1
|
Tian H, Li P, Lin L, Fan S, Li R, Zhou L, Zhao Q, Zhang J, Tang C. Alleviating Effect and Potential Mechanisms of Selenium Supplementation on Chronic Liver Injury Induced by Oxidized Soybean Oil. Mol Nutr Food Res 2025:e70124. [PMID: 40392050 DOI: 10.1002/mnfr.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/22/2025]
Abstract
Lipid oxidation can induce liver oxidative stress and lipotoxic damage, while selenium (Se) possesses detoxification, antioxidation, immunity, and liver protection functions. However, the effects of Se and oxidized lipids on liver oxidative stress and lipid metabolism, along with the underlying mechanisms, remain underexplored. This study aimed to investigate the protective effects of Se against liver injury induced by oxidized soybean oil (OSO) in mice. C57BL/6J mice (n = 60) were randomly divided into Control (0.2 mg/kg Se+7% fresh soybean oil), OSO (0.2 mg/kg Se+7% OSO), and OSO+Se (1.0 mg/kg Se+7% OSO) groups for 10 weeks. The results showed that Se supplementation mitigated the morphological structure and functional impairment, inflammation, and oxidative stress of the liver caused by OSO, and improved changes to the liver fatty acid profile and lipid metabolism disorders. It also reversed the OSO-induced imbalance of liver polyunsaturated fatty acid metabolites and inhibited OSO-induced activation of the PI3K-AKT pathway. Se may activate the Nrf2 pathway and inhibit the PI3K-AKT pathway to improve inflammation, oxidative stress, and fatty acid metabolism disorders, thereby reducing liver injury. These findings highlight the nutritional relevance of Se as a potential therapeutic agent for preventing liver damage from oxidized lipids.
Collapse
Affiliation(s)
- Huihui Tian
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pingyang Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Luxi Lin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shijie Fan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruitong Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Longzhu Zhou
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Xiong Y, Guo J, Yu W, Zeng D, Song C, Zhou L, Anatolyevna NL, Baranenko D, Xiao D, Zhou Y, Lu W. Molecular Mechanism of Microgravity-Induced Intestinal Flora Dysbiosis on the Abnormalities of Liver and Brain Metabolism. Int J Mol Sci 2025; 26:3094. [PMID: 40243802 PMCID: PMC11988970 DOI: 10.3390/ijms26073094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/06/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Space flight has many adverse effects on the physiological functions of astronauts. Certain similarities have been observed in some physiological processes of rodents and astronauts in space, although there are also differences. These similarities make rodents helpful models for initial investigations into space-induced physiological changes. This study uses a 3D-Clinostat to simulate microgravity and explores the role of microgravity in space flight-induced liver and brain abnormalities by comparing changes in the gut microbiota, serum metabolites, and the function and physiological biochemistry of liver and brain tissues between the simulated microgravity (SMG) group mice and the wild type (WT) group mice. The study, based on hematoxylin-eosin (HE) staining, 16S sequencing technology, and non-targeted metabolomics analysis, shows that the gut tissue morphology of the SMG group mice is abnormal, and the structure of the gut microbiota and the serum metabolite profile are imbalanced. Furthermore, using PICRUST 2 technology, we have predicted the functions of the gut microbiota and serum metabolites, and the results indicate that the liver metabolism and functions (including lipid metabolism, amino acid metabolism, and sugar metabolism, etc.) of the SMG group mice are disrupted, and the brain tissue metabolism and functions (including neurotransmitters and hormone secretion, etc.) are abnormal, suggesting a close relationship between microgravity and liver metabolic dysfunction and brain dysfunction. Additionally, the high similarity in the structure of the gut microbiota and serum metabolite profile between the fecal microbiota transplant (FMT) group mice and the SMG group mice, and the physiological and biochemical differences in liver and brain tissues compared to the WT group mice, suggest that microgravity induces imbalances in the gut microbiota, which in turn triggers abnormalities in liver and brain metabolism and function. Finally, through MetaMapp analysis and Pearson correlation analysis, we found that valeric acid, a metabolite of gut microbiota, is more likely to be the key metabolite that relates to microgravity-induced gut microbiota abnormalities, disorders of amino acid and lipid metabolism, and further induced metabolic or functional disorders in the liver and brain. This study has significant practical application value for deepening the understanding of the adaptability of living organisms in the space environment.
Collapse
Affiliation(s)
- Yi Xiong
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (Y.X.)
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Jianguo Guo
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
| | - Wenchen Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (Y.X.)
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Deyong Zeng
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Chenchen Song
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
| | - Li Zhou
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
| | - Nadtochii Liudmila Anatolyevna
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
- School of Life Sciences, International Research Centre Biotechnologies of the Third Millennium, ITMO University, St. Petersburg 197101, Russia
| | - Denis Baranenko
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
- School of Life Sciences, International Research Centre Biotechnologies of the Third Millennium, ITMO University, St. Petersburg 197101, Russia
| | - Dan Xiao
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Yingyu Zhou
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Weihong Lu
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| |
Collapse
|
3
|
Zhou Y, Wang F, Hu M, Xia S, Li Y, Zheng S, Zhang F. Acetoacetate Ameliorates Hepatic Fibrosis by Targeting Peroxisome Proliferator-Activated Receptor Gamma to Restore Lipid Droplets in Activated Hepatic Stellate Cells. Pharmaceuticals (Basel) 2025; 18:219. [PMID: 40006033 PMCID: PMC11859973 DOI: 10.3390/ph18020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Hepatic fibrosis (HF) is a progressive liver disease characterized by the activation of hepatic stellate cells (HSCs) and changes in lipid metabolism. Abnormal ketone body (KD) levels, including acetoacetate (AcAc) and beta-hydroxybutyrate (BHB), have been observed in patients with HF, but the mechanisms linking ketone metabolism to fibrosis progression remain unclear. Objectives: This study aimed to investigate the role of AcAc in modulating HSCs activation and its potential mechanisms in HF. Methods: We examined the effects of AcAc on HSCs activation by Western blot analysis and RT-PCR both in vivo and in vitro. The impact of AcAc on lipid droplet accumulation in HSCs was assessed using total cholesterol (TC), triglyceride (TG), and Retinol (RET) kits, along with Nile Red and Oil Red O staining. RT-PCR screening was performed to analyze the expression of genes involved in lipid droplet formation and lipid metabolism. Results: Our findings show that AcAc inhibited HSCs activation by restoring LD levels. Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) was identified as a key regulator through gene screening. AcAc primarily regulated PPARγ expression, and knocking down PPARγ significantly aggravated HF progression. Conclusions: The ability of AcAc to restore LD levels and regulate PPARγ suggests that it may represent a promising therapeutic strategy for HF by inhibiting HSCs activation.
Collapse
Affiliation(s)
| | | | | | | | | | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.Z.); (F.W.); (M.H.); (S.X.); (Y.L.)
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.Z.); (F.W.); (M.H.); (S.X.); (Y.L.)
| |
Collapse
|
4
|
Chen YL, Wang R, Pang R, Sun ZP, He XL, Tang WH, Ou JY, Yi HM, Cheng X, Chen JH, Yu Y, Ren CH, Wang QJ, Zhang ZJ. Transcriptome-Based Revelation of the Effects of Sleep Deprivation on Hepatic Metabolic Rhythms in Tibetan Sheep ( Ovis aries). Animals (Basel) 2024; 14:3165. [PMID: 39595218 PMCID: PMC11591132 DOI: 10.3390/ani14223165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Sleep deprivation (SD) disrupts circadian rhythms; however, its effects on SD and the mechanisms involved require further investigation. Previous studies on SD were mainly conducted on rodents, such as mice, with few studies on its effects on the liver of large diurnal animals, such as sheep. In this study, we used a Tibetan sheep model for the first time to investigate the effects of SD on the liver by exposing Tibetan sheep (Ovis aries) to 7 days of SD (6 h/day) and performed transcriptome sequencing analysis on liver samples taken at 4 h intervals over 24 h. The results revealed that SD significantly altered the circadian expression of genes and their expression patterns in the liver of Tibetan sheep. Enrichment analysis of the circadian rhythm-altered genes revealed changes in the pathways related to lipid metabolism in the liver. Further evidence from serum markers and gene expression analyses using qualitative real-time polymerase chain reaction and Oil Red O and apoptosis staining indicated that SD leads to abnormal lipid metabolism in the liver, potentially causing liver damage. Therefore, our results suggest that SD disrupts the circadian rhythms of metabolism-related genes in the Tibetan sheep liver, thereby affecting metabolic homeostasis.
Collapse
Affiliation(s)
- Ya-Le Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Ru Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Rui Pang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Zhi-Peng Sun
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China;
| | - Xiao-Long He
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Wen-Hui Tang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Jing-Yu Ou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Huan-Ming Yi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Xiao Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Jia-Hong Chen
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China;
| | - Yang Yu
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China;
| | - Chun-Huan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China;
| | - Qiang-Jun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Zi-Jun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China;
| |
Collapse
|
5
|
Song Z, Yan A, Li Z, Shang Y, Chen R, Yang Z, Guo Z, Zhang Y, Wen T, Ogaji OD, Wang Y. Integrated metabolomic and transcriptomic analysis reveals the effects and mechanisms of Jinqi Jiangtang tablets on type 2 diabetes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155957. [PMID: 39181101 DOI: 10.1016/j.phymed.2024.155957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/30/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Type 2 diabetes (T2DM) is one of the major metabolic diseases and poses a serious challenge to human life and global economic development. Jinqi Jiangtang Tablets (JQJT) is effective in ameliorating the effects of T2DM, but the mechanism of JQJT is unclear. PURPOSE This study integrated metabolomics and transcriptomics to reveal the mechanism by which JQJT improves T2DM. METHODS The T2DM mouse model was established, and the effects of JQJT on improving T2DM were evaluated by determining the levels of blood lipids, fasting blood glucose (FBG), insulin metabolism and hepatic lipid accumulation in mice after JQJT administration for 8 weeks. Serum metabolites were detected using ultra-performance liquid chromatography/quadrupole time-of-flight-tandem mass spectrometry (UPLC-Q-TOF-MS) technology, and mouse liver differential genes were detected using transcriptomic technology. Correlation analysis was used to extract metabolites and RNA with correlations, and potential pathways were enriched and constructed using the common pathway analysis function of MetaboAnalyst 5.0. Finally, the expression of key target proteins and genes was verified by Western blot (WB) and Polymerase Chain Reaction (PCR) to further elucidate the mechanism by which JQJT improves T2DM. RESULTS JQJT reduced FBG and lipid levels, improved insulin resistance (IR) and hepatic lipoatrophy in mice. A total of 35 differentially abundant metabolites were identified by metabolomics, and 328 differential genes were detected by transcriptomics. The integrated metabolomics and transcriptomics results suggested that JQJT may ameliorate T2DM mainly by regulating glucose and lipid metabolic pathways. WB and PCR results showed that JQJT regulates the insulin signaling pathway, involved in fatty acid metabolism, glycogen synthesis and catabolism. CONCLUSIONS JQJT improved IR in T2DM mice by regulating the insulin signaling pathway, improving glycogen synthesis and glycolysis, and increasing hepatic triglyceride and fatty acid metabolism.
Collapse
Affiliation(s)
- Zhihui Song
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - An Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Zhenzhen Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ye Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Chen
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zehui Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuhang Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tao Wen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Omachi Daniel Ogaji
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
6
|
Lai MS, Yan XP, Branch DR, Loriamini M, Chen LM. Ferroptosis in liver diseases: Fundamental mechanism and clinical implications. World J Gastroenterol 2024; 30:3730-3738. [PMID: 39221065 PMCID: PMC11362879 DOI: 10.3748/wjg.v30.i32.3730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
This editorial discusses a recently published paper in the World Journal of Gastroenterology. Our research focuses on p53's regulatory mechanism for controlling ferroptosis, as well as the intricate connection between ferroptosis and liver diseases. Ferroptosis is a specific form of programmed cell death that is de-pendent on iron and displays unique features in terms of morphology, biology, and genetics, distinguishing it from other forms of cell death. Ferroptosis can affect the liver, which is a crucial organ responsible for iron storage and meta-bolism. Mounting evidence indicates a robust correlation between ferroptosis and the advancement of liver disorders. P53 has a dual effect on ferroptosis through various distinct signaling pathways. However, additional investigations are required to clarify the regulatory function of p53 metabolic targets in this complex association with ferroptosis. In the future, researchers should clarify the mechanisms by which ferroptosis and other forms of programmed cell death contribute to the progression of liver diseases. Identifying and controlling important regulatory factors associated with ferroptosis present a promising therapeutic strategy for liver disorders.
Collapse
Affiliation(s)
- Ming-Shuang Lai
- The Joint Laboratory on Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning 530003, Guangxi Zhuang Autonomous Region, China
| | - Xi-Peng Yan
- The Joint Laboratory on Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning 530003, Guangxi Zhuang Autonomous Region, China
| | - Donald R Branch
- Department of Medicine and Laboratory Medicine and Pathobiology, Centre for Innovation, Canadian Blood Services, Hamilton 397086, Canada
| | - Melika Loriamini
- Department of Medicine and Laboratory Medicine and Pathobiology, Centre for Innovation, Canadian Blood Services, Hamilton 397086, Canada
| | - Li-Min Chen
- The Joint Laboratory on Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning 530003, Guangxi Zhuang Autonomous Region, China
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu 610052, Sichuan Province, China
| |
Collapse
|
7
|
Sasaki T, Kakisaka K, Kuroda H, Matsumoto T. Nutritional management for acute liver failure. Hepatol Res 2024; 54:736-744. [PMID: 38949571 DOI: 10.1111/hepr.14090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Acute liver failure (ALF) induces increased energy expenditure and disrupts the metabolism of essential nutrients. Hepatic encephalopathy is a complication of ALF with a poor prognosis and mainly involves the metabolic disturbance of amino acids in its pathogenesis. In this review, we discuss the nutritional management for ALF in consideration of the pathophysiology of ALF with respect to the impairment of hepatocyte function. It is known that enteral nutrition is recommended for patients with ALF, while parenteral nutrition is recommended for patients who cannot tolerate enteral nutrition. As ALF leads to a hypermetabolic state, the energy intake is recommended to cover 1.3 times the resting energy expenditure. Because of the high risk of hypoglycemia associated with disturbances in glucose metabolism, substantial glucose intake is recommended. Along with the deterioration of glucose metabolism, protein metabolism is also disrupted. As patients with ALF have increased systemic protein catabolism together with decreased protein synthesis, appropriate amounts of amino acids or protein under monitoring serum ammonia levels are recommended. In conclusion, nutritional management based on the understanding of nutritional pathophysiology is a pivotal therapeutic approach for patients with ALF. The approach should be individualized in the acute phase, the recovery phase, and the pretransplant phase.
Collapse
Affiliation(s)
- Tokio Sasaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, School of Medicine, Yahaba, Japan
| | - Keisuke Kakisaka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, School of Medicine, Yahaba, Japan
| | - Hidekatsu Kuroda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, School of Medicine, Yahaba, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, School of Medicine, Yahaba, Japan
| |
Collapse
|
8
|
郑 孟, 刘 妍, 刘 娇, 康 巧, 王 婷. [Effect of deletion of protein 4.1R on proliferation, apoptosis and glycolysis of hepatocyte HL-7702 cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1355-1360. [PMID: 39051081 PMCID: PMC11270666 DOI: 10.12122/j.issn.1673-4254.2024.07.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 07/27/2024]
Abstract
OBJECTIVE To explore the effects of deletion of protein 4.1R on hepatocyte proliferation, apoptosis, and glycolysis and the molecular mechanisms. METHODS A 4.1R-/- HL-7702 cell line was constructed using CRISPR/Cas9 technique, and with 4.1R+/+HL-7702 cells as the control, its proliferative capacity and cell apoptosis were assessed using CCK-8 assay, EdU-488 staining, flow cytometry and Annexin V-FITC/PI staining at 24, 48, 72 h of cell culture. The changes in glucose uptake, lactate secretion, ATP production and pH value of the culture supernatant of 4.1R-/- HL-7702 cells were determined. The mRNA expressions of the key regulatory enzymes HK2, PFKL, PKM2 and LDHA in glycolysis were detected with qRT-PCR, and the protein expressions of AMPK, p-AMPK, Raptor and p-Raptor were determined using Western blotting. RESULTS Western blotting and sequencing analysis both confirmed the successful construction of 4.1R-/- HL-7702 cell line. Compared with the wild-type cells, 4.1R-/- HL-7702 cells exhibited a lowered proliferative activity with increased cell apoptosis. The deletion of protein 4.1R also resulted in significantly decreased glucose uptake, lactate secretion and ATP production of the cells and increased pH value of the cell culture supernatant. qRT-PCR showed significantly decreased mRNA expressions of the key regulatory enzymes in glycolysis in 4.1R-/- HL-7702 cells. Compared with those in HL-7702 cells, the expression levels of AMPK and Raptor proteins were decreased while the expression levels of p-AMPK and p-Raptor proteins increased significantly in 4.1R-/- HL-7702 cells. CONCLUSION Deletion of protein 4.1R in HL-7702 cells results in reduced proliferative capacity, increased apoptosis and suppression of glycolysis, and this regulatory mechanism is closely related with the activation of the downstream AMPK-mTORC1 signaling pathway.
Collapse
|
9
|
Rainu SK, Singh N. 3D microscaffolds with triple-marker sensitive nanoprobes for studying fatty liver disease in vitro. NANOSCALE 2024; 16:10048-10063. [PMID: 38712552 DOI: 10.1039/d4nr00434e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a heterogeneous condition that encompasses a wide range of liver diseases that progresses from simple hepatic steatosis to the life-threatening state of cirrhosis. However, due to the heterogeneity of this disease, comprehensive analysis of several physicochemical and biological factors that drive its progression is necessary. Therefore, an in vitro platform is required that would enable real-time monitoring of these changes to better understand the progression of these diseases. The earliest stage of NAFLD, i.e. hepatic steatosis, is characterised by triglyceride accumulation in the form of lipid vacuoles in the cytosol of hepatocytes. This fatty acid accumulation is usually accompanied by hepatic inflammation, leading to tissue acidification and dysregulated expression of certain proteases such as matrix metalloproteinases (MMPs). Taking cues from the biological parameters of the disease, we report here a 3D in vitro GelMA/alginate microscaffold platform encapsulating a triple-marker (pH, MMP-3 and MMP-9) sensitive fluorescent nanoprobe for monitoring, and hence, distinguishing the fatty liver disease (hepatic steatosis) from healthy livers on the basis of pH change and MMP expression. The nanoprobe consists of a carbon nanoparticle (CNP) core, which exhibits intrinsic pH-dependent fluorescence properties, decorated either with an MMP-3 (NpMMP3) or MMP-9 (NpMMP9) sensitive peptide substrate. These peptide substrates are flanked with a fluorophore-quencher pair that separates on enzymatic cleavage, resulting in fluorescence emission. The cocktail of these nanoprobes generated multiple fluorescence signals corresponding to slightly acidic pH (blue) and overexpression of MMP-3 (green) and MMP-9 (red) enzymes in a 3D in vitro fatty liver model, whereas no/negligible fluorescence signals were observed in a healthy liver model. Moreover, this platform enabled us to mimic fatty liver disease in a more realistic manner. Therefore, this 3D in vitro platform encapsulating triple-marker sensitive fluorescent nanoprobes would facilitate the monitoring of the changes in pH and MMP expression, thereby enabling us to distinguish a healthy liver from a diseased liver and to study liver disease stages on the basis of these markers.
Collapse
Affiliation(s)
- Simran Kaur Rainu
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
10
|
Huang Y, Zhang X, Li Q, Zheng W, Wu P, Wu R, Chen WH, Li C. N- p-coumaroyloctopamine ameliorates hepatic glucose metabolism and oxidative stress involved in a PI3K/AKT/GSK3β pathway. Front Pharmacol 2024; 15:1396641. [PMID: 38725660 PMCID: PMC11079176 DOI: 10.3389/fphar.2024.1396641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Type 2 diabetes mellitus is regarded as a chronic metabolic disease characterized by hyperglycemia. Long-term hyperglycemia may result in oxidative stress, damage pancreatic β-cell function and induce insulin resistance. Herein we explored the anti-hypoglycemic effects and mechanisms of action of N-p-coumaroyloctopamine (N-p-CO) in vitro and in vivo. N-p-CO exhibited high antioxidant activity, as indicated by the increased activity of SOD, GSH and GSH-Px in HL-7702 cells induced by both high glucose (HG) and palmitic acid (PA). N-p-CO treatment significantly augmented glucose uptake and glycogen synthesis in HG/PA-treated HL-7702 cells. Moreover, administration of N-p-CO in diabetic mice induced by both high-fat diet (HFD) and streptozotocin (STZ) not only significantly increased the antioxidant levels of GSH-PX, SOD and GSH, but also dramatically alleviated hyperglycemia and hepatic glucose metabolism in a dose-dependent manner. More importantly, N-p-CO upregulated the expressions of PI3K, AKT and GSK3β proteins in both HG/PA-induced HL-7702 cells and HFD/STZ-induced mice. These findings clearly suggest that N-p-CO exerts anti-hypoglycemic and anti-oxidant effects, most probably via the regulation of a PI3K/AKT/GSK3β signaling pathway. Thus, N-p-CO may have high potentials as a new candidate for the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Yuechang Huang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Xingmin Zhang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Qian Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Wende Zheng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Panpan Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Rihui Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Wen-Hua Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Chen Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| |
Collapse
|
11
|
Sun YD, Zhang H, Li YM, Han JJ. Abnormal metabolism in hepatic stellate cells: Pandora's box of MAFLD related hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189086. [PMID: 38342420 DOI: 10.1016/j.bbcan.2024.189086] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/25/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Metabolic associated fatty liver disease (MAFLD) is a significant risk factor for the development of hepatocellular carcinoma (HCC). Hepatic stellate cells (HSCs), as key mediators in liver injury response, are believed to play a crucial role in the repair process of liver injury. However, in MAFLD patients, the normal metabolic and immunoregulatory mechanisms of HSCs become disrupted, leading to disturbances in the local microenvironment. Abnormally activated HSCs are heavily involved in the initiation and progression of HCC. The metabolic disorders and abnormal activation of HSCs not only initiate liver fibrosis but also contribute to carcinogenesis. In this review, we provide an overview of recent research progress on the relationship between the abnormal metabolism of HSCs and the local immune system in the liver, elucidating the mechanisms of immune imbalance caused by abnormally activated HSCs in MAFLD patients. Based on this understanding, we discuss the potential and challenges of metabolic-based and immunology-based mechanisms in the treatment of MAFLD-related HCC, with a specific focus on the role of HSCs in HCC progression and their potential as targets for anti-cancer therapy. This review aims to enhance researchers' understanding of the importance of HSCs in maintaining normal liver function and highlights the significance of HSCs in the progression of MAFLD-related HCC.
Collapse
Affiliation(s)
- Yuan-Dong Sun
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Hao Zhang
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Yuan-Min Li
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, China
| | - Jian-Jun Han
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China.
| |
Collapse
|
12
|
Fan S, Lin L, Li P, Tian H, Shen J, Zhou L, Zhao Q, Zhang J, Qin Y, Tang C. Selenomethionine protects the liver from dietary deoxynivalenol exposure via Nrf2/PPARγ-GPX4-ferroptosis pathway in mice. Toxicology 2024; 501:153689. [PMID: 38040082 DOI: 10.1016/j.tox.2023.153689] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Deoxynivalenol (DON) is a significant Fusarium toxin that has gained global attention due to its high frequency of contamination in food and feed. It was reported to have hepatotoxicity, immunotoxicity, and reproduction toxicity in organs. On the other hand, Selenomethionine (SeMet) was proven to have anti-oxidation, tissue repairing, immunity improvement, and antifungal mycotoxin infection functions. However, the molecular mechanism by which SeMet alleviates DON damage is not yet clear. C57BL/6 mice were randomly divided into three groups, Se-A and Se-A+DON were fed with a diet containing 0.2 mg/kg Se whereas Se-S+DON were fed with a diet of 1.0 mg/kg Se. After feeding for four weeks, the mice were gavaged for 21 days with DON (2.0 mg/kg BW) or ultrapure water once per day. In the present study, we showed that SeMet significantly decreased the lipid peroxidation product malondialdehyde, and increased activities of antioxidant enzymes superoxide dismutase and total antioxidant capacity after DON exposure. In addition, our investigation revealed that SeMet regulated pathways related to lipid synthesis and metabolisms, and effectively mitigated DON-induced liver damage. Moreover, we have discovered that SeMet downregulation of N-acylethanolamine and HexCer accumulation induced hepatic lipotoxicity. Further study showed that SeMet supplementation increased protein levels of glutathione peroxidase 4 (GPX4), peroxisome proliferator-activated receptor γ (PPARγ), nuclear erythroid 2-related factor 2 (Nrf2), and upregulated target proteins, indicating suppression of oxidative stress in the liver. Meanwhile, we found that SeMet significantly reduced the DON-induced protein abundances of Bcl2, Beclin1, LC3B and proteins related to ferroptosis (Lpcat3, and Slc3a2), and downregulation of Slc7a11. In conclusion, SeMet protected the liver from damage by enhancing the Nrf2/PPARγ-GPX4-ferroptosis pathway, inhibiting lipid accumulation and hepatic lipotoxicity. The findings of this study indicated that SeMet has a positive impact on liver health by improving antioxidant capacity and relieving lipotoxicity in toxin pollution.
Collapse
Affiliation(s)
- Shijie Fan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Luxi Lin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pingyang Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huihui Tian
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jialu Shen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Longzhu Zhou
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
13
|
Hu L, Wang X, Qian M, Zhang H, Jin Y. Impacts of prothioconazole and prothioconazole-desthio on bile acid and glucolipid metabolism: Upregulation of CYP7A1 expression in HepG2 cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105702. [PMID: 38225060 DOI: 10.1016/j.pestbp.2023.105702] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
As an efficient triazole fungicide, prothioconazole (PTC) is widely used for the prevention and control of plant fungal pathogens. It was reported that the residues of PTC and prothioconazole-desthio (PTC-d) have been detected in the environment and crops, and the effects of PTC-d may be higher than that of PTC. Currently, PTC and PTC-d have been proven to induce hepatic metabolic disorders. However, their toxic effects on cellular bile acid (BA) and glucolipid metabolism remain unknown. In this study, HepG2 cells were exposed to 1-500 μM of PTC or PTC-d. High concentrations of PTC and PTC-d were found to induce cytotoxicity; thus, subsequent experimental exposure was conducted at concentrations of 10-50 μM. The expression levels of CYP7A1 and TG synthesis-related genes and levels of TG and total BA were observed to increase in HepG2 cells. Molecular docking analysis revealed direct interactions between PTC or PTC-d and CYP7A1 protein. To further investigate the underlying mechanisms, PTC and PTC-d were treated to HepG2 cells in which CYP7A1 expression was knocked down using siCYP7A1. It was observed that PTC and PTC-d affected the BA metabolism process and regulated the glycolipid metabolism process by promoting the expression of CYP7A1. In summary, we comprehensively analyzed the effects and mechanisms of PTC and PTC-d on cellular metabolism in HepG2 cells, providing theoretical data for evaluating the safety and potential risks associated with these substances.
Collapse
Affiliation(s)
- Lingyu Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xiaofang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Hu Zhang
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
14
|
Chen Q, Zhou D, Wang C, Ye M, Jia Y, Liu B, Bukulmez O, Norman RJ, Hu H, Yeung SB, Teng X, Liu W, Chen M. The adverse effects of vitrification on mouse embryo development and metabolic phenotype in offspring. FASEB J 2024; 38:e23372. [PMID: 38102977 DOI: 10.1096/fj.202301774rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Embryo vitrification is a standard procedure in assisted reproductive technology. Previous studies have shown that frozen embryo transfer is associated with an elevated risk of adverse maternal and neonatal outcomes. This study aimed to explore the effects of mouse blastocyst vitrification on the phenotype of vitrified-warmed blastocysts, their intrauterine and postnatal development, and the long-term metabolic health of the derived offspring. The vitrified-warmed blastocysts (IVF + VT group) exhibited reduced mitochondrial activity, increased apoptotic levels, and decreased cell numbers when compared to the fresh blastocysts (IVF group). Implantation rates, live pup rates, and crown-rump length at E18.5 were not different between the two groups. However, there was a significant decrease in fetal weight and fetal/placental weight ratio in the IVF + VT group. Furthermore, the offspring of the IVF + VT group at an age of 36 weeks had reduced whole energy consumption, impaired glucose and lipid metabolism when compared with the IVF group. Notably, RNA-seq results unveiled disturbed hepatic gene expression in the offspring from vitrified-warmed blastocysts. This study revealed the short-term negative impacts of vitrification on embryo and fetal development and the long-term influence on glucose and lipid metabolism that persist from the prenatal stage into adulthood in mice.
Collapse
Affiliation(s)
- Qiaoyu Chen
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Dan Zhou
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Changxin Wang
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingming Ye
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanping Jia
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Binya Liu
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Orhan Bukulmez
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Robert J Norman
- Robinson Research Institute, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Hanxin Hu
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shu-Biu Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, the University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Xiaoming Teng
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenqiang Liu
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Miaoxin Chen
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
15
|
Salau VF, Erukainure OL, Olofinsan KA, Schoeman RLS, Matsabisa MG. Lippia javanica (Burm. F.) Herbal Tea: Modulation of Hepatoprotective Effects in Chang Liver Cells via Mitigation of Redox Imbalance and Modulation of Perturbed Metabolic Activities. Front Pharmacol 2023; 14:1221769. [PMID: 37608895 PMCID: PMC10441784 DOI: 10.3389/fphar.2023.1221769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction: Hepatic oxidative injury is one of the pathological mechanisms that significantly contributes to the development of several liver diseases. In the present study, the hepatoprotective effect of Lippia javanica herbal tea was investigated in Fe2+- mediated hepatic oxidative injury. Methods: Using an in vitro experimental approach, hepatic oxidative injury was induced by co-incubating 7 mM FeSO4 with Chang liver cells that have been pre-incubated with or without different concentrations (15-240 μg/mL) of L. javanica infusion. Gallic acid and ascorbic acid served as the standard antioxidants. Results: The infusion displayed a reducing antioxidant activity in ferric-reducing antioxidant power (FRAP) assay and a potent scavenging activity on 2,2-diphenyl-2- picrylhydrazyl (DPPH) radical. Pretreatment with L. javanica infusion significantly elevated the levels of reduced glutathione and non-protein thiol, and the activities of superoxide dismutase (SOD) and catalase, with concomitant decrease in hepatic malondialdehyde levels, acetylcholinesterase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glycogen phosphorylase and lipase activities. The infusion showed the presence of phytoconstituents such as phenolic compounds, tannins, phenolic glycosides and terpenoids when subjected to liquid chromatography-mass spectrometry analysis. Molecular docking revealed a strong binding affinity of dihydroroseoside and obacunone with both SOD and catalase compared to other phytoconstituents. Conclusion: These results portray a potent antioxidant and hepatoprotective effect of L. javanica, which may support the local usage of the herbal tea as a prospective therapeutic agent for oxidative stress-related liver diseases.
Collapse
Affiliation(s)
- Veronica F. Salau
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | | | - Kolawole A. Olofinsan
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | | | | |
Collapse
|
16
|
Wang D, Ji DC, Yu CY, Wu DN, Qi L. Research progress on the mitochondrial mechanism of age-related non-alcoholic fatty liver. World J Gastroenterol 2023; 29:1982-1993. [PMID: 37155524 PMCID: PMC10122792 DOI: 10.3748/wjg.v29.i13.1982] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 04/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. Reduced activity and slower metabolism in the elderly affect the balance of lipid metabolism in the liver leading to the accumulation of lipids. This affects the mitochondrial respiratory chain and the efficiency of β-oxidation and induces the overproduction of reactive oxygen species. In addition, the dynamic balance of the mitochondria is disrupted during the ageing process, which inhibits its phagocytic function and further aggravates liver injury, leading to a higher incidence of NAFLD in the elderly population. The present study reviewed the manifestations, role and mechanism of mitochondrial dysfunction in the progression of NAFLD in the elderly. Based on the understanding of mitochondrial dysfunction and abnormal lipid metabolism, this study discusses the treatment strategies and the potential therapeutic targets for NAFLD, including lipid accumulation, antioxidation, mitophagy and liver-protecting drugs. The purpose is to provide new ideas for the development of innovative drugs for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Dan Wang
- College of Basic Medicine, Beihua University, Jilin 132013, Jilin Province, China
| | - Duo-Chun Ji
- College of Basic Medicine, Beihua University, Jilin 132013, Jilin Province, China
| | - Chun-Yan Yu
- College of Basic Medicine, Beihua University, Jilin 132013, Jilin Province, China
| | - Dan-Ni Wu
- College of Basic Medicine, Beihua University, Jilin 132013, Jilin Province, China
| | - Ling Qi
- Central Laboratory, Qingyuan People's Hospital, Qingyuan 511518, Guangdong Province, China
| |
Collapse
|
17
|
Hou W, Zhao F, Fang L, Wang X, Wu D, Liu C, Leng Y, Gao Y, Fu J, Wang J, Min W. Walnut-Derived Peptides Promote Autophagy via the Activation of AMPK/mTOR/ULK1 Pathway to Ameliorate Hyperglycemia in Type 2 Diabetic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3751-3765. [PMID: 36802594 DOI: 10.1021/acs.jafc.2c07112] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Autophagy flux plays a significant protective role in type 2 diabetes mellitus (T2DM). However, the mechanisms by which autophagy mediates insulin resistance (IR) to ameliorate T2DM remain unclear. This study explored the hypoglycemic effects and mechanisms of walnut-derived peptides (fraction 3-10 kDa and LP5) in streptozotocin and high-fat-diet-induced T2DM mice. Findings revealed that walnut-derived peptides reduced the levels of blood glucose and FINS and ameliorated IR and dyslipidemia. They also increased SOD and GSH-PX activities and inhibited the secretion of TNF-α, IL-6, and IL-1β. Additionally, they increased the levels of ATP, COX, SDH, and MMP of liver mitochondria. Western blotting indicated that walnut-derived peptides up-regulated LC3-II/LC3-I and Beclin-1 expression, while they down-regulated p62 expression, which may be associated with the activation of the AMPK/mTOR/ULK1 pathway. Finally, the AMPK activator (AICAR) and inhibitor (Compound C) were used to verify that LP5 could activate autophagy through the AMPK/mTOR/ULK1 pathway in IR HepG2 cells.
Collapse
Affiliation(s)
- Weiyu Hou
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, People's Republic of China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, People's Republic of China
| | - Fanrui Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, People's Republic of China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, People's Republic of China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, People's Republic of China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, People's Republic of China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, People's Republic of China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, People's Republic of China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, People's Republic of China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, People's Republic of China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, People's Republic of China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, People's Republic of China
| | - Yue Leng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, People's Republic of China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, People's Republic of China
| | - Yawen Gao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, People's Republic of China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, People's Republic of China
| | - Junxi Fu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, People's Republic of China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, People's Republic of China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, People's Republic of China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, People's Republic of China
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, People's Republic of China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, People's Republic of China
| |
Collapse
|
18
|
Martin-Grau M, Monleon D. Sex dimorphism and metabolic profiles in management of metabolic-associated fatty liver disease. World J Clin Cases 2023; 11:1236-1244. [PMID: 36926130 PMCID: PMC10013124 DOI: 10.12998/wjcc.v11.i6.1236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/30/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) refers to the build-up of fat in the liver associated with metabolic dysfunction and has been estimated to affect a quarter of the population worldwide. Although metabolism is highly influenced by the effects of sex hormones, studies of sex differences in the incidence and progression of MAFLD are scarce. Metabolomics represents a powerful approach to studying these differences and identifying potential biomarkers and putative mechanisms. First, metabolomics makes it possible to obtain the molecular phenotype of the individual at a given time. Second, metabolomics may be a helpful tool for classifying patients according to the severity of the disease and obtaining diagnostic biomarkers. Some studies demonstrate associations between circulating metabolites and early and established MAFLD, but little is known about how metabolites relate to and encompass sex differences in disease progression and risk management. In this review, we will discuss the epidemiological metabolomic studies for sex differences in the development and progression of MAFLD, the role of metabolic profiles in understanding mechanisms and identifying sex-dependent biomarkers, and how this evidence may help in the future management of the disease.
Collapse
Affiliation(s)
- Maria Martin-Grau
- Department of Pathology, University of Valencia, Valencia 46010, Spain
| | - Daniel Monleon
- Department of Pathology, University of Valencia, Valencia 46010, Spain
| |
Collapse
|
19
|
Zhu X, He Y, Zhang Q, Ma D, Zhao H. Lead induced disorders of lipid metabolism and glycometabolism in the liver of developmental Japanese quails (Coturnix japonica) via inhibiting PI3K/Akt signaling pathway. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109489. [PMID: 36261108 DOI: 10.1016/j.cbpc.2022.109489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
The lead (Pb) contamination is considered a lethal threat to birds. However, Pb-induced hepatotoxicology especially its impacts on metabolic processes in the liver of birds is not yet fully understood. Therefore, we tried to determine the toxicological effects of Pb exposure on hepatic carbohydrate and lipid metabolism via Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway by using an animal model- Japanese quail (Coturnix japonica). One-week old female Japanese quails were randomly allocated into four groups and fed with 0, 50 ppm, 500 ppm and 1000 ppm Pb drinking water respectively for 49 days. The results showed that Pb accumulated in the liver as a dose-dependent manner. Exposure to high dose of Pb (500 and 1000 ppm Pb) led to severe histopathological damages characterized by irregularity and dilation of liver sinusoids, hepatic lipid vacuolization and hepatocellular cytoplasm hyalinization. Meanwhile, Pb exposure caused glycogen increase and lipid droplets decrease in the liver. Pb exposure was also attributable to a decreased triglyceride level in the plasma. In addition, the transcriptional levels of PI3K and Akt in the liver were downregulated by Pb exposure. Subsequently, the mRNA expressions of genes related with glycometabolism in the liver were remarkably altered and the mRNA levels of genes involved in fat synthesis and oxidation in the liver were also markedly changed. it seems that Pb could lead to liver metabolic disorder through structural damages and PI3K/Akt signaling pathway disruption.
Collapse
Affiliation(s)
- Xiaojia Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yu He
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Qingyu Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Derui Ma
- Beijing Chaoyang Foreign Language School, Beijing 100101, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
20
|
Moreno Traspas R, Teoh TS, Wong PM, Maier M, Chia CY, Lay K, Ali NA, Larson A, Al Mutairi F, Al-Sannaa NA, Faqeih EA, Alfadhel M, Cheema HA, Dupont J, Bézieau S, Isidor B, Low DY, Wang Y, Tan G, Lai PS, Piloquet H, Joubert M, Kayserili H, Kripps KA, Nahas SA, Wartchow EP, Warren M, Bhavani GS, Dasouki M, Sandoval R, Carvalho E, Ramos L, Porta G, Wu B, Lashkari HP, AlSaleem B, BaAbbad RM, Abreu Ferrão AN, Karageorgou V, Ordonez-Herrera N, Khan S, Bauer P, Cogne B, Bertoli-Avella AM, Vincent M, Girisha KM, Reversade B. Loss of FOCAD, operating via the SKI messenger RNA surveillance pathway, causes a pediatric syndrome with liver cirrhosis. Nat Genet 2022; 54:1214-1226. [PMID: 35864190 PMCID: PMC7615854 DOI: 10.1038/s41588-022-01120-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/02/2022] [Indexed: 02/08/2023]
Abstract
Cirrhosis is usually a late-onset and life-threatening disease characterized by fibrotic scarring and inflammation that disrupts liver architecture and function. While it is typically the result of alcoholism or hepatitis viral infection in adults, its etiology in infants is much less understood. In this study, we report 14 children from ten unrelated families presenting with a syndromic form of pediatric liver cirrhosis. By genome/exome sequencing, we found recessive variants in FOCAD segregating with the disease. Zebrafish lacking focad phenocopied the human disease, revealing a signature of altered messenger RNA (mRNA) degradation processes in the liver. Using patient's primary cells and CRISPR-Cas9-mediated inactivation in human hepatic cell lines, we found that FOCAD deficiency compromises the SKI mRNA surveillance pathway by reducing the levels of the RNA helicase SKIC2 and its cofactor SKIC3. FOCAD knockout hepatocytes exhibited lowered albumin expression and signs of persistent injury accompanied by CCL2 overproduction. Our results reveal the importance of FOCAD in maintaining liver homeostasis and disclose a possible therapeutic intervention point via inhibition of the CCL2/CCR2 signaling axis.
Collapse
Affiliation(s)
- Ricardo Moreno Traspas
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, Singapore.
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Tze Shin Teoh
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Pui-Mun Wong
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Michael Maier
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Crystal Y Chia
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Kenneth Lay
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Nur Ain Ali
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Austin Larson
- Section of Pediatrics-Clinical Genetics and Metabolism, Children's Hospital Colorado, Aurora, CO, USA
| | - Fuad Al Mutairi
- Department of Genetics and Precision Medicine, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | | | - Eissa Ali Faqeih
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Department of Genetics and Precision Medicine, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Medical Genomic Research, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Huma Arshad Cheema
- Division of Pediatric Gastroenterology-Hepatology and Nutrition, The Children's Hospital and The Institute of Child Health, Lahore, Pakistan
| | - Juliette Dupont
- Department of Pediatrics, Genetic Services, Lisbon North University Hospital Center, Lisbon, Portugal
| | - Stéphane Bézieau
- Medical Genetics Service, Nantes University Hospital Center, Nantes, France
| | - Bertrand Isidor
- Medical Genetics Service, Nantes University Hospital Center, Nantes, France
| | - Dorrain Yanwen Low
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Grace Tan
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Poh San Lai
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hugues Piloquet
- Gastropediatrics Department, Nantes University Hospital Center, Nantes, France
| | - Madeleine Joubert
- Anatomopathology Department, Nantes University Hospital Center, Nantes, France
| | - Hulya Kayserili
- Medical Genetics Department, School of Medicine, Koç University, Istanbul, Turkey
| | - Kimberly A Kripps
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Shareef A Nahas
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Eric P Wartchow
- Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO, USA
| | - Mikako Warren
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Gandham SriLakshmi Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Majed Dasouki
- Department of Pediatric Genetics, AdventHealth Medical Group, Orlando, FL, USA
| | - Renata Sandoval
- Department of Oncogenetics, Hospital Sírio-Libanês, Brasília, Brazil
| | - Elisa Carvalho
- Department of Pediatric Gastroenterology and Hepatology, Hospital da Criança de Brasília José Alencar, UniCEUB, Brasília, Brazil
| | - Luiza Ramos
- Mendelics Genomic Analysis, São Paulo, Brazil
| | - Gilda Porta
- Department of Pediatric Hepatology, Transplant Unit, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Bin Wu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Harsha Prasada Lashkari
- Department of Pediatrics, Kasturba Medical College, Mangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Badr AlSaleem
- Section of Pediatric Gastroenterology-Hepatology, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Raeda M BaAbbad
- Section of Pediatric Gastroenterology-Hepatology, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | | | | | | | | | - Benjamin Cogne
- Medical Genetics Service, Nantes University Hospital Center, Nantes, France
| | | | - Marie Vincent
- Medical Genetics Service, Nantes University Hospital Center, Nantes, France
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Bruno Reversade
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, Singapore.
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Medical Genetics Department, School of Medicine, Koç University, Istanbul, Turkey.
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
- Smart-Health Initiative, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
21
|
Lee JH, Kwon YJ, Park K, Lee HS, Park HK, Han JH, Ahn SB. Metabolic Score for Insulin Resistance Is Inversely Related to Incident Advanced Liver Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease. Nutrients 2022; 14:nu14153039. [PMID: 35893894 PMCID: PMC9330359 DOI: 10.3390/nu14153039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 02/06/2023] Open
Abstract
We determined the relationships between metabolic score for IR (METS-IR), triglyceride-glucose (TyG) index, and homeostatic model assessment for IR (HOMA-IR) and incident advanced liver fibrosis (ALF) and assessed the abilities of the three IR indicators to predict ALF in patients with non-alcoholic fatty liver disease (NAFLD) in adults with NAFLD who were aged 40–69 years old. Among 2218 participants with NAFLD at baseline, the areas under the receiver operating characteristic curve for predicting ALF of the METS-IR was 0.744 (0.679–0.810), significantly higher than that of TyG index (0.644 (0.569–0.720)) or that of HOMA-IR (0.633 (0.556–0.710)). Among 1368 patients with NAFLD and without ALF at baseline, 260 (19.0%) patients with NAFLD progressed to ALF during the 16-year follow-up period. Multivariable Cox proportional hazard regression analysis revealed that the adjusted hazard ratio (95% confidence interval) for incident ALF in the highest tertiles of METS-IR, TyG index, and HOMA-IR compared with the lowest tertile of each IR indicator were 0.5 (0.36–0.91), 0.7 (0.49–1.00), and 1.01 (0.71–1.42), respectively. METS-IR was inversely associated with ALF in patients with NAFLD, which cautiously suggests that the risk of ALF may need to be evaluated when metabolic parameters improve in individuals with NAFLD.
Collapse
Affiliation(s)
- Jun-Hyuk Lee
- Department of Family Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul 01830, Korea;
- Department of Medicine, Hanyang University Graduate School of Medicine, Seoul 04763, Korea; (K.P.); (H.-K.P.)
| | - Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Korea;
| | - Kyongmin Park
- Department of Medicine, Hanyang University Graduate School of Medicine, Seoul 04763, Korea; (K.P.); (H.-K.P.)
- Department of Family Medicine, Hanyang University College of Medicine, Seoul 04763, Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Department of Research Affairs, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Hoon-Ki Park
- Department of Medicine, Hanyang University Graduate School of Medicine, Seoul 04763, Korea; (K.P.); (H.-K.P.)
- Department of Family Medicine, Hanyang University College of Medicine, Seoul 04763, Korea
| | - Jee Hye Han
- Department of Family Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul 01830, Korea;
- Correspondence: (J.H.H.); (S.B.A.); Tel.: +82-2-970-8515 (J.H.H.); +82-2-970-8313 (S.B.A.)
| | - Sang Bong Ahn
- Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul 01830, Korea
- Correspondence: (J.H.H.); (S.B.A.); Tel.: +82-2-970-8515 (J.H.H.); +82-2-970-8313 (S.B.A.)
| |
Collapse
|
22
|
Duong MH, Gnjidic D, McLachlan AJ, Sakiris MA, Goyal P, Hilmer SN. The Prevalence of Adverse Drug Reactions and Adverse Drug Events from Heart Failure Medications in Frail Older Adults: A Systematic Review. Drugs Aging 2022; 39:631-643. [PMID: 35761118 PMCID: PMC9355931 DOI: 10.1007/s40266-022-00957-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 12/14/2022]
Abstract
Introduction Frailty is highly prevalent in heart failure populations and a major risk factor for adverse drug reactions (ADRs) and adverse drug events (ADEs). This review aimed to describe the prevalence, causality and severity of ADRs or ADEs from heart failure medications among frail compared with non-frail older adults. Methods A systematic search of CENTRAL, MEDLINE, Embase, Ageline, CINAHL, International Pharmaceutical Abstracts, PsychInfo, Scopus, registries and citations prior to 18 May 2021 was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 checklist. Risk of bias and quality of evidence were assessed. Eligible studies included randomised controlled trials (RCTs) and observational studies of people diagnosed with heart failure, aged ≥ 65 years, with frailty defined by an objective measurement, and reported ADRs/ADEs from/with heart failure medications. Results Two reviewers screened 2419 articles; interrater reliability kappa = 0.88. Three observational studies (n = 2596), a secondary analysis of two RCTs (n = 2098) and two cohort studies (n = 498) were included in a narrative synthesis. Frail patients in randomised trials of sacubitril/valsartan, aliskiren, or enalapril had twice the risk of mortality (hazard ratio [HR] 2.09, 1.62–2.71) and hospitalisations (HR 1.82, 1.37–2.41) compared with robust patients, which may reflect responsiveness to medications and/or factors unrelated to medication use. Hospitalisations from falls, tiredness and nausea were probably attributable to digoxin and possibly preventable according to the Naranjo and Hallas scales, respectively. Conclusion The potential harms from heart failure medications in frail older people are poorly studied and understood. Clinical trials and pharmacovigilance studies should include frailty as a covariate to inform medication optimisation for this vulnerable and growing population. Registration Prospero registration number: CRD 42021253762. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s40266-022-00957-8.
Collapse
Affiliation(s)
- Mai H Duong
- Faculty of Medicine and Health, Northern Clinical School, The University of Sydney, Sydney, NSW, Australia. .,Department of Clinical Pharmacology and Aged Care, Kolling Institute, Royal North Shore Hospital, Sydney, NSW, Australia.
| | - Danijela Gnjidic
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Andrew J McLachlan
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Marissa A Sakiris
- Department of Pharmacy, Royal North Shore Hospital, Sydney, NSW, Australia
| | | | - Sarah N Hilmer
- Faculty of Medicine and Health, Northern Clinical School, The University of Sydney, Sydney, NSW, Australia.,Department of Clinical Pharmacology and Aged Care, Kolling Institute, Royal North Shore Hospital, Sydney, NSW, Australia
| |
Collapse
|
23
|
Liu YH, Chen SC, Lee WH, Chen YC, Huang JC, Wu PY, Hung CH, Kuo CH, Su HM. Liver-function parameters are associated with incident hypertension in a large Taiwanese population follow-up study. J Hum Hypertens 2022:10.1038/s41371-022-00694-w. [PMID: 35618874 DOI: 10.1038/s41371-022-00694-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 11/09/2022]
Abstract
Previous studies demonstrated inconsistent results regarding the association between liver function and hypertension. In addition, large cohort follow-up studies are lacking. Therefore, this longitudinal study aimed to investigate the association between liver function and incident hypertension using data from the Taiwan Biobank (TWB). We evaluated liver biomarkers, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin, alpha-fetoprotein (AFP), total bilirubin, and gamma-glutamyl transferase (GGT) in this study. A total of 21,293 participants without hypertension at baseline were analyzed. During the mean 3.9-year follow-up, 3002 participants developed hypertension (defined as incident hypertension). Multivariable analysis revealed that high AST (odds ratio [OR], 1.004; 95% confidence interval [CI], 1.001-1.007; p = 0.014), high ALT (OR, 1.004; 95% CI, 1.002-1.006; p < 0.001), high albumin (OR, 1.897; 95% CI, 1.573-2.286; p < 0.001), and high GGT (OR, 1.004; 95% CI, 1.003-1.005; p < 0.001) were significantly associated with incident hypertension in all study participants. In subgroup analysis of the participants with an ALT level ≤2 times the normal limit (80 u/l) (n = 20,983), multivariable analysis demonstrated that high ALT (OR, 1.009; 95% CI, 1.005-1.012; p < 0.001) and high GGT (OR, 1.005; 95% CI, 1.003-1.006; p < 0.001) were significantly associated with incident hypertension. In conclusion, we found that elevated AST, ALT, albumin, and GGT were associated with incident hypertension in a large Taiwanese cohort. A greater understanding of potential risk factors for hypertension may help to reduce the burden of hypertension in this Taiwanese population.
Collapse
Affiliation(s)
- Yi-Hsueh Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Hsien Lee
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ying-Chih Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jiun-Chi Huang
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Yu Wu
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Chih-Hsing Hung
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ho-Ming Su
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan. .,Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
24
|
Renin–Angiotensin System in Liver Metabolism: Gender Differences and Role of Incretins. Metabolites 2022; 12:metabo12050411. [PMID: 35629915 PMCID: PMC9143858 DOI: 10.3390/metabo12050411] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
The impaired hepatic lipids and carbohydrates metabolism result in various metabolic disorders, including obesity, diabetes, insulin resistance, hyperlipidemia and metabolic syndrome. The renin–angiotensin system (RAS) has been identified in the liver and it is now recognized as an important modulator of body metabolic processes. This review is intended to provide an update of the impact of the renin–angiotensin system on lipid and carbohydrate metabolism, regarding gender difference and prenatal undernutrition, specifically focused on the role of the liver. The discovery of angiotensin-converting enzyme 2 (ACE2) has renewed interest in the potential therapeutic role of RAS modulation. RAS is over activated in non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma. Glucagon-like peptide-1 (GLP-1) has been shown to modulate RAS. The GLP-I analogue liraglutide antagonizes hepatocellular steatosis and exhibits liver protection. Liraglutide has a negative effect on the ACE/AngII/AT1R axis and a positive impact on the ACE2/Ang(1-7)/Mas axis. Activation of the ACE2/Ang(1-7)/Mas counter-regulatory axis is able to prevent liver injuries. Angiotensin(1-7) and ACE2 shows more favorable effects on lipid homeostasis in males but there is a need to do more investigation in female models. Prenatal undernutrition exerts long-term effects in the liver of offspring and is associated with a number of metabolic and endocrine alterations. These findings provide a novel therapeutic regimen to prevent and treat many chronic diseases by accelerating the effect of the ACE2/Ang1-7/Mas axis and inhibiting the ACE/AngII/AT1R axis.
Collapse
|
25
|
Chen Y, Xu YN, Ye CY, Feng WB, Zhou QT, Yang DH, Wang MW. GLP-1 mimetics as a potential therapy for nonalcoholic steatohepatitis. Acta Pharmacol Sin 2022; 43:1156-1166. [PMID: 34934197 PMCID: PMC9061743 DOI: 10.1038/s41401-021-00836-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022]
Abstract
Nonalcoholic steatohepatitis (NASH), as a severe form of nonalcoholic fatty liver disease (NAFLD), is characterized by liver steatosis, inflammation, hepatocellular injury and different degrees of fibrosis. The pathogenesis of NASH is complex and multifactorial, obesity and type 2 diabetes mellitus (T2DM) have been implicated as major risk factors. Glucagon-like peptide-1 receptor (GLP-1R) is one of the most successful drug targets of T2DM and obesity, and its peptidic ligands have been proposed as potential therapeutic agents for NASH. In this article we provide an overview of the pathophysiology and management of NASH, with a special focus on the pharmacological effects and possible mechanisms of GLP-1 mimetics in treating NAFLD/NASH, including dual and triple agonists at GLP-1R, glucose-dependent insulinotropic polypeptide receptor or glucagon receptor.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying-Na Xu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chen-Yu Ye
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wen-Bo Feng
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qing-Tong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - De-Hua Yang
- The CAS Key Laboratory of Receptor Research and The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Research Center for Deepsea Bioresources, Sanya, 572025, China.
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- The CAS Key Laboratory of Receptor Research and The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Research Center for Deepsea Bioresources, Sanya, 572025, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
26
|
Zhu L, Zong X, Xiao X, Cheng Y, Fu J, Lu Z, Jin M, Wang F, Wang Y. Multi-Omics Analysis of the Gut-Liver Axis Reveals the Mechanism of Liver Injury in Colitis Mice. Front Immunol 2022; 12:773070. [PMID: 35069545 PMCID: PMC8770869 DOI: 10.3389/fimmu.2021.773070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Liver injury is a common complication of inflammatory bowel disease (IBD). However, the mechanisms of liver injury development are not clear in IBD patients. Gut microbiota is thought to be engaged in IBD pathogenesis. Here, by an integrated analysis of host transcriptome and colonic microbiome, we have attempted to reveal the mechanism of liver injury in colitis mice. In this study, dextran sulfate sodium (DSS) -induced mice colitis model was constructed. Liver transcriptome showed significant up- and down-regulation of pathways linked to immune response and lipid metabolism, respectively. Whilst the colon transcriptome exhibited dramatic alterations in immune response and pathways associated with cell growth and death. The microbiota of DSS-treated mice underwent strong transitions. Correlation analyses identified genes associated with liver and colon injury, whose expression was associated with the abundance of liver and gut health-related bacteria. Collectively, the results indicate that the liver injury in colitis mice may be related to the intestinal dysbiosis and host-microbiota interactions. These findings may provide new insights for identifying potential targets for the treatment of IBD and its induced liver injury.
Collapse
Affiliation(s)
- Luoyi Zhu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Xin Zong
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiao Xiao
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Yuanzhi Cheng
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Jie Fu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Zeqing Lu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Mingliang Jin
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Fengqin Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Tao W, Yue X, Ye R, Nabi F, Shang Y, Zhu Z, Ahmed BZ, Liu J. Hepatoprotective Effect of the Penthorum Chinense Pursh Extract against the CCl 4-Induced Acute Liver Injury via NF-κB and p38-MAPK PATHWAYS in Dogs. Animals (Basel) 2022; 12:ani12050569. [PMID: 35268138 PMCID: PMC8909057 DOI: 10.3390/ani12050569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/03/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Acute liver injury (ALI), manifested by acute hepatocellular damages and necrosis, is a life-threatening clinical syndrome and Penthorum Chinense Pursh (PCP) is a well-known folk medicine practiced for liver-related diseases. This study aimed to investigate the ameliorative effects of PCP extract (PCPE) on carbon tetrachloride (CCl4) induced ALI in dogs via mitogen-activated protein kinase (MAPK) and Nuclear factor κB (NF-κB) signaling pathway. Healthy dogs were induced by CCl4 and treated with different dosage regimes of PCPE for 7 days. CCl4 produced acute liver injury and induced both oxidative stress and an inflammatory response in dogs. The PCPE significantly ameliorated and improved vacuolar inflammatory lesions in liver tissues during ALI, enhanced activity of superoxide dismutase, and restored glutathione peroxidase, further significantly reducing the indices of malondialdehyde and nitric oxide in serum. Inflammatory factors (IL-1β, IL-6, and TNF-α) were declined and anti-inflammatory factors (IL-10) were increased by the application of PCPE. PCPE treatment, down-regulated the MEKK4, MKK3, p38MAPK, MSK1, and NF-κB, and upregulated the IkB mRNA levels (p < 0.01) in ALI affected dogs. In conclusion, PCPE repaired acute liver injury by improving antioxidant enzymes and by reducing oxidation products. Furthermore, the PCPE inhibited the MAPK/NF-κB signaling pathway, which resulted in anti-inflammatory and antioxidant effects on ALI-induced dogs. In the future, PCPE could be a useful ethnomedicine in veterinary clinical practices for the treatment of liver injuries or failures.
Collapse
Affiliation(s)
- Weilai Tao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Xin Yue
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Ruiling Ye
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Fazul Nabi
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Yangfei Shang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Zhaorong Zhu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
- Chinese Veterinary Herbal Drugs Innovation Research Lab, University Veterinary Science Engineering Research Center in Chongqing, Chongqing 402460, China
- Immunology Research Center of Medical Research Institute, Southwest University, Chongqing 402460, China
| | - Bhutto Zohaib Ahmed
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water, and Marine Sciences, Uthal 90150, Pakistan;
| | - Juan Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
- Chinese Veterinary Herbal Drugs Innovation Research Lab, University Veterinary Science Engineering Research Center in Chongqing, Chongqing 402460, China
- Immunology Research Center of Medical Research Institute, Southwest University, Chongqing 402460, China
- Correspondence:
| |
Collapse
|
28
|
Early Time-Restricted Feeding Amends Circadian Clock Function and Improves Metabolic Health in Male and Female Nile Grass Rats. MEDICINES (BASEL, SWITZERLAND) 2022; 9:medicines9020015. [PMID: 35200758 PMCID: PMC8877212 DOI: 10.3390/medicines9020015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
Lengthening the daily eating period contributes to the onset of obesity and metabolic syndrome. Dietary approaches, including energy restriction and time-restricted feeding, are promising methods to combat metabolic disorders. This study explored the effect of early and late time-restricted feeding (TRF) on weight and adiposity, food consumption, glycemic control, clock gene expression, and liver metabolite composition in diurnal Nile grass rats (NGRs). Adult male and female Nile grass rats were randomly assigned to one of three groups: (1) access to a 60% high-fat (HF) diet ad-libitum (HF-AD), (2) time-restricted access to the HF diet for the first 6 h of the 12 h light/active phase (HF-AM) or (3) the second 6 h of the 12 h light/active phase (HF-PM). Animals remained on their respective protocols for six weeks. TRF reduced total energy consumption and weight gain, and early TRF (HF-AM) reduced fasting blood glucose, restored Per1 expression, and reduced liver lipid levels. Although sex-dependent differences were observed for fat storage and lipid composition, TRF improved metabolic parameters in both male and female NGRs. In conclusion, this study demonstrated that early TRF protocol benefits weight management, improves lipid and glycemic control, and restores clock gene expression in NGRs.
Collapse
|
29
|
de Oliveira LRS, Machado FSM, Rocha-Dias I, E Magalhães COD, De Sousa RAL, Cassilhas RC. An overview of the molecular and physiological antidepressant mechanisms of physical exercise in animal models of depression. Mol Biol Rep 2022; 49:4965-4975. [PMID: 35092564 DOI: 10.1007/s11033-022-07156-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Depression is a global disease that affects the physical and mental health of people of all ages. Non-pharmacological and unconventional methods of treatment, such as regular physical exercise, have been recommended to treat depression. METHODS Here, we briefly review the literature about the physiological and molecular mechanisms of exercise antidepressants in depressive-like behavior in animal models of depression. RESULTS The main hysiological and molecular mechanisms of physical exercise in depression include blood flow changes in several areas of the brain, increase in brain serotonin synthesis, increase in antioxidant enzymes, increase in serum and brain brain-derived neuro factor (BDNF) levels, decrease in cortisol levels and reduced inflammation in peripheral and brain tissues. Physical exercise also leads to increased activation of the phosphatidylinositol-3-kinase (PI3K), PGC-1α/FNDC5/Irisin pathway, BDNF concentrations (serum and cerebral), extracellular signal-regulated kinase and cAMP-response element binding protein (mainly in neurons of the hippocampus and prefrontal cortex), which together contribute to fight or inhibit the development of depression symptoms. These molecular and physiological mechanisms work in synchrony, further enhancing their effects. CONCLUSION Physical exercise can be used as a safe and effective non-pharmacological treatment in depression.
Collapse
Affiliation(s)
- Lucas Renan Sena de Oliveira
- Department of Physical Education, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Rodovia MGT 367 - Km 583, nº 5000, Bairro Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil.,Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil
| | | | - Isabella Rocha-Dias
- Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil
| | - Caíque Olegário Diniz E Magalhães
- Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil
| | - Ricardo Augusto Leoni De Sousa
- Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil
| | - Ricardo Cardoso Cassilhas
- Department of Physical Education, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Rodovia MGT 367 - Km 583, nº 5000, Bairro Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil. .,Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, MG, Brazil. .,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil. .,Post Graduation Program in Health Science (PPGCS), UFVJM, Diamantina, MG, Brasil.
| |
Collapse
|
30
|
Msomi NZ, Erukainure OL, Salau VF, Olofinsan KA, Islam MS. Xylitol improves antioxidant, purinergic and cholinergic dysfunction, and lipid metabolic homeostasis in hepatic injury in type 2 diabetic rats. J Food Biochem 2022; 46:e14040. [DOI: 10.1111/jfbc.14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Md. Shahidul Islam
- Department of Biochemistry University of KwaZulu‐Natal Durban South Africa
| |
Collapse
|
31
|
Wang C, Qin S, Pan W, Shi X, Gao H, Jin P, Xia X, Ma F. mRNAsi-related genes can effectively distinguish hepatocellular carcinoma into new molecular subtypes. Comput Struct Biotechnol J 2022; 20:2928-2941. [PMID: 35765647 PMCID: PMC9207218 DOI: 10.1016/j.csbj.2022.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Background Recent studies have shown that the mRNA expression-based stemness index (mRNAsi) can accurately quantify the similarity of cancer cells to stem cells, and mRNAsi-related genes are used as biomarkers for cancer. However, mRNAsi-driven tumor heterogeneity is rarely investigated, especially whether mRNAsi can distinguish hepatocellular carcinoma (HCC) into different molecular subtypes is still largely unknown. Methods Using OCLR machine learning algorithm, weighted gene co-expression network analysis, consistent unsupervised clustering, survival analysis and multivariate cox regression etc. to identify biomarkers and molecular subtypes related to tumor stemness in HCC. Results We firstly demonstrate that the high mRNAsi is significantly associated with the poor survival and high disease grades in HCC. Secondly, we identify 212 mRNAsi-related genes that can divide HCC into three molecular subtypes: low cancer stemness cell phenotype (CSCP-L), moderate cancer stemness cell phenotype (CSCP-M) and high cancer stemness cell phenotype (CSCP-H), especially over-activated ribosomes, spliceosomes and nucleotide metabolism lead to the worst prognosis for the CSCP-H subtype patients, while activated amino acids, fatty acids and complement systems result in the best prognosis for the CSCP-L subtype. Thirdly, we find that three CSCP subtypes have different mutation characteristics, immune microenvironment and immune checkpoint expression, which may cause the differential prognosis for three subtypes. Finally, we identify 10 robust mRNAsi-related biomarkers that can effectively predict the survival of HCC patients. Conclusions These novel cancer stemness-related CSCP subtypes and biomarkers in this study will be of great clinical significance for the diagnosis, prognosis and targeted therapy of HCC patients.
Collapse
Affiliation(s)
- Canbiao Wang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Shijie Qin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
- Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, the First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu 210002, China
| | - Wanwan Pan
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Xuejia Shi
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Hanyu Gao
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
- Corresponding authors.
| | - Xinyi Xia
- Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, the First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu 210002, China
- Corresponding authors.
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
- Corresponding authors.
| |
Collapse
|
32
|
Xu H, Sun J, Zhou L, Du QC, Zhu HY, Chen Y, Wang XY. Development of a lipid metabolism-related gene model to predict prognosis in patients with pancreatic cancer. World J Clin Cases 2021; 9:10884-10898. [PMID: 35047599 PMCID: PMC8678882 DOI: 10.12998/wjcc.v9.i35.10884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/01/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer is a highly heterogeneous disease, making prognosis prediction challenging. Altered energy metabolism to satisfy uncontrolled proliferation and metastasis has become one of the most important markers of tumors. However, the specific regulatory mechanism and its effect on prognosis have not been fully elucidated.
AIM To construct a prognostic polygene signature of differentially expressed genes (DEGs) related to lipid metabolism.
METHODS First, 9 tissue samples from patients with pancreatic cancer were collected and divided into a cancer group and a para-cancer group. All patient samples were subjected to metabolomics analysis based on liquid tandem chromatography quadrupole time of flight mass spectrometry. Then, mRNA expression profiles and corresponding clinical data of pancreatic cancer were downloaded from a public database. Least absolute shrinkage and selection operator Cox regression analysis was used to construct a multigene model for The Cancer Genome Atlas.
RESULTS Principal component analysis and orthogonal projections to latent structures-discriminant analysis (OPLS-DA) based on lipid metabolomics analysis showed a clear distribution in different regions. A Euclidean distance matrix was used to calculate the quantitative value of differential metabolites. The permutation test of the OPLS-DA model for tumor tissue and paracancerous tissue indicated that the established model was consistent with the actual condition based on sample data. A bar plot showed significantly higher levels of the lipid metabolites phosphatidylcholine (PC), phosphatidyl ethanolamine (PE), phosphatidylethanol(PEtOH), phosphatidylmethanol (PMeOH), phosphatidylserine (PS) and diacylglyceryl trimethylhomoserine (DGTS) in tumor tissues than in paracancerous tissues. According to bubble plots, PC, PE, PEtOH, PMeOH, PS and DGTS were significantly higher in tumor tissues than in paracancerous tissues. In total, 12.3% (25/197) of genes related to lipid metabolism were differentially expressed between tumor tissues and adjacent paracancerous tissues. Six DEGs correlated with overall survival in univariate Cox regression analysis (P < 0.05), and a 4-gene signature model was developed to divide patients into two risk groups, with patients in the high-risk group having significantly lower overall survival than those in the low-risk group (P < 0.05). ROC curve analysis confirmed the predictive power of the model.
CONCLUSION This novel model comprising 4 lipid metabolism-related genes might assist clinicians in the prognostic evaluation of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Hong Xu
- General Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Jian Sun
- General Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Ling Zhou
- General Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Qian-Cheng Du
- General Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Hui-Ying Zhu
- General Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yang Chen
- General Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Xin-Yu Wang
- General Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| |
Collapse
|
33
|
Fu K, Wang C, Ma C, Zhou H, Li Y. The Potential Application of Chinese Medicine in Liver Diseases: A New Opportunity. Front Pharmacol 2021; 12:771459. [PMID: 34803712 PMCID: PMC8600187 DOI: 10.3389/fphar.2021.771459] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Liver diseases have been a common challenge for people all over the world, which threatens the quality of life and safety of hundreds of millions of patients. China is a major country with liver diseases. Metabolic associated fatty liver disease, hepatitis B virus and alcoholic liver disease are the three most common liver diseases in our country, and the number of patients with liver cancer is increasing. Therefore, finding effective drugs to treat liver disease has become an urgent task. Chinese medicine (CM) has the advantages of low cost, high safety, and various biological activities, which is an important factor for the prevention and treatment of liver diseases. This review systematically summarizes the potential of CM in the treatment of liver diseases, showing that CM can alleviate liver diseases by regulating lipid metabolism, bile acid metabolism, immune function, and gut microbiota, as well as exerting anti-liver injury, anti-oxidation, and anti-hepatitis virus effects. Among them, Keap1/Nrf2, TGF-β/SMADS, p38 MAPK, NF-κB/IκBα, NF-κB-NLRP3, PI3K/Akt, TLR4-MyD88-NF-κB and IL-6/STAT3 signaling pathways are mainly involved. In conclusion, CM is very likely to be a potential candidate for liver disease treatment based on modern phytochemistry, pharmacology, and genomeproteomics, which needs more clinical trials to further clarify its importance in the treatment of liver diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
34
|
Lu RH, Lin MJ, Yang F, Jia SZ, Zhang YR, Qin CB, Meng XL, Nie GX. Anti-miR33 therapy improved hepatopancreatic lipid and immune metabolism disorders in grass carp, Ctenopharyngodon idella. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1611-1622. [PMID: 34427827 DOI: 10.1007/s10695-021-00956-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/23/2021] [Indexed: 06/13/2023]
Abstract
Lipid metabolism disorders are found ubiquitously in farmed fish and occur as a result of excessive fat accumulation. Previous studies have found that miR-33 is involved in lipid metabolism; however, its role in fish lipid metabolism is unclear. We sought to clarify this relationship in grass carp in vivo and in vitro. Our findings revealed the length of miR-33 to be 65 bp. Phylogenetic tree analysis showed that grass carp miR-33 was most closely related to fish miR-33 (Siganus canaliculatus). Hepatocytes transfected with miR-33 mimic displayed markedly raised TG content (P < 0.05) as well as increased levels of lipid synthesis-related transcription factors (P < 0.05). Compared with blank and saline groups, total serum cholesterol, AST, and LDL levels were suppressed in groups treated with the miR-33 antagomir (P < 0.05). Moreover, the expression levels of PPARγ and SREBP-1c mRNA were significantly decreased in contrast to those found in the control group (P < 0.05). Similar findings were noted in the expression of immune-related proinflammatory molecules (TNFα, IL-1β, IL-6, and NF-κB), which also demonstrated decreased levels (P < 0.05). Conversely, high expressions of anti-inflammatory factors (TGF-β1 and IL-10) were noted (P < 0.05). This investigation strongly supports the role of miR-33 in hepatopancreas-based lipid metabolism and immunity. miR-33 may have been highly conserved in early vertebrates in order to facilitate liver-specific metabolic and immunomodulatory functions. Our findings provide a basis for further investigations exploring the mechanisms surrounding fish lipid metabolism and may aid in preventing and treating immunocompromised fish as well as fish with fatty hepatopancreas, and other metabolic diseases.
Collapse
Affiliation(s)
- Rong-Hua Lu
- College of Fisheries, Henan Normal University, 453007, Xinxiang, China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Xinxiang, 453007, China
| | - Meng-Jun Lin
- College of Fisheries, Henan Normal University, 453007, Xinxiang, China
| | - Feng Yang
- College of Fisheries, Henan Normal University, 453007, Xinxiang, China
| | - Shen-Zong Jia
- College of Fisheries, Henan Normal University, 453007, Xinxiang, China
| | - Yu-Ru Zhang
- College of Fisheries, Henan Normal University, 453007, Xinxiang, China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Xinxiang, 453007, China
| | - Chao-Bin Qin
- College of Fisheries, Henan Normal University, 453007, Xinxiang, China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Xinxiang, 453007, China
| | - Xiao-Lin Meng
- College of Fisheries, Henan Normal University, 453007, Xinxiang, China
| | - Guo-Xing Nie
- College of Fisheries, Henan Normal University, 453007, Xinxiang, China.
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Xinxiang, 453007, China.
| |
Collapse
|
35
|
Zacchini F, Heber MF, Arena R, Radczuk N, Jankowska U, Ptak GE. Perturbations of the hepatic proteome behind the onset of metabolic disorders in mouse offspring developed following embryo manipulation. Theriogenology 2021; 171:119-129. [PMID: 34052779 DOI: 10.1016/j.theriogenology.2021.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/26/2022]
Abstract
Assisted Reproductive Technologies (ART) allowed the births of >8 million babies worldwide. Even if ART children are healthy at birth, several studies reported that ART may cause changes in foetal programming, leading to an increased predisposition to metabolic disorders in adulthood. Previous studies on mouse model showed obesity, glucose intolerance, and hepatic lipid accumulation in ART offspring. A cumulative effect of the different components of ART protocol has been previously described, for example, in the occurrence of epigenetic defects. Here, we investigated whether there is a cumulative effect of embryo transfer (ET), in vitro culture (IVC) and blastomere biopsy (BB) in the onset of metabolic disorders in mouse offspring vs those naturally conceived (Control - CTR). To this aim, proteomic analysis was performed on the livers from adult mouse offspring developed following ET, IVC and BB vs CTR. We observed deregulated expression of proteins involved in lipid, carbohydrate, energy metabolisms and cellular processes in ART offspring. Moreover, we found increased body weight in all ART offspring while i) insulin resistance in BB male, ii) females glucose intolerance and high level of triglycerides and cholesterol in BB females and iii) low levels of interleukin-6 in BB, IVC and ET males. In conclusion, our study suggests that the use of various embryo manipulations influences the metabolic health of adult offspring, resulting in an increased predisposition to hepatic diseases and metabolic syndrome in a sex-specific manner.
Collapse
Affiliation(s)
- Federica Zacchini
- Małopolska Centre of Biotechnology at Jagiellonian University, Str Gronostajowa 7a, 30-348, Krakow, Poland; Institute of Genetics and Animal Biotechnology PAS, Str Postępu 36A, Jastrzębiec, 05-552, Magdalenka, Poland; Percuros BV, Str Zernikedreef 8, 2333 CL, Leiden, the Netherlands.
| | - Maria Florencia Heber
- Małopolska Centre of Biotechnology at Jagiellonian University, Str Gronostajowa 7a, 30-348, Krakow, Poland
| | - Roberta Arena
- Małopolska Centre of Biotechnology at Jagiellonian University, Str Gronostajowa 7a, 30-348, Krakow, Poland; Institute of Genetics and Animal Biotechnology PAS, Str Postępu 36A, Jastrzębiec, 05-552, Magdalenka, Poland
| | - Natalia Radczuk
- Małopolska Centre of Biotechnology at Jagiellonian University, Str Gronostajowa 7a, 30-348, Krakow, Poland
| | - Urszula Jankowska
- Małopolska Centre of Biotechnology at Jagiellonian University, Str Gronostajowa 7a, 30-348, Krakow, Poland
| | - Grażyna Ewa Ptak
- Małopolska Centre of Biotechnology at Jagiellonian University, Str Gronostajowa 7a, 30-348, Krakow, Poland; University of Teramo, Str R. Balzarini 1, 64100, Teramo, Italy
| |
Collapse
|
36
|
Zhu Y, Yang H, Deng J, Fan D. Ginsenoside Rg5 Improves Insulin Resistance and Mitochondrial Biogenesis of Liver via Regulation of the Sirt1/PGC-1α Signaling Pathway in db/db Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8428-8439. [PMID: 34309383 DOI: 10.1021/acs.jafc.1c02476] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a common metabolic syndrome that decreases insulin sensitivity and mitochondrial biogenesis in the liver. Our previous study demonstrated that ginsenoside Rg5 (Rg5) could attenuate renal injury in diabetic mice but its underlying mechanism in mitochondrial biogenesis and insulin sensitivity remains poorly understood. In this study, we found that Rg5 intervention significantly inhibited blood glucose increases in db/db mice, improved liver function damage and hepatocyte apoptosis, and activated the IRS-1/phosphatidylinositol 3-kinase/AKT insulin metabolism signaling pathway. Rg5 treatment also increased the level of glycogen synthesis and activated sirtuin1 (Sirt1) to increase glucose uptake and insulin sensitivity in insulin-resistant HepG2 (IR-HepG2) cells. Rg5 intervention also effectively improved liver oxidative stress and inflammation in db/db mice and increased mitochondrial biogenesis caused by T2DM. Additionally, the Rg5 treatment increased the mitochondrial mass in IR-HepG2 cells and activated Sirt1 to regulate the Sirt1/PGC-1α/mitofusin-2 mitochondrial biosynthesis pathway. Our findings demonstrated that Rg5 enhanced liver mitochondrial biogenesis and insulin sensitivity in db/db mice by activating the Sirt1/PGC-1α signaling pathway, suggesting the potential of Rg5 as a natural product for T2DM interventions.
Collapse
Affiliation(s)
- Yanyan Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotechnology & Biomedical Research Institute, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Haixia Yang
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotechnology & Biomedical Research Institute, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotechnology & Biomedical Research Institute, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| |
Collapse
|
37
|
Monroy-Ramirez HC, Galicia-Moreno M, Sandoval-Rodriguez A, Meza-Rios A, Santos A, Armendariz-Borunda J. PPARs as Metabolic Sensors and Therapeutic Targets in Liver Diseases. Int J Mol Sci 2021; 22:ijms22158298. [PMID: 34361064 PMCID: PMC8347792 DOI: 10.3390/ijms22158298] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Carbohydrates and lipids are two components of the diet that provide the necessary energy to carry out various physiological processes to help maintain homeostasis in the body. However, when the metabolism of both biomolecules is altered, development of various liver diseases takes place; such as metabolic-associated fatty liver diseases (MAFLD), hepatitis B and C virus infections, alcoholic liver disease (ALD), and in more severe cases, hepatocelular carcinoma (HCC). On the other hand, PPARs are a family of ligand-dependent transcription factors with an important role in the regulation of metabolic processes to hepatic level as well as in other organs. After interaction with specific ligands, PPARs are translocated to the nucleus, undergoing structural changes to regulate gene transcription involved in lipid metabolism, adipogenesis, inflammation and metabolic homeostasis. This review aims to provide updated data about PPARs’ critical role in liver metabolic regulation, and their involvement triggering the genesis of several liver diseases. Information is provided about their molecular characteristics, cell signal pathways, and the main pharmacological therapies that modulate their function, currently engaged in the clinic scenario, or in pharmacological development.
Collapse
Affiliation(s)
- Hugo Christian Monroy-Ramirez
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (H.C.M.-R.); (M.G.-M.); (A.S.-R.)
| | - Marina Galicia-Moreno
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (H.C.M.-R.); (M.G.-M.); (A.S.-R.)
| | - Ana Sandoval-Rodriguez
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (H.C.M.-R.); (M.G.-M.); (A.S.-R.)
| | - Alejandra Meza-Rios
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Zapopan 45138, Jalisco, Mexico; (A.M.-R.); (A.S.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Zapopan 45138, Jalisco, Mexico; (A.M.-R.); (A.S.)
| | - Juan Armendariz-Borunda
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (H.C.M.-R.); (M.G.-M.); (A.S.-R.)
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Zapopan 45138, Jalisco, Mexico; (A.M.-R.); (A.S.)
- Correspondence:
| |
Collapse
|
38
|
Li J, Song D, Zhang B, Guo J, Li W, Zhang X, Zhao Q. Hepatoprotective Effects of Heracleum candicans Against Carbon Tetrachloride-Induced Acute Liver Injury in Rats. Dose Response 2021; 19:15593258211029510. [PMID: 34290575 PMCID: PMC8278464 DOI: 10.1177/15593258211029510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 01/08/2023] Open
Abstract
Purpose: To determine the hepatoprotective mechanisms of Heracleum candicans in rats with acute liver injury induced by carbon tetrachloride (CCl4). Methods: Rats were intragastrically administered H candicans twice a day for 14 consecutive days and were intraperitoneally challenged with CCl4. Alanine aminotransferase and aspartate aminotransferase were measured to indicate liver injury. Malondialdehyde antioxidant enzyme activity and tumor necrosis factor-alpha and interleukin 6 secretion were measured as liver injury indicators. Histopathological tests were conducted to determine whether H candicans ameliorated liver injury. Results: CCl4-induced liver injury led to significant increases in liver injury biochemical indicators transaminase and malondialdehyde activities. H candicans pretreatments inhibited these increases. Pathological sections in pretreated samples exhibited reduced vacuole formation, neutrophil infiltration, and necrosis. Conclusion: H candicans increases the antioxidant capacity of the liver and maintains hepatocyte function in the face of CCl4-induced injury.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China.,Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Dan Song
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China.,Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Bintao Zhang
- Xianyang Central Hospital, Xianyang, Shaanxi, China
| | - Jinwei Guo
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Wenping Li
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Xiaoying Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China.,Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Qin Zhao
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China.,Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| |
Collapse
|
39
|
Yan J, Nie Y, Cao J, Luo M, Yan M, Chen Z, He B. The Roles and Pharmacological Effects of FGF21 in Preventing Aging-Associated Metabolic Diseases. Front Cardiovasc Med 2021; 8:655575. [PMID: 33869312 PMCID: PMC8044345 DOI: 10.3389/fcvm.2021.655575] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
With the continuous improvement of living standards but the lack of exercise, aging-associated metabolic diseases such as obesity, type 2 diabetes mellitus (T2DM), and non-alcoholic fatty liver disease (NAFLD) are becoming a lingering dark cloud over society. Studies have found that metabolic disorders are near related to glucose, lipid metabolism, and cellular aging. Fibroblast growth factor 21 (FGF21), a member of the FGFs family, efficiently regulates the homeostasis of metabolism and cellular aging. By activating autophagy genes and improving inflammation, FGF21 indirectly delays cellular aging and directly exerts anti-aging effects by regulating aging genes. FGF21 can also regulate glucose and lipid metabolism by controlling metabolism-related genes, such as adipose triglyceride lipase (ATGL) and acetyl-CoA carboxylase (ACC1). Because FGF21 can regulate metabolism and cellular aging simultaneously, FGF21 analogs and FGF21 receptor agonists are gradually being valued and could become a treatment approach for aging-associated metabolic diseases. However, the mechanism by which FGF21 achieves curative effects is still not known. This review aims to interpret the interactive influence between FGF21, aging, and metabolic diseases and delineate the pharmacology of FGF21, providing theoretical support for further research on FGF21.
Collapse
Affiliation(s)
- Junbin Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Yunmeng Nie
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jielu Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Minmin Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Maoxiang Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Zhiyun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
40
|
Kasuya S, Hidemasa K, Yamaguchi T, Uchi T, Inaoka T, Terada H. Refractory and Severe Hepatogenous Diabetes in a Patient with Cirrhosis Improved by Balloon-Occluded Retrograde Transvenous Obliteration of a Large Portosystemic Shunt. Cardiovasc Intervent Radiol 2021; 44:988-991. [PMID: 33709280 DOI: 10.1007/s00270-021-02793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
A 54-year-old male with liver cirrhosis (Child-Pugh score 5) presented with severe hepatogenous diabetes (HbA1c 12.6%). Contrast-enhanced CT showed a large portosystemic shunt from the inferior mesenteric vein to the left internal iliac vein. Glucose monitoring showed postprandial hyperglycemia and reactive hypoglycemia. After balloon-occluded retrograde transvenous obliteration (BRTO) and partial splenic transarterial embolization, postprandial hyperglycemia was diminished. Seven months later, HbA1c had improved from 12.6% to 6.7%. In this case, postprandial hyperglycemia occurred by direct delivery of glucose into the systemic circulation via the shunt, and fasting hypoglycemia occurred during treatment with oral antidiabetic agents and insufficient gluconeogenesis. BRTO of the portosystemic shunt resulted in improvement in hepatogenous diabetes.
Collapse
Affiliation(s)
- Shusuke Kasuya
- Department of Radiology, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, 285-8741, Japan.
| | - Kikuchi Hidemasa
- Department of Gastroenterology, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, 285-8741, Japan
| | - Takashi Yamaguchi
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, 285-8741, Japan
| | - Takamitsu Uchi
- Department of Radiology, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, 285-8741, Japan
| | - Tsutomu Inaoka
- Department of Radiology, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, 285-8741, Japan
| | - Hitoshi Terada
- Department of Radiology, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, 285-8741, Japan
| |
Collapse
|
41
|
Majore S, Agolini E, Micale L, Pascolini G, Zuppi P, Cocciadiferro D, Morlino S, Mattiuzzo M, Valiante M, Castori M, Novelli A, Grammatico P. Clinical presentation and molecular characterization of a novel patient with variant POC1A-related syndrome. Clin Genet 2021; 99:540-546. [PMID: 33372278 DOI: 10.1111/cge.13911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 12/10/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022]
Abstract
Biallelic pathogenic variants in POC1A result in SOFT (Short-stature, Onychodysplasia, Facial-dysmorphism, and hypoTrichosis) and variant POC1A-related (vPOC1A) syndromes. The latter, nowadays described in only two unrelated subjects, is associated with a restricted spectrum of variants falling in exon 10, which is naturally skipped in a specific POC1A mRNA. The synthesis of an amount of a POC1A isoform from this transcript in individuals with vPOC1A syndrome has been believed as the likely explanation for such a genotype-phenotype correlation. Here, we illustrate the clinical and molecular findings in a woman who resulted to be compound heterozygous for a recurrent frameshift variant in exon 10 and a novel variant in exon 9 of POC1A. Phenotypic characteristics of this woman included severe hyperinsulinemic dyslipidemia, acanthosis nigricans, moderate growth restriction, and dysmorphisms. These manifestations overlap the clinical features of the two previously published individuals with vPOC1A syndrome. RT-PCR analysis on peripheral blood and subsequent sequencing of the obtained amplicons demonstrated a variety of POC1A alternative transcripts that resulted to be expressed in the proband, in the healthy mother, and in controls. We illustrate the possible consequences of the two POC1A identified variants in an attempt to explain pleiotropy in vPOC1A syndrome.
Collapse
Affiliation(s)
- Silvia Majore
- Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Department of Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Giulia Pascolini
- Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Paolo Zuppi
- Endocrinology Unit, San Camillo-Forlanini Hospital, Rome, Italy
| | - Dario Cocciadiferro
- Laboratory of Medical Genetics, Department of Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Silvia Morlino
- Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Matteo Mattiuzzo
- Laboratory of Medical Genetics, Department of Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Michele Valiante
- Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Department of Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Paola Grammatico
- Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| |
Collapse
|
42
|
Lei Z, Wu H, Yang Y, Hu Q, Lei Y, Liu W, Nie Y, Yang L, Zhang X, Yang C, Lin T, Tong F, Zhu J, Guo J. Ovariectomy Impaired Hepatic Glucose and Lipid Homeostasis and Altered the Gut Microbiota in Mice With Different Diets. Front Endocrinol (Lausanne) 2021; 12:708838. [PMID: 34276568 PMCID: PMC8278766 DOI: 10.3389/fendo.2021.708838] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
The lower incidence of metabolic diseases of women than men and the increasing morbidity of metabolic disorders of menopausal women indicated that hormones produced by ovaries may affect homeostasis of glucose and lipid metabolism, but the underlying mechanisms remain unclear. To explore the functions of ovaries on regulating glucose and lipid metabolism in females, 8 weeks old C57BL/6 mice were preformed ovariectomy and administrated with normal food diet (NFD) or high fat diet (HFD). Six weeks after ovariectomy, blood biochemical indexes were tested and the morphology and histology of livers were checked. The expression levels of genes related to glucose and lipid metabolism in liver were detected through transcriptome analysis, qPCR and western blot assays. 16S rDNA sequence was conducted to analyze the gut microbiota of mice with ovariectomy and different diets. The serum total cholesterol (TC) was significantly increased in ovariectomized (OVX) mice fed with NFD (OVXN), and serum low density lipoprotein-cholesterol (LDL-C) was significantly increased in both OVXN mice and OVX mice fed with HFD (OVXH). The excessive glycogen storage was found in livers of 37.5% mice from OVXN group, and lipid accumulation was detected in livers of the other 62.5% OVXN mice. The OVXN group was further divided into OVXN-Gly and OVXN-TG subgroups depending on histological results of the liver. Lipid drops in livers of OVXH mice were more and larger than other groups. The expression level of genes related with lipogenesis was significantly increased and the expression level of genes related with β-oxidation was significantly downregulated in the liver of OVXN mice. Ovariectomy also caused the dysbiosis of intestinal flora of OVXN and OVXH mice. These results demonstrated that hormones generated by ovaries played important roles in regulating hepatic glucose and lipid metabolism and communicating with the gut microbiota in females.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, ; Jiao Guo,
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuting Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wanwan Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Lanxiang Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Xueying Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Changyuan Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Ting Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fengxue Tong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiamin Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, ; Jiao Guo,
| |
Collapse
|
43
|
Koibuchi H, Fujii Y, Sato’o Y, Mochizuki T, Yamada T, Cui L, Taniguchi N. Inhibitory effects of ultrasound irradiation on Staphylococcus epidermidis biofilm. J Med Ultrason (2001) 2021; 48:439-448. [PMID: 34410547 PMCID: PMC8578078 DOI: 10.1007/s10396-021-01120-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/02/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE We aimed to investigate whether low-intensity continuous and pulsed wave ultrasound (US) irradiation can inhibit the formation of Staphylococcus epidermidis biofilms, for potential application in the treatment of catheter-related bloodstream infections (CRBSI). METHODS S. epidermidis biofilms that formed on the bottom surfaces of 6-well plates were irradiated on the bottom surface using the sound cell incubator system for different intervals of time. RESULTS US irradiation with continuous waves for 24 h notably inhibited biofilm formation (p < 0.01), but the same US irradiation for 12 h had no remarkable effect. Further, double US irradiation with pulsed waves for 20 min inhibited biofilm formation by 33.6%, nearly two-fold more than single US irradiation, which reduced it by 17.9%. CONCLUSION US irradiation of a lower intensity (ISATA = 6-29 mW/cm2) than used in a previous study and lower than recommended by the Food and Drug Administration shows potential for preventing CRBSI caused by bacterial biofilms.
Collapse
Affiliation(s)
- Harumi Koibuchi
- Department of Clinical Laboratory Medicine, Jichi Medical University, 3311-1 Yakushiji Shimotsuke-Shi, Tochigi, 329-0498 Japan
| | - Yasutomo Fujii
- Department of Human Health Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yusuke Sato’o
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | | | - Toshiyuki Yamada
- Department of Clinical Laboratory Medicine, Jichi Medical University, 3311-1 Yakushiji Shimotsuke-Shi, Tochigi, 329-0498 Japan
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Nobuyuki Taniguchi
- Department of Clinical Laboratory Medicine, Jichi Medical University, 3311-1 Yakushiji Shimotsuke-Shi, Tochigi, 329-0498 Japan
| |
Collapse
|
44
|
Toprak U, Hegedus D, Doğan C, Güney G. A journey into the world of insect lipid metabolism. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21682. [PMID: 32335968 DOI: 10.1002/arch.21682] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Lipid metabolism is fundamental to life. In insects, it is critical, during reproduction, flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. Fat body contains various different cell types; however, adipocytes and oenocytes are the primary cells related to lipid metabolism. Lipid metabolism starts with the hydrolysis of dietary lipids, absorption of lipid monomers, followed by lipid transport from midgut to the fat body, lipogenesis or lipolysis in the fat body, and lipid transport from fat body to other sites demanding energy. Lipid metabolism is under the control of hormones, transcription factors, secondary messengers and posttranscriptional modifications. Primarily, lipogenesis is under the control of insulin-like peptides that activate lipogenic transcription factors, such as sterol regulatory element-binding proteins, whereas lipolysis is coordinated by the adipokinetic hormone that activates lipolytic transcription factors, such as forkhead box class O and cAMP-response element-binding protein. Calcium is the primary-secondary messenger affecting lipid metabolism and has different outcomes depending on the site of lipogenesis or lipolysis. Phosphorylation is central to lipid metabolism and multiple phosphorylases are involved in lipid accumulation or hydrolysis. Although most of the knowledge of insect lipid metabolism comes from the studies on the model Drosophila; other insects, in particular those with obligatory or facultative diapause, also have great potential to study lipid metabolism. The use of these models would significantly improve our knowledge of insect lipid metabolism.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Dwayne Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cansu Doğan
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Gözde Güney
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
45
|
Zhang J, Guo S, Li J, Bao W, Zhang P, Huang Y, Ling P, Wang Y, Zhao Q. Effects of high-fat diet-induced adipokines and cytokines on colorectal cancer development. FEBS Open Bio 2019; 9:2117-2125. [PMID: 31665829 PMCID: PMC6886304 DOI: 10.1002/2211-5463.12751] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common tumor worldwide, and recent epidemiological studies have indicated that obesity contributes to the morbidity and mortality of CRC. Furthermore, obesity‐related adipokines have been shown to be closely related to the incidence of CRC, but the underlying mechanisms are unclear. Here, we investigated the effects of high‐fat diet‐induced adipokines and cytokines on the development of CRC in vitro and in vivo. For the in vivo assays, we divided 2‐week‐old C57BL/6J‐ApcMin/J male mice into three groups: normal‐fat diet (ND), high‐fat and high‐sugar feed (HFHS), and high‐fat and low‐sugar feed (HFLS). After 1 week, all mice were injected with 20 mg·kg−1 1,2‐dimethylhydrazine once weekly for 10 consecutive weeks. Body weight, liver weight, epididymal fat weight and blood glucose levels were greatly increased in HFHS and HFLS groups compared with the ND group, and the expression levels of some adipokines and cytokines were obviously higher in HFHS or HFLS mice compared with ND mice. For the in vitro assays, HCT116 CRC cells were treated with sera of ND, HFHS or HFLS groups, or serum‐free media as a negative control. We observed that sera derived from HFHS or HFLS mice that contain excess adipokines and cytokines promoted the proliferation, migration and invasion of HCT116 cells compared with the ND sera‐conditioned medium or serum‐free medium group. Therefore, high‐fat diet‐induced adipokines and cytokines may promote the progression of CRC in vivo and in vitro. We investigated the effects of high‐fat diet‐induced adipokines and cytokines in the development of colorectal cancer. Some adipokines and cytokines were obviously higher in obese mice than in normal mice. Obesity‐induced adipokines and cytokines promoted the proliferation, migration and invasion of HCT116 cells. Therefore, high‐fat diet‐induced adipokines and cytokines may accelerate the progression of colorectal cancer.![]()
Collapse
Affiliation(s)
- Jian Zhang
- Department of General Surgery I, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, China
| | - Shikui Guo
- Department of General Surgery I, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, China
| | - Jinyuan Li
- Medical Faculty, Kunming University of Science and Technology, China
| | - Weimin Bao
- Department of General Surgery I, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, China
| | - Peng Zhang
- Department of General Surgery I, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, China
| | - Yingguang Huang
- Department of General Surgery I, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, China
| | - Ping Ling
- Department of General Surgery I, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, China
| | - Yongzhi Wang
- Department of General Surgery I, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, China
| | - Quan Zhao
- Department of General Surgery I, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, China
| |
Collapse
|
46
|
Su Z, Nie Y, Huang X, Zhu Y, Feng B, Tang L, Zheng G. Mitophagy in Hepatic Insulin Resistance: Therapeutic Potential and Concerns. Front Pharmacol 2019; 10:1193. [PMID: 31649547 PMCID: PMC6795753 DOI: 10.3389/fphar.2019.01193] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/17/2019] [Indexed: 12/23/2022] Open
Abstract
Metabolic syndrome, characterized by central obesity, hypertension, and hyperlipidemia, increases the morbidity and mortality of cardiovascular disease, type 2 diabetes, nonalcoholic fatty liver disease, and other metabolic diseases. It is well known that insulin resistance, especially hepatic insulin resistance, is a risk factor for metabolic syndrome. Current research has shown that hepatic fatty acid accumulation can cause hepatic insulin resistance through increased gluconeogenesis, lipogenesis, chronic inflammation, oxidative stress and endoplasmic reticulum stress, and impaired insulin signal pathway. Mitochondria are the major sites of fatty acid β-oxidation, which is the major degradation mechanism of fatty acids. Mitochondrial dysfunction has been shown to be involved in the development of hepatic fatty acid–induced hepatic insulin resistance. Mitochondrial autophagy (mitophagy), a catabolic process, selectively degrades damaged mitochondria to reverse mitochondrial dysfunction and preserve mitochondrial dynamics and function. Therefore, mitophagy can promote mitochondrial fatty acid oxidation to inhibit hepatic fatty acid accumulation and improve hepatic insulin resistance. Here, we review advances in our understanding of the relationship between mitophagy and hepatic insulin resistance. Additionally, we also highlight the potential value of mitophagy in the treatment of hepatic insulin resistance and metabolic syndrome.
Collapse
Affiliation(s)
- Zuqing Su
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yutong Nie
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiufang Huang
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Zhu
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bing Feng
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lipeng Tang
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
47
|
Beneficial and Deleterious Effects of Female Sex Hormones, Oral Contraceptives, and Phytoestrogens by Immunomodulation on the Liver. Int J Mol Sci 2019; 20:ijms20194694. [PMID: 31546715 PMCID: PMC6801544 DOI: 10.3390/ijms20194694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
The liver is considered the laboratory of the human body because of its many metabolic processes. It accomplishes diverse activities as a mixed gland and is in continuous cross-talk with the endocrine system. Not only do hormones from the gastrointestinal tract that participate in digestion regulate the liver functions, but the sex hormones also exert a strong influence on this sexually dimorphic organ, via their receptors expressed in liver, in both health and disease. Besides, the liver modifies the actions of sex hormones through their metabolism and transport proteins. Given the anatomical position and physiological importance of liver, this organ is evidenced as an immune vigilante that mediates the systemic immune response, and, in turn, the immune system regulates the hepatic functions. Such feedback is performed by cytokines. Pro-inflammatory and anti-inflammatory cytokines are strongly involved in hepatic homeostasis and in pathological states; indeed, female sex hormones, oral contraceptives, and phytoestrogens have immunomodulatory effects in the liver and the whole organism. To analyze the complex and interesting beneficial or deleterious effects of these drugs by their immunomodulatory actions in the liver can provide the basis for either their pharmacological use in therapeutic treatments or to avoid their intake in some diseases.
Collapse
|
48
|
Li S, Gao D, Jiang Y. Function, Detection and Alteration of Acylcarnitine Metabolism in Hepatocellular Carcinoma. Metabolites 2019; 9:E36. [PMID: 30795537 PMCID: PMC6410233 DOI: 10.3390/metabo9020036] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 01/01/2023] Open
Abstract
Acylcarnitines play an essential role in regulating the balance of intracellular sugar and lipid metabolism. They serve as carriers to transport activated long-chain fatty acids into mitochondria for β-oxidation as a major source of energy for cell activities. The liver is the most important organ for endogenous carnitine synthesis and metabolism. Hepatocellular carcinoma (HCC), a primary malignancy of the live with poor prognosis, may strongly influence the level of acylcarnitines. In this paper, the function, detection and alteration of acylcarnitine metabolism in HCC were briefly reviewed. An overview was provided to introduce the metabolic roles of acylcarnitines involved in fatty acid β-oxidation. Then different analytical platforms and methodologies were also briefly summarised. The relationship between HCC and acylcarnitine metabolism was described. Many of the studies reported that short, medium and long-chain acylcarnitines were altered in HCC patients. These findings presented current evidence in support of acylcarnitines as new candidate biomarkers for studies on the pathogenesis and development of HCC. Finally we discussed the challenges and perspectives of exploiting acylcarnitine metabolism and its related metabolic pathways as a target for HCC diagnosis and prognosis.
Collapse
Affiliation(s)
- Shangfu Li
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- National & Local United Engineering Lab for Personalized Anti-tumour Drugs, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Dan Gao
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- National & Local United Engineering Lab for Personalized Anti-tumour Drugs, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- Key Laboratory of Metabolomics at Shenzhen, Shenzhen 518055, China.
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|