3390/biomedicines12040922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The present study investigated the outcomes and possible predictive factors of autologous bone marrow cells (BMCs) therapy in patients with "no-option" critical limb ischaemia (CLI). It was focused on exploring the clinical background and prior statin and renin-angiotensin system (RAS)-acting agents pharmacotherapy related to the therapeutic efficacy of BMCs treatment. METHODS In the present study, we reviewed thirty-three patients (mean age 64.9 ± 10 years; 31 males) with advanced CLI after failed or impossible revascularisation, who were treated with 40 mL of autologous BMCs by local intramuscular application. Patients with limb salvage and wound healing (N = 22) were considered as responders to BMCs therapy, and patients with limb salvage and complete ischemic wound healing (N = 13) were defined as super-responders. Logistic regression models were used to screen and identify the prognostic factors, and a receiver operating characteristics (ROC) curve, a linear regression, and a survival curve were drawn to determine the predictive accuracy, the correlation between the candidate predictors, and the risk of major amputation. RESULTS Based on the univariate regression analysis, baseline C-reactive protein (CRP) and transcutaneous oxygen pressure (TcPO2) values were identified as prognostic factors of the responders, while CRP value, ankle-brachial index (ABI), and bone marrow-derived mononuclear cells (BM-MNCs) concentration were identified as prognostic factors of the super-responders. An area under the ROC curve of 0.768 indicated good discrimination for CRP > 8.1 mg/L before transplantation as a predictive factor for negative clinical response. Linear regression analysis revealed a significant dependence between the levels of baseline CRP and the concentration of BM-MNCs in transplanted bone marrow. Patients taking atorvastatin before BMCs treatment (N = 22) had significantly improved TcPO2 and reduced pain scale after BMCs transplant, compared to the non-atorvastatin group. Statin treatment was associated with reduced risk for major amputation. However, the difference was not statistically significant. Statin use was also associated with a significantly higher concentration of BM-MNCs in the transplanted bone marrow compared to patients without statin treatment. Patients treated with RAS-acting agents (N = 20) had significantly reduced pain scale after BMCs transplant, compared to the non-RAS-acting agents group. Similar results, reduced pain scale and improved TcPO2, were achieved in patients treated with atorvastatin and RAS-acting agents (N = 17) before BMCs treatment. Results of the Spearman correlation showed a significant positive correlation between CLI regression, responders, and previous therapy before BMCs transplant with RAS-acting agents alone or with atorvastatin. CONCLUSIONS CRP and TcPO2 were prognostic factors of the responders, while CRP value, ABI, and BM-MNCs concentration were identified as predictive factors of the super-responders. Atorvastatin treatment was associated with a significantly increased concentration of BM-MNCs in bone marrow concentrate and higher TcPO2 and lower pain scale after BMCs treatment in CLI patients. Similarly, reduced pain scales and improved TcPO2 were achieved in patients treated with atorvastatin and RAS-acting agents before BMCs treatment. Positive correlations between responders and previous treatment before BMCs transplant with RAS-acting agents alone or with atorvastatin were significant.
Collapse
Affiliation(s)
- Jan Kyselovic
- 5th Department of Internal Medicine, Faculty of Medicine, Comenius University Bratislava, Špitálska 24, 81372 Bratislava, Slovakia; (J.K.)
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Adriana Adamičková
- 5th Department of Internal Medicine, Faculty of Medicine, Comenius University Bratislava, Špitálska 24, 81372 Bratislava, Slovakia; (J.K.)
| | - Andrea Gažová
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Comenius University Bratislava, Špitálska 24, 81372 Bratislava, Slovakia
| | - Simona Valášková
- International Laser Center, Slovak Centre of Scientific and Technical Information, Lamačská cesta 7315/8A, 84104 Bratislava, Slovakia
| | - Nikola Chomaničová
- International Laser Center, Slovak Centre of Scientific and Technical Information, Lamačská cesta 7315/8A, 84104 Bratislava, Slovakia
| | - Zdenko Červenák
- 5th Department of Internal Medicine, Faculty of Medicine, Comenius University Bratislava, Špitálska 24, 81372 Bratislava, Slovakia; (J.K.)
| | - Juraj Madaric
- Department of Angiology, Faculty of Medicine, Comenius University and National Institute of Cardiovascular Disease, Pod Krásnou Hôrkou 1, 83101 Bratislava, Slovakia;
| |
Collapse
|
3
|
Jeyaraman M, Nagarajan S, Maffulli N, R P P, Jeyaraman N, N A, Khanna M, Yadav S, Gupta A. Stem Cell Therapy in Critical Limb Ischemia. Cureus 2023; 15:e41772. [PMID: 37575721 PMCID: PMC10416751 DOI: 10.7759/cureus.41772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Critical limb ischemia (CLI), a serious outcome of peripheral artery disease, is frequently associated with morbid outcomes. The available treatment modalities do not provide satisfactory results, leading to marked morbidities such as joint contracture and amputations, resulting in a high economic burden. The peripheral vascular disease tends to cause more morbidity in patients with diabetes and atherosclerosis, given the pre-existing compromised perfusion of medium and small vessels in diabetic patients. With surgical procedures, the chance of vascular compromise further increases, inducing a significantly greater rate of amputation. Hence, the need for nonsurgical treatment modalities such as stem cell therapy (SCT), which promotes angiogenesis, is warranted. In CLI, SCT acts through neovascularization and the development of collateral arteries, which increases blood supply to the soft tissues of the ischemic limb, providing satisfactory outcomes. An electronic database search was performed in PubMed, SCOPUS, EMBASE, and ScienceDirect to identify published clinical trial data, research studies, and review articles on stem cell therapy in critical limb ischemia. The search resulted in a total of 2391 results. Duplicate articles screening resulted in 565 articles. In-depth screening of abstracts and research titles excluded 520 articles, yielding 45 articles suitable for full-text review. On review of full text, articles with overlapping and similar results were filtered, ending in 25 articles. SCT promotes arteriogenesis, and bone marrow-derived mesenchymal stromal cells produce significant effects like reduced morbidity, improved amputation-free survival (AFS ) rate, and improved distal perfusion even in "no-option" CLI patients. SCT is a promising treatment modality for CLI patients, even in those in whom endovascular and revascularization procedures are impossible. SCT assures a prolonged AFS rate, improved distal perfusion, improved walking distances, reduced amputation rates, and increased survival ratio, and is well-tolerated.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, IND
- Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow, IND
- Regenerative Medicine, Datta Meghe Institute of Higher Education and Research, Wardha, IND
- Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, IND
- Orthopaedics, South Texas Orthopaedic Research Institute, Laredo, USA
| | - Somumurthy Nagarajan
- Orthopaedic Rheumatology, Dr. Ram Manohar Lohiya National Law University, Lucknow, IND
| | - Nicola Maffulli
- Orthopedics, School of Medicine and Surgery, University of Salerno, Fisciano, ITA
- Orthopaedics, San Giovanni di Dio e Ruggi D'Aragona Hospital, Hospital of Salerno, Salerno, ITA
- Orthopedics, Barts and the London School of Medicine and Dentistry, London, GBR
- Orthopedics, Keele University School of Medicine, Stoke-on-Trent, GBR
| | - Packkyarathinam R P
- Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow, IND
- Orthopaedic Rheumatology, Dr. Ram Manohar Lohiya National Law University, Lucknow, IND
- Regenerative and Interventional Orthobiologics, Dr. Ram Manohar Lohiya National Law University, Lucknow, IND
| | - Naveen Jeyaraman
- Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, IND
- Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow, IND
- Regenerative Medicine, Datta Meghe Institute of Higher Education and Research, Wardha, IND
- Orthopaedic Rheumatology, Dr. Ram Manohar Lohiya National Law University, Lucknow, IND
- Regenerative and Interventional Orthobiologics, Dr. Ram Manohar Lohiya National Law University, Lucknow, IND
| | - Arulkumar N
- Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, IND
- Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow, IND
- Regenerative Medicine, Datta Meghe Institute of Higher Education and Research, Wardha, IND
- Orthopaedic Rheumatology, Dr. Ram Manohar Lohiya National Law University, Lucknow, IND
- Regenerative and Interventional Orthobiologics, Dr. Ram Manohar Lohiya National Law University, Lucknow, IND
| | - Manish Khanna
- Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow, IND
- Orthopaedics, Autonomous State Medical College, Ayodhya, IND
| | - Sankalp Yadav
- Internal Medicine, Shri Madan Lal Khurana Chest Clinic, New Delhi, IND
| | - Ashim Gupta
- Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow, IND
- Orthopaedics, South Texas Orthopaedic Research Institute, Laredo, USA
- Regenerative Medicine, Future Biologics, Lawrenceville, USA
- Regenerative Medicine, BioIntegrate, Lawrenceville, USA
- Regenerative Medicine, Regenerative Orthopaedics, Noida, IND
| |
Collapse
|
4
|
Czosseck A, Chen MM, Nguyen H, Meeson A, Hsu CC, Chen CC, George TA, Ruan SC, Cheng YY, Lin PJ, Hsieh PCH, Lundy DJ. Porous scaffold for mesenchymal cell encapsulation and exosome-based therapy of ischemic diseases. J Control Release 2022; 352:879-892. [PMID: 36370875 DOI: 10.1016/j.jconrel.2022.10.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Abstract
Ischemic diseases including myocardial infarction (MI) and limb ischemia are some of the greatest causes of morbidity and mortality worldwide. Cell therapy is a potential treatment but is usually limited by poor survival and retention of donor cells injected at the target site. Since much of the therapeutic effects occur via cell-secreted paracrine factors, including extracellular vesicles (EVs), we developed a porous material for cell encapsulation which would improve donor cell retention and survival, while allowing EV secretion. Human donor cardiac mesenchymal cells were used as a model therapeutic cell and the encapsulation system could sustain three-dimensional cell growth and secretion of therapeutic factors. Secretion of EVs and protective growth factors were increased by encapsulation, and secreted EVs had hypoxia-protective, pro-angiogenic activities in in vitro assays. In a mouse model of limb ischemia the implant improved angiogenesis and blood flow, and in an MI model the system preserved ejection fraction %. In both instances, the encapsulation system greatly extended donor cell retention and survival compared to directly injected cells. This system represents a promising therapy for ischemic diseases and could be adapted for treatment of other diseases in the future.
Collapse
Affiliation(s)
- Andreas Czosseck
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Max M Chen
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Helen Nguyen
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Annette Meeson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Chuan-Chih Hsu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Chien-Chung Chen
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Thomashire A George
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Shu-Chian Ruan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yuan-Yuan Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Po-Ju Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Patrick C H Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - David J Lundy
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; Center for Cell Therapy, Taipei Medical University Hospital, Taipei 110, Taiwan.
| |
Collapse
|
5
|
Shirbaghaee Z, Hassani M, Heidari Keshel S, Soleimani M. Emerging roles of mesenchymal stem cell therapy in patients with critical limb ischemia. Stem Cell Res Ther 2022; 13:462. [PMID: 36068595 PMCID: PMC9449296 DOI: 10.1186/s13287-022-03148-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Critical limb ischemia (CLI), the terminal stage of peripheral arterial disease (PAD), is characterized by an extremely high risk of amputation and vascular issues, resulting in severe morbidity and mortality. In patients with severe limb ischemia with no alternative therapy options, such as endovascular angioplasty or bypass surgery, therapeutic angiogenesis utilizing cell-based therapies is vital for increasing blood flow to ischemic regions. Mesenchymal stem cells (MSCs) are currently considered one of the most encouraging cells as a regenerative alternative for the surgical treatment of CLI, including restoring tissue function and repairing ischemic tissue via immunomodulation and angiogenesis. The regenerative treatments for limb ischemia based on MSC therapy are still considered experimental. Despite recent advances in preclinical and clinical research studies, it is not recommended for regular clinical use. In this study, we review the immunomodulatory features of MSC besides the current understanding of different sources of MSC in the angiogenic treatment of CLI subjects and their potential applications as therapeutic agents. Specifically, this paper concentrates on the most current clinical application issues, and several recommendations are provided to improve the efficacy of cell therapy for CLI patients.
Collapse
Affiliation(s)
- Zeinab Shirbaghaee
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassani
- Department of Vascular and Endovascular Surgery, Ayatollah Taleghani Hospital Research Development Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Applied Cell Science and Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Adamičková A, Gažová A, Adamička M, Chomaničová N, Valašková S, Červenák Z, Šalingová B, Kyselovič J. Molecular basis of the effect of atorvastatin pretreatment on stem cell therapy in chronic ischemic diseases – critical limb ischemia. Physiol Res 2021. [DOI: 10.33549//physiolres.934718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Autologous stem cell therapy is the most promising alternative treatment in patients with chronic ischemic diseases, including ischemic heart disease and critical limb ischemia, which are characterized by poor prognosis related to serious impair of quality of life, high risk of cardiovascular events and mortality rates. However, one of the most serious shortcomings of stem cell transplantation are low survival after transplantation to the site of injury, as large number of stem cells are lost within 24 hours after delivery. Multiple studies suggest that combination of lipid-lowering drugs, statins, and stem cell transplantation might improve therapeutic efficacy in regenerative medicine. Statins are inhibitors of HMG-CoA reductase and belong to recommended therapy in all patients suffering from critical limb ischemia. Statins possess non-lipid effects which involve improvement of endothelial function, decrease of vascular inflammation and oxidative stress, anti-cancer and stem cell modulation capacities. These non-lipid effects are explained by inhibition of mevalonate synthesis via blocking isoprenoid intermediates synthesis, such as farnesylpyrophospate and geranylgeranylpyrophospate and result in modulation of the PI3K/Akt pathway. Moreover, statin-mediated microRNA regulation may contribute to the pleiotropic functions. MicroRNA interplay in gene regulatory network of IGF/Akt pathway may be of special significance for the treatment of critical limb ischemia. We assume further studies are needed for detailed analysis of statin interactions with microRNA at the molecular level and their link to PI3K/Akt and IGF/Akt pathway in stem cells, which are currently the most promising treatment strategy used in chronic ischemic diseases.
Collapse
Affiliation(s)
| | - A Gažová
- 5th Dept. Int. Med., Fac. Med., Comenius Univ. Bratislava, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
7
|
Adamičková A, Gažová A, Adamička M, Chomaničová N, Valašková S, Červenák Z, Šalingová B, Kyselovič J. Molecular basis of the effect of atorvastatin pretreatment on stem cell therapy in chronic ischemic diseases - critical limb ischemia. Physiol Res 2021; 70:S527-S533. [PMID: 35199541 PMCID: PMC9054177 DOI: 10.33549/physiolres.934718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022] Open
Abstract
Autologous stem cell therapy is the most promising alternative treatment in patients with chronic ischemic diseases, including ischemic heart disease and critical limb ischemia, which are characterized by poor prognosis related to serious impair of quality of life, high risk of cardiovascular events and mortality rates. However, one of the most serious shortcomings of stem cell transplantation are low survival after transplantation to the site of injury, as large number of stem cells are lost within 24 hours after delivery. Multiple studies suggest that combination of lipid-lowering drugs, statins, and stem cell transplantation might improve therapeutic efficacy in regenerative medicine. Statins are inhibitors of HMG-CoA reductase and belong to recommended therapy in all patients suffering from critical limb ischemia. Statins possess non-lipid effects which involve improvement of endothelial function, decrease of vascular inflammation and oxidative stress, anti-cancer and stem cell modulation capacities. These non-lipid effects are explained by inhibition of mevalonate synthesis via blocking isoprenoid intermediates synthesis, such as farnesylpyrophospate and geranylgeranylpyrophospate and result in modulation of the PI3K/Akt pathway. Moreover, statin-mediated microRNA regulation may contribute to the pleiotropic functions. MicroRNA interplay in gene regulatory network of IGF/Akt pathway may be of special significance for the treatment of critical limb ischemia. We assume further studies are needed for detailed analysis of statin interactions with microRNA at the molecular level and their link to PI3K/Akt and IGF/Akt pathway in stem cells, which are currently the most promising treatment strategy used in chronic ischemic diseases.
Collapse
Affiliation(s)
- A Adamičková
- 5th Department of Internal Medicine, Faculty of Medicine, Comenius University Bratislava, Slovakia.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Osipova OS, Saaia SB, Karpenko AA, Zakiian SM. [Problems and prospects of cell therapy for critical ischaemia of lower limbs]. ANGIOLOGII︠A︡ I SOSUDISTAI︠A︡ KHIRURGII︠A︡ = ANGIOLOGY AND VASCULAR SURGERY 2020; 26:23-33. [PMID: 32597882 DOI: 10.33529/angio2020220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cell therapy was proposed as a procedure of indirect revascularization for patients with critical ischaemia of lower extremities for whom endovascular and surgical revascularization is impossible. We present herein a review of the state of the art of studies in the field of cell therapy of this cohort of patients. BASIC PROVISIONS Cell therapy has proved safe, however, the results of studies of efficacy are relatively ambiguous and unconvincing. The number of patients in separately taken clinical trials is minimal. The reviewed studies differed not only by heterogeneity of the cell types used but by the routes of administration of cells (cells were delivered either intramuscularly (predominantly) or intraarterially) and the duration of follow up (time of assessment and duration of follow up varied from 1 month to 2 years). One of the problems became the lack of the routine study of the angiogenic potential of stem cells prior to their clinical application. It is known that the angiogenic activity of multipotent cells of apparently healthy patients may differ from that of patients suffering from atherosclerosis, chronic renal failure, diabetes. CONCLUSIONS It is supposed that treatment with stem cells or precursor cells is more efficient as compared to protein or gene therapy not only owing to direct vasculogenic properties but a paracrine action through excretion of proangiogenic biologically active substances. More studies with larger cohorts are necessary to provide stronger safety and efficacy data on cell therapy. Besides, a promising trend in the field of cellular approaches is modulation of regenerative capability of stem cells, which may help overcome difficulties in understanding the place of cell therapy in therapeutic angiogenesis.
Collapse
Affiliation(s)
- O S Osipova
- Department of Vascular Pathology and Hybrid Surgery, National Medical Research Centre named after Academician Meshalkin E.N. under the RF Ministry of Public Health, Novosibirsk, Russia
| | - Sh B Saaia
- Department of Vascular Pathology and Hybrid Surgery, National Medical Research Centre named after Academician Meshalkin E.N. under the RF Ministry of Public Health, Novosibirsk, Russia
| | - A A Karpenko
- Department of Vascular Pathology and Hybrid Surgery, National Medical Research Centre named after Academician Meshalkin E.N. under the RF Ministry of Public Health, Novosibirsk, Russia
| | - S M Zakiian
- Department of Vascular Pathology and Hybrid Surgery, National Medical Research Centre named after Academician Meshalkin E.N. under the RF Ministry of Public Health, Novosibirsk, Russia
| |
Collapse
|
9
|
Ammendola M, Currò G, Memeo R, Curto LS, Luposella M, Zuccalà V, Pessaux P, Navarra G, Gadaleta CD, Ranieri G. Targeting Stem Cells with Hyperthermia: Translational Relevance in Cancer Patients. Oncology 2020; 98:755-762. [PMID: 32784294 DOI: 10.1159/000509039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/27/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Tumor recurrences or metastases remain a major hurdle in improving overall cancer survival. In anticancer therapy, some patients inevitably develop chemo-/radiotherapy resistance at some point. Cancer stem cells are the driving force of tumorigenesis, recurrences, and metastases, contributing also to the failure of some cancer treatments. SUMMARY Emergent evidence suggests that stem cell diseases are at the base of human cancers, and tumor progression and chemo-/radiotherapy resistance may be dependent on just a small subpopulation of cancer stem cells. Hyperthermia can be a strong cancer treatment, especially when combined with radio- or chemotherapy. It is a relatively safe therapy, may kill or weaken tumor cells, and significantly increases the effectiveness of other treatments. However, these mechanisms remain largely unknown. A literature search was performed using PubMed including cited English publications. The search was last conducted in December 2019. Search phrases included "stem cells," "hyperthermia," "cancer," and "therapy." Abstracts, letters, editorials, and expert opinions were not considered for the drafting of the study. Key Message: Our goal was to focus on and to summarize different biological features of cancer stem cells and new therapeutic approaches using hyperthermia and its potential translation to human clinical trials.
Collapse
Affiliation(s)
- Michele Ammendola
- Science of Health Department, Digestive Surgery Unit, University "Magna Graecia" Medical School, Catanzaro, Italy,
| | - Giuseppe Currò
- Science of Health Department, Digestive Surgery Unit, University "Magna Graecia" Medical School, Catanzaro, Italy
- Department of Human Pathology of Adult and Evolutive Age, Surgical Oncology Division, University Hospital of Messina, Messina, Italy
| | - Riccardo Memeo
- Hepato-Biliary and Pancreatic Surgical Unit, "F. Miulli" Hospital, Bari, Italy
| | - Lucia Stella Curto
- Science of Health Department, Digestive Surgery Unit, University "Magna Graecia" Medical School, Catanzaro, Italy
| | - Maria Luposella
- Cardiovascular Disease Unit, "San Giovanni di Dio" Hospital, Crotone, Italy
| | - Valeria Zuccalà
- Science of Health Department, Digestive Surgery Unit, University "Magna Graecia" Medical School, Catanzaro, Italy
| | - Patrick Pessaux
- Hepato-Biliary and Pancreatic Surgical Unit, General, Digestive and Endocrine Surgery, IRCAD, IHU Mix-Surg, Institute for Minimally Invasive Image-Guided Surgery, University of Strasbourg, Strasbourg, France
| | - Giuseppe Navarra
- Department of Human Pathology of Adult and Evolutive Age, Surgical Oncology Division, University Hospital of Messina, Messina, Italy
| | - Cosmo Damiano Gadaleta
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Girolamo Ranieri
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| |
Collapse
|
10
|
Hassanshahi M, Khabbazi S, Peymanfar Y, Hassanshahi A, Hosseini-Khah Z, Su YW, Xian CJ. Critical limb ischemia: Current and novel therapeutic strategies. J Cell Physiol 2019; 234:14445-14459. [PMID: 30637723 DOI: 10.1002/jcp.28141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023]
Abstract
Critical limb ischemia (CLI) is the advanced stage of peripheral artery disease spectrum and is defined by limb pain or impending limb loss because of compromised blood flow to the affected extremity. Current conventional therapies for CLI include amputation, bypass surgery, endovascular therapy, and pharmacological approaches. Although these conventional therapeutic strategies still remain as the mainstay of treatments for CLI, novel and promising therapeutic approaches such as proangiogenic gene/protein therapies and stem cell-based therapies have emerged to overcome, at least partially, the limitations and disadvantages of current conventional therapeutic approaches. Such novel CLI treatment options may become even more effective when other complementary approaches such as utilizing proper bioscaffolds are used to increase the survival and engraftment of delivered genes and stem cells. Therefore, herein, we address the benefits and disadvantages of current therapeutic strategies for CLI treatment and summarize the novel and promising therapeutic approaches for CLI treatment. Our analyses also suggest that these novel CLI therapeutic strategies show considerable advantages to be used when current conventional methods have failed for CLI treatment.
Collapse
Affiliation(s)
- Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Samira Khabbazi
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Yaser Peymanfar
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Alireza Hassanshahi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Zahra Hosseini-Khah
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yu-Wen Su
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
11
|
Gaspar D, Peixoto R, De Pieri A, Striegl B, Zeugolis DI, Raghunath M. Local pharmacological induction of angiogenesis: Drugs for cells and cells as drugs. Adv Drug Deliv Rev 2019; 146:126-154. [PMID: 31226398 DOI: 10.1016/j.addr.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/12/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022]
Abstract
The past decades have seen significant advances in pro-angiogenic strategies based on delivery of molecules and cells for conditions such as coronary artery disease, critical limb ischemia and stroke. Currently, three major strategies are evolving. Firstly, various pharmacological agents (growth factors, interleukins, small molecules, DNA/RNA) are locally applied at the ischemic region. Secondly, preparations of living cells with considerable bandwidth of tissue origin, differentiation state and preconditioning are delivered locally, rarely systemically. Thirdly, based on the notion, that cellular effects can be attributed mostly to factors secreted in situ, the cellular secretome (conditioned media, exosomes) has come into the spotlight. We review these three strategies to achieve (neo)angiogenesis in ischemic tissue with focus on the angiogenic mechanisms they tackle, such as transcription cascades, specific signalling steps and cellular gases. We also include cancer-therapy relevant lymphangiogenesis, and shall seek to explain why there are often conflicting data between in vitro and in vivo. The lion's share of data encompassing all three approaches comes from experimental animal work and we shall highlight common technical obstacles in the delivery of therapeutic molecules, cells, and secretome. This plethora of preclinical data contrasts with a dearth of clinical studies. A lack of adequate delivery vehicles and standardised assessment of clinical outcomes might play a role here, as well as regulatory, IP, and manufacturing constraints of candidate compounds; in addition, completed clinical trials have yet to reveal a successful and efficacious strategy. As the biology of angiogenesis is understood well enough for clinical purposes, it will be a matter of time to achieve success for well-stratified patients, and most probably with a combination of compounds.
Collapse
Affiliation(s)
- Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rita Peixoto
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Andrea De Pieri
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Proxy Biomedical Ltd., Coilleach, Spiddal, Galway, Ireland
| | - Britta Striegl
- Competence Centre Tissue Engineering for Drug Development (TEDD), Centre for Cell Biology & Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Zurich, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Competence Centre Tissue Engineering for Drug Development (TEDD), Centre for Cell Biology & Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Zurich, Switzerland.
| |
Collapse
|
12
|
Hsu SL, Yin TC, Shao PL, Chen KH, Wu RW, Chen CC, Lin PY, Chung SY, Sheu JJ, Sung PH, Chen CY, Wang CJ, Yip HK, Lee MS. Hyperbaric oxygen facilitates the effect of endothelial progenitor cell therapy on improving outcome of rat critical limb ischemia. Am J Transl Res 2019; 11:1948-1964. [PMID: 31105810 PMCID: PMC6511789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
We tested the hypothesis that hyperbaric oxygen (HBO) (100% oxygen/2.4 atmospheres) facilitated the effect of autologous endothelial progenitor cell (EPC) therapy on restoring the blood flow in rat critical-limb ischemia (CLI). Adult-male-SD rats (n = 8/each group) were categorized into group 1 [sham control (SC)], group 2 (CLI-treated with culture medium), group 3 [CLI-intermittent HBO (3 h/day for 5 consecutive days after CLI), group 4 (CLI-EPC/2.0 × 106 cells), and group 5 (CLI-HBO-EPC). By day 5 after CLI, flow cytometry showed that the circulating EPC (Sca-1/CD31+/C-kit/CD31+/CD34+) levels were highest in group 5 and lowest in group 2 (all P < 0.001). By day 14, laser Doppler demonstrated that the ratio of blood flow (i.e., CLI to normal hind-limb) was highest in group 1, lowest in group 2 and significantly higher in group 5 than in groups 3 and 4 (all P < 0.0001). The protein expressions of endothelial-cell biomarkers (CD31/vWF/eNOS), and numbers of endothelial-cell markers (CD31+/vWF+) and small vessels exhibited a similar pattern to blood-flow ratio among five groups, whereas the angiogenesis parameters in protein (CXCR4/SDF-1α/HIF-1α/VEGF) and cellular (HIF-1α/SDF-1α/CXCR4+) levels were progressively increased from groups 1 to 5 (all P < 0.0001). The protein expression of apoptotic (mitochondrial-Bax/cleaved-capspase-3/PARP), fibrotic (p-Smad3/TGF-ß) and mitochondrial-damaged (cytosolic-cytochrome C) exhibited an opposite pattern, whereas the protein expressions of anti-fibrotic (BMP-2/p-Smad1/5) and mitochondrial integrity (mitochondrial-cytochrome C) exhibited an identical pattern of ratio of blood flow among the five groups (all P < 0.0001). Combined HBO-EPC therapy is superior to either one alone in improving ischemia in rodent CLI.
Collapse
Affiliation(s)
- Shan-Ling Hsu
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Tsung-Cheng Yin
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Pei-Lin Shao
- Department of Nursing, Asia UniversityTaichung 41354, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Re-Wen Wu
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Chien-Chang Chen
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Pao-Yuan Lin
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Sheng-Ying Chung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Jiunn-Jye Sheu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Chen-Yu Chen
- Department of Hyperbaric Oxygen Therapy Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Ching-Jen Wang
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Hon-Kan Yip
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Department of Nursing, Asia UniversityTaichung 41354, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan
| | - Mel S Lee
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| |
Collapse
|
13
|
Osipova O, Saaya S, Karpenko A, Zakian S, Aboian E. Cell therapy of critical limb ischemia-problems and prospects. VASA 2019; 48:461-471. [PMID: 30969159 DOI: 10.1024/0301-1526/a000787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cell therapy is proposed for indirect revascularization for the patient's incurable by endovascular or surgical revascularization. The therapy with stem cells (SCs) or progenitor cells is assumed to be more efficient as compared with protein or gene therapy not only because of their direct vasculogenic properties, but also thanks to their paracrine effect via secretion of manifold biologically active substances. This review gives an overview of the potential of SC-based therapy for critical limb ischemia (CLI), putative mechanism underlying cell therapy, and comparison of cell therapy to angiogenesis gene therapy in CLI treatment. Human trial data and meta-analysis, as well as some problems of clinical trials and considerations for future SC-based therapy in CLI are also discussed.
Collapse
Affiliation(s)
- Olesia Osipova
- Meshalkin National Medical Research Center, Novosibirsk, Russia
| | - Shoraan Saaya
- Meshalkin National Medical Research Center, Novosibirsk, Russia
| | - Andrei Karpenko
- Meshalkin National Medical Research Center, Novosibirsk, Russia
| | - Suren Zakian
- Meshalkin National Medical Research Center, Novosibirsk, Russia
| | - Edouard Aboian
- Division of Vascular Surgery, Palo Alto Medical Foundation, Burlingame, USA
| |
Collapse
|
14
|
Yeong XL, Chan ESY, Samuel M, Choong AMTL. Venous arterialization for the salvage of critically ischemic lower limbs. Hippokratia 2019. [DOI: 10.1002/14651858.cd013269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xue Lun Yeong
- University of New South Wales; Level 5, Wallace Wurth Building 18 High Street Sydney NSW Australia 2052
| | - Edwin SY Chan
- Singapore Clinical Research Institute; Cochrane Singapore; Nanos Building #02-01 31 Biopolis Way Singapore Singapore 138669
| | - Miny Samuel
- NUS Yong Loo Lin School of Medicine; Dean's Office; NUHS Tower Block, Level 11 1E Kent Ridge Road Singapore Singapore 119228
| | - Andrew MTL Choong
- SingVaSC, Singapore Vascular Surgical Collaborative; Singapore Singapore
- National University of Singapore; Cardiovascular Research Institute; Singapore Singapore
- Yong Loo Lin School of Medicine, National University of Singapore; Department of Surgery; Singapore Singapore
- National University Heart Centre; Division of Vascular Surgery; Singapore Singapore
| |
Collapse
|
15
|
Role of stem cell mobilization in the treatment of ischemic diseases. Arch Pharm Res 2019; 42:224-231. [PMID: 30680545 DOI: 10.1007/s12272-019-01123-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022]
Abstract
Stem cell mobilization plays important roles in the treatment of severe ischemic diseases, including myocardial infarction, limb ischemia, ischemic stroke, and acute kidney injury. Stem cell mobilization refers to the egress of heterogeneous stem cells residing in the bone marrow into the peripheral blood. In the clinic, granulocyte colony-stimulating factor (G-CSF) is the drug most commonly used to induce stem cell mobilization. Plerixafor, a direct antagonist of CXCR4, is also frequently used alone or in combination with G-CSF to mobilize stem cells. The molecular mechanisms by which G-CSF induces stem cell mobilization are well characterized. Briefly, G-CSF activates neutrophils in the bone marrow, which then release proteolytic enzymes, such as neutrophil elastase, cathepsin G, and matrix metalloproteinase 9, which cleave a variety of molecules responsible for stem cell retention in the bone marrow, including CXCL12, VCAM-1, and SCF. Subsequently, stem cells are released from the bone marrow into the peripheral blood. The released stem cells can be collected and used in autologous or allogeneic transplantation. To identify better conditions for stem cell mobilization in the treatment of acute and chronic ischemic diseases, several preclinical and clinical studies have been conducted over the past decade on various mobilizing agents. In this paper, we are going to review methods that induce mobilization of stem cells from the bone marrow and introduce the application of stem cell mobilization to therapy of ischemic diseases.
Collapse
|
16
|
NEMCOVA A, JIRKOVSKA A, DUBSKY M, BEM R, FEJFAROVA V, WOSKOVA V, PYSNA A, BUNCOVA M. Perfusion Scintigraphy in the Assessment of Autologous Cell Therapy in Diabetic Patients With Critical Limb Ischemia. Physiol Res 2018; 67:583-589. [DOI: 10.33549/physiolres.933868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Perfusion scintigraphy with technetium-99-methoxy-isobutyl-isonitrile (99mTc-MIBI) is often used for assessing myocardial function but the number of studies concerning lower limb perfusion is limited. The aim of our study was to assess whether 99mTc-MIBI was an eligible method for evaluation of the effect of cell therapy on critical limb ischemia (CLI) in diabetic patients. 99mTc-MIBI of calf muscles was performed before and 3 months after autologous cell therapy (ACT) in 24 diabetic patients with CLI. Scintigraphic parameters such as rest count and exercising count after a stress test were defined. These parameters and their ratios were compared between treated and untreated (control) limbs and with changes in transcutaneous oxygen pressure (TcPO2) that served as a reference method. The effect of ACT was confirmed by a significant increase in TcPO2 values (p˂0.001) at 3 months after ACT. We did not observe any significant changes of scintigraphic parameters both at rest and after stress 3 months after ACT, there were no differences between treated and control limbs and no association with TcPO2 changes. Results of our study showed no significant contribution of 99mTc-MIBI of calf muscles to the assessment of ACT in diabetic patients with CLI over a 3-month follow-up period.
Collapse
Affiliation(s)
- A. NEMCOVA
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Nemcova A, Jirkovska A, Dubsky M, Kolesar L, Bem R, Fejfarova V, Pysna A, Woskova V, Skibova J, Jude EB. Difference in Serum Endostatin Levels in Diabetic Patients with Critical Limb Ischemia Treated by Autologous Cell Therapy or Percutaneous Transluminal Angioplasty. Cell Transplant 2018; 27:1368-1374. [PMID: 29860903 PMCID: PMC6168989 DOI: 10.1177/0963689718775628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The aim of this study was to compare the serum levels of the anti-angiogenic factor endostatin (S-endostatin) as a potential marker of vasculogenesis after autologous cell therapy (ACT) versus percutaneous transluminal angioplasty (PTA) in diabetic patients with critical limb ischemia (CLI). A total of 25 diabetic patients with CLI treated in our foot clinic during the period 2008–2014 with ACT generating potential vasculogenesis were consecutively included in the study; 14 diabetic patients with CLI who underwent PTA during the same period were included in a control group in which no vasculogenesis had occurred. S-endostatin was measured before revascularization and at 1, 3, and 6 months after the procedure. The effect of ACT and PTA on tissue ischemia was confirmed by transcutaneous oxygen pressure (TcPO2) measurement at the same intervals. While S-endostatin levels increased significantly at 1 and 3 months after ACT (both P < 0.001), no significant change of S-endostatin after PTA was observed. Elevation of S-endostatin levels significantly correlated with an increase in TcPO2 at 1 month after ACT (r = 0.557; P < 0.001). Our study showed that endostatin might be a potential marker of vasculogenesis because of its significant increase after ACT in diabetic patients with CLI in contrast to those undergoing PTA. This increase may be a sign of a protective feedback mechanism of this anti-angiogenic factor.
Collapse
Affiliation(s)
- Andrea Nemcova
- 1 Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alexandra Jirkovska
- 1 Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Michal Dubsky
- 1 Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Libor Kolesar
- 2 Department of Immunogenetics, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Robert Bem
- 1 Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vladimira Fejfarova
- 1 Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Anna Pysna
- 1 Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Veronika Woskova
- 1 Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jelena Skibova
- 1 Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Edward B Jude
- 3 Diabetes Centre, Tameside Hospital NHS Foundation Trust and University of Manchester, Lancashire, UK
| |
Collapse
|
18
|
Liotta F, Annunziato F, Castellani S, Boddi M, Alterini B, Castellini G, Mazzanti B, Cosmi L, Acquafresca M, Bartalesi F, Dilaghi B, Dorigo W, Graziani G, Bartolozzi B, Bellandi G, Carli G, Bartoloni A, Fargion A, Fassio F, Fontanari P, Landini G, Lucente EAM, Michelagnoli S, Orsi Battaglini C, Panigada G, Pigozzi C, Querci V, Santarlasci V, Parronchi P, Troisi N, Baggiore C, Romagnani P, Mannucci E, Saccardi R, Pratesi C, Gensini G, Romagnani S, Maggi E. Therapeutic Efficacy of Autologous Non-Mobilized Enriched Circulating Endothelial Progenitors in Patients With Critical Limb Ischemia - The SCELTA Trial. Circ J 2018; 82:1688-1698. [PMID: 29576595 DOI: 10.1253/circj.cj-17-0720] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The therapeutic efficacy of bone marrow mononuclear cells (BM-MNC) autotransplantation in critical limb ischemia (CLI) has been reported. Variable proportions of circulating monocytes express low levels of CD34 (CD14+CD34lowcells) and behave in vitro as endothelial progenitor cells (EPCs). The aim of the present randomized clinical trial was to compare the safety and therapeutic effects of enriched circulating EPCs (ECEPCs) with BM-MNC administration. METHODS AND RESULTS ECEPCs (obtained from non-mobilized peripheral blood by immunomagnetic selection of CD14+and CD34+cells) or BM-MNC were injected into the gastrocnemius of the affected limb in 23 and 17 patients, respectively. After a mean of 25.2±18.6-month follow-up, both groups showed significant and progressive improvement in muscle perfusion (primary endpoint), rest pain, consumption of analgesics, pain-free walking distance, wound healing, quality of life, ankle-brachial index, toe-brachial index, and transcutaneous PO2. In ECEPC-treated patients, there was a positive correlation between injected CD14+CD34lowcell counts and the increase in muscle perfusion. The safety profile was comparable between the ECEPC and BM-MNC treatment arms. In both groups, the number of deaths and major amputations was lower compared with eligible untreated patients and historical reference patients. CONCLUSIONS This study supports previous trials showing the efficacy of BM-MNC autotransplantation in CLI patients and demonstrates comparable therapeutic efficacy between BM-MNC and EPEPCs.
Collapse
Affiliation(s)
- Francesco Liotta
- Careggi University Hospital
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | - Francesco Annunziato
- Careggi University Hospital
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | - Sergio Castellani
- Careggi University Hospital
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | - Maria Boddi
- Careggi University Hospital
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | | | | | | | - Lorenzo Cosmi
- Careggi University Hospital
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | | | | | | | | | | | | | | | - Giulia Carli
- Careggi University Hospital
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | | | | | | | | | | | | | | | - Carolina Orsi Battaglini
- Careggi University Hospital
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | | | | | - Valentina Querci
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | - Veronica Santarlasci
- Careggi University Hospital
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | - Paola Parronchi
- Careggi University Hospital
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | | | | | - Paola Romagnani
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | | | | | | | - Gianfranco Gensini
- Careggi University Hospital
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | - Sergio Romagnani
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | - Enrico Maggi
- Careggi University Hospital
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| |
Collapse
|
19
|
Autologous Stem Cell Therapy in Critical Limb Ischemia: A Meta-Analysis of Randomized Controlled Trials. Stem Cells Int 2018; 2018:7528464. [PMID: 29977308 PMCID: PMC5994285 DOI: 10.1155/2018/7528464] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/16/2018] [Indexed: 01/13/2023] Open
Abstract
Objective Critical limb ischemia (CLI) is the most dangerous stage of peripheral artery disease (PAD). Many basic researches and clinical treatment had been focused on stem cell transplantation for CLI. This systematic review was performed to review evidence for safety and efficacy of autologous stem cell therapy in CLI. Methods A systematic literature search was performed in the SinoMed, PubMed, Embase, ClinicalTrials.gov, and Cochrane Controlled Trials Register databases from building database to January 2018. Results Meta-analysis showed that cell therapy significantly increased the probability of ulcer healing (RR = 1.73, 95% CI = 1.45–2.06), angiogenesis (RR = 5.91, 95% CI = 2.49–14.02), and reduced the amputation rates (RR = 0.59, 95% CI = 0.46–0.76). Ankle-brachial index (ABI) (MD = 0.13, 95% CI = 0.11–0.15), TcO2 (MD = 12.22, 95% CI = 5.03–19.41), and pain-free walking distance (MD = 144.84, 95% CI = 53.03–236.66) were significantly better in the cell therapy group than in the control group (P < 0.01). Conclusions The results of this meta-analysis indicate that autologous stem cell therapy is safe and effective in CLI. However, higher quality and larger RCTs are required for further investigation to support clinical application of stem cell transplantation.
Collapse
|
20
|
Combined therapy for critical limb ischaemia: Biomimetic PLGA microcarriers potentiates the pro-angiogenic effect of adipose tissue stromal vascular fraction cells. J Tissue Eng Regen Med 2018; 12:1363-1373. [DOI: 10.1002/term.2667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/28/2018] [Indexed: 11/07/2022]
|
21
|
Berndt R, Hummitzsch L, Heß K, Albrecht M, Zitta K, Rusch R, Sarras B, Bayer A, Cremer J, Faendrich F, Groß J. Allogeneic transplantation of programmable cells of monocytic origin (PCMO) improves angiogenesis and tissue recovery in critical limb ischemia (CLI): a translational approach. Stem Cell Res Ther 2018; 9:117. [PMID: 29703251 PMCID: PMC5921555 DOI: 10.1186/s13287-018-0871-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/18/2018] [Accepted: 04/12/2018] [Indexed: 01/05/2023] Open
Abstract
BACKROUND Employing growth factor-induced partial reprogramming in vitro, peripheral human blood monocytes can acquire a state of plasticity along with expression of various markers of pluripotency. These so-called programmable cells of monocytic origin (PCMO) hold great promise in regenerative therapies. The aim of this translational study was to explore and exploit the functional properties of PCMO for allogeneic cell transplantation therapy in critical limb ischemia (CLI). METHODS Using our previously described differentiation protocol, murine and human monocytes were differentiated into PCMO. We examined paracrine secretion of pro-angiogenic and tissue recovery-associated proteins under hypoxia and induction of angiogenesis by PCMO in vitro. Allogeneic cell transplantation of PCMO was performed in a hind limb ischemia mouse model in comparison to cell transplantation of native monocytes and a placebo group. Moreover, we analyzed retrospectively four healing attempts with PCMO in patients with peripheral artery disease (PAD; Rutherford classification, stage 5 and 6). Statistical analysis was performed by using one-way ANOVA, Tukey's test or the Student's t test, p < 0.05. RESULTS Cell culture experiments revealed good resilience of PCMO under hypoxia, enhanced paracrine release of pro-angiogenic and tissue recovery-associated proteins and induction of angiogenesis in vitro by PCMO. Animal experiments demonstrated significantly enhanced SO2 saturation, blood flow, neoangiogenesis and tissue recovery after treatment with PCMO compared to treatment with native monocytes and placebo. Finally, first therapeutic application of PCMO in humans demonstrated increased vascular collaterals and improved wound healing in patients with chronic CLI without exaggerated immune response, malignant processes or extended infection after 12 months. In all patients minor and/or major amputations of the lower extremity could be avoided. CONCLUSIONS In summary, PCMO improve angiogenesis and tissue recovery in chronic ischemic muscle and first clinical results promise to provide an effective and safe treatment of CLI.
Collapse
Affiliation(s)
- Rouven Berndt
- Department of Cardiaovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Hs 18, D-24105, Kiel, Germany.
| | - Lars Hummitzsch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Katharina Heß
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Rene Rusch
- Department of Cardiaovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Hs 18, D-24105, Kiel, Germany
| | - Beke Sarras
- Department of Cardiaovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Hs 18, D-24105, Kiel, Germany
| | - Andreas Bayer
- Department of Cardiaovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Hs 18, D-24105, Kiel, Germany
| | - Jochen Cremer
- Department of Cardiaovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Hs 18, D-24105, Kiel, Germany
| | - Fred Faendrich
- Department of Applied Cell Therapy, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Justus Groß
- Department of Cardiaovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Hs 18, D-24105, Kiel, Germany
| |
Collapse
|
22
|
MacAskill MG, Saif J, Condie A, Jansen MA, MacGillivray TJ, Tavares AAS, Fleisinger L, Spencer HL, Besnier M, Martin E, Biglino G, Newby DE, Hadoke PWF, Mountford JC, Emanueli C, Baker AH. Robust Revascularization in Models of Limb Ischemia Using a Clinically Translatable Human Stem Cell-Derived Endothelial Cell Product. Mol Ther 2018; 26:1669-1684. [PMID: 29703701 PMCID: PMC6035339 DOI: 10.1016/j.ymthe.2018.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 12/21/2022] Open
Abstract
Pluripotent stem cell-derived differentiated endothelial cells offer high potential in regenerative medicine in the cardiovascular system. With the aim of translating the use of a human stem cell-derived endothelial cell product (hESC-ECP) for treatment of critical limb ischemia (CLI) in man, we report a good manufacturing practice (GMP)-compatible protocol and detailed cell tracking and efficacy data in multiple preclinical models. The clinical-grade cell line RC11 was used to generate hESC-ECP, which was identified as mostly endothelial (60% CD31+/CD144+), with the remainder of the subset expressing various pericyte/mesenchymal stem cell markers. Cell tracking using MRI, PET, and qPCR in a murine model of limb ischemia demonstrated that hESC-ECP was detectable up to day 7 following injection. Efficacy in several murine models of limb ischemia (immunocompromised/immunocompetent mice and mice with either type I/II diabetes mellitus) demonstrated significantly increased blood perfusion and capillary density. Overall, we demonstrate a GMP-compatible hESC-ECP that improved ischemic limb perfusion and increased local angiogenesis without engraftment, paving the way for translation of this therapy.
Collapse
Affiliation(s)
- Mark G MacAskill
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK; Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Jaimy Saif
- Experimental Cardiovascular Medicine Division, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Alison Condie
- Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Maurits A Jansen
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK; Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | | | - Adriana A S Tavares
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK; Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Lucija Fleisinger
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Helen L Spencer
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Marie Besnier
- Experimental Cardiovascular Medicine Division, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Ernesto Martin
- Experimental Cardiovascular Medicine Division, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Giovanni Biglino
- Experimental Cardiovascular Medicine Division, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - David E Newby
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Patrick W F Hadoke
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Joanne C Mountford
- Scottish National Blood Transfusion Service, Edinburgh, UK; Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Costanza Emanueli
- Experimental Cardiovascular Medicine Division, Bristol Heart Institute, University of Bristol, Bristol, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew H Baker
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
23
|
Fazeli B, Dadgar Moghadam M, Niroumand S. How to Treat a Patient with Thromboangiitis Obliterans: A Systematic Review. Ann Vasc Surg 2018; 49:219-228. [PMID: 29421414 DOI: 10.1016/j.avsg.2017.10.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 12/22/2022]
Abstract
To date, there is still no treatment protocol for patients with thromboangiitis obliterans (TAO) who are also afflicted with critical limb ischemia (CLI). Smoking cessation on its own cannot be considered a treatment for the purposes of salvaging a limb of a TAO patient with CLI. The aim of this review was to evaluate different studies of various treatment protocols for avoiding amputation in TAO patients. A systematic search for relevant studies dating from 1990 to the end of 2016 was performed on the PubMed, SCOPUS, and Science Direct databases. Only 24 studies fulfilled the inclusion criteria, of which only one was a randomized controlled trial (RCT). The remaining studies were quasi-experimental with various treatments and follow-up durations. Therefore, meta-analysis was not performed. Judging from the major amputation rates after the suggested treatments were performed, no treatment was particularly effective. This review demonstrated that more standard RCTs are needed to resolve this treatment issue involved in TAO. In addition, because health insurance coverage for TAO patients differs by country, regional cost-benefit and cost-efficacy studies of the suggested treatments for TAO are highly recommended.
Collapse
Affiliation(s)
- Bahare Fazeli
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Vascular Independent Research and Education, European Organization, Milan, Italy
| | - Maliheh Dadgar Moghadam
- Department of Community Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Shabnam Niroumand
- Department of Community Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Navarro-Requena C, Weaver JD, Clark AY, Clift DA, Pérez-Amodio S, Castaño Ó, Zhou DW, García AJ, Engel E. PEG hydrogel containing calcium-releasing particles and mesenchymal stromal cells promote vessel maturation. Acta Biomater 2018; 67:53-65. [PMID: 29246650 PMCID: PMC6534820 DOI: 10.1016/j.actbio.2017.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/23/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022]
Abstract
The use of human mesenchymal stromal cells (hMSC) for treating diseased tissues with poor vascularization has received significant attention, but low cell survival has hampered its translation to the clinic. Bioglasses and glass-ceramics have also been suggested as therapeutic agents for stimulating angiogenesis in soft tissues, but these effects need further evaluation in vivo. In this study, calcium-releasing particles and hMSC were combined within a hydrogel to examine their vasculogenic potential in vitro and in vivo. The particles provided sustained calcium release and showed proangiogenic stimulation in a chorioallantoic membrane (CAM) assay. The number of hMSC encapsulated in a degradable RGD-functionalized PEG hydrogel containing particles remained constant over time and IGF-1 release was increased. When implanted in the epidydimal fat pad of immunocompromised mice, this composite material improved cell survival and stimulated vessel formation and maturation. Thus, the combination of hMSC and calcium-releasing glass-ceramics represents a new strategy to achieve vessel stabilization, a key factor in the revascularization of ischemic tissues. STATEMENT OF SIGNIFICANCE Increasing blood vessel formation in diseased tissues with poor vascularization is a current clinical challenge. Cell therapy using human mesenchymal stem cells has received considerable interest, but low cell survival has hampered its translation to the clinic. Bioglasses and glass-ceramics have been explored as therapeutic agents for stimulating angiogenesis in soft tissues, but these effects need further evaluation in vivo. By incorporating both human mesenchymal stem cells and glass-ceramic particles in an implantable hydrogel, this study provides insights into the vasculogenic potential in soft tissues of the combined strategies. Enhancement of vessel formation and maturation supports further investigation of this strategy.
Collapse
Affiliation(s)
- Claudia Navarro-Requena
- Biomaterials for Regenerative Therapies. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza 50018, Spain; Materials Science and Metallurgical Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), Barcelona 08028, Spain
| | - Jessica D Weaver
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Amy Y Clark
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Douglas A Clift
- Biomaterials for Regenerative Therapies. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Soledad Pérez-Amodio
- Biomaterials for Regenerative Therapies. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza 50018, Spain; Materials Science and Metallurgical Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), Barcelona 08028, Spain
| | - Óscar Castaño
- Electronics and Biomedical Engineering, Universitat de Barcelona (UB), Barcelona 08028, Spain; Biomaterials for Regenerative Therapies. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain; Institute of Nanoscience and Nanotechnology, Universitat de Barcelona (UB), Barcelona 08028, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza 50018, Spain
| | - Dennis W Zhou
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza 50018, Spain; Materials Science and Metallurgical Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), Barcelona 08028, Spain.
| |
Collapse
|
25
|
Qadura M, Terenzi DC, Verma S, Al-Omran M, Hess DA. Concise Review: Cell Therapy for Critical Limb Ischemia: An Integrated Review of Preclinical and Clinical Studies. Stem Cells 2018; 36:161-171. [DOI: 10.1002/stem.2751] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 10/31/2017] [Accepted: 11/19/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Mohammad Qadura
- Division of Vascular Surgery; St. Michael's Hospital; Toronto Ontario Canada
- Department of Surgery; University of Toronto; Toronto Ontario Canada
| | - Daniella C. Terenzi
- Division of Vascular Surgery; St. Michael's Hospital; Toronto Ontario Canada
- Department of Surgery; University of Toronto; Toronto Ontario Canada
| | - Subodh Verma
- Department of Surgery; University of Toronto; Toronto Ontario Canada
- Division of Cardiac Surgery; St. Michael's Hospital; Toronto Ontario Canada
| | - Mohammed Al-Omran
- Division of Vascular Surgery; St. Michael's Hospital; Toronto Ontario Canada
- Department of Surgery; University of Toronto; Toronto Ontario Canada
| | - David A. Hess
- Division of Vascular Surgery; St. Michael's Hospital; Toronto Ontario Canada
- Department of Surgery; University of Toronto; Toronto Ontario Canada
- Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; Western University; London Ontario Canada
| |
Collapse
|
26
|
Milczarek O, Jarocha D, Starowicz-Filip A, Kwiatkowski S, Badyra B, Majka M. Multiple Autologous Bone Marrow-Derived CD271 + Mesenchymal Stem Cell Transplantation Overcomes Drug-Resistant Epilepsy in Children. Stem Cells Transl Med 2017; 7:20-33. [PMID: 29224250 PMCID: PMC5746144 DOI: 10.1002/sctm.17-0041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022] Open
Abstract
There is a need among patients suffering from drug‐resistant epilepsy (DRE) for more efficient and less toxic treatments. The objective of the present study was to assess the safety, feasibility, and potential efficacy of autologous bone marrow cell transplantation in pediatric patients with DRE. Two females and two males (11 months to 6 years) were enrolled and underwent a combined therapy consisting of autologous bone marrow nucleated cells (BMNCs) transplantation (intrathecal: 0.5 × 109; intravenous: 0.38 × 109–1.72 × 109) followed by four rounds of intrathecal bone marrow mesenchymal stem cells (BMMSCs) transplantation (18.5 × 106–40 × 106) every 3 months. The BMMSCs used were a unique population derived from CD271‐positive cells. The neurological evaluation included magnetic resonance imaging, electroencephalography (EEG), and cognitive development assessment. The characteristics of BMMSCs were evaluated. Four intravenous and 20 intrathecal transplantations into the cerebrospinal fluid were performed. There were no adverse events, and the therapy was safe and feasible over 2 years of follow‐up. The therapy resulted in neurological and cognitive improvement in all patients, including a reduction in the number of epileptic seizures (from 10 per day to 1 per week) and an absence of status epilepticus episodes (from 4 per week to 0 per week). The number of discharges on the EEG evaluation was decreased, and cognitive improvement was noted with respect to reactions to light and sound, emotions, and motor function. An analysis of the BMMSCs' characteristics revealed the expression of neurotrophic, proangiogenic, and tissue remodeling factors, and the immunomodulatory potential. Our results demonstrate the safety and feasibility of BMNCs and BMMSCs transplantations and the considerable neurological and cognitive improvement in children with DRE. stemcellstranslationalmedicine2018;7:20–33
Collapse
Affiliation(s)
- Olga Milczarek
- Departments of Children Surgery, Jagiellonian University School of Medicine, Cracow, Poland
| | - Danuta Jarocha
- Transplantation, Institute of Pediatrics, Jagiellonian University School of Medicine, Cracow, Poland
| | - Anna Starowicz-Filip
- Department of Medical Psychology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Stanislaw Kwiatkowski
- Departments of Children Surgery, Jagiellonian University School of Medicine, Cracow, Poland
| | - Bogna Badyra
- Transplantation, Institute of Pediatrics, Jagiellonian University School of Medicine, Cracow, Poland
| | - Marcin Majka
- Transplantation, Institute of Pediatrics, Jagiellonian University School of Medicine, Cracow, Poland
| |
Collapse
|
27
|
Stem Cell Therapies in Peripheral Vascular Diseases — Current Status. JOURNAL OF INTERDISCIPLINARY MEDICINE 2017. [DOI: 10.1515/jim-2017-0093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Abstract
Peripheral artery diseases include all arterial diseases with the exception of coronary and aortic involvement, more specifically diseases of the extracranial carotids, upper limb arteries, mesenteric and renal vessels, and last but not least, lower limb arteries. Mononuclear stem cells, harvested from various sites (bone marrow, peripheral blood, mesenchymal cells, adipose-derived stem cells) have been studied as a treatment option for alleviating symptoms in peripheral artery disease, as potential stimulators for therapeutic angiogenesis, thus improving vascularization of the ischemic tissue. The aim of this manuscript was to review current medical literature on a novel treatment method — cell therapy, in patients with various peripheral vascular diseases, including carotid, renal, mesenteric artery disease, thromboangiitis obliterans, as well as upper and lower limb artery disease.
Collapse
|
28
|
Benedek T, Kovács I, Benedek I. Therapeutic Angiogenesis for Severely Ischemic Limbs — from Bench to Bedside in Acute Vascular Care. JOURNAL OF CARDIOVASCULAR EMERGENCIES 2017. [DOI: 10.1515/jce-2017-0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Severe limb ischemia represents a critical condition, being associated with high morbidity and mortality rates. Patients with critical limb ischemia (CLI) require urgent initiation of interventional or surgical treatment, as restoration of the blood flow is the only way to ensure limb salvage in these critical cases. At the same time, in acute limb ischemia, a dramatic form of sudden arterial occlusion of the lower limbs, the integrity of the limb is also seriously threatened in the absence of urgent revascularization. From patients with CLI, 40% are “no option CLI”, meaning patients in whom, due to anatomical considerations or to the severity of the lesions, there is no possibility to perform interventional or surgical treatment or they have failed. Therapeutic angiogenesis has been proposed to serve as an effective and promising alternative therapy for patients with severe limb ischemia who do not have any other option for revascularization. This review aims to present the current status in therapeutic angiogenesis and the role of different approaches (gene or cell therapy, intra-arterial vs. intramuscular injections, different sources of cells) in increasing the rates of limb salvage in patients with severe ischemia of the lower limbs.
Collapse
Affiliation(s)
- Theodora Benedek
- University of Medicine and Pharmacy , Tîrgu Mureș , Romania
- Center of Advanced Research in Multimodality Cardiac Imaging , Cardio Med Medical Center , Tîrgu Mureș , Romania
| | - István Kovács
- University of Medicine and Pharmacy , Tîrgu Mureș , Romania
- Center of Advanced Research in Multimodality Cardiac Imaging , Cardio Med Medical Center , Tîrgu Mureș , Romania
| | - Imre Benedek
- University of Medicine and Pharmacy , Tîrgu Mureș , Romania
- Center of Advanced Research in Multimodality Cardiac Imaging , Cardio Med Medical Center , Tîrgu Mureș , Romania
| |
Collapse
|
29
|
A Molecular and Clinical Review of Stem Cell Therapy in Critical Limb Ischemia. Stem Cells Int 2017; 2017:3750829. [PMID: 29358955 PMCID: PMC5735649 DOI: 10.1155/2017/3750829] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022] Open
Abstract
Peripheral artery disease (PAD) is one of the major vascular complications in individuals suffering from diabetes and in the elderly that can progress to critical limb ischemia (CLI), portending significant burden in terms of patient morbidity and mortality. Over the last two decades, stem cell therapy (SCT) has risen as an attractive alternative to traditional surgical and/or endovascular revascularization to treat this disorder. The primary benefit of SCT is to induce therapeutic neovascularization and promote collateral vessel formation to increase blood flow in the ischemic limb and soft tissue. Existing evidence provides a solid rationale for ongoing in-depth studies aimed at advancing current SCT that may change the way PAD/CLI patients are treated.
Collapse
|
30
|
Zahavi-Goldstein E, Blumenfeld M, Fuchs-Telem D, Pinzur L, Rubin S, Aberman Z, Sher N, Ofir R. Placenta-derived PLX-PAD mesenchymal-like stromal cells are efficacious in rescuing blood flow in hind limb ischemia mouse model by a dose- and site-dependent mechanism of action. Cytotherapy 2017; 19:1438-1446. [PMID: 29122516 DOI: 10.1016/j.jcyt.2017.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND In peripheral artery disease (PAD), blockage of the blood supply to the limbs, most frequently the legs, leads to impaired blood flow and tissue ischemia. Pluristem's PLX-PAD cells are placenta-derived mesenchymal stromal-like cells currently in clinical trials for the treatment of peripheral artery diseases. METHODS In this work, the hind limb ischemia (HLI) mouse model was utilized to study the efficacy and mechanism of action of PLX-PAD cells. ELISA assays were performed to characterize and quantitate PLX-PAD secretions in vitro. RESULTS PLX-PAD cells administered intramuscularly rescued blood flow to the lower limb after HLI induction in a dose-dependent manner. While rescue of blood flow was site-dependent, numerous administration regimes enabled rescue of blood flow, indicating a systemic effect mediated by PLX-PAD secretions. Live PLX-PAD cells were more efficacious than cell lysate in rescuing blood flow, indicating the importance of prolonged cytokine secretion for maximal blood flow recovery. In vitro studies showed a multifactorial secretion profile including numerous pro-angiogenic proteins; these are likely involved in the PLX-PAD mechanism of action. DISCUSSION Live PLX-PAD cells were efficacious in rescuing blood flow after the induction of HLI in the mouse model in a dose- and site-dependent manner. The fact that various administration routes of PLX-PAD rescued blood flow indicates that the mechanism of action likely involves one of systemic secretions which promote angiogenesis. Taken together, the data support the further clinical testing of PLX-PAD cells for PAD indications.
Collapse
|
31
|
Rocca A, Tafuri D, Paccone M, Giuliani A, Zamboli AGI, Surfaro G, Paccone A, Compagna R, Amato M, Serra R, Amato B. Cell Based Therapeutic Approach in Vascular Surgery: Application and Review. Open Med (Wars) 2017; 12:308-322. [PMID: 29071303 PMCID: PMC5651406 DOI: 10.1515/med-2017-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 08/16/2017] [Indexed: 01/14/2023] Open
Abstract
Multipotent stem cells - such as mesenchymal stem/stromal cells and stem cells derived from different sources like vascular wall are intensely studied to try to rapidly translate their discovered features from bench to bedside. Vascular wall resident stem cells recruitment, differentiation, survival, proliferation, growth factor production, and signaling pathways transduced were analyzed. We studied biological properties of vascular resident stem cells and explored the relationship from several factors as Matrix Metalloproteinases (MMPs) and regulations of biological, translational and clinical features of these cells. In this review we described a translational and clinical approach to Adult Vascular Wall Resident Multipotent Vascular Stem Cells (VW-SCs) and reported their involvement in alternative clinical approach as cells based therapy in vascular disease like arterial aneurysms or peripheral arterial obstructive disease.
Collapse
Affiliation(s)
- Aldo Rocca
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, ItalyVia Sergio Pansini, 80131Naples, Italy
| | - Domenico Tafuri
- Department of Sport Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| | - Marianna Paccone
- Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy
| | - Antonio Giuliani
- A.O.R.N. A. Cardarelli Hepatobiliary and Liver Transplatation Center, Naples, Italy
| | | | - Giuseppe Surfaro
- Antonio Cardarelli Hospital, General Surgery Unit, Campobasso, Italy
| | - Andrea Paccone
- Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy
| | - Rita Compagna
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Maurizo Amato
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Bruno Amato
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
32
|
Sapienza P, Venturini L, Grande R, Scarano Catanzaro V, Gazzanelli S, Sterpetti AV, Tartaglia E. Is the Endovascular Treatment of Mild Iliac Stenoses Worthwhile to Improve Wound Healing in Patients Undergoing Femorotibial Bypass? Ann Vasc Surg 2017; 47:162-169. [PMID: 28890068 DOI: 10.1016/j.avsg.2017.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/07/2017] [Accepted: 08/18/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND After an infrapopliteal reconstruction, minor amputations are frequently required, but even in the case of successful revascularization, wound healing is a major concern. We studied the role of iliac artery inflow correction in patients undergoing infrapopliteal vein grafts to improve the heal of midfoot amputation. METHODS Thirty-eight patients affected with Rutherford grade III category 5 peripheral arterial disease, who underwent successful simultaneous iliac endovascular procedure, infrapopliteal reversed vein bypass graft, and minor amputation, were enrolled in this retrospective study. The population was divided in group 1 (20 patients) with inflow vessels Trans-Atlantic Inter-Society Consensus Document on Management of Peripheral Arterial Disease (TASC) II type B atherosclerotic lesions and group 2 (18 patients) with TASC II type A atherosclerotic lesions determining an invasive pressure drop greater than 15 mm Hg. Fifteen patients (group 3) undergoing infrapopliteal reversed vein bypass graft without associated inflow procedures (TASC II type A and invasive pressure drop greater than 15 mm Hg) were matched with group 2 based on propensity score. Healing was calculated by subtracting the final ulcer area from the initial ulcer area and dividing by the number of follow-up months to obtain the total area healed per month (cm2/month). Stepwise logistic regression analysis adjusted for demographics and medical comorbid conditions was used to test the association between wound healing and treatment modalities. RESULTS Forty-three patients were available for further analysis. Ten patients were excluded because of graft occlusion with consequent impairment of wound healing. After midfoot amputations, mean wound diameter was 20 ± 8 cm2, and mean healing time was 10 ± 4 months (range 3-20 months; median 9 months). Wounds of groups 1 and 2 healed faster than those of group 3 at 4 and 8 months (P < 0.02 and P < 0.001, respectively; P < 0.04 and P < 0.001, respectively). Multivariate analysis demonstrated the association between wound healing and inflow correction (P < 0.001). CONCLUSIONS An aggressive treatment is necessary to obtain the heal of the ischemic wounds. The most important predictive factor for nonhealing wounds is the absence of inflow correction. We demonstrated that the inflow should be also corrected in the presence of subclinical lesions.
Collapse
Affiliation(s)
- Paolo Sapienza
- Department of Surgery "Pietro Valdoni", "Sapienza" University of Rome, Rome, Italy.
| | - Luigi Venturini
- Department of Surgery "Pietro Valdoni", "Sapienza" University of Rome, Rome, Italy
| | - Raffaele Grande
- Department of Surgery "Pietro Valdoni", "Sapienza" University of Rome, Rome, Italy
| | | | - Sergio Gazzanelli
- Department of Anesthesiology, Intensive Care and Pain Therapy, "Sapienza" University of Rome, Rome, Italy
| | - Antonio V Sterpetti
- Department of Surgery "Pietro Valdoni", "Sapienza" University of Rome, Rome, Italy
| | - Elvira Tartaglia
- Department of Vascular and Endovascular Surgery, Groupe Hospitalier Le Raincy-Montfermail, Paris, France
| |
Collapse
|
33
|
Kouroupis D, Wang XN, El-Sherbiny Y, McGonagle D, Jones E. The Safety of Non-Expanded Multipotential Stromal Cell Therapies. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-59165-0_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Tanaka Y, Ohishi K, Sawai T, Iwasaki H, Kageyama S, Masuya M, Matsumoto T, Tanigawa T, Wada H, Shiku H, Ito M, Katayama N. Attempt to Harvest a Sufficient Number of Mononuclear Cells in an Appropriate Blood Product Volume By Modification of the Default Apheresis Setting. Ther Apher Dial 2017; 21:507-511. [PMID: 28731276 DOI: 10.1111/1744-9987.12562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/29/2017] [Accepted: 04/21/2017] [Indexed: 11/30/2022]
Abstract
To harvest for T cell therapy, a 1.6-fold higher number of CD3+ T cells was collected with MNC mode (N = 10) compared with Auto PBSC mode (N = 5) in COBE Spectra cell separator, but the blood product volume was increased by 3.5-fold. For therapeutic angiogenesis therapy, apheresis was initially performed using Auto PBSC mode (N = 4) to fine tune the blood product volume to omit cell concentration, but the collected number of mononuclear cells was lower than expected. However, an increase of the harvest cycle number from 3.8 ± 0.5 to 7.4 ± 2.0 cycles (N = 19) resulted in a 2.1-fold higher number of collected mononuclear cells (8.7 ± 4.1 × 109 vs. 4.1 ± 1.0 × 109 cells, P < 0.05). The increase in blood product volume by this modification appeared to be lower than that expected with MNC mode. These data show that optimal harvesting can be achieved by modification of default collection settings.
Collapse
Affiliation(s)
- Yumi Tanaka
- Blood Transfusion Service, Mie University Hospital, Tsu, Mie, Japan
| | - Kohshi Ohishi
- Blood Transfusion Service, Mie University Hospital, Tsu, Mie, Japan
| | - Toshiki Sawai
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hitoshi Iwasaki
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shinichi Kageyama
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masahiro Masuya
- Departments of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | | | - Takashi Tanigawa
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hideo Wada
- Molecular and Laboratory Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masaaki Ito
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Naoyuki Katayama
- Departments of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
35
|
Darinskas A, Paskevicius M, Apanavicius G, Vilkevicius G, Labanauskas L, Ichim TE, Rimdeika R. Stromal vascular fraction cells for the treatment of critical limb ischemia: a pilot study. J Transl Med 2017; 15:143. [PMID: 28629476 PMCID: PMC5477131 DOI: 10.1186/s12967-017-1243-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/13/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Cell-based therapy is being explored as an alternative treatment option for critical limb ischemia (CLI), a disease associated with high amputation and mortality rates and poor quality of life. However, therapeutic potential of uncultured adipose-derived stromal vascular fraction (SVF) cells has not been evaluated as a possible treatment. In this pilot study, we investigated the efficacy of multiple injections of autologous uncultured adipose-derived SVF cells to treat patients with CLI. METHODS This study included 15 patients, from 35 to 77 years old, with rest pain and ulceration. SVF cells were injected once or twice in the ischemic limb along the arteries. Digital subtraction angiography was performed before and after cell therapy. The clinical follow up was carried out for the subsequent 12 months after the beginning of the treatment. RESULTS Multiple intramuscular SVF cell injections caused no complications during the follow-up period. Clinical improvement occurred in 86.7% of patients. Two patients required major amputation, and the amputation sites healed completely. The rest of patients achieved a complete ulcer healing, pain relief, improved ankle-brachial pressure index and claudication walking distance, and had ameliorated their quality of life. Digital subtraction angiography performed before and after SVF cell therapy showed formation of numerous vascular collateral networks across affected arteries. CONCLUSION Results of this pilot study demonstrate that the multiple intramuscular SVF cell injections stimulate regeneration of injured tissue and are effective alternative to achieve therapeutic angiogenesis in CLI patients who are not eligible for conventional treatment. Trial registration number at ISRCTN registry, ISRCTN13001382. Retrospectively registered at 26/04/2017.
Collapse
Affiliation(s)
- Adas Darinskas
- Laboratory of Immunology, National Cancer Institute, Santariskiu Str. 1, 08660 Vilnius, Lithuania
| | - Mindaugas Paskevicius
- Department of Vascular Surgery, Vilnius City Clinical Hospital, Antakalnio Str. 57, 10207 Vilnius, Lithuania
| | - Gintaras Apanavicius
- Department of Vascular Surgery, Vilnius City Clinical Hospital, Antakalnio Str. 57, 10207 Vilnius, Lithuania
| | - Gintaris Vilkevicius
- Northway Medical and Surgical Center, S.Zukausko Str. 19, 08234 Vilnius, Lithuania
- Clinics of Cardiovascular Diseases, Vilnius University, Santariskiu Str. 2, 08661 Vilnius, Lithuania
| | - Liutauras Labanauskas
- Department of Plastic and Reconstructive Surgery, Lithuanian University of Health Sciences, Medical Academy, University Clinics of Kaunas, Eiveniu Str. 2, 50009 Kaunas, Lithuania
| | | | - Rytis Rimdeika
- Department of Plastic and Reconstructive Surgery, Lithuanian University of Health Sciences, Medical Academy, University Clinics of Kaunas, Eiveniu Str. 2, 50009 Kaunas, Lithuania
| |
Collapse
|
36
|
Safety and Effectiveness of Bone Marrow Cell Concentrate in the Treatment of Chronic Critical Limb Ischemia Utilizing a Rapid Point-of-Care System. Stem Cells Int 2017; 2017:4137626. [PMID: 28194186 PMCID: PMC5282442 DOI: 10.1155/2017/4137626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/14/2016] [Indexed: 01/09/2023] Open
Abstract
Critical limb ischemia (CLI) is the end stage of lower extremity peripheral vascular disease (PVD) in which severe obstruction of blood flow results in ischemic rest pain, ulcers and/or gangrene, and a significant risk of limb loss. This open-label, single-arm feasibility study evaluated the safety and therapeutic effectiveness of autologous bone marrow cell (aBMC) concentrate in revascularization of CLI patients utilizing a rapid point-of-care device. Seventeen (17) no-option CLI patients with ischemic rest pain were enrolled in the study. Single dose of aBMC, prepared utilizing an intraoperative point-of-care device, the Res-Q™ 60 BMC system, was injected intramuscularly into the afflicted limb and patients were followed up at regular intervals for 12 months. A statistically significant improvement in Ankle Brachial Index (ABI), Transcutaneous Oxygen Pressure (TcPO2), mean rest pain and intermittent claudication pain scores, wound/ ulcer healing, and 6-minute walking distance was observed following aBMC treatment. Major amputation-free survival (mAFS) rate and amputation-free rates (AFR) at 12 months were 70.6% and 82.3%, respectively. In conclusion, aBMC injections were well tolerated with improved tissue perfusion, confirming the safety, feasibility, and preliminary effectiveness of aBMC treatment in CLI patients.
Collapse
|
37
|
Pas HIMFL, Moen MH, Haisma HJ, Winters M. No evidence for the use of stem cell therapy for tendon disorders: a systematic review. Br J Sports Med 2017; 51:996-1002. [PMID: 28077355 DOI: 10.1136/bjsports-2016-096794] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2016] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Stem cells have emerged as a new treatment option for tendon disorders. We systematically reviewed the current evidence for stem cell therapy in tendon disorders. METHODS Randomised and non-randomised controlled trials, cohort studies and case series with a minimum of 5 cases were searched in MEDLINE, CENTRAL, EMBASE, CINAHL, PEDro and SPORTDiscus. In addition, we searched grey literature databases and trial registers. Only human studies were included and no time or language restrictions were applied to our search. All references of included trials were checked for possibly eligible trials. Risk of bias assessment was performed using the Cochrane risk of bias tool for controlled trials and the Newcastle-Ottawa scale for case series. Levels of evidence were assigned according to the Oxford levels of evidence. RESULTS 4 published and three unpublished/pending trials were found with a total of 79 patients. No unpublished data were available. Two trials evaluated bone marrow-derived stem cells in rotator cuff repair surgery and found lower retear rates compared with historical controls or the literature. One trial used allogenic adipose-derived stem cells to treat lateral epicondylar tendinopathy. Improved Mayo Elbow Performance Index, Visual Analogue Pain scale and ultrasound findings after 1-year follow-up compared with baseline were found. Bone marrow-derived stem cell-treated patellar tendinopathy showed improved International Knee Documentation Committee, Knee injury and Osteoarthritis Outcome Score subscales and Tegner scores after 5-year follow-up. One trial reported adverse events and found them to be mild (eg, swelling, effusion). All trials were at high risk of bias and only level 4 evidence was available. CONCLUSIONS No evidence (level 4) was found for the therapeutic use of stem cells for tendon disorders. The use of stem cell therapy for tendon disorders in clinical practice is currently not advised.
Collapse
Affiliation(s)
- Haiko I M F L Pas
- The Sports Physician Group, Department of Sports Medicine, OLVG West, Amsterdam, The Netherlands.,Department of Orthopaedic Surgery, Academic Medical Centre, Amsterdam, The Netherlands
| | - Maarten H Moen
- The Sports Physician Group, Department of Sports Medicine, OLVG West, Amsterdam, The Netherlands.,Bergman Clinics, Naarden, The Netherlands.,Department of Elite Sports, NOC*NSF, Medical Staff, Arnhem, The Netherlands
| | - Hidde J Haisma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, Groningen University, Groningen, The Netherlands
| | - Marinus Winters
- Rehabilitation, Nursing Science and Sports Department, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
38
|
|
39
|
Madaric J, Klepanec A, Valachovicova M, Mistrik M, Bucova M, Olejarova I, Necpal R, Madaricova T, Paulis L, Vulev I. Characteristics of responders to autologous bone marrow cell therapy for no-option critical limb ischemia. Stem Cell Res Ther 2016; 7:116. [PMID: 27530339 PMCID: PMC4987968 DOI: 10.1186/s13287-016-0379-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/16/2016] [Accepted: 07/27/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The present study investigated factors associated with therapeutic benefits after autologous bone marrow cell (BMC) therapy in patients with "no-option" critical limb ischemia (CLI). METHODS AND RESULTS Sixty-two patients with advanced CLI (Rutherford category 5 or 6) not eligible for revascularization were randomized to treatment with 40 ml of autologous BMCs (SmartPreP2) by local intramuscular (n = 32) or intra-arterial (n = 30) application. The primary endpoint was limb salvage and wound healing at 12 months. Seven patients (11 %) died during the follow-up from reasons unrelated to stem cell therapy. The BMC product of patients with limb salvage and wound healing (33/55) was characterized by a higher CD34(+) cell count (p = 0.001), as well as a higher number of total bone marrow mononuclear cells (BM-MNCs) (p = 0.032), than that of nonresponders (22/55). Patients with limb salvage and wound healing were younger (p = 0.028), had lower C-reactive protein levels (p = 0.038), and had higher transcutaneous oxygen pressure (tcpO2) (p = 0.003) before cell application than nonresponders. All patients with major tissue loss at baseline (Rutherford 6 stage of CLI, n = 5) showed progression of limb ischemia and required major limb amputation. In the multiple binary logistic regression model, the number of applied CD34(+) cells (p = 0.046) and baseline tcpO2 (p = 0.031) were independent predictors of limb salvage and wound healing. The number of administrated BM-MNCs strongly correlated with decreased peripheral leukocyte count after 6 months in surviving patients with limb salvage (p = 0.0008). CONCLUSION Patients who benefited from autologous BMC therapy for "no-option" CLI were treated with high doses of CD34(+) cells. The absolute number of applied BM-MNCs correlated with the improvement of inflammation. We hypothesize that the therapeutic benefit of cell therapy for peripheral artery disease is the result of synergistic effects mediated by a mixture of active cells with regenerative potential. Patients at the most advanced stage of CLI do not appear to be suitable candidates for cell therapy. TRIAL REGISTRATION The study was approved and registered by the ISRCTN registry. TRIAL REGISTRATION ISRCTN16096154 . Registered: 26 July 2016.
Collapse
Affiliation(s)
- Juraj Madaric
- National Institute of Cardiovascular Diseases, Slovak Medical University, Pod Krasnou horkou 1, 833 48, Bratislava, Slovakia. .,Slovak Medical University, Bratislava, Slovakia.
| | - Andrej Klepanec
- National Institute of Cardiovascular Diseases, Slovak Medical University, Pod Krasnou horkou 1, 833 48, Bratislava, Slovakia
| | | | - Martin Mistrik
- Clinic of Haematology and Transfusiology, Faculty Hospital, Bratislava, Slovakia
| | - Maria Bucova
- Institute of Imunology, Faculty of Medicine Comenius University, Bratislava, Slovakia
| | - Ingrid Olejarova
- National Institute of Cardiovascular Diseases, Slovak Medical University, Pod Krasnou horkou 1, 833 48, Bratislava, Slovakia
| | - Roman Necpal
- National Institute of Cardiovascular Diseases, Slovak Medical University, Pod Krasnou horkou 1, 833 48, Bratislava, Slovakia
| | - Terezia Madaricova
- National Institute of Cardiovascular Diseases, Slovak Medical University, Pod Krasnou horkou 1, 833 48, Bratislava, Slovakia
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine Comenius University, Bratislava, Slovakia
| | - Ivan Vulev
- National Institute of Cardiovascular Diseases, Slovak Medical University, Pod Krasnou horkou 1, 833 48, Bratislava, Slovakia.,Slovak Medical University, Bratislava, Slovakia
| |
Collapse
|
40
|
Endothelial Progenitor Cells for Diagnosis and Prognosis in Cardiovascular Disease. Stem Cells Int 2015; 2016:8043792. [PMID: 26839569 PMCID: PMC4709789 DOI: 10.1155/2016/8043792] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/16/2015] [Accepted: 09/20/2015] [Indexed: 12/12/2022] Open
Abstract
Objective. To identify, evaluate, and synthesize evidence on the predictive power of circulating endothelial progenitor cells (EPCs) in cardiovascular disease, through a systematic review of quantitative studies. Data Sources. MEDLINE was searched using keywords related to "endothelial progenitor cells" and "endothelium" and, for the different categories, respectively, "smoking"; "blood pressure"; "diabetes mellitus" or "insulin resistance"; "dyslipidemia"; "aging" or "elderly"; "angina pectoris" or "myocardial infarction"; "stroke" or "cerebrovascular disease"; "homocysteine"; "C-reactive protein"; "vitamin D". Study Selection. Database hits were evaluated against explicit inclusion criteria. From 927 database hits, 43 quantitative studies were included. Data Syntheses. EPC count has been suggested for cardiovascular risk estimation in the clinical practice, since it is currently accepted that EPCs can work as proangiogenic support cells, maintaining their importance as regenerative/reparative potential, and also as prognostic markers. Conclusions. EPCs showed an important role in identifying cardiovascular risk conditions, and to suggest their evaluation as predictor of outcomes appears to be reasonable in different defined clinical settings. Due to their capability of proliferation, circulation, and the development of functional progeny, great interest has been directed to therapeutic use of progenitor cells in atherosclerotic diseases. This trial is registered with registration number: Prospero CRD42015023717.
Collapse
|
41
|
Amato B, Compagna R, Amato M, Butrico L, Fugetto F, Chibireva MD, Barbetta A, Cannistrà M, de Franciscis S, Serra R. The role of adult tissue-derived stem cells in chronic leg ulcers: a systematic review focused on tissue regeneration medicine. Int Wound J 2015; 13:1289-1298. [PMID: 26399452 DOI: 10.1111/iwj.12499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/10/2015] [Accepted: 08/16/2015] [Indexed: 12/12/2022] Open
Abstract
Wound healing is an articulated process that can be impaired in different steps in chronic wounds. Chronic leg ulcers are a special type of non-healing wounds that represent an important cause of morbidity and public cost in western countries. Because of their common recurrence after conventional managements and increasing prevalence due to an ageing population, newer approaches are needed. Over the last decade, the research has been focused on innovative treatment strategies, including stem-cell-based therapies. After the initial interest in embryonic pluripotent cells, several different types of adult stem cells have been studied because of ethical issues. Specific types of adult stem cells have shown a high potentiality in tissue healing, in both in vitro and in vivo studies. Aim of this review is to clearly report the newest insights on tissue regeneration medicine, with particular regard for chronic leg ulcers.
Collapse
Affiliation(s)
- Bruno Amato
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Rita Compagna
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Maurizio Amato
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Lucia Butrico
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Francesco Fugetto
- School of Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Mariia D Chibireva
- School of Medicine, Kazan State Medical University, Kazan, Tatarstan Republic, Russian Federation
| | - Andrea Barbetta
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Marco Cannistrà
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy
| | - Stefano de Franciscis
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
42
|
Amato B, Compagna R, Amato M, Grande R, Butrico L, Rossi A, Naso A, Ruggiero M, de Franciscis S, Serra R. Adult vascular wall resident multipotent vascular stem cells, matrix metalloproteinases, and arterial aneurysms. Stem Cells Int 2015; 2015:434962. [PMID: 25866513 PMCID: PMC4381852 DOI: 10.1155/2015/434962] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 02/23/2015] [Accepted: 03/06/2015] [Indexed: 12/20/2022] Open
Abstract
Evidences have shown the presence of multipotent stem cells (SCs) at sites of arterial aneurysms: they can differentiate into smooth muscle cells (SMCs) and are activated after residing in a quiescent state in the vascular wall. Recent studies have implicated the role of matrix metalloproteinases in the pathogenesis of arterial aneurysms: in fact the increased synthesis of MMPs by arterial SMCs is thought to be a pivotal mechanism in aneurysm formation. The factors and signaling pathways involved in regulating wall resident SC recruitment, survival, proliferation, growth factor production, and differentiation may be also related to selective expression of different MMPs. This review explores the relationship between adult vascular wall resident multipotent vascular SCs, MMPs, and arterial aneurysms.
Collapse
Affiliation(s)
- Bruno Amato
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ; Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80100 Naples, Italy
| | - Rita Compagna
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ; Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80100 Naples, Italy
| | - Maurizio Amato
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80100 Naples, Italy
| | - Raffaele Grande
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Lucia Butrico
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Alessio Rossi
- Department of Medicine and Health Sciences, University of Molise, 88100 Campobasso, Italy
| | - Agostino Naso
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Michele Ruggiero
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Stefano de Franciscis
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ; Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ; Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|