1
|
Dufresne K. Fatty acid composition in the vaginal tract of cis-gender women: canary in coal mines for reproductive health? Lipids Health Dis 2025; 24:80. [PMID: 40033320 DOI: 10.1186/s12944-025-02489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/16/2025] [Indexed: 03/05/2025] Open
Abstract
The vaginal tract of cis-gender women of reproductive age is inhabited by communities of bacteria generally dominated by one of four Lactobacillus species. These bacteria are important for the reproductive health of women and favor better outcomes, including fertility, pregnancy leading to term and protection against infections. Past studies have focused on the role of carbohydrates in the balance of vaginal communities, and the role of fatty acids has been underestimated. However, small- to long-chain fatty acids present few properties that, in combination with sugar metabolism, affect the outcomes of the health or disease within the vaginal communities. Herein, we explore the origins of fatty acids in the vaginal tract as well as their roles in the bacterial life cycle in this environment. We also detail the putative impact of vaginal FAs on S. aureus, one of the etiologic agents of aerobic vaginitis. Finally, we discuss their potential for prevention or therapy in women of reproductive age.
Collapse
Affiliation(s)
- Karine Dufresne
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, Canada.
| |
Collapse
|
2
|
Wu Y, Zhang X, Liu X, Zhao Z, Tao S, Xu Q, Zhao J, Dai Z, Zhang G, Han D, Wang J. Galactooligosaccharides and Limosilactobacillus reuteri synergistically alleviate gut inflammation and barrier dysfunction by enriching Bacteroides acidifaciens for pentadecanoic acid biosynthesis. Nat Commun 2024; 15:9291. [PMID: 39468026 PMCID: PMC11519483 DOI: 10.1038/s41467-024-53144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Ulcerative colitis (UC) is a debilitating inflammatory bowel disease characterized by intestinal inflammation, barrier dysfunction, and dysbiosis, with limited treatment options available. This study systematically investigates the therapeutic potential of a synbiotic composed of galactooligosaccharides (GOS) and Limosilactobacillus reuteri in a murine model of colitis, revealing that GOS and L. reuteri synergistically protect against intestinal inflammation and barrier dysfunction by promoting the synthesis of pentadecanoic acid, an odd-chain fatty acid, from Bacteroides acidifaciens. Notably, the synbiotic, B. acidifaciens, and pentadecanoic acid are each capable of suppressing intestinal inflammation and enhancing tight junction by inhibiting NF-κB activation. Furthermore, similar reduction in B. acidifaciens and pentadecanoic acid levels are also observed in the feces from both human UC patients and lipopolysaccharide-induced intestinal inflammation in pigs. Our findings elucidate the protective mechanism of the synbiotic and highlight its therapeutic potential, along with B. acidifaciens and pentadecanoic acid, for UC and other intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Yujun Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaoyi Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhenguo Zhao
- Department of General Surgery, Jiangyin People's Hospital Affiliated to Nantong University, Jiangsu, 214400, China
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, 74078, USA
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Cagnasso F, Suchodolski JS, Borrelli A, Borella F, Bottero E, Benvenuti E, Ferriani R, Tolbert MK, Chen CC, Giaretta PR, Gianella P. Dysbiosis index and fecal concentrations of sterols, long-chain fatty acids and unconjugated bile acids in dogs with inflammatory protein-losing enteropathy. Front Microbiol 2024; 15:1433175. [PMID: 39464397 PMCID: PMC11505111 DOI: 10.3389/fmicb.2024.1433175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Canine protein-losing enteropathy (PLE) is a syndrome characterized by gastrointestinal loss of proteins. While fecal microbiome and metabolome perturbations have been reported in dogs with chronic enteropathy, they have not been widely studied in dogs with PLE. Therefore, the study aims were to investigate gut microbiome and targeted fecal metabolites in dogs with inflammatory PLE (iPLE) and evaluate whether treatment affects these changes at short-term follow-up. Methods Thirty-eight dogs with PLE and histopathological evidence of gastrointestinal inflammation and 47 healthy dogs were enrolled. Fecal samples were collected before endoscopy (T0) and after one month of therapy (T1). Microbiome and metabolome alterations were investigated using qPCR assays (dysbiosis index, DI) and gas chromatography/mass spectrometry (long-chain fatty acids, sterols, unconjugated bile acids), respectively. Results Median (min-max) DI of iPLE dogs was 0.4 (-5.9 to 7.7) and was significantly higher (p < 0.0001) than median DI in healthy dogs [-2.0 (-6.0 to 5.3)]. No significant associations were found between DI and selected clinicopathological variables. DI did not significantly differ between T0 and T1. In iPLE dogs, at T0, myristic, palmitic, linoleic, oleic, cis-vaccenic, stearic, arachidonic, gondoic, docosanoic, erucic, and nervonic acids were significantly higher (p < 0.0001) than healthy dogs. In iPLE dogs, oleic acid (p = 0.044), stearic acid (p = 0.013), erucic acid (p = 0.018) and nervonic acid (p = 0.002) were significantly decreased at T1. At T0, cholesterol and lathosterol (p < 0.0001) were significantly higher in iPLE dogs compared to healthy dogs, while total measured phytosterols were significantly lower (p = 0.001). No significant differences in total sterols, total phytosterols and total zoosterols content were found at T1, compared to T0. At T0, total primary bile acids and total secondary bile acids did not significantly differ between healthy control dogs and iPLE dogs. No significant differences in fecal bile acid content were found at T1. Discussion Dysbiosis and lipid metabolism perturbations were observed in dogs with iPLE. Different therapeutic protocols lead to an improvement of some but not all metabolome perturbations at short-term follow-up.
Collapse
Affiliation(s)
- Federica Cagnasso
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Antonio Borrelli
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Franca Borella
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | | | | | | | - M. Katherine Tolbert
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Chih-Chun Chen
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Paula R. Giaretta
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Paola Gianella
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| |
Collapse
|
4
|
Zhu M, Frank MW, Radka CD, Jeanfavre S, Xu J, Tse MW, Pacheco JA, Kim JS, Pierce K, Deik A, Hussain FA, Elsherbini J, Hussain S, Xulu N, Khan N, Pillay V, Mitchell CM, Dong KL, Ndung'u T, Clish CB, Rock CO, Blainey PC, Bloom SM, Kwon DS. Vaginal Lactobacillus fatty acid response mechanisms reveal a metabolite-targeted strategy for bacterial vaginosis treatment. Cell 2024; 187:5413-5430.e29. [PMID: 39163861 PMCID: PMC11429459 DOI: 10.1016/j.cell.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/15/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024]
Abstract
Bacterial vaginosis (BV), a common syndrome characterized by Lactobacillus-deficient vaginal microbiota, is associated with adverse health outcomes. BV often recurs after standard antibiotic therapy in part because antibiotics promote microbiota dominance by Lactobacillus iners instead of Lactobacillus crispatus, which has more beneficial health associations. Strategies to promote L. crispatus and inhibit L. iners are thus needed. We show that oleic acid (OA) and similar long-chain fatty acids simultaneously inhibit L. iners and enhance L. crispatus growth. These phenotypes require OA-inducible genes conserved in L. crispatus and related lactobacilli, including an oleate hydratase (ohyA) and putative fatty acid efflux pump (farE). FarE mediates OA resistance, while OhyA is robustly active in the vaginal microbiota and enhances bacterial fitness by biochemically sequestering OA in a derivative form only ohyA-harboring organisms can exploit. OA promotes L. crispatus dominance more effectively than antibiotics in an in vitro BV model, suggesting a metabolite-based treatment approach.
Collapse
Affiliation(s)
- Meilin Zhu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Matthew W Frank
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher D Radka
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | | | - Jiawu Xu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Megan W Tse
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jae Sun Kim
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Kerry Pierce
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fatima Aysha Hussain
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | - Salina Hussain
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Nondumiso Xulu
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Nasreen Khan
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | | | - Caroline M Mitchell
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Krista L Dong
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Health Systems Trust, Durban, South Africa; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Thumbi Ndung'u
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa; Africa Health Research Institute, Durban, South Africa; Max Planck Institute for Infection Biology, Berlin, Germany; Division of Infection and Immunity, University College London, London, UK
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charles O Rock
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul C Blainey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Seth M Bloom
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
5
|
Singh D, Mehghini P, Rodriguez-Palacios A, Di Martino L, Cominelli F, Basson AR. Anti-Inflammatory Effect of Dietary Pentadecanoic Fatty Acid Supplementation on Inflammatory Bowel Disease in SAMP1/YitFc Mice. Nutrients 2024; 16:3031. [PMID: 39275347 PMCID: PMC11397537 DOI: 10.3390/nu16173031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Dietary fats have been linked to the increasing incidence of chronic diseases, including inflammatory bowel diseases (IBD), namely, Crohn's disease (CD). METHODS This study investigated the impact of pentadecanoic acid (C15:0), a type of an odd-numbered chain saturated fatty acid, for its potential anti-inflammatory properties in different mouse models of experimental IBD using the SAMP1/YitFc (SAMP) mouse line (14- or 24-week-old), including chronic ileitis and DSS-induced colitis. To quantitively assess the effect of C:15, we tested two dosages of C:15 in selected experiments in comparison to control mice. Intestinal inflammation and intestinal permeability were used as primary outcomes. RESULTS In ileitis, C:15 supplementation showed an anti-inflammatory effect in SAMP mice (e.g., a reduction in ileitis severity vs. control p < 0.0043), which was reproducible when mice were tested in the DSS model of colitis (e.g., reduced permeability vs. control p < 0.0006). Of relevance, even the short-term C:15 therapy prevented colitis in mice by maintaining body weight, decreasing inflammation, preserving gut integrity, and alleviating colitis signs. CONCLUSIONS Collectively, the findings from both ileitis and colitis in SAMP mice indicate that C:15 may have therapeutic effects in the treatment of IBD (colitis in the short term). This promising effect has major translational potential for the alleviation of IBD in humans.
Collapse
Affiliation(s)
- Drishtant Singh
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
| | - Paola Mehghini
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Alexander Rodriguez-Palacios
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Mouse Models Core, Silvio O’Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH 44106, USA
- Germ-Free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Luca Di Martino
- Case Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Fabio Cominelli
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Mouse Models Core, Silvio O’Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH 44106, USA
- Germ-Free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Abigail Raffner Basson
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Li F, Xu J, Xie M, Fei D, Zhou Y, Li X, Guang Y, Gong L, Hu L, Feng F. Regulatory effects of tea polysaccharides on hepatic inflammation, gut microbiota dysbiosis, and serum metabolomic signatures in beef cattle under heat stress. Front Physiol 2024; 15:1460414. [PMID: 39308975 PMCID: PMC11413490 DOI: 10.3389/fphys.2024.1460414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Background Long-term heat stress (HS) severely restricts the growth performance of beef cattle and causes various health problems. The gut microbiota plays a crucial role in HS-associated inflammation and immune stress involving lymphocyte function. This study investigated the effects of dietary tea polysaccharide (TPS), a natural acidic glycoprotein, on HS-induced anorexia, inflammation, and gut microbiota dysbiosis in Simmental beef cattle. Methods The cattle were divided into two groups, receiving either normal chow or normal chow plus TPS (8 g/kg, 0.8%). Transcriptome sequencing analysis was used to analysis the differential signaling pathway of liver tissue. 16S rDNA sequencing was performed to analysis gut microbiota of beef cattle. Serum metabolite components were detected by untargeted metabolomics analysis. Results Hepatic transcriptomics analysis revealed that differentially expressed genes in TPS-fed cattle were primarily enriched in immune processes and lymphocyte activation. TPS administration significantly reduced the expression of the TLR4/NF-κB inflammatory signaling pathway, alleviating HS-induced hepatic inflammation. Gut microbiota analysis revealed that TPS improved intestinal homeostasis in HS-affected cattle by increasing bacterial diversity and increasing the relative abundances of Akkermansia and Alistipes while decreasing the Firmicutes-to-Bacteroidetes ratio and the abundance of Agathobacter. Liquid chromatography-tandem mass spectrometry (LC‒MS/MS) analysis indicated that TPS significantly increased the levels of long-chain fatty acids, including stearic acid, linolenic acid, arachidonic acid, and adrenic acid, in the serum of cattle. Conclusion These findings suggest that long-term consumption of tea polysaccharides can ameliorate heat stress-induced hepatic inflammation and gut microbiota dysbiosis in beef cattle, suggesting a possible liver-gut axis mechanism to mitigate heat stress.
Collapse
Affiliation(s)
- Fan Li
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Jun Xu
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Min Xie
- Institute of Quality Safety and Standards of agricultural Products, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Dan Fei
- Institute of Quality Safety and Standards of agricultural Products, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yaomin Zhou
- Institute of Quality Safety and Standards of agricultural Products, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Xiong Li
- Pingxiang Center of Agricultural Science and Technology Research, Pingxiang, China
| | - Yelan Guang
- Institute of Quality Safety and Standards of agricultural Products, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Lihui Gong
- Institute of Quality Safety and Standards of agricultural Products, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Lizhen Hu
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Fan Feng
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| |
Collapse
|
7
|
Delgado Dolset MI, Pablo-Torres C, Contreras N, Couto-Rodríguez A, Escolar-Peña A, Graña-Castro O, Izquierdo E, López-Rodríguez JC, Macías-Camero A, Pérez-Gordo M, Villaseñor A, Zubeldia-Varela E, Barber D, Escribese MM. Severe Allergy as a Chronic Inflammatory Condition From a Systems Biology Perspective. Clin Exp Allergy 2024; 54:550-584. [PMID: 38938054 DOI: 10.1111/cea.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 05/26/2024] [Indexed: 06/29/2024]
Abstract
Persistent and unresolved inflammation is a common underlying factor observed in several and seemingly unrelated human diseases, including cardiovascular and neurodegenerative diseases. Particularly, in atopic conditions, acute inflammatory responses such as those triggered by insect venom, food or drug allergies possess also a life-threatening potential. However, respiratory allergies predominantly exhibit late immune responses associated with chronic inflammation, that can eventually progress into a severe phenotype displaying similar features as those observed in other chronic inflammatory diseases, as is the case of uncontrolled severe asthma. This review aims to explore the different facets and systems involved in chronic allergic inflammation, including processes such as tissue remodelling and immune cell dysregulation, as well as genetic, metabolic and microbiota alterations, which are common to other inflammatory conditions. Our goal here was to deepen on the understanding of an entangled disease as is chronic allergic inflammation and expose potential avenues for the development of better diagnostic and intervention strategies.
Collapse
Affiliation(s)
- M I Delgado Dolset
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - C Pablo-Torres
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - N Contreras
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Couto-Rodríguez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Escolar-Peña
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - O Graña-Castro
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - E Izquierdo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - J C López-Rodríguez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Macías-Camero
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - M Pérez-Gordo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Villaseñor
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - E Zubeldia-Varela
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - D Barber
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - M M Escribese
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| |
Collapse
|
8
|
Crisi PE, Giordano MV, Luciani A, Gramenzi A, Prasinou P, Sansone A, Rinaldi V, Ferreri C, Boari A. Evaluation of the fatty acid-based erythrocyte membrane lipidome in cats with food responsive enteropathy, inflammatory bowel disease and low-grade intestinal T-cell lymphoma. PLoS One 2024; 19:e0307757. [PMID: 39074116 DOI: 10.1371/journal.pone.0307757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
Feline chronic enteropathies (FCE), include food-responsive-enteropathy (FRE), inflammatory bowel disease (IBD), and low-grade intestinal T-cell lymphoma (LGITL), and are common causes of chronic gastrointestinal signs in cats. Distinguishing between different subgroups of FCE can be challenging due to the frequent overlap of anamnestic, clinical, and laboratory data. While dysregulation in lipid metabolism has been reported in humans and dogs with chronic IBD, similar changes in cats are not yet completely understood. Assessing the fatty acid (FA) profile of red blood cell (RBC) membranes offers a valuable method for evaluating the quantity and quality of structural and functional molecular components in the membranes. Therefore, this study aimed to examine the FA composition of RBC membranes in FCE in comparison to healthy cats (HC). Gas-chromatography was used to quantitatively analyze a cluster of 11 FA, and based on these results, parameters of lipid homeostasis and enzyme activity indexes were calculated. A total of 41 FCE cats (17 FRE, 15 IBD, 9 LGITL) and 43 HC were enrolled. In FCE cats, the values of docosapentaenoic acid (p = 0.0002) and docosahexaenoic acid (p = 0.0246), were significantly higher, resulting in an overall increase in ω-3 polyunsaturated fatty acids (PUFA) (p = 0.006), and that of linoleic acid (p = 0.0026) was significantly lower. Additionally, FCE cats exhibited an increased PUFA balance (p = 0.0019) and Δ6-desaturase index (p = 0.0151), along with a decreased ω-6/ω-3 ratio (p = 0.0019). No differences were observed among cats affected by FRE, IBD and LGITL. Like humans and dogs, the results of this study indicate that FCE cats also display changes in their FA lipid profile at the level of the RBC membrane. The non-invasive analysis of RBC membrane shows promise as a potential tool for gaining a better understanding of lipid imbalances in this disease.
Collapse
Affiliation(s)
- Paolo Emidio Crisi
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Maria Veronica Giordano
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Alessia Luciani
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Alessandro Gramenzi
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Paraskevi Prasinou
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Anna Sansone
- Institute of Organic Synthesis and Photoreactivity, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Valentina Rinaldi
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Carla Ferreri
- Institute of Organic Synthesis and Photoreactivity, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Andrea Boari
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| |
Collapse
|
9
|
Giordano MV, Crisi PE, Gramenzi A, Cattaneo D, Corna L, Sung CH, Tolbert KM, Steiner JM, Suchodolski JS, Boari A. Fecal microbiota and concentrations of long-chain fatty acids, sterols, and unconjugated bile acids in cats with chronic enteropathy. Front Vet Sci 2024; 11:1401592. [PMID: 38933703 PMCID: PMC11199873 DOI: 10.3389/fvets.2024.1401592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Feline chronic enteropathies (FCE) are common causes of chronic gastrointestinal signs in cats and include different diseases such as food-responsive enteropathy (FRE), inflammatory bowel diseases (IBD), and low-grade intestinal T-cell lymphoma (LGITL). Although changes in intestinal microbiota and fecal metabolites have been reported in dogs and humans with chronic enteropathy, research in cats has been limited. Therefore, this study aimed to evaluate the fecal microbiota and lipid-related fecal metabolites in cats with FCE to a clinically healthy comparison group (CG). A total of 34 cats with FCE (13 FRE, 15 IBD, and 6 LGITL) and 27 cats in the CG were enrolled in this study. The fecal microbiota was evaluated by the qPCR-based feline Dysbiosis Index (DI). The feline DI in cats with CE (median: 1.3, range: -2.4 to 3.8) was significantly higher (p < 0.0001) compared to CG (median: - 2.3, Range: -4.3 to 2.3), with no difference found among the FCE subgroups. The fecal abundances of Faecalibacterium (p < 0.0001), Bacteroides (p < 0.0001), Fusobacterium (p = 0.0398), Bifidobacterium (p = 0.0004), and total bacteria (p = 0.0337) significantly decreased in cats with FCE. Twenty-seven targeted metabolites were measured by gas chromatography-mass spectrometry, including long-chain fatty acids (LCFAs), sterols, and bile acids (BAs). Fecal concentrations of 5 of 12 LCFAs were significantly increased in cats with FCE compared to CG. Fecal concentrations of zoosterol (p = 0.0109), such as cholesterol (p < 0.001) were also significantly increased in cats with FCE, but those of phytosterols were significantly decreased in this group. No differences in fecal BAs were found between the groups. Although no differences were found between the four groups, the fecal metabolomic pattern of cats with FRE was more similar to that of the CG than to those with IBD or LGITL. This could be explained by the mild changes associated with FRE compared to IBD and LGITL. The study showed changes in intestinal microbiota and alteration of fecal metabolites in FCE cats compared to the CG. Changes in fecal lipids metabolites suggest a dysmetabolism of lipids, including LCFAs, sterols, and unconjugated BAs in cats with CE.
Collapse
Affiliation(s)
| | - Paolo Emidio Crisi
- Department of Veterinary Medicine, University of Teramo, Piano D’Accio, Teramo, Italy
| | - Alessandro Gramenzi
- Department of Veterinary Medicine, University of Teramo, Piano D’Accio, Teramo, Italy
| | | | - Luca Corna
- Endovet Professional Association, Rome, Italy
| | - Chi-Hsuan Sung
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Katherine M. Tolbert
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Joerg M. Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Andrea Boari
- Department of Veterinary Medicine, University of Teramo, Piano D’Accio, Teramo, Italy
| |
Collapse
|
10
|
Li L, Cheng R, Wu Y, Lin H, Gan H, Zhang H. Diagnosis and management of inflammatory bowel disease. J Evid Based Med 2024; 17:409-433. [PMID: 38934234 DOI: 10.1111/jebm.12626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic and relapsing immune-mediated disease of the gastrointestinal tract with a gradually increasing global incidence and prevalence. A prolonged course of IBD leads to a decline in patient quality of life and the creation of a substantial economic burden on society. Owing to the lack of specific diagnostic markers, the diagnosis of IBD still needs a gold standard based on a combination of clinical manifestations, imaging, laboratory, and endoscopic results. Accordingly, the current goals of IBD treatment are to alleviate clinical symptoms and reduce recurrence rates. Therefore, it is imperative to develop a standard set of procedures to diagnose and treat IBD. In this review, we summarize prominent and emerging studies, outline classical and contemporary approaches to diagnosing and managing IBD, and integrate multiple guidelines. Furthermore, we propose the possibility of establishing an early and comprehensive diagnostic workflow and personalized management strategy in the future. We aim to enhance the quality and standardization of diagnostic and treatment procedures for IBD.
Collapse
Affiliation(s)
- Lili Li
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Cheng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yushan Wu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Lin
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Huatian Gan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- The Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Magisetty J, Gadiraju B, Kondreddy V. Genomic analysis in the colon tissues of omega-3 fatty acid-treated rats identifies novel gene signatures implicated in ulcerative colitis. Int J Biol Macromol 2024; 258:128867. [PMID: 38123036 DOI: 10.1016/j.ijbiomac.2023.128867] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/11/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Several long-term intervention trials only studied the ex vivo immunological function to elucidate the beneficial mechanisms of n-3 polyunsaturated fatty acids (PUFA) in the ulcerative colitis (UC). An unbiased whole-transcriptome analysis would be more valuable to obtain a comprehensive understanding of the processes and genes regulated by n-3 PUFA in vivo. In this study, we have performed microarray analysis in the colon tissues of dextran sulfate sodium (DSS)-induced UC in rats supplemented with n-6 PUFA, n-3PUFA and long-chain n-3PUFA (LC-n3PUFA). We have identified the novel gene signatures previously not linked to colitis such as Etv3, Clec4d, CD180, CD72, Megf11, and Angptl4 which are most downregulated in both n-3PUFA and LC-n3PUFA groups compared to the n-6PUFA group. The most upregulated genes were Nr1i3, Nptx2, and Zfp810 in both n-3PUFA and LC-n3PUFA groups. The RT-PCR analysis confirmed similar results. Interestingly, LPS treatment in macrophages upregulated the Megf11, Etv3, CD180, and Angptl4, and correlated with increased secretion of cytokines. Gene silencing of Etv3, Megf11, and CD180 in rats using intravascular delivery of siRNA-lipoparticles attenuated the DSS-induced ulceration and mucosal damage. Thus, our genome-wide microarray analysis identified novel genes regulated by omega-3 PUFA and offers new drug targets that could prevent or reduce UC.
Collapse
Affiliation(s)
- Jhansi Magisetty
- Department of Biochemistry, Central Food Technological Research Institute, Mysore 570020, India
| | - Bhavani Gadiraju
- Center for Lipid Science & Technology, The Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Vijay Kondreddy
- Center for Lipid Science & Technology, The Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India.
| |
Collapse
|
12
|
Pei J, Wang G, Li Y, Li L, Li C, Wu Y, Liu J, Tian G. Utility of four machine learning approaches for identifying ulcerative colitis and Crohn's disease. Heliyon 2024; 10:e23439. [PMID: 38148824 PMCID: PMC10750181 DOI: 10.1016/j.heliyon.2023.e23439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023] Open
Abstract
Objective Peripheral blood routine parameters (PBRPs) are simple and easily acquired markers to identify ulcerative colitis (UC) and Crohn's disease (CD) and reveal the severity, whereas the diagnostic performance of individual PBRP is limited. We, therefore used four machine learning (ML) models to evaluate the diagnostic and predictive values of PBRPs for UC and CD. Methods A retrospective study was conducted by collecting the PBRPs of 414 inflammatory bowel disease (IBD) patients, 423 healthy controls (HCs), and 344 non-IBD intestinal diseases (non-IBD) patients. We used approximately 70 % of the PBRPs data from both patients and HCs for training, 30 % for testing, and another group for external verification. The area under the receiver operating characteristic curve (AUC) was used to evaluate the diagnosis and prediction performance of these four ML models. Results Multi-layer perceptron artificial neural network model (MLP-ANN) yielded the highest diagnostic performance than the other three models in six subgroups in the training set, which is helpful for discriminating IBD and HCs, UC and CD, active CD and remissive CD, active UC and remissive UC, non-IBD and HCs, and IBD and non-IBD with the AUC of 1.00, 0.988, 0.942, 1.00, 0.986, and 0.97 in the testing set, as well as the AUC of 1.00, 1.00, 0.773, 0.904, 1.00 and 0.992 in the external validation set. Conclusion PBRPs-based MLP-ANN model exhibited good performance in discriminating between UC and CD and revealing the disease activity; however, a larger sample size and more models need to be considered for further research.
Collapse
Affiliation(s)
- Jingwen Pei
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan 646000, China
| | - Guobing Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan 646000, China
| | - Yi Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan 646000, China
| | - Lan Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan 646000, China
| | - Chang Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan 646000, China
| | - Yu Wu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan 646000, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan 646000, China
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan 646000, China
| |
Collapse
|
13
|
Florio M, Crudele L, Moschetta A, Gadaleta RM. Discovering the Nutrition-Microbiota Interplay in Inflammatory Bowel Disease: Are We There Yet? Endocrinology 2024:333-371. [DOI: 10.1007/978-3-031-35064-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Zhu M, Frank MW, Radka CD, Jeanfavre S, Tse MW, Pacheco JA, Pierce K, Deik A, Xu J, Hussain S, Hussain FA, Xulu N, Khan N, Pillay V, Dong KL, Ndung’u T, Clish CB, Rock CO, Blainey PC, Bloom SM, Kwon DS. Vaginal Lactobacillus fatty acid response mechanisms reveal a novel strategy for bacterial vaginosis treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.30.573720. [PMID: 38234804 PMCID: PMC10793477 DOI: 10.1101/2023.12.30.573720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Bacterial vaginosis (BV), a common syndrome characterized by Lactobacillus-deficient vaginal microbiota, is associated with adverse health outcomes. BV often recurs after standard antibiotic therapy in part because antibiotics promote microbiota dominance by Lactobacillus iners instead of Lactobacillus crispatus, which has more beneficial health associations. Strategies to promote L. crispatus and inhibit L. iners are thus needed. We show that oleic acid (OA) and similar long-chain fatty acids simultaneously inhibit L. iners and enhance L. crispatus growth. These phenotypes require OA-inducible genes conserved in L. crispatus and related species, including an oleate hydratase (ohyA) and putative fatty acid efflux pump (farE). FarE mediates OA resistance, while OhyA is robustly active in the human vaginal microbiota and sequesters OA in a derivative form that only ohyA-harboring organisms can exploit. Finally, OA promotes L. crispatus dominance more effectively than antibiotics in an in vitro model of BV, suggesting a novel approach for treatment.
Collapse
Affiliation(s)
- Meilin Zhu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Matthew W. Frank
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Christopher D. Radka
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky
| | | | - Megan W. Tse
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Kerry Pierce
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jiawu Xu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Salina Hussain
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Fatima Aysha Hussain
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nondumiso Xulu
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Nasreen Khan
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | | | - Krista L. Dong
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Health Systems Trust, Durban, South Africa
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Thumbi Ndung’u
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute (AHRI), Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
- Division of Infection and Immunity, University College London, London, UK
| | | | - Charles O. Rock
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- passed away on September 22, 2023
| | - Paul C. Blainey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Seth M. Bloom
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Douglas S. Kwon
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Jean Wilson E, Sirpu Natesh N, Ghadermazi P, Pothuraju R, Prajapati DR, Pandey S, Kaifi JT, Dodam JR, Bryan JN, Lorson CL, Watrelot AA, Foster JM, Mansell TJ, Joshua Chan SH, Batra SK, Subbiah J, Rachagani S. Red Cabbage Juice-Mediated Gut Microbiota Modulation Improves Intestinal Epithelial Homeostasis and Ameliorates Colitis. Int J Mol Sci 2023; 25:539. [PMID: 38203712 PMCID: PMC10778654 DOI: 10.3390/ijms25010539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Gut microbiota plays a crucial role in inflammatory bowel diseases (IBD) and can potentially prevent IBD through microbial-derived metabolites, making it a promising therapeutic avenue. Recent evidence suggests that despite an unclear underlying mechanism, red cabbage juice (RCJ) alleviates Dextran Sodium Sulfate (DSS)-induced colitis in mice. Thus, the study aims to unravel the molecular mechanism by which RCJ modulates the gut microbiota to alleviate DSS-induced colitis in mice. Using C57BL/6J mice, we evaluated RCJ's protective role in DSS-induced colitis through two cycles of 3% DSS. Mice were daily gavaged with PBS or RCJ until the endpoint, and gut microbiota composition was analyzed via shotgun metagenomics. RCJ treatment significantly improved body weight (p ≤ 0.001), survival in mice (p < 0.001) and reduced disease activity index (DAI) scores. Further, RCJ improved colonic barrier integrity by enhancing the expression of protective colonic mucins (p < 0.001) and tight junction proteins (p ≤ 0.01) in RCJ + DSS-treated mice compared to the DSS group. Shotgun metagenomic analysis revealed an enrichment of short-chain fatty acids (SCFAs)-producing bacteria (p < 0.05), leading to increased Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) activation (p ≤ 0.001). This, in turn, resulted in repression of the nuclear factor κB (NFκB) signaling pathway, causing decreased production of inflammatory cytokines and chemokines. Our study demonstrates colitis remission in a DSS-induced mouse model, showcasing RCJ as a potential modulator for gut microbiota and metabolites, with promising implications for IBD prevention and treatment.
Collapse
Affiliation(s)
- Emily Jean Wilson
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Nagabhishek Sirpu Natesh
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65201, USA; (N.S.N.); (J.R.D.); (J.N.B.)
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA
| | - Parsa Ghadermazi
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA; (P.G.)
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dipakkumar R. Prajapati
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Sanjit Pandey
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Jussuf T. Kaifi
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - John R. Dodam
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65201, USA; (N.S.N.); (J.R.D.); (J.N.B.)
| | - Jeffrey N. Bryan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65201, USA; (N.S.N.); (J.R.D.); (J.N.B.)
| | - Christian L. Lorson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA;
| | - Aude A. Watrelot
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA;
| | - Jason M. Foster
- Department of Surgery, Division of Surgical Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Thomas J. Mansell
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Siu Hung Joshua Chan
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA; (P.G.)
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jeyamkondan Subbiah
- Department of Food Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Satyanarayana Rachagani
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65201, USA; (N.S.N.); (J.R.D.); (J.N.B.)
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
16
|
Hosseini PSK, Wang B, Luan Y, Sun F, Michail S. Gut metabolomic profiles in paediatric ulcerative colitis patients prior to and after receiving faecal microbiota transplants. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e19. [PMID: 39165756 PMCID: PMC11334712 DOI: 10.1017/gmb.2023.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Ulcerative colitis (UC) is an immune-mediated inflammation of the colonic mucosa. Gut microbiota dysbiosis may play a significant role in disease pathogenesis by causing shifts in metabolomic profiles within the gut. To identify differences and trends in the metabolomic profile of paediatric UC patients pre- and post-faecal microbiota transplants (FMT). Forty-six paediatric patients with mild-to-moderate UC and 30 healthy paediatric patients were enrolled in this study. Baseline stool samples were collected prior to FMT initiation and at months 1, 3, 6, and 12 post-FMT. Pediatric Ulcerative Colitis Activity Index (PUCAI) scores were calculated at baseline and months 1, 3, 6, and 12 after FMT. The average Bray-Curtis dissimilarities to healthy subjects decreased after FMT. In principal coordinate analysis plots, UC patients' centroids drew nearer to healthy individuals. The variance explained by phenotype (Healthy versus UC) reduced and remained significant. From 1 to 3 months after FMT, PUCAI trends were statistically significant and decreasing. PUCAI scores remain flat starting 6 months after FMT. This study concludes that paediatric UC patients have a significantly different baseline metabolite profile than healthy controls. Although being time limited, FMT significantly altered these metabolite profiles and shifted them towards that of healthy controls.
Collapse
Affiliation(s)
- Parastou S. Khalessi Hosseini
- Los Angeles County – University of Southern California, Los Angeles, CA, USA
- Gastroenterology, Children’s Hospital of Los Angeles, Los Angeles, CA, USA
| | - Beibei Wang
- School of Mathematics, Shandong University, Jinan, China
| | - Yihui Luan
- School of Mathematics, Shandong University, Jinan, China
| | - Fengzhu Sun
- Quantitative and Computational Biology and Mathematics, University of Southern California, Los Angeles, CA, USA
| | - Sonia Michail
- Quantitative and Computational Biology and Mathematics, University of Southern California, Los Angeles, CA, USA
- Gastroenterology, Children’s Hospital of Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
17
|
Sung CH, Pilla R, Marsilio S, Chow B, Zornow KA, Slovak JE, Lidbury JA, Steiner JM, Hill SL, Suchodolski JS. Fecal Concentrations of Long-Chain Fatty Acids, Sterols, and Unconjugated Bile Acids in Cats with Chronic Enteropathy. Animals (Basel) 2023; 13:2753. [PMID: 37685017 PMCID: PMC10486672 DOI: 10.3390/ani13172753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Chronic enteropathy (CE) in cats encompasses food-responsive enteropathy, chronic inflammatory enteropathy (or inflammatory bowel disease), and low-grade intestinal T-cell lymphoma. While alterations in the gut metabolome have been extensively studied in humans and dogs with gastrointestinal disorders, little is known about the specific metabolic profile of cats with CE. As lipids take part in energy storage, inflammation, and cellular structure, investigating the lipid profile in cats with CE is crucial. This study aimed to measure fecal concentrations of various fatty acids, sterols, and bile acids. Fecal samples from 56 cats with CE and 77 healthy control cats were analyzed using gas chromatography-mass spectrometry, targeting 12 fatty acids, 10 sterols, and 5 unconjugated bile acids. Fecal concentrations of nine targeted fatty acids and animal-derived sterols were significantly increased in cats with CE. However, fecal concentrations of plant-derived sterols were significantly decreased in cats with CE. Additionally, an increased percentage of primary bile acids was observed in a subset of cats with CE. These findings suggest the presence of lipid maldigestion, malabsorption, and inflammation in the gastrointestinal tract of cats with CE. Understanding the lipid alterations in cats with CE can provide insights into the disease mechanisms and potential future therapeutic strategies.
Collapse
Affiliation(s)
- Chi-Hsuan Sung
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.)
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.)
| | - Sina Marsilio
- UC Davis School of Veterinary Medicine, Department of Veterinary Medicine and Epidemiology, University of California, Davis, CA 95616, USA
| | - Betty Chow
- Veterinary Specialty Hospital, San Diego, CA 92121, USA
- VCA Animal Specialty and Emergency Center, Los Angeles, CA 90025, USA
| | | | | | - Jonathan A. Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.)
| | - Joerg M. Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.)
| | - Steve L. Hill
- Veterinary Specialty Hospital, San Diego, CA 92121, USA
- Flagstaff Veterinary Internal Medicine Consulting, Flagstaff, AZ 86004, USA
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.)
| |
Collapse
|
18
|
Jean Wilson E, Sirpu Natesh N, Ghadermazi P, Pothuraju R, Shanmugam M, Prajapati DR, Pandey S, Kaifi JT, Dodam JR, Bryan J, Lorson CL, Watrelot AA, Foster JM, Mansel TJ, Joshua Chan SH, Batra SK, Subbiah J, Rachagani S. Red cabbage juice-mediated gut microbiota modulation improves intestinal epithelial homeostasis and ameliorates colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554560. [PMID: 37662255 PMCID: PMC10473712 DOI: 10.1101/2023.08.23.554560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Gut microbiota plays a crucial role in inflammatory bowel disease (IBD) and has therapeutic benefits. Thus, targeting the gut microbiota is a promising therapeutic approach for IBD treatment. We recently found that red cabbage juice (RCJ) ameliorates dextran sulfate sodium (DSS)-induced colitis in mice. However, the underlying mechanisms remain unknown. The current study investigated the modulation of gut microbiota in response to treatment with RCJ to ameliorate the DSS colitis. The initial results demonstrated that mice treated with DSS + RCJ showed increased body weight and decreased diarrhea and blood in feces compared to the DSS alone group. RCJ ameliorated colitis by regulating the intestinal barrier function by reducing the number of apoptotic cells, improving colonic protective mucin, and increasing tight junction protein in RCJ + DSS groups compared to the DSS group. Short-gun metagenomic analysis revealed significant enrichment of short-chain fatty acid (SCFAs)-producing bacteria (Butyrivibrio, Ruminococcaceae, Acetatifactor muris, Rosburia Sp. CAG:303 , Dorea Sp. 5-2) increased PPAR-© activation, leading to repression of the nuclear factor κB (NFκB) signaling pathway, thus decreasing the production of crucial inflammatory cytokines and chemokines in the RCJ + DSS groups compared to the DSS group. Pathway abundance analysis showed an increased abundance of the SCFA pathway, reduced histidine degradation ( Bacteroides sartorii, and Bacteroides caecimuris ), and LCFA production in the RCJ+DSS treated group, suggesting the promotion of good colonic health. Furthermore, increased T-reg (FOXP3+) cells in the colon were due to SCFAs produced by the gut microbiota, which was corroborated by an increase in IL-10, a vital anti-inflammatory cytokine. Thus, our study provides the first evidence that RCJ ameliorates colonic inflammation by modulating the gut microbiota.
Collapse
|
19
|
Singh SV, Ganguly R, Jaiswal K, Yadav AK, Kumar R, Pandey AK. Molecular signalling during cross talk between gut brain axis regulation and progression of irritable bowel syndrome: A comprehensive review. World J Clin Cases 2023; 11:4458-4476. [PMID: 37469740 PMCID: PMC10353503 DOI: 10.12998/wjcc.v11.i19.4458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/09/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a chronic functional disorder which alters gastrointestinal (GI) functions, thus leading to compromised health status. Pathophysiology of IBS is not fully understood, whereas abnormal gut brain axis (GBA) has been identified as a major etiological factor. Recent studies are suggestive for visceral hyper-sensitivity, altered gut motility and dysfunctional autonomous nervous system as the main clinical abnormalities in IBS patients. Bidirectional signalling interactions among these abnormalities are derived through various exogenous and endogenous factors, such as microbiota population and diversity, microbial metabolites, dietary uptake, and psychological abnormalities. Strategic efforts focused to study these interactions including probiotics, antibiotics and fecal transplantations in normal and germ-free animals are clearly suggestive for the pivotal role of gut microbiota in IBS etiology. Additionally, neurotransmitters act as communication tools between enteric microbiota and brain functions, where serotonin (5-hydroxytryptamine) plays a key role in pathophysiology of IBS. It regulates GI motility, pain sense and inflammatory responses particular to mucosal and brain activity. In the absence of a better understanding of various interconnected crosstalks in GBA, more scientific efforts are required in the search of novel and targeted therapies for the management of IBS. In this review, we have summarized the gut microbial composition, interconnected signalling pathways and their regulators, available therapeutics, and the gaps needed to fill for a better management of IBS.
Collapse
Affiliation(s)
- Shiv Vardan Singh
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| | - Risha Ganguly
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| | - Kritika Jaiswal
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| | - Aditya Kumar Yadav
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| |
Collapse
|
20
|
Zhou Y, Wang D, Duan H, Zhou S, Guo J, Yan W. The Potential of Natural Oils to Improve Inflammatory Bowel Disease. Nutrients 2023; 15:nu15112606. [PMID: 37299569 DOI: 10.3390/nu15112606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disorder that includes ulcerative colitis (UC) and Crohn's disease (CD), the exact cause of which is still unknown. Numerous studies have confirmed that diet is one of the major environmental factors associated with IBD, as it can regulate the gut microbiota and reduce inflammation and oxidative stress. Since the consumption of oil is essential in the diet, improving IBD through oil has potential. In this article, we first briefly reviewed the current treatment methods for IBD and introduce the role of natural oils in improving inflammatory diseases. We then focused on the recent discovery of the role of natural oils in the prevention and treatment of IBD and summarized their main mechanisms of action. The results showed that the anti-inflammatory activity of oils derived from different plants and animals has been validated in various experimental animal models. These oils are capable of improving the intestinal homeostasis in IBD animal models through multiple mechanisms, including modulation of the gut microbiota, protection of the intestinal barrier, reduction in colonic inflammation, improvement in oxidative stress levels in the intestine, and regulation of immune homeostasis. Therefore, dietary or topical use of natural oils may have potential therapeutic effects on IBD. However, currently, only a few clinical trials support the aforementioned conclusions. This review emphasized the positive effects of natural oils on IBD and encouraged more clinical trials to provide more reliable evidence on the improvement of human IBD by natural oils as functional substances.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Hao Duan
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Shiqi Zhou
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Jinhong Guo
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| |
Collapse
|
21
|
Dang Y, Ma C, Chen K, Chen Y, Jiang M, Hu K, Li L, Zeng Z, Zhang H. The Effects of a High-Fat Diet on Inflammatory Bowel Disease. Biomolecules 2023; 13:905. [PMID: 37371485 PMCID: PMC10296751 DOI: 10.3390/biom13060905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The interactions among diet, intestinal immunity, and microbiota are complex and play contradictory roles in inflammatory bowel disease (IBD). An increasing number of studies has shed light on this field. The intestinal immune balance is disrupted by a high-fat diet (HFD) in several ways, such as impairing the intestinal barrier, influencing immune cells, and altering the gut microbiota. In contrast, a rational diet is thought to maintain intestinal immunity by regulating gut microbiota. In this review, we emphasize the crucial contributions made by an HFD to the gut immune system and microbiota.
Collapse
Affiliation(s)
- Yuan Dang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chunxiang Ma
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kexin Chen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiding Chen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingshan Jiang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kehan Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lili Li
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhen Zeng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
22
|
Widmayer P, Pregitzer P, Breer H. Short-term high fat feeding induces inflammatory responses of tuft cells and mucosal barrier cells in the murine stomach. Histol Histopathol 2023; 38:273-286. [PMID: 35904321 DOI: 10.14670/hh-18-503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Feeding mice with a high fat diet (HFD) induces inflammation and results in changes of gene expression and cellular composition in various tissues throughout the body, including the gastrointestinal tract. In the stomach, tuft cells expressing the receptor GPR120 are capable of sensing saturated long chain fatty acids (LCFAs) and thus may be involved in initiating mechanisms of mucosal inflammation. In this study, we assessed which cell types may additionally be affected by high fat feeding and which candidate molecular mediators might contribute to mucosa-protective immune responses. A high fat dietary intervention for 3 weeks caused an expansion of tuft cells that was accompanied by a higher frequency of mucosal mast cells and surface mucous cells which are a known source of the insult-associated cytokine interleukin 33 (IL-33). Our data demonstrate that both brush and mucosal mast cells comprise the enzyme ALOX5 and its activating protein FLAP and thus have the capacity for synthesizing leukotriene (LT). In HFD mice, several tuft cells showed a perinuclear colocalization of ALOX5 with FLAP which is indicative of an active LT synthesis. Monitoring changes in the expression of genes encoding elements of LT synthesis and signaling revealed that transcript levels of the leukotriene C4 synthase, LTC4S, catalyzing the first step in the biosynthesis of cysteinyl (cys) LTs, and the cysLT receptors, cysLTR2 and cysLTR3, were upregulated in mice on HFD. These mice also showed an increased expression level of IL-33 receptors, the membrane-bound ST2L and soluble isoform sST2, as well as the mast cell-specific protease MCPT1. Based on these findings it is conceivable that upon sensing saturated LCFAs tuft cells may elicit inflammatory responses which result in the production of cysLTs and activation of surface mucous cells as well as mucosal mast cells regulating gastric mucosal function and integrity.
Collapse
Affiliation(s)
- Patricia Widmayer
- Institute of Biology, Department of Physiology (190v), University of Hohenheim, Stuttgart, Germany.
| | - Pablo Pregitzer
- Institute of Biology, Department of Physiology (190v), University of Hohenheim, Stuttgart, Germany
| | - Heinz Breer
- Institute of Biology, Department of Physiology (190v), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
23
|
Novichkova E, Nayak S, Boussiba S, Gopas J, Zilberg D, Khozin-Goldberg I. Dietary Application of the Microalga Lobosphaera incisa P127 Reduces Severity of Intestinal Inflammation, Modulates Gut-Associated Gene Expression, and Microbiome in the Zebrafish Model of IBD. Mol Nutr Food Res 2023; 67:e2200253. [PMID: 36683256 DOI: 10.1002/mnfr.202200253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/30/2022] [Indexed: 01/24/2023]
Abstract
SCOPE Microalgae are an emerging nutritional resource of biomolecules with potential to alleviate gut inflammation. The study explores the anti-inflammatory and immunomodulatory potential of the microalga Lobosphaera incisa P127, which accumulates a rare omega-6 LC-PUFA dihomo-ɣ-linolenic acid (DGLA) under nitrogen starvation. The therapeutic potential of dietary supplementation with P127 is investigated in the zebrafish model of IBD (TNBS-induced colitis). METHODS AND RESULTS Guts are sampled from zebrafish fed experimental diets for 4 weeks, before and 24 h after TNBS challenge. Diets containing 15% non-starved (Ns) and 7.5% and 15% N-starved (St) algal biomass significantly attenuate the severity of gut injury and goblet cell depletion. In contrast, diets containing 7.5% Ns and DGLA ethyl ester have no effect on gut condition. Fish fed 15% St, high-DGLA biomass, have the fewest individuals with pathological alterations in the gut. Dietary inclusion of Ns and St distinctly modulates gut-associated expression of the immune and inflammatory genes. Fish fed 15% Ns biomass display a coordinated boost in immune gene expression and show major changes in the gut microbiome prior challenge. CONCLUSION Dietary inclusion of L. incisa biomass at two physiological states, ameliorates TNBS-induced gut inflammation, suggesting the synergistic beneficial effects of biomass components not limited to DGLA.
Collapse
Affiliation(s)
- Ekaterina Novichkova
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Sagar Nayak
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
- The Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Sammy Boussiba
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Jacob Gopas
- Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8400501, Israel
| | - Dina Zilberg
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Inna Khozin-Goldberg
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| |
Collapse
|
24
|
Stoikevich M, Karachynova V, Klenina I, Petishko O. Prognostic value of blood saturated fatty acids in inflammatory bowel diseases. Gastroenterology 2023; 56:230-237. [DOI: 10.22141/2308-2097.56.4.2022.514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Background. Pathogenetic factors that cause the development of inflammatory bowel diseases (IBD) remain poorly understood, namely, the peculiarities of saturated fatty acids (SFAs) in the blood serum at different degrees of disease severity, which is quite an important task. Objective: to evaluate serum level of SFAs depending on IBD severity. Materials and methods. Thirty-seven patients with IBD were examined, their average age was (38.5±2.1) years. Depending on the severity of the disease, the patients were divided into 2 groups: group I— with IBD of moderate severity (n=24) and group II— with severe IBD (n=13). The control group consisted of 16 healthy people. The quantitative content of SFAs in the blood serum of the examined patients was determined by gas chromatography. Median (Me), lower (25%) and upper (75%) quartiles were used to describe the data. Results. Biochemical analysis revealed a tendency to decrease in the level of short-chain SFA (butyric acid; p>0.05) and a significant increase in the total content of medium- and long-chain SFAs (MCSFAs and LCSFAs; p<0.001) in the serum of group I and II patients compared to the controls. It was found that with increasing severity of IBD, there was a decrease in LCSFAs content in the blood (r=–0.420, p=0.048). The serum spectrum of SFAs was analyzed and a significant increase in all MCSFAs fractions was detected in both groups of patients: caproic acid (p<0.001), caprylic acid (p<0.001), capric acid (p≤0.002), undecylic acid (p≤0.006) and lauric acid (p≤0.001). Characteristically, the content of the most MCSFAs fractions had a tendency to decrease (p>0.05) in group I against group II of patients. The content of LCSFAs, namely: tridecylic acid (p≤0.012), myristic acid (p<0.001), pentadecylic acid (p≤0.012), palmitic acid (p<0.001), stearic acid (p≤0.001) and heneicosylic acid (p<0.001), increased significantly in group I and II of patients, while the content of margaric and eicosanoic acids— only in group I compared to the controls. Almost all LCSFAs (except tridecylic acid) had a tendency to increase in group I against group II. Conclusions. It has been shown that the content of SFAs in the blood depends on the degree of IBD severity. The mechanism of SFAs action with different carbon chain lengths is multidirectional and is associated with the effect on pro-/anti-inflammatory mediators and with the maintenance of the immune and intestinal homeostasis. The necessity of determining serum SFAs in IBD to correct the identified disorders has been confirmed.
Collapse
|
25
|
Girdhar K, Dogru YD, Huang Q, Yang Y, Tolstikov V, Raisingani A, Chrudinova M, Oh J, Kelley K, Ludvigsson JF, Kiebish MA, Palm NW, Ludvigsson J, Altindis E. Dynamics of the gut microbiome, IgA response, and plasma metabolome in the development of pediatric celiac disease. MICROBIOME 2023; 11:9. [PMID: 36639805 PMCID: PMC9840338 DOI: 10.1186/s40168-022-01429-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Celiac disease (CD) is an autoimmune disorder triggered by gluten consumption. Almost all CD patients possess human leukocyte antigen (HLA) DQ2/DQ8 haplotypes; however, only a small subset of individuals carrying these alleles develop CD, indicating the role of environmental factors in CD pathogenesis. The main objective of this study was to determine the contributory role of gut microbiota and microbial metabolites in CD onset. To this end, we obtained fecal samples from a prospective cohort study (ABIS) at ages 2.5 and 5 years. Samples were collected from children who developed CD after the final sample collection (CD progressors) and healthy children matched by age, HLA genotype, breastfeeding duration, and gluten-exposure time (n=15-16). We first used 16S sequencing and immunoglobulin-A sequencing (IgA-seq) using fecal samples obtained from the same children (i) 16 controls and 15 CD progressors at age 2.5 and (ii) 13 controls and 9 CD progressors at age 5. We completed the cytokine profiling, and plasma metabolomics using plasma samples obtained at age 5 (n=7-9). We also determined the effects of one microbiota-derived metabolite, taurodeoxycholic acid (TDCA), on the small intestines and immune cell composition in vivo. RESULTS CD progressors have a distinct gut microbiota composition, an increased IgA response, and unique IgA targets compared to healthy subjects. Notably, 26 plasma metabolites, five cytokines, and one chemokine were significantly altered in CD progressors at age 5. Among 26 metabolites, we identified a 2-fold increase in TDCA. TDCA treatment alone caused villous atrophy, increased CD4+ T cells, Natural Killer cells, and two important immunoregulatory proteins, Qa-1 and NKG2D expression on T cells while decreasing T-regulatory cells in intraepithelial lymphocytes (IELs) in C57BL/6J mice. CONCLUSIONS Pediatric CD progressors have a distinct gut microbiota composition, plasma metabolome, and cytokine profile before diagnosis. Furthermore, CD progressors have more IgA-coated bacteria and unique targets of IgA in their gut microbiota. TDCA feeding alone stimulates an inflammatory immune response in the small intestines of C57BJ/6 mice and causes villous atrophy, the hallmark of CD. Thus, a microbiota-derived metabolite, TDCA, enriched in CD progressors' plasma, has the potential to drive inflammation in the small intestines and enhance CD pathogenesis. Video Abstract.
Collapse
Affiliation(s)
- Khyati Girdhar
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | | | - Qian Huang
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | - Yi Yang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | | | - Amol Raisingani
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | | | - Jaewon Oh
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | - Kristina Kelley
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Paediatrics, Örebro University Hospital, Örebro, Sweden
| | | | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital, Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, 58185, Linköping, SE, Sweden
| | - Emrah Altindis
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
26
|
Yu J. Gut microbiome and metabolome: The crucial players in inflammatory bowel disease. J Gastroenterol Hepatol 2023; 38:5-6. [PMID: 36641630 DOI: 10.1111/jgh.16098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
27
|
Chen K, Shen S, Chen Y, Jiang M, Hu K, Zou Y, Li L, Zeng Z, Ma C, Dang Y, Zhang H. A proteomic and RNA-seq transcriptomic dataset of capsaicin-aggravated mouse chronic colitis model. Sci Data 2022; 9:549. [PMID: 36071055 PMCID: PMC9452536 DOI: 10.1038/s41597-022-01637-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022] Open
Abstract
An inappropriate diet is a risk factor for inflammatory bowel disease (IBD). It is established that the consumption of spicy food containing capsaicin is strongly associated with the recurrence and worsening of IBD symptoms. Moreover, capsaicin can induce neutrophil accumulation in the lamina propria, contributing to disease deterioration. To uncover the potential signaling pathway involved in capsaicin-induced relapse and the effects of capsaicin on neutrophil activation, we performed proteomic analyses of intestinal tissues from chronic colitis mice following capsaicin administration and transcriptomic analyses of dHL-60 cells after capsaicin stimulation. Collectively, these multiomic analyses identified proteins and genes that may be involved in disease flares, thereby providing new insights for future research.
Collapse
Affiliation(s)
- Kexin Chen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Silan Shen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yiding Chen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Mingshan Jiang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Kehan Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yuheng Zou
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Lili Li
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Zeng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Chunxiang Ma
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Dang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
28
|
Walker HK, Boag AM, Ottka C, Lohi H, Handel I, Gow AG, Mellanby RJ. Serum metabolomic profiles in dogs with chronic enteropathy. J Vet Intern Med 2022; 36:1752-1759. [PMID: 35880501 PMCID: PMC9511094 DOI: 10.1111/jvim.16419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Metabolic profiles differ between healthy humans and those with inflammatory bowel disease. Few studies have examined metabolic profiles in dogs with chronic enteropathy (CE). HYPOTHESIS Serum metabolic profiles of dogs with CE are significantly different from those of healthy dogs. ANIMALS Fifty-five dogs with CE and 204 healthy controls. METHODS A cross-sectional study. The serum concentrations of 99 metabolites measured using a canine-specific proton nuclear magnetic resonance spectroscopy platform were studied. A 2-sample unpaired t-test was used to compare the 2 study samples. The threshold for significance was set at P < .05 with a Bonferroni correction for each metabolite group. RESULTS Nineteen metabolites and 18 indices of lipoprotein composition were significantly different between the CE and healthy dogs. Four metabolites were significantly higher in dogs with CE, including phenylalanine (mean and SD) (healthy: 0.0417 mmol/L; [SD] 0.0100; CE: 0.0480 mmol/L; SD: 0.0125; P value: <.001) and lactate (healthy: 1.8751 mmol/L; SD: 0.7808; CE: 2.4827 mmol/L; SD CE: 1.4166; P value: .003). Fifteen metabolites were significantly lower in dogs with CE, including total fatty acids, and glycine (healthy: 0.2273 mmol/L; SD: 0.0794; CE: 0.1828 mmol/L; SD CE: 0.0517; P value: <.001). CONCLUSIONS AND CLINICAL IMPORTANCE The metabolic profile of dogs with CE is significantly different from that of healthy dogs, this opens novel research avenues to develop better diagnostic and prognostic approaches as well as therapeutic trials.
Collapse
Affiliation(s)
- Hannah K Walker
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, Easter Bush Campus, The University of Edinburgh, Midlothian, United Kingdom
| | - Alisdair M Boag
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, Easter Bush Campus, The University of Edinburgh, Midlothian, United Kingdom
| | - Claudia Ottka
- PetBiomics Ltd, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Hannes Lohi
- PetBiomics Ltd, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Ian Handel
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, Easter Bush Campus, The University of Edinburgh, Midlothian, United Kingdom
| | - Adam G Gow
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, Easter Bush Campus, The University of Edinburgh, Midlothian, United Kingdom
| | - Richard J Mellanby
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, Easter Bush Campus, The University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
29
|
There Is a Differential Pattern in the Fatty Acid Profile in Children with CD Compared to Children with UC. J Clin Med 2022; 11:jcm11092365. [PMID: 35566490 PMCID: PMC9105551 DOI: 10.3390/jcm11092365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Crohn’s disease (CD) and Ulcerative Colitis (UC) are classified as inflammatory bowel diseases (IBD). Currently, an increasing number of studies indicate that the metabolic consequences of IBD may include abnormalities in the fatty acid profile. The aim of this study was to compare fatty acid concentrations in IBD in order to identify differences between CD and UC and differences between the phases of both diseases. Methods: Sixty-three adolescent patients with CD (n = 33) and UC (n = 30) aged 13.66 ± 2.67 and 14.15 ± 3.31, respectively, were enrolled in the study. Analysis was performed by gas chromatography. Results: A statistically significant higher concentration of vaccenic acid was observed in the total UC group relative to total CD. In remission CD relative to active CD, a significantly higher concentration of palmitic acid was shown. Whereas in active CD, significantly higher levels of linoleic acid were observed relative to remission. The UC group had significantly higher lauric acid and gamma-linoleic acid levels in active disease relative to remission. Conclusions: The identified differences between FA levels in UC and CD could potentially be involved in the course of both diseases.
Collapse
|
30
|
Li M, Yang L, Mu C, Sun Y, Gu Y, Chen D, Liu T, Cao H. Gut microbial metabolome in inflammatory bowel disease: From association to therapeutic perspectives. Comput Struct Biotechnol J 2022; 20:2402-2414. [PMID: 35664229 PMCID: PMC9125655 DOI: 10.1016/j.csbj.2022.03.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is a set of clinically chronic, relapsing gastrointestinal inflammatory disease and lacks of an absolute cure. Although the precise etiology is unknown, developments in high-throughput microbial genomic sequencing significantly illuminate the changes in the intestinal microbial structure and functions in patients with IBD. The application of microbial metabolomics suggests that the microbiota can influence IBD pathogenesis by producing metabolites, which are implicated as crucial mediators of host-microbial crosstalk. This review aims to elaborate the current knowledge of perturbations of the microbiome-metabolome interface in IBD with description of altered composition and metabolite profiles of gut microbiota. We emphasized and elaborated recent findings of several potentially protective metabolite classes in IBD, including fatty acids, amino acids and derivatives and bile acids. This article will facilitate a deeper understanding of the new therapeutic approach for IBD by applying metabolome-based adjunctive treatment.
Collapse
Key Words
- AMPs, Antimicrobial peptides
- BAs, Bile acids
- BC, Bray Curtis
- CD, Crohn’s disease
- CDI, Clostridioides difficile infection
- DC, Diversion colitis
- DCA, Deoxycholic acid
- DSS, Dextran sulfate sodium
- FAs, Fatty acid
- FMT, Fecal microbiota transplantation
- FODMAP, Fermentable oligosaccharide, disaccharide, monosaccharide, and polyol
- GC–MS, Gas chromatography-mass spectrometry
- Gut microbiota
- HDAC, Histone deacetylase
- IBD, Inflammatory bowel disease
- Inflammatory bowel diseases
- LC-MS, Liquid chromatography-mass spectrometry
- LCA, Lithocholic acid
- LCFAs, Long-chain fatty acids
- MCFAs, Medium-chain fatty acids
- MD, Mediterranean diet
- MS, Mass spectrometry
- Metabolite
- Metabolomics
- Metagenomics
- Microbial therapeutics
- NMR, Nuclear magnetic resonance
- PBAs, Primary bile acids
- SBAs, Secondary bile acids
- SCD, Special carbohydrate diet
- SCFAs, Short-chain fatty acids
- TNBS, 2,4,6-trinitro-benzene sulfonic acid
- UC, Ulcerative colitis
- UDCA, Ursodeoxycholic acid
- UPLC-MS, ultraperformance liquid chromatography coupled to mass spectrometry
- UU, Unweighted UniFrac
- WMS, Whole-metagenome shotgun
Collapse
Affiliation(s)
| | | | | | - Yue Sun
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yu Gu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Danfeng Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
31
|
Involvement of Proinflammatory Arachidonic Acid (ARA) Derivatives in Crohn’s Disease (CD) and Ulcerative Colitis (UC). J Clin Med 2022; 11:jcm11071861. [PMID: 35407469 PMCID: PMC8999554 DOI: 10.3390/jcm11071861] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/10/2022] Open
Abstract
Recently, an increase in the incidence of inflammatory bowel disease (IBD) has been observed, especially among children and adolescents. Currently, few studies focus on the differentiation of inflammation in IBD subunits, i.e., Crohn’s Disease (CD) and Ulcerative Colitis (UC). The aim of this study was to compare the concentrations of proinflammatory mediators of arachidonic acid (ARA) and linoleic acid (LA) in patients with CD (n = 34) and UC (n = 30), in order to identify differences in inflammation in both diseases and within the same entity, according to disease activity. Sixty-four adolescents with a mean age of 13.76 ± 2.69 and 14.15 ± 3.31, for CD and UC, respectively, were enrolled in the study. Biochemical analysis of ARA and LA derivatives was performed using a liquid chromatography. A trend was observed in the concentration of 15S-HETE (hydroxyeicosatetraenoic acids) in CD relative to UC. The active phase of both diseases showed a higher 15S-HETE concentration in active CD relative to active UC. Comparing patients with CD with active and inactive disease showed a trend of increased levels of thromboxane B2, leukotriene B4 and 9S-HODE (hydroxyoctadecadienoic acid) in the active versus the inactive disease. We also observed statistically significantly higher levels of 12S-HETE in inactive CD relative to active CD. In the UC group, on the other hand, statistically significantly higher levels of prostaglandin E2 and 16RS-HETE were observed in active UC relative to inactive UC. Moreover, significantly higher concentrations of LTX A4 5S, 6R were observed in inactive UC relative to the active phase. In conclusion, the present study indicated the activity of the 15-LOX pathway in CD. Further studies involving lipid mediators in patients with IBD may contribute to the development of new therapies for the treatment of IBD. The identification of differences in the course of inflammation may help to target therapy in CD and UC, and perhaps allow the introduction of an additional diagnostic marker between the two main IBD subtypes.
Collapse
|
32
|
Binienda A, Makaro A, Talar M, Krajewska JB, Tarasiuk A, Bartoszek A, Fabisiak A, Mosińska P, Niewinna K, Dziedziczak K, Świerczyński M, Kordek R, Salaga M, Fichna J. Characterization of the Synergistic Effect between Ligands of Opioid and Free Fatty Acid Receptors in the Mouse Model of Colitis. Molecules 2021; 26:molecules26226827. [PMID: 34833919 PMCID: PMC8626023 DOI: 10.3390/molecules26226827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Recent studies suggest that lipids, including free fatty acids (FFAs), are necessary for proper μ opioid receptor (MOR) binding and that activation of opioid receptors (ORs) improves intestinal inflammation. The objective of the study was to investigate a possible interaction between the ORs and FFA receptors (FFARs) ligands in the colitis. Methods: The potential synergistic effect of ORs and FFARs ligands was evaluated using mouse model of acute colitis induced by dextran sulfate sodium (DSS, 4%). Compounds were injected intraperitoneally (i.p.) once or twice daily at the doses of 0.01 or 0.02 mg/kg body weight (BW) (DAMGO—an MOR agonist), 0.3 mg/kg BW (DPDPE—a δ OR (DOR) agonist) and 1 mg/kg BW (naloxone—a non-selective OR antagonist, GLPG 0974—a FFAR2 antagonist, GSK 137647—a FFAR4 agonist and AH 7614—a FFAR4 antagonist) for 4 days. Results: Myeloperoxidase (MPO) activity was significantly decreased after DAMGO (0.02 mg/kg BW) and GSK 137647 (1 mg/kg BW) administration and co-administration as compared to DSS group. Conclusions: Treatment with ligands of ORs and FFARs may affect the immune cells in the inflammation; however, no significant influence on the severity of colitis and no synergistic effect were observed.
Collapse
MESH Headings
- Aniline Compounds/administration & dosage
- Animals
- Butyrates/administration & dosage
- Colitis/drug therapy
- Colitis/immunology
- Colitis/metabolism
- Disease Models, Animal
- Drug Synergism
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/administration & dosage
- Enkephalin, D-Penicillamine (2,5)-/administration & dosage
- Inflammation/drug therapy
- Inflammation/metabolism
- Ligands
- Male
- Mice
- Mice, Inbred BALB C
- Naloxone/administration & dosage
- Narcotic Antagonists/administration & dosage
- Peroxidase/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Opioid/agonists
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Sulfonamides/administration & dosage
- Thiophenes/administration & dosage
- Xanthenes/administration & dosage
Collapse
Affiliation(s)
- Agata Binienda
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.B.); (A.M.); (M.T.); (J.B.K.); (A.T.); (A.B.); (A.F.); (P.M.); (K.N.); (K.D.); (M.Ś.); (M.S.)
| | - Adam Makaro
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.B.); (A.M.); (M.T.); (J.B.K.); (A.T.); (A.B.); (A.F.); (P.M.); (K.N.); (K.D.); (M.Ś.); (M.S.)
| | - Marcin Talar
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.B.); (A.M.); (M.T.); (J.B.K.); (A.T.); (A.B.); (A.F.); (P.M.); (K.N.); (K.D.); (M.Ś.); (M.S.)
| | - Julia B. Krajewska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.B.); (A.M.); (M.T.); (J.B.K.); (A.T.); (A.B.); (A.F.); (P.M.); (K.N.); (K.D.); (M.Ś.); (M.S.)
| | - Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.B.); (A.M.); (M.T.); (J.B.K.); (A.T.); (A.B.); (A.F.); (P.M.); (K.N.); (K.D.); (M.Ś.); (M.S.)
| | - Adrian Bartoszek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.B.); (A.M.); (M.T.); (J.B.K.); (A.T.); (A.B.); (A.F.); (P.M.); (K.N.); (K.D.); (M.Ś.); (M.S.)
| | - Adam Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.B.); (A.M.); (M.T.); (J.B.K.); (A.T.); (A.B.); (A.F.); (P.M.); (K.N.); (K.D.); (M.Ś.); (M.S.)
- Department of Digestive Tract Diseases, Medical University of Lodz, 93-281 Lodz, Poland
| | - Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.B.); (A.M.); (M.T.); (J.B.K.); (A.T.); (A.B.); (A.F.); (P.M.); (K.N.); (K.D.); (M.Ś.); (M.S.)
| | - Karolina Niewinna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.B.); (A.M.); (M.T.); (J.B.K.); (A.T.); (A.B.); (A.F.); (P.M.); (K.N.); (K.D.); (M.Ś.); (M.S.)
| | - Katarzyna Dziedziczak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.B.); (A.M.); (M.T.); (J.B.K.); (A.T.); (A.B.); (A.F.); (P.M.); (K.N.); (K.D.); (M.Ś.); (M.S.)
| | - Mikołaj Świerczyński
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.B.); (A.M.); (M.T.); (J.B.K.); (A.T.); (A.B.); (A.F.); (P.M.); (K.N.); (K.D.); (M.Ś.); (M.S.)
| | - Radzisław Kordek
- Department of Pathology, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Maciej Salaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.B.); (A.M.); (M.T.); (J.B.K.); (A.T.); (A.B.); (A.F.); (P.M.); (K.N.); (K.D.); (M.Ś.); (M.S.)
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.B.); (A.M.); (M.T.); (J.B.K.); (A.T.); (A.B.); (A.F.); (P.M.); (K.N.); (K.D.); (M.Ś.); (M.S.)
- Correspondence: ; Tel.: +48-42-272-57-07
| |
Collapse
|
33
|
Fu W, Fu H, Ye W, Han Y, Liu X, Zhu S, Li H, Tang R, Wang Q. Peripheral blood neutrophil-to-lymphocyte ratio in inflammatory bowel disease and disease activity: A meta-analysis. Int Immunopharmacol 2021; 101:108235. [PMID: 34678692 DOI: 10.1016/j.intimp.2021.108235] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The peripheral blood neutrophil-to-lymphocyte ratio (NLR) is a valuable predictor of clinical disease activity in inflammatory bowel disease (IBD). Therefore, we conducted a meta-analysis to evaluate the clinical significance of peripheral blood NLR in IBD patients. METHODS A comprehensive literature search was conducted by searching PubMed, Embase, Web of Science, Cochrane Library, and Chinese databases from inception to May 10, 2021. We used the standard mean difference (SMD) with a 95% confidence interval (CI) to estimate the pooled effect and subgroup analysis to investigate heterogeneity. RESULTS Sixteen studies including 2185 IBD patients and 993 healthy controls (HCs) were enrolled in this study. The peripheral blood NLR values were significantly higher in 1,092 IBD patients than in 933 HCs (SMD = 1.54, 95% CI = 1.05-2.02, P < 0.001) and in 1,269 patients with active IBD than in 1,056 patients with remissive IBD (SMD = 1.55, 95% CI = 1.06-2.05, P < 0.001). Subgroup analysis of the major subtypes of IBD revealed significantly elevated peripheral blood NLR values in patients with active ulcerative colitis (UC) compared to HCs (SMD = 2.04), remissive UC than HCs (SMD = 0.63), and active UC than in those with remissive UC (SMD = 1.32) (P < 0.05). Both Crohn's disease (CD) patients and active CD patients had significantly elevated peripheral blood NLR values than HCs with the SMD of 0.52 and 3.53 (P < 0.001). CONCLUSIONS Peripheral blood NLR could serve as a valuable biomarker for predicting disease severity in IBD patients.
Collapse
Affiliation(s)
- Wei Fu
- Clinical Medical College, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Hu Fu
- Department of Laboratory Medicine, Chengdu First People's Hospital, Chengdu 610000, Sichuan, PR China
| | - Weixia Ye
- Department of Gastroenterology, Luzhou People's Hospital, Luzhou 646000, Sichuan, PR China.
| | - Yinsuo Han
- Clinical Medical College, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Xianqiang Liu
- Clinical Medical College, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Sirui Zhu
- Clinical Medical College, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Hongmin Li
- Clinical Medical College, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Rong Tang
- Clinical Medical College, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Qin Wang
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China.
| |
Collapse
|
34
|
Etiopathogenic and Clinical Aspects in Inflammatory Bowel Disease – Literature Review. JOURNAL OF INTERDISCIPLINARY MEDICINE 2021. [DOI: 10.2478/jim-2021-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition which encompasses Crohn’s disease and ulcerative colitis. IBD does not only affect the gastrointestinal system, but also associates many extraintestinal complications that can affect almost any organ. A large number of patients may have these complications before or after the diagnosis of IBD. Early diagnosis and management of these complications involves a multidisciplinary team and contributes to decrease patient morbidity and mortality, but also to increase the quality of life. The purpose of this extensive literature review is to present systematically and comprehensively the latest data on the extraintestinal manifestations of IBD, and to draw clinicians’ attention to the fact that this condition can have extradigestive manifestations that can be misleading and delay the diagnosis.
Collapse
|
35
|
Li Q, Cui Y, Xu B, Wang Y, Lv F, Li Z, Li H, Chen X, Peng X, Chen Y, Wu E, Qu D, Jian Y, Si H. Main active components of Jiawei Gegen Qinlian decoction protects against ulcerative colitis under different dietary environments in a gut microbiota-dependent manner. Pharmacol Res 2021; 170:105694. [PMID: 34087350 DOI: 10.1016/j.phrs.2021.105694] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023]
Abstract
As an effective drug against acute enteritis diarrhea, Gegen Qinlian decoction (GQD) has a history of 2000 years. However, the potential molecular mechanism through which GQD could protect intestinal barrier from ulcerative colitis (UC) still remains undefined. As an important part of the homeostasis of the colon, gut microbiota is closely related to the dynamic evolution of the surrounding environment and the adjustment of dietary structure. At present, the effectiveness and mechanism of Jiawei Gegen Qinlian decoction against UC in different dietary environments are not clear. Here, the main active components of Jiawei Gegen Qinlian Decoction (PBM), were selected to construct a reasonable and effective compound scheme. We adopted "5% dextran sulfate sodium (DSS)" and "high temperature and humidity + high sugar and high fat + alcohol + 5%DSS" to induce UC rat models in general environment and UC rat models in Lingnan area, respectively. Then, we examined the therapeutic effects of PBM (89.96 mg/kg and 179.92 mg/kg) on two kinds of UC rats. The role of gut microbiota in the anti-UC effect of PBM was identified by intestinal flora consumption and fecal microbiota transplantation (FMT) experiments. Subsequently, we monitored the alterations of gut microbiota and fecal metabolism in the rat colon by 16Sr DNA technique and targeted metabonomics, respectively. The colon inflammation of the PBM-treated and the FMT-treated rats both showed significant relief, as evidenced by a reduction in body weight loss, bloody stool, diarrhea, disease activity index (DAI) score, shortening of colon length as well as decreased colon histology damage. Interestingly enough, the depletion of intestinal flora took away the protective effect of PBM, confirming the importance of intestinal flora in the anti-UC effect of PBM. Then our findings suggested that PBM could not only regulate the gut microbiota by increasing Akkermansia and Romboutsia but also decrease Escherichia-Shigella. More importantly, PBM could increase the production of propionate and total short-chain fatty acids (SCFAs) in colitis rats, regulate medium and long chain fatty acids (M-LCFAs), maintain bile acids (BAs) homeostasis, and regulate amino acids (AAs) metabolism. The transformation of intestinal environment might be related to the upregulation of anti-inflammation, anti-oxidation and tight junction protein expression in colonic mucosa. In summary, PBM showed potential for anti-UC activity through gut microbiota dependence and was expected to be a complementary and alternative medicine herb therapy.
Collapse
Affiliation(s)
- Qinmei Li
- College of Animal Sciences and Technology, Guangxi University, Nanning, China.
| | - Yao Cui
- College of Animal Sciences and Technology, Guangxi University, Nanning, China.
| | - Baichang Xu
- College of Animal Sciences and Technology, Guangxi University, Nanning, China.
| | - Yuhan Wang
- College of Animal Sciences and Technology, Guangxi University, Nanning, China.
| | - Feifei Lv
- College of Animal Sciences and Technology, Guangxi University, Nanning, China.
| | - Zheng Li
- College of Animal Sciences and Technology, Guangxi University, Nanning, China.
| | - Huan Li
- College of Animal Sciences and Technology, Guangxi University, Nanning, China.
| | - Xiaogang Chen
- College of Animal Sciences and Technology, Guangxi University, Nanning, China.
| | - Xiaomin Peng
- College of Animal Sciences and Technology, Guangxi University, Nanning, China.
| | - Yating Chen
- College of Animal Sciences and Technology, Guangxi University, Nanning, China.
| | - Enyun Wu
- College of Animal Sciences and Technology, Guangxi University, Nanning, China.
| | - Dongshuai Qu
- College of Animal Sciences and Technology, Guangxi University, Nanning, China.
| | - Yichen Jian
- College of Animal Sciences and Technology, Guangxi University, Nanning, China.
| | - Hongbin Si
- College of Animal Sciences and Technology, Guangxi University, Nanning, China.
| |
Collapse
|
36
|
Reiman D, Layden BT, Dai Y. MiMeNet: Exploring microbiome-metabolome relationships using neural networks. PLoS Comput Biol 2021; 17:e1009021. [PMID: 33999922 PMCID: PMC8158931 DOI: 10.1371/journal.pcbi.1009021] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 05/27/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022] Open
Abstract
The advance in microbiome and metabolome studies has generated rich omics data revealing the involvement of the microbial community in host disease pathogenesis through interactions with their host at a metabolic level. However, the computational tools to uncover these relationships are just emerging. Here, we present MiMeNet, a neural network framework for modeling microbe-metabolite relationships. Using ten iterations of 10-fold cross-validation on three paired microbiome-metabolome datasets, we show that MiMeNet more accurately predicts metabolite abundances (mean Spearman correlation coefficients increase from 0.108 to 0.309, 0.276 to 0.457, and -0.272 to 0.264) and identifies more well-predicted metabolites (increase in the number of well-predicted metabolites from 198 to 366, 104 to 143, and 4 to 29) compared to state-of-art linear models for individual metabolite predictions. Additionally, we demonstrate that MiMeNet can group microbes and metabolites with similar interaction patterns and functions to illuminate the underlying structure of the microbe-metabolite interaction network, which could potentially shed light on uncharacterized metabolites through “Guilt by Association”. Our results demonstrated that MiMeNet is a powerful tool to provide insights into the causes of metabolic dysregulation in disease, facilitating future hypothesis generation at the interface of the microbiome and metabolomics. The microbiome has shown to functionally interact with its host or environment at a metabolic level, however the exact nature of these interactions is not well understood. In addition, metabolic dysregulation caused by the microbiome is believed to contribute to the development of diseases such as inflammatory bowel disease, diabetes mellitus, and obesity. In this manuscript, we introduce a computational framework to integrate microbiome and metabolome data to uncover microbe-metabolite interactions in a data-driven manner. Our model uses neural networks to predict metabolite abundances from microbe abundances. The trained models are then used to derive microbe-metabolite feature scores, which are used for clustering microbes and metabolites into functional modules. These module-based interactions are useful in generating biological insights and facilitating hypothesis generation for the investigation of their roles in various metabolic diseases. The software of our model is made freely available to interested researchers.
Collapse
Affiliation(s)
- Derek Reiman
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Brian T. Layden
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States of America
| | - Yang Dai
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
37
|
Tao F, Xing X, Wu J, Jiang R. Enteral nutrition modulation with n-3 PUFAs directs microbiome and lipid metabolism in mice. PLoS One 2021; 16:e0248482. [PMID: 33764993 PMCID: PMC7993877 DOI: 10.1371/journal.pone.0248482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 02/28/2021] [Indexed: 02/07/2023] Open
Abstract
Nutritional support using exclusive enteral nutrition (EEN) has been studied as primary therapy for the management of liver diseases, Crohn’s disease, and cancers. EEN can also increase the number of beneficial microbiotas in the gut, improve bile acid and lipid metabolism, and decrease the number of harmful dietary micro-particles, possibly by influencing disease occurrence and increasing immunity. This study investigated the effects of EEN-n-3 polyunsaturated fatty acids (3PUFAs) (EEN-3PUFAs) on the gut microbiome, intestinal barrier, and lipid or bile acid metabolism in mice. Metagenomic sequencing technology was used to analyze the effects of EEN-3PUFAs on the composition of gut microbiome signatures. The contents of short-chain fatty acids (SCFAs) and bile acids in the feces and liver of the mice were assayed by gas chromatography and ultra-high-pressure liquid chromatography/high-resolution tandem mass spectrometry, respectively. The levels of lipopolysaccharide (LPS) and D-lactic acid in the blood were used to assess intestinal permeability. The results indicated that EEN-3PUFAs could improve the composition of gut microbiome signatures and increase the abundance of Barnesiella and Lactobacillus (genus), Porphyromonadaceae, and Bacteroidia (species), and Bacteroidetes (phylum) after EEN-3PUFAs initiation. In addition, EEN-3PUFAs induced the formation of SCFAs (mainly including acetic acid, propionic acid, and butyric acid) and increased the intestinal wall compared to the control group. In conclusion, EEN-3PUFAs modulate the alterations in gut microbiome signatures, enhanced intestinal barrier, and regulated the fatty acid composition and lipid metabolism shifts and the putative mechanisms underlying these effects.
Collapse
Affiliation(s)
- Fuzheng Tao
- Intensive Care Unit, Taizhou Hospital of Integrated Traditional Chinese and Western Medicine, Taizhou, Zhejiang, China
| | - Xi Xing
- Intensive Care Unit, First Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jiannong Wu
- Intensive Care Unit, First Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Ronglin Jiang
- Intensive Care Unit, First Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
38
|
Xu Z, Tang H, Huang F, Qiao Z, Wang X, Yang C, Deng Q. Algal Oil Rich in n-3 PUFA Alleviates DSS-Induced Colitis via Regulation of Gut Microbiota and Restoration of Intestinal Barrier. Front Microbiol 2020; 11:615404. [PMID: 33391246 PMCID: PMC7772400 DOI: 10.3389/fmicb.2020.615404] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
Algal oil is rich in docosahexaenoic acid (DHA) and has various health benefits against human metabolic disorders and disease. This study aimed to investigate the effects of DHA algal oil on colonic inflammation and intestinal microbiota in dextran sulfate sodium (DSS)-induced colitis mice model. Male C57BL/6 mice was induced colitis by 2.5% DSS and followed by 2 weeks of treatment with algal oil (250 or 500 mg/kg/day). The colonic inflammation was assessed by colon macroscopic damage scores, and the degree of neutrophil infiltration was evaluated by measuring tissue-associated myeloperoxidase (MPO) activity in colonic mucosa. Tight junction proteins in the colonic tissue were measured by real-time PCR and western blot. Moreover, the intestinal microbiota and shot chain fatty acids (SCFAs) were estimated by bioinformatic analysis and GC, respectively. Colonic damage due to DSS treatment was significantly ameliorated by algal oil supplementation. In addition, algal oil significantly inhibited the increases of malondialdehyde (MDA) content, MPO activity, pro-inflammatory cytokines level and tight junction proteins expression in DSS-treated mice. Furthermore, supplementation of algal oil modulated the intestinal microbiota structure in DSS induced colitis mice by increasing the proportion of the unidentified_S24_7 and decreasing the relative abundance of unidentified_Ruminococcaceae, Clostridium and Roseburia. On the analysis of SCFAs, the caecal content of acetic acid, propionic acid, isobutyric acid, buturic, and the total SCFAs showed a significant increase in algal oil-administered mice. Together, these results suggested that algal oil rich in DHA inhibited the progress of DSS-induced colitis in mice by modulating the intestinal microbiota and metabolites and repairing the intestinal barrier, which may be applied in the development of therapeutics for intestinal inflammation.
Collapse
Affiliation(s)
- Zhenxia Xu
- Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hu Tang
- Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Fenghong Huang
- Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhixian Qiao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xu Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chen Yang
- Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qianchun Deng
- Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
39
|
Binienda A, Twardowska A, Makaro A, Salaga M. Dietary Carbohydrates and Lipids in the Pathogenesis of Leaky Gut Syndrome: An Overview. Int J Mol Sci 2020; 21:ijms21218368. [PMID: 33171587 PMCID: PMC7664638 DOI: 10.3390/ijms21218368] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
This review summarizes the recent knowledge on the effects of dietary carbohydrates and lipids on the pathophysiology of leaky gut syndrome (LGS). Alterations in intestinal barrier permeability may lead to serious gastrointestinal (GI) disorders. LGS is caused by intestinal hyperpermeability due to changes in the expression levels and functioning of tight junctions. The influence of dietary habits on intestinal physiology is clearly visible in incidence rates of intestinal diseases in industrial and developing countries. Diseases which are linked to intestinal hyperpermeability tend to localize to Westernized countries, where a diet rich in fats and refined carbohydrates predominates. Several studies suggest that fructose is one of the key carbohydrates involved in the regulation of the intestinal permeability and its overuse may cause harmful effects, such as tight junction protein dysfunction. On the other hand, short chain fatty acids (mainly butyrate) at appropriate concentrations may lead to the reduction of intestinal permeability, which is beneficial in LGS. However, long chain fatty acids, including n-3 and n-6 polyunsaturated fatty acids have unclear properties. Some of those behave as components untightening and tightening the intestinal membrane.
Collapse
Affiliation(s)
| | | | | | - Maciej Salaga
- Correspondence: ; Tel.: +48-42-272-57-07; Fax: +48-42-272-56-94
| |
Collapse
|