1
|
Jiang Z, Yang Y, Yue Z, Chen Y, Bai L, Wang R, Li S, Lin Y. A Noninvasive Nanoeyedrop Therapy for the Inhibition of Uveal Melanoma: Tetrahedral Framework Nucleic Acid-Based Bioswitchable MicroRNA Delivery System. ACS NANO 2025; 19:14756-14769. [PMID: 40208012 DOI: 10.1021/acsnano.4c16427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Uveal melanoma (UM) is the most prevalent primary intraocular malignancy, exhibiting pronounced invasive characteristics and a dismal prognosis. Conventional therapeutic modalities, including radiotherapy, laser therapy, and surgery, are frequently invasive and can lead to complications, underscoring the need for the development of efficacious, safe, and noninvasive therapeutic approaches. This study investigated a tetrahedral framework nucleic acid (tFNA)-based bioswitchable microRNA (miRNA) delivery system, designated BiRDS, engineered for the inhibition of UM through the use of miRNA suppressors via noninvasive eyedrops. The BiRDS construct exhibited a tetrahedral structure, which was small in size, easily synthesizable, stable, and biosafe, and was able to efficiently carry miR-30a-5p into UM cells. Functionally, BiRDS was observed to inhibit the proliferation, migration, and invasion of UM cells while promoting apoptosis through the miR-30a-5p/E2F7 axis. It is noteworthy that BiRDS nanoeyedrops were able to penetrate the complex ocular barrier structure and reach the fundus, thereby inhibiting the growth of UM in a xenograft model. As a patient-friendly, eyedrop-based miRNA delivery system, BiRDS not only inhibited UM without enucleation of the eyeball but was also expected to improve patient compliance and quality of life while providing a safer alternative for ocular drug administration. This work substantiates BiRDS nanoeyedrops as a potential paradigm shift in the local treatment of early UM, facilitating its application in treating other ocular diseases via miRNA therapies.
Collapse
Affiliation(s)
- Zhou Jiang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yichen Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ziqi Yue
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ye Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Long Bai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ruiqing Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu 610041, Sichuan, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Lin CY, Fang JY, Hsiao CY, Lee CW, Alshetaili A, Lin ZC. Dual cell-penetrating peptide-conjugated polymeric nanocarriers for miRNA-205-5p delivery in gene therapy of cutaneous squamous cell carcinoma. Acta Biomater 2025; 196:332-349. [PMID: 40015353 DOI: 10.1016/j.actbio.2025.02.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Despite the potential of microRNAs (miRNAs) in suppressing tumorigenesis, the main challenges are achieving tumor-specific selectivity and efficient delivery into cancer cells. In this study, miR-205-5p-loaded polymeric nanoparticles conjugated with dual cell-penetrating peptides (CPPs) were designed for targeting and treating cutaneous squamous cell carcinoma (cSCC). The CPPs, R9, and p28, demonstrated high cell-penetrating/targeting abilities and antitumor activity. The anti-cSCC effect of the nanocarriers was examined using in vitro cellular 2D and 3D models and in vivo spheroid-xenografted murine models. The average size of the dual CPP-conjugated nanocarriers was 193 nm with a zeta potential of 5.7 mV. These nanocarriers were readily internalized by A431 cells, resulting in decreased proliferation compared to naked agomiR and nanoparticles with a single CPP. The nanocarriers induced cell cycle arrest in the G0/G1 stage. By loading the miR-205-5p mimic, the dual CPP-conjugated nanoparticles enhanced cell apoptosis threefold compared to the control, activating caspases and poly(ADP-ribose) polymerase (PARP). The wound healing assay demonstrated that the nanocarriers significantly inhibited the migration and invasion of cSCC cells. Additionally, the CPP-conjugated nanocarriers penetrated cSCC 3D spheroids, reducing spheroidal size and proliferation. In vivo studies demonstrated that the intratumoral CPP-conjugated nanocarriers achieved a 30 % reduction in tumor volume than the PBS control. The number of Ki67-positive cells in the nanocarrier-treated tumor decreased fivefold than the untreated tumors. The nanoparticulate agomiR (1 μM) exhibited no cytotoxicity towards normal keratinocytes. No significant toxicity was observed in the skin and peripheral organs following subcutaneous administration of the nanoparticles in healthy mice. These findings demonstrate that miR-205-5p mimic delivery via dual CPP-conjugated nanocarriers can promote efficient and safe cSCC regression. STATEMENT OF SIGNIFICANCE: Cutaneous squamous cell carcinoma (cSCC) is a highly invasive skin malignancy with limited treatment options. This study introduces dual cell-penetrating peptide (CPP)-conjugated polymeric nanoparticles for delivering miR-205-5p, a tumor-suppressor microRNA, to cSCC cells. The nanosystem enhances cellular uptake, inhibits cell proliferation, and promotes apoptosis in both 2D and 3D tumor models. In vivo, the nanocarriers demonstrate significant antitumor efficacy with minimal toxicity, highlighting their potential as a targeted, non-invasive therapy. This research represents a promising advance in gene therapy for cSCC by combining nanotechnology and CPPs to address challenges in miRNA delivery and tumor targeting.
Collapse
Affiliation(s)
- Cheng-Yu Lin
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chien-Yu Hsiao
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chiang-Wen Lee
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan; Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi, Chiayi, Taiwan; Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan.
| |
Collapse
|
3
|
Wang J, Cheng L, Li J, Wang Y, Chen S, Wang Z, Yang W. Potential Antitumor Mechanism of Propolis Against Skin Squamous Cell Carcinoma A431 Cells Based on Untargeted Metabolomics. Int J Mol Sci 2024; 25:11265. [PMID: 39457046 PMCID: PMC11509278 DOI: 10.3390/ijms252011265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Propolis is a sticky substance produced by honeybees (Apis mellifera) through the collection of plant resins, which they mix with secretions from their palate and wax glands. Propolis can inhibit tumor invasion and metastasis, thereby reducing the proliferation of tumor cells and inducing cell apoptosis. Previous research has shown that propolis has an inhibitory effect on skin squamous cell carcinoma A431 cells. Nevertheless, its inhibitory mechanism is unclear because of many significantly different Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways between the ethanol extract of the propolis (EEP) group and the control group of cells. In this study, the main components of EEP and the antitumor mechanism at an IC50 of 29.04 μg/mL EEP were determined via untargeted metabolomics determined using ultra high-performance liquid chromatography tandem mass spectrometry (UHPLC‒MS/MS), respectively. The results revealed 43 polyphenolic components in the EEP and 1052 metabolites, with 160 significantly upregulated and 143 significantly downregulated metabolites between cells treated with EEP and solvent. The KEGG enrichment results revealed that EEP significantly inhibited A431 cell proliferation via the steroid hormone biosynthesis and linoleic acid metabolism pathways. These findings may provide valuable insights for the development of targeted therapies for the treatment of cutaneous squamous cell carcinoma.
Collapse
Affiliation(s)
- Jie Wang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (J.L.); (Y.W.); (S.C.)
| | - Liyuan Cheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Jingjing Li
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (J.L.); (Y.W.); (S.C.)
| | - Yicong Wang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (J.L.); (Y.W.); (S.C.)
| | - Siyuan Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (J.L.); (Y.W.); (S.C.)
| | - Zhongdan Wang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (J.L.); (Y.W.); (S.C.)
| | - Wenchao Yang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (J.L.); (Y.W.); (S.C.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
4
|
Wang H, Ma Z, Xu M, Xiong M, Chen X, Zhou Y, Tang W, Li X, Chen W, Ma H, Ye X. Coptisine-mediated downregulation of E2F7 induces G2/M phase arrest in hepatocellular carcinoma cells through inhibition of E2F4/NFYA/NFYB transcription factors. Chem Biol Interact 2024; 397:111063. [PMID: 38795876 DOI: 10.1016/j.cbi.2024.111063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Coptisine (COP) has been shown to exhibit a wide range of anticancer properties, including in hepatocellular carcinoma (HCC). Nevertheless, the precise mechanism of COP in the treatment of HCC remains elusive. This study aims to investigate the potential mechanism of action of COP against HCC. By evaluating the anti-HCC activity of COP in different HCC cells lines and in xenografted nude mice, it was found that COP inhibited HCC in vitro and in vivo. Through RNA-Seq analysis, E2F7 was identified as a potential target of COP against HCC, as well as the cell cycle as a possible pathway. The overexpression of E2F7 and the inhibition of CHK1 demonstrated that COP inhibits the activity of HCC and induces G2/M phase arrest of HCC cells by down-regulating E2F7 and influencing the CHK1/CDC25A pathway. Finally, the promoter fragmentation experiments and chromatin immunoprecipitation revealed that COP down-regulated E2F7 by inhibiting the E2F4/NFYA/NFYB transcription factors. In conclusion, our study demonstrated that COP downregulates E2F7 by affecting key transcription factors, thereby inducing cell cycle arrest and inhibits HCC cell growth. This provides further evidence of the efficacy of COP in the treatment of tumors.
Collapse
Affiliation(s)
- Hongmei Wang
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Zhengcai Ma
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Minmin Xu
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Mengyuan Xiong
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xiantao Chen
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Yuan Zhou
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Wanyu Tang
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xuegang Li
- School of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Wanqun Chen
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400000, China.
| | - Hang Ma
- School of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Xiaoli Ye
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
5
|
Du W, Xia X, Gou Q, Xie Y, Gao L. Comprehensive review regarding the association of E2Fs with the prognosis and immune infiltrates in human head and neck squamous cell carcinoma. Asian J Surg 2024; 47:2106-2121. [PMID: 38320907 DOI: 10.1016/j.asjsur.2024.01.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
E2F transcription factors (E2Fs) are a group of genes that encode a family of transcription factors. They have been identified as being involved in the tumor progression of various cancer types. However, little is known about the expression level, genetic variation, molecular mechanism, and prognostic value and immune infiltration of different E2Fs in HNSCC.In this study, we utilized multiple databases to investigate the mRNA expression level, genetic alteration, and biological function of E2Fs in HNSCC patients. Then, the relationship between E2Fs expression and its association with the occurrence, progress, prognosis, and immune cell infiltration in patients with HNSCC was evaluated. We found that all eight E2Fs were higher expressed in HNSCC tissues than in normal tissues, and the expression levels of E2F1/2/3/4/5/6/8 were also associated with the stage and grade of HNSCC. The abnormal expression of E2F1/2/4/8 in HNSCC patients is related to the clinical outcome. The expression of E2Fs was statistically correlated with the immune cell infiltration in HNSCC and the infiltration of B cells and CD8+ T cells were positively associated with better OS in HNSCC patients. Furthermore, we verified the E2F2 at the tissue level in the validation experiment. Our study may provide novel insights into the choice of immunotherapy targets and potential prognostic biomarkers in HNSCC patients.
Collapse
Affiliation(s)
- Wei Du
- Department of Targetting Therapy & Immunology, Cancer Cencer, West China Hospital, Sichuan University, Chengdu, China
| | - Xueming Xia
- Division of Head & Neck Tumor Multimodaligy Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiheng Gou
- Division of Head & Neck Tumor Multimodaligy Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Xie
- Division of Head & Neck Tumor Multimodaligy Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lanyang Gao
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Sichuan, China.
| |
Collapse
|
6
|
Suleman M, Khattak A, Akbar F, Rizwan M, Tayyab M, Yousaf M, Khan A, Albekairi NA, Agouni A, Crovella S. Analysis of E2F1 single-nucleotide polymorphisms reveals deleterious non-synonymous substitutions that disrupt E2F1-RB protein interaction in cancer. Int J Biol Macromol 2024; 260:129559. [PMID: 38242392 DOI: 10.1016/j.ijbiomac.2024.129559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Cancer is a medical condition that is caused by the abnormal growth and division of cells, leading to the formation of tumors. The E2F1 and RB pathways are critical in regulating cell cycle, and their dysregulation can contribute to the development of cancer. In this study, we analyzed experimentally reported SNPs in E2F1 and assessed their effects on the binding affinity with RB. Out of 46, nine mutations were predicted as deleterious, and further analysis revealed four highly destabilizing mutations (L206W, R232C, I254T, A267T) that significantly altered the protein structure. Molecular docking of wild-type and mutant E2F1 with RB revealed a docking score of -242 kcal/mol for wild-type, while the mutant complexes had scores ranging from -217 to -220 kcal/mol. Molecular simulation analysis revealed variations in the dynamics features of both mutant and wild-type complexes due to the acquired mutations. Furthermore, the total binding free energy for the wild-type E2F1-RB complex was -64.89 kcal/mol, while those of the L206W, R232C, I254T, and A267T E2F1-RB mutants were -45.90 kcal/mol, -53.52 kcal/mol, -55.67 kcal/mol, and -61.22 kcal/mol, respectively. Our study is the first to extensively analyze E2F1 gene mutations and identifies candidate mutations for further validation and potential targeting for cancer therapeutics.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC) Qatar University, Doha, Qatar; Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Aishma Khattak
- Department of Bioinformatics, Shaheed Benazir butto women university Peshawar, Pakistan
| | - Fazal Akbar
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Muhammad Rizwan
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Muhammad Tayyab
- Institute of Biotechnology and Genetic Engineering, the University of Agriculture Peshawar.
| | - Muhammad Yousaf
- Centre for Animal Sciences and Fisheries, University of Swat, Swat, Pakistan.
| | - Abbas Khan
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC) Qatar University, Doha, Qatar.
| |
Collapse
|
7
|
Wang Z, Zhang H, Li F, Huang C. Knockdown of RNA-binding protein IMP3 suppresses oral squamous cell carcinoma proliferation by destabilizing E2F5 transcript. Aging (Albany NY) 2024; 16:1897-1910. [PMID: 38271139 PMCID: PMC10866398 DOI: 10.18632/aging.205466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/16/2023] [Indexed: 01/27/2024]
Abstract
The expression level of RNA-binding proteins (RBPs) is dysregulated in oral squamous cell carcinoma (OSCC) and other types of cancer. Among the RBPs, IMP3 is involved in the progression of OSCC. However, the regulation of mRNA fate by IMP3 in OSCC remains less understood. We analyzed the expression level of IMP3 and E2F5 in OSCC tissues and cell lines by immunohistochemistry, qRT-PCR and Western blot. Subsequently, to further investigate the effect of IMP3 on E2F5 expression, we used siRNAs to silence IMP3 expression in OSCC cell lines SCC-25 and SCC-4. The binding site of E2F5 mRNA and IMP3 was confirmed by RNA immunoprecipitation (RIP). Finally, the function of IMP3 and E2F5 was investigated in viro and in xenograft mouse models. Here we report a positive correlation between IMP3 and E2F5 expression in OSCC, which are involved in cell proliferation and cell cycle. Mechanistically, E2F5 mRNA is bound by IMP3 protein, and silencing it leads to a shortened mRNA half-life and reduced protein expression. Also, knockdown of IMP3 inhibited allograft tumor progression in vivo. These studies reveal the molecular mechanism by which IMP3 regulates E2F5 mRNA stability and identify IMP3/E2F5 as a potential therapeutic target in OSCC.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Huahua Zhang
- Medical Research and Experimental Center, Medical College, Yan’an University, Yan’an, Shaanxi, China
| | - Fang Li
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Chen Huang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| |
Collapse
|
8
|
Sulic AM, Das Roy R, Papagno V, Lan Q, Saikkonen R, Jernvall J, Thesleff I, Mikkola ML. Transcriptomic landscape of early hair follicle and epidermal development. Cell Rep 2023; 42:112643. [PMID: 37318953 DOI: 10.1016/j.celrep.2023.112643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/04/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
Morphogenesis of ectodermal organs, such as hair, tooth, and mammary gland, starts with the formation of local epithelial thickenings, or placodes, but it remains to be determined how distinct cell types and differentiation programs are established during ontogeny. Here, we use bulk and single-cell transcriptomics and pseudotime modeling to address these questions in developing hair follicles and epidermis and produce a comprehensive transcriptomic profile of cellular populations in the hair placode and interplacodal epithelium. We report previously unknown cell populations and marker genes, including early suprabasal and genuine interfollicular basal markers, and propose the identity of suprabasal progenitors. By uncovering four different hair placode cell populations organized in three spatially distinct areas, with fine gene expression gradients between them, we posit early biases in cell fate establishment. This work is accompanied by a readily accessible online tool to stimulate further research on skin appendages and their progenitors.
Collapse
Affiliation(s)
- Ana-Marija Sulic
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Rishi Das Roy
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Verdiana Papagno
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Qiang Lan
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Riikka Saikkonen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Jukka Jernvall
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland; Department of Geosciences and Geography, University of Helsinki, 00014 Helsinki, Finland
| | - Irma Thesleff
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Marja L Mikkola
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| |
Collapse
|
9
|
Gugnoni M, Lorenzini E, Faria do Valle I, Remondini D, Castellani G, Torricelli F, Sauta E, Donati B, Ragazzi M, Ghini F, Piana S, Ciarrocchi A, Manzotti G. Adding pieces to the puzzle of differentiated-to-anaplastic thyroid cancer evolution: the oncogene E2F7. Cell Death Dis 2023; 14:99. [PMID: 36765037 PMCID: PMC9918458 DOI: 10.1038/s41419-023-05603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/12/2023]
Abstract
Anaplastic Thyroid Cancer (ATC) is the most aggressive and de-differentiated subtype of thyroid cancer. Many studies hypothesized that ATC derives from Differentiated Thyroid Carcinoma (DTC) through a de-differentiation process triggered by specific molecular events still largely unknown. E2F7 is an atypical member of the E2F family. Known as cell cycle inhibitor and keeper of genomic stability, in specific contexts its function is oncogenic, guiding cancer progression. We performed a meta-analysis on 279 gene expression profiles, from 8 Gene Expression Omnibus patient samples datasets, to explore the causal relationship between DTC and ATC. We defined 3 specific gene signatures describing the evolution from normal thyroid tissue to DTC and ATC and validated them in a cohort of human surgically resected ATCs collected in our Institution. We identified E2F7 as a key player in the DTC-ATC transition and showed in vitro that its down-regulation reduced ATC cells' aggressiveness features. RNA-seq and ChIP-seq profiling allowed the identification of the E2F7 specific gene program, which is mainly related to cell cycle progression and DNA repair ability. Overall, this study identified a signature describing DTC de-differentiation toward ATC subtype and unveiled an E2F7-dependent transcriptional program supporting this process.
Collapse
Affiliation(s)
- Mila Gugnoni
- Laboratory of Translational Research, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Eugenia Lorenzini
- Laboratory of Translational Research, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Gastone Castellani
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elisabetta Sauta
- Laboratory of Translational Research, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Benedetta Donati
- Laboratory of Translational Research, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Moira Ragazzi
- Pathology Unit, Department of Oncology and Advanced Technologies, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesco Ghini
- Laboratory of Translational Research, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Simonetta Piana
- Pathology Unit, Department of Oncology and Advanced Technologies, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| | - Gloria Manzotti
- Laboratory of Translational Research, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
10
|
Fu L, Li Z, Wu Y, Zhu T, Ma Z, Dong L, Ding J, Zhang C, Yu G. Hsa-miR-195-5p Inhibits Autophagy and Gemcitabine Resistance of Lung Adenocarcinoma Cells via E2F7/CEP55. Biochem Genet 2023:10.1007/s10528-023-10330-y. [PMID: 36658310 DOI: 10.1007/s10528-023-10330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/02/2023] [Indexed: 01/21/2023]
Abstract
Lung adenocarcinoma (LUAD) is a common malignancy. Many studies have shown that LUAD is resistant to gemcitabine chemotherapy, resulting in poor treatment outcomes in patients. We designed this study to reveal influences of hsa-miR-195-5p/E2F7/CEP55 axis on gemcitabine resistance and autophagy of LUAD cells. The expression data of LUAD-related mRNAs were downloaded from TCGA-LUAD database for differential expression analysis. The bioinformatics databases (hTFtarget, starBase and TargetScan) were used to predict the upstream and downstream regulatory molecules of E2F7. Then the binding relationships between E2F7 and regulatory molecules were verified by ChIP and dual-luciferase reporter assay. qRT-PCR and western blot were used to detect the mRNA and protein levels of has-miR-195-5p, E2F7, and CEP55. CCK-8 assay was used to analyze the half-maximal inhibitory concentration (IC50) and cell proliferation ability of LUAD cells after gemcitabine treatment. Apoptosis was detected by flow cytometry. Apoptosis/autophagy markers and LC3 aggregation were detected by western blot and immunofluorescence, respectively. Finally, the mouse transplantation model was constructed to verify the regulation mechanism in vivo. In LUAD cells and tissues, E2F7 and CEP55 were highly expressed, while has-miR-195-5p was relatively less expressed. The ChIP or dual-luciferase assays demonstrated the binding relationships of E2F7 to the CEP55 promoter region and has-miR-195-5p to the 3'-UTR of E2F7. Cell experiments demonstrated that overexpression of hsa-miR-195-5p stimulated LUAD cell apoptosis and inhibited autophagy and gemcitabine resistance, while further overexpression E2F7/CEP55 could reverse the impact by hsa-miR-195-5p overexpression. In vivo experiments identified that hsa-miR-195-5p/E2F7/CEP55 axis constrained the growth of LUAD tumor. Hsa-miR-195-5p promoted apoptosis, repressed proliferation, and autophagy via E2F7/CEP55 and reduced gemcitabine resistance in LUAD, indicating that hsa-miR-195-5p/E2F7/CEP55 may be a novel target for LUAD.
Collapse
Affiliation(s)
- Linhai Fu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Zhupeng Li
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Yuanlin Wu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Ting Zhu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Zhifeng Ma
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Lingjun Dong
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Jianyi Ding
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Chu Zhang
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
11
|
Ma Y, Lin H, Wang P, Yang H, Yu J, Tian H, Li T, Ge S, Wang Y, Jia R, Leong KW, Ruan J. A miRNA-based gene therapy nanodrug synergistically enhances pro-inflammatory antitumor immunity against melanoma. Acta Biomater 2023; 155:538-553. [PMID: 36400349 DOI: 10.1016/j.actbio.2022.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
MicroRNA (miRNA)-based gene therapy is a robust approach to treating human cancers. However, the low target specificity and safety issues associated with viral vectors have limited the clinical use of miRNA therapeutics. In the present study, we aimed to develop a biocompatible nanocarrier to deliver the tumor suppressor miR-30a-5p for gene therapy of ocular melanoma. The quasi-mesoporous magnetic nanospheres (MMNs) were prepared by polyelectrolytes-mediated self-assembling Fe3O4 nanocrystals; the cationic polymer capped quasi-mesoporous inner tunnels of the MMNs facilitate high miRNA loading and protect from nuclease degradation. Then, the outer layer of the MMNs was modified with a disulfide bond bridged very low molecular weight polyethyleneimine (PEI) network to form redox-responsive nanospheres (rMMNs) that enhance the miRNA payload and enable miRNA release under glutathione-dominant tumor microenvironment. The miR-30a-5p loaded rMMNs nanodrug (miR-30a-5p@rMMNs) upregulated miR-30a-5p level and inhibited malignant phenotypes of ocular melanoma by targeting the transcription factor E2F7 both in vitro and in vivo. Additionally, rMMNs act as an enhancer to increase cancer cell apoptosis by modulating M1-like macrophage polarization and activating Fenton reaction. Thus, the rMMNs is a promising miRNA carrier for gene therapy and could enhance pro-inflammatory immunity in melanoma and other cancers. STATEMENT OF SIGNIFICANCE: • miR-30a-5p@rMMNs inhibited malignant phenotypes of ocular melanoma both in vitro and in vivo. • The rMMNs promoted M1 macrophage polarization thus synergistically enhancing pro-inflammatory anti-tumor immunity against melanoma. • The rMMNs showed no obvious toxicity under the injection dose.
Collapse
Affiliation(s)
- Yawen Ma
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Huimin Lin
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Peng Wang
- The Institute for translational nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Haocheng Yang
- The Institute for translational nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yilong Wang
- The Institute for translational nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jing Ruan
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China; Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
12
|
Hu Y, Yang Q, Cai S, Wang W, Fu S. The integrative analysis based on super-enhancer related genes for predicting different subtypes and prognosis of patient with lower-grade glioma. Front Genet 2023; 14:1085584. [PMID: 37091789 PMCID: PMC10119407 DOI: 10.3389/fgene.2023.1085584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Objective: Emerging evidence revealed that super-enhancer plays a crucial role in the transcriptional reprogramming for many cancers. The purpose aimed to explored how the super-enhancer related genes affects the prognosis and tumor immune microenvironment (TIME) of patients with low-grade glioma (LGG). Methods: In this study, the differentially expressed genes (DEGs) between LGG cohorts and normal brain tissue cohort were identified by the comprehensive analysis of the super-enhancer (SE) related genes. Then non-negative matrix factorization was performed to seek the optimal classification based on the DEGs, while investigating prognostic and clinical differences between different subtypes. Subsequently, a prognostic related signature (SERS) was constructed for the comprehensive evaluation in term of individualized prognosis, clinical characteristics, cancer markers, genomic alterations, and immune microenvironment of patients with LGG. Results: Based on the expression profiles of 170 DEGs, we identified three SE subtypes, and the three subtypes showed significant differences in prognostic, clinicopathological features. Then, nine optimal SE-related genes were selected to construct the SERS through the least absolute shrinkage and selection operator Cox regression analysis. Survival analysis showed that SERS had strong and stable predictive ability for the prognosis of LGG patients in the The Cancer Genome Atlas, China Glioma Genome Atlas, and Remdrandt cohorts, respectively. We also found that SERS was highly correlated with clinicopathological features, tumor immune microenvironment, cancer hallmarks, and genomic alterations in LGG patients. In addition, the predictive power of SERS for immune checkpoint inhibitor treatment is also superior. The qRT-PCR results and immunohistochemical results also confirmed the difference in the expression of four key genes in normal cells and tumors, as well as in normal tissues and tumor tissues. Conclusion: The SERS could be suitable to utilize individualized prognosis prediction and immunotherapy options for LGG patients in clinical application.
Collapse
Affiliation(s)
- Yungang Hu
- Department of Neurosurgery, Wuhan University of Science and Technology Affiliated Xiaogan Central Hospital, Xiaogan, Hubei, China
| | - Qingqing Yang
- Department of Thyroid and Breast Surgery, Wuhan University of Science and Technology Affiliated Xiaogan Central Hospital, Xiaogan, Hubei, China
| | - Shuzhou Cai
- Department of Neurosurgery, Wuhan University of Science and Technology Affiliated Xiaogan Central Hospital, Xiaogan, Hubei, China
| | - Wei Wang
- Department of Neurosurgery, Wuhan University of Science and Technology Affiliated Xiaogan Central Hospital, Xiaogan, Hubei, China
| | - Shiyin Fu
- Department of Pediatric, Jinchu University of Technology Affiliated Central Hospital, Jingmen, Hubei, China
| |
Collapse
|
13
|
Li S, Tao L, Yu X, Zheng H, Wu J, Hu F. Royal Jelly Proteins and Their Derived Peptides: Preparation, Properties, and Biological Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14415-14427. [PMID: 34807598 DOI: 10.1021/acs.jafc.1c05942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Royal jelly, also called bee milk, is a source of high-quality proteins. Royal jelly proteins serve as not only a rich source of essential amino acids and functional donors but also an excellent substrate for preparing bioactive peptides. Most naturally occurring bioactive peptides in royal jelly are antibacterial, while peptides derived from proteolytic reactions are shown to exert antihypertensive, antioxidative, and anti-aging activities. Further studies are warranted to characterize the functional properties of major royal jelly proteins and peptides, to explore the preparation of bioactive peptides and the potential novel activities, to improve their bioavailability, to enhance the production efficiency for commercial availability, and finally to open up new applications for royal jelly as a functional food and potential therapeutic agent.
Collapse
Affiliation(s)
- Shanshan Li
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Lingchen Tao
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xinyu Yu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta T6G 2P5, Canada
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
14
|
Comprehensive Analysis of the Expression and Prognosis for E2Fs in Human Clear Cell Renal Cell Carcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5790416. [PMID: 34531966 PMCID: PMC8440094 DOI: 10.1155/2021/5790416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022]
Abstract
Background E2F transcription factors is a family of transcription factors, and lots of studies have shown that they play a key role in the occurrence and development of many tumors. However, the association between expression, prognostic value, and immune infiltration in the tumor microenvironment of the eight E2Fs members in ccRCC is still unclear. Method s. We used online databases, such as ONCOMINE, UALCAN, Kaplan–Meier plotter, GEPIA, Metascape, TIMER, and cBioPortal, to analyze the effect of mRNA expression of E2Fs family members in ccRCC on the prognosis of patients and the relationship with immune infiltration. Results Except for E2F5, other seven members of the family of E2Fs mRNA expression levels in ccRCC tissues were significantly higher than control tissues. And the high expression of E2Fs mRNA in ccRCC patients was related to cancer stage and tumor grade. Survival analysis results suggested that elevated mRNA expression levels of E2F1/2/3/4/7/8 were significantly related to the shorter overall survival (OS) in ccRCC patients (P = 3.9E – 06), while high mRNA expression of E2F6 is not related to OS (P = 0.061). Mutations of E2Fs were correlated with shorter OS of ccRCC patients (P = 7.094E – 5). In addition, mRNA expression of E2F1/2/3/4/7/8 was positively correlated with infiltration of six types of immune cells, including B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. Conclusions These results indicate that E2F1/2/3/4/7/8 may be used as a prognostic marker for the survival of ccRCC patients and laid the foundation for studying the immune infiltration role of E2Fs family members in tumors.
Collapse
|
15
|
Katsanos D, Ferrando-Marco M, Razzaq I, Aughey G, Southall TD, Barkoulas M. Gene expression profiling of epidermal cell types in C. elegans using Targeted DamID. Development 2021; 148:dev199452. [PMID: 34397094 PMCID: PMC7613258 DOI: 10.1242/dev.199452] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
The epidermis of Caenorhabditis elegans is an essential tissue for survival because it contributes to the formation of the cuticle barrier as well as facilitating developmental progression and animal growth. Most of the epidermis consists of the hyp7 hypodermal syncytium, the nuclei of which are largely generated by the seam cells, which exhibit stem cell-like behaviour during development. How seam cell progenitors differ transcriptionally from the differentiated hypodermis is poorly understood. Here, we introduce Targeted DamID (TaDa) in C. elegans as a method for identifying genes expressed within a tissue of interest without cell isolation. We show that TaDa signal enrichment profiles can be used to identify genes transcribed in the epidermis and use this method to resolve differences in gene expression between the seam cells and the hypodermis. Finally, we predict and functionally validate new transcription and chromatin factors acting in seam cell development. These findings provide insights into cell type-specific gene expression profiles likely associated with epidermal cell fate patterning.
Collapse
Affiliation(s)
- Dimitris Katsanos
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Mar Ferrando-Marco
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Iqrah Razzaq
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Gabriel Aughey
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Tony D. Southall
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Michalis Barkoulas
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
16
|
Zhou H, Zheng M, Shi M, Wang J, Huang Z, Zhang H, Zhou Y, Shi J. Characteristic of molecular subtypes in lung adenocarcinoma based on m6A RNA methylation modification and immune microenvironment. BMC Cancer 2021; 21:938. [PMID: 34416861 PMCID: PMC8379743 DOI: 10.1186/s12885-021-08655-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a major subtype of lung cancer and closely associated with poor prognosis. N6-methyladenosine (m6A), one of the most predominant modifications in mRNAs, is found to participate in tumorigenesis. However, the potential function of m6A RNA methylation in the tumor immune microenvironment is still murky. METHODS The gene expression profile cohort and its corresponding clinical data of LUAD patients were downloaded from TCGA database and GEO database. Based on the expression of 21 m6A regulators, we identified two distinct subgroups by consensus clustering. The single-sample gene-set enrichment analysis (ssGSEA) algorithm was conducted to quantify the relative abundance of the fraction of 28 immune cell types. The prognostic model was constructed by Lasso Cox regression. Survival analysis and receiver operating characteristic (ROC) curves were used to evaluate the prognostic model. RESULT Consensus classification separated the patients into two clusters (clusters 1 and 2). Those patients in cluster 1 showed a better prognosis and were related to higher immune scores and more immune cell infiltration. Subsequently, 457 differentially expressed genes (DEGs) between the two clusters were identified, and then a seven-gene prognostic model was constricted. The survival analysis showed poor prognosis in patients with high-risk score. The ROC curve confirmed the predictive accuracy of this prognostic risk signature. Besides, further analysis indicated that there were significant differences between the high-risk and low-risk groups in stages, status, clustering subtypes, and immunoscore. Low-risk group was related to higher immune score, more immune cell infiltration, and lower clinical stages. Moreover, multivariate analysis revealed that this prognostic model might be a powerful prognostic predictor for LUAD. Ultimately, the efficacy of this prognostic model was successfully validated in several external cohorts (GSE30219, GSE50081 and GSE72094). CONCLUSION Our study provides a robust signature for predicting patients' prognosis, which might be helpful for therapeutic strategies discovery of LUAD.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Miaosen Zheng
- Department of Pathology, Affiliated Hospital of Nantong University and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Muqi Shi
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jinjie Wang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhanghao Huang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University and Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
17
|
All-Trans Retinoic Acid Enhances Chemosensitivity to 5-FU by Targeting miR-378c/E2F7 Axis in Colorectal Cancer. JOURNAL OF ONCOLOGY 2021; 2021:5338934. [PMID: 34335757 PMCID: PMC8318767 DOI: 10.1155/2021/5338934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022]
Abstract
Colorectal carcinoma (CRC), a life-threatening malignancy, has been found to present resistance to 5-fluorouracil (5-FU) and cause a poor prognosis for patients. Previous studies have proved that all-trans retinoic acid (ATRA) could inhibit the development of CRC cells. In addition, miR-378c was discovered to exert a vital role in various cancers. In this study, we utilized MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), transwell assay, and flow cytometry to confirm that ATRA was able to enhance the inhibitory effects of 5-FU on HCT116 cells effectively by promoting cell apoptosis. Then, ENCORI database (http://starbase.sysu.edu.cn/) was employed to predict that miR-378c was downregulated dramatically in CRC and E2F7 was the direct target of miR-378c. QRT-PCR (quantitative real-time polymerase chain reaction) was conducted to verify that the expression level of miR-378c was decreased while E2F7 expression was upregulated in CRC tissues compared with para-carcinoma tissues. Additionally, treatment of 5-FU combined with ATRA could increase miR-378c expression, whereas it decreased the expression of E2F7. Dual-Luciferase Reporter assay results revealed that miR-378c could regulate the load of E2F7 by binding to its 3′UTR directly. Furthermore, miR-378c inhibitor or vector with E2F7 partially counteracted the effects of 5-FU combined with ATRA on viability, migration, invasion, and apoptosis of HCT116 cells. In conclusion, our study aims to confirm that ATRA enhances chemosensitivity to 5-FU of patients with CRC and expound the potential molecular mechanisms.
Collapse
|
18
|
Identifying an lncRNA-Related ceRNA Network to Reveal Novel Targets for a Cutaneous Squamous Cell Carcinoma. BIOLOGY 2021; 10:biology10050432. [PMID: 34068010 PMCID: PMC8152267 DOI: 10.3390/biology10050432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/03/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary The exact functions and molecular mechanism of lncRNAs, acting as competitive endogenous RNAs in a cutaneous squamous cell carcinoma, remain unexplored. The present study was conducted to identify the differentially expressed lncRNAs and mRNAs and establish the lncRNA-related competing endogenous RNA networks associated with a cutaneous squamous cell carcinoma. A competing endogenous RNA network consisting of 137 miRNA-lncRNA and 221 miRNA-mRNA pairs was constructed. As for the functional analysis of the mRNAs in the network, a FoxO signaling pathway, an autophagy and cellular senescence were the top enrichment terms based on the Kyoto Encyclopedia of Genes and Genomes analysis. We identified five core mRNAs and built a core mRNA-associated competing endogenous RNA network. Finally, one lncRNA HLA-F-AS1 and three mRNAs named AGO4, E2F1 and CCND1 in the core mRNA-associated competing endogenous RNA network were validated with the same expression patterns. The core mRNAs and their associated lncRNAs may provide potential therapeutic targets for cutaneous squamous cell carcinomas. Abstract A cutaneous squamous cell carcinoma (cSCC) derived from keratinocytes is the second most common cause of non-melanoma skin cancer. The accumulation of the mutational burden of genes and cellular DNA damage caused by the risk factors (e.g., exposure to ultraviolet radiation) contribute to the aberrant proliferation of keratinocytes and the formation of a cSCC. A cSCC encompasses a spectrum of diseases that range from recursor actinic keratosis (AK) and squamous cell carcinoma (SCC) in situ (SCCIS) to invasive cSCCs and further metastatic SCCs. Emerging evidence has revealed that lncRNAs are involved in the biological process of a cSCC. According to the ceRNA regulatory theory, lncRNAs act as natural miRNA sponges and interact with miRNA response elements, thereby regulating the mRNA expression of their down-stream targets. This study was designed to search for the potential lncRNAs that may become potential therapeutic targets or biomarkers of a cSCC. Considering the spirit of the study to be adequately justified, we collected microarray-based datasets of 19 cSCC tissues and 12 normal skin samples from the GEO database (GSE42677 and GSE45164). After screening the differentially expressed genes via a limma package, we identified 24 differentially expressed lncRNAs (DElncRNAs) and 3221 differentially expressed mRNAs (DEmRNAs). The miRcode, miRTarBase, miRDB and TargetScan databases were used to predict miRNAs that could interact with DElncRNAs and DEmRNAs. A total of 137 miRNA-lncRNA and 221 miRNA-mRNA pairs were retained in the ceRNA network, consisting of 31 miRNAs, 11 DElncRNAs and 155 DEmRNAs. For the functional analysis, the top enriched biological process was enhancer sequence-specific DNA binding in Gene Ontology (GO) terms. The FoxO signaling pathway, autophagy and cellular senescence were the top enrichment terms based on a Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The combination of a STRING tool and Cytoscape software (plug-in MCODE) identified five core mRNAs and built a core mRNA-associated ceRNA network. The expression for five identified core mRNAs and their related nine lncRNAs was validated using the external dataset GSE7553. Finally, one lncRNA HLA-F-AS1 and three mRNAs named AGO4, E2F1 and CCND1 were validated with the same expression patterns. We speculate that lncRNA HLA-F-AS1 may sponge miR-17-5p or miR-20b-5p to regulate the expression of CCND1 and E2F1 in the cSCC. The present study may provide potential diagnostic and therapeutic targets for cSCC patients.
Collapse
|
19
|
Zhou P, Xiao L, Xu X. Identification of E2F transcription factor 7 as a novel potential biomarker for oral squamous cell carcinoma. Head Face Med 2021; 17:7. [PMID: 33637098 PMCID: PMC7908640 DOI: 10.1186/s13005-021-00258-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/05/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND As a tumor-accelerating transcriptional factor, E2F transcription factor 7 (E2F7) was up-regulated in many forms of cancers. Nevertheless, little has been reported about the impacts of E2F7 on oral squamous cell carcinoma (OSCC). Here, we aimed to probe whether E2F7 had influences on OSCC and its potential mechanism. METHODS The expression of E2F7 in OSCC tissues was analyzed using the data acquired from TCGA and ONCOMINE databases. E2F7 prognostic value in OSCC patients was analyzed utilizing TCGA database. The expression of E2F7 in OSCC cell lines was detected by qRT-PCR. Gain-and loss-function of E2F7 assays in TCA-83 and CAL27 cells were performed respectively to inquire the function of E2F7. Western blotting was applied to test the alternations of EMT-related markers. RESULTS In OSCC tissues, E2F7 was highly expressed. Besides, high expression of E2F7 predicted worse prognosis in OSCC patients. Moreover, E2F7 was over-expressed in TCA-83, HSC-4 and CAL27 (all OSCC cell lines) cells relative to that in HNOK (a normal cell line) cells. Gain-and loss-function assays displayed that deficiency of E2F7 suppresses CAL27 cell growth, migration, invasion and E2F7 high-expression resulted in inverse outcomes in TCA-83 cells. Finally, we found that silencing of E2F7 facilitated E-cadherin protein expression level and reduced N-cadherin, Vimentin and Snail protein levels in CAL27 cells, whilst E2F7 high-expression exhibited the opposite effects in TCA-83 cells. CONCLUSIONS These outcomes indicated that E2F7 performs a carcinogenic role in OSCC, which provides a theoretical basis for the therapeutic strategies of OSCC.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Stomatology, Jining No.1 People's Hospital, Jining, 272000, Shandong, China
| | - Lei Xiao
- Department of Stomatology, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Xiaonan Xu
- Department of Stomatology, Jining No.1 People's Hospital, Jining, 272000, Shandong, China.
| |
Collapse
|
20
|
Liu P, Wang M, Tang W, Li G, Gong N. Circ_SATB2 Attenuates the Anti-Tumor Role of Celastrol in Non-Small-Cell Lung Carcinoma Through Targeting miR-33a-5p/E2F7 Axis. Onco Targets Ther 2020; 13:11899-11912. [PMID: 33239891 PMCID: PMC7680679 DOI: 10.2147/ott.s279434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022] Open
Abstract
Background Celastrol (Cela) was a natural compound that exerted anti-tumor activity in many cancer cells. Nevertheless, the molecular mechanism behind the anti-tumor role of Cela in non-small-cell lung carcinoma (NSCLC) remains to be clarified. Methods Flow cytometry was used to analyze cell cycle progression and apoptosis. Colony formation assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay were used to analyze cell proliferation. Cell migration and invasion abilities were assessed by transwell assays. Quantitative real-time polymerase chain reaction (qRT-PCR) was implemented for the detection of RNA levels. Western blot assay was used for the determination of protein levels. Dual-luciferase reporter assay was conducted to confirm the interaction between microRNA-33a-5p (miR-33a-5p) and circular RNA SATB homeobox 2 (circ_SATB2) or E2F transcription factor 7 (E2F7). Xenograft tumor assay was conducted to test the roles of Cela and circ_SATB2 in NSCLC progression in vivo. Results Cela hampered the malignant behaviors of NSCLC cells. Cela down-regulated circ_SATB2 level in NSCLC cells. Cela stimulation-induced suppressive influence in NSCLC progression was alleviated by circ_SATB2 accumulation. E2F7 interference overturned circ_SATB2-mediated effects in Cela-stimulated NSCLC cells. MiR-33a-5p was a target of circ_SATB2, and E2F7 was verified as a target of miR-33a-5p. Circ_SATB2 attenuated Cela-mediated effects through targeting miR-33a-5p in NSCLC cells. Cela-mediated suppressive effect on tumor growth was partly attenuated by the overexpression of circ_SATB2 in vivo. Conclusion Cela suppressed NSCLC development through regulating circ_SATB2/miR-33a-5p/E2F7 signaling cascade.
Collapse
Affiliation(s)
- Peijun Liu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, People's Republic of China
| | - Miao Wang
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, People's Republic of China
| | - Weihua Tang
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, People's Republic of China
| | - Guangcai Li
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, People's Republic of China
| | - Nianjin Gong
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, People's Republic of China
| |
Collapse
|
21
|
Chen X, Wang D, Sun B, Liu C, Zhu K, Zhang A. GBE attenuates arsenite-induced hepatotoxicity by regulating E2F1-autophagy-E2F7a pathway and restoring lysosomal activity. J Cell Physiol 2020; 236:4050-4065. [PMID: 33174204 DOI: 10.1002/jcp.30147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 11/07/2022]
Abstract
Arsenic is an environmental toxicant. Its overdose can cause liver damage. Autophagy has been reported to be involved in arsenite (iAs3+ ) cytotoxicity and plays a dual role in cell proliferation and cell death. However, the effect and molecular regulative mechanisms of iAs3+ on autophagy in hepatocytes remains largely unknown. Here, we found that iAs3+ exposure lead to hepatotoxicity by inducing autophagosome and autolysosome accumulation. On the one hand, iAs3+ promoted autophagosome synthesis by inhibiting E2F1/mTOR pathway in L-02 human hepatocytes. On the other, iAs3+ blocked autophagosome degradation partially via suppressing the expression of INPP5E and Rab7 as well as impairing lysosomal activity. More importantly, autophagosome and autolysosome accumulation induced by iAs3+ increased the protein level of E2F7a, which could further inhibit cell viability and induce apoptosis of L-02 cells. The treatment of Ginkgo biloba extract (GBE) effectively reduced autophagosome and autolysosome accumulation and thus alleviated iAs3+ -induced hepatotoxicity. Moreover, GBE could also protect lysosomal activity, promote the phosphorylation level of E2F1 (Ser364 and Thr433) and Rb (Ser780) as well as suppress the protein level of E2F7a in iAs3+ -treated L-02 cells. Taken together, our data suggested that autophagosome and autophagolysosome accumulation play a critical role for iAs3+ -induced hepatotoxicity, and GBE is a promising candidate for intervening iAs3+ induced liver damage by regulating E2F1-autophagy-E2F7a pathway and restoring lysosomal activity.
Collapse
Affiliation(s)
- Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chunyan Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Kai Zhu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
22
|
Wang Y, Pei X, Xu P, Tan Z, Zhu Z, Zhang G, Jiang Z, Deng Z. E2F7, regulated by miR‑30c, inhibits apoptosis and promotes cell cycle of prostate cancer cells. Oncol Rep 2020; 44:849-862. [PMID: 32582990 PMCID: PMC7388350 DOI: 10.3892/or.2020.7659] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 03/10/2020] [Indexed: 01/01/2023] Open
Abstract
Prostate cancer (PCa) remains a leading cause of mortality among men in the United States and Western Europe. The molecular mechanism of PCa pathogenesis has not been fully elucidated. In the present study, the expression profile of E2F transcription factor 7 (E2F7) in PCa was examined using immunohistochemistry and reverse transcription‑quantitative PCR, whilst cell cycle progression and apoptosis were determined using fluorescent cell activated sorting techniques. Cell viability was measured using Cell Counting Kit‑8 in loss‑ and gain‑of‑function studies. Dual‑luciferase reporter assay was used to verify if E2F7 was one of the potential targets of miR‑30c. The staining score of E2F7 of PCa tissues was found to be notably higher compared with that of adjacent normal tissues. Suppression of E2F7 expression in PCa cell lines led to significantly reduced proliferation rates, increased proportion of cells in the G1 phase of the cell cycle and higher apoptotic rates compared with those in negative control groups. Dual‑luciferase reporter assay revealed E2F7 to be one of the binding targets of microRNA (miR)‑30c. In addition, transfection of miR‑30c mimics into PCa cells resulted in reduced cell viability, increased proportion of cells in the G1 phase and higher apoptotic rates. By contrast, transfection with the miR‑30c inhibitor led to lower apoptosis rates of PCa cells compared with negative control groups, whilst E2F7 siRNA co‑transfection reversed stimulatory effects of miR‑30c inhibitors on cell viability. In addition, the expression of cyclin‑dependent kinase inhibitor p21 were found to be upregulated by transfection with either E2F7 siRNA or miR‑30c mimics into PCa cells. In conclusion, the present study suggested that E2F7 may be positively associated with PCa cell proliferation by inhibiting p21, whereas E2F7 is in turn under regulation by miR‑30c. These observations suggest the miR‑30c/E2F7/p21 axis to be a viable therapeutic target for PCa.
Collapse
Affiliation(s)
- Ying Wang
- Oncology Department, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
- Oncology Department, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471000, P.R. China
| | - Xiaojuan Pei
- Pathology Department, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Po Xu
- Emergency Department, The First Affiliated Hospital, Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Zhibo Tan
- Oncology Department, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Zhenwei Zhu
- Oncology Department, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Guangping Zhang
- Oncology Department, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471000, P.R. China
| | - Zeying Jiang
- Oncology Department, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Zhe Deng
- Emergency Department, The First Affiliated Hospital, Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
23
|
Yang R, Wang M, Zhang G, Bao Y, Wu Y, Li X, Yang W, Cui H. E2F7-EZH2 axis regulates PTEN/AKT/mTOR signalling and glioblastoma progression. Br J Cancer 2020; 123:1445-1455. [PMID: 32814835 PMCID: PMC7591888 DOI: 10.1038/s41416-020-01032-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/24/2020] [Accepted: 07/27/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND E2F transcription factors are considered to be important drivers of tumour growth. E2F7 is an atypical E2F factor, and its role in glioblastoma remains undefined. METHODS E2F7 expression was examined in patients by IHC and qRT-PCR. The overall survival probability was determined by statistical analyses. MTT assay, colony formation, cell-cycle assay, cell metastasis and the in vivo model were employed to determine the functional role of E2F7 in glioblastoma. Chromatin immunoprecipitation, luciferase assay and western blot were used to explore the underlying mechanisms. RESULTS E2F7 was found to be up-regulated in glioblastoma patients, and high E2F7 expression was associated with poor overall survival in glioblastoma patients. Functional studies showed that E2F7 promoted cell proliferation, cell-cycle progression, cell metastasis and tumorigenicity abilities in vitro and in vivo. E2F7 promoted the transcription of EZH2 by binding to its promoter and increased H3K27me3 level. EZH2 recruited H3K27me3 to the promoter of PTEN and inhibited PTEN expression, and then activated the AKT/mTOR signalling pathway. In addition, restored expression of EZH2 recovered the abilities of cell proliferation and metastasis in E2F7-silencing cells. CONCLUSION Collectively, our findings indicate that E2F7 promotes cell proliferation, cell metastasis and tumorigenesis via EZH2-mediated PTEN/AKT/mTOR pathway in glioblastoma.
Collapse
Affiliation(s)
- Rui Yang
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China. .,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.
| | - Mei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Guizhou Provincial College-based Key Laboratory for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, China
| | - Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China
| | - Yonghua Bao
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Yanan Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China
| | - Xiuxiu Li
- Department of Pharmacy, The Second People's Hospital of Liaocheng, Liaocheng, China
| | - Wancai Yang
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China.,Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China. .,Cancer Center, Medical Research Institute, Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.
| |
Collapse
|
24
|
Lu T, Wang R, Cai H, Cui Y. Long non-coding RNA DLEU2 promotes the progression of esophageal cancer through miR-30e-5p/E2F7 axis. Biomed Pharmacother 2020; 123:109650. [DOI: 10.1016/j.biopha.2019.109650] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022] Open
|
25
|
Wan P, Bai X, Yang C, He T, Luo L, Wang Y, Fan M, Wang Z, Lu L, Yin Y, Li S, Guo Q, Song Z. miR-129-5p inhibits proliferation, migration, and invasion in rectal adenocarcinoma cells through targeting E2F7. J Cell Physiol 2020; 235:5689-5701. [PMID: 32052431 DOI: 10.1002/jcp.29501] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022]
Abstract
microRNAs (miRNAs), a kind of small noncoding RNAs, are considered able to regulate expression of genes and mediate RNA silencing. miR-129-5p was shown to be a cancer-related miRNA. However, the influence of miR-129-5p in rectal adenocarcinoma (READ) development remains to be determined. Based on the TCGA data, downregulation of miR-129-5p in READ samples was observed. Manual restoration of the miR-129-5p in SW1463 and SW480 cell lines significantly inhibited invasion, migration, and proliferation of READ cell lines, while the apoptosis ability was enhanced. Meanwhile, we found E2F7 acted as a potential target of miR-129-5p and was upregulated in READ samples. E2F7 upregulation reversed the repression of miR-129-5p on READ development. Finally, in vivo experiments showed that inhibition of tumor growth in nude mice was achieved through upregulating miR-129-5p. Overall, our findings suggest increasing of miR-129-5p leads to the suppression of READ progression through regulating the expression of E2F7, which may provide novel insights into the treatment of READ.
Collapse
Affiliation(s)
- Ping Wan
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xuan Bai
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chao Yang
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Tian He
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lilin Luo
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yun Wang
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Minmin Fan
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhilin Wang
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Liming Lu
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yajing Yin
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Sisi Li
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qiang Guo
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhengyi Song
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
26
|
Kim J, Jo YH, Jang M, Nguyen NNY, Yun HR, Ko SH, Shin Y, Lee JS, Kang I, Ha J, Choi TG, Kim SS. PAC-5 Gene Expression Signature for Predicting Prognosis of Patients with Pancreatic Adenocarcinoma. Cancers (Basel) 2019; 11:cancers11111749. [PMID: 31703415 PMCID: PMC6896100 DOI: 10.3390/cancers11111749] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 01/05/2023] Open
Abstract
Pancreatic adenocarcinoma (PAC) is one of the most aggressive malignancies. Intratumoural molecular heterogeneity impedes improvement of the overall survival rate. Current pathological staging system is not sufficient to accurately predict prognostic outcomes. Thus, accurate prognostic model for patient survival and treatment decision is demanded. Using differentially expressed gene analysis between normal pancreas and PAC tissues, the cancer-specific genes were identified. A prognostic gene expression model was computed by LASSO regression analysis. The PAC-5 signature (LAMA3, E2F7, IFI44, SLC12A2, and LRIG1) that had significant prognostic value in the overall dataset was established, independently of the pathological stage. We provided evidence that the PAC-5 signature further refined the selection of the PAC patients who might benefit from postoperative therapies. SLC12A2 and LRIG1 interacted with the proteins that were implicated in resistance of EGFR kinase inhibitor. DNA methylation was significantly involved in the gene regulations of the PAC-5 signature. The PAC-5 signature provides new possibilities for improving the personalised therapeutic strategies. We suggest that the PAC-5 genes might be potential drug targets for PAC.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.K.); (N.N.Y.N.); (H.R.Y.); (Y.S.); (I.K.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (M.J.)
| | - Yong Hwa Jo
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (M.J.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Miran Jang
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (M.J.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Ngoc Ngo Yen Nguyen
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.K.); (N.N.Y.N.); (H.R.Y.); (Y.S.); (I.K.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (M.J.)
| | - Hyeong Rok Yun
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.K.); (N.N.Y.N.); (H.R.Y.); (Y.S.); (I.K.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (M.J.)
| | - Seok Hoon Ko
- Department of Emergency Medicine, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Yoonhwa Shin
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.K.); (N.N.Y.N.); (H.R.Y.); (Y.S.); (I.K.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (M.J.)
| | - Ju-Seog Lee
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.K.); (N.N.Y.N.); (H.R.Y.); (Y.S.); (I.K.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (M.J.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.K.); (N.N.Y.N.); (H.R.Y.); (Y.S.); (I.K.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (M.J.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Tae Gyu Choi
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (M.J.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (T.G.C.); (S.S.K.); Tel.: +82-961-028-7 (T.G.C.); +82-961-052-4 (S.S.K.)
| | - Sung Soo Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.K.); (N.N.Y.N.); (H.R.Y.); (Y.S.); (I.K.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (M.J.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (T.G.C.); (S.S.K.); Tel.: +82-961-028-7 (T.G.C.); +82-961-052-4 (S.S.K.)
| |
Collapse
|
27
|
Suleman M, Chen A, Ma H, Wen S, Zhao W, Lin D, Wu G, Li Q. PIR promotes tumorigenesis of breast cancer by upregulating cell cycle activator E2F1. Cell Cycle 2019; 18:2914-2927. [PMID: 31500513 PMCID: PMC6791709 DOI: 10.1080/15384101.2019.1662259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/08/2019] [Accepted: 08/17/2019] [Indexed: 01/20/2023] Open
Abstract
Pirin (PIR) protein belongs to the superfamily of cupin and is highly conserved between eukaryotic and prokaryotic organisms. It has been reported that PIR is upregulated in various tumors and involved in tumorigenesis. However, its biological functions particularly in promoting tumorigenesis are, to date, poorly characterized. Here we report that knockdown of PIR in MCF7 and MDA-MB-231 cell lines causes a dramatic decrease in cell proliferation and xenograft tumor growth in mice. Mechanistically, the cell cycle activator E2F1 and its target genes cdk4, cdk6, cycE, cycD and DDR1 are remarkably downregulated in PIR depleted cells, leading to G1/S phase arrest. Luciferase reporter assay and chromatin immunoprecipitation assay indicate that PIR can activate E2F1 transcription by binding to its promoter region. Consistent with the observation in PIR knockdown cells, PIR inhibitors markedly inhibit the proliferation of both cell lines. Furthermore, knockdown of PIR significantly decreases the abilities of MCF7 cells for mobility and invasion in vitro and their metastasis in mice, which may be attributed to the decrease of DDR1. In conclusion, PIR stimulates tumorigenesis and progression by activating E2F1 and its target genes. Our finding thus suggests PIR as a potential druggable target for the therapy of cancers with high expression level of PIR.
Collapse
Affiliation(s)
- Muhammad Suleman
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Ai Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Huanhuan Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shixiong Wen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wentao Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Donghai Lin
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China
| | - Guode Wu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Qinxi Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
28
|
Lafta IJ. E2F6 is essential for cell viability in breast cancer cells during replication stress. ACTA ACUST UNITED AC 2019; 43:293-304. [PMID: 31768102 PMCID: PMC6823915 DOI: 10.3906/biy-1905-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
E2F6 is a member of the E2F family of transcription factors involved in regulation of a wide variety of genes through both activation and repression. E2F6 has been reported as overexpressed in breast cancers but whether or not this is important for tumor development is unclear. We first checked E2F6 expression in tumor cDNAs and the protein level in a range of breast cancer cell lines. RNA interference-mediated depletion was then used to assess the importance of E2F6 expression in cell lines with regard to cell cycle profile using fluorescence-activated cell sorting and a cell survival assay using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The overexpression of E2F6 was confirmed in breast tumor cDNA samples and breast cancer cell lines. Depletion of E2F6 in the breast cancer cells reduced cell viability in MCF-7, T-47D, and MDA-MB-231 cells. There was little effect in the nontumor breast cell line MCF-10A. The deleterious effect on cancer cells was greater during replication stress, leading to an increase in the proportion of breast cancer cells with sub-G1 DNA content. These results suggest that E2F6 might be essential for the survival of breast cancer cells experiencing replication stress, and therefore it could be a target for combined therapy.
Collapse
Affiliation(s)
- Inam Jasim Lafta
- Department of Microbiology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
29
|
Mitxelena J, Apraiz A, Vallejo-Rodríguez J, García-Santisteban I, Fullaondo A, Alvarez-Fernández M, Malumbres M, Zubiaga AM. An E2F7-dependent transcriptional program modulates DNA damage repair and genomic stability. Nucleic Acids Res 2019; 46:4546-4559. [PMID: 29590434 PMCID: PMC5961008 DOI: 10.1093/nar/gky218] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 03/15/2018] [Indexed: 12/23/2022] Open
Abstract
The cellular response to DNA damage is essential for maintaining the integrity of the genome. Recent evidence has identified E2F7 as a key player in DNA damage-dependent transcriptional regulation of cell-cycle genes. However, the contribution of E2F7 to cellular responses upon genotoxic damage is still poorly defined. Here we show that E2F7 represses the expression of genes involved in the maintenance of genomic stability, both throughout the cell cycle and upon induction of DNA lesions that interfere with replication fork progression. Knockdown of E2F7 leads to a reduction in 53BP1 and FANCD2 foci and to fewer chromosomal aberrations following treatment with agents that cause interstrand crosslink (ICL) lesions but not upon ionizing radiation. Accordingly, E2F7-depleted cells exhibit enhanced cell-cycle re-entry and clonogenic survival after exposure to ICL-inducing agents. We further report that expression and functional activity of E2F7 are p53-independent in this context. Using a cell-based assay, we show that E2F7 restricts homologous recombination through the transcriptional repression of RAD51. Finally, we present evidence that downregulation of E2F7 confers an increased resistance to chemotherapy in recombination-deficient cells. Taken together, our results reveal an E2F7-dependent transcriptional program that contributes to the regulation of DNA repair and genomic integrity.
Collapse
Affiliation(s)
- Jone Mitxelena
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
| | - Aintzane Apraiz
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
| | - Jon Vallejo-Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
| | - Iraia García-Santisteban
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
| | - Mónica Alvarez-Fernández
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Ana M Zubiaga
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
| |
Collapse
|
30
|
Xiang S, Wang Z, Ye Y, Zhang F, Li H, Yang Y, Miao H, Liang H, Zhang Y, Jiang L, Hu Y, Zheng L, Liu X, Liu Y. E2F1 and E2F7 differentially regulate KPNA2 to promote the development of gallbladder cancer. Oncogene 2019; 38:1269-1281. [PMID: 30254209 DOI: 10.1038/s41388-018-0494-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/29/2018] [Accepted: 08/15/2018] [Indexed: 12/14/2022]
Abstract
Karyopherin alpha 2 (KPNA2) is a nuclear import factor that is elevated in multiple cancers. However, its molecular regulation at the transcriptional levels is poorly understood. Here we found that KPNA2 was significantly upregulated in gallbladder cancer (GBC), and the increased levels were correlated with short survival of patients. Gene knocking down of KPNA2 inhibited tumor cell proliferation and migration in vitro as well as xenografted tumor development in vivo. A typical transcription factor E2F1 associated with its DNA-binding partner DP1 bond to the promoter region of KPNA2 and induced KPNA2 expression. In contrast, an atypical transcription factor E2F7 competed against DP1 and blocked E2F1-induced KPNA2 gene activation. Mutation of the dimerization residues of E2F7 or DNA-binding domain of E2F1 abolished the suppressive effects of E2F7 on KPNA2 gene expression. In addition, KPNA2 mediated nuclear localization of E2F1 and E2F7, where they in turn controlled KPNA2 expression. Taken together, our data provided mechanistic insights into divergently transcriptional regulation of KPNA2, thus pointing to KPNA2 as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Shanshan Xiang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Zheng Wang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yuanyuan Ye
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Fei Zhang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Huaifeng Li
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yang Yang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Huijie Miao
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Haibin Liang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yijian Zhang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Lin Jiang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yunping Hu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiyong Liu
- Department of Molecular Pharmacology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Yingbin Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China.
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
31
|
Liu J, Li X, Wang M, Xiao G, Yang G, Wang H, Li Y, Sun X, Qin S, Du N, Ren H, Pang Y. A miR-26a/E2F7 feedback loop contributes to tamoxifen resistance in ER-positive breast cancer. Int J Oncol 2018; 53:1601-1612. [PMID: 30066905 DOI: 10.3892/ijo.2018.4492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/31/2018] [Indexed: 11/06/2022] Open
Abstract
Tamoxifen (TAM) resistance is a substantial challenge in the treatment of estrogen receptor (ER)-positive breast cancer. Previous studies have revealed an important role of microRNA (miRNA/miR)-26a in TAM resistance in breast cancer. However, the mechanism underlying the regulatory effects of miR-26a on TAM resistance remains to be elucidated. The expression levels of miR-26a in ER-positive breast cancer were detected by reverse transcription-quantitative polymerase chain reaction. E2F transcription factor 7 (E2F7) and MYC proto-oncogene, bHLH transcription factor (MYC) levels were detected by western blotting. The present study demonstrated that miR-26a expression was reduced in ER-positive breast cancer compared with in normal breast tissues, whereas E2F7 expression was significantly elevated. Furthermore, an inverse correlation between miR-26a and E2F7 expression was detected in ER-positive breast cancer. The results indicated that miR-26a directly inhibited E2F7 expression through translational inhibition and indirectly inhibited MYC expression partly via E2F7 repression. E2F7, in turn, decreased miR-26a expression via MYC-induced transcriptional inhibition of miRNAs. Furthermore, transfection with miR-26a mimics increased the expression of its host genes (CTD small phosphatase like and CTD small phosphatase 2), whereas ectopic E2F7 expression abrogated the effects of miR-26a. These findings indicated that miR-26a and E2F7 may form a double-negative feedback loop, resulting in downregulation of miR-26a and upregulation of E2F7 in ER-positive breast cancer. Both miR-26a knockdown and E2F7 overexpression conferred resistance to TAM in MCF-7 cells. Conversely, miR-26a overexpression and E2F7 silencing resensitized MCF-7 resistant cells to TAM. These findings revealed that a feedback loop between miR-26a and E2F7 may promote TAM resistance in ER-positive breast cancer.
Collapse
Affiliation(s)
- Jian Liu
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiang Li
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Meng Wang
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guodong Xiao
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ganghua Yang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Huangzhen Wang
- Department of Surgical Oncology, Baoji Central Hospital, Baoji, Shaanxi 721008, P.R. China
| | - Yanbo Li
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xin Sun
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Sida Qin
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ning Du
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hong Ren
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yamei Pang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
32
|
Saenz-Ponce N, Pillay R, de Long LM, Kashyap T, Argueta C, Landesman Y, Hazar-Rethinam M, Boros S, Panizza B, Jacquemyn M, Daelemans D, Gannon OM, Saunders NA. Targeting the XPO1-dependent nuclear export of E2F7 reverses anthracycline resistance in head and neck squamous cell carcinomas. Sci Transl Med 2018; 10:eaar7223. [PMID: 29950445 DOI: 10.1126/scitranslmed.aar7223] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/18/2018] [Indexed: 12/17/2022]
Abstract
Patient mortality rates have remained stubbornly high (40%) for the past 35 years in head and neck squamous cell carcinoma (HNSCC) due to inherent or acquired drug resistance. Thus, a critical issue in advanced SCC is to identify and target the mechanisms that contribute to therapy resistance. We report that the transcriptional inhibitor, E2F7, is mislocalized to the cytoplasm in >80% of human HNSCCs, whereas the transcriptional activator, E2F1, retains localization to the nucleus in SCC. This results in an imbalance in the control of E2F-dependent targets such as SPHK1, which is derepressed and drives resistance to anthracyclines in HNSCC. Specifically, we show that (i) E2F7 is subject to exportin 1 (XPO1)-dependent nuclear export, (ii) E2F7 is selectively mislocalized in most of SCC and multiple other tumor types, (iii) mislocalization of E2F7 in HNSCC causes derepression of Sphk1 and drives anthracycline resistance, and (iv) anthracycline resistance can be reversed with a clinically available inhibitor of XPO1, selinexor, in xenotransplant models of HNSCC. Thus, we have identified a strategy to repurpose anthracyclines for use in SCC. More generally, we provide a strategy to restore the balance of E2F1 (activator) and E2F7 (inhibitor) activity in cancer.
Collapse
Affiliation(s)
- Natalia Saenz-Ponce
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Rachael Pillay
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Lilia Merida de Long
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | | | | | | | | | - Samuel Boros
- Department of Pathology, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Benedict Panizza
- Department of Ear Nose and Throat, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
- School of Medicine, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Maarten Jacquemyn
- Katholieke Universiteit Leuven, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium
| | - Dirk Daelemans
- Katholieke Universiteit Leuven, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium
| | - Orla M Gannon
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Nicholas A Saunders
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland 4102, Australia.
| |
Collapse
|
33
|
Liu W, Song Y, Zhang C, Gao P, Huang B, Yang J. The protective role of all-transretinoic acid (ATRA) against colorectal cancer development is achieved via increasing miR-3666 expression and decreasing E2F7 expression. Biomed Pharmacother 2018; 104:94-101. [PMID: 29772445 DOI: 10.1016/j.biopha.2018.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Colorectal cancer (CRC) is one of the most common malignancies with high morbidity and mortality rates worldwide. This study aimed to investigate whether miR-3666 was involved in inhibitory effects of all-transretinoic acid (ATRA) on the development of colorectal cancer (CRC). MATERIAL AND METHODS Surgical specimens of CRC tissues and adjacent non-tumor mucosa were collected for determining miR-3666 expression. Human CRC HCT116 cells were treated with different doses of ATRA (10, 20, 40, and 60 μM, respectively) and/or transfected with miR-3666 mimic, miR-3666 inhibitor, E2F7 siRNAs or their controls, respectively. After different treatments, cell viability, apoptosis, migration and invasion were detected. The regulatory relationship between miR-3666 and E2F7 was investigated. Furthermore, the association between MAPK/ERK pathway and ATRA or miR-3666/E2F7 was explored. RESULTS The miR-3666 was lowly expressed in CRC tissues, while E2F7 was highly expressed. ATRA decreased HCT116 cell viability, migration, and invasion, and induced apoptosis, indicating that ATRA inhibited the malignant behaviors of HCT116 cells. Moreover, ATRA increased miR-3666 expression, and effects of ATRA on the malignant behaviors of HCT116 cells were achieved by positive regulating miR-3666 expression. Furthermore, E2F7 was a target gene of miR-3666, and knockdown of E2F7 reversed the combined effects of ATRA and miR-3666 inhibitor on the malignant behaviors of HCT116 cells. Besides, ATRA inhibited the activation of MAPK/ERK signaling pathway, which was reversed by inhibition of miR-3666. CONCLUSIONS Our results reveal that ATRA protects against CRC development possible via increasing miR-3666 expression and decreasing E2F7 expression. MiR-3666/E2F7 may play a key role in regulating the inhibitory effects of ATRA on HCT116 cells via suppressing the activation of MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Weihong Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research and Development, Dali University, Dali, Yunnan, 671000, China; The Libraries of Dali University, Dali, Yunnan, 671003, China
| | - Yanqiu Song
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research and Development, Dali University, Dali, Yunnan, 671000, China
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research and Development, Dali University, Dali, Yunnan, 671000, China
| | - Pengfei Gao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research and Development, Dali University, Dali, Yunnan, 671000, China
| | - Bisheng Huang
- Department of Agriculture and biological Science, Dali University, Dali, Yunnan, 671003, China
| | - Jianfang Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research and Development, Dali University, Dali, Yunnan, 671000, China; School of Foreign Languages, Dali University, Dali, Yunnan, 671003, China.
| |
Collapse
|
34
|
Ye YY, Mei JW, Xiang SS, Li HF, Ma Q, Song XL, Wang Z, Zhang YC, Liu YC, Jin YP, Hu YP, Jiang L, Liu FT, Zhang YJ, Hao YJ, Liu YB. MicroRNA-30a-5p inhibits gallbladder cancer cell proliferation, migration and metastasis by targeting E2F7. Cell Death Dis 2018; 9:410. [PMID: 29540696 PMCID: PMC5852001 DOI: 10.1038/s41419-018-0444-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/07/2018] [Accepted: 02/15/2018] [Indexed: 12/12/2022]
Abstract
Gallbladder carcinoma (GBC), the most common malignant tumour of the bile duct, is highly aggressive and has a poor prognosis. MicroRNA-30a-5p (miR-30a-5p) is an important tumour suppressor that participates in many aspects of carcinogenesis and cancer development. However, the role of miR-30a-5p in GBC development remains to be determined, as do the mechanisms underlying its effects in GBC. Using samples collected from 42 subjects with gallbladder carcinoma (GBC), we showed decreased miR-30a-5p expression in the primary lesions vs. non-tumour adjacent tissues (NATs). Decreased miR-30a-5p was associated with shorter disease-free survival (DFS) and overall survival (OS). Inhibiting miR-30a-5p expression in 2 representative GBC cell lines (GBC-SD and NOZ) increased cell proliferation, migration, invasiveness, as well as β-catenin nuclear translocation, vice versa. In nude mice, NOZ cells transfected with miR-30a-5p mimics grew slower (vs. miR-NC) upon subcutaneous inoculation, and had lower rate of hepatic metastasis upon spleen inoculation. Dual luciferase assay confirmed that E2F transcription factor 7 (E2F7) was a direct target of miR-30a-5p and antagonized the effects induced by miR-30a-5p downregulation in GBC cells. MiR-30a-5p attenuates the EMT and metastasis in GBC cells by targeting E2F7, suggesting miR-30a-5p is a tumour suppressor that may serve as a novel potential prognostic biomarker or molecular therapeutic target for GBC.
Collapse
Affiliation(s)
- Yuan-Yuan Ye
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Jia-Wei Mei
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Shan-Shan Xiang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Huai-Feng Li
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qiang Ma
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiao-Ling Song
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Zheng Wang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yi-Chi Zhang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yong-Chen Liu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yun-Peng Jin
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yun-Ping Hu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Lin Jiang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Fa-Tao Liu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yi-Jian Zhang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Ya-Juan Hao
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China.
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Ying-Bin Liu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China.
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
35
|
Yuan R, Vos HR, van Es RM, Chen J, Burgering BM, Westendorp B, de Bruin A. Chk1 and 14-3-3 proteins inhibit atypical E2Fs to prevent a permanent cell cycle arrest. EMBO J 2018; 37:embj.201797877. [PMID: 29363506 PMCID: PMC5830916 DOI: 10.15252/embj.201797877] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/29/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022] Open
Abstract
The atypical E2Fs, E2F7 and E2F8, act as potent transcriptional repressors of DNA replication genes providing them with the ability to induce a permanent S-phase arrest and suppress tumorigenesis. Surprisingly in human cancer, transcript levels of atypical E2Fs are frequently elevated in proliferating cancer cells, suggesting that the tumor suppressor functions of atypical E2Fs might be inhibited through unknown post-translational mechanisms. Here, we show that atypical E2Fs can be directly phosphorylated by checkpoint kinase 1 (Chk1) to prevent a permanent cell cycle arrest. We found that 14-3-3 protein isoforms interact with both E2Fs in a Chk1-dependent manner. Strikingly, Chk1 phosphorylation and 14-3-3-binding did not relocate or degrade atypical E2Fs, but instead, 14-3-3 is recruited to E2F7/8 target gene promoters to possibly interfere with transcription. We observed that high levels of 14-3-3 strongly correlate with upregulated transcription of atypical E2F target genes in human cancer. Thus, we reveal that Chk1 and 14-3-3 proteins cooperate to inactivate the transcriptional repressor functions of atypical E2Fs. This mechanism might be of particular importance to cancer cells, since they are exposed frequently to DNA-damaging therapeutic reagents.
Collapse
Affiliation(s)
- Ruixue Yuan
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Harmjan R Vos
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Robert M van Es
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jing Chen
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Boudewijn Mt Burgering
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Bart Westendorp
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alain de Bruin
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands .,Division Molecular Genetics, Department Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
36
|
Aragona M, Dekoninck S, Rulands S, Lenglez S, Mascré G, Simons BD, Blanpain C. Defining stem cell dynamics and migration during wound healing in mouse skin epidermis. Nat Commun 2017; 8:14684. [PMID: 28248284 PMCID: PMC5339881 DOI: 10.1038/ncomms14684] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
Wound healing is essential to repair the skin after injury. In the epidermis, distinct stem cells (SCs) populations contribute to wound healing. However, how SCs balance proliferation, differentiation and migration to repair a wound remains poorly understood. Here, we show the cellular and molecular mechanisms that regulate wound healing in mouse tail epidermis. Using a combination of proliferation kinetics experiments and molecular profiling, we identify the gene signatures associated with proliferation, differentiation and migration in different regions surrounding the wound. Functional experiments show that SC proliferation, migration and differentiation can be uncoupled during wound healing. Lineage tracing and quantitative clonal analysis reveal that, following wounding, progenitors divide more rapidly, but conserve their homoeostatic mode of division, leading to their rapid depletion, whereas SCs become active, giving rise to new progenitors that expand and repair the wound. These results have important implications for tissue regeneration, acute and chronic wound disorders. Wound healing is essential to repair the skin after injury and distinct stem cells in the epidermis are known to contribute to the process. Here the authors perform molecular, functional and clonal analysis and reveal the individual contribution of stem cells coming from different epidermal compartments to the wound-healing process in mice.
Collapse
Affiliation(s)
| | | | - Steffen Rulands
- Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
| | | | - Guilhem Mascré
- Université Libre de Bruxelles, IRIBHM, Brussels B-1070, Belgium
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK.,The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Cédric Blanpain
- Université Libre de Bruxelles, IRIBHM, Brussels B-1070, Belgium.,WELBIO, Université Libre de Bruxelles, Brussels B-1070, Belgium
| |
Collapse
|
37
|
Guo AY, Zhai K, Xu JL, Hu JL, Gao L. Identification of a Low-Frequency Missense Variant in E2F Transcription Factor 7 Associated with Colorectal Cancer Risk In A Chinese Population. Asian Pac J Cancer Prev 2017; 18:271-275. [PMID: 28240846 PMCID: PMC5563112 DOI: 10.22034/apjcp.2017.18.1.271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: Transcription factors regulate gene expression and play important role in tumor genesis. Especially,
the E2F transcription factor family controls the cell cycle and regulate many tumor suppressors. Missense variants
in E2F family genes, which change the amino acid sequence, may alter the capacity for DNA binding or the protein
structure, leading to a functional alteration. Material and Methods: We here searched for missense variants in E2F
transcription family genes (E2F1~E2F8) and identified two (rs2075995 for E2F2 and rs3829295 for E2F7) with minor
allele frequencies >0.01 in Chinese Han Beijing population from the 1000 genome project. We genotyped these two
variants in 1,055 colorectal cancer (CRC) patients and 1,936 healthy controls using Taqman genotyping assays and
assessed associations between SNPs and risk of CRC using logistic regression adjusted for gender and age. Results: We
found rs3829295 at E2F7 to be significantly associated with risk of CRC. Compared with TT genotype carriers, CT and
CT+CC genotype carriers had lower risks of CRC with ORs of 0.61 (95% CI: 0.44-0.85, P=0.003) and 0.61 (95% CI:
0.44-0.84, P=0.003), respectively. When stratified by gender and age, significant associations were observed in males
(OR= 0.56, 95% CI: 0.38-0.83, P=0.004) for rs3829295, but not females (OR= 0.73, 95% CI: 0.43-1.22, P=0.232).
Conclusion: Through a systematic assessment of variants in the E2F transcription factor family, we identified a lowfrequent
missense variant in E2F7 significantly associated with CRC risk, indicating that E2F7 may play an important
role in development of this tumor type.
Collapse
Affiliation(s)
- Ai Ye Guo
- Department of Clinical Laboratory , People’s Hospital of Zhengzhou University and Henan Provincial People’s Hospital, Zhengzhou, China. ,
| | | | | | | | | |
Collapse
|
38
|
Chu J, Zhu Y, Liu Y, Sun L, Lv X, Wu Y, Hu P, Su F, Gong C, Song E, Liu B, Liu Q. E2F7 overexpression leads to tamoxifen resistance in breast cancer cells by competing with E2F1 at miR-15a/16 promoter. Oncotarget 2016; 6:31944-57. [PMID: 26397135 PMCID: PMC4741652 DOI: 10.18632/oncotarget.5128] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/31/2015] [Indexed: 01/07/2023] Open
Abstract
About 50-70% of breast cancers are estrogen receptor α (ERα) positive and most of them are sensitive to endocrine therapy including tamoxifen. However, one third of these patients will eventually develop resistance and relapse. We found that the expression of miR-15a and miR-16 were significantly decreased in tamoxifen resistant ER positive breast cancer cell lines. Exogenous expression of miR-15a/16 mimics re-sensitized resistant cells to tamoxifen by inhibiting Cyclin E1 and B cell lymphoma-2 (Bcl-2) to induce cell growth arrest and apoptosis respectively. Further, we identified that a repressive member of E2F family, E2F7, was responsible for the suppression of miR-15a/16 cluster by competing with E2F1 for E2F binding site at the promoter of their host gene DLEU2. Moreover, high expression of E2F7 is correlated with high risk of relapse and poor prognosis in breast cancer patients receiving tamoxifen treatment. Together, our results suggest that overexpression of E2F7 represses miR-15a/16 and then increases Cyclin E1 and Bcl-2 that result in tamoxifen resistance. E2F7 may be a valuable prognostic marker and a therapeutic target of tamoxifen resistance in breast cancer.
Collapse
Affiliation(s)
- Junjun Chu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yinghua Zhu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yujie Liu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Lijuan Sun
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaobin Lv
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yanqin Wu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Pengnan Hu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Fengxi Su
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Chang Gong
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Erwei Song
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Bodu Liu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qiang Liu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
39
|
Synergistic functions of E2F7 and E2F8 are critical to suppress stress-induced skin cancer. Oncogene 2016; 36:829-839. [PMID: 27452520 PMCID: PMC5311251 DOI: 10.1038/onc.2016.251] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/21/2016] [Accepted: 06/01/2016] [Indexed: 01/22/2023]
Abstract
E2F transcription factors are important regulators of the cell cycle, and unrestrained activation of E2F-dependent transcription is considered to be an important driver of tumor formation and progression. Although highly expressed in normal skin and skin cancer, the role of the atypical E2Fs, E2F7 and E2F8, in keratinocyte homeostasis, regeneration and tumorigenesis is unknown. Surprisingly, keratinocyte-specific deletion of E2F7 and E2F8 in mice did not interfere with skin development and wound healing. However, the rate for successful isolation and establishment of E2f7/8-deficient primary keratinocyte cultures was much higher than for wild-type keratinocytes. Moreover, E2f7/8-deficient primary keratinocytes proliferate more efficiently under stress conditions, such as low/high confluence or DNA damage. Application of in vivo stress using the DMBA/TPA skin carcinogenesis protocol revealed that combined inactivation of E2f7/8 enhanced tumorigenesis and accelerated malignant progression. Loss of atypical E2Fs resulted in increased expression of E2F target genes, including E2f1. Additional loss of E2f1 did not rescue, but worsened skin tumorigenesis. We show that loss of E2F7/8 triggers apoptosis via induction of E2F1 in response to stress, indicating that the tumor-promoting effect of E2F7/8 inactivation can be partially compensated via E2F1-dependent apoptosis. Importantly, E2F7/8 repressed a large set of E2F target genes that are highly expressed in human patients with skin cancer. Together, our studies demonstrate that atypical E2Fs act as tumor suppressors, most likely via transcriptional repression of cell cycle genes in response to stress.
Collapse
|
40
|
Elevated E2F7 expression predicts poor prognosis in human patients with gliomas. J Clin Neurosci 2016; 33:187-193. [PMID: 27460513 DOI: 10.1016/j.jocn.2016.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/16/2022]
Abstract
E2F transcription factors have been studied extensively in a broad range of organisms as major regulators of cell cycle, apoptosis, and differentiation. The E2F family includes the atypical member E2F7, which has been rarely studied in gliomas. The aim of this study is to determine the expression status of E2F7 in gliomas, its relationship to clinicopathological features, and patients' outcome. The mRNA levels of E2F7 in the human brain and different grades of gliomas were analysed using datasets from the publically available Oncomine database. One of the most significant co-expression factors, CDK1, together with E2F7, was further validated by immunohistochemistry in 90 different grades of gliomas. Furthermore, univariate and multivariate analyses were performed to identify prognostic variables relative to patient and tumour characteristics and treatment modalities. E2F7 mRNA expression was found to be elevated in gliomas by Oncomine-database analysis. Immunohistochemistry showed an increase in E2F7 labelling index in high- versus low-grade gliomas (62.1±11.8% vs. 18.9±10.2%, p<0.0001). There was a positive correlation between E2F7 and CDK1 immunoreactivity (Spearman r=0.446, p=0.037). Clinicopathological evaluation suggested that E2F7 expression was associated with tumour grade (p<0.0001) and recurrence (p=0.025). In Cox multivariate analysis, pathological classification and recurrence were independent prognostic factors of gliomas, and E2F7 was significantly related to progression-free survival (p=0.011), but not overall survival (p=0.062). Our findings suggested that E2F7 might act as an independent prognostic factor of gliomas and might constitute a potential therapeutic target for this disease.
Collapse
|
41
|
Qi QR, Zhao XY, Zuo RJ, Wang TS, Gu XW, Liu JL, Yang ZM. Involvement of atypical transcription factor E2F8 in the polyploidization during mouse and human decidualization. Cell Cycle 2016; 14:1842-58. [PMID: 25892397 DOI: 10.1080/15384101.2015.1033593] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Polyploid decidual cells are specifically differentiated cells during mouse uterine decidualization. However, little is known about the regulatory mechanism and physiological significance of polyploidization in pregnancy. Here we report a novel role of E2F8 in the polyploidization of decidual cells in mice. E2F8 is highly expressed in decidual cells and regulated by progesterone through HB-EGF/EGFR/ERK/STAT3 signaling pathway. E2F8 transcriptionally suppresses CDK1, thus triggering the polyploidization of decidual cells. E2F8-mediated polyploidization is a response to stresses which are accompanied by decidualization. Interestingly, polyploidization is not detected during human decidualization with the down-regulation of E2F8, indicating differential expression of E2F8 may lead to the difference of decidual cell polyploidization between mice and humans.
Collapse
Affiliation(s)
- Qian-Rong Qi
- a College of Veterinary Medicine; South China Agricultural University ; Guangzhou , China
| | | | | | | | | | | | | |
Collapse
|
42
|
Chen X, Zhang Y, Shi Y, Lian H, Tu H, Han S, Yin J, Peng B, Zhou B, He X, Liu W. MiR-129 triggers autophagic flux by regulating a novel Notch-1/ E2F7/Beclin-1 axis to impair the viability of human malignant glioma cells. Oncotarget 2016; 7:9222-9235. [PMID: 26824182 PMCID: PMC4891036 DOI: 10.18632/oncotarget.7003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/01/2016] [Indexed: 12/19/2022] Open
Abstract
Abnormalities of autophagy have been implicated in an increasing number of human cancers, including glioma. To date, there is a wealth of evidence indicating that microRNAs (miRNAs) contribute significantly to autophagy in a variety of cancers. Previous studies have suggested that miR-129 functioned as an important inhibitor of the cell cycle and could promote the apoptosis of many cancer cell lines in vitro. Here, we reported that miR-129 acted as a potent inducer of autophagy. Forced expression of miR-129 could induce autophagic flux by targetedly suppressing Notch-1 in glioma cells. The autophagy induced by miR-129 could restrain the activity of mammalian target of rapamycin (mTOR) and upregulate Beclin-1. Moreover, we demonstrated that E2F transcription factor 7 (E2F7) could also trigger autophagic flux by upregulating Beclin-1 and mediating miR-129-induced autophagy. Additionally, knockdown of Notch-1 could upregulate the expression of E2F7, whereas downregulation of E2F7 alleviated shNotch-1-induced autophagic flux. In particular, knockdown of endogenous Beclin-1 could effectively reduce autophagic flux stimulated by miR-129 and E2F7. Interestingly, upon attenuation of miR-129- or E2F7-triggered autophagic flux rescued cell viability suppressed by them. More importantly, intratumoral injection of pHAGE-miR-129 lentivirus in a nude mouse xenograft model significantly restrained tumor growth and triggered autophagy. In conclusion, these findings identify a new function for miR-129 as a potent inducer of autophagy through a novel Notch-1/E2F7/Beclin-1 axis in glioma.
Collapse
Affiliation(s)
- Xiong Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yingying Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yingying Shi
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Haiwei Lian
- Department of Neurosurgery, Wuhan University Renmin Hospital, Wuhan 430060, China
| | - Huilin Tu
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Song Han
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jun Yin
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Biwen Peng
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Beiyan Zhou
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, Texas 77843, USA
| | - Xiaohua He
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Wanhong Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan 430071, China
| |
Collapse
|
43
|
Srivastav AK, Mujtaba SF, Dwivedi A, Amar SK, Goyal S, Verma A, Kushwaha HN, Chaturvedi RK, Ray RS. Photosensitized rose Bengal-induced phototoxicity on human melanoma cell line under natural sunlight exposure. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 156:87-99. [PMID: 26866294 DOI: 10.1016/j.jphotobiol.2015.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/28/2015] [Accepted: 12/07/2015] [Indexed: 11/29/2022]
Abstract
Rose Bengal (RB) is an anionic water-soluble xanthene dye, which used for many years to assess eye cornea and conjunctiva damage. RB showed strong absorption maxima (λmax) under visible light followed by UV-B and UV-A. RB under sunlight exposure showed a time-dependent photodegradation. Our results show that photosensitized RB generates (1)O2 via Type-II photodynamic pathway and induced DNA damage under sunlight/UV-R exposure. 2'dGuO degradation, micronuclei formation, and single- and double-strand breakage were the outcome of photogenotoxicity caused by RB. Quenching studies with NaN3 advocate the involvement of (1)O2 in RB photogenotoxicity. RB induced linoleic acid photoperoxidation, which was parallel to (1)O2-mediated DNA damage. Oxidative stress in A375 cell line (human melanoma cell line) was detected through DCF-DA assay. Photosensitized RB decreased maximum cellular viability under sunlight followed by UV-B and UV-A exposures. Apoptosis was detected as a pattern of cell death through the increased of caspase-3 activity, decreased mitochondrial membrane potential, and PS translocation through inner to outer plasma membrane. Increased cytosolic levels of Bax also advocate the apoptotic cell death. We propose a p53-mediated apoptosis via increased expression of Bax gene and protein. Thus, the exact mechanism behind RB phototoxicity was the involvement of (1)O2, which induced oxidative stress-mediated DNA and membrane damage, finally apoptotic cell death under natural sunlight exposure. The study suggests that after the use of RB, sunlight exposure may avoid to prevent from its harmful effects.
Collapse
Affiliation(s)
- Ajeet K Srivastav
- Photobiology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Syed Faiz Mujtaba
- Photobiology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Ashish Dwivedi
- Photobiology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Saroj K Amar
- Photobiology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, Uttar Pradesh, India
| | - Shruti Goyal
- Photobiology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, Uttar Pradesh, India
| | - Ankit Verma
- Photobiology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Hari N Kushwaha
- Photobiology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rajnish K Chaturvedi
- Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research,Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, Uttar Pradesh, India
| | - Ratan Singh Ray
- Photobiology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
44
|
Wang N, Xu ZW, Wang KH. Systematical analysis of cutaneous squamous cell carcinoma network of microRNAs, transcription factors, and target and host genes. Asian Pac J Cancer Prev 2015; 15:10355-61. [PMID: 25556475 DOI: 10.7314/apjcp.2014.15.23.10355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNA molecules found in multicellular eukaryotes which are implicated in development of cancer, including cutaneous squamous cell carcinoma (cSCC). Expression is controlled by transcription factors (TFs) that bind to specific DNA sequences, thereby controlling the flow (or transcription) of genetic information from DNA to messenger RNA. Interactions result in biological signal control networks. MATERIALS AND METHODS Molecular components involved in cSCC were here assembled at abnormally expressed, related and global levels. Networks at these three levels were constructed with corresponding biological factors in term of interactions between miRNAs and target genes, TFs and miRNAs, and host genes and miRNAs. Up/down regulation or mutation of the factors were considered in the context of the regulation and significant patterns were extracted. RESULTS Participants of the networks were evaluated based on their expression and regulation of other factors. Sub-networks with two core TFs, TP53 and EIF2C2, as the centers are identified. These share self-adapt feedback regulation in which a mutual restraint exists. Up or down regulation of certain genes and miRNAs are discussed. Some, for example the expression of MMP13, were in line with expectation while others, including FGFR3, need further investigation of their unexpected behavior. CONCLUSIONS The present research suggests that dozens of components, miRNAs, TFs, target genes and host genes included, unite as networks through their regulation to function systematically in human cSCC. Networks built under the currently available sources provide critical signal controlling pathways and frequent patterns. Inappropriate controlling signal flow from abnormal expression of key TFs may push the system into an incontrollable situation and therefore contributes to cSCC development.
Collapse
Affiliation(s)
- Ning Wang
- Department of Computer Science and Technology, Jilin University, Changchun, China E-mail :
| | | | | |
Collapse
|
45
|
Large-scale RNA-Seq Transcriptome Analysis of 4043 Cancers and 548 Normal Tissue Controls across 12 TCGA Cancer Types. Sci Rep 2015; 5:13413. [PMID: 26292924 PMCID: PMC4544034 DOI: 10.1038/srep13413] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 07/27/2015] [Indexed: 12/21/2022] Open
Abstract
The Cancer Genome Atlas (TCGA) has accrued RNA-Seq-based transcriptome data for more than 4000 cancer tissue samples across 12 cancer types, translating these data into biological insights remains a major challenge. We analyzed and compared the transcriptomes of 4043 cancer and 548 normal tissue samples from 21 TCGA cancer types, and created a comprehensive catalog of gene expression alterations for each cancer type. By clustering genes into co-regulated gene sets, we identified seven cross-cancer gene signatures altered across a diverse panel of primary human cancer samples. A 14-gene signature extracted from these seven cross-cancer gene signatures precisely differentiated between cancerous and normal samples, the predictive accuracy of leave-one-out cross-validation (LOOCV) were 92.04%, 96.23%, 91.76%, 90.05%, 88.17%, 94.29%, and 99.10% for BLCA, BRCA, COAD, HNSC, LIHC, LUAD, and LUSC, respectively. A lung cancer-specific gene signature, containing SFTPA1 and SFTPA2 genes, accurately distinguished lung cancer from other cancer samples, the predictive accuracy of LOOCV for TCGA and GSE5364 data were 95.68% and 100%, respectively. These gene signatures provide rich insights into the transcriptional programs that trigger tumorigenesis and metastasis, and many genes in the signature gene panels may be of significant value to the diagnosis and treatment of cancer.
Collapse
|
46
|
Park SA, Platt J, Lee JW, López-Giráldez F, Herbst RS, Koo JS. E2F8 as a Novel Therapeutic Target for Lung Cancer. J Natl Cancer Inst 2015; 107:djv151. [PMID: 26089541 DOI: 10.1093/jnci/djv151] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/06/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The E2F members have been divided into transcription activators (E2F1-E2F3) and repressors (E2F4-E2F8). E2F8 with E2F7 has been known to play an important physiologic role in embryonic development and cell cycle regulation by repressing E2F1. However, the function of E2F8 in cancer cells is unknown. METHODS E2F8 expression was assessed by immunoblotting or immunofluorescence staining in human lung cancer (LC) cells and tissues from LC patients (n = 45). Cell proliferation, colony formation, and invasion analysis were performed to evaluate the role of E2F8 in LC. Microarray analysis was used to determine the target genes of E2F8. The regulation of E2F8 on the expression of ubiquitin-like PHD and RING domain-containing 1 (UHRF1), one of E2F8 target genes, was determined using chromatin immunoprecipitation and promoter activity assays. Human LC xenograft models were used to determine the effects of inhibiting E2F8 by siRNAs (n = 7 per group) or antisense morpholino (n = 8 per group) on tumor growth. Survival was analyzed using the Kaplan-Meier method and group differences by the Student's t test. All statistical tests were two-sided. RESULTS LC tumors overexpressed E2F8 compared with normal lung tissues. Depletion of E2F8 inhibited cell proliferation and tumor growth. E2F8 knockdown statistically significantly reduced the expression of UHRF1 (~60%-70%, P < .001), and the direct binding of E2F8 on the promoter of UHRF1 was identified. Kaplan-Meier analysis with a public database showed prognostic significance of aberrant E2F8 expression in LC (HR = 1.91 95% CI = 1.21 to 3.01 in chemo-naïve patients, P = .0047). CONCLUSIONS We demonstrated that E2F8 is overexpressed in LC and is required for the growth of LC cells. These findings implicate E2F8 as a novel therapeutic target for LC treatment.
Collapse
Affiliation(s)
- Sin-Aye Park
- Section of Medical Oncology, Department of Internal Medicine (SAP, JWL, RSH, JSK) and Translational Research Program (RSH, JSK), Yale Comprehensive Cancer Center, Departments of Pathology and Medical Oncology (JP), Yale School of Medicine, New Haven, CT; Yale Center for Genome Analysis, Yale University, Orange, CT (FLG)
| | - James Platt
- Section of Medical Oncology, Department of Internal Medicine (SAP, JWL, RSH, JSK) and Translational Research Program (RSH, JSK), Yale Comprehensive Cancer Center, Departments of Pathology and Medical Oncology (JP), Yale School of Medicine, New Haven, CT; Yale Center for Genome Analysis, Yale University, Orange, CT (FLG)
| | - Jong Woo Lee
- Section of Medical Oncology, Department of Internal Medicine (SAP, JWL, RSH, JSK) and Translational Research Program (RSH, JSK), Yale Comprehensive Cancer Center, Departments of Pathology and Medical Oncology (JP), Yale School of Medicine, New Haven, CT; Yale Center for Genome Analysis, Yale University, Orange, CT (FLG)
| | - Francesc López-Giráldez
- Section of Medical Oncology, Department of Internal Medicine (SAP, JWL, RSH, JSK) and Translational Research Program (RSH, JSK), Yale Comprehensive Cancer Center, Departments of Pathology and Medical Oncology (JP), Yale School of Medicine, New Haven, CT; Yale Center for Genome Analysis, Yale University, Orange, CT (FLG)
| | - Roy S Herbst
- Section of Medical Oncology, Department of Internal Medicine (SAP, JWL, RSH, JSK) and Translational Research Program (RSH, JSK), Yale Comprehensive Cancer Center, Departments of Pathology and Medical Oncology (JP), Yale School of Medicine, New Haven, CT; Yale Center for Genome Analysis, Yale University, Orange, CT (FLG)
| | - Ja Seok Koo
- Section of Medical Oncology, Department of Internal Medicine (SAP, JWL, RSH, JSK) and Translational Research Program (RSH, JSK), Yale Comprehensive Cancer Center, Departments of Pathology and Medical Oncology (JP), Yale School of Medicine, New Haven, CT; Yale Center for Genome Analysis, Yale University, Orange, CT (FLG).
| |
Collapse
|
47
|
Hazar-Rethinam M, de Long LM, Gannon OM, Boros S, Vargas AC, Dzienis M, Mukhopadhyay P, Saenz-Ponce N, Dantzic DDE, Simpson F, Saunders NA. RacGAP1 Is a Novel Downstream Effector of E2F7-Dependent Resistance to Doxorubicin and Is Prognostic for Overall Survival in Squamous Cell Carcinoma. Mol Cancer Ther 2015; 14:1939-50. [PMID: 26018753 DOI: 10.1158/1535-7163.mct-15-0076] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/15/2015] [Indexed: 11/16/2022]
Abstract
We have previously shown that E2F7 contributes to drug resistance in head and neck squamous cell carcinoma (HNSCC) cells. Considering that dysregulation of responses to chemotherapy-induced cytotoxicity is one of the major reasons for treatment failure in HNSCC, identifying the downstream effectors that regulate E2F7-dependent sensitivity to chemotherapeutic agents may have direct clinical impact. We used transcriptomic profiling to identify candidate pathways that contribute to E2F7-dependent resistance to doxorubicin. We then manipulated the expression of the candidate pathway using overexpression and knockdown in in vitro and in vivo models of SCC to demonstrate causality. In addition, we examined the expression of E2F7 and RacGAP1 in a custom tissue microarray (TMA) generated from HNSCC patient samples. Transcriptomic profiling identified RacGAP1 as a potential mediator of E2F7-dependent drug resistance. We validated E2F7-dependent upregulation of RacGAP1 in doxorubicin-insensitive SCC25 cells. Extending this, we found that selective upregulation of RacGAP1 induced doxorubicin resistance in previously sensitive KJDSV40. Similarly, stable knockdown of RacGAP1 in insensitive SCC25 cells induced sensitivity to doxorubicin in vitro and in vivo. RacGAP1 expression was validated in a TMA, and we showed that HNSCCs that overexpress RacGAP1 are associated with a poorer patient overall survival. Furthermore, E2F7-induced doxorubicin resistance was mediated via RacGAP1-dependent activation of AKT. Finally, we show that SCC cells deficient in RacGAP1 grow slower and are sensitized to the cytotoxic actions of doxorubicin in vivo. These findings identify RacGAP1 overexpression as a novel prognostic marker of survival and a potential target to sensitize SCC to doxorubicin.
Collapse
Affiliation(s)
- Mehlika Hazar-Rethinam
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Lilia Merida de Long
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Orla M Gannon
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Samuel Boros
- Department of Pathology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Ana Cristina Vargas
- Department of Pathology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Marcin Dzienis
- Department of Medical Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Pamela Mukhopadhyay
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Natalia Saenz-Ponce
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Daniel D E Dantzic
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Fiona Simpson
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Nicholas A Saunders
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia.
| |
Collapse
|
48
|
Na HN, Yoo YH, Yoon CN, Lee JS. Unbiased proteomic profiling strategy for discovery of bacterial effector proteins reveals that Salmonella protein PheA is a host cell cycle regulator. ACTA ACUST UNITED AC 2015; 22:453-459. [PMID: 25865312 DOI: 10.1016/j.chembiol.2015.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 11/30/2022]
Abstract
Salmonella utilizes a type III secretion system to inject bacterial effector proteins into the host cell cytosol. Once in the cytosol, these effectors hijack various biochemical pathways to regulate virulence. Despite the importance of effector proteins, especially for understanding host-pathogen interactions, a potentially large number of effectors are yet to be identified. Here, we demonstrate that unbiased chemical proteomic profiling using off-the-shelf fluorescent probes leads to the discovery of a host cell cycle regulator encoded in the Salmonella genome. Our profiling combined with bioinformatic analysis implicates 29 Salmonella as potential effectors. We follow up on the top candidate, chorismate mutase-P/prehenate dehydratase, PheA, and present evidence that PheA is an effector that mimics E2F7 transcription factor of the host cell and promotes G1/S cell cycle arrest. This validates our strategy and opens opportunities for effector identification in the future.
Collapse
Affiliation(s)
- Ha-Na Na
- Molecular Recognition Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seoul 136-791, South Korea; Department of Biological Chemistry, University of Science & Technology, 113 Gwahank-ro, Yuseong-gu, Daejeon 305-333, South Korea
| | - Young-Hwa Yoo
- Molecular Recognition Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seoul 136-791, South Korea
| | - Chang No Yoon
- Molecular Recognition Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seoul 136-791, South Korea
| | - Jun-Seok Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seoul 136-791, South Korea; Department of Biological Chemistry, University of Science & Technology, 113 Gwahank-ro, Yuseong-gu, Daejeon 305-333, South Korea.
| |
Collapse
|
49
|
Li Q, Qiu XM, Li QH, Wang XY, Li L, Xu M, Dong M, Xiao YB. MicroRNA-424 may function as a tumor suppressor in endometrial carcinoma cells by targeting E2F7. Oncol Rep 2015; 33:2354-60. [PMID: 25708247 DOI: 10.3892/or.2015.3812] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/08/2014] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) are frequently dysregulated in human cancers and can act as potent oncogenes or tumor suppressor genes. Aberrant expression of miR-424 has been identified in some types of cancer, however, its expression and potential biologic role in endometrial cancer are remains to be determined. In the present study, we demonstrated that miR-424 was downregulated in human endometrial cancer and suppressed growth of the human Ishikawa and HEC-1B endometrial cancer cell lines. Bioinformatics analysis indicated that E2F7 was a putative target of miR-424. In a luciferase reporter system, we confirmed that E2F7 was a direct target gene of miR-424. Furthermore, knockdown of E2F7 inhibited Ishikawa and HEC-1B cell growth. These findings indicate that miR-424 targets the E2F7 transcript and suppresses endometrial cancer cell growth, suggesting that miR-424 has a tumor suppressive role in human endometrial cancer pathogenesis.
Collapse
Affiliation(s)
- Quan Li
- Department of Gynaecology, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizou 563000, P.R. China
| | - Xiang-Mei Qiu
- Department of Gynaecology, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizou 563000, P.R. China
| | - Qing-Han Li
- Department of Gynaecology, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizou 563000, P.R. China
| | - Xiao-Yan Wang
- Department of Gynaecology, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizou 563000, P.R. China
| | - Li Li
- Department of Gynaecology, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizou 563000, P.R. China
| | - Min Xu
- Department of Gynaecology, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizou 563000, P.R. China
| | - Min Dong
- Department of Gynaecology, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizou 563000, P.R. China
| | - Yan-Bing Xiao
- Department of Gynaecology, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizou 563000, P.R. China
| |
Collapse
|
50
|
Mujtaba SF, Dwivedi A, Yadav N, Ch R, Kushwaha HN, Mudiam MKR, Singh G, Ray RS. Superoxide mediated photomodification and DNA damage induced apoptosis by Benz(a)anthracene via mitochondrial mediated pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 142:92-102. [PMID: 25528193 DOI: 10.1016/j.jphotobiol.2014.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/08/2014] [Accepted: 11/24/2014] [Indexed: 11/18/2022]
Abstract
Benz(a)anthracene (BA) is an ubiquitous environmental pollutant of polycyclic aromatic hydrocarbon's (PAHs) family. We showed superoxide (O2(-)) catalyzed BA photo modification and apoptosis in HaCaT keratinocytes under sunlight exposure. O2(-) generation was confirmed by quenching through superoxide dismutase (SOD). BA induced photocytotoxicity were investigated through MTT and NRU assay. We proposed DNA insults such as single and double strand breakage and CPDs formation which results in cell cycle arrest and apoptosis by photosensitized BA. BA induced apoptosis was caspase dependent and occurred through a mitochondrial pathway. Reduction of mitochondrial membrane potential, translocation of Bax to mitochondria and cytochrome c release favors involvement of mitochondria in BA phototoxicity. AO/EB double staining and TEM analysis also support apoptotic cell death. We propose a p21 regulated apoptosis via expression of Bax, and cleaved PARP under sunlight exposure. Thus, we conclude that it is imperative to avoid solar radiation during peak hr (between 11A.M. and 3P.M.) when the amount of solar radiation is high, in the light of DNA damage which may lead to mutation or skin cancer through photosensitized BA under sunlight exposure. Concomitantly, investigation is urgently required for the photosafety of BA photoproducts reaching in the environment through photomodification.
Collapse
Affiliation(s)
- Syed Faiz Mujtaba
- Photobiology Division, CSIR - Indian Institute of Toxicology Research, India; College of Pharmacy, Faculty of Pharmaceutical Sciences, Pt. B.D.S University of Health Sciences, Rohtak, Haryana, India
| | - Ashish Dwivedi
- Photobiology Division, CSIR - Indian Institute of Toxicology Research, India
| | - Neera Yadav
- Photobiology Division, CSIR - Indian Institute of Toxicology Research, India; College of Pharmacy, Faculty of Pharmaceutical Sciences, Pt. B.D.S University of Health Sciences, Rohtak, Haryana, India
| | - Ratnasekhar Ch
- Analytical Chemistry, CSIR - Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | | | - Mohana K R Mudiam
- Analytical Chemistry, CSIR - Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Gajendra Singh
- College of Pharmacy, Faculty of Pharmaceutical Sciences, Pt. B.D.S University of Health Sciences, Rohtak, Haryana, India
| | - Ratan S Ray
- Photobiology Division, CSIR - Indian Institute of Toxicology Research, India.
| |
Collapse
|