1
|
Gonzàlez Gutierrez C, Aimard A, Biarnes-Pélicot M, Kerfelec B, Puech PH, Robert P, Piazza F, Chames P, Limozin L. Decoupling Individual Host Response and Immune Cell Engager Cytotoxic Potency. ACS NANO 2025; 19:2089-2098. [PMID: 39791371 DOI: 10.1021/acsnano.4c08541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Immune cell engagers are molecular agents, usually antibody-based constructs, engineered to recruit immune cells against cancer cells and kill them. They are versatile and powerful tools for cancer immunotherapy. Despite the multiplication of engagers tested and accepted in the clinic, how molecular and cellular parameters influence their actions is poorly understood. In particular, disentangling the respective roles of host immune cells and engager biophysical characteristics is needed to improve their design and efficiency. Focusing here on harnessing antibody-dependent Natural Killer cell cytotoxicity, we measure the efficiency of 6 original bispecific antibodies (bsAb), associating an anti-HER2 nanobody and an anti-CD16 nanobody. In vitro cytotoxicity data using primary human NK cells on different target cell lines exposing different antigen densities were collected, exhibiting a wide range of bsAb dose response. In order to rationalize our observations, we introduce a simple multiscale model, postulating that the density of bsAb bridging the two cells is the main parameter triggering the cytotoxic response. We introduce two microscopic parameters: the surface cooperativity describing bsAb affinity at the bridging step and the threshold of bridge density determining the donor-dependent response. Both parameters permit ranking Abs and donors and predicting bsAb potency as a function of antibodies bulk affinities and receptor surface densities on cells. Our approach thus provides a general way to decouple donor response from immune engager characteristics, rationalizing the landscape of molecule design.
Collapse
Affiliation(s)
| | - Adrien Aimard
- Aix-Marseille Univ., CNRS, INSERM, Institut Paoli Calmettes, CRCM, 13009 Marseille, France
| | | | - Brigitte Kerfelec
- Aix-Marseille Univ., CNRS, INSERM, Institut Paoli Calmettes, CRCM, 13009 Marseille, France
| | - Pierre-Henri Puech
- Aix-Marseille Univ., CNRS, INSERM, LAI, Centuri Living Systems, 13009 Marseille, France
| | - Philippe Robert
- Aix-Marseille Univ., CNRS, INSERM, LAI, Centuri Living Systems, 13009 Marseille, France
- Assistance Publique Hôpitaux de Marseille, 13005 Marseille, France
| | - Francesco Piazza
- CNRS, Univ. Orleans, CBM, 45000 Orleans, France
- Dipartimento di Fisica e Astronomia, Università di Firenze and INFN sezione di Firenze, 50019 Sesto Fiorentino, Italy
| | - Patrick Chames
- Aix-Marseille Univ., CNRS, INSERM, Institut Paoli Calmettes, CRCM, 13009 Marseille, France
| | - Laurent Limozin
- Aix-Marseille Univ., CNRS, INSERM, LAI, Centuri Living Systems, 13009 Marseille, France
| |
Collapse
|
2
|
Giron LB, Pasternak AO, Abdel-Mohsen M. Soluble markers of viral rebound and post-treatment HIV control. Curr Opin HIV AIDS 2025; 20:61-69. [PMID: 39392413 PMCID: PMC11620946 DOI: 10.1097/coh.0000000000000889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
PURPOSE OF REVIEW We focus on the different classes of biological molecules measurable in easily accessible bodily fluids that have the potential to serve as biomarkers for the HIV post-treatment controller (PTC) phenotype and/or the timing of viral rebound after stopping antiretroviral therapy (ART). RECENT FINDINGS Various viral components and host factors measurable in body fluids can play crucial roles in understanding and predicting the PTC phenotype. We review recent findings linking viral components, the quantitative and qualitative features of antibodies (including autologous HIV-specific antibodies), markers of inflammation and tissue damage, other host proteins (including hormones such as sex hormones), as well as metabolites, extracellular vesicles, and cell-free DNA to HIV control post-ART interruption. Several of these molecules can or have the potential to predict the time and probability of viral rebound after stopping ART and are biologically active molecules that can directly or indirectly (by modulating immune pressures) impact the size and activity of HIV reservoirs during and post-ART interruption. SUMMARY A comprehensive model combining multiple markers is needed to predict the PTC phenotype. This model can be leveraged to predict and understand the PTC phenotype, which can guide novel curative interventions to replicate this phenotype in post-treatment non-controllers.
Collapse
Affiliation(s)
| | - Alexander O. Pasternak
- Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
| | | |
Collapse
|
3
|
Krištić J, Lauc G. The importance of IgG glycosylation-What did we learn after analyzing over 100,000 individuals. Immunol Rev 2024; 328:143-170. [PMID: 39364834 PMCID: PMC11659926 DOI: 10.1111/imr.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
All four subclasses of immunoglobulin G (IgG) antibodies have glycan structures attached to the protein part of the IgG molecules. Glycans linked to the Fc portion of IgG are found in all IgG antibodies, while about one-fifth of IgG antibodies in plasma also have glycans attached to the Fab portion of IgG. The IgG3 subclass is characterized by more complex glycosylation compared to other IgG subclasses. In this review, we discuss the significant influence that glycans exert on the structural and functional properties of IgG. We provide a comprehensive overview of how the composition of these glycans can affect IgG's effector functions by modulating its interactions with Fcγ receptors and other molecules such as the C1q component of complement, which in turn influence various immune responses triggered by IgG, including antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). In addition, the importance of glycans for the efficacy of therapeutics like monoclonal antibodies and intravenous immunoglobulin (IVIg) therapy is discussed. Moreover, we offer insights into IgG glycosylation characteristics and roles derived from general population, disease-specific, and interventional studies. These studies indicate that IgG glycans are important biomarkers and functional effectors in health and disease.
Collapse
Affiliation(s)
| | - Gordan Lauc
- Genos Glycoscience Research LaboratoryZagrebCroatia
- Faculty of Pharmacy and BiochemistryUniversity of ZagrebZagrebCroatia
| |
Collapse
|
4
|
Shin J, Oh S, Jang M, Lee S, Min C, Eu Y, Begum H, Kim J, Lee GR, Oh H, Paul MJ, Ma JK, Gwak H, Youn H, Kim S. Enhanced efficacy of glycoengineered rice cell-produced trastuzumab. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3068-3081. [PMID: 39016470 PMCID: PMC11500988 DOI: 10.1111/pbi.14429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/03/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024]
Abstract
For several decades, a plant-based expression system has been proposed as an alternative platform for the production of biopharmaceuticals including therapeutic monoclonal antibodies (mAbs), but the immunogenicity concerns associated with plant-specific N-glycans attached in plant-based biopharmaceuticals has not been completely solved. To eliminate all plant-specific N-glycan structure, eight genes involved in plant-specific N-glycosylation were mutated in rice (Oryza sativa) using the CRISPR/Cas9 system. The glycoengineered cell lines, PhytoRice®, contained a predominant GnGn (G0) glycoform. The gene for codon-optimized trastuzumab (TMab) was then introduced into PhytoRice® through Agrobacterium co-cultivation. Selected cell lines were suspension cultured, and TMab secreted from cells was purified from the cultured media. The amino acid sequence of the TMab produced by PhytoRice® (P-TMab) was identical to that of TMab. The inhibitory effect of P-TMab on the proliferation of the BT-474 cancer cell line was significantly enhanced at concentrations above 1 μg/mL (****P < 0.0001). P-TMab bound to a FcγRIIIa variant, FcγRIIIa-F158, more than 2.7 times more effectively than TMab. The ADCC efficacy of P-TMab against Jurkat cells was 2.6 times higher than that of TMab in an in vitro ADCC assay. Furthermore, P-TMab demonstrated efficient tumour uptake with less liver uptake compared to TMab in a xenograft assay using the BT-474 mouse model. These results suggest that the glycoengineered PhytoRice® could be an alternative platform for mAb production compared to current CHO cells, and P-TMab has a novel and enhanced efficacy compared to TMab.
Collapse
Affiliation(s)
- Jun‐Hye Shin
- Department of Life ScienceSogang UniversitySeoulSouth Korea
- PhytoMab Co. Ltd.SeoulSouth Korea
| | - Sera Oh
- Department of Nuclear Medicine, Cancer Imaging CenterSeoul National University HospitalSeoulSouth Korea
- Cancer Research Institute, Seoul National University College of MedicineSeoulSouth Korea
| | | | - Seok‐Yong Lee
- Department of Nuclear Medicine, Cancer Imaging CenterSeoul National University HospitalSeoulSouth Korea
- Cancer Research Institute, Seoul National University College of MedicineSeoulSouth Korea
| | - Chanhong Min
- Department of ChemistrySogang UniversitySeoulSouth Korea
| | | | - Hilal Begum
- Department of Life ScienceSogang UniversitySeoulSouth Korea
| | - Jong‐Chan Kim
- Department of Life ScienceSogang UniversitySeoulSouth Korea
| | - Gap Ryol Lee
- Department of Life ScienceSogang UniversitySeoulSouth Korea
| | - Han‐Bin Oh
- Department of ChemistrySogang UniversitySeoulSouth Korea
| | - Matthew J. Paul
- Hotung Molecular Immunology Unit, Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Julian K.‐C. Ma
- Hotung Molecular Immunology Unit, Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Ho‐Shin Gwak
- National Cancer Center KoreaGoyang‐si, Kyunggi‐doSouth Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Cancer Imaging CenterSeoul National University HospitalSeoulSouth Korea
- Cancer Research Institute, Seoul National University College of MedicineSeoulSouth Korea
| | - Seong‐Ryong Kim
- Department of Life ScienceSogang UniversitySeoulSouth Korea
- PhytoMab Co. Ltd.SeoulSouth Korea
| |
Collapse
|
5
|
Bean DJ, Liang YM, Sagar M. Recent Endemic Coronavirus Infection Associates With Higher SARS-CoV-2 Cross-Reactive Fc Receptor Binding Antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619886. [PMID: 39484477 PMCID: PMC11527020 DOI: 10.1101/2024.10.23.619886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Recent documented infection with an endemic coronavirus (eCoV) associates with less severe coronavirus disease 2019 (COVID-19), yet the immune mechanism behind this protection has not been fully explored. We measured both antibody and T cell responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in SARS-CoV-2 naïve individuals classified into two groups, either with or without presumed recent eCoV infections. There was no difference in neutralizing antibodies and T cell responses against SARS-CoV-2 antigens between the two groups. SARS-CoV-2 naïve individuals with recent presumed eCoV infection, however, had higher levels of Fc receptor (FcR) binding antibodies against eCoV spikes (S) and SARS-CoV-2 S2. There was also a significant correlation between eCoV and SARS-CoV-2 FcR binding antibodies. Recent eCoV infection boosts cross-reactive antibodies that can mediate Fc effector functions, and this may play a role in the observed heterotypic immune protection against severe COVID-19.
Collapse
Affiliation(s)
- David J. Bean
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine; Boston, MA
| | - Yan Mei Liang
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine; Boston, MA
| | - Manish Sagar
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine; Boston, MA
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine; Boston, MA
| |
Collapse
|
6
|
Yan Y, Xing T, Huang X, Peng W, Wang S, Li N. Affinity-Resolved Size Exclusion Chromatography Coupled to Mass Spectrometry: A Novel Tool to Study the Attribute-and-Function Relationship in Therapeutic Monoclonal Antibodies. Anal Chem 2024; 96:11716-11724. [PMID: 38986034 PMCID: PMC11270518 DOI: 10.1021/acs.analchem.4c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Assessment of critical quality attributes (CQAs) is an important aspect during the development of therapeutic monoclonal antibodies (mAbs). Attributes that affect either the target binding or Fc receptor engagement may have direct impacts on the drug safety and efficacy and thus are considered as CQAs. Native size exclusion chromatography (SEC)-based competitive binding assay has recently been reported and demonstrated significant benefits compared to conventional approaches for CQA identification, owing to its faster turn-around and higher multiplexity. Expanding on the similar concept, we report the development of a novel affinity-resolved size exclusion chromatography-mass spectrometry (AR-SEC-MS) method for rapid CQA evaluation in therapeutic mAbs. This method features wide applicability, fast turn-around, high multiplexity, and easy implementation. Using the well-studied Fc gamma receptor III-A (FcγRIIIa) and Fc interaction as a model system, the effectiveness of this method in studying the attribute-and-function relationship was demonstrated. Further, two case studies were detailed to showcase the application of this method in assessing CQAs related to antibody target binding, which included unusual N-linked glycosylation in a bispecific antibody and Met oxidation in a monospecific antibody, both occurring within the complementarity-determining regions (CDRs).
Collapse
Affiliation(s)
- Yuetian Yan
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Tao Xing
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Xiaoxiao Huang
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Wenjing Peng
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Shunhai Wang
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| |
Collapse
|
7
|
Kao MR, Ma TH, Chou HY, Chang SC, Cheng LC, Liao KS, Shie JJ, Harris PJ, Wong CH, Hsieh YSY. A Robust α-l-Fucosidase from Prevotella nigrescens for Glycoengineering Therapeutic Antibodies. ACS Chem Biol 2024; 19:1515-1524. [PMID: 38912881 PMCID: PMC11267573 DOI: 10.1021/acschembio.4c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
Eliminating the core fucose from the N-glycans of the Fc antibody segment by pathway engineering or enzymatic methods has been shown to enhance the potency of therapeutic antibodies, especially in the context of antibody-dependent cytotoxicity (ADCC). However, there is a significant challenge due to the limited defucosylation efficiency of commercially available α-l-fucosidases. In this study, we report a unique α-l-fucosidase (PnfucA) from the bacterium Prevotella nigrescens that has a low sequence identity compared with all other known α-l-fucosidases and is highly reactive toward a core disaccharide substrate with fucose α(1,3)-, α (1,4)-and α(1,6)-linked to GlcNAc, and is less reactive toward the Fuc-α(1,2)-Gal on the terminal trisaccharide of the oligosaccharide Globo H (Bb3). The kinetic properties of the enzyme, such as its Km and kcat, were determined and the optimized expression of PnfucA gave a yield exceeding 30 mg/L. The recombinant enzyme retained its full activity even after being incubated for 6 h at 37 °C. Moreover, it retained 92 and 87% of its activity after freezing and freeze-drying treatments, respectively, for over 28 days. In a representative glycoengineering of adalimumab (Humira), PnfucA showed remarkable hydrolytic efficiency in cleaving the α(1,6)-linked core fucose from FucGlcNAc on the antibody with a quantitative yield. This enabled the seamless incorporation of biantennary sialylglycans by Endo-S2 D184 M in a one-pot fashion to yield adalimumab in a homogeneous afucosylated glycoform with an improved binding affinity toward Fcγ receptor IIIa.
Collapse
Affiliation(s)
- Mu-Rong Kao
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, No. 250 Wuxing Street, Taipei 11031, Taiwan
- Genomics
Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 115201, Taiwan
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology
(KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
| | - Tzu-Hsuan Ma
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, No. 250 Wuxing Street, Taipei 11031, Taiwan
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology
(KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
| | - Hsiang-Yu Chou
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, No. 250 Wuxing Street, Taipei 11031, Taiwan
| | - Shu-Chieh Chang
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology
(KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
| | - Lin-Chen Cheng
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, No. 250 Wuxing Street, Taipei 11031, Taiwan
| | - Kuo-Shiang Liao
- Genomics
Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 115201, Taiwan
| | - Jiun-Jie Shie
- Institute
of Chemistry, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 115201, Taiwan
| | - Philip J. Harris
- School
of Biological Sciences, The University of
Auckland, Auckland Mail Centre, Private Bag 92019, Auckland 1142, New Zealand
| | - Chi-Huey Wong
- Genomics
Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 115201, Taiwan
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yves S. Y. Hsieh
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, No. 250 Wuxing Street, Taipei 11031, Taiwan
- Genomics
Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 115201, Taiwan
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology
(KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
| |
Collapse
|
8
|
Gilormini PA, Thota VN, Fers-Lidou A, Ashmus RA, Nodwell M, Brockerman J, Kuo CW, Wang Y, Gray TE, Nitin, McDonagh AW, Guu SY, Ertunc N, Yeo D, Zandberg WF, Khoo KH, Britton R, Vocadlo DJ. A metabolic inhibitor blocks cellular fucosylation and enables production of afucosylated antibodies. Proc Natl Acad Sci U S A 2024; 121:e2314026121. [PMID: 38917011 PMCID: PMC11228515 DOI: 10.1073/pnas.2314026121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
The fucosylation of glycoproteins regulates diverse physiological processes. Inhibitors that can control cellular levels of protein fucosylation have consequently emerged as being of high interest. One area where inhibitors of fucosylation have gained significant attention is in the production of afucosylated antibodies, which exhibit superior antibody-dependent cell cytotoxicity as compared to their fucosylated counterparts. Here, we describe β-carbafucose, a fucose derivative in which the endocyclic ring oxygen is replaced by a methylene group, and show that it acts as a potent metabolic inhibitor within cells to antagonize protein fucosylation. β-carbafucose is assimilated by the fucose salvage pathway to form GDP-carbafucose which, due to its being unable to form the oxocarbenium ion-like transition states used by fucosyltransferases, is an incompetent substrate for these enzymes. β-carbafucose treatment of a CHO cell line used for high-level production of the therapeutic antibody Herceptin leads to dose-dependent reductions in core fucosylation without affecting cell growth or antibody production. Mass spectrometry analyses of the intact antibody and N-glycans show that β-carbafucose is not incorporated into the antibody N-glycans at detectable levels. We expect that β-carbafucose will serve as a useful research tool for the community and may find immediate application for the rapid production of afucosylated antibodies for therapeutic purposes.
Collapse
Affiliation(s)
| | | | - Anthony Fers-Lidou
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Roger A. Ashmus
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Matthew Nodwell
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Jacob Brockerman
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Chu-Wei Kuo
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei11529, Taiwan
| | - Yang Wang
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Taylor E. Gray
- Department of Chemistry, University of British Columbia, Kelowna, BCV1V 1V7, Canada
| | - Nitin
- Department of Chemistry, University of British Columbia, Kelowna, BCV1V 1V7, Canada
| | - Anthony W. McDonagh
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Shih-Yun Guu
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei11529, Taiwan
| | - Nursah Ertunc
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | | | - Wesley F. Zandberg
- Department of Chemistry, University of British Columbia, Kelowna, BCV1V 1V7, Canada
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei11529, Taiwan
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - David J. Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| |
Collapse
|
9
|
Giron LB, Liu Q, Adeniji OS, Yin X, Kannan T, Ding J, Lu DY, Langan S, Zhang J, Azevedo JLLC, Li SH, Shalygin S, Azadi P, Hanna DB, Ofotokun I, Lazar J, Fischl MA, Haberlen S, Macatangay B, Adimora AA, Jamieson BD, Rinaldo C, Merenstein D, Roan NR, Kutsch O, Gange S, Wolinsky SM, Witt MD, Post WS, Kossenkov A, Landay AL, Frank I, Tien PC, Gross R, Brown TT, Abdel-Mohsen M. Immunoglobulin G N-glycan markers of accelerated biological aging during chronic HIV infection. Nat Commun 2024; 15:3035. [PMID: 38600088 PMCID: PMC11006954 DOI: 10.1038/s41467-024-47279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
People living with HIV (PLWH) experience increased vulnerability to premature aging and inflammation-associated comorbidities, even when HIV replication is suppressed by antiretroviral therapy (ART). However, the factors associated with this vulnerability remain uncertain. In the general population, alterations in the N-glycans on IgGs trigger inflammation and precede the onset of aging-associated diseases. Here, we investigate the IgG N-glycans in cross-sectional and longitudinal samples from 1214 women and men, living with and without HIV. PLWH exhibit an accelerated accumulation of pro-aging-associated glycan alterations and heightened expression of senescence-associated glycan-degrading enzymes compared to controls. These alterations correlate with elevated markers of inflammation and the severity of comorbidities, potentially preceding the development of such comorbidities. Mechanistically, HIV-specific antibodies glycoengineered with these alterations exhibit a reduced ability to elicit anti-HIV Fc-mediated immune activities. These findings hold potential for the development of biomarkers and tools to identify and prevent premature aging and comorbidities in PLWH.
Collapse
Affiliation(s)
| | - Qin Liu
- The Wistar Institute, Philadelphia, PA, USA
| | | | | | | | | | - David Y Lu
- The Wistar Institute, Philadelphia, PA, USA
- Cornell University, New York, NY, USA
| | | | | | | | - Shuk Hang Li
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | - Igho Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jason Lazar
- SUNY Downstate Health Sciences University, New York, NY, USA
| | - Margaret A Fischl
- Division of Infectious Disease, Department of Medicine, University of Miami, Miami, FL, USA
| | | | | | | | | | | | | | - Nadia R Roan
- Gladstone Institutes, San Francisco, CA, USA
- University of California San Francisco, San Francisco, CA, USA
| | - Olaf Kutsch
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Mallory D Witt
- Lundquist Institute of Biomedical Research at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | | | | | - Ian Frank
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Phyllis C Tien
- University of California San Francisco, San Francisco, CA, USA
| | - Robert Gross
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
10
|
Giron LB, Liu Q, Adeniji OS, Yin X, Kannan T, Ding J, Lu DY, Langan S, Zhang J, Azevedo JLLC, Li SH, Shalygin S, Azadi P, Hanna DB, Ofotokun I, Lazar J, Fischl MA, Haberlen S, Macatangay B, Adimora AA, Jamieson BD, Rinaldo C, Merenstein D, Roan NR, Kutsch O, Gange S, Wolinsky S, Witt M, Post WS, Kossenkov A, Landay A, Frank I, Tien PC, Gross R, Brown TT, Abdel-Mohsen M. Plasma Glycomic Markers of Accelerated Biological Aging During Chronic HIV Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.551369. [PMID: 37609144 PMCID: PMC10441429 DOI: 10.1101/2023.08.09.551369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
People with HIV (PWH) experience an increased vulnerability to premature aging and inflammation-associated comorbidities, even when HIV replication is suppressed by antiretroviral therapy (ART). However, the factors that contribute to or are associated with this vulnerability remain uncertain. In the general population, alterations in the glycomes of circulating IgGs trigger inflammation and precede the onset of aging-associated diseases. Here, we investigate the IgG glycomes of cross-sectional and longitudinal samples from 1,216 women and men, both living with virally suppressed HIV and those without HIV. Our glycan-based machine learning models indicate that living with chronic HIV significantly accelerates the accumulation of pro-aging-associated glycomic alterations. Consistently, PWH exhibit heightened expression of senescence-associated glycan-degrading enzymes compared to their controls. These glycomic alterations correlate with elevated markers of inflammatory aging and the severity of comorbidities, potentially preceding the development of such comorbidities. Mechanistically, HIV-specific antibodies glycoengineered with these alterations exhibit reduced anti-HIV IgG-mediated innate immune functions. These findings hold significant potential for the development of glycomic-based biomarkers and tools to identify and prevent premature aging and comorbidities in people living with chronic viral infections.
Collapse
Affiliation(s)
| | - Qin Liu
- The Wistar Institute, Philadelphia, PA, USA
| | | | | | | | | | - David Y. Lu
- The Wistar Institute, Philadelphia, PA, USA
- Cornell University, New York, NY, USA
| | | | | | | | - Shuk Hang Li
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | - Igho Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jason Lazar
- SUNY Downstate Health Sciences University, New York, NY, USA
| | | | | | | | | | | | | | | | - Nadia R. Roan
- Gladstone Institutes, San Francisco, CA, USA
- University of California San Francisco, San Francisco, CA, USA
| | - Olaf Kutsch
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | - Mallory Witt
- Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | | | | | | | - Ian Frank
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Phyllis C. Tien
- University of California San Francisco, San Francisco, CA, USA
| | - Robert Gross
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
11
|
Bauer-Smith H, Sudol ASL, Beers SA, Crispin M. Serum immunoglobulin and the threshold of Fc receptor-mediated immune activation. Biochim Biophys Acta Gen Subj 2023; 1867:130448. [PMID: 37652365 PMCID: PMC11032748 DOI: 10.1016/j.bbagen.2023.130448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Antibodies can mediate immune recruitment or clearance of immune complexes through the interaction of their Fc domain with cellular Fc receptors. Clustering of antibodies is a key step in generating sufficient avidity for efficacious receptor recognition. However, Fc receptors may be saturated with prevailing, endogenous serum immunoglobulin and this raises the threshold by which cellular receptors can be productively engaged. Here, we review the factors controlling serum IgG levels in both healthy and disease states, and discuss how the presence of endogenous IgG is encoded into the functional activation thresholds for low- and high-affinity Fc receptors. We discuss the circumstances where antibody engineering can help overcome these physiological limitations of therapeutic antibodies. Finally, we discuss how the pharmacological control of Fc receptor saturation by endogenous IgG is emerging as a feasible mechanism for the enhancement of antibody therapeutics.
Collapse
Affiliation(s)
- Hannah Bauer-Smith
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Abigail S L Sudol
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Stephen A Beers
- Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
12
|
Fukuoka S, Koga Y, Yamauchi M, Koganemaru S, Yasunaga M, Shitara K, Doi T, Yoshino T, Kuronita T, Elenbaas B, Wahra P, Zhang H, Crowley L, Jenkins MH, Clark A, Kojima T. p70S6K/Akt dual inhibitor DIACC3010 is efficacious in preclinical models of gastric cancer alone and in combination with trastuzumab. Sci Rep 2023; 13:16017. [PMID: 37749105 PMCID: PMC10520030 DOI: 10.1038/s41598-023-40612-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/14/2023] [Indexed: 09/27/2023] Open
Abstract
The PI3K-Akt-mTOR (PAM) pathway is implicated in tumor progression in many tumor types, including metastatic gastric cancer (GC). The initial promise of PAM inhibitors has been unrealized in the clinic, presumably due, in part, to the up-regulation of Akt signaling that occurs when the pathway is inhibited. Here we present that DIACC3010 (formerly M2698), an inhibitor of two nodes in the PAM pathway, p70S6K and Akt 1/3, blocks the pathway in in vitro and in vivo preclinical models of GC while providing a mechanism that inhibits signaling from subsequent Akt up-regulation. Utilizing GC cell lines and xenograft models, we identified potential markers of DIACC3010-sensitivity in Her2-negative tumors, i.e., PIK3CA mutations, low basal pERK, and a group of differentially expressed genes (DEGs). The combination of DIACC3010 and trastuzumab was evaluated in Her2-positive cell lines and models. Potential biomarkers for the synergistic efficacy of the combination of DIACC3010 + trastuzumab also included DEGs as well as a lack of up-regulation of pERK. Of 27 GC patient-derived xenograft (PDX) models tested in BALB/c nu/nu mice, 59% were sensitive to DIACC3010 + trastuzumab. Of the 21 HER2-negative PDX models, DIACC3010 significantly inhibited the growth of 38%. Altogether, these results provide a path forward to validate the potential biomarkers of DIACC3010 sensitivity in GC and support clinical evaluation of DIACC3010 monotherapy and combination with trastuzumab in patients with HER2- negative and positive advanced GCs, respectively.
Collapse
Affiliation(s)
- Shota Fukuoka
- Division of Experimental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Yoshikatsu Koga
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Hospital, Kashiwa, Japan
| | - Mayumi Yamauchi
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Shigehiro Koganemaru
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masahiro Yasunaga
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Hospital, Kashiwa, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Toshihiko Doi
- Division of Experimental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Toshio Kuronita
- Merck Biopharma Co., Ltd. (an affiliate of Merck KGaA), Tokyo, Japan
| | - Brian Elenbaas
- EMD Serono Research & Development Institute, Inc. (an affiliate of Merck KGaA), Billerica, MA, USA
| | - Pamela Wahra
- EMD Serono Research & Development Institute, Inc. (an affiliate of Merck KGaA), Billerica, MA, USA
| | - Hong Zhang
- EMD Serono Research & Development Institute, Inc. (an affiliate of Merck KGaA), Billerica, MA, USA
| | - Lindsey Crowley
- EMD Serono Research & Development Institute, Inc. (an affiliate of Merck KGaA), Billerica, MA, USA
| | - Molly H Jenkins
- EMD Serono Research & Development Institute, Inc. (an affiliate of Merck KGaA), Billerica, MA, USA
| | - Anderson Clark
- EMD Serono Research & Development Institute, Inc. (an affiliate of Merck KGaA), Billerica, MA, USA
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| |
Collapse
|
13
|
Kiaei SZF, Nouralishahi A, Ghasemirad M, Barkhordar M, Ghaffari S, Kheradjoo H, Saleh M, Mohammadzadehsaliani S, Molaeipour Z. Advances in natural killer cell therapies for breast cancer. Immunol Cell Biol 2023; 101:705-726. [PMID: 37282729 DOI: 10.1111/imcb.12658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 06/08/2023]
Abstract
Breast cancer (BC) is the most common cause of cancer death in women. According to the American Cancer Society's yearly cancer statistics, BC constituted almost 15% of all the newly diagnosed cancer cases in 2022 for both sexes. Metastatic disease occurs in 30% of patients with BC. The currently available treatments fail to cure metastatic BC, and the average survival time for patients with metastatic BC is approximately 2 years. Developing a treatment method that terminates cancer stem cells without harming healthy cells is the primary objective of novel therapeutics. Adoptive cell therapy is a branch of cancer immunotherapy that utilizes the immune cells to attack cancer cells. Natural killer (NK) cells are an essential component of innate immunity and are critical in destroying tumor cells without prior stimulation with antigens. With the advent of chimeric antigen receptors (CARs), the autologous or allogeneic use of NK/CAR-NK cell therapy has raised new hopes for treating patients with cancer. Here, we describe recent developments in NK and CAR-NK cell immunotherapy, including the biology and function of NK cells, clinical trials, different sources of NK cells and their future perspectives on BC.
Collapse
Affiliation(s)
- Seyedeh Zahra Fotook Kiaei
- Department of Pulmonary and Critical Care, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Ghasemirad
- Department of Periodontics, Faculty of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Barkhordar
- Hematology, Oncology and Stem Cell Transplantation Research Center (HORCSCT), Tehran University of Medical Sciences, Tehran, Iran
| | - Sasan Ghaffari
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | - Mahshid Saleh
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, USA
| | | | - Zahra Molaeipour
- Hematology Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Huan T, Guan B, Li H, Tu X, Zhang C, Tang B. Principles and current clinical landscape of NK cell engaging bispecific antibody against cancer. Hum Vaccin Immunother 2023; 19:2256904. [PMID: 37772505 PMCID: PMC10543353 DOI: 10.1080/21645515.2023.2256904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
Monoclonal antibody-based targeted therapies have greatly improved treatment options for patients by binding to the innate immune system. However, the long-term efficacy of such antibodies is limited by mechanisms of drug resistance. Over the last 50 years, with advances in protein engineering technology, more and more bispecific antibody (bsAb) platforms have been engineered to meet diverse clinical needs. Bispecific NK cell engagers (BiKEs) or tri-specific NK cell engagers (TriKEs) allow for direct targeting of immune cells to tumors, and therefore resistance and serious adverse effects are greatly reduced. Many preclinical and clinical trials are currently underway, depicting the promise of antibody-based natural killer cell engager therapeutics. In this review, we compile worldwide efforts to explore the involvement of NK cells in bispecific antibodies. With a particular emphasis on lessons learned, we focus on preclinical and clinical studies in malignancies and discuss the reasons for the limited success of NK-cell engagers against solid tumors, offering plausible new ideas for curing some advanced cancers shortly.
Collapse
Affiliation(s)
- Tian Huan
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bugao Guan
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Hongbo Li
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Xiu Tu
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Chi Zhang
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Bin Tang
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
- Department of Central Laboratory, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| |
Collapse
|
15
|
Yu Y. The Function of NK Cells in Tumor Metastasis and NK Cell-Based Immunotherapy. Cancers (Basel) 2023; 15:cancers15082323. [PMID: 37190251 DOI: 10.3390/cancers15082323] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Metastatic tumors cause the most deaths in cancer patients. Treating metastasis remains the primary goal of current cancer research. Although the immune system prevents and kills the tumor cells, the function of the immune system in metastatic cancer has been unappreciated for decades because tumors are able to develop complex signaling pathways to suppress immune responses, leading them to escape detection and elimination. Studies showed NK cell-based therapies have many advantages and promise for fighting metastatic cancers. We here review the function of the immune system in tumor progression, specifically focusing on the ability of NK cells in antimetastasis, how metastatic tumors escape the NK cell attack, as well as the recent development of effective antimetastatic immunotherapies.
Collapse
Affiliation(s)
- Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Varudkar N, Shiffer EM, Oyer JL, Copik A, Parks GD. Delivery of a novel membrane-anchored Fc chimera enhances NK cell-mediated killing of tumor cells and persistently virus-infected cells. PLoS One 2023; 18:e0285532. [PMID: 37146009 PMCID: PMC10162523 DOI: 10.1371/journal.pone.0285532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) is one of the most powerful mechanisms for Natural Killer (NK) cells to kill cancer cells or virus-infected cells. A novel chimeric protein (NA-Fc) was created, which when expressed in cells, positions an IgG Fc domain on the plasma membrane, mimicking the orientation of IgG bound to the cell surface. This NA-Fc chimera was tested with PM21-NK cells, produced through a previously developed particle-based method which yields superior NK cells for immunotherapeutic applications. Real time viability assays revealed higher PM21-NK killing of both ovarian and lung cancer cells expressing NA-Fc, which correlated with increased release of TNF-α and IFN-γ cytokines from NK cells and was dependent on CD16-Fc interactions. Lentivirus delivery of NA-Fc to target cells increased the rate of PM21-NK cell killing of A549 and H1299 lung, SKOV3 ovarian and A375 melanoma cancer cells. This NA-Fc-directed killing was extended to virus infected cells, where delivery of NA-Fc to lung cells that were persistently infected with Parainfluenza virus resulted in increased killing by PM21-NK cells. In contrast to its effect on PM21-NK cells, the NA-Fc molecule did not enhance complement mediated lysis of lung cancer cells. Our study lays the foundation for application of the novel NA-Fc chimera that could be delivered specifically to tumors during oncolytic virotherapy to mark target cells for ADCC by co-treatment with adoptive NK cells. This strategy would potentially eliminate the need to search for unique cancer specific antigens for development of new antibody therapeutics.
Collapse
Affiliation(s)
- Namita Varudkar
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States of America
| | - Elisabeth M Shiffer
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States of America
| | - Jeremiah L Oyer
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States of America
| | - Alicja Copik
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States of America
| | - Griffith D Parks
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States of America
| |
Collapse
|
17
|
Batran RA, Elmoshneb M, Hussein AS, Hussien OM, Adel F, Elgarhy R, Morsi MI. Biosimilars: Science, Implications, and Potential Outlooks in the Middle East and Africa. Biologics 2022; 16:161-171. [PMID: 36225324 PMCID: PMC9550021 DOI: 10.2147/btt.s376959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/04/2022] [Indexed: 11/28/2022]
Abstract
Biosimilars are biological products that efficiently replicate the function of the originator products. They have changed the prognosis of millions of patients with many serious conditions. The main engine beyond their development is to bring competition into the marketplace, accordingly further the healthcare systems' sustainability. Furthermore, by lowering financial obstacles to biological treatments, biosimilars play a critical role in budgetary redistribution and, hence, promote better allocation of scarce healthcare resources. Today, biosimilars have become a substantial component of effective biological therapies anywhere in the world. Alike, most Middle East and African countries are encouraging the domestic biosimilars industry, and the whole region is aware of the biosimilars' importance. However, constraints to increasing biosimilars uptake should be addressed.
Collapse
Affiliation(s)
- Radwa Ahmed Batran
- Medical Affairs Department, RAY Contract Research Organization, Giza, Egypt
| | - Mai Elmoshneb
- Medical Affairs Department, RAY Contract Research Organization, Giza, Egypt
| | - Ahmed Salah Hussein
- Medical Affairs Department, RAY Contract Research Organization, Giza, Egypt,Faculty of Medicine, Al-Azhar University, Cairo, Egypt,Correspondence: Ahmed Salah Hussein, Faculty of Medicine, Al-Azhar University, Cairo, Egypt, Tel +20 1158276261, Email
| | - Omar M Hussien
- Medical Affairs Department, RAY Contract Research Organization, Giza, Egypt
| | - Fady Adel
- Medical Affairs Department, RAY Contract Research Organization, Giza, Egypt
| | - Reham Elgarhy
- Medical Affairs Department, RAY Contract Research Organization, Giza, Egypt
| | - Mosaad I Morsi
- Medical Affairs Department, RAY Contract Research Organization, Giza, Egypt
| |
Collapse
|
18
|
Chen JL, Fries CN, Berendam SJ, Rodgers NS, Roe EF, Wu Y, Li SH, Jain R, Watts B, Eudailey J, Barfield R, Chan C, Moody MA, Saunders KO, Pollara J, Permar SR, Collier JH, Fouda GG. Self-assembling peptide nanofiber HIV vaccine elicits robust vaccine-induced antibody functions and modulates Fc glycosylation. SCIENCE ADVANCES 2022; 8:eabq0273. [PMID: 36149967 PMCID: PMC9506727 DOI: 10.1126/sciadv.abq0273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
To develop vaccines for certain key global pathogens such as HIV, it is crucial to elicit both neutralizing and non-neutralizing Fc-mediated effector antibody functions. Clinical evidence indicates that non-neutralizing antibody functions including antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) contribute to protection against several pathogens. In this study, we demonstrated that conjugation of HIV Envelope (Env) antigen gp120 to a self-assembling nanofiber material named Q11 induced antibodies with higher breadth and functionality when compared to soluble gp120. Immunization with Q11-conjugated gp120 vaccine (gp120-Q11) demonstrated higher tier 1 neutralization, ADCP, and ADCC as compared to soluble gp120. Moreover, Q11 conjugation altered the Fc N-glycosylation profile of antigen-specific antibodies, leading to a phenotype associated with increased ADCC in animals immunized with gp120-Q11. Thus, this nanomaterial vaccine strategy can enhance non-neutralizing antibody functions possibly through modulation of immunoglobulin G Fc N-glycosylation.
Collapse
Affiliation(s)
- Jui-Lin Chen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chelsea N. Fries
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Stella J. Berendam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicole S. Rodgers
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Emily F. Roe
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Yaoying Wu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Shuk Hang Li
- The Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rishabh Jain
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Brian Watts
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joshua Eudailey
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham NC 27710, USA
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC 27707, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham NC 27710, USA
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC 27707, USA
| | - M. Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joel H. Collier
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Genevieve G. Fouda
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
19
|
Golay J, Andrea AE, Cattaneo I. Role of Fc Core Fucosylation in the Effector Function of IgG1 Antibodies. Front Immunol 2022; 13:929895. [PMID: 35844552 PMCID: PMC9279668 DOI: 10.3389/fimmu.2022.929895] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
The presence of fucose on IgG1 Asn-297 N-linked glycan is the modification of the human IgG1 Fc structure with the most significant impact on FcɣRIII affinity. It also significantly enhances the efficacy of antibody dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells in vitro, induced by IgG1 therapeutic monoclonal antibodies (mAbs). The effect of afucosylation on ADCC or antibody dependent phagocytosis (ADCP) mediated by macrophages or polymorphonuclear neutrophils (PMN) is less clear. Evidence for enhanced efficacy of afucosylated therapeutic mAbs in vivo has also been reported. This has led to the development of several therapeutic antibodies with low Fc core fucose to treat cancer and inflammatory diseases, seven of which have already been approved for clinical use. More recently, the regulation of IgG Fc core fucosylation has been shown to take place naturally during the B-cell immune response: A decrease in α-1,6 fucose has been observed in polyclonal, antigen-specific IgG1 antibodies which are generated during alloimmunization of pregnant women by fetal erythrocyte or platelet antigens and following infection by some enveloped viruses and parasites. Low IgG1 Fc core fucose on antigen-specific polyclonal IgG1 has been linked to disease severity in several cases, such as SARS-CoV 2 and Dengue virus infection and during alloimmunization, highlighting the in vivo significance of this phenomenon. This review aims to summarize the current knowledge about human IgG1 Fc core fucosylation and its regulation and function in vivo, in the context of both therapeutic antibodies and the natural immune response. The parallels in these two areas are informative about the mechanisms and in vivo effects of Fc core fucosylation, and may allow to further exploit the desired properties of this modification in different clinical contexts.
Collapse
Affiliation(s)
- Josée Golay
- Center of Cellular Therapy "G. Lanzani", Division of Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
- *Correspondence: Josée Golay,
| | - Alain E. Andrea
- Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut, Lebanon
| | - Irene Cattaneo
- Center of Cellular Therapy "G. Lanzani", Division of Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
20
|
Giron LB, Abdel-Mohsen M. Viral and Host Biomarkers of HIV Remission Post Treatment Interruption. Curr HIV/AIDS Rep 2022; 19:217-233. [PMID: 35438384 DOI: 10.1007/s11904-022-00607-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW HIV rebound/remission after antiretroviral therapy (ART) interruption is likely influenced by (a) the size of the inducible replication-competent HIV reservoir and (b) factors in the host environment that influence immunological pressures on this reservoir. Identifying viral and/or host biomarkers of HIV rebound after ART cessation may improve the safety of treatment interruptions and our understanding of how the viral-host interplay results in post-treatment control. Here we review the predictive and functional significance of recently suggested viral and host biomarkers of time to viral rebound and post-treatment control following ART interruption. RECENT FINDINGS There are currently no validated viral or host biomarkers of viral rebound; however, several biomarkers have been recently suggested. A combination of viral and host factors will likely be needed to predict viral rebound and to better understand the mechanisms contributing to post-treatment control of HIV, critical steps to developing a cure for HIV infection.
Collapse
|
21
|
Sharma SK, Suzuki M, Xu H, Korsen JA, Samuels Z, Guo H, Nemieboka B, Piersigilli A, Edwards KJ, Cheung NKV, Lewis JS. Influence of Fc Modifications and IgG Subclass on Biodistribution of Humanized Antibodies Targeting L1CAM. J Nucl Med 2022; 63:629-636. [PMID: 34353869 PMCID: PMC8973293 DOI: 10.2967/jnumed.121.262383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Immuno-PET is a powerful tool to noninvasively characterize the in vivo biodistribution of engineered antibodies. Methods: L1 cell adhesion molecule-targeting humanized (HuE71) IgG1 and IgG4 antibodies bearing identical variable heavy- and light-chain sequences but different fragment crystallizable (Fc) portions were radiolabeled with 89Zr, and the in vivo biodistribution was studied in SKOV3 ovarian cancer xenografted nude mice. Results: In addition to showing uptake in L1 cell adhesion molecule-expressing SKOV3 tumors, as does its parental counterpart HuE71 IgG1, the afucosylated variant having enhanced Fc-receptor affinity showed high nonspecific uptake in lymph nodes. On the other hand, aglycosylated HuE71 IgG1 with abrogated Fc-receptor binding did not show lymphoid uptake. The use of the IgG4 subclass showed high nonspecific uptake in the kidneys, which was prevented by mutating serine at position 228 to proline in the hinge region of the IgG4 antibody to mitigate in vivo fragment antigen-binding arm exchange. Conclusion: Our findings highlight the influence of Fc modifications and the choice of IgG subclass on the in vivo biodistribution of antibodies and the potential outcomes thereof.
Collapse
Affiliation(s)
- Sai Kiran Sharma
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maya Suzuki
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka, Japan
| | - Hong Xu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joshua A Korsen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - Zachary Samuels
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hongfen Guo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brandon Nemieboka
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alessandra Piersigilli
- Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, and Rockefeller University, New York, New York
| | - Kimberly J Edwards
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York;
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York;
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medical College, New York, New York; and
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
22
|
Woodall DW, Dillon TM, Kalenian K, Padaki R, Kuhns S, Semin DJ, Bondarenko PV. Non-targeted characterization of attributes affecting antibody-FcγRIIIa V158 (CD16a) binding via online affinity chromatography-mass spectrometry. MAbs 2022; 14:2004982. [PMID: 34978527 PMCID: PMC8741291 DOI: 10.1080/19420862.2021.2004982] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Antibodies facilitate targeted cell killing by engaging with immune cells such as natural killer cells through weak binding interactions with Fcγ receptors on the cell surface. Here, we evaluate the binding affinity of the receptor FcγRIIIa V158 (CD16a) for several therapeutic antibody classes, isoforms, and Fc-fusion proteins using an immobilized receptor affinity liquid chromatography (LC) approach coupled with online mass spectrometry (MS) detection. Aglycosylated FcγRIIIa was used in the affinity chromatography and compared with published affinities using glycosylated receptors. Affinity LC-MS differentiated the IgG1 antibodies primarily according to their Fc glycosylation patterns, with highly galactosylated species having greater affinity for the immobilized receptors and thus eluting later from the column (M5< G0F < G0 afucosylated ≅ G1F < G2F). Sialylated species bound weaker to their asialylated counterparts as reported previously. High mannose glycoforms bound weaker than G0F, contrary to previously published studies using glycosylated receptors. Also, increased receptor binding affinity associated with afucosylated antibodies was not observed with the aglycosylated FcγRIIIa. This apparent difference from previous findings highlighted the importance of the glycans on the receptors for mediating stronger binding interactions. Characterization of temperature-stressed samples by LC-MS peptide mapping revealed over 200 chemical and post-translational modifications, but only the Fc glycans, deamidation of EU N325, and an unknown modification to either proline or cysteine residues of the hinge region were found to have a statistically significant impact on binding. Abbreviations: Antibody-dependent cell-mediated cytotoxicity (ADCC), chimeric antigen receptor (CAR), Chinese hamster ovary (CHO), dithiothreitol (DTT), electrospray ionization (ESI), hydrogen-deuterium exchange (HDX), filter aided-sample preparation (FASP), Fcγ receptor (FcγR), fragment crystallizable (Fc), high-pressure liquid chromatography (HPLC), immunoglobulin G (IgG), liquid chromatography (LC), monoclonal antibody (mAb), mass spectrometry (MS), natural killer (NK), N-glycolylneuraminic acid (NGNA), N-acetylneuraminic acid (NANA), principal component analysis (PCA), surface plasmon resonance (SPR), trifluoroacetic acid (TFA), and extracted mass chromatogram (XMC).
Collapse
Affiliation(s)
- Daniel W Woodall
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| | - Thomas M Dillon
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| | - Kevin Kalenian
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| | - Rupa Padaki
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| | - Scott Kuhns
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| | - David J Semin
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| | - Pavel V Bondarenko
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| |
Collapse
|
23
|
Glover ZK, Wecksler A, Aryal B, Mehta S, Pegues M, Chan W, Lehtimaki M, Luo A, Sreedhara A, Rao VA. Physicochemical and biological impact of metal-catalyzed oxidation of IgG1 monoclonal antibodies and antibody-drug conjugates via reactive oxygen species. MAbs 2022; 14:2122957. [PMID: 36151884 PMCID: PMC9519010 DOI: 10.1080/19420862.2022.2122957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Biotherapeutics are exposed to common transition metal ions such as Cu(II) and Fe(II) during manufacturing processes and storage. IgG1 biotherapeutics are vulnerable to reactive oxygen species (ROS) generated via the metal-catalyzed oxidation reactions. Exposure to these metal ions can lead to potential changes to structure and function, ultimately influencing efficacy, potency, and potential immunogenicity of the molecules. Here, we stress four biotherapeutics of the IgG1 subclass (trastuzumab, trastuzumab emtansine, anti-NaPi2b, and anti-NaPi2b-vc-MMAE) with two common pharmaceutically relevant metal-induced oxidizing systems, Cu(II)/ ascorbic acid and Fe(II)/ H2O2, and evaluated oxidation, size distribution, carbonylation, Fc effector functions, antibody-dependent cellular cytotoxicity (ADCC) activity, cell anti-proliferation and autophaghic flux. Our study demonstrates that the extent of oxidation was metal ion-dependent and site-specific, leading to decreased FcγRIIIa and FcRn receptor binding and subsequently potentially reduced bioactivity, though antigen binding was not affected to a great extent. In general, the monoclonal antibody (mAb) and corresponding antibody-drug conjugate (ADC) showed similar impacts to product quality when exposed to the same metal ion, either Cu(II) or Fe(II). Our study clearly demonstrates that transition metal ion binding to therapeutic IgG1 mAbs and ADCs is not random and that oxidation products show unique structural and functional ramifications. A critical outcome from this study is our highlighting of key process parameters, route of degradation, especially oxidation (metal catalyzed or via ROS), on the CH1 and Fc region of full-length mAbs and ADCs. Abbreviations: DNPH 2,4-dinitrophenylhydrazine; ADC Antibody drug conjugate; ADCC Antibody-dependent cellular cytotoxicity; CDR Complementary determining region; DTT Dithiothreitol; HMWF high molecular weight form; LC-MS Liquid chromatography–mass spectrometry; LMWF low molecular weight forms; MOA Mechanism of action; MCO Metal-catalyzed oxidation; MetO Methionine sulfoxide; mAbs Monoclonal antibodies; MyBPC Myosin binding protein C; ROS Reactive oxygen species; SEC Size exclusion chromatography
Collapse
Affiliation(s)
| | - Aaron Wecksler
- Analytical Development, Genentech Inc, South San Francisco, CA, USA
| | - Baikuntha Aryal
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Maryland, USA
| | - Shrenik Mehta
- Pharmaceutical Development, Genentech Inc, South San Francisco, CA, USA
| | - Melissa Pegues
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Maryland, USA
| | - Wayman Chan
- Pharmaceutical Development, Genentech Inc, South San Francisco, CA, USA
| | - Mari Lehtimaki
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Maryland, USA
| | - Allen Luo
- Biological Technologies, Genentech Inc, South San Francisco, CA, USA
| | | | - V Ashutosh Rao
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Maryland, USA
| |
Collapse
|
24
|
Mandó P, Rivero SG, Rizzo MM, Pinkasz M, Levy EM. Targeting ADCC: A different approach to HER2 breast cancer in the immunotherapy era. Breast 2021; 60:15-25. [PMID: 34454323 PMCID: PMC8399304 DOI: 10.1016/j.breast.2021.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 11/28/2022] Open
Abstract
The clinical outcome of patients with human epidermal growth factor receptor 2 (HER2) amplified breast carcinoma (BC) has improved with the development of anti-HER2 targeted therapies. However, patients can experience disease recurrence after curative intent and disease progression in the metastatic setting. In the current era of evolving immunotherapy agents, the understanding of the immune response against HER2 tumor cells developed by anti-HER2 antibodies (Abs) is rapidly evolving. Trastuzumab therapy promotes Natural Killer (NK) cell activation in patients with BC overexpressing HER2, indicating that the efficacy of short-term trastuzumab monotherapy, albeit direct inhibition of HER, could also be related with antibody-dependent cell-mediated cytotoxicity (ADCC). Currently, dual HER2 blockade using trastuzumab and pertuzumab is the standard of care in early and advanced disease as this combination could confer an additive effect in ADCC. In patients with disease relapse or progression, ADCC may be hampered by several factors such as FcγRIIIa polymorphism and an immunosuppressive environment, among others. Hence, new drug development strategies are being investigated aiming to boost the ADCC response triggered by anti-HER2 therapy. In this review, we summarize these strategies and the rationale, through mAbs engineering and combinatorial strategies, focusing on clinical results and ongoing trials.
Collapse
Affiliation(s)
- Pablo Mandó
- Fundación Cáncer, Ciudad Autónoma de Buenos Aires, Argentina; Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Sergio G Rivero
- Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires, Argentina
| | - Manglio M Rizzo
- Cancer Immunobiology, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET, Universidad Austral, Derqui-Pilar, Argentina; Department of Medical Oncology, Hospital Universitario Austral, Derqui-Pilar, Argentina
| | - Marina Pinkasz
- Centro de Investigaciones Oncológicas, Fundación Cáncer, Ciudad Autónoma de Buenos Aires, Argentina
| | - Estrella M Levy
- Centro de Investigaciones Oncológicas, Fundación Cáncer, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
25
|
Crowley AR, Osei-Owusu NY, Dekkers G, Gao W, Wuhrer M, Magnani DM, Reimann KA, Pincus SH, Vidarsson G, Ackerman ME. Biophysical Evaluation of Rhesus Macaque Fc Gamma Receptors Reveals Similar IgG Fc Glycoform Preferences to Human Receptors. Front Immunol 2021; 12:754710. [PMID: 34712242 PMCID: PMC8546228 DOI: 10.3389/fimmu.2021.754710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 01/15/2023] Open
Abstract
Rhesus macaques are a common non-human primate model used in the evaluation of human monoclonal antibodies, molecules whose effector functions depend on a conserved N-linked glycan in the Fc region. This carbohydrate is a target of glycoengineering efforts aimed at altering antibody effector function by modulating the affinity of Fcγ receptors. For example, a reduction in the overall core fucose content is one such strategy that can increase antibody-mediated cellular cytotoxicity by increasing Fc-FcγRIIIa affinity. While the position of the Fc glycan is conserved in macaques, differences in the frequency of glycoforms and the use of an alternate monosaccharide in sialylated glycan species add a degree of uncertainty to the testing of glycoengineered human antibodies in rhesus macaques. Using a panel of 16 human IgG1 glycovariants, we measured the affinities of macaque FcγRs for differing glycoforms via surface plasmon resonance. Our results suggest that macaques are a tractable species in which to test the effects of antibody glycoengineering.
Collapse
Affiliation(s)
- Andrew R. Crowley
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Nana Yaw Osei-Owusu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Gillian Dekkers
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, Department of Experimental Immunohematology, University of Amsterdam, Amsterdam, Netherlands
| | - Wenda Gao
- Antagen Pharmaceuticals Inc., Boston, MA, United States
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Diogo M. Magnani
- Nonhuman Primate Reagent Resource, MassBiologics of the University of Massachusetts Medical School, Boston, MA, United States
| | - Keith A. Reimann
- Nonhuman Primate Reagent Resource, MassBiologics of the University of Massachusetts Medical School, Boston, MA, United States
| | - Seth H. Pincus
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Gestur Vidarsson
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, Department of Experimental Immunohematology, University of Amsterdam, Amsterdam, Netherlands
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
26
|
Brücher D, Franc V, Smith SN, Heck AJR, Plückthun A. Malignant tissues produce divergent antibody glycosylation of relevance for cancer gene therapy effectiveness. MAbs 2021; 12:1792084. [PMID: 32643525 PMCID: PMC7531505 DOI: 10.1080/19420862.2020.1792084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gene therapy approaches now allow for the production of therapeutic antibodies by healthy or cancerous human tissues directly in vivo, and, with an increasing number of gene delivery methods available, the cell type for expression can be chosen. Yet, little is known about the biophysical changes introduced by expressing antibodies from producer cells or tissues targeted by gene therapy approaches, nor about the consequences for the type of glycosylation. The effects of different glycosylation on therapeutic antibodies have been well studied by controlling their glycan compositions in non-human mammalian production cells, i.e., Chinese hamster ovary cells. Therefore, we investigated the glycosylation state of clinically approved antibodies secreted from cancer tissues frequently targeted by in vivo gene therapy, using native mass spectrometry and glycoproteomics. We found that antibody sialylation and fucosylation depended on the producer tissue and the antibody isotype, allowing us to identify optimal producer cell types according to the desired mode of action of the antibody. Furthermore, we discovered that high amounts (>20%) of non-glycosylated antibodies were produced in cells sensitive to the action of the produced antibodies. Different glycosylation in different producer cells can translate into an altered potency of in-vivo produced antibodies, depending on the desired mode of action, and can affect their serum half-lives. These results increase our knowledge about antibodies produced from cells targeted by gene therapy, enabling development of improved cancer gene therapy vectors that can include in vivo glycoengineering of expressed antibodies to optimize their efficacies, depending on the desired mode of action.
Collapse
Affiliation(s)
- Dominik Brücher
- Department of Biochemistry, University of Zurich , Zurich, Switzerland
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht , Utrecht, The Netherlands.,Netherlands Proteomics Center , Utrecht, The Netherlands
| | - Sheena N Smith
- Department of Biochemistry, University of Zurich , Zurich, Switzerland
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht , Utrecht, The Netherlands.,Netherlands Proteomics Center , Utrecht, The Netherlands
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich , Zurich, Switzerland
| |
Collapse
|
27
|
Afucosylated IgG Targets FcγRIV for Enhanced Tumor Therapy in Mice. Cancers (Basel) 2021; 13:cancers13102372. [PMID: 34069226 PMCID: PMC8156657 DOI: 10.3390/cancers13102372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Cancer treatments are increasingly based on therapeutic antibodies to clear tumors. While in vivo mouse models are useful to predict effectiveness of human antibodies it is not completely clear how useful these models are to test antibodies engineered with enhanced effector functions designed for humans. One of the changes considered for many new antibody-based drugs is the removal of fucose (resulting in afucosylated IgG) which enhances IgG-Fc receptor (FcγR) mediated effector functions in humans through FcγRIIIa. Here we show that afucosylated human IgG1 also have enhanced effector functions against peritoneal metastasis of melanoma cells in mice through the evolutionary related mouse FcγRIV. This shows that afucosylated human IgG is functionally recognized across species and shows that mouse tumor models can be used to assess the therapeutic potential of afucosylated IgG1. Abstract Promising strategies for maximizing IgG effector functions rely on the introduction of natural and non-immunogenic modifications. The Fc domain of IgG antibodies contains an N-linked oligosaccharide at position 297. Human IgG antibodies lacking the core fucose in this glycan have enhanced binding to human (FcγR) IIIa/b, resulting in enhanced antibody dependent cell cytotoxicity and phagocytosis through these receptors. However, it is not yet clear if glycan-enhancing modifications of human IgG translate into more effective treatment in mouse models. We generated humanized hIgG1-TA99 antibodies with and without core-fucose. C57Bl/6 mice that were injected intraperitoneally with B16F10-gp75 mouse melanoma developed significantly less metastasis outgrowth after treatment with afucosylated hIgG1-TA99 compared to mice treated with wildtype hhIgG1-TA99. Afucosylated human IgG1 showed stronger interaction with the murine FcγRIV, the mouse orthologue of human FcγRIIIa, indicating that this glycan change is functionally conserved between the species. In agreement with this, no significant differences were observed in tumor outgrowth in FcγRIV-/- mice treated with human hIgG1-TA99 with or without the core fucose. These results confirm the potential of using afucosylated therapeutic IgG to increase their efficacy. Moreover, we show that afucosylated human IgG1 antibodies act across species, supporting that mouse models can be suitable to test afucosylated antibodies.
Collapse
|
28
|
Vukovic N, van Elsas A, Verbeek JS, Zaiss DMW. Isotype selection for antibody-based cancer therapy. Clin Exp Immunol 2021; 203:351-365. [PMID: 33155272 PMCID: PMC7874837 DOI: 10.1111/cei.13545] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/16/2020] [Accepted: 10/29/2020] [Indexed: 01/14/2023] Open
Abstract
The clinical application of monoclonal antibodies (mAbs) has revolutionized the field of cancer therapy, as it has enabled the successful treatment of previously untreatable types of cancer. Different mechanisms play a role in the anti-tumour effect of mAbs. These include blocking of tumour-specific growth factor receptors or of immune modulatory molecules as well as complement and cell-mediated tumour cell lysis. Thus, for many mAbs, Fc-mediated effector functions critically contribute to the efficacy of treatment. As immunoglobulin (Ig) isotypes differ in their ability to bind to Fc receptors on immune cells as well as in their ability to activate complement, they differ in the immune responses they activate. Therefore, the choice of antibody isotype for therapeutic mAbs is dictated by its intended mechanism of action. Considering that clinical efficacy of many mAbs is currently achieved only in subsets of patients, optimal isotype selection and Fc optimization during antibody development may represent an important step towards improved patient outcome. Here, we discuss the current knowledge of the therapeutic effector functions of different isotypes and Fc-engineering strategies to improve mAbs application.
Collapse
Affiliation(s)
- N. Vukovic
- Institute of Immunology and Infection ResearchSchool of Biological SciencesUniversity of EdinburghAshworth LaboratoriesEdinburghUK
| | | | - J. S. Verbeek
- Department of Biomedical EngineeringToin University of YokohamaYokohamaJapan
| | - D. M. W. Zaiss
- Institute of Immunology and Infection ResearchSchool of Biological SciencesUniversity of EdinburghAshworth LaboratoriesEdinburghUK
| |
Collapse
|
29
|
Göritzer K, Strasser R. Glycosylation of Plant-Produced Immunoglobulins. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:519-543. [PMID: 34687021 DOI: 10.1007/978-3-030-76912-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many economically important protein-based therapeutics like monoclonal antibodies are glycosylated. Due to the recognized importance of this type of posttranslational modification, glycoengineering of expression systems to obtain highly active and homogenous therapeutics is an emerging field. Although most of the monoclonal antibodies on the market are still produced in mammalian expression platforms, plants are emerging as an alternative cost-effective and scalable production platform that allows precise engineering of glycosylation to produce targeted human glycoforms at large homogeneity. Apart from producing more effective antibodies, pure glycoforms are required in efforts to link biological functions to specific glycan structures. Much is already known about the role of IgG1 glycosylation and this antibody class is the dominant recombinant format that has been expressed in plants. By contrast, little attention has been paid to the glycoengineering of recombinant IgG subtypes and the other four classes of human immunoglobulins (IgA, IgD, IgE, and IgM). Except for IgD, all these antibody classes have been expressed in plants and the glycosylation has been analyzed in a site-specific manner. Here, we summarize the current data on glycosylation of plant-produced monoclonal antibodies and discuss the findings in the light of known functions for these glycans.
Collapse
Affiliation(s)
| | - Richard Strasser
- University of Natural Resources and Life Sciences Vienna, Vienna, Austria.
| |
Collapse
|
30
|
Chen D, Zhao Y, Li M, Shang H, Li N, Li F, Wang W, Wang Y, Jin R, Liu S, Li X, Gao S, Tian Y, Li R, Li H, Zhang Y, Du M, Cao Y, Zhang Y, Li X, Huang Y, Hu LA, Li F, Zhang H. A general Fc engineering platform for the next generation of antibody therapeutics. Theranostics 2021; 11:1901-1917. [PMID: 33408788 PMCID: PMC7778609 DOI: 10.7150/thno.51299] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/14/2020] [Indexed: 12/18/2022] Open
Abstract
Rationale: Fc engineering has become the focus of antibody drug development. The current mutagenesis and in silico protein design methods are confined by the limited throughput and high cost, while the high-throughput phage display and yeast display technologies are not suitable for screening glycosylated Fc variants. Here we developed a mammalian cell display-based Fc engineering platform. Methods: By using mammalian cell display and next generation sequencing, we screened millions of Fc variants for optimized affinity and specificity for FcγRIIIa or FcγRIIb. The identified Fc variants with improved binding to FcγRIIIa were substituted into trastuzumab and rituximab and the effector function of antibodies were examined in the PBMC-based assay. On the other hand, the identified Fc variants with selectively enhanced FcγRIIb binding were applied to CD40 agonist antibody and the activities of the antibodies were measured on different cell assays. The immunostimulatory activity of CD40 antibodies was also evaluated by OVA-specific CD8+ T cell response model in FcγR/CD40-humanized mice. Results: Using this approach, we screened millions of Fc variant and successfully identified several novel Fc variants with enhanced FcγRIIIa or FcγRIIb binding. These identified Fc variants displayed a dramatic increase in antibody-dependent cellular cytotoxicity in PBMC-based assay. Novel variants with selectively enhanced FcγRIIb binding were also identified. CD40 agonist antibodies substituted with these Fc variants displayed activity more potent than the parental antibody in the in vitro and in vivo models.Conclusions: This approach increased the throughput of Fc variant screening from thousands to millions magnitude, enabled screening variants containing multiple mutations and could be integrated with glycoengineering technology, represents an ideal platform for Fc engineering. The initial efforts demonstrated the capability of the platform and the novel Fc variants could be substituted into nearly any antibody for the next generation of antibody therapeutics.
Collapse
Affiliation(s)
- Da Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yingjie Zhao
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingyu Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Hang Shang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Na Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Fan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Yuan Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Ruina Jin
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Shiyu Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xun Li
- Amgen Research, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd, Shanghai, 201210, China
| | - Shan Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yujie Tian
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Ruonan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Huanhuan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yongyan Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Mingjuan Du
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Youjia Cao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yan Zhang
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xin Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yi Huang
- Department of Analytical Science, Zhenge Biotech, Shanghai, 201318, China
| | - Liaoyuan A. Hu
- Amgen Research, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd, Shanghai, 201210, China
| | - Fubin Li
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongkai Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
31
|
Mimura Y, Saldova R, Mimura-Kimura Y, Rudd PM, Jefferis R. Importance and Monitoring of Therapeutic Immunoglobulin G Glycosylation. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:481-517. [PMID: 34687020 DOI: 10.1007/978-3-030-76912-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The complex diantennary-type oligosaccharides at Asn297 residues of the IgG heavy chains have a profound impact on the safety and efficacy of therapeutic IgG monoclonal antibodies (mAbs). Fc glycosylation of a mAb is an established critical quality attribute (CQA), and its oligosaccharide profile is required to be thoroughly characterized by state-of-the-art analytical methods. The Fc oligosaccharides are highly heterogeneous, and the differentially glycosylated species (glycoforms) of IgG express unique biological activities. Glycoengineering is a promising approach for the production of selected mAb glycoforms with improved effector functions, and non- and low-fucosylated mAbs exhibiting enhanced antibody-dependent cellular cytotoxicity activity have been approved or are under clinical evaluation for treatment of cancers, autoimmune/chronic inflammatory diseases, and infection. Recently, the chemoenzymatic glycoengineering method that allows for the transfer of structurally defined oligosaccharides to Asn-linked GlcNAc residues with glycosynthase has been developed for remodeling of IgG-Fc oligosaccharides with high efficiency and flexibility. Additionally, various glycoengineering methods have been developed that utilize the Fc oligosaccharides of IgG as reaction handles to conjugate cytotoxic agents by "click chemistry", providing new routes to the design of antibody-drug conjugates (ADCs) with tightly controlled drug-antibody ratios (DARs) and homogeneity. This review focuses on current understanding of the biological relevance of individual IgG glycoforms and advances in the development of next-generation antibody therapeutics with improved efficacy and safety through glycoengineering.
Collapse
Affiliation(s)
- Yusuke Mimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan.
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Mount Merrion, Blackrock, Dublin, Ireland
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Belfield, Dublin, Ireland
| | - Yuka Mimura-Kimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan
| | - Pauline M Rudd
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Mount Merrion, Blackrock, Dublin, Ireland
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Centros, Singapore
| | - Roy Jefferis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
32
|
Láng JA, Balogh ZC, Nyitrai MF, Juhász C, Gilicze AKB, Iliás A, Zólyomi Z, Bodor C, Rábai E. In vitro functional characterization of biosimilar therapeutic antibodies. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 37:41-50. [PMID: 34895654 DOI: 10.1016/j.ddtec.2020.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 06/14/2023]
Abstract
The key factor in successful development and marketing of biosimilar antibodies is a deep understanding of their critical quality attributes and the ability to control them. Comprehensive functional characterization is therefore at the heart of the process and is a crucial part of regulatory requirements. Establishment of a scientifically sound molecule-specific functional in vitro assay panel requires diligent planning and high flexibility in order to respond to both regulatory requirements and the ever-changing demands relevant to the different stages of the development and production process. Relevance of the chosen assays to the in vivo mechanism of action is of key importance to the stepwise evidence-based demonstration of biosimilarity. Use of a sound interdisciplinary approach and orthogonal state-of-the-art techniques is also unavoidable for gaining in-depth understanding of the biosimilar candidate. The aim of the present review is to give a snapshot on the methodic landscape as depicted by the available literature discussing the in vitro techniques used for the functional characterization of approved biosimilar therapeutic antibodies. Emerging hot topics of the field and relevant structure-function relationships are also highlighted.
Collapse
Affiliation(s)
- Júlia Anna Láng
- Biotechnology Research & Development Division/Bioassay Development Group, Gedeon Richter Plc, Gyömrői Street 19-21 1103 Budapest Hungary
| | - Zsófia Cselovszkiné Balogh
- Biotechnology Research & Development Division/Bioassay Development Group, Gedeon Richter Plc, Gyömrői Street 19-21 1103 Budapest Hungary.
| | - Mónika Fizilné Nyitrai
- Biotechnology Research & Development Division/Bioassay Development Group, Gedeon Richter Plc, Gyömrői Street 19-21 1103 Budapest Hungary
| | - Cintia Juhász
- Biotechnology Research & Development Division/Bioassay Development Group, Gedeon Richter Plc, Gyömrői Street 19-21 1103 Budapest Hungary
| | - Anna Katalin Baráné Gilicze
- Biotechnology Research & Development Division/Bioassay Development Group, Gedeon Richter Plc, Gyömrői Street 19-21 1103 Budapest Hungary
| | - Attila Iliás
- Biotechnology Research & Development Division/Bioassay Development Group, Gedeon Richter Plc, Gyömrői Street 19-21 1103 Budapest Hungary
| | - Zsolt Zólyomi
- Biotechnology Research & Development Division/Bioassay Development Group, Gedeon Richter Plc, Gyömrői Street 19-21 1103 Budapest Hungary
| | - Csaba Bodor
- Biotechnology Research & Development Division/Bioassay Development Group, Gedeon Richter Plc, Gyömrői Street 19-21 1103 Budapest Hungary
| | - Erzsébet Rábai
- Biotechnology Research & Development Division/Bioassay Development Group, Gedeon Richter Plc, Gyömrői Street 19-21 1103 Budapest Hungary
| |
Collapse
|
33
|
Roßkopf S, Eichholz KM, Winterberg D, Diemer KJ, Lutz S, Münnich IA, Klausz K, Rösner T, Valerius T, Schewe DM, Humpe A, Gramatzki M, Peipp M, Kellner C. Enhancing CDC and ADCC of CD19 Antibodies by Combining Fc Protein-Engineering with Fc Glyco-Engineering. Antibodies (Basel) 2020; 9:antib9040063. [PMID: 33212776 PMCID: PMC7709100 DOI: 10.3390/antib9040063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Native cluster of differentiation (CD) 19 targeting antibodies are poorly effective in triggering antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), which are crucial effector functions of therapeutic antibodies in cancer immunotherapy. Both functions can be enhanced by engineering the antibody’s Fc region by altering the amino acid sequence (Fc protein-engineering) or the Fc-linked glycan (Fc glyco-engineering). We hypothesized that combining Fc glyco-engineering with Fc protein-engineering will rescue ADCC and CDC in CD19 antibodies. Results: Four versions of a CD19 antibody based on tafasitamab’s V-regions were generated: a native IgG1, an Fc protein-engineered version with amino acid exchanges S267E/H268F/S324T/G236A/I332E (EFTAE modification) to enhance CDC, and afucosylated, Fc glyco-engineered versions of both to promote ADCC. Irrespective of fucosylation, antibodies carrying the EFTAE modification had enhanced C1q binding and were superior in inducing CDC. In contrast, afucosylated versions exerted an enhanced affinity to Fcγ receptor IIIA and had increased ADCC activity. Of note, the double-engineered antibody harboring the EFTAE modification and lacking fucose triggered both CDC and ADCC more efficiently. Conclusions: Fc glyco-engineering and protein-engineering could be combined to enhance ADCC and CDC in CD19 antibodies and may allow the generation of antibodies with higher therapeutic efficacy by promoting two key functions simultaneously.
Collapse
Affiliation(s)
- Sophia Roßkopf
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Klara Marie Eichholz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Dorothee Winterberg
- Pediatric Hematology/Oncology, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (D.W.); (D.M.S.)
| | - Katarina Julia Diemer
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Sebastian Lutz
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany; (S.L.); (I.A.M.); (A.H.); (C.K.)
| | - Ira Alexandra Münnich
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany; (S.L.); (I.A.M.); (A.H.); (C.K.)
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Thies Rösner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Denis Martin Schewe
- Pediatric Hematology/Oncology, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (D.W.); (D.M.S.)
| | - Andreas Humpe
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany; (S.L.); (I.A.M.); (A.H.); (C.K.)
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
- Correspondence: ; Tel.: +49-431-500-22701
| | - Christian Kellner
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany; (S.L.); (I.A.M.); (A.H.); (C.K.)
| |
Collapse
|
34
|
Lu H, Molony RD, Chen D, Jang S, Wolf B, Ewert S, Flaherty M, Xu F, Isim S, Shim Y, Dornelas C, Balke N, Leber XC, Scharenberg M, Koelln J, Choi E, Ward R, Johnson J, Calzascia T, Isnardi I, Williams JA, Lindenbergh PL, van de Donk NWCJ, Mutis T, Huet H, Lees E, Meyer MJ. Development of Anti-CD32b Antibodies with Enhanced Fc Function for the Treatment of B and Plasma Cell Malignancies. Mol Cancer Ther 2020; 19:2089-2104. [PMID: 32847974 DOI: 10.1158/1535-7163.mct-19-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/01/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022]
Abstract
The sole inhibitory Fcγ receptor CD32b (FcγRIIb) is expressed throughout B and plasma cell development and on their malignant counterparts. CD32b expression on malignant B cells is known to provide a mechanism of resistance to rituximab that can be ameliorated with a CD32b-blocking antibody. CD32b, therefore, represents an attractive tumor antigen for targeting with a monoclonal antibody (mAb). To this end, two anti-CD32b mAbs, NVS32b1 and NVS32b2, were developed. Their complementarity-determining regions (CDR) bind the CD32b Fc binding domain with high specificity and affinity while the Fc region is afucosylated to enhance activation of FcγRIIIa on immune effector cells. The NVS32b mAbs selectively target CD32b+ malignant cells and healthy B cells but not myeloid cells. They mediate potent killing of opsonized CD32b+ cells via antibody-dependent cellular cytotoxicity and phagocytosis (ADCC and ADCP) as well as complement-dependent cytotoxicity (CDC). In addition, NVS32b CDRs block the CD32b Fc-binding domain, thereby minimizing CD32b-mediated resistance to therapeutic mAbs including rituximab, obinutuzumab, and daratumumab. NVS32b mAbs demonstrate robust antitumor activity against CD32b+ xenografts in vivo and immunomodulatory activity including recruitment of macrophages to the tumor and enhancement of dendritic cell maturation in response to immune complexes. Finally, the activity of NVS32b mAbs on CD32b+ primary malignant B and plasma cells was confirmed using samples from patients with B-cell chronic lymphocytic leukemia (CLL) and multiple myeloma. The findings indicate the promising potential of NVS32b mAbs as a single agent or in combination with other mAb therapeutics for patients with CD32b+ malignant cells.
Collapse
Affiliation(s)
- Haihui Lu
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts.
| | - Ryan D Molony
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Dongshu Chen
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Sunyoung Jang
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Babette Wolf
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stefan Ewert
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Meghan Flaherty
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Fangmin Xu
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Sinan Isim
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Yeonju Shim
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | - Nicole Balke
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Johanna Koelln
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Eugene Choi
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Rebecca Ward
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Jennifer Johnson
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | | | - Juliet A Williams
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Pieter L Lindenbergh
- Department of Hematology, Amsterdam University Medical Centers, VUmc, Amsterdam, the Netherlands
| | - Niels W C J van de Donk
- Department of Hematology, Amsterdam University Medical Centers, VUmc, Amsterdam, the Netherlands
| | - Tuna Mutis
- Department of Hematology, Amsterdam University Medical Centers, VUmc, Amsterdam, the Netherlands
| | - Heather Huet
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Emma Lees
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Matthew J Meyer
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| |
Collapse
|
35
|
Centanni M, Moes DJAR, Trocóniz IF, Ciccolini J, van Hasselt JGC. Clinical Pharmacokinetics and Pharmacodynamics of Immune Checkpoint Inhibitors. Clin Pharmacokinet 2020; 58:835-857. [PMID: 30815848 PMCID: PMC6584248 DOI: 10.1007/s40262-019-00748-2] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have demonstrated significant clinical impact in improving overall survival of several malignancies associated with poor outcomes; however, only 20–40% of patients will show long-lasting survival. Further clarification of factors related to treatment response can support improvements in clinical outcome and guide the development of novel immune checkpoint therapies. In this article, we have provided an overview of the pharmacokinetic (PK) aspects related to current ICIs, which include target-mediated drug disposition and time-varying drug clearance. In response to the variation in treatment exposure of ICIs and the significant healthcare costs associated with these agents, arguments for both dose individualization and generalization are provided. We address important issues related to the efficacy and safety, the pharmacodynamics (PD), of ICIs, including exposure–response relationships related to clinical outcome. The unique PK and PD aspects of ICIs give rise to issues of confounding and suboptimal surrogate endpoints that complicate interpretation of exposure–response analysis. Biomarkers to identify patients benefiting from treatment with ICIs have been brought forward. However, validated biomarkers to monitor treatment response are currently lacking.
Collapse
Affiliation(s)
- Maddalena Centanni
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Dirk Jan A R Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Iñaki F Trocóniz
- Pharmacometrics and Systems Pharmacology, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Joseph Ciccolini
- SMARTc, CRCM Inserm U1068 Aix Marseille Univ and La Timone University Hospital of Marseille, Marseille, France
| | - J G Coen van Hasselt
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
36
|
Abdel-Latif M, Youness RA. Why natural killer cells in triple negative breast cancer? World J Clin Oncol 2020; 11:464-476. [PMID: 32821652 PMCID: PMC7407924 DOI: 10.5306/wjco.v11.i7.464] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
The triple-negative subtype of breast cancer (TNBC) has the bleakest prognosis, owing to its lack of either hormone receptor as well as human epidermal growth factor receptor 2. Henceforth, immunotherapy has emerged as the front-runner for TNBC treatment, which avoids potentially damaging chemotherapeutics. However, despite its documented association with aggressive side effects and developed resistance, immune checkpoint blockade continues to dominate the TNBC immunotherapy scene. These immune checkpoint blockade drawbacks necessitate the exploration of other immunotherapeutic methods that would expand options for TNBC patients. One such method is the exploitation and recruitment of natural killer cells, which by harnessing the innate rather than adaptive immune system could potentially circumvent the downsides of immune checkpoint blockade. In this review, the authors will elucidate the advantageousness of natural killer cell-based immuno-oncology in TNBC as well as demonstrate the need to more extensively research such therapies in the future.
Collapse
Affiliation(s)
- Mustafa Abdel-Latif
- Biotechnology Program, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Rana Ahmed Youness
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|
37
|
Chenoweth AM, Wines BD, Anania JC, Mark Hogarth P. Harnessing the immune system via FcγR function in immune therapy: a pathway to next-gen mAbs. Immunol Cell Biol 2020; 98:287-304. [PMID: 32157732 PMCID: PMC7228307 DOI: 10.1111/imcb.12326] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
Abstract
The human fragment crystallizable (Fc)γ receptor (R) interacts with antigen‐complexed immunoglobulin (Ig)G ligands to both activate and modulate a powerful network of inflammatory host‐protective effector functions that are key to the normal physiology of immune resistance to pathogens. More than 100 therapeutic monoclonal antibodies (mAbs) are approved or in late stage clinical trials, many of which harness the potent FcγR‐mediated effector systems to varying degrees. This is most evident for antibodies targeting cancer cells inducing antibody‐dependent killing or phagocytosis but is also true to some degree for the mAbs that neutralize or remove small macromolecules such as cytokines or other Igs. The use of mAb therapeutics has also revealed a “scaffolding” role for FcγR which, in different contexts, may either underpin the therapeutic mAb action such as immune agonism or trigger catastrophic adverse effects. The still unmet therapeutic need in many cancers, inflammatory diseases or emerging infections such as severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) requires increased effort on the development of improved and novel mAbs. A more mature appreciation of the immunobiology of individual FcγR function and the complexity of the relationships between FcγRs and antibodies is fueling efforts to develop more potent “next‐gen” therapeutic antibodies. Such development strategies now include focused glycan or protein engineering of the Fc to increase affinity and/or tailor specificity for selective engagement of individual activating FcγRs or the inhibitory FcγRIIb or alternatively, for the ablation of FcγR interaction altogether. This review touches on recent aspects of FcγR and IgG immunobiology and its relationship with the present and future actions of therapeutic mAbs.
Collapse
Affiliation(s)
- Alicia M Chenoweth
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,St John's Institute of Dermatology, King's College, London, UK
| | - Bruce D Wines
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, Australia
| | - Jessica C Anania
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - P Mark Hogarth
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, Australia
| |
Collapse
|
38
|
Stelter S, Paul MJ, Teh AY, Grandits M, Altmann F, Vanier J, Bardor M, Castilho A, Allen RL, Ma JK. Engineering the interactions between a plant-produced HIV antibody and human Fc receptors. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:402-414. [PMID: 31301102 PMCID: PMC6953194 DOI: 10.1111/pbi.13207] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/13/2019] [Accepted: 07/09/2019] [Indexed: 05/03/2023]
Abstract
Plants can provide a cost-effective and scalable technology for production of therapeutic monoclonal antibodies, with the potential for precise engineering of glycosylation. Glycan structures in the antibody Fc region influence binding properties to Fc receptors, which opens opportunities for modulation of antibody effector functions. To test the impact of glycosylation in detail, on binding to human Fc receptors, different glycovariants of VRC01, a broadly neutralizing HIV monoclonal antibody, were generated in Nicotiana benthamiana and characterized. These include glycovariants lacking plant characteristic α1,3-fucose and β1,2-xylose residues and glycans extended with terminal β1,4-galactose. Surface plasmon resonance-based assays were established for kinetic/affinity evaluation of antibody-FcγR interactions, and revealed that antibodies with typical plant glycosylation have a limited capacity to engage FcγRI, FcγRIIa, FcγRIIb and FcγRIIIa; however, the binding characteristics can be restored and even improved with targeted glycoengineering. All plant-made glycovariants had a slightly reduced affinity to the neonatal Fc receptor (FcRn) compared with HEK cell-derived antibody. However, this was independent of plant glycosylation, but related to the oxidation status of two methionine residues in the Fc region. This points towards a need for process optimization to control oxidation levels and improve the quality of plant-produced antibodies.
Collapse
Affiliation(s)
- Szymon Stelter
- Hotung Molecular Immunology UnitInstitute for Infection and ImmunitySt George's University of LondonLondonUK
- Present address:
Crescendo Biologics LtdMeditrina Building 260Babraham Research CampusCambridgeCB22 3ATUK
| | - Mathew J. Paul
- Hotung Molecular Immunology UnitInstitute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Audrey Y.‐H. Teh
- Hotung Molecular Immunology UnitInstitute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Melanie Grandits
- Hotung Molecular Immunology UnitInstitute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Friedrich Altmann
- Division of BiochemistryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Jessica Vanier
- UNIROUENLaboratoire Glycobiologie et Matrice Extracellulaire Végétale EANormandie UnivRouenFrance
| | - Muriel Bardor
- UNIROUENLaboratoire Glycobiologie et Matrice Extracellulaire Végétale EANormandie UnivRouenFrance
- Institut Universitaire de France (I.U.F.)Paris Cedex 05France
| | - Alexandra Castilho
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Rachel Louise Allen
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Julian K‐C. Ma
- Hotung Molecular Immunology UnitInstitute for Infection and ImmunitySt George's University of LondonLondonUK
| |
Collapse
|
39
|
Omokehinde T, Johnson RW. GP130 Cytokines in Breast Cancer and Bone. Cancers (Basel) 2020; 12:cancers12020326. [PMID: 32023849 PMCID: PMC7072680 DOI: 10.3390/cancers12020326] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer cells have a high predilection for skeletal homing, where they may either induce osteolytic bone destruction or enter a latency period in which they remain quiescent. Breast cancer cells produce and encounter autocrine and paracrine cytokine signals in the bone microenvironment, which can influence their behavior in multiple ways. For example, these signals can promote the survival and dormancy of bone-disseminated cancer cells or stimulate proliferation. The interleukin-6 (IL-6) cytokine family, defined by its use of the glycoprotein 130 (gp130) co-receptor, includes interleukin-11 (IL-11), leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), and cardiotrophin-1 (CT-1), among others. These cytokines are known to have overlapping pleiotropic functions in different cell types and are important for cross-talk between bone-resident cells. IL-6 cytokines have also been implicated in the progression and metastasis of breast, prostate, lung, and cervical cancer, highlighting the importance of these cytokines in the tumor–bone microenvironment. This review will describe the role of these cytokines in skeletal remodeling and cancer progression both within and outside of the bone microenvironment.
Collapse
Affiliation(s)
- Tolu Omokehinde
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachelle W. Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-615-875-8965
| |
Collapse
|
40
|
García-Alonso S, Ocaña A, Pandiella A. Trastuzumab Emtansine: Mechanisms of Action and Resistance, Clinical Progress, and Beyond. Trends Cancer 2020; 6:130-146. [PMID: 32061303 DOI: 10.1016/j.trecan.2019.12.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/29/2019] [Accepted: 12/19/2019] [Indexed: 11/18/2022]
Abstract
The approval of ado-trastuzumab emtansine (T-DM1) for clinical use represented a turning point both in HER2-positive breast cancer treatment and antibody-drug conjugate (ADC) technology. T-DM1 has proved its value and effectiveness in advanced metastatic disease as well as in the adjuvant setting. However, its therapeutic potential extends beyond the treatment of breast cancer. Around 100 clinical trials have evaluated or are studying different aspects of T-DM1, such as its role in other HER2 malignancies, rational combinations with immunotherapy, or its function in brain metastasis. Conceptually, many lessons can be learned from this ADC. Understanding its mechanisms of action and the molecular basis underlying resistance to T-DM1 may be relevant to comprehend resistances raised to other ADCs and identify pitfalls that may be overcome.
Collapse
Affiliation(s)
- Sara García-Alonso
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, CIBERONC and IBSAL, Salamanca, Spain; Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Alberto Ocaña
- Experimental Therapeutics Unit, Hospital Clínico San Carlos, Madrid, Spain; CIBERONC and Centro Regional de Investigaciones Biomedicas (CRIB), Castilla La Mancha University, Albacete, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, CIBERONC and IBSAL, Salamanca, Spain.
| |
Collapse
|
41
|
Kang J, Kim SY, Vallejo D, Hageman TS, White DR, Benet A, Coghlan J, Sen KI, Ford M, Saveliev S, Tolbert TJ, Weis DD, Schwendeman SP, Ruotolo BT, Schwendeman A. Multifaceted assessment of rituximab biosimilarity: The impact of glycan microheterogeneity on Fc function. Eur J Pharm Biopharm 2020; 146:111-124. [PMID: 31841688 DOI: 10.1016/j.ejpb.2019.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 01/08/2023]
Abstract
Biosimilars are poised to reduce prices and increase patient access to expensive, but highly effective biologic products. However, questions still remain about the degree of similarity and scarcity of information on biosimilar products from outside of the US/EU in the public domain. Thus, as an independent entity, we performed a comparative analysis between the innovator, Rituxan® (manufactured by Genentech/Roche), and a Russian rituximab biosimilar, Acellbia® (manufactured by Biocad). We evaluated biosimilarity of these two products by a variety of state-of-the-art analytical mass spectrometry techniques, including tandem MS mapping, HX-MS, IM-MS, and intact MS. Both were found to be generally similar regarding primary and higher order structure, though differences were identified in terms of glycoform distribution levels of C-terminal Lys, N-terminal pyroGlu, charge variants and soluble aggregates. Notably, we confirmed that the biosimilar had a higher level of afucosylated glycans, resulting in a stronger FcγIIIa binding affinity and increased ADCC activity. Taken together, our work provides a comprehensive comparison of Rituxan® and Acellbia®.
Collapse
Affiliation(s)
- Jukyung Kang
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Sang Yeop Kim
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Daniel Vallejo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Tyler S Hageman
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, United States
| | - Derek R White
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, United States
| | - Alexander Benet
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jill Coghlan
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - K Ilker Sen
- Protein Metrics Inc., San Carlos, CA 94070, United States
| | | | | | - Thomas J Tolbert
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, United States
| | - David D Weis
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, United States; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, United States
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
42
|
High-Throughput Quantification and Glycosylation Analysis of Antibodies Using Bead-Based Assays. Methods Mol Biol 2019. [PMID: 31858473 DOI: 10.1007/978-1-0716-0191-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
A novel version of bead -based assays with fluorescence detection enables the high-throughput analysis of antibodies and proteins. The protocols are carried out in special 384-well plates, require very few manual interventions, and are easy to automate. Here we describe how the technology can be used to determine antibody titers and screen for product glycosylation, a critical quality attribute, early in cell line and bioprocess development.
Collapse
|
43
|
Verrill M, Declerck P, Loibl S, Lee J, Cortes J. The rise of oncology biosimilars: from process to promise. Future Oncol 2019; 15:3255-3265. [DOI: 10.2217/fon-2019-0145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biosimilars are biologic products that are highly similar to, and have no clinically meaningful differences from, the approved originator molecule. They are poised to play an increasingly central role in cancer treatment, helping to improve access by driving down costs. Regulatory bodies have set out robust mechanisms for the approval of biosimilars, based on comprehensive and rigorous analytical and nonclinical comparisons with the originator. Product attributes (e.g., post-translational modifications) that are important to the function of the molecule must be similar between biosimilar and originator. This should be followed by a robust clinical development program, assessing pharmacokinetics, pharmacodynamics, efficacy, safety and immunogenicity. Equivalence in one indication might allow extrapolation across all the indications of the originator biologic. The recent approval of several trastuzumab biosimilars provides an example of how this process can work in practice for the benefit of patients, clinicians and payers.
Collapse
Affiliation(s)
- Mark Verrill
- Department of Medical Oncology, Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, NE7 7DN, UK
| | - Paul Declerck
- Department of Pharmaceutical & Pharmacological Sciences, Laboratory for Therapeutic & Diagnostic Antibodies, University of Leuven, Leuven 3000, Belgium
| | - Sibylle Loibl
- GBG Forschungs GmbH, Martin Behaim Strasse 12, 63263 Neu-Isenburg, Germany
| | - Jake Lee
- Samsung Bioepis, 107, Cheomdan-daero,Yeonsu-gu, Incheon, 21987, Republic of Korea
| | - Javier Cortes
- Department of Medical Oncology, OB Institute of Oncology, Quironsalud Group, Calle Diego de Velázquez, 1, 28223 Pozuelo de Alarcón, Madrid, Spain
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Centro Cellex, Carrer de Natzaret, 115-117, 08035 Barcelona, Spain
| |
Collapse
|
44
|
Pivot X, Pegram M, Cortes J, Lüftner D, Lyman GH, Curigliano G, Bondarenko I, Yoon YC, Kim Y, Kim C. Three-year follow-up from a phase 3 study of SB3 (a trastuzumab biosimilar) versus reference trastuzumab in the neoadjuvant setting for human epidermal growth factor receptor 2–positive breast cancer. Eur J Cancer 2019; 120:1-9. [DOI: 10.1016/j.ejca.2019.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 11/26/2022]
|
45
|
Romeo V, Gierke S, Edgar KA, Liu SD. Effects of PI3K Inhibition on Afucosylated Antibody-Driven FcγRIIIa Events and Phospho-S6 Activity in NK Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:137-147. [PMID: 31092639 DOI: 10.4049/jimmunol.1801418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/20/2019] [Indexed: 11/19/2022]
Abstract
PI3K is one of the most frequently mutated genes in cancers and has been the target of numerous anticancer therapies. With the additional development of therapeutics that mobilize the immune system, such as Abs with effector functions, bispecific Abs, and checkpoint inhibitors, many small molecule inhibitors that target PI3K are being combined with these immunomodulatory treatments. However, the PI3K pathway is also essential for lymphocyte function, and the presence of the PI3K inhibitor may render the immunomodulatory therapeutic ineffective in these combinatorial treatments. Therefore, therapeutics with enhanced activity, such as afucosylated Abs, which promote signaling and function, may be ideal in these types of treatments to offset the negative effect of PI3K inhibitors on immune cell function. Indeed, we show that afucosylated Abs can counterbalance these inhibitory effects on FcγRIIIa-driven signaling in human NK cells to produce signals similar to cells treated only with fucosylated Ab. Furthermore, NK cell activation, degranulation, chemokine/cytokine production, and Ab-dependent cellular cytotoxicity were similar between inhibitor-treated, afucosylated Ab-stimulated NK cells and cells activated only with its fucosylated counterpart. To our knowledge, these studies also identified a previously undefined role for phospho-S6 in human NK cells. In this study, a kinetic delay in PI3K-driven phosphorylation of S6 was observed to control transcription of the temporally regulated production of IFN-γ and TNF-α but not MIP-1α, MIP-1β, and RANTES. Together, these studies demonstrate the importance of the PI3K pathway for S6 phosphorylation in human NK cells and the need to combine PI3K inhibitors with therapeutic molecules that enhance immunomodulatory function for anticancer therapies.
Collapse
Affiliation(s)
- Valentina Romeo
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Sarah Gierke
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080; and
| | - Kyle A Edgar
- Department of Translation Oncology, Genentech, Inc., South San Francisco, CA 94080
| | - Scot D Liu
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080; and
| |
Collapse
|
46
|
Yuan Y, Zong H, Bai J, Han L, Wang L, Zhang X, Zhang X, Zhang J, Xu C, Zhu J, Zhang B. Bioprocess development of a stable FUT8 -/--CHO cell line to produce defucosylated anti-HER2 antibody. Bioprocess Biosyst Eng 2019; 42:1263-1271. [PMID: 30982137 DOI: 10.1007/s00449-019-02124-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 01/07/2023]
Abstract
In recent years, an increasing number of defucosylated therapeutic antibodies have been applied in clinical practices due to their better efficacy compared to fucosylated counterparts. The establishment of stable and clonal manufacturing cell lines is the basis of therapeutic antibodies production. Bioprocess development of a new cell line is necessary for its future applications in the biopharmaceutical industry. We engineered a stable cell line expressing defucosylated anti-HER2 antibody based on an established α-1,6-fucosyltransferase (FUT8) gene knockout CHO-S cell line. The optimization of medium and feed was evaluated in a small-scale culture system. Then the optimal medium and feed were scaled up in a bioreactor system. After fed-batch culture over 13 days, we evaluated the cell growth, antibody yield, glycan compositions and bioactivities. The production of anti-HER2 antibody from the FUT8 gene knockout CHO-S cells in the bioreactor increased by 37% compared to the shake flask system. The N-glycan profile of the produced antibody was consistent between the bioreactor and shake flask system. The antibody-dependent cellular cytotoxicity activity of the defucosylated antibody increased 14-fold compared to the wild-type antibody, which was the same as our previous results. The results of our bioprocess development demonstrated that the engineered cell line could be developed to a biopharmaceutical industrial cell line.
Collapse
Affiliation(s)
- Yuan Yuan
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Huifang Zong
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Jingyi Bai
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Lei Han
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Lei Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xinyu Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xiaoshuai Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Jingyi Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Chenxiao Xu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.,Jecho Laboratories, Inc., 7320 Executive Way, Frederick, MD, 21704, USA
| | - Baohong Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
47
|
Garber K. No added sugar: antibody makers find an upside to 'no fucose'. Nat Biotechnol 2019; 36:1025-1027. [PMID: 30412203 DOI: 10.1038/nbt1118-1025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Colomb F, Giron LB, Trbojevic-Akmacic I, Lauc G, Abdel-Mohsen M. Breaking the Glyco-Code of HIV Persistence and Immunopathogenesis. Curr HIV/AIDS Rep 2019; 16:151-168. [PMID: 30707400 PMCID: PMC6441623 DOI: 10.1007/s11904-019-00433-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Glycoimmunology is an emerging field focused on understanding how immune responses are mediated by glycans (carbohydrates) and their interaction with glycan-binding proteins called lectins. How glycans influence immunological functions is increasingly well understood. In a parallel way, in the HIV field, it is increasingly understood how the host immune system controls HIV persistence and immunopathogenesis. However, what has mostly been overlooked, despite its potential for therapeutic applications, is the role that the host glycosylation machinery plays in modulating the persistence and immunopathogenesis of HIV. Here, we will survey four areas in which the links between glycan-lectin interactions and immunology and between immunology and HIV are well described. For each area, we will describe these links and then delineate the opportunities for the HIV field in investigating potential interactions between glycoimmunology and HIV persistence/immunopathogenesis. RECENT FINDINGS Recent studies show that the human glycome (the repertoire of human glycan structures) plays critical roles in driving or modulating several cellular processes and immunological functions that are central to maintaining HIV infection. Understanding the links between glycoimmunology and HIV infection may create a new paradigm for discovering novel glycan-based therapies that can lead to eradication, functional cure, or improved tolerance of lifelong infection.
Collapse
Affiliation(s)
- Florent Colomb
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, USA
| | - Leila B Giron
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, USA
| | | | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacica 1, Zagreb, Croatia
| | | |
Collapse
|
49
|
van Erp EA, Luytjes W, Ferwerda G, van Kasteren PB. Fc-Mediated Antibody Effector Functions During Respiratory Syncytial Virus Infection and Disease. Front Immunol 2019; 10:548. [PMID: 30967872 PMCID: PMC6438959 DOI: 10.3389/fimmu.2019.00548] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections and hospitalization in infants under 1 year of age and there is currently no market-approved vaccine available. For protection against infection, young children mainly depend on their innate immune system and maternal antibodies. Traditionally, antibody-mediated protection against viral infections is thought to be mediated by direct binding of antibodies to viral particles, resulting in virus neutralization. However, in the case of RSV, virus neutralization titers do not provide an adequate correlate of protection. The current lack of understanding of the mechanisms by which antibodies can protect against RSV infection and disease or, alternatively, contribute to disease severity, hampers the design of safe and effective vaccines against this virus. Importantly, neutralization is only one of many mechanisms by which antibodies can interfere with viral infection. Antibodies consist of two structural regions: a variable fragment (Fab) that mediates antigen binding and a constant fragment (Fc) that mediates downstream effector functions via its interaction with Fc-receptors on (innate) immune cells or with C1q, the recognition molecule of the complement system. The interaction with Fc-receptors can lead to killing of virus-infected cells through a variety of immune effector mechanisms, including antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Antibody-mediated complement activation may lead to complement-dependent cytotoxicity (CDC). In addition, both Fc-receptor interactions and complement activation can exert a broad range of immunomodulatory functions. Recent studies have emphasized the importance of Fc-mediated antibody effector functions in both protection and pathogenesis for various infectious agents. In this review article, we aim to provide a comprehensive overview of the current knowledge on Fc-mediated antibody effector functions in the context of RSV infection, discuss their potential role in establishing the balance between protection and pathogenesis, and point out important gaps in our understanding of these processes. Furthermore, we elaborate on the regulation of these effector functions on both the cellular and humoral side. Finally, we discuss the implications of Fc-mediated antibody effector functions for the rational design of safe and effective vaccines and monoclonal antibody therapies against RSV.
Collapse
Affiliation(s)
- Elisabeth A. van Erp
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Radboud Center for Infectious Diseases, Nijmegen, Netherlands
| | - Willem Luytjes
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Gerben Ferwerda
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Radboud Center for Infectious Diseases, Nijmegen, Netherlands
| | - Puck B. van Kasteren
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
50
|
Pereira NA, Chan KF, Lin PC, Song Z. The "less-is-more" in therapeutic antibodies: Afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. MAbs 2019; 10:693-711. [PMID: 29733746 PMCID: PMC6150623 DOI: 10.1080/19420862.2018.1466767] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Therapeutic monoclonal antibodies are the fastest growing class of biological therapeutics for the treatment of various cancers and inflammatory disorders. In cancer immunotherapy, some IgG1 antibodies rely on the Fc-mediated immune effector function, antibody-dependent cellular cytotoxicity (ADCC), as the major mode of action to deplete tumor cells. It is well-known that this effector function is modulated by the N-linked glycosylation in the Fc region of the antibody. In particular, absence of core fucose on the Fc N-glycan has been shown to increase IgG1 Fc binding affinity to the FcγRIIIa present on immune effector cells such as natural killer cells and lead to enhanced ADCC activity. As such, various strategies have focused on producing afucosylated antibodies to improve therapeutic efficacy. This review discusses the relevance of antibody core fucosylation to ADCC, different strategies to produce afucosylated antibodies, and an update of afucosylated antibody drugs currently undergoing clinical trials as well as those that have been approved.
Collapse
Affiliation(s)
- Natasha A Pereira
- a Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR) , 20 Biopolis Way, Singapore
| | - Kah Fai Chan
- a Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR) , 20 Biopolis Way, Singapore
| | - Pao Chun Lin
- a Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR) , 20 Biopolis Way, Singapore
| | - Zhiwei Song
- a Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR) , 20 Biopolis Way, Singapore
| |
Collapse
|