1
|
Hargadon KM, Goodloe TB, Woodall SL. Lymph Node Invasion by Melanoma Cells Is Not Required for the Induction of Incomplete Differentiation by Tumor-Specific CD8+ T Cells. Cancer Rep (Hoboken) 2025; 8:e70145. [PMID: 39930625 PMCID: PMC11810983 DOI: 10.1002/cnr2.70145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/07/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Lymph node invasion by cancer cells is a poor prognostic factor and is often associated with anti-tumor CD8+ T cell dysfunction. In this study, we investigated the role of lymph node invasion by melanoma cells in the induction of incomplete differentiation by tumor antigen-specific CD8+ T cells. AIMS We aimed to determine whether lymph node invasion by melanoma cells is required for this specific form of anti-tumor CD8+ T cell dysfunction. METHODS AND RESULTS We assessed lymph node invasion by the B16-F1 and D5.1G4 murine melanoma cell lines and evaluated tumor antigen-specific CD8+ T cell responses to these melanomas in the context of tumor-free versus tumor-involved lymph nodes. We demonstrate that CD8+ T cells recognizing antigen from established melanomas fail to acquire effector function, regardless of whether the tumor is stable or progressive. This CD8+ T cell dysfunction arises in the context of both tumor-involved and tumor-free lymph nodes draining established melanomas. CONCLUSIONS Lymph node invasion by melanoma cells is not required for the induction of incomplete CD8+ T cell differentiation. These data and their implications for strategies to enhance CD8+ T cell responses against poorly immunogenic melanomas are discussed herein.
Collapse
Affiliation(s)
- Kristian M. Hargadon
- Hargadon Laboratory, Department of BiologyHampden‐Sydney CollegeHampden‐SydneyVirginiaUSA
| | - Travis B. Goodloe
- Hargadon Laboratory, Department of BiologyHampden‐Sydney CollegeHampden‐SydneyVirginiaUSA
| | - Stephen L. Woodall
- Hargadon Laboratory, Department of BiologyHampden‐Sydney CollegeHampden‐SydneyVirginiaUSA
| |
Collapse
|
2
|
Brandlmaier M, Hoellwerth M, Koelblinger P, Lang R, Harrer A. Adjuvant PD-1 Checkpoint Inhibition in Early Cutaneous Melanoma: Immunological Mode of Action and the Role of Ultraviolet Radiation. Cancers (Basel) 2024; 16:1461. [PMID: 38672543 PMCID: PMC11047851 DOI: 10.3390/cancers16081461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma ranks as the fifth most common solid cancer in adults worldwide and is responsible for a significant proportion of skin-tumor-related deaths. The advent of immune checkpoint inhibition with anti-programmed death protein-1 (PD-1) antibodies has revolutionized the adjuvant treatment of high-risk, completely resected stage III/IV melanoma. However, not all patients benefit equally. Current strategies for improving outcomes involve adjuvant treatment in earlier disease stages (IIB/C) as well as perioperative treatment approaches. Interfering with T-cell exhaustion to counteract cancer immune evasion and the immunogenic nature of melanoma is key for anti-PD-1 effectiveness. Yet, the biological rationale for the efficacy of adjuvant treatment in clinically tumor-free patients remains to be fully elucidated. High-dose intermittent sun exposure (sunburn) is a well-known primary risk factor for melanomagenesis. Also, ultraviolet radiation (UVR)-induced immunosuppression may impair anti-cancer immune surveillance. In this review, we summarize the current knowledge about adjuvant anti-PD-1 blockade, including a characterization of the main cell types most likely responsible for its efficacy. In conclusion, we propose that local and systemic immunosuppression, to some extent UVR-mediated, can be restored by adjuvant anti-PD-1 therapy, consequently boosting anti-melanoma immune surveillance and the elimination of residual melanoma cell clones.
Collapse
Affiliation(s)
- Matthias Brandlmaier
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
| | - Magdalena Hoellwerth
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
| | - Peter Koelblinger
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
| | - Roland Lang
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
| | - Andrea Harrer
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| |
Collapse
|
3
|
Chen X, Liu X, Du S. Unveiling the Role of Tumor-Infiltrating T Cells and Immunotherapy in Hepatocellular Carcinoma: A Comprehensive Review. Cancers (Basel) 2023; 15:5046. [PMID: 37894413 PMCID: PMC10605632 DOI: 10.3390/cancers15205046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a rapidly rising global health concern, ranking as the third-leading cause of cancer-related mortality. Despite medical advancements, the five-year survival rate remains a dismal 18%, with a daunting 70% recurrence rate within a five-year period. Current systematic treatments, including first-line sorafenib, yield an overall response rate (ORR) below 10%. In contrast, immunotherapies have shown promise by improving ORR to approximately 30%. The IMbravel150 clinical trial demonstrates that combining atezolizumab and bevacizumab surpasses sorafenib in terms of median progression-free survival (PFS) and overall survival (OS). However, the therapeutic efficacy for HCC patients remains unsatisfactory, highlighting the urgent need for a comprehensive understanding of antitumor responses and immune evasion mechanisms in HCC. In this context, understanding the immune landscape of HCC is of paramount importance. Tumor-infiltrating T cells, including cytotoxic T cells, regulatory T cells, and natural killer T cells, are key components in the antitumor immune response. This review aims to shed light on their intricate interactions within the immunosuppressive tumor microenvironment and explores potential strategies for revitalizing dysfunctional T cells. Additionally, current immune checkpoint inhibitor (ICI)-based trials, ICI-based combination therapies, and CAR-T- or TCR-T-cell therapies for HCC are summarized, which might further improve OS and transform the management of HCC in the future.
Collapse
Affiliation(s)
- Xiaokun Chen
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; (X.C.); (X.L.)
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiao Liu
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; (X.C.); (X.L.)
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; (X.C.); (X.L.)
| |
Collapse
|
4
|
Jenkins E, Whitehead T, Fellermeyer M, Davis SJ, Sharma S. The current state and future of T-cell exhaustion research. OXFORD OPEN IMMUNOLOGY 2023; 4:iqad006. [PMID: 37554723 PMCID: PMC10352049 DOI: 10.1093/oxfimm/iqad006] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 08/10/2023] Open
Abstract
'Exhaustion' is a term used to describe a state of native and redirected T-cell hypo-responsiveness resulting from persistent antigen exposure during chronic viral infections or cancer. Although a well-established phenotype across mice and humans, exhaustion at the molecular level remains poorly defined and inconsistent across the literature. This is, in part, due to an overreliance on surface receptors to define these cells and explain exhaustive behaviours, an incomplete understanding of how exhaustion arises, and a lack of clarity over whether exhaustion is the same across contexts, e.g. chronic viral infections versus cancer. With the development of systems-based genetic approaches such as single-cell RNA-seq and CRISPR screens applied to in vivo data, we are moving closer to a consensus view of exhaustion, although understanding how it arises remains challenging given the difficulty in manipulating the in vivo setting. Accordingly, producing and studying exhausted T-cells ex vivo are burgeoning, allowing experiments to be conducted at scale up and with high throughput. Here, we first review what is currently known about T-cell exhaustion and how it's being studied. We then discuss how improvements in their method of isolation/production and examining the impact of different microenvironmental signals and cell interactions have now become an active area of research. Finally, we discuss what the future holds for the analysis of this physiological condition and, given the diversity of ways in which exhausted cells are now being generated, propose the adoption of a unified approach to clearly defining exhaustion using a set of metabolic-, epigenetic-, transcriptional-, and activation-based phenotypic markers, that we call 'M.E.T.A'.
Collapse
Affiliation(s)
- Edward Jenkins
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Toby Whitehead
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Martin Fellermeyer
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Simon J Davis
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Sumana Sharma
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
5
|
Chen C, Liu X, Chang CY, Wang HY, Wang RF. The Interplay between T Cells and Cancer: The Basis of Immunotherapy. Genes (Basel) 2023; 14:genes14051008. [PMID: 37239368 DOI: 10.3390/genes14051008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past decade, immunotherapy has emerged as one of the most promising approaches to cancer treatment. The use of immune checkpoint inhibitors has resulted in impressive and durable clinical responses in the treatment of various cancers. Additionally, immunotherapy utilizing chimeric antigen receptor (CAR)-engineered T cells has produced robust responses in blood cancers, and T cell receptor (TCR)-engineered T cells are showing promising results in the treatment of solid cancers. Despite these noteworthy advancements in cancer immunotherapy, numerous challenges remain. Some patient populations are unresponsive to immune checkpoint inhibitor therapy, and CAR T cell therapy has yet to show efficacy against solid cancers. In this review, we first discuss the significant role that T cells play in the body's defense against cancer. We then delve into the mechanisms behind the current challenges facing immunotherapy, starting with T cell exhaustion due to immune checkpoint upregulation and changes in the transcriptional and epigenetic landscapes of dysfunctional T cells. We then discuss cancer-cell-intrinsic characteristics, including molecular alterations in cancer cells and the immunosuppressive nature of the tumor microenvironment (TME), which collectively facilitate tumor cell proliferation, survival, metastasis, and immune evasion. Finally, we examine recent advancements in cancer immunotherapy, with a specific emphasis on T-cell-based treatments.
Collapse
Affiliation(s)
- Christina Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xin Liu
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Che-Yu Chang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Helen Y Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
6
|
Modur V, Muhammad B, Yang JQ, Zheng Y, Komurov K, Guo F. Mechanism of inert inflammation in an immune checkpoint blockade-resistant tumor subtype bearing transcription elongation defects. Cell Rep 2023; 42:112364. [PMID: 37043352 PMCID: PMC10562518 DOI: 10.1016/j.celrep.2023.112364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/22/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
The clinical response to immune checkpoint blockade (ICB) correlates with tumor-infiltrating cytolytic T lymphocytes (CTLs) prior to treatment. However, many of these inflamed tumors resist ICB through unknown mechanisms. We show that tumors with transcription elongation deficiencies (TEdef+), which we previously reported as being resistant to ICB in mouse models and the clinic, have high baseline CTLs. We show that high baseline CTLs in TEdef+ tumors result from aberrant activation of the nucleic acid sensing-TBK1-CCL5/CXCL9 signaling cascade, which results in an immunosuppressive microenvironment with elevated regulatory T cells and exhausted CTLs. ICB therapy of TEdef+ tumors fail to increase CTL infiltration and suppress tumor growth in both experimental and clinical settings, suggesting that TEdef+, along with surrogate markers of tumor immunogenicity such as tumor mutational burden and CTLs, should be considered in the decision process for patient immunotherapy indication.
Collapse
Affiliation(s)
- Vishnu Modur
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Belal Muhammad
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jun-Qi Yang
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
7
|
Tas L, Jedema I, Haanen JB. Novel strategies to improve efficacy of treatment with tumor-infiltrating lymphocytes (TILs) for patients with solid cancers. Curr Opin Oncol 2023; 35:107-113. [PMID: 36607824 PMCID: PMC9894146 DOI: 10.1097/cco.0000000000000925] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW Treatment with tumor-infiltrating lymphocytes (TILs) has shown remarkable clinical responses in patients with advanced solid tumors. Although the TIL production process is very robust, the original protocol stems from the early nineties and lacks effective selection for tumor-reactivity and functional activity. In this review we highlight the limitations of the current production process and give an overview of improvements that can be made to increase TIL efficacy. RECENT FINDINGS With the recent advances in single cell sequencing technologies, our understanding of the composition and phenotype of TILs in the tumor micro environment has majorly increased, which forms the basis for the development of new strategies to improve the TIL production process. Strategies involve selection for neoantigen-reactive TILs by cell sorting or selective expansion strategies. Furthermore, gene editing strategies like Clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas9) can be used to increase TIL functionality. SUMMARY Although combining all the possible improvements into a next generation TIL product might be challenging, it is highly likely that those techniques will increase the clinical value of TIL therapy in the coming years.
Collapse
Affiliation(s)
- Liselotte Tas
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Inge Jedema
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - John B.A.G. Haanen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Department of Clinical Oncology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
8
|
Trefny MP, Kirchhammer N, Auf der Maur P, Natoli M, Schmid D, Germann M, Fernandez Rodriguez L, Herzig P, Lötscher J, Akrami M, Stinchcombe JC, Stanczak MA, Zingg A, Buchi M, Roux J, Marone R, Don L, Lardinois D, Wiese M, Jeker LT, Bentires-Alj M, Rossy J, Thommen DS, Griffiths GM, Läubli H, Hess C, Zippelius A. Deletion of SNX9 alleviates CD8 T cell exhaustion for effective cellular cancer immunotherapy. Nat Commun 2023; 14:86. [PMID: 36732507 PMCID: PMC9895440 DOI: 10.1038/s41467-022-35583-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/12/2022] [Indexed: 02/04/2023] Open
Abstract
Tumor-specific T cells are frequently exhausted by chronic antigenic stimulation. We here report on a human antigen-specific ex vivo model to explore new therapeutic options for T cell immunotherapies. T cells generated with this model resemble tumor-infiltrating exhausted T cells on a phenotypic and transcriptional level. Using a targeted pooled CRISPR-Cas9 screen and individual gene knockout validation experiments, we uncover sorting nexin-9 (SNX9) as a mediator of T cell exhaustion. Upon TCR/CD28 stimulation, deletion of SNX9 in CD8 T cells decreases PLCγ1, Ca2+, and NFATc2-mediated T cell signaling and reduces expression of NR4A1/3 and TOX. SNX9 knockout enhances memory differentiation and IFNγ secretion of adoptively transferred T cells and results in improved anti-tumor efficacy of human chimeric antigen receptor T cells in vivo. Our findings highlight that targeting SNX9 is a strategy to prevent T cell exhaustion and enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Marcel P Trefny
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland.
| | - Nicole Kirchhammer
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Priska Auf der Maur
- Laboratory of Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Marina Natoli
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Dominic Schmid
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Markus Germann
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Laura Fernandez Rodriguez
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Petra Herzig
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Jonas Lötscher
- Laboratory of Immunobiology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Maryam Akrami
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Jane C Stinchcombe
- Cambridge Institute for Medical Research, Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Michal A Stanczak
- Laboratory of Cancer Immunotherapy, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Andreas Zingg
- Laboratory of Cancer Immunotherapy, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Melanie Buchi
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Julien Roux
- Bioinformatics Core Facility, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Romina Marone
- Laboratory of Molecular Immune Regulation, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland.,Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Leyla Don
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Didier Lardinois
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Mark Wiese
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Lukas T Jeker
- Laboratory of Molecular Immune Regulation, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland.,Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Mohamed Bentires-Alj
- Laboratory of Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Jérémie Rossy
- Biotechnology Institute Thurgau, University of Konstanz, Kreuzlingen, Switzerland
| | - Daniela S Thommen
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland.,Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Heinz Läubli
- Laboratory of Cancer Immunotherapy, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland.,Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Christoph Hess
- Laboratory of Immunobiology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland.,Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Alfred Zippelius
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland. .,Medical Oncology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
9
|
Seyhan AA, Carini C. Insights and Strategies of Melanoma Immunotherapy: Predictive Biomarkers of Response and Resistance and Strategies to Improve Response Rates. Int J Mol Sci 2022; 24:ijms24010041. [PMID: 36613491 PMCID: PMC9820306 DOI: 10.3390/ijms24010041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Despite the recent successes and durable responses with immune checkpoint inhibitors (ICI), many cancer patients, including those with melanoma, do not derive long-term benefits from ICI therapies. The lack of predictive biomarkers to stratify patients to targeted treatments has been the driver of primary treatment failure and represents an unmet medical need in melanoma and other cancers. Understanding genomic correlations with response and resistance to ICI will enhance cancer patients' benefits. Building on insights into interplay with the complex tumor microenvironment (TME), the ultimate goal should be assessing how the tumor 'instructs' the local immune system to create its privileged niche with a focus on genomic reprogramming within the TME. It is hypothesized that this genomic reprogramming determines the response to ICI. Furthermore, emerging genomic signatures of ICI response, including those related to neoantigens, antigen presentation, DNA repair, and oncogenic pathways, are gaining momentum. In addition, emerging data suggest a role for checkpoint regulators, T cell functionality, chromatin modifiers, and copy-number alterations in mediating the selective response to ICI. As such, efforts to contextualize genomic correlations with response into a more insightful understanding of tumor immune biology will help the development of novel biomarkers and therapeutic strategies to overcome ICI resistance.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Correspondence:
| | - Claudio Carini
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, New Hunt’s House, Guy’s Campus, King’s College London, London SE1 1UL, UK
- Biomarkers Consortium, Foundation of the National Institute of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Natoli M, Hatje K, Gulati P, Junker F, Herzig P, Jiang Z, Davydov II, Germann M, Trüb M, Marbach D, Zwick A, Weber P, Seeber S, Wiese M, Lardinois D, Heinzelmann-Schwarz V, Rosenberg R, Tietze L, Mertz KD, Umaña P, Klein C, Codarri-Deak L, Kao H, Zippelius A. Deciphering molecular and cellular ex vivo responses to bispecific antibodies PD1-TIM3 and PD1-LAG3 in human tumors. J Immunother Cancer 2022; 10:jitc-2022-005548. [PMID: 36319064 PMCID: PMC9628669 DOI: 10.1136/jitc-2022-005548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Next-generation cancer immunotherapies are designed to broaden the therapeutic repertoire by targeting new immune checkpoints including lymphocyte-activation gene 3 (LAG-3) and T cell immunoglobulin and mucin-domain containing-3 (TIM-3). Yet, the molecular and cellular mechanisms by which either receptor functions to mediate its inhibitory effects are still poorly understood. Similarly, little is known on the differential effects of dual, compared with single, checkpoint inhibition. METHODS We here performed in-depth characterization, including multicolor flow cytometry, single cell RNA sequencing and multiplex supernatant analysis, using tumor single cell suspensions from patients with cancer treated ex vivo with novel bispecific antibodies targeting programmed cell death protein 1 (PD-1) and TIM-3 (PD1-TIM3), PD-1 and LAG-3 (PD1-LAG3), or with anti-PD-1. RESULTS We identified patient samples which were responsive to PD1-TIM3, PD1-LAG3 or anti-PD-1 using an in vitro approach, validated by the analysis of 659 soluble proteins and enrichment for an anti-PD-1 responder signature. We found increased abundance of an activated (HLA-DR+CD25+GranzymeB+) CD8+ T cell subset and of proliferating CD8+ T cells, in response to bispecific antibody or anti-PD-1 treatment. Bispecific antibodies, but not anti-PD-1, significantly increased the abundance of a proliferating natural killer cell subset, which exhibited enrichment for a tissue-residency signature. Key phenotypic and transcriptional changes occurred in a PD-1+CXCL13+CD4+ T cell subset, in response to all treatments, including increased interleukin-17 secretion and signaling toward plasma cells. Interestingly, LAG-3 protein upregulation was detected as a unique pharmacodynamic effect mediated by PD1-LAG3, but not by PD1-TIM3 or anti-PD-1. CONCLUSIONS Our in vitro system reliably assessed responses to bispecific antibodies co-targeting PD-1 together with LAG-3 or TIM-3 using patients' tumor infiltrating immune cells and revealed transcriptional and phenotypic imprinting by bispecific antibody formats currently tested in early clinical trials.
Collapse
Affiliation(s)
- Marina Natoli
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Klas Hatje
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Pratiksha Gulati
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Fabian Junker
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Petra Herzig
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Zhiwen Jiang
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Iakov I Davydov
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Markus Germann
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Marta Trüb
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Daniel Marbach
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Adrian Zwick
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, F Hoffmann-La Roche Ltd, Penzberg, Germany
| | - Patrick Weber
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Stefan Seeber
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, F Hoffmann-La Roche Ltd, Penzberg, Germany
| | - Mark Wiese
- Division of Thoracic Surgery, University Hospital Basel, Basel, Switzerland
| | - Didier Lardinois
- Division of Thoracic Surgery, University Hospital Basel, Basel, Switzerland
| | | | - Robert Rosenberg
- Department of Surgery, Cantonal Hospital Basel-Landschaft, Liestal, Switzerland
| | | | - Kirsten D Mertz
- Institute of Pathology, Cantonal Hospital Basel-Landschaft, Liestal, Switzerland
| | - Pablo Umaña
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Christian Klein
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Laura Codarri-Deak
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Henry Kao
- Roche Pharma Research and Early Development, Early Biomarker Development Oncology, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Alfred Zippelius
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland,Medical Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
11
|
Philipp N, Kazerani M, Nicholls A, Vick B, Wulf J, Straub T, Scheurer M, Muth A, Hänel G, Nixdorf D, Sponheimer M, Ohlmeyer M, Lacher SM, Brauchle B, Marcinek A, Rohrbacher L, Leutbecher A, Rejeski K, Weigert O, von Bergwelt-Baildon M, Theurich S, Kischel R, Jeremias I, Bücklein V, Subklewe M. T-cell exhaustion induced by continuous bispecific molecule exposure is ameliorated by treatment-free intervals. Blood 2022; 140:1104-1118. [PMID: 35878001 PMCID: PMC10652962 DOI: 10.1182/blood.2022015956] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
T-cell-recruiting bispecific molecule therapy has yielded promising results in patients with hematologic malignancies; however, resistance and subsequent relapse remains a major challenge. T-cell exhaustion induced by persistent antigen stimulation or tonic receptor signaling has been reported to compromise outcomes of T-cell-based immunotherapies. The impact of continuous exposure to bispecifics on T-cell function, however, remains poorly understood. In relapsed/refractory B-cell precursor acute lymphoblastic leukemia patients, 28-day continuous infusion with the CD19xCD3 bispecific molecule blinatumomab led to declining T-cell function. In an in vitro model system, mimicking 28-day continuous infusion with the half-life-extended CD19xCD3 bispecific AMG 562, we identified hallmark features of exhaustion arising over time. Continuous AMG 562 exposure induced progressive loss of T-cell function (day 7 vs day 28 mean specific lysis: 88.4% vs 8.6%; n = 6; P = .0003). Treatment-free intervals (TFIs), achieved by AMG 562 withdrawal, were identified as a powerful strategy for counteracting exhaustion. TFIs induced strong functional reinvigoration of T cells (continuous vs TFI-specific lysis on day 14: 34.9% vs 93.4%; n = 6; P < .0001) and transcriptional reprogramming. Furthermore, use of a TFI led to improved T-cell expansion and tumor control in vivo. Our data demonstrate the relevance of T-cell exhaustion in bispecific antibody therapy and highlight that T cells can be functionally and transcriptionally rejuvenated with TFIs. In view of the growing number of bispecific molecules being evaluated in clinical trials, our findings emphasize the need to consider and evaluate TFIs in application schedules to improve clinical outcomes.
Collapse
Affiliation(s)
- Nora Philipp
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Maryam Kazerani
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Alyssa Nicholls
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Binje Vick
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
| | - Jan Wulf
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Tobias Straub
- Bioinformatics Unit, Biomedical Center, LMU Munich, Martinsried, Germany
| | - Michaela Scheurer
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Amelie Muth
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Gerulf Hänel
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Daniel Nixdorf
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Monika Sponheimer
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Malte Ohlmeyer
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Sonja M. Lacher
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Bettina Brauchle
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Anetta Marcinek
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Lisa Rohrbacher
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Alexandra Leutbecher
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Kai Rejeski
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Oliver Weigert
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Experimental Leukemia and Lymphoma Research, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | | | - Sebastian Theurich
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Roman Kischel
- AMGEN Research Munich GmbH, Munich, Germany
- AMGEN Inc., Thousand Oaks, CA
| | - Irmela Jeremias
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Veit Bücklein
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
12
|
Ji F, Chen L, Chen Z, Luo B, Wang Y, Lan X. TCR repertoire and transcriptional signatures of circulating tumour-associated T cells facilitate effective non-invasive cancer detection. Clin Transl Med 2022; 12:e853. [PMID: 36134717 PMCID: PMC9494610 DOI: 10.1002/ctm2.853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Fansen Ji
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Tsinghua University, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| | - Lin Chen
- School of Medicine, Tsinghua University, Beijing, China.,General Surgery Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhizhuo Chen
- School of Life Science, Tsinghua University, Beijing, China
| | - Bin Luo
- General Surgery Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yongwang Wang
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xun Lan
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Tsinghua University, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Jaiswal A, Verma A, Dannenfelser R, Melssen M, Tirosh I, Izar B, Kim TG, Nirschl CJ, Devi KSP, Olson WC, Slingluff CL, Engelhard VH, Garraway L, Regev A, Minkis K, Yoon CH, Troyanskaya O, Elemento O, Suárez-Fariñas M, Anandasabapathy N. An activation to memory differentiation trajectory of tumor-infiltrating lymphocytes informs metastatic melanoma outcomes. Cancer Cell 2022; 40:524-544.e5. [PMID: 35537413 PMCID: PMC9122099 DOI: 10.1016/j.ccell.2022.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/07/2021] [Accepted: 04/11/2022] [Indexed: 12/11/2022]
Abstract
There is a need for better classification and understanding of tumor-infiltrating lymphocytes (TILs). Here, we applied advanced functional genomics to interrogate 9,000 human tumors and multiple single-cell sequencing sets using benchmarked T cell states, comprehensive T cell differentiation trajectories, human and mouse vaccine responses, and other human TILs. Compared with other T cell states, enrichment of T memory/resident memory programs was observed across solid tumors. Trajectory analysis of single-cell melanoma CD8+ TILs also identified a high fraction of memory/resident memory-scoring TILs in anti-PD-1 responders, which expanded post therapy. In contrast, TILs scoring highly for early T cell activation, but not exhaustion, associated with non-response. Late/persistent, but not early activation signatures, prognosticate melanoma survival, and co-express with dendritic cell and IFN-γ response programs. These data identify an activation-like state associated to poor response and suggest successful memory conversion, above resuscitation of exhaustion, is an under-appreciated aspect of successful anti-tumoral immunity.
Collapse
Affiliation(s)
- Abhinav Jaiswal
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10026, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10026, USA
| | - Akanksha Verma
- Institute for Computational Biomedicine, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ruth Dannenfelser
- Department of Computer Science and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Marit Melssen
- Division of Surgical Oncology - Breast and Melanoma Surgery, Department of Surgery, Human Immune Therapy Center, Cancer Center, University of Virginia, Charlottesville, VA 22908, USA; Carter Immunology Center, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin Izar
- Department of Medicine, Division of Hematology/Oncology, Herbert Irving Comprehensive Cancer Center, Columbia Center for Translational Immunology and Program for Mathematical Genomics, Columbia University, New York, NY 10032, USA
| | - Tae-Gyun Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
| | - Christopher J Nirschl
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - K Sanjana P Devi
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10026, USA
| | - Walter C Olson
- Division of Surgical Oncology - Breast and Melanoma Surgery, Department of Surgery, Human Immune Therapy Center, Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Craig L Slingluff
- Division of Surgical Oncology - Breast and Melanoma Surgery, Department of Surgery, Human Immune Therapy Center, Cancer Center, University of Virginia, Charlottesville, VA 22908, USA; Carter Immunology Center, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Victor H Engelhard
- Carter Immunology Center, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Levi Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02115, USA; Center for Cancer for Cancer Precision Medicine, Boston, MA 02115, USA; Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kira Minkis
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10026, USA
| | - Charles H Yoon
- Brigham and Women's Hospital, Department of Surgical Oncology Harvard Medical School, Boston, MA 02115, USA
| | - Olga Troyanskaya
- Department of Computer Science and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA; Simons Center for Data Analysis, Simons Foundation, New York, NY 10010, USA
| | - Olivier Elemento
- Institute for Computational Biomedicine, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mayte Suárez-Fariñas
- Department of Genetics and Genomic Science, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Niroshana Anandasabapathy
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10026, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10026, USA; Institute for Computational Biomedicine, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10026, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10026, USA.
| |
Collapse
|
14
|
Zhu Q, Qiao G, Huang L, Xu C, Guo D, Wang S, Zhao J, Song Y, Liu B, Chen Z, Yang Z, Yuan Y. Restored CD8+PD-1+ T Cells Facilitate the Response to Anti-PD-1 for Patients With Pancreatic Ductal Adenocarcinoma. Front Oncol 2022; 12:837560. [PMID: 35480107 PMCID: PMC9035626 DOI: 10.3389/fonc.2022.837560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose We aimed to investigate the restoration of CD8+PD-1+ T cells through adoptive T-cell therapy (ACT) in relation to the prognosis and the therapeutic response to anti-PD-1 in patients with advanced pancreatic cancer (APC). Methods A total of 177 adult patients who underwent tumor resection as initial treatment for pancreatic ductal adenocarcinoma (PDAC) from February 2013 to July 2019 at Zhongnan Hospital of Wuhan University were enrolled in this study. Another cohort of 32 patients with APC was prospectively enrolled from Capital Medical University Cancer Center between June 1, 2013, and May 30, 2019. Results Of the 177 patients who received tumor resection, 67 tumor samples showed overexpression of PD-L1 and 110 patients with low expression of PD-L1. We found that overexpressed PD-L1 was a significant prognostic factor related to overall survival (OS). Furthermore, we tested the percentage of peripheral CD8+PD-1+ T cells in all patients and found that it was significantly correlated with the PD-L1 expression and the prognosis of patients with PDAC. The peripheral blood T lymphocyte subtypes were tracked for 30 months, and CD8+PD-1+ cells were shown to decrease. After that, we performed ACT for patients with APC in another cancer center. We found that the ratios of posttreatment of ACT/pre-ACT CD8+PD-1+ T cells were significantly related to the prognosis of patients with APC. Moreover, patients with combined treatment of ACT with anti-PD-1 had significantly favorable OS. Conclusions This study showed that the CD8+PD-1+ T-cell level was related to the expression of PD-L1. Restoring CD8+PD-1+ T cells in patients with APC by treatment of ACT significantly benefits the prognosis and facilitates the response to anti-PD-1.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guoliang Qiao
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, MA, United States
- *Correspondence: Guoliang Qiao, ; Yufeng Yuan,
| | - Lefu Huang
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chang Xu
- First Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, Shanghai, China
| | - Deliang Guo
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuo Wang
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Jing Zhao
- Department of Dermatology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuguang Song
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Bing Liu
- Department of General Surgery, Huo Jianjun General Hospital, Beijing, China
| | - Zheng Chen
- Department of General Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Zhiyong Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Guoliang Qiao, ; Yufeng Yuan,
| |
Collapse
|
15
|
Chawda C, McMorrow R, Gaspar N, Zambito G, Mezzanotte L. Monitoring Immune Cell Function Through Optical Imaging: a Review Highlighting Transgenic Mouse Models. Mol Imaging Biol 2022; 24:250-263. [PMID: 34735680 PMCID: PMC8983637 DOI: 10.1007/s11307-021-01662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022]
Abstract
Transgenic mouse models have facilitated research of human diseases and validation of therapeutic approaches. Inclusion of optical reporter genes (fluorescent or bioluminescent genes) in the targeting vectors used to develop such models makes in vivo imaging of cellular and molecular events possible, from the microscale to the macroscale. In particular, transgenic mouse models expressing optical reporter genes allowed accurately distinguishing immune cell types from trafficking in vivo using intravital microscopy or whole-body optical imaging. Besides lineage tracing and trafficking of different subsets of immune cells, the ability to monitor the function of immune cells is of pivotal importance for investigating the effects of immunotherapies against cancer. Here, we introduce the reader to state-of-the-art approaches to develop transgenics, optical imaging techniques, and several notable examples of transgenic mouse models developed for immunology research by critically highlighting the models that allow the following of immune cell function.
Collapse
Affiliation(s)
- Chintan Chawda
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Roisin McMorrow
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands
- Percuros B.V, Leiden, The Netherlands
| | - Natasa Gaspar
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands
- Percuros B.V, Leiden, The Netherlands
| | - Giorgia Zambito
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Laura Mezzanotte
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
16
|
Philip M, Schietinger A. CD8 + T cell differentiation and dysfunction in cancer. Nat Rev Immunol 2022; 22:209-223. [PMID: 34253904 PMCID: PMC9792152 DOI: 10.1038/s41577-021-00574-3] [Citation(s) in RCA: 551] [Impact Index Per Article: 183.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
CD8+ T cells specific for cancer cells are detected within tumours. However, despite their presence, tumours progress. The clinical success of immune checkpoint blockade and adoptive T cell therapy demonstrates the potential of CD8+ T cells to mediate antitumour responses; however, most patients with cancer fail to achieve long-term responses to immunotherapy. Here we review CD8+ T cell differentiation to dysfunctional states during tumorigenesis. We highlight similarities and differences between T cell dysfunction and other hyporesponsive T cell states and discuss the spatio-temporal factors contributing to T cell state heterogeneity in tumours. An important challenge is predicting which patients will respond to immunotherapeutic interventions and understanding which T cell subsets mediate the clinical response. We explore our current understanding of what determines T cell responsiveness and resistance to immunotherapy and point out the outstanding research questions.
Collapse
Affiliation(s)
- Mary Philip
- Vanderbilt Center for Immunobiology, Vanderbilt-Ingram Cancer Center, Department of Medicine/Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.,;
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,;
| |
Collapse
|
17
|
A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance. Nat Immunol 2022; 23:660-670. [PMID: 35241833 DOI: 10.1038/s41590-022-01141-1] [Citation(s) in RCA: 283] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/18/2022] [Indexed: 12/30/2022]
Abstract
Ten years since the immune checkpoint inhibitor ipilimumab was approved for advanced melanoma, it is time to reflect on the lessons learned regarding modulation of the immune system to treat cancer and on novel approaches to further extend the efficacy of current and emerging immunotherapies. Here, we review the studies that led to our current understanding of the melanoma immune microenvironment in humans and the mechanistic work supporting these observations. We discuss how this information is guiding more precise analyses of the mechanisms of action of immune checkpoint blockade and novel immunotherapeutic approaches. Lastly, we review emerging evidence supporting the negative impact of melanoma metabolic adaptation on anti-tumor immunity and discuss how to counteract such mechanisms for more successful use of immunotherapy.
Collapse
|
18
|
Titov A, Kaminskiy Y, Ganeeva I, Zmievskaya E, Valiullina A, Rakhmatullina A, Petukhov A, Miftakhova R, Rizvanov A, Bulatov E. Knowns and Unknowns about CAR-T Cell Dysfunction. Cancers (Basel) 2022; 14:1078. [PMID: 35205827 PMCID: PMC8870103 DOI: 10.3390/cancers14041078] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Immunotherapy using chimeric antigen receptor (CAR) T cells is a promising option for cancer treatment. However, T cells and CAR-T cells frequently become dysfunctional in cancer, where numerous evasion mechanisms impair antitumor immunity. Cancer frequently exploits intrinsic T cell dysfunction mechanisms that evolved for the purpose of defending against autoimmunity. T cell exhaustion is the most studied type of T cell dysfunction. It is characterized by impaired proliferation and cytokine secretion and is often misdefined solely by the expression of the inhibitory receptors. Another type of dysfunction is T cell senescence, which occurs when T cells permanently arrest their cell cycle and proliferation while retaining cytotoxic capability. The first section of this review provides a broad overview of T cell dysfunctional states, including exhaustion and senescence; the second section is focused on the impact of T cell dysfunction on the CAR-T therapeutic potential. Finally, we discuss the recent efforts to mitigate CAR-T cell exhaustion, with an emphasis on epigenetic and transcriptional modulation.
Collapse
Affiliation(s)
- Aleksei Titov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Laboratory of Transplantation Immunology, National Research Centre for Hematology, 125167 Moscow, Russia
| | - Yaroslav Kaminskiy
- Laboratory of Transplantation Immunology, National Research Centre for Hematology, 125167 Moscow, Russia
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aygul Rakhmatullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alexey Petukhov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Institute of Hematology, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia
| | - Regina Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
19
|
Koepke LG, Heuer A, Stangenberg M, Dreimann M, Welker L, Bokemeyer C, Strahl A, Asemissen AM, Viezens L. Surgical Site Cytology to Diagnose Spinal Lesions. Diagnostics (Basel) 2022; 12:diagnostics12020310. [PMID: 35204401 PMCID: PMC8871040 DOI: 10.3390/diagnostics12020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 11/26/2022] Open
Abstract
Patients with new-onset malignant spinal lesions often have an urgent need for local spine intervention and systemic therapy. For optimal management, it is crucial to diagnose the underlying disease as quickly and reliably as possible. The aim of our current study was to determine the feasibility, sensitivity, specificity, and diagnostic certainty of complementary cytological evaluation of spinal lesions suspected of malignancy. In 44 patients, we performed histopathological biopsies and in parallel cytologic preparations from the malignant site. Cytological smears were prepared and stained for May-Grunwald and Giemsa. Bone biopsies were histopathologically analyzed according to the existing standard-of-care practices. In 42 of 44 cases (95%), a cytological sample was successfully obtained. In 40 cases (95.2%, Cohen’s kappa: 0.77), the cytological diagnosis agreed with the histological diagnosis regarding the identification of a malignant lesion. This resulted in a sensitivity of 97% and a specificity of 80% as well as a diagnostic safety of 95%. Cytological analysis in the context of spinal surgery proved sufficient to establish a diagnosis of malignancy or its exclusion, expanding the existing diagnostic spectrum. Furthermore, implementation of this process as a routine clinical diagnostic might shorten the time to diagnosis and improve the treatment of this vulnerable patient group.
Collapse
Affiliation(s)
- Leon-Gordian Koepke
- Department of Trauma and Orthopedic Surgery, Division of Spine Surgery, University Medical Center Hamburg Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany; (A.H.); (M.S.); (M.D.); (L.V.)
- Correspondence: ; Tel.: +49-17632605843
| | - Annika Heuer
- Department of Trauma and Orthopedic Surgery, Division of Spine Surgery, University Medical Center Hamburg Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany; (A.H.); (M.S.); (M.D.); (L.V.)
| | - Martin Stangenberg
- Department of Trauma and Orthopedic Surgery, Division of Spine Surgery, University Medical Center Hamburg Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany; (A.H.); (M.S.); (M.D.); (L.V.)
| | - Marc Dreimann
- Department of Trauma and Orthopedic Surgery, Division of Spine Surgery, University Medical Center Hamburg Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany; (A.H.); (M.S.); (M.D.); (L.V.)
| | - Lutz Welker
- Institute of Pathology with the Sections Molecular Pathology and Cytopathology, University Medical Center Hamburg Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany;
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany; (C.B.); (A.M.A.)
| | - André Strahl
- Department of Trauma and Orthopedic Surgery, Division of Orthopedics, University Medical Center Hamburg Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany;
| | - Anne Marie Asemissen
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany; (C.B.); (A.M.A.)
| | - Lennart Viezens
- Department of Trauma and Orthopedic Surgery, Division of Spine Surgery, University Medical Center Hamburg Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany; (A.H.); (M.S.); (M.D.); (L.V.)
| |
Collapse
|
20
|
Gonzalez NM, Zou D, Gu A, Chen W. Schrödinger's T Cells: Molecular Insights Into Stemness and Exhaustion. Front Immunol 2021; 12:725618. [PMID: 34512656 PMCID: PMC8427607 DOI: 10.3389/fimmu.2021.725618] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/11/2021] [Indexed: 01/16/2023] Open
Abstract
T cell stemness and exhaustion coexist as two key contrasting phenomena during chronic antigen stimulation, such as infection, transplant, cancer, and autoimmunity. T cell exhaustion refers to the progressive loss of effector function caused by chronic antigen exposure. Exhausted T (TEX) cells highly express multiple inhibitory receptors and exhibit severe defects in cell proliferation and cytokine production. The term T cell stemness describes the stem cell-like behaviors of T cells, including self-renewal, multipotency, and functional persistence. It is well accepted that naïve and some memory T cell subsets have stem cell-like properties. When investigating the exhaustive differentiation of T cells in chronic infection and cancer, recent studies highlighted the stemness of "precursors of exhausted" T (TPEX) cells prior to their terminal differentiation to TEX cells. Clinically successful checkpoint blockades for cancer treatment appear to invigorate antitumor TPEX cells but not TEX cells. Here we discuss the transcriptional and epigenetic regulations of T cell stemness and exhaustion, with a focus on how systems immunology was and will be utilized to define the molecular basis underlying the transition of TPEX to TEX cells. We suggest a "stepwise model" of T cell stemness and exhaustion, in which loss of stemness and exhaustion progression are gradual multi-step processes. We provide perspectives on the research needed to define T cell stemness and exhaustion in the transplantation setting, in which allogenic T cells are also chronically exposed to alloantigens. A better understanding of T cell stemness and exhaustion will shed light on developing novel strategies for immunotherapies.
Collapse
Affiliation(s)
- Nancy M Gonzalez
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States.,College of Medicine, Texas A&M Health Science Center, College Station, TX, United States
| | - Dawei Zou
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Andy Gu
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Wenhao Chen
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States.,Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
21
|
Vecchi L, Araújo TG, Azevedo FVPDV, Mota STS, Ávila VDMR, Ribeiro MA, Goulart LR. Phospholipase A 2 Drives Tumorigenesis and Cancer Aggressiveness through Its Interaction with Annexin A1. Cells 2021; 10:cells10061472. [PMID: 34208346 PMCID: PMC8231270 DOI: 10.3390/cells10061472] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Phospholipids are suggested to drive tumorigenesis through their essential role in inflammation. Phospholipase A2 (PLA2) is a phospholipid metabolizing enzyme that releases free fatty acids, mostly arachidonic acid, and lysophospholipids, which contribute to the development of the tumor microenvironment (TME), promoting immune evasion, angiogenesis, tumor growth, and invasiveness. The mechanisms mediated by PLA2 are not fully understood, especially because an important inhibitory molecule, Annexin A1, is present in the TME but does not exert its action. Here, we will discuss how Annexin A1 in cancer does not inhibit PLA2 leading to both pro-inflammatory and pro-tumoral signaling pathways. Moreover, Annexin A1 promotes the release of cancer-derived exosomes, which also lead to the enrichment of PLA2 and COX-1 and COX-2 enzymes, contributing to TME formation. In this review, we aim to describe the role of PLA2 in the establishment of TME, focusing on cancer-derived exosomes, and modulatory activities of Annexin A1. Unraveling how these proteins interact in the cancer context can reveal new strategies for the treatment of different tumors. We will also describe the possible strategies to inhibit PLA2 and the approaches that could be used in order to resume the anti-PLA2 function of Annexin A1.
Collapse
Affiliation(s)
- Lara Vecchi
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil; (L.V.); (T.G.A.); (F.V.P.d.V.A.); (S.T.S.M.)
| | - Thaise Gonçalves Araújo
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil; (L.V.); (T.G.A.); (F.V.P.d.V.A.); (S.T.S.M.)
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil;
| | | | - Sara Teixeria Soares Mota
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil; (L.V.); (T.G.A.); (F.V.P.d.V.A.); (S.T.S.M.)
| | - Veridiana de Melo Rodrigues Ávila
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| | - Matheus Alves Ribeiro
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil;
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil; (L.V.); (T.G.A.); (F.V.P.d.V.A.); (S.T.S.M.)
- Correspondence: ; Tel.: +55-3432258440
| |
Collapse
|
22
|
Gallage S, García-Beccaria M, Szydlowska M, Rahbari M, Mohr R, Tacke F, Heikenwalder M. The therapeutic landscape of hepatocellular carcinoma. MED 2021; 2:505-552. [PMID: 35590232 DOI: 10.1016/j.medj.2021.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
|
23
|
Erdoğan AP, Ekinci F, Karabaş A, Balçık OY, Barutça S, Dirican A. Could the Inflammatory Prognostic Index Predict the Efficacy of Regorafenib in Patients with Metastatic Colorectal Cancer? J Gastrointest Cancer 2021; 53:45-51. [PMID: 33881720 DOI: 10.1007/s12029-021-00642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE To investigate the clinical importance of the inflammatory prognostic index (IPI) in patients with metastatic colorectal cancer treated with regorafenib. METHODS A retrospective analysis of 65 metastatic CRC patients treated with regorafenib between 2015 and 2020 was performed. The association between NLR, PNLR, IPI, and overall survival (OS) and progression-free survival (PFS) was evaluated. RESULTS According to the cut-off points, patients were divided into two groups. The patients in the high IPI group showed poorer OS compared to patients in the low IPI groups. The PFS was better in patients with low neutrophil-lymphocyte ratio (NLR) and platelet-neutrophil to lymphocyte ratio (PNLR), and the OS was better in patients with low IPI. CONCLUSION Among the immune inflammation scores analyzed in mCRC patients receiving regorafenib, NLR and PNLR were the best predictor of recurrence, whereas IPI was the best predictor of long-term survival. After being confirmed by better designed controlled trials, IPI can be used to identify the group of patients who will benefit more from regorafenib treatment.
Collapse
Affiliation(s)
- Atike Pınar Erdoğan
- Medical Faculty Department Of Internal Medicine Divison Of Medical Oncology, Manisa Celal Bayar University, Manisa, Turkey.
| | - Ferhat Ekinci
- Medical Faculty Department Of Internal Medicine Divison Of Medical Oncology, Manisa Celal Bayar University, Manisa, Turkey
| | - Aykut Karabaş
- Medical Faculty Department Of Internal Medicine Divison Of Medical Oncology, Manisa Celal Bayar University, Manisa, Turkey
| | - Onur Yazdan Balçık
- Medical Faculty Department Of Internal Medicine Divison Of Medical Oncology, Manisa Celal Bayar University, Manisa, Turkey
| | - Sabri Barutça
- Medical Faculty Department Of Internal Medicine Divison Of Medical Oncology, Manisa Celal Bayar University, Manisa, Turkey
| | - Ahmet Dirican
- Department Of Internal Medicine Divison Of Medical Oncology , Izmir Economy University Medical Faculty , İzmir, Turkey
| |
Collapse
|
24
|
Asiry S, Kim G, Filippou PS, Sanchez LR, Entenberg D, Marks DK, Oktay MH, Karagiannis GS. The Cancer Cell Dissemination Machinery as an Immunosuppressive Niche: A New Obstacle Towards the Era of Cancer Immunotherapy. Front Immunol 2021; 12:654877. [PMID: 33927723 PMCID: PMC8076861 DOI: 10.3389/fimmu.2021.654877] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Although cancer immunotherapy has resulted in unpreceded survival benefits to subsets of oncology patients, accumulating evidence from preclinical animal models suggests that the immunosuppressive tumor microenvironment remains a detrimental factor limiting benefit for many patient subgroups. Recent efforts on lymphocyte-mediated immunotherapies are primarily focused on eliminating cancer foci at primary and metastatic sites, but few studies have investigated the impact of these therapies on the highly complex process of cancer cell dissemination. The metastatic cascade involves the directional streaming of invasive/migratory tumor cells toward specialized blood vessel intravasation gateways, called TMEM doorways, to the peripheral circulation. Importantly, this process occurs under the auspices of a specialized tumor microenvironment, herewith referred to as "Dissemination Trajectory", which is supported by an ample array of tumor-associated macrophages (TAMs), skewed towards an M2-like polarization spectrum, and which is also vital for providing microenvironmental cues for cancer cell invasion, migration and stemness. Based on pre-existing evidence from preclinical animal models, this article outlines the hypothesis that dissemination trajectories do not only support the metastatic cascade, but also embody immunosuppressive niches, capable of providing transient and localized immunosubversion cues to the migratory/invasive cancer cell subpopulation while in the act of departing from a primary tumor. So long as these dissemination trajectories function as "immune deserts", the migratory tumor cell subpopulation remains efficient in evading immunological destruction and seeding metastatic sites, despite administration of cancer immunotherapy and/or other cytotoxic treatments. A deeper understanding of the molecular and cellular composition, as well as the signaling circuitries governing the function of these dissemination trajectories will further our overall understanding on TAM-mediated immunosuppression and will be paramount for the development of new therapeutic strategies for the advancement of optimal cancer chemotherapies, immunotherapies, and targeted therapies.
Collapse
Affiliation(s)
- Saeed Asiry
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| | - Gina Kim
- Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| | - Panagiota S. Filippou
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
- National Horizons Centre, Teesside University, Darlington, United Kingdom
| | - Luis Rivera Sanchez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| | - Douglas K. Marks
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY, United States
| | - Maja H. Oktay
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| | - George S. Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| |
Collapse
|
25
|
Sacdalan DB, Lucero JA. The Association Between Inflammation and Immunosuppression: Implications for ICI Biomarker Development. Onco Targets Ther 2021; 14:2053-2064. [PMID: 33776452 PMCID: PMC7987319 DOI: 10.2147/ott.s278089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Evasion of immune destruction is considered one of the hallmarks of cancer. Chronic inflammation can enable immune escape by suppressing immune surveillance and permitting the development of tumors and creating a tumor microenvironment that sustains cancer. This includes generating mechanisms that prevent the effectiveness of anti-tumor treatment including immune checkpoint inhibitor therapy. In this review, we explore the interplay of inflammation and immunosuppression, their effects on the tumor microenvironment, and their implications for immune checkpoint inhibitor therapy particularly in the context of predictive biomarkers for their use.
Collapse
Affiliation(s)
- Danielle Benedict Sacdalan
- Department of Pharmacology and Toxicology, University of the Philippines Manila College of Medicine, Manila, Philippines
- Division of Medical Oncology, Department of Medicine, Philippine General Hospital and University of the Philippines Manila, Manila, Philippines
| | - Josephine Anne Lucero
- Division of Hematology, Department of Medicine, Philippine General Hospital and University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
26
|
Song M, Liu C, Chen S, Zhang W. Nanocarrier-Based Drug Delivery for Melanoma Therapeutics. Int J Mol Sci 2021; 22:1873. [PMID: 33668591 PMCID: PMC7918190 DOI: 10.3390/ijms22041873] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Melanoma, as a tumor cell derived from melanocyte transformation, has the characteristics of malignant proliferation, high metastasis, rapid recurrence, and a low survival rate. Traditional therapy has many shortcomings, including drug side effects and poor patient compliance, and so on. Therefore, the development of an effective treatment is necessary. Currently, nanotechnologies are a promising oncology treatment strategy because of their ability to effectively deliver drugs and other bioactive molecules to targeted tissues with low toxicity, thereby improving the clinical efficacy of cancer therapy. In this review, the application of nanotechnology in the treatment of melanoma is reviewed and discussed. First, the pathogenesis and molecular targets of melanoma are elucidated, and the current clinical treatment strategies and deficiencies of melanoma are then introduced. Following this, we discuss the main features of developing efficient nanosystems and introduce the latest reports in the literature on nanoparticles for the treatment of melanoma. Subsequently, we review and discuss the application of nanoparticles in chemotherapeutic agents, immunotherapy, mRNA vaccines, and photothermal therapy, as well as the potential of nanotechnology in the early diagnosis of melanoma.
Collapse
Affiliation(s)
| | | | - Siyu Chen
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; (M.S.); (C.L.)
| | - Wenxiang Zhang
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; (M.S.); (C.L.)
| |
Collapse
|
27
|
Mahnke YD, Devevre E, Baumgaertner P, Matter M, Rufer N, Romero P, Speiser DE. Human melanoma-specific CD8(+) T-cells from metastases are capable of antigen-specific degranulation and cytolysis directly ex vivo. Oncoimmunology 2021; 1:467-530. [PMID: 22754765 PMCID: PMC3382891 DOI: 10.4161/onci.19856] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The relatively low frequencies of tumor Ag-specific T-cells in PBMC and metastases from cancer patients have long precluded the analysis of their direct ex vivo cytolytic capacity. Using a new composite technique that works well with low cell numbers, we aimed at determining the functional competence of melanoma-specific CD8+ T-cells. A multiparameter flow cytometry based technique was applied to assess the cytolytic function, degranulation and IFNγ production by tumor Ag-specific CD8+ T-cells from PBMC and tumor-infiltrated lymph nodes (TILN) of melanoma patients. We found strong cytotoxicity by T-cells not only when they were isolated from PBMC but also from TILN. Cytotoxicity was observed against peptide-pulsed target cells and melanoma cells presenting the naturally processed endogenous antigen. However, unlike their PBMC-derived counterparts, T-cells from TILN produced only minimal amounts of IFNγ, while exhibiting similar levels of degranulation, revealing a critical functional dichotomy in metastatic lesions. Our finding of partial functional impairment fits well with the current knowledge that T-cells from cancer metastases are so-called exhausted, a state of T-cell hyporesponsiveness also found in chronic viral infections. The identification of responsible mechanisms in the tumor microenvironment is important for improving cancer therapies.
Collapse
Affiliation(s)
- Yolanda D Mahnke
- Ludwig Center for Cancer Research; University of Lausanne; Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhi-Iong Ma J, Yang J, Qin JS, Richter A, Perret R, El-Deiry WS, Finnberg N, Ronchese F. Inefficient boosting of antitumor CD8(+) T cells by dendritic-cell vaccines is rescued by restricting T-cell cytotoxic functions. Oncoimmunology 2021; 1:1507-1516. [PMID: 23264897 PMCID: PMC3525606 DOI: 10.4161/onci.22128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Dendritic cells (DCs) are powerful activators of primary and secondary immune responses and have promising activity as anticancer vaccines. However, various populations of immune cells, including natural killer cells, regulatory T cells and especially cytotoxic T lymphocytes (CTLs), can inhibit DC function through cytotoxic clearance. Spontaneous tumor-specific CTL responses are frequently observed in patients before immunotherapy, and it is unclear how such pre-existing responses may affect DC vaccines. We used an adoptive transfer model to show that DC vaccination fail to induce the expansion of pre-existing CTLs or increase their production of interferon γ (IFNγ). The expansion and effector differentiation of naïve host CD8+ T cells was also suppressed in the presence of CTLs of the same specificity. Suppression was caused by the cytotoxic functions of the adoptively transferred CTLs, as perforin-deficient CTLs could respond to DC vaccination by expanding and increasing IFNγ production. Proliferation and effector differentiation of host CD8+ T cells as well as resistance to tumor challenge were also significantly increased. Expression of perforin by antitumor CTLs was critical in regulating the survival of vaccine DCs, while FAS/FASL and TRAIL/DR5 had a significant, but comparatively smaller, effect. We conclude that perforin-expressing CTLs can suppress the activity of DC-based vaccines and prevent the expansion of naïve and memory CD8+ T cells as well as antitumor immune responses. We suggest that, paradoxically, temporarily blocking the cytotoxic functions of CTLs at the time of DC vaccination should result in improved vaccine efficiency and enhanced antitumor immunity.
Collapse
Affiliation(s)
- Joel Zhi-Iong Ma
- Malaghan Institute of Medical Research; Wellington, New Zealand ; Victoria University of Wellington; Wellington, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Isser A, Livingston NK, Schneck JP. Biomaterials to enhance antigen-specific T cell expansion for cancer immunotherapy. Biomaterials 2021; 268:120584. [PMID: 33338931 PMCID: PMC7856270 DOI: 10.1016/j.biomaterials.2020.120584] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
T cells are often referred to as the 'guided missiles' of our immune system because of their capacity to traffic to and accumulate at sites of infection or disease, destroy infected or mutated cells with high specificity and sensitivity, initiate systemic immune responses, sterilize infections, and produce long-lasting memory. As a result, they are a common target for a range of cancer immunotherapies. However, the myriad of challenges of expanding large numbers of T cells specific to each patient's unique tumor antigens has led researchers to develop alternative, more scalable approaches. Biomaterial platforms for expansion of antigen-specific T cells offer a path forward towards broadscale translation of personalized immunotherapies by providing "off-the-shelf", yet modular approaches to customize the phenotype, function, and specificity of T cell responses. In this review, we discuss design considerations and progress made in the development of ex vivo and in vivo technologies for activating antigen-specific T cells, including artificial antigen presenting cells, T cell stimulating scaffolds, biomaterials-based vaccines, and artificial lymphoid organs. Ultimate translation of these platforms as a part of cancer immunotherapy regimens hinges on an in-depth understanding of T cell biology and cell-material interactions.
Collapse
Affiliation(s)
- Ariel Isser
- Department of Biomedical Engineering, School of Medicine, USA; Institute for Cell Engineering, School of Medicine, USA
| | - Natalie K Livingston
- Department of Biomedical Engineering, School of Medicine, USA; Institute for Cell Engineering, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for Nanobiotechnology, USA
| | - Jonathan P Schneck
- Institute for Cell Engineering, School of Medicine, USA; Department of Pathology, School of Medicine, USA; Institute for Nanobiotechnology, USA; Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
30
|
Quatrini L, Mariotti FR, Munari E, Tumino N, Vacca P, Moretta L. The Immune Checkpoint PD-1 in Natural Killer Cells: Expression, Function and Targeting in Tumour Immunotherapy. Cancers (Basel) 2020; 12:E3285. [PMID: 33172030 PMCID: PMC7694632 DOI: 10.3390/cancers12113285] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
In the last years, immunotherapy with antibodies against programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) has shown remarkable efficacy in the treatment of different types of tumours, representing a true revolution in oncology. While its efficacy has initially been attributed only to unleashing T cell responses, responsivity to PD-1/PD-L1 blockade was observed in some tumours with low Human Leukocyte Antigen (HLA) I expression and increasing evidence has revealed PD-1 surface expression and inhibitory function also in natural killer (NK) cells. Thus, the contribution of anti-PD-1/PD-L1 therapy to the recovery of NK cell anti-tumour response has recently been appreciated. Here, we summarize the studies investigating PD-1 expression and function in NK cells, together with the limitations and perspectives of immunotherapies. A better understanding of checkpoint biology is needed to design next-generation therapeutic strategies and to improve the clinical protocols of current therapies.
Collapse
Affiliation(s)
- Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; (F.R.M.); (N.T.); (P.V.); (L.M.)
| | - Francesca Romana Mariotti
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; (F.R.M.); (N.T.); (P.V.); (L.M.)
| | - Enrico Munari
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy;
| | - Nicola Tumino
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; (F.R.M.); (N.T.); (P.V.); (L.M.)
| | - Paola Vacca
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; (F.R.M.); (N.T.); (P.V.); (L.M.)
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; (F.R.M.); (N.T.); (P.V.); (L.M.)
| |
Collapse
|
31
|
Verdon DJ, Mulazzani M, Jenkins MR. Cellular and Molecular Mechanisms of CD8 + T Cell Differentiation, Dysfunction and Exhaustion. Int J Mol Sci 2020; 21:ijms21197357. [PMID: 33027962 PMCID: PMC7582856 DOI: 10.3390/ijms21197357] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
T cells follow a triphasic distinct pathway of activation, proliferation and differentiation before becoming functionally and phenotypically “exhausted” in settings of chronic infection, autoimmunity and in cancer. Exhausted T cells progressively lose canonical effector functions, exhibit altered transcriptional networks and epigenetic signatures and gain constitutive expression of a broad coinhibitory receptor suite. This review outlines recent advances in our understanding of exhausted T cell biology and examines cellular and molecular mechanisms by which a state of dysfunction or exhaustion is established, and mechanisms by which exhausted T cells may still contribute to pathogen or tumour control. Further, this review describes our understanding of exhausted T cell heterogeneity and outlines the mechanisms by which checkpoint blockade differentially engages exhausted T cell subsets to overcome exhaustion and recover T cell function.
Collapse
Affiliation(s)
- Daniel J. Verdon
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (D.J.V.); (M.M.)
| | - Matthias Mulazzani
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (D.J.V.); (M.M.)
| | - Misty R. Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (D.J.V.); (M.M.)
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
- Institute of Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
- Correspondence:
| |
Collapse
|
32
|
Abstract
Personalized cancer vaccines (PCVs) are reinvigorating vaccine strategies in cancer immunotherapy. In contrast to adoptive T-cell therapy and checkpoint blockade, the PCV strategy modulates the innate and adaptive immune systems with broader activation to redeploy antitumor immunity with individualized tumor-specific antigens (neoantigens). Following a sequential scheme of tumor biopsy, mutation analysis, and epitope prediction, the administration of neoantigens with synthetic long peptide (SLP) or mRNA formulations dramatically improves the population and activity of antigen-specific CD4+ and CD8+ T cells. Despite the promising prospect of PCVs, there is still great potential for optimizing prevaccination procedures and vaccine potency. In particular, the arduous development of tumor-associated antigen (TAA)-based vaccines provides valuable experience and rational principles for augmenting vaccine potency which is expected to advance PCV through the design of adjuvants, delivery systems, and immunosuppressive tumor microenvironment (TME) reversion since current personalized vaccination simply admixes antigens with adjuvants. Considering the broader application of TAA-based vaccine design, these two strategies complement each other and can lead to both personalized and universal therapeutic methods. Chemical strategies provide vast opportunities for (1) exploring novel adjuvants, including synthetic molecules and materials with optimizable activity, (2) constructing efficient and precise delivery systems to avoid systemic diffusion, improve biosafety, target secondary lymphoid organs, and enhance antigen presentation, and (3) combining bioengineering methods to innovate improvements in conventional vaccination, "smartly" re-educate the TME, and modulate antitumor immunity. As chemical strategies have proven versatility, reliability, and universality in the design of T cell- and B cell-based antitumor vaccines, the union of such numerous chemical methods in vaccine construction is expected to provide new vigor and vitality in cancer treatment.
Collapse
Affiliation(s)
- Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.,Beijing Institute for Brain Disorders, 100069 Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
33
|
Trüb M, Uhlenbrock F, Claus C, Herzig P, Thelen M, Karanikas V, Bacac M, Amann M, Albrecht R, Ferrara-Koller C, Thommen D, Rothschield S, Savic Prince S, Mertz KD, Cathomas G, Rosenberg R, Heinzelmann-Schwarz V, Wiese M, Lardinois D, Umana P, Klein C, Laubli H, Kashyap AS, Zippelius A. Fibroblast activation protein-targeted-4-1BB ligand agonist amplifies effector functions of intratumoral T cells in human cancer. J Immunother Cancer 2020; 8:e000238. [PMID: 32616554 PMCID: PMC7333869 DOI: 10.1136/jitc-2019-000238] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The costimulatory receptor 4-1BB (CD137, TNFRSF9) plays an important role in sustaining effective T cell immune responses and is investigated as target for cancer therapy. Systemic 4-1BB directed therapies elicit toxicity or low efficacy, which significantly hampered advancement of 4-1BB-based immunotherapy. Therefore, targeted delivery of 4-1BB agonist to the tumor side is needed for eliciting antitumor efficacy while avoiding systemic toxicity. METHODS We analyzed the immunostimulatory properties of a fibroblast activation protein (FAP)-targeted 4-1BB agonist (FAP-4-1BBL) by assessing tumor-infiltrating lymphocytes' (TIL) activity from patients with non-small cell lung cancer and epithelial ovarian cancer. RESULTS Combination treatment with FAP-4-1BBL and T cell receptor stimulation by either anti-CD3 or T cell bispecific antibodies significantly enhanced TIL activation and effector functions, including T cell proliferation, secretion of proinflammatory cytokines and cytotoxicity. Notably, costimulation with FAP-4-1BBL led to de novo secretion of interleukin (IL)-13. This was associated with cytokine-mediated tumor cell apoptosis, which was partially dependent on IL-13 alpha 1/2 receptors and STAT6 phosphorylation. CONCLUSIONS Our study provides mechanistic insights into T cell stimulation induced by FAP-4-1BBL in primary human tumors and supports the investigation of FAP-4-1BBL compound in early clinical trials.
Collapse
Affiliation(s)
- Marta Trüb
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Franziska Uhlenbrock
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Petra Herzig
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Martin Thelen
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | - Marina Bacac
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Maria Amann
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | | | | | - Daniela Thommen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | - Kirsten D Mertz
- Institute of Pathology, Cantonal Hospital Basel-Landschaft, Liestal, Switzerland
| | - Gieri Cathomas
- Institute of Pathology, Cantonal Hospital Basel-Landschaft, Liestal, Switzerland
| | - Robert Rosenberg
- Department of Surgery, Cantonal Hospital Basel-Landschaft, Liestal, Switzerland
| | | | - Mark Wiese
- Division of Thoracic Surgery, University Hospital Basel, Basel, Switzerland
| | - Didier Lardinois
- Division of Thoracic Surgery, University Hospital Basel, Basel, Switzerland
| | - Pablo Umana
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | | | - Heinz Laubli
- Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Abhishek S Kashyap
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | |
Collapse
|
34
|
Vigano S, Bobisse S, Coukos G, Perreau M, Harari A. Cancer and HIV-1 Infection: Patterns of Chronic Antigen Exposure. Front Immunol 2020; 11:1350. [PMID: 32714330 PMCID: PMC7344140 DOI: 10.3389/fimmu.2020.01350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
The main role of the human immune system is to eliminate cells presenting foreign antigens and abnormal patterns, while maintaining self-tolerance. However, when facing highly variable pathogens or antigens very similar to self-antigens, this system can fail in completely eliminating the anomalies, leading to the establishment of chronic pathologies. Prototypical examples of immune system defeat are cancer and Human Immunodeficiency Virus-1 (HIV-1) infection. In both conditions, the immune system is persistently exposed to antigens leading to systemic inflammation, lack of generation of long-term memory and exhaustion of effector cells. This triggers a negative feedback loop where effector cells are unable to resolve the pathology and cannot be replaced due to the lack of a pool of undifferentiated, self-renewing memory T cells. In addition, in an attempt to reduce tissue damage due to chronic inflammation, antigen presenting cells and myeloid components of the immune system activate systemic regulatory and tolerogenic programs. Beside these homologies shared between cancer and HIV-1 infection, the immune system can be shaped differently depending on the type and distribution of the eliciting antigens with ultimate consequences at the phenotypic and functional level of immune exhaustion. T cell differentiation, functionality, cytotoxic potential and proliferation reserve, immune-cell polarization, upregulation of negative regulators (immune checkpoint molecules) are indeed directly linked to the quantitative and qualitative differences in priming and recalling conditions. Better understanding of distinct mechanisms and functional consequences underlying disease-specific immune cell dysfunction will contribute to further improve and personalize immunotherapy. In the present review, we describe relevant players of immune cell exhaustion in cancer and HIV-1 infection, and enumerate the best-defined hallmarks of T cell dysfunction. Moreover, we highlight shared and divergent aspects of T cell exhaustion and T cell activation to the best of current knowledge.
Collapse
Affiliation(s)
- Selena Vigano
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, University Hospital of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Roy S, Sethi TK, Taylor D, Kim YJ, Johnson DB. Breakthrough concepts in immune-oncology: Cancer vaccines at the bedside. J Leukoc Biol 2020; 108:1455-1489. [PMID: 32557857 DOI: 10.1002/jlb.5bt0420-585rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022] Open
Abstract
Clinical approval of the immune checkpoint blockade (ICB) agents for multiple cancer types has reinvigorated the long-standing work on cancer vaccines. In the pre-ICB era, clinical efforts focused on the Ag, the adjuvants, the formulation, and the mode of delivery. These translational efforts on therapeutic vaccines range from cell-based (e.g., dendritic cells vaccine Sipuleucel-T) to DNA/RNA-based platforms with various formulations (liposome), vectors (Listeria monocytogenes), or modes of delivery (intratumoral, gene gun, etc.). Despite promising preclinical results, cancer vaccine trials without ICB have historically shown little clinical activity. With the anticipation and expansion of combinatorial immunotherapeutic trials with ICB, the cancer vaccine field has entered the personalized medicine arena with recent advances in immunogenic neoantigen-based vaccines. In this article, we review the literature to organize the different cancer vaccines in the clinical space, and we will discuss their advantages, limits, and recent progress to overcome their challenges. Furthermore, we will also discuss recent preclinical advances and clinical strategies to combine vaccines with checkpoint blockade to improve therapeutic outcome and present a translational perspective on future directions.
Collapse
Affiliation(s)
- Sohini Roy
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tarsheen K Sethi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David Taylor
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Young J Kim
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
36
|
Cole KE, Ly QP, Hollingsworth MA, Cox JL, Stromnes IM, Padussis JC, Foster JM, Vargas LM, Talmadge JE. Comparative phenotypes of peripheral blood and spleen cells from cancer patients. Int Immunopharmacol 2020; 85:106655. [PMID: 32521493 DOI: 10.1016/j.intimp.2020.106655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022]
Abstract
Patients with resectable tumor, either in the body or the tail of the pancreas, and cancer patients with a primary tumor adjacent to the splenic vasculature frequently undergo a splenectomy as standard of care during resection. The spleen provides an unutilized source of lymphocytes with potential utility for adoptive cellular therapy (ACT). In this report, spleen and peripheral blood (PB) cells from cancer patients were compared to one another and normal PB by flow cytometry with a focus on CD8+ T-cells, memory phenotype, and their relative expression of checkpoint proteins including program death ligand-1 (PD1). PD1 is both an activation marker for T-cells including antigen (Ag) specific responses, as well as a marker of T-cell exhaustion associated with co-expression of other checkpoint molecules such as lymphocyte activating gene-3 (LAG-3) and T-cell immunoglobulin and mucin domain containing-3 (TIM-3). In summary, the spleen is a rich source of CD8+PD1+ T-cells, with an 8-fold higher frequency compared to the PB. These CD8+ T-cells are predominantly central and transitional memory T-cells with associated effector phenotypes and low expression of TIM-3 and LAG-3 with potential utility for ACT".
Collapse
Affiliation(s)
- Kathryn E Cole
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Quan P Ly
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-4990, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ingunn M Stromnes
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55414, USA
| | - James C Padussis
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-4990, USA
| | - Jason M Foster
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-4990, USA
| | - Luciano M Vargas
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-4990, USA
| | - James E Talmadge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
37
|
Poschke IC, Hassel JC, Rodriguez-Ehrenfried A, Lindner KAM, Heras-Murillo I, Appel LM, Lehmann J, Lövgren T, Wickström SL, Lauenstein C, Roth J, König AK, Haanen JBAG, van den Berg J, Kiessling R, Bergmann F, Flossdorf M, Strobel O, Offringa R. The Outcome of Ex Vivo TIL Expansion Is Highly Influenced by Spatial Heterogeneity of the Tumor T-Cell Repertoire and Differences in Intrinsic In Vitro Growth Capacity between T-Cell Clones. Clin Cancer Res 2020; 26:4289-4301. [PMID: 32303540 DOI: 10.1158/1078-0432.ccr-19-3845] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/15/2020] [Accepted: 04/14/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE During our efforts to develop tumor-infiltrating lymphocyte (TIL) therapy to counter the devastating recurrence rate in patients with primary resectable pancreatic ductal adenocarcinoma (PDA), we found that PDA TILs can readily be expanded in vitro and that the majority of resulting TIL cultures show reactivity against the autologous tumor. However, the fraction of tumor-reactive T cells is low. We investigated to which extent this was related to the in vitro expansion. EXPERIMENTAL DESIGN We compared the clonal composition of TIL preparations before and after in vitro expansion using T-cell receptor (TCR) deep sequencing. Our findings for PDA were benchmarked to experiments with melanoma TILs. RESULTS We found that the TIL TCR repertoire changes dramatically during in vitro expansion, leading to loss of tumor- dominant T-cell clones and overgrowth by newly emerging T-cell clones that are barely detectable in the tumor. These changes are primarily driven by differences in the intrinsic in vitro expansion capacity of T-cell clones. Single-cell experiments showed an association between poor proliferative capacity and expression of markers related to antigen experience and dysfunction. Furthermore, we found that spatial heterogeneity of the TIL repertoire resulted in TCR repertoires that are greatly divergent between TIL cultures derived from distant tumor samples of the same patient. CONCLUSIONS Culture-induced changes in clonal composition are likely to affect tumor reactivity of TIL preparations. TCR deep sequencing provides important insights into the factors that govern the outcome of in vitro TIL expansion and thereby a path toward optimization of the production of TIL preparations with high therapeutic efficacy.See related commentary by Lozano-Rabella and Gros, p. 4177.
Collapse
Affiliation(s)
- Isabel C Poschke
- Department of General Surgery, Heidelberg University Hospital, Heidelberg, Germany. .,Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
| | - Jessica C Hassel
- Department of Dermatology and National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Aaron Rodriguez-Ehrenfried
- Department of General Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
| | - Katharina A M Lindner
- Department of General Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
| | - Ignacio Heras-Murillo
- Department of General Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
| | - Lena M Appel
- Division of Theoretical Systems Biology, German Cancer Research Center and BioQuant Center, University of Heidelberg, Heidelberg, Germany.,Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Johanna Lehmann
- Department of General Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
| | - Tanja Lövgren
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Stina L Wickström
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Claudia Lauenstein
- Department of General Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
| | - Jasmin Roth
- Department of Dermatology and National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna-Katharina König
- Department of General Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - John B A G Haanen
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joost van den Berg
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Frank Bergmann
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Flossdorf
- Division of Theoretical Systems Biology, German Cancer Research Center and BioQuant Center, University of Heidelberg, Heidelberg, Germany.,Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Oliver Strobel
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
| | - Rienk Offringa
- Department of General Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
38
|
Schnell A, Bod L, Madi A, Kuchroo VK. The yin and yang of co-inhibitory receptors: toward anti-tumor immunity without autoimmunity. Cell Res 2020; 30:285-299. [PMID: 31974523 PMCID: PMC7118128 DOI: 10.1038/s41422-020-0277-x] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/06/2020] [Indexed: 12/31/2022] Open
Abstract
Co-inhibitory receptors are important regulators of T-cell function that define the balance between tolerance and autoimmunity. The immune regulatory function of co-inhibitory receptors, including CTLA-4, PD-1, TIM-3, TIGIT, and LAG-3, was first discovered in the setting of autoimmune disease models, in which their blockade or deficiency resulted in induction or exacerbation of the disease. Later on, co-inhibitory receptors on lymphocytes have also been found to influence outcomes in tumor and chronic viral infection settings. These receptors suppress T-cell function in the tumor microenvironment (TME), thereby making the T cells dysfunctional. Based on this observation, blockade of co-inhibitory receptors (also known as checkpoint molecules) has emerged as a successful treatment option for a number of human cancers. However, severe autoimmune-like side effects limit the use of therapeutics that block individual or combinations of co-inhibitory receptors for cancer treatment. In this review we provide an overview of the role of co-inhibitory receptors in autoimmunity and anti-tumor immunity. We then discuss current approaches and future directions to leverage our knowledge of co-inhibitory receptors to target them in tumor immunity without inducing autoimmunity.
Collapse
Affiliation(s)
- Alexandra Schnell
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Lloyd Bod
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Asaf Madi
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
39
|
Danahy DB, Berton RR, Badovinac VP. Cutting Edge: Antitumor Immunity by Pathogen-Specific CD8 T Cells in the Absence of Cognate Antigen Recognition. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1431-1435. [PMID: 32051220 PMCID: PMC7310247 DOI: 10.4049/jimmunol.1901172] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/27/2020] [Indexed: 12/29/2022]
Abstract
Cancer prognosis often correlates with the number of tumor-infiltrating CD8 T cells, but many of these cells recognize pathogens that commonly infect humans. The contribution of pathogen-specific "bystander" CD8 T cells to antitumor immunity remains largely unknown. Inflammatory cytokines are sufficient for memory CD8 T cell activation and gain of effector functions, indicating tumor-derived inflammation could facilitate pathogen-specific CD8 T cells to participate in tumor control. In this study, we show in contrast to tumor-specific CD8 T cells that pathogen-specific primary memory CD8 T cells inside tumor were not able to exert their effector functions and influence tumor progression. However, infection-induced memory CD8 T cells with defined history of repeated Ag encounters (i.e., quaternary memory) showed increased sensitivity to tumor-derived inflammation that resulted in activation, gain of effector functions, and better control of tumor growth. Thus, memory CD8 T cells with heightened ability to recognize environmental inflammatory stimuli can contribute to antitumor immunity in the absence of cognate Ag recognition.
Collapse
MESH Headings
- Animals
- Antigens, Viral/administration & dosage
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/genetics
- Bacterial Vaccines/immunology
- Cell Line, Tumor/transplantation
- Disease Models, Animal
- Disease Progression
- Female
- Glycoproteins/administration & dosage
- Glycoproteins/genetics
- Glycoproteins/immunology
- Humans
- Immunologic Memory
- Listeria monocytogenes/immunology
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytic choriomeningitis virus/immunology
- Male
- Mice
- Mice, Transgenic
- Neoplasms/immunology
- Neoplasms/pathology
- Peptide Fragments/administration & dosage
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Microenvironment/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Proteins/administration & dosage
- Viral Proteins/genetics
- Viral Proteins/immunology
Collapse
Affiliation(s)
- Derek B Danahy
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242
- Department of Pathology, University of Iowa, Iowa City, IA 52242; and
| | - Roger R Berton
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242
- Department of Pathology, University of Iowa, Iowa City, IA 52242; and
| | - Vladimir P Badovinac
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242;
- Department of Pathology, University of Iowa, Iowa City, IA 52242; and
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
40
|
Gestermann N, Saugy D, Martignier C, Tillé L, Fuertes Marraco SA, Zettl M, Tirapu I, Speiser DE, Verdeil G. LAG-3 and PD-1+LAG-3 inhibition promote anti-tumor immune responses in human autologous melanoma/T cell co-cultures. Oncoimmunology 2020; 9:1736792. [PMID: 32850194 PMCID: PMC7422827 DOI: 10.1080/2162402x.2020.1736792] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/17/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the success of immunotherapy using checkpoint blockade, many patients with solid tumors remain refractory to these treatments. In human cancer, the experimental options to investigate the specific effects of antibodies blocking inhibitory receptors are limited and it is still unclear which cell types are involved. We addressed the question whether the direct interaction between T cells and tumor cells can be enforced through blocking a set of inhibitory receptors including PD-1, TIM-3, BTLA and LAG-3, blocked either individually or in dual combinations with the anti-PD-1 antibody, and to determine the condition that induces maximal T cell function preventing tumor cell proliferation. Using short-term Melan-A-specific or autologous re-stimulations, checkpoint blockade did not consistently increase cytokine production by tumor-derived expanded T cells. We next set up a 5-day co-culture assay with autologous melanoma cell lines and expanded tumor infiltrating T cells, originating from tumor specimens obtained from 6 different patients. Amongst all combos tested, we observed that blockade of LAG-3 alone, and more strongly when combined with PD-1 blockade, enforced T cell responses and tumor cell growth control. The combination of anti-LAG-3 plus anti-PD-1 acted through CD8 T cells and led to increased IFNγ production and cytotoxic capacity. Our results show that LAG-3 and PD-1 are regulating the direct interaction between tumor cells and autologous T cells, suggesting that therapy effects may be promoted by enhanced access of the corresponding blocking reagents to the tumor microenvironment.
Collapse
Affiliation(s)
- Nicolas Gestermann
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Damien Saugy
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | | | - Laure Tillé
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | | | - Markus Zettl
- Boehringer Ingelheim RCV GmbH & CoKG, Vienna, Austria
| | - Iñigo Tirapu
- Boehringer Ingelheim RCV GmbH & CoKG, Vienna, Austria
| | - Daniel E Speiser
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland.,Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Ontario Cancer Institute, Toronto, Canada
| | - Grégory Verdeil
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
41
|
Martinez-Usatorre A, Carmona SJ, Godfroid C, Yacoub Maroun C, Labiano S, Romero P. Enhanced Phenotype Definition for Precision Isolation of Precursor Exhausted Tumor-Infiltrating CD8 T Cells. Front Immunol 2020; 11:340. [PMID: 32174925 PMCID: PMC7056729 DOI: 10.3389/fimmu.2020.00340] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/12/2020] [Indexed: 12/23/2022] Open
Abstract
In the context of adoptive T cell transfer (ACT) for cancer treatment, it is crucial to generate in vitro large amounts of tumor-specific CD8 T cells with high potential to persist in vivo. PD-1, Tim3, and CD39 have been proposed as markers of tumor-specific tumor-infiltrating CD8 T lymphocytes (CD8 TILs). However, these molecules are highly expressed by terminally differentiated exhausted CD8 T cells (Tex) that lack proliferation potential. Therefore, optimized strategies to isolate tumor-specific TILs with high proliferative potential, such as Tcf1+ precursor exhausted T cells (Tpe) are needed to improve in vivo persistence of ACT. Here we aimed at defining cell surface markers that would unequivocally identify Types for precision cell sorting increasing the purity of tumor-specific PD-1+ Tcf1+ Tpe from total TILs. Transcriptomic analysis of Tpe vs. Tex CD8 TIL subsets from B16 tumors and primary human melanoma tumors revealed that Tpes are enriched in Slamf6 and lack Entpd1 and Havcr2 expression, which encode Slamf6, CD39, and Tim3 cell surface proteins, respectively. Indeed, we observed by flow cytometry that CD39- Tim3- Slamf6+ PD-1+ cells yielded maximum enrichment for tumor specific PD-1+ Tcf1+ OT1 TILs in B16.OVA tumors. Moreover, this population showed higher re-expansion capacity upon an acute infection recall response compared to the CD39+ counterparts or bulk PD-1+ TILs. Hence, we report an enhanced sorting strategy (CD39- Tim3- Slamf6+ PD-1+) of Tpes. In conclusion, we show that optimization of CD8 TIL cell sorting strategy is a viable approach to improve recall capacity and in vivo persistence of transferred cells in the context of ACT.
Collapse
Affiliation(s)
| | - Santiago J. Carmona
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Épalinges, Switzerland
| | - Céline Godfroid
- Department of Oncology UNIL CHUV, University of Lausanne, Épalinges, Switzerland
| | - Céline Yacoub Maroun
- Department of Oncology UNIL CHUV, University of Lausanne, Épalinges, Switzerland
| | - Sara Labiano
- Department of Oncology UNIL CHUV, University of Lausanne, Épalinges, Switzerland
| | - Pedro Romero
- Department of Oncology UNIL CHUV, University of Lausanne, Épalinges, Switzerland
| |
Collapse
|
42
|
Ibrutinib treatment inhibits breast cancer progression and metastasis by inducing conversion of myeloid-derived suppressor cells to dendritic cells. Br J Cancer 2020; 122:1005-1013. [PMID: 32025027 PMCID: PMC7109110 DOI: 10.1038/s41416-020-0743-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/26/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ibrutinib is a Bruton's tyrosine kinase (BTK) and interleukin-2-inducible kinase (ITK) inhibitor used for treating chronic lymphocytic leukaemia (CLL) and other cancers. Although ibrutinib is known to inhibit the growth of breast cancer cell growth in vitro, its impact on the treatment and metastasis of breast cancer is unclear. METHODS Using an orthotopic mouse breast cancer model, we show that ibrutinib inhibits the progression and metastasis of breast cancer. RESULTS Ibrutinib inhibited proliferation of cancer cells in vitro, and Ibrutinib-treated mice displayed significantly lower tumour burdens and metastasis compared to controls. Furthermore, the spleens and tumours from Ibrutinib-treated mice contained more mature DCs and lower numbers of myeloid-derived suppressor cells (MDSCs), which promote disease progression and are linked to poor prognosis. We also confirmed that ex vivo treatment of MDSCs with ibrutinib switched their phenotype to mature DCs and significantly enhanced MHCII expression. Further, ibrutinib treatment promoted T cell proliferation and effector functions leading to the induction of antitumour TH1 and CTL immune responses. CONCLUSIONS Ibrutinib inhibits tumour development and metastasis in breast cancer by promoting the development of mature DCs from MDSCs and hence could be a novel therapeutic agent for the treatment of breast cancer.
Collapse
|
43
|
Kaul-Ghanekar R, Suryavanshi S, Shinde K, Raina P. Tumor retardation and immunomodulatory potential of polyherbal formulation HC9 in mouse melanoma model. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_289_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
44
|
Engineered triple inhibitory receptor resistance improves anti-tumor CAR-T cell performance via CD56. Nat Commun 2019; 10:4109. [PMID: 31511513 PMCID: PMC6739330 DOI: 10.1038/s41467-019-11893-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 07/25/2019] [Indexed: 12/25/2022] Open
Abstract
The inhibitory receptors PD-1, Tim-3, and Lag-3 are highly expressed on tumor-infiltrating lymphocytes and compromise their antitumor activity. For efficient cancer immunotherapy, it is important to prevent chimeric antigen receptor T (CAR-T)-cell exhaustion. Here we downregulate these three checkpoint receptors simultaneously on CAR-T cells and that show the resulting PTL-CAR-T cells undergo epigenetic modifications and better control tumor growth. Furthermore, we unexpectedly find increased tumor infiltration by PTL-CAR-T cells and their clustering between the living and necrotic tumor tissue. Mechanistically, PTL-CAR-T cells upregulate CD56 (NCAM), which is essential for their effector function. The homophilic interaction between intercellular CD56 molecules correlates with enhanced infiltration of CAR-T cells, increased secretion of interferon-γ, and the prolonged survival of CAR-T cells. Ectopically expressed CD56 promotes CAR-T cell survival and antitumor response. Our findings demonstrate that genetic blockade of three checkpoint inhibitory receptors and the resulting high expression of CD56 on CAR-T cells enhances the inhibition of tumor growth. The inhibitory receptors PD-1, Tim-3 and Lag-3 act as negative feedback regulators of T cell responses. Here the authors improve CAR T cell antitumor efficacy by triple knockdown of these receptors, show it requires CD56, and correlate CD56-mediated homophilic cell interactions with CAR T cell efficacy.
Collapse
|
45
|
Ladányi A, Tímár J. Immunologic and immunogenomic aspects of tumor progression. Semin Cancer Biol 2019; 60:249-261. [PMID: 31419526 DOI: 10.1016/j.semcancer.2019.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022]
Abstract
Tumor progression to metastatic disease is characterized by continuous genetic alterations due to instability of the genome. Immune sensitivity was found to be linked to tumor mutational burden (TMB) and the resulting amount of neoantigens. However, APOBEC activity resulting in increase in TMB causes immune evasion. On the other hand, clonal or acquired genetic loss of HLA class I also hampers immune sensitivity of tumors. Rare amplification of the PD-L1 gene in cancers may render them sensitive to immune checkpoint inhibitors but involvement of broader regions of chromosome 9p may ultimately lead again to immune evasion due to inactivation of the IFN-γ signaling pathway. Such genetic changes may occur not only in the primary tumor but at any phase of progression: in lymphatic as well as in visceral metastases. Accordingly, it is rational to monitor these changes continuously during disease progression similar to target therapies. Moreover, beside temporal variability, genomic features of tumors such as mutation profiles, as well as the tumor immune microenvironment also show considerable inter- and intratumoral spatial heterogeneity, suggesting the necessity of multiple sampling in biomarker studies.
Collapse
Affiliation(s)
| | - József Tímár
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
46
|
Ayeni D, Miller B, Kuhlmann A, Ho PC, Robles-Oteiza C, Gaefele M, Levy S, de Miguel FJ, Perry C, Guan T, Krystal G, Lockwood W, Zelterman D, Homer R, Liu Z, Kaech S, Politi K. Tumor regression mediated by oncogene withdrawal or erlotinib stimulates infiltration of inflammatory immune cells in EGFR mutant lung tumors. J Immunother Cancer 2019; 7:172. [PMID: 31291990 PMCID: PMC6617639 DOI: 10.1186/s40425-019-0643-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/19/2019] [Indexed: 12/26/2022] Open
Abstract
Background Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) like erlotinib are effective for treating patients with EGFR mutant lung cancer; however, drug resistance inevitably emerges. Approaches to combine immunotherapies and targeted therapies to overcome or delay drug resistance have been hindered by limited knowledge of the effect of erlotinib on tumor-infiltrating immune cells. Methods Using mouse models, we studied the immunological profile of mutant EGFR-driven lung tumors before and after erlotinib treatment. Results We found that erlotinib triggered the recruitment of inflammatory T cells into the lungs and increased maturation of alveolar macrophages. Interestingly, this phenotype could be recapitulated by tumor regression mediated by deprivation of the EGFR oncogene indicating that tumor regression alone was sufficient for these immunostimulatory effects. We also found that further efforts to boost the function and abundance of inflammatory cells, by combining erlotinib treatment with anti-PD-1 and/or a CD40 agonist, did not improve survival in an EGFR-driven mouse model. Conclusions Our findings lay the foundation for understanding the effects of TKIs on the tumor microenvironment and highlight the importance of investigating targeted and immuno-therapy combination strategies to treat EGFR mutant lung cancer. Electronic supplementary material The online version of this article (10.1186/s40425-019-0643-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deborah Ayeni
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, SHM-I 234D, New Haven, CT, 06510, USA
| | - Braden Miller
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Alexandra Kuhlmann
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Ping-Chih Ho
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA.,Present address: Department of Fundamental Oncology, University of Lausanne, Ludwig Cancer Research Lausanne Branch, Lausanne, Switzerland
| | | | - Mmaserame Gaefele
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Stellar Levy
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | - Curtis Perry
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Tianxia Guan
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Gerald Krystal
- British Columbia Cancer Agency, B.C, Vancouver, V5Z 1L3, Canada
| | | | - Daniel Zelterman
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, SHM-I 234D, New Haven, CT, 06510, USA.,VA Connecticut Healthcare System, Pathology and Laboratory Medicine Service, 950 Campbell Ave, West Haven, CT, 06516, USA
| | - Zongzhi Liu
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, SHM-I 234D, New Haven, CT, 06510, USA
| | - Susan Kaech
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA.,Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA.,Present address: Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Katerina Politi
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, SHM-I 234D, New Haven, CT, 06510, USA. .,Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA. .,Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
47
|
Martinez-Usatorre A, Sempere LF, Carmona SJ, Carretero-Iglesia L, Monnot G, Speiser DE, Rufer N, Donda A, Zehn D, Jandus C, Romero P. MicroRNA-155 Expression Is Enhanced by T-cell Receptor Stimulation Strength and Correlates with Improved Tumor Control in Melanoma. Cancer Immunol Res 2019; 7:1013-1024. [PMID: 31043416 DOI: 10.1158/2326-6066.cir-18-0504] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/24/2018] [Accepted: 04/26/2019] [Indexed: 11/16/2022]
Abstract
microRNAs are short noncoding RNAs that regulate protein expression posttranscriptionally. We previously showed that miR-155 promotes effector CD8+ T-cell responses. However, little is known about the regulation of miR-155 expression. Here, we report that antigen affinity and dose determine miR-155 expression in CD8+ T cells. In B16 tumors expressing a low-affinity antigen ligand, tumor-specific infiltrating CD8+ T cells showed variable miR-155 expression, whereby high miR-155 expression was associated with more cytokine-producing cells and tumor control. Moreover, anti-PD-1 treatment led to both increased miR-155 expression and tumor control by specific CD8+ T cells. In addition, miR-155 overexpression enhanced exhausted CD8+ T-cell persistence in the LCMV cl13 chronic viral infection model. In agreement with these observations in mouse models, miR-155 expression in human effector memory CD8+ T cells positively correlated with their frequencies in tumor-infiltrated lymph nodes of melanoma patients. Low miR-155 target gene signature in tumors was associated with prolonged overall survival in melanoma patients. Altogether, these results raise the possibility that high miR-155 expression in CD8+ tumor-infiltrating T cells may be a surrogate marker of the relative potency of in situ antigen-specific CD8+ T-cell responses.
Collapse
Affiliation(s)
| | - Lorenzo F Sempere
- Department of Radiology, Precision Health Program, Michigan State University, East Lansing, Michigan
| | - Santiago J Carmona
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Laura Carretero-Iglesia
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - Gwennaëlle Monnot
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Daniel E Speiser
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.,Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - Nathalie Rufer
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - Alena Donda
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Dietmar Zehn
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Camilla Jandus
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Pedro Romero
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
48
|
Przybyla A, Zhang T, Li R, Roen DR, Mackiewicz A, Lehmann PV. Natural T cell autoreactivity to melanoma antigens: clonally expanded melanoma-antigen specific CD8 + memory T cells can be detected in healthy humans. Cancer Immunol Immunother 2019; 68:709-720. [PMID: 30783693 PMCID: PMC11028361 DOI: 10.1007/s00262-018-02292-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/24/2018] [Indexed: 12/30/2022]
Abstract
We used four-color ImmunoSpot® assays, in conjunction with peptide pools that cover the sequence of tyrosinase (Tyr), melanoma-associated antigen A3 (MAGE-A3), melanocyte antigen/melanoma antigen recognized by T cells 1 (Melan-A/MART-1), glycoprotein 100 (gp100), and New York esophageal squamous cell carcinoma-1 (NY-ESO-1) to characterize the melanoma antigen (MA)-specific CD8 + cell repertoire in PBMC of 40 healthy human donors (HD). Tyr triggered interferon gamma (IFN-γ)-secreting CD8 + T cells in 25% of HD within 24 h of antigen stimulation ex vivo. MAGE-A3, Melan-A/MART-1, and gp100 also induced recall responses in 10%, 7.5%, and 2.5% of HD, respectively. At this time point, these CD8 + T cells did not yet produce GzB (granzyme B). However, they engaged in GzB production after 72 h of antigen stimulation. By this 72-h time point, 57.5% of the HD responded to at least one, and typically several, of the MA. A closer characterization of the Tyr-specific CD8 + T cell repertoire indicated that it was low-affinity, and to primarily entail a stem cell-like subpopulation. Collectively, our data reveal pre-existing endogenous T cell immunity against melanoma antigens in healthy donors, and analogous to natural autoantibodies, we have termed this "natural T cell autoreactivity".
Collapse
Affiliation(s)
- Anna Przybyla
- Research and Development Department, Cellular Technology Limited (CTL), 20521 Chagrin Boulevard, Shaker Heights, Cleveland, OH, 44122-5350, USA
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Ting Zhang
- Research and Development Department, Cellular Technology Limited (CTL), 20521 Chagrin Boulevard, Shaker Heights, Cleveland, OH, 44122-5350, USA
| | - Ruliang Li
- Research and Development Department, Cellular Technology Limited (CTL), 20521 Chagrin Boulevard, Shaker Heights, Cleveland, OH, 44122-5350, USA
| | - Diana R Roen
- Research and Development Department, Cellular Technology Limited (CTL), 20521 Chagrin Boulevard, Shaker Heights, Cleveland, OH, 44122-5350, USA
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | - Paul V Lehmann
- Research and Development Department, Cellular Technology Limited (CTL), 20521 Chagrin Boulevard, Shaker Heights, Cleveland, OH, 44122-5350, USA.
| |
Collapse
|
49
|
Abstract
Exhausted CD8 T (Tex) cells are a distinct cell lineage that arise during chronic infections and cancers in animal models and humans. Tex cells are characterized by progressive loss of effector functions, high and sustained inhibitory receptor expression, metabolic dysregulation, poor memory recall and homeostatic self-renewal, and distinct transcriptional and epigenetic programs. The ability to reinvigorate Tex cells through inhibitory receptor blockade, such as αPD-1, highlights the therapeutic potential of targeting this population. Emerging insights into the mechanisms of exhaustion are informing immunotherapies for cancer and chronic infections. However, like other immune cells, Tex cells are heterogeneous and include progenitor and terminal subsets with unique characteristics and responses to checkpoint blockade. Here, we review our current understanding of Tex cell biology, including the developmental paths, transcriptional and epigenetic features, and cell intrinsic and extrinsic factors contributing to exhaustion and how this knowledge may inform therapeutic targeting of Tex cells in chronic infections, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Laura M McLane
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mohamed S Abdel-Hakeem
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
50
|
Rivas-Fuentes S, Iglesias AH, Trejo AG, Castro DYC, Figueroa NI, Pérez TA, Saldaña RB, Rosete PG. Restoration of Peripheral Intermediate and Classical Monocytes Expressing HLA-DR in Patients With Lung Adenocarcinoma After Platinum-Based Chemotherapy. Technol Cancer Res Treat 2018; 17:1533033818764720. [PMID: 29642771 PMCID: PMC5900825 DOI: 10.1177/1533033818764720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lung adenocarcinoma represents one of the lung cancer subtypes with major prevalence. Accumulating evidence indicates that the immune system plays an important role in the evolution of the neoplastic process; additionally, several reports suggest that chemotherapy has an immunomodulatory effect. In order to identify the peripheral subpopulations of leukocytes that may change after chemotherapy, we evaluated several peripheral immune subpopulations of monocytes and lymphocytes by multicolor flow cytometry. In addition, we also measured cytokines and growth factors on plasma in order to evaluate the pro-inflammatory context in patients with lung adenocarcinoma after chemotherapy. We found that HLA-DR+ classical and intermediate monocytes were decreased in patients before chemotherapy, compared to controls. After chemotherapy, the relative percentage of those subpopulations was restored. In addition, interleukin 1β, interleukin 12, and interleukin 5 were increased after chemotherapy compared to prechemotherapy levels, while MIP-1β was decreased.
Collapse
Affiliation(s)
- Selma Rivas-Fuentes
- 1 Department of Biochemistry Research, National Institute of Respiratory Diseases "Ismael Cosío Villegas," Mexico City, Mexico
| | - Anjarath Higuera Iglesias
- 2 Department of Clinical Epidemiology Research, National Institute of Respiratory Diseases "Ismael Cosío Villegas," Mexico City, Mexico
| | - Ana García Trejo
- 1 Department of Biochemistry Research, National Institute of Respiratory Diseases "Ismael Cosío Villegas," Mexico City, Mexico
| | - Daniel Yair Chavarría Castro
- 1 Department of Biochemistry Research, National Institute of Respiratory Diseases "Ismael Cosío Villegas," Mexico City, Mexico
| | - Norma Inclán Figueroa
- 1 Department of Biochemistry Research, National Institute of Respiratory Diseases "Ismael Cosío Villegas," Mexico City, Mexico
| | - Teresa Aguirre Pérez
- 3 Oncology Pneumology Service, National Institute of Respiratory Diseases "Ismael Cosío Villegas," Mexico City, Mexico
| | - Renata Báez Saldaña
- 3 Oncology Pneumology Service, National Institute of Respiratory Diseases "Ismael Cosío Villegas," Mexico City, Mexico
| | - Patricia Gorocica Rosete
- 1 Department of Biochemistry Research, National Institute of Respiratory Diseases "Ismael Cosío Villegas," Mexico City, Mexico
| |
Collapse
|