1
|
Zhao B, Fang R, Schürmann H, Hemmer EJ, Mayer GL, Trajkovic-Arsic M, Althoff K, Yang J, Godfrey L, Liffers ST, Savvatakis K, Dorsch M, Grüner BM, Hahn S, Remke M, Lueong SS, Siveke JT. PLK1 blockade enhances the anti-tumor effect of MAPK inhibition in pancreatic ductal adenocarcinoma. Cell Rep 2025; 44:115541. [PMID: 40188436 DOI: 10.1016/j.celrep.2025.115541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/04/2025] [Accepted: 03/19/2025] [Indexed: 04/08/2025] Open
Abstract
Despite constitutive Ras/Raf/MAPK pathway activation in most pancreatic ductal adenocarcinomas (PDACs), treatment approaches targeting this pathway have primarily been unsuccessful. We conduct a drug library screen on an MEK inhibitor (MEKi)-resistant PDAC model and perform complementary pathway analysis to identify cellular resistance phenotypes. We use syngeneic models to investigate the molecular determinants of identified drug synergism. Our study reveals an enrichment for the hallmarks of G2/M checkpoints in MEKi-resistant phenotypes from all investigated models. We find overexpression of Polo-like kinase 1 (PLK1) and other G2/M checkpoint-related proteins in MEKi-resistant cells. We identify synergistic activity between MEK and PLK1 inhibition both in vitro and in vivo and mechanistically show that dual inhibition of the PLK1 and MEK pathways activates the JNK/c-JUN pathway. This causes the accumulation of DNA damage, ultimately leading to apoptotic cell death. Dual PLK1/MEK inhibition emerges as a promising targeted approach in PDAC.
Collapse
Affiliation(s)
- Ben Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Rui Fang
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Hendrik Schürmann
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany; Department of Medical Oncology, West German Cancer Center, University Hospital Essen, 45147 Essen, Germany
| | - Erik Jan Hemmer
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Gina Lauren Mayer
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Marija Trajkovic-Arsic
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Kristina Althoff
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Jiajin Yang
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Laura Godfrey
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Sven T Liffers
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Konstantinos Savvatakis
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Madeleine Dorsch
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany; Department of Medical Oncology, West German Cancer Center, University Hospital Essen, 45147 Essen, Germany
| | - Barbara M Grüner
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany; Department of Medical Oncology, West German Cancer Center, University Hospital Essen, 45147 Essen, Germany
| | - Stephan Hahn
- Department of Molecular GI Oncology, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany; Department of Internal Medicine, Ruhr University Bochum, Knappschaftskrankenhaus, 44780 Bochum, Germany
| | - Marc Remke
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, 40225 Düsseldorf, Germany; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Pediatric Neuro-Oncogenomics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 40225 Düsseldorf, Germany
| | - Smiths S Lueong
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany.
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany.
| |
Collapse
|
2
|
Ji X, Wang X, Dong Q, Li W, Zhou N, Yue X, Zhao D, Yang X. CDCP1 knockdown suppresses PDGFRβ/AKT pathway-mediated vascular smooth muscle cell proliferation by inhibiting PDGFRβ endocytosis. PeerJ 2025; 13:e19114. [PMID: 40256729 PMCID: PMC12007496 DOI: 10.7717/peerj.19114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/13/2025] [Indexed: 04/22/2025] Open
Abstract
CUB domain-containing protein 1 (CDCP1) is a type of cell surface glycoprotein that has been identified as being capable of regulating cell anchorage, migration, proliferation, and differentiation. However, the contributions of CDCP1 in intimal hyperplasia, specifically regarding the proliferation and migration of vascular smooth muscle cells (VSMC), are unclear. In this study, we analyzed CDCP1 expression on intimal hyperplasia through a focal carotid stenosis model in vivo. In vitro, we cultured mouse VSMCs and stimulated them with 20 ng/mL platelet-derived growth factor BB (PDGF-BB) for 24 h. Western blot analysis was performed to detect the expression of CDCP1 in the cells. Next, we knocked down the expression of CDCP1 in VSMCs and assessed its effects on cell proliferation and migration using CCK8 assays, EDU+ assay, and wound healing experiments. We then performed RNA-Seq analysis on the CDCP1-knockdown VSMCs. Based on the sequencing results, we utilized western blotting to investigate the impact of CDCP1 knockdown on the AKT signaling pathway. Additionally, we validated the interactions between Platelet-derived growth factor receptor (PDGFR)β with NEDD4, clathrin, and Rab5 using immunofluorescence and co-immunoprecipitation assays. The results discovered that CDCP1 levels were activated in the intimal hyperplasia tissues in vivo. CDCP1 knockdown significantly attenuated mouse VSMC proliferation and migration induced by PDGF-BB in vitro. Based on the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the differentially expressed proteins obtained from RNA-sequencing, we found that the knockdown of CDCP1 is related to the "PI3K-AKT signaling pathway", "ubiquitin-mediated proteolysis", and "endocytosis" pathways. The subsequent experiments demonstrated that CDCP1 knockdown inhibited AKT signaling pathway. CDCP1 knockdown promoted the binding of PDGFRβ and NEDD4, and PDGFRβ ubiquitin. Moreover, CDCP1 knockdown attenuated the binding of PDGFRβ to clathrin and Rab5. These data reveal that the absence of CDCP1 may enhance the binding of PDGFR to NEDD4 and promote the ubiquitination of PDGFR, thereby regulating the AKT signaling pathway and intimal hyperplasia.
Collapse
MESH Headings
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Cell Proliferation/genetics
- Mice
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
- Endocytosis/genetics
- Myocytes, Smooth Muscle/metabolism
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Movement
- Gene Knockdown Techniques
- Becaplermin/pharmacology
- Male
- Cells, Cultured
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Xin Ji
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China
- Department of Clinical Laboratory, Southern University of Science and Technology Hospital, Shenzhen, Guangdong Province, China
| | - Xin Wang
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Qianqian Dong
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Wanqiu Li
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Ning Zhou
- Department of Clinical Laboratory, Southern University of Science and Technology Hospital, Shenzhen, Guangdong Province, China
| | - Xiaole Yue
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Dandan Zhao
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xiaolong Yang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
3
|
Lai Y, Xie B, Zhang W, He W. Pure drug nanomedicines - where we are? Chin J Nat Med 2025; 23:385-409. [PMID: 40274343 DOI: 10.1016/s1875-5364(25)60851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 04/26/2025]
Abstract
Pure drug nanomedicines (PDNs) encompass active pharmaceutical ingredients (APIs), including macromolecules, biological compounds, and functional components. They overcome research barriers and conversion thresholds associated with nanocarriers, offering advantages such as high drug loading capacity, synergistic treatment effects, and environmentally friendly production methods. This review provides a comprehensive overview of the latest advancements in PDNs, focusing on their essential components, design theories, and manufacturing techniques. The physicochemical properties and in vivo behaviors of PDNs are thoroughly analyzed to gain an in-depth understanding of their systematic characteristics. The review introduces currently approved PDN products and further explores the opportunities and challenges in expanding their depth and breadth of application. Drug nanocrystals, drug-drug cocrystals (DDCs), antibody-drug conjugates (ADCs), and nanobodies represent the successful commercialization and widespread utilization of PDNs across various disease domains. Self-assembled pure drug nanoparticles (SAPDNPs), a next-generation product, still require extensive translational research. Challenges persist in transitioning from laboratory-scale production to mass manufacturing and overcoming the conversion threshold from laboratory findings to clinical applications.
Collapse
Affiliation(s)
- Yaoyao Lai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Bing Xie
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Wanting Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China.
| |
Collapse
|
4
|
Spagnuolo MC, Gottmann P, Sommer J, Borgmann SO, Strassburger K, Rathmann W, Zaharia OP, Trenkamp S, Wagner R, Icks A, Herder C, Roden M, Maalmi H. Three-protein signature is associated with baseline and persistently elevated or recurrent depressive symptoms in individuals with recent-onset diabetes. BMJ Open Diabetes Res Care 2025; 13:e004396. [PMID: 39965868 PMCID: PMC11836832 DOI: 10.1136/bmjdrc-2024-004396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/05/2025] [Indexed: 02/20/2025] Open
Abstract
Depression is associated with diabetes, but the underlying causes remain unclear. To better understand depression in diabetes, this study investigated associations between 135 inflammatory and neurological protein biomarkers and depressive symptoms in individuals with diabetes.This cross-sectional study included 430 adults with a known diabetes duration <1 year from the German Diabetes Study (GDS), in whom biomarkers were measured in serum and depressive symptoms were evaluated at baseline and annually over 5 years using the Center for Epidemiological Studies Depression Scale (CES-D). Based on the information on depressive symptoms from the baseline and follow-up visits (n=305, ≥3 time points), we subdivided the sample into individuals with persistent or recurrent and transient or never depressive symptoms. We assessed the associations of each biomarker with baseline CES-D score (continuous) and persistent/recurrent depressive symptoms using multiple linear and logistic regression models, respectively.After adjustment for covariates, we identified a three-protein signature associated with baseline CES-D score and persistent/recurrent depressive symptoms. CUB domain-containing protein 1 (CDCP1) and NAD-dependent protein deacetylase sirtuin-2 (SIRT2) were positively associated with baseline (β 1.24 (95% CI 0.19 to 2.29); β 0.89 (95% CI 0.06 to 1.72)), respectively) and persistent/recurrent depressive symptoms (OR 1.58 (95% CI 1.08 to 2.31); OR 1.32 (95% CI 1.03 to 1.71), respectively), whereas leptin receptor (LEPR) was inversely associated with baseline (β -0.99 (95% CI -1.87 to -0.11)) and persistent/recurrent depressive symptoms (OR 0.70 (95% CI 0.49 to 0.99)). However, results were not significant after adjustment for multiple testing.In conclusion, the three-protein signature identified may provide insights into mechanisms underlying depressive symptoms in diabetes and might open new therapeutic avenues.The trial registration number of the study is NCT01055093.
Collapse
Affiliation(s)
- Maria C Spagnuolo
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München, Germany
| | - Pascal Gottmann
- German Center for Diabetes Research (DZD), München, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam, Germany
| | - Jana Sommer
- German Center for Diabetes Research (DZD), München, Germany
- Institute for Health Services Research and Health Economics, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Olivia Borgmann
- German Center for Diabetes Research (DZD), München, Germany
- Institute for Health Services Research and Health Economics, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Health Services Research and Health Economics, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research (DZD), München, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), München, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oana Patricia Zaharia
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Trenkamp
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München, Germany
| | - Robert Wagner
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andrea Icks
- German Center for Diabetes Research (DZD), München, Germany
- Institute for Health Services Research and Health Economics, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Health Services Research and Health Economics, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Haifa Maalmi
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München, Germany
| |
Collapse
|
5
|
Gurrea-Rubio M, Lin F, Wicha MS, Mao-Draayer Y, Fox DA. Ligands of CD6: roles in the pathogenesis and treatment of cancer. Front Immunol 2025; 15:1528478. [PMID: 39840036 PMCID: PMC11747410 DOI: 10.3389/fimmu.2024.1528478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Cluster of Differentiation 6 (CD6), an established marker of T cells, has multiple and complex functions in regulation of T cell activation and proliferation, and in adhesion of T cells to antigen-presenting cells and epithelial cells in various organs and tissues. Early studies on CD6 demonstrated its role in mediating cell-cell interactions through its first ligand to be identified, CD166/ALCAM. The observation of CD6-dependent functions of T cells that could not be explained by interactions with CD166/ALCAM led to discovery of a second ligand, CD318/CDCP1. An additional cell surface molecule (CD44) is being studied as a potential third ligand of CD6. CD166, CD318, and CD44 are widely expressed by both differentiated cancer cells and cancer stem-like cells, and the level of their expression generally correlates with poor prognosis and increased metastatic potential. Therefore, there has been an increased focus on understanding how CD6 interacts with its ligands in the context of cancer biology and cancer immunotherapy. In this review, we assess the roles of these CD6 ligands in both the pathogenesis and treatment of cancer.
Collapse
Affiliation(s)
- Mikel Gurrea-Rubio
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Feng Lin
- Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Max S. Wicha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Yang Mao-Draayer
- Multiple Sclerosis Center of Excellence, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - David A. Fox
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Geraghty S, Boyer JA, Fazel-Zarandi M, Arzouni N, Ryseck RP, McBride MJ, Parsons LR, Rabinowitz JD, Singh M. Integrative Computational Framework, Dyscovr, Links Mutated Driver Genes to Expression Dysregulation Across 19 Cancer Types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624509. [PMID: 39605479 PMCID: PMC11601522 DOI: 10.1101/2024.11.20.624509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Though somatic mutations play a critical role in driving cancer initiation and progression, the systems-level functional impacts of these mutations-particularly, how they alter expression across the genome and give rise to cancer hallmarks-are not yet well-understood, even for well-studied cancer driver genes. To address this, we designed an integrative machine learning model, Dyscovr, that leverages mutation, gene expression, copy number alteration (CNA), methylation, and clinical data to uncover putative relationships between nonsynonymous mutations in key cancer driver genes and transcriptional changes across the genome. We applied Dyscovr pan-cancer and within 19 individual cancer types, finding both broadly relevant and cancer type-specific links between driver genes and putative targets, including a subset we further identify as exhibiting negative genetic relationships. Our work newly implicates-and validates in cell lines-KBTBD2 and mutant PIK3CA as putative synthetic lethals in breast cancer, suggesting a novel combinatorial treatment approach.
Collapse
Affiliation(s)
- Sara Geraghty
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Jacob A. Boyer
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
- Ludwig Cancer Institute, Princeton Branch, Princeton University, Princeton, NJ 08554
| | - Mahya Fazel-Zarandi
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Nibal Arzouni
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Rolf-Peter Ryseck
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Matthew J. McBride
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854
| | - Lance R. Parsons
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Joshua D. Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
- Ludwig Cancer Institute, Princeton Branch, Princeton University, Princeton, NJ 08554
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Mona Singh
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
- Department of Computer Science, Princeton University, Princeton, NJ 08544
- Lead Contact
| |
Collapse
|
7
|
Li S, Zhou C, Liu T, Zhang L, Liu S, Zhao Q, Liu J, Zhao W. Causal relationships between the gut microbiota, inflammatory cytokines, and alcoholic liver disease: a Mendelian randomization analysis. Front Endocrinol (Lausanne) 2024; 15:1442603. [PMID: 39497803 PMCID: PMC11532067 DOI: 10.3389/fendo.2024.1442603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/01/2024] [Indexed: 11/07/2024] Open
Abstract
Objective Previous studies have suggested a potential association between gut microbiota and the development of alcohol-related liver disease (ALD). However, the causal relationship between gut microbiota and ALD, as well as the role of inflammatory cytokines as mediators, remains unclear. This study aims to explore the causal relationship between gut microbiota and ALD using Mendelian randomization (MR) methods, and to analyze the mediating role of inflammatory cytokines. Methods Gut microbiota, 91 inflammatory cytokines, and ALD were identified from summary data of large-scale genome-wide association studies (GWAS). MR was employed to investigate the causal relationship between gut microbiota, cytokines, and ALD, with the inverse variance-weighted method (IVW) as the primary statistical approach. Additionally, we examined whether inflammatory cytokines act as mediating factors in the pathway from gut microbiota to ALD. Results The IVW results confirmed two positive and one negative causal effect between genetic liability in the gut microbiota and ALD. Escherichia coli (P= 0.003) was identified as a protective factor for ALD, while Roseburia hominis (P=0.023) and Family Porphyromonadaceae (P=0.038) were identified as risk factors for ALD. Furthermore, there were five positive and two negative causal effects between inflammatory cytokines and ALD, with CUB domain-containing protein 1 (P= 0.035), Macrophage colony-stimulating factor 1 (P=0.047), Cystatin D (P = 0.035), Fractalkine (P=0.000000038), Monocyte chemoattractant protein-1 (P=0.004) positively associated with ALD onset. CD40L receptor (P= 0.044) and Leukemia inhibitory factor (P = 0.024) exhibited protective effects against ALD. Mediation MR analysis indicated that CUB domain-containing protein 1 (mediation proportion=1.6%, P=0.035), Cystatin D (mediation proportion=1.5%, P=0.012), and Monocyte chemoattractant protein-1 (mediation proportion=3.3%, P=0.005) mediated the causal effect of Roseburia hominis on ALD. Conclusion In conclusion, our study supports a causal relationship among gut microbiota, inflammatory cytokines and ALD, with inflammatory cytokines potentially acting as mediating factors in the pathway from gut microbiota to ALD.
Collapse
Affiliation(s)
- Shanzheng Li
- Department of Gastroenterology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Cheng Zhou
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Tong Liu
- Department of Gastroenterology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Lihui Zhang
- Department of Gastroenterology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Sutong Liu
- Department of Gastroenterology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Qing Zhao
- Department of Gastroenterology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiangkai Liu
- Department of Gastroenterology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenxia Zhao
- Department of Gastroenterology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
8
|
Wu R, Wu J, Jin H, Ma H, Huang H, Xu W, Sun S, Liu X, Dong K, Xie Y, Zeng J, Wang F. Olink and gut microbial metabolomics reveal new biomarkers for the prediction and diagnosis of PMOP. J Bone Miner Metab 2024; 42:503-515. [PMID: 39153113 DOI: 10.1007/s00774-024-01545-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
LNTRODUCTION Postmenopausal osteoporosis (PMOP) can cause postmenopausal women to experience pain and interference. Identifying and exploring potential early diagnostic biomarkers of PMOP is of substantial clinical value and social significance. This study aimed to screen for potential novel diagnostic biomarkers of PMOP through a multiomics approach, providing new directions and ideas for the early prevention and treatment of this disease. MATERIALS AND METHODS Fifteen postmenopausal women with osteoporosis and 12 without were recruited. Clinical information was collected, and various clinical biochemical parameters were tested. Plasma and fecal samples were collected and analyzed using Olink proteomics and gut microbial metabolomics. RESULTS The functions of the differentially abundant metabolites were mainly related to autophagy and arginine and proline metabolism and were involved in immunoinflammatory metabolic processes. Olink showed significant differences in the expression of seven inflammation-related proteins between the two groups. CONCLUSION We demonstrated that metabolic differences between PMOP patients and healthy controls were associated with inflammatory responses and found seven proteins with significant differences. Among these proteins, CDCP1, IL10, and IL-1alpha combined with clinical indicators had high discriminant efficiency in identifying PMOP. This is also the first study to demonstrate noteworthy changes in CDCP1 levels in patients with PMOP.
Collapse
Affiliation(s)
- Ruizhe Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Jie Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Hui Jin
- Department of Orthopaedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Huaiyu Ma
- Department of Orthopaedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Hongxing Huang
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Wuji Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Shaoqiu Sun
- Department of Orthopaedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Xiaolan Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Kefang Dong
- Department of Orthopaedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Yisong Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Jingqi Zeng
- Department of Orthopaedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Fan Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| |
Collapse
|
9
|
Radisky ES. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis. J Biol Chem 2024; 300:107347. [PMID: 38718867 PMCID: PMC11170211 DOI: 10.1016/j.jbc.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
A vast ensemble of extracellular proteins influences the development and progression of cancer, shaped and reshaped by a complex network of extracellular proteases. These proteases, belonging to the distinct classes of metalloproteases, serine proteases, cysteine proteases, and aspartic proteases, play a critical role in cancer. They often become dysregulated in cancer, with increases in pathological protease activity frequently driven by the loss of normal latency controls, diminished regulation by endogenous protease inhibitors, and changes in localization. Dysregulated proteases accelerate tumor progression and metastasis by degrading protein barriers within the extracellular matrix (ECM), stimulating tumor growth, reactivating dormant tumor cells, facilitating tumor cell escape from immune surveillance, and shifting stromal cells toward cancer-promoting behaviors through the precise proteolysis of specific substrates to alter their functions. These crucial substrates include ECM proteins and proteoglycans, soluble proteins secreted by tumor and stromal cells, and extracellular domains of cell surface proteins, including membrane receptors and adhesion proteins. The complexity of the extracellular protease web presents a significant challenge to untangle. Nevertheless, technological strides in proteomics, chemical biology, and the development of new probes and reagents are enabling progress and advancing our understanding of the pivotal importance of extracellular proteolysis in cancer.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA.
| |
Collapse
|
10
|
Do JS, Arribas-Layton D, Juan J, Garcia I, Saraswathy S, Qi M, Montero E, Reijonen H. The CD318/CD6 axis limits type 1 diabetes islet autoantigen-specific human T cell activation. J Autoimmun 2024; 146:103228. [PMID: 38642507 DOI: 10.1016/j.jaut.2024.103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/12/2024] [Accepted: 04/09/2024] [Indexed: 04/22/2024]
Abstract
CD6 is a glycoprotein expressed on CD4 and CD8 T cells involved in immunoregulation. CD318 has been identified as a CD6 ligand. The role of CD318 in T cell immunity is restricted as it has only been investigated in a few mice autoimmune models but not in human diseases. CD318 expression was thought to be limited to mesenchymal-epithelial cells and, therefore, contribute to CD6-mediated T cell activation in the CD318-expressing tissue rather than through interaction with antigen-presenting cells. Here, we report CD318 expression in a subpopulation of CD318+ myeloid dendritic (mDC), whereas the other peripheral blood populations were CD318 negative. However, CD318 can be induced by activation: a subset of monocytes treated with LPS and IFNγ and in vitro monocyte derived DCs were CD318+. We also showed that recombinant CD318 inhibited T cell function. Strikingly, CD318+ DCs suppressed the proliferation of autoreactive T cells specific for GAD65, a well-known targeted self-antigen in Type 1 Diabetes (T1D). Our study provides new insight into the role of the CD318/CD6 axis in the immunopathogenesis of inflammation, suggesting a novel immunoregulatory role of CD318 in T cell-mediated autoimmune diseases and identifying a potential novel immune checkpoint inhibitor as a target for intervention in T1D which is an unmet therapeutic need.
Collapse
MESH Headings
- Humans
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Autoantigens/immunology
- Cells, Cultured
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Glutamate Decarboxylase
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Lymphocyte Activation/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
Collapse
Affiliation(s)
- Jeong-Su Do
- Department of Immunology and Theranostics, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA.
| | - David Arribas-Layton
- Department of Immunology and Theranostics, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Jemily Juan
- Department of Molecular and Cellular Endocrinology, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Isaac Garcia
- Department of Molecular and Cellular Endocrinology, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Sindhu Saraswathy
- Department of Molecular and Cellular Endocrinology, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Meirigeng Qi
- Department of Translational Research and Cellular Therapeutics, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Enrique Montero
- Department of Molecular and Cellular Endocrinology, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Helena Reijonen
- Department of Immunology and Theranostics, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA.
| |
Collapse
|
11
|
Zhou J, Le CQ, Zhang Y, Wells JA. A general approach for selection of epitope-directed binders to proteins. Proc Natl Acad Sci U S A 2024; 121:e2317307121. [PMID: 38683990 PMCID: PMC11087759 DOI: 10.1073/pnas.2317307121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
Directing antibodies to a particular epitope among many possible on a target protein is a significant challenge. Here, we present a simple and general method for epitope-directed selection (EDS) using a differential phage selection strategy. This involves engineering the protein of interest (POI) with the epitope of interest (EOI) mutated using a systematic bioinformatics algorithm to guide the local design of an EOI decoy variant. Using several alternating rounds of negative selection with the EOI decoy variant followed by positive selection on the wild-type POI, we were able to identify highly specific and potent antibodies to five different EOI antigens that bind and functionally block known sites of proteolysis. Among these, we developed highly specific antibodies that target the proteolytic site on the CUB domain containing protein 1 (CDCP1) to prevent its proteolysis allowing us to study the cellular maturation of this event that triggers malignancy. We generated antibodies that recognize the junction between the pro- and catalytic domains for three different matrix metalloproteases (MMPs), MMP1, MMP3, and MMP9, that selectively block activation of each of these enzymes and impair cell migration. We targeted a proteolytic epitope on the cell surface receptor, EPH Receptor A2 (EphA2), that is known to transform it from a tumor suppressor to an oncoprotein. We believe that the EDS method greatly facilitates the generation of antibodies to specific EOIs on a wide range of proteins and enzymes for broad therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA94158
| | - Chau Q. Le
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA94158
| | - Yun Zhang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA94158
| | - James A. Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA94158
- Chan Zuckerberg Biohub, San Francisco, CA94158
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA94158
| |
Collapse
|
12
|
Gurrea-Rubio M, Wu Q, Amin MA, Tsou PS, Campbell PL, Amarista CI, Ikari Y, Brodie WD, Mattichak MN, Muraoka S, Randon PM, Lind ME, Ruth JH, Mao-Draayer Y, Ding S, Shen X, Cooney LA, Lin F, Fox DA. Activation of cytotoxic lymphocytes through CD6 enhances killing of cancer cells. Cancer Immunol Immunother 2024; 73:34. [PMID: 38280067 PMCID: PMC10821976 DOI: 10.1007/s00262-023-03578-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/10/2023] [Indexed: 01/29/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have demonstrated efficacy and improved survival in a growing number of cancers. Despite their success, ICIs are associated with immune-related adverse events that can interfere with their use. Therefore, safer approaches are needed. CD6, expressed by T-lymphocytes and human NK cells, engages in cell-cell interactions by binding to its ligands CD166 (ALCAM) and CD318 (CDCP1). CD6 is a target protein for regulating immune responses and is required for the development of several mouse models of autoimmunity. Interestingly, CD6 is exclusively expressed on immune cells while CD318 is strongly expressed on most cancers. Here we demonstrate that disrupting the CD6-CD318 axis with UMCD6, an anti-CD6 monoclonal antibody, prolongs survival of mice in xenograft mouse models of human breast and prostate cancer, treated with infusions of human lymphocytes. Analysis of tumor-infiltrating immune cells showed that augmentation of lymphocyte cytotoxicity by UMCD6 is due to effects of this antibody on NK, NKT and CD8 + T cells. In particular, tumor-infiltrating cytotoxic lymphocytes from UMCD6-treated mice expressed higher levels of perforin and were found in higher proportions than those from IgG-treated mice. Moreover, RNA-seq analysis of human NK-92 cells treated with UMCD6 revealed that UMCD6 up-regulates the NKG2D-DAP10 receptor complex, important in NK cell activation, as well as its downstream target PI3K. Our results now describe the phenotypic changes that occur on immune cells upon treatment with UMCD6 and further confirm that the CD6-CD318 axis can regulate the activation state of cytotoxic lymphocytes and their positioning within the tumor microenvironment.
Collapse
Affiliation(s)
- Mikel Gurrea-Rubio
- Department of Internal Medicine, Division of Rheumatology, University of Michigan and Autoimmunity Center of Excellence, Ann Arbor, MI, USA
| | - Qi Wu
- Department of Internal Medicine, Division of Rheumatology, University of Michigan and Autoimmunity Center of Excellence, Ann Arbor, MI, USA
| | - M Asif Amin
- Department of Internal Medicine, Division of Rheumatology, University of Michigan and Autoimmunity Center of Excellence, Ann Arbor, MI, USA
| | - Pei-Suen Tsou
- Department of Internal Medicine, Division of Rheumatology, University of Michigan and Autoimmunity Center of Excellence, Ann Arbor, MI, USA
| | - Phillip L Campbell
- Department of Internal Medicine, Division of Rheumatology, University of Michigan and Autoimmunity Center of Excellence, Ann Arbor, MI, USA
| | - Camila I Amarista
- Department of Internal Medicine, Division of Rheumatology, University of Michigan and Autoimmunity Center of Excellence, Ann Arbor, MI, USA
| | - Yuzo Ikari
- Department of Internal Medicine, Division of Rheumatology, University of Michigan and Autoimmunity Center of Excellence, Ann Arbor, MI, USA
| | - William D Brodie
- Department of Internal Medicine, Division of Rheumatology, University of Michigan and Autoimmunity Center of Excellence, Ann Arbor, MI, USA
| | - Megan N Mattichak
- Department of Internal Medicine, Division of Rheumatology, University of Michigan and Autoimmunity Center of Excellence, Ann Arbor, MI, USA
| | - Sei Muraoka
- Department of Internal Medicine, Division of Rheumatology, University of Michigan and Autoimmunity Center of Excellence, Ann Arbor, MI, USA
| | - Peggy M Randon
- Department of Internal Medicine, Division of Rheumatology, University of Michigan and Autoimmunity Center of Excellence, Ann Arbor, MI, USA
| | - Matthew E Lind
- Department of Internal Medicine, Division of Rheumatology, University of Michigan and Autoimmunity Center of Excellence, Ann Arbor, MI, USA
| | - Jeffrey H Ruth
- Department of Internal Medicine, Division of Rheumatology, University of Michigan and Autoimmunity Center of Excellence, Ann Arbor, MI, USA
| | - Yang Mao-Draayer
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK, 73104, USA
| | | | | | - Laura A Cooney
- Department of Internal Medicine, Division of Rheumatology, University of Michigan and Autoimmunity Center of Excellence, Ann Arbor, MI, USA
| | - Feng Lin
- Department of Immunity and Inflammation, Lerner Research Institute, Cleveland, OH, USA
| | - David A Fox
- Department of Internal Medicine, Division of Rheumatology, University of Michigan and Autoimmunity Center of Excellence, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Ma W, Hu J. The linear ANRIL transcript P14AS regulates the NF-κB signaling to promote colon cancer progression. Mol Med 2023; 29:162. [PMID: 38041015 PMCID: PMC10690983 DOI: 10.1186/s10020-023-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND The linear long non-coding RNA P14AS has previously been reported to be dysregulated in colon cancer, but the mechanistic role that P14AS plays in colon cancer progression has yet to be clarified. Accordingly, this study was developed to explore the regulatory functions of ANRIL linear transcript-P14AS in cancer. METHODS The expression of P14AS, ANRIL, miR-23a-5p and their target genes were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Cell supernatants of IL6 and IL8 were measured by Enzyme linked immunosorbent (ELISA) assay. Dual-luciferase reporter assays, RNA immunoprecipitation, or pull-down assays were used to confirm the target association between miR-23a-5p and P14AS or UBE2D3. Cell proliferation and chemosensitivity of NF-κB inhibitor BAY 11-7085 were evaluated by cell counting kit 8 (CCK8). RESULTS When P14AS was overexpressed in colon cancer cell lines, enhanced TNF-NF-κB signaling pathway activity was observed together with increases in IL6 and IL8 expression. The Pita, miRanda, and RNA hybrid databases revealed the ability of miR-23a-5p to interact with P14AS, while UBE2D3 was further identified as a miR-23a-5p target gene. The results of dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation experiments confirmed these direct interactions among P14AS/miR-23a-5p/UBE2D3. The degradation of IκBa mediated by UBE2D3 may contribute to enhanced NF-κB signaling in these cells. Moreover, the beneficial impact of P14AS on colon cancer cell growth was eliminated when cells were treated with miR-23a-5p inhibitors or UBE2D3 was silenced. As such, these findings strongly supported a role for the UBE2D3/IκBa/NF-κB signaling axis as a mediator of the ability of P14AS to promote colon cancer progression. CONCLUSIONS These data suggested a mechanism through which the linear ANRIL transcript P14AS can promote inflammation and colon cancer progression through the sequestration of miR-23a-5p and the modulation of NF-κB signaling activity, thus highlighting P14AS as a promising target for therapeutic intervention efforts.
Collapse
Affiliation(s)
- Wanru Ma
- Department of Blood Transfusion, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China
| | - Junhua Hu
- Department of Blood Transfusion, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China.
| |
Collapse
|
14
|
Liu D, Wang M, Murthy V, McNamara DM, Nguyen TTL, Philips TJ, Vyas H, Gao H, Sahni J, Starling RC, Cooper LT, Skime MK, Batzler A, Jenkins GD, Barlera S, Pileggi S, Mestroni L, Merlo M, Sinagra G, Pinet F, Krejčí J, Chaloupka A, Miller JD, de Groote P, Tschumperlin DJ, Weinshilboum RM, Pereira NL. Myocardial Recovery in Recent Onset Dilated Cardiomyopathy: Role of CDCP1 and Cardiac Fibrosis. Circ Res 2023; 133:810-825. [PMID: 37800334 PMCID: PMC10746262 DOI: 10.1161/circresaha.123.323200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a major cause of heart failure and carries a high mortality rate. Myocardial recovery in DCM-related heart failure patients is highly variable, with some patients having little or no response to standard drug therapy. A genome-wide association study may agnostically identify biomarkers and provide novel insight into the biology of myocardial recovery in DCM. METHODS A genome-wide association study for change in left ventricular ejection fraction was performed in 686 White subjects with recent-onset DCM who received standard pharmacotherapy. Genome-wide association study signals were subsequently functionally validated and studied in relevant cellular models to understand molecular mechanisms that may have contributed to the change in left ventricular ejection fraction. RESULTS The genome-wide association study identified a highly suggestive locus that mapped to the 5'-flanking region of the CDCP1 (CUB [complement C1r/C1s, Uegf, and Bmp1] domain containing protein 1) gene (rs6773435; P=7.12×10-7). The variant allele was associated with improved cardiac function and decreased CDCP1 transcription. CDCP1 expression was significantly upregulated in human cardiac fibroblasts (HCFs) in response to the PDGF (platelet-derived growth factor) signaling, and knockdown of CDCP1 significantly repressed HCF proliferation and decreased AKT (protein kinase B) phosphorylation. Transcriptomic profiling after CDCP1 knockdown in HCFs supported the conclusion that CDCP1 regulates HCF proliferation and mitosis. In addition, CDCP1 knockdown in HCFs resulted in significantly decreased expression of soluble ST2 (suppression of tumorigenicity-2), a prognostic biomarker for heart failure and inductor of cardiac fibrosis. CONCLUSIONS CDCP1 may play an important role in myocardial recovery in recent-onset DCM and mediates its effect primarily by attenuating cardiac fibrosis.
Collapse
Affiliation(s)
- Duan Liu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Min Wang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Vishakantha Murthy
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Medicine. Mayo Clinic, Rochester, MN, USA
| | | | | | - Thanh Thanh L. Nguyen
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Trudy J. Philips
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Hridyanshu Vyas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Jyotan Sahni
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Michelle K. Skime
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Anthony Batzler
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Simona Barlera
- Department of Cardiovascular Research, Istituto di Ricovero e Cura a Carattere Scientifico–Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Silvana Pileggi
- Department of Cardiovascular Research, Istituto di Ricovero e Cura a Carattere Scientifico–Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Luisa Mestroni
- Cardiovascular Institute, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marco Merlo
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Florence Pinet
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167, Lille, France
| | - Jan Krejčí
- St. Anne’s University Hospital and Masaryk University, Brno, Czech Republic
| | - Anna Chaloupka
- St. Anne’s University Hospital and Masaryk University, Brno, Czech Republic
| | - Jordan D. Miller
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN, USA
| | - Pascal de Groote
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167, Lille, France
- CHU Lille, Service de Cardiologie, Lille, France
| | | | - Richard M. Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Naveen L. Pereira
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
Gurrea-Rubio M, Wu Q, Amin MA, Tsou PS, Campbell PL, Amarista CE, Ikari Y, Brodie WD, Mattichak MN, Muraoka S, Randon PM, Lind ME, Ruth JH, Mao-Draayer Y, Ding S, Shen X, Cooney LA, Lin F, Fox DA. Activation of Cytotoxic Lymphocytes Through CD6 Enhances Killing of Cancer Cells. RESEARCH SQUARE 2023:rs.3.rs-3405677. [PMID: 37886483 PMCID: PMC10602169 DOI: 10.21203/rs.3.rs-3405677/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have demonstrated efficacy and improved survival in a growing number of cancers. Despite their success, ICIs are associated with immune-related adverse events that can interfere with their use. Therefore, safer approaches are needed. CD6, expressed by T-lymphocytes and human NK cells, engages in cell-cell interactions by binding to its ligands CD166 (ALCAM) and CD318 (CDCP1). CD6 is a target protein for regulating immune responses and is required for the development of several mouse models of autoimmunity. Interestingly, CD6 is exclusively expressed on immune cells while CD318 is strongly expressed on most cancers. Here we demonstrate that disrupting the CD6-CD318 axis with UMCD6, an anti-CD6 monoclonal antibody, prolongs survival of mice in xenograft models of human breast and prostate cancer, treated with infusions of human lymphocytes. Analysis of tumor-infiltrating immune cells showed that augmentation of lymphocyte cytotoxicity by UMCD6 is due to effects of this antibody on NK, NKT and CD8+ T cells. Tumor-infiltrating cytotoxic lymphocytes were found in higher proportions and were activated in UMCD6-treated mice compared to controls. Similar changes in gene expression were observed by RNA-seq analysis of NK cells treated with UMCD6. Particularly, UMCD6 up-regulated the NKG2D-DAP10 complex and activated PI3K. Thus, the CD6-CD318 axis can regulate the activation state of cytotoxic lymphocytes and their positioning within the tumor microenvironment.
Collapse
|
16
|
Zeng Y, Lv C, Wan B, Gong B. The current landscape of m6A modification in urological cancers. PeerJ 2023; 11:e16023. [PMID: 37701836 PMCID: PMC10493088 DOI: 10.7717/peerj.16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
N6-methyladenosine (m6A) methylation is a dynamic and reversible procession of epigenetic modifications. It is increasingly recognized that m6A modification has been involved in the tumorigenesis, development, and progression of urological tumors. Emerging research explored the role of m6A modification in urological cancer. In this review, we will summarize the relationship between m6A modification, renal cell carcinoma, bladder cancer, and prostate cancer, and discover the biological function of m6A regulators in tumor cells. We will also discuss the possible mechanism and future application value used as a potential biomarker or therapeutic target to benefit patients with urological cancers.
Collapse
Affiliation(s)
- Yaohui Zeng
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Cai Lv
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Bangbei Wan
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Binghao Gong
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| |
Collapse
|
17
|
van den Berg MF, Kooistra HS, Grinwis GCM, Nicoli S, Golinelli S, Stammeleer L, van Wolferen ME, Timmermans-Sprang EPM, Zandvliet MMJM, van Steenbeek FG, Galac S. Whole transcriptome analysis of canine pheochromocytoma and paraganglioma. Front Vet Sci 2023; 10:1155804. [PMID: 37691636 PMCID: PMC10484483 DOI: 10.3389/fvets.2023.1155804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are neuroendocrine tumors arising from the chromaffin cells in the adrenal medulla and extra-adrenal paraganglia, respectively. Local invasion, concurrent disorders, and metastases prevent surgical removal, which is the most effective treatment to date. Given the current lack of effective medical treatment, there is a need for novel therapeutic strategies. To identify druggable pathways driving PPGL development, we performed RNA sequencing on PPGLs (n = 19) and normal adrenal medullas (NAMs; n = 10) of dogs. Principal component analysis (PCA) revealed that PPGLs clearly clustered apart from NAMs. In total, 4,218 genes were differentially expressed between PPGLs and NAMs. Of these, 232 had a log2 fold change of >3 or < -3, of which 149 were upregulated in PPGLs, and 83 were downregulated. Compared with NAMs, PPGLs had increased expression of genes related to the cell cycle, tumor development, progression and metastasis, hypoxia and angiogenesis, and the Wnt signaling pathway, and decreased expression of genes related to adrenal steroidogenesis. Our data revealed several overexpressed genes that could provide targets for novel therapeutics, such as Ret Proto-Oncogene (RET), Dopamine Receptor D2 (DRD2), and Secreted Frizzled Related Protein 2 (SFRP2). Based on the PCA, PPGLs were classified into 2 groups, of which group 1 had significantly higher Ki67 scores (p = 0.035) and shorter survival times (p = 0.04) than group 2. Increased expression of 1 of the differentially expressed genes between group 1 and 2, pleiotrophin (PTN), appeared to correlate with a more aggressive tumor phenotype. This study has shed light on the transcriptomic profile of canine PPGL, yielding new insights into the pathogenesis of these tumors in dogs, and revealed potential novel targets for therapy. In addition, we identified 2 transcriptionally distinct groups of PPGLs that had significantly different survival times.
Collapse
Affiliation(s)
- Marit F. van den Berg
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Hans S. Kooistra
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Guy C. M. Grinwis
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Stefania Golinelli
- Department of Veterinary Medical Science, Faculty of Veterinary Medicine, University of Bologna, Bologna, Italy
| | - Lisa Stammeleer
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Monique E. van Wolferen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Maurice M. J. M. Zandvliet
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Frank G. van Steenbeek
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sara Galac
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
18
|
Kong L, Xu F, Yao Y, Gao Z, Tian P, Zhuang S, Wu D, Li T, Cai Y, Li J. Ascites-derived CDCP1+ extracellular vesicles subcluster as a novel biomarker and therapeutic target for ovarian cancer. Front Oncol 2023; 13:1142755. [PMID: 37469398 PMCID: PMC10352483 DOI: 10.3389/fonc.2023.1142755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/13/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Ovarian cancer (OVCA) is one of the most prevalent malignant tumors of the female reproductive system, and its diagnosis is typically accompanied by the production of ascites. Although liquid biopsy has been widely implemented recently, the diagnosis or prognosis of OVCA based on liquid biopsy remains the primary emphasis. Methods In this study, using proximity barcoding assay, a technique for analyzing the surface proteins on single extracellular vesicles (EVs). For validation, serum and ascites samples from patients with epithelial ovarian cancer (EOC) were collected, and their levels of CDCP1 was determined by enzyme-linked immunosorbent assay. Tissue chips were prepared to analyze the relationship between different expression levels of CDCP1 and the prognosis of ovarian cancer patients. Results We discovered that the CUB domain-containing protein 1+ (CDCP1+) EVs subcluster was higher in the ascites of OVCA patients compared to benign ascites. At the same time, the level of CDCP1 was considerably elevated in the ascites of OVCA patients. The overall survival and disease-free survival of the group with high CDCP1 expression in EOC were significantly lower than those of the group with low expression. In addition, the receiver operating characteristic curve demonstrates that EVs-derived CDCP1 was a biomarker of early response in OVCA ascites. Discussion Our findings identified a CDCP1+ EVs subcluster in the ascites of OVCA patients as a possible biomarker for EOC prevention.
Collapse
Affiliation(s)
- Lingnan Kong
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Pathology, Zibo Central Hospital, Zibo, China
| | - Famei Xu
- Department of Pathology, Zibo Central Hospital, Zibo, China
| | - Yukuan Yao
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Pathology, Zibo Central Hospital, Zibo, China
| | - Zhihui Gao
- Department of Pathology, Zibo Central Hospital, Zibo, China
| | - Peng Tian
- Department of Ultrasonic, Zibo Central Hospital, Zibo, China
| | - Shichao Zhuang
- Department of Gynecology, Zibo Central Hospital, Zibo, China
| | - Di Wu
- Department of R&D, Shenzhen SecreTech Co., Ltd., Shenzhen, China
- Department of R&D, Vesicode AB, Solna, Sweden
| | - Tangyue Li
- Department of Pathology, Zibo Central Hospital, Zibo, China
| | - Yanling Cai
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jing Li
- Department of Pathology, Zibo Central Hospital, Zibo, China
| |
Collapse
|
19
|
Koistinen H, Kovanen RM, Hollenberg MD, Dufour A, Radisky ES, Stenman UH, Batra J, Clements J, Hooper JD, Diamandis E, Schilling O, Rannikko A, Mirtti T. The roles of proteases in prostate cancer. IUBMB Life 2023; 75:493-513. [PMID: 36598826 PMCID: PMC10159896 DOI: 10.1002/iub.2700] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/22/2022] [Indexed: 01/05/2023]
Abstract
Since the proposition of the pro-invasive activity of proteolytic enzymes over 70 years ago, several roles for proteases in cancer progression have been established. About half of the 473 active human proteases are expressed in the prostate and many of the most well-characterized members of this enzyme family are regulated by androgens, hormones essential for development of prostate cancer. Most notably, several kallikrein-related peptidases, including KLK3 (prostate-specific antigen, PSA), the most well-known prostate cancer marker, and type II transmembrane serine proteases, such as TMPRSS2 and matriptase, have been extensively studied and found to promote prostate cancer progression. Recent findings also suggest a critical role for proteases in the development of advanced and aggressive castration-resistant prostate cancer (CRPC). Perhaps the most intriguing evidence for this role comes from studies showing that the protease-activated transmembrane proteins, Notch and CDCP1, are associated with the development of CRPC. Here, we review the roles of proteases in prostate cancer, with a special focus on their regulation by androgens.
Collapse
Affiliation(s)
- Hannu Koistinen
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Ruusu-Maaria Kovanen
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Pathology, HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Antoine Dufour
- Department of Physiology & Pharmacology and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, U.S.A
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - John D. Hooper
- Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Eleftherios Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antti Rannikko
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Mirtti
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Pathology, HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
20
|
Feng X, Muller DC, Zahed H, Alcala K, Guida F, Smith-Byrne K, Yuan JM, Koh WP, Wang R, Milne RL, Bassett JK, Langhammer A, Hveem K, Stevens VL, Wang Y, Johansson M, Tjønneland A, Tumino R, Sheikh M, Johansson M, Robbins HA. Evaluation of pre-diagnostic blood protein measurements for predicting survival after lung cancer diagnosis. EBioMedicine 2023; 92:104623. [PMID: 37236058 PMCID: PMC10232655 DOI: 10.1016/j.ebiom.2023.104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND To evaluate whether circulating proteins are associated with survival after lung cancer diagnosis, and whether they can improve prediction of prognosis. METHODS We measured up to 1159 proteins in blood samples from 708 participants in 6 cohorts. Samples were collected within 3 years prior to lung cancer diagnosis. We used Cox proportional hazards models to identify proteins associated with overall mortality after lung cancer diagnosis. To evaluate model performance, we used a round-robin approach in which models were fit in 5 cohorts and evaluated in the 6th cohort. Specifically, we fit a model including 5 proteins and clinical parameters and compared its performance with clinical parameters only. FINDINGS There were 86 proteins nominally associated with mortality (p < 0.05), but only CDCP1 remained statistically significant after accounting for multiple testing (hazard ratio per standard deviation: 1.19, 95% CI: 1.10-1.30, unadjusted p = 0.00004). The external C-index for the protein-based model was 0.63 (95% CI: 0.61-0.66), compared with 0.62 (95% CI: 0.59-0.64) for the model with clinical parameters only. Inclusion of proteins did not provide a statistically significant improvement in discrimination (C-index difference: 0.015, 95% CI: -0.003 to 0.035). INTERPRETATION Blood proteins measured within 3 years prior to lung cancer diagnosis were not strongly associated with lung cancer survival, nor did they importantly improve prediction of prognosis beyond clinical information. FUNDING No explicit funding for this study. Authors and data collection supported by the US National Cancer Institute (U19CA203654), INCA (France, 2019-1-TABAC-01), Cancer Research Foundation of Northern Sweden (AMP19-962), and Swedish Department of Health Ministry.
Collapse
Affiliation(s)
- Xiaoshuang Feng
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France.
| | - David C Muller
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom; Department of Epidemiology and Biostatistics, School of Public Health, MRC-PHE, Centre for Environment and Health, Imperial College London, London, United Kingdom
| | - Hana Zahed
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Karine Alcala
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Florence Guida
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom
| | - Jian-Min Yuan
- UPMC Hillman Cancer Centre, Pittsburgh, PA, USA; Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A∗STAR), Singapore
| | - Renwei Wang
- UPMC Hillman Cancer Centre, Pittsburgh, PA, USA
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Australia; School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia
| | - Julie K Bassett
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
| | - Arnulf Langhammer
- HUNT Research Center, Department of Public Health and Nursing, NTNU Norwegian University of Science and Technology, Levanger, Norway; Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Kristian Hveem
- HUNT Research Center, Department of Public Health and Nursing, NTNU Norwegian University of Science and Technology, Levanger, Norway; Department of Public Health and Nursing, K.G. Jebsen Centre for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Ying Wang
- American Cancer Society, Atlanta, GA, USA
| | - Mikael Johansson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Rosario Tumino
- Hyblean Association for Epidemiological Research, AIRE ONLUS Ragusa, Italy
| | - Mahdi Sheikh
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Hilary A Robbins
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France.
| |
Collapse
|
21
|
Zhu W, Zhao R, Guan X, Wang X. The emerging roles and mechanism of N6-methyladenosine (m 6A) modifications in urologic tumours progression. Front Pharmacol 2023; 14:1192495. [PMID: 37284313 PMCID: PMC10239868 DOI: 10.3389/fphar.2023.1192495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Prostate cancer (PCa), bladder cancer (BC), and renal cell cancer (RCC) are the most common urologic tumours in males. N6-methyladenosine (m6A), adenosine N6 methylation, is the most prevalent RNA modification in mammals. Increasing evidence suggests that m6A plays a crucial role in cancer development. In this review, we comprehensively analyzed the influence of m6A methylation on Prostate cancer, bladder cancer, and renal cell cancer and the relationship between the expression of relevant regulatory factors and their development and occurrence, which provides new insights and approaches for the early clinical diagnosis and targeted therapy of urologic malignancies.
Collapse
|
22
|
Qi X, Li Z, Zhang J, Li H, Zhang G, Li M, Li B, Fu Y, Cai M, Wang H, Tong T, Gao J. Mechanistic insights into CDCP1 clustering on non-small-cell lung cancer membranes revealed by super-resolution fluorescent imaging. iScience 2023; 26:106103. [PMID: 36866248 PMCID: PMC9972570 DOI: 10.1016/j.isci.2023.106103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/30/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
CDCP1 is a transmembrane protein that is involved in a variety of important biological processes and upregulated in a variety of human solid malignancies; however, its spatial distribution and variation at the molecular level remain unclear. To solve this problem, we first analyzed its expression level and prognostic implications in lung cancer. Then, we used super-resolution microscopy to reveal the spatial organization of CDCP1 at different levels, and found that cancer cells generated more and larger CDCP1 clusters than normal cells. Furthermore, we found that CDCP1 can be integrated into larger and denser clusters as functional domains upon activation. Our findings elucidated the significant differences of CDCP1 clustering characteristics between cancer and normal cells, and revealed the relationship between its distribution and function, which will contribute to a comprehensive understanding of its oncogenic mechanism, and will be of great help for the development of CDCP1-targeted drugs for lung cancer.
Collapse
Affiliation(s)
- Xiao Qi
- Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Zihao Li
- Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Jinrui Zhang
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Hongru Li
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Guangxin Zhang
- Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Meng Li
- Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Baofeng Li
- Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Yilin Fu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230027, China
- Laboratory for Marine Biology and Biotechnology, Qing dao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Jimo, Qingdao, Shandong 266237, China
| | - Ti Tong
- Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, Jilin 130041, China
- Corresponding author
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Corresponding author
| |
Collapse
|
23
|
Bonham C, Mandati V, Singh R, Pappin D, Tonks N. Coupling substrate-trapping with proximity-labeling to identify protein tyrosine phosphatase PTP1B signaling networks. J Biol Chem 2023; 299:104582. [PMID: 36871762 PMCID: PMC10148153 DOI: 10.1016/j.jbc.2023.104582] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
The ability to define functional interactions between enzymes and their substrates is crucial for understanding biological control mechanisms; however, such methods face challenges in the transient nature and low stoichiometry of enzyme-substrate interactions. Now, we have developed an optimized strategy that couples substrate-trapping mutagenesis to proximity-labeling mass spectrometry for quantitative analysis of protein complexes involving the protein tyrosine phosphatase PTP1B. This methodology represents a significant shift from classical schemes; it is capable of being performed at near-endogenous expression levels and increasing stoichiometry of target enrichment without a requirement for stimulation of supraphysiological tyrosine phosphorylation levels or maintenance of substrate complexes during lysis and enrichment procedures. Advantages of this new approach are illustrated through application to PTP1B interaction networks in models of HER2-positive and Herceptin-resistant breast cancer. We have demonstrated that inhibitors of PTP1B significantly reduced proliferation and viability in cell-based models of acquired and de novo Herceptin resistance in HER2-positive breast cancer. Using differential analysis, comparing substrate-trapping to wild-type PTP1B, we have identified multiple unreported protein targets of PTP1B with established links to HER2-induced signaling and provided internal validation of method specificity through overlap with previously identified substrate candidates. Overall, this versatile approach can be readily integrated with evolving proximity-labeling platforms (TurboID, BioID2, etc.), and is broadly applicable across all PTP family members for the identification of conditional substrate specificities and signaling nodes in models of human disease.
Collapse
Affiliation(s)
- ChristopherA Bonham
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Vinay Mandati
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - RakeshK Singh
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - DarrylJ Pappin
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - NicholasK Tonks
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
24
|
Liu CL, Tsai HW, Peng SL, Chang CP, Chang YH, Huang HS. CDCP1 (CUB domain containing protein 1) is a potential urine-based biomarker in the diagnosis of low-grade urothelial carcinoma. PLoS One 2023; 18:e0281873. [PMID: 36862682 PMCID: PMC9980759 DOI: 10.1371/journal.pone.0281873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/01/2023] [Indexed: 03/03/2023] Open
Abstract
Urine-based cytology is non-invasive and widely used for clinical diagnosis of urothelial carcinoma (UC), but its sensitivity is less than 40% for low-grade UC detection. As such, there is a need for new diagnostic and prognostic biomarkers of UC. CUB domain containing protein 1 (CDCP1) is a type I transmembrane glycoprotein highly expressed in various cancers. Using tissue array analysis, we demonstrated that CDCP1 expression in UC patients (n = 133), especially in those with low-grade UC, was significantly higher than in 16 normal persons. In addition, CDCP1 expression in urinary UC cells could also be detected by using immunocytochemistry method (n = 11). Furthermore, in 5637-CD cells, overexpression of CDCP1 affected the expression of epithelial mesenchymal transition-related markers and increased matrix metalloproteinase 2 expression and migration ability. Conversely, the knockdown of CDCP1 in T24 cells had the opposite effects. Using specific inhibitors, we demonstrated the involvement of c-Src/PKCδ signaling in the CDCP1-regulated migration of UC. In conclusion, our data suggest that CDCP1 contributes to the malignant progression of UC and may have the potential as a urine-based biomarker for detecting low-grade UC. However, a cohort study needs to be conducted.
Collapse
Affiliation(s)
- Chien-Liang Liu
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Ling Peng
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Hao Chang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huei-Sheng Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
25
|
CDCP1 expression is frequently increased in aggressive urothelial carcinoma and promotes urothelial tumor progression. Sci Rep 2023; 13:73. [PMID: 36593286 PMCID: PMC9807563 DOI: 10.1038/s41598-022-26579-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/16/2022] [Indexed: 01/03/2023] Open
Abstract
The prognosis of patients with advanced urothelial carcinoma (UC) remains poor and improving treatment continues to be a major medical need. CUB domain containing protein 1 (CDCP1) is a known oncogene in various types of solid cancers and its overexpression is associated with impaired prognosis. However, its role in UC remains undetermined. Here we assessed the clinical relevance of CDCP1 in two cohorts of UC at different stages of the disease. Immunohistochemistry showed that CDCP1 is highly expressed in advanced UC, which significantly correlates with shorter overall survival. Importantly, the basal/squamous UC subtype showed significantly enriched CDCP1 at the mRNA and protein levels. The functional role of CDCP1 overexpression was assessed taking advantage of ex vivo organoids derived from the CDCP1pcLSL/+ transgenic mouse model. Furthermore, CDCP1 knockout UC cell lines were generated using CRISPR/Cas9 technology. Interestingly, CDCP1 overexpression significantly induced the activation of MAPK/ERK pathways in ex vivo organoids and increased their proliferation. Similarly, CDCP1 knockout in UC cell lines reduced their proliferation and migration, concomitant with MAPK/ERK pathway activity reduction. Our results highlight the relevance of CDCP1 in advanced UC and demonstrate its oncogenic role, suggesting that targeting CDCP1 could be a rational therapeutic strategy for the treatment of advanced UC.
Collapse
|
26
|
Tong Y, Sun M, Chen L, Wang Y, Li Y, Li L, Zhang X, Cai Y, Qie J, Pang Y, Xu Z, Zhao J, Zhang X, Liu Y, Tian S, Qin Z, Feng J, Zhang F, Zhu J, Xu Y, Lou W, Ji Y, Zhao J, He F, Hou Y, Ding C. Proteogenomic insights into the biology and treatment of pancreatic ductal adenocarcinoma. J Hematol Oncol 2022; 15:168. [PMID: 36434634 PMCID: PMC9701038 DOI: 10.1186/s13045-022-01384-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with poor prognosis. Proteogenomic characterization and integrative proteomic analysis provide a functional context to annotate genomic abnormalities with prognostic value. METHODS We performed an integrated multi-omics analysis, including whole-exome sequencing, RNA-seq, proteomic, and phosphoproteomic analysis of 217 PDAC tumors with paired non-tumor adjacent tissues. In vivo functional experiments were performed to further illustrate the biological events related to PDAC tumorigenesis and progression. RESULTS A comprehensive proteogenomic landscape revealed that TP53 mutations upregulated the CDK4-mediated cell proliferation process and led to poor prognosis in younger patients. Integrative multi-omics analysis illustrated the proteomic and phosphoproteomic alteration led by genomic alterations such as KRAS mutations and ADAM9 amplification of PDAC tumorigenesis. Proteogenomic analysis combined with in vivo experiments revealed that the higher amplification frequency of ADAM9 (8p11.22) could drive PDAC metastasis, though downregulating adhesion junction and upregulating WNT signaling pathway. Proteome-based stratification of PDAC revealed three subtypes (S-I, S-II, and S-III) related to different clinical and molecular features. Immune clustering defined a metabolic tumor subset that harbored FH amplicons led to better prognosis. Functional experiments revealed the role of FH in altering tumor glycolysis and in impacting PDAC tumor microenvironments. Experiments utilizing both in vivo and in vitro assay proved that loss of HOGA1 promoted the tumor growth via activating LARP7-CDK1 pathway. CONCLUSIONS This proteogenomic dataset provided a valuable resource for researchers and clinicians seeking for better understanding and treatment of PDAC.
Collapse
Affiliation(s)
- Yexin Tong
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Mingjun Sun
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Lingli Chen
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yunzhi Wang
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yan Li
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Lingling Li
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Xuan Zhang
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yumeng Cai
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Jingbo Qie
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yanrui Pang
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Ziyan Xu
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Jiangyan Zhao
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Xiaolei Zhang
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yang Liu
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Sha Tian
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Zhaoyu Qin
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Jinwen Feng
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Fan Zhang
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Jiajun Zhu
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yifan Xu
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Wenhui Lou
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yuan Ji
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Jianyuan Zhao
- grid.16821.3c0000 0004 0368 8293Institute for Development and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China ,grid.207374.50000 0001 2189 3846Department of Anatomy and Neuroscience Research Institute, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Fuchu He
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China ,grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, 102206 China ,grid.506261.60000 0001 0706 7839Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, 102206 China
| | - Yingyong Hou
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Chen Ding
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| |
Collapse
|
27
|
Sun R, Gao Y, Shen F. Identification of subtypes of hepatocellular carcinoma and screening of prognostic molecular diagnostic markers based on cell adhesion molecule related genes. Front Genet 2022; 13:1042540. [PMID: 36482887 PMCID: PMC9723242 DOI: 10.3389/fgene.2022.1042540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/09/2022] [Indexed: 10/03/2023] Open
Abstract
Cell adhesion molecules can predict liver hepatocellular carcinoma (LIHC) metastasis and determine prognosis, while the mechanism of the role of cell adhesion molecules in LIHC needs to be further explored. LIHC-related expression data were sourced from The Cancer Genome Atlas (TCGA) and the gene expression omnibus (GEO) databases, and genes related to cell adhesion were sourced from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. First, the TCGA-LIHC dataset was clustered by the nonnegative matrix factorization (NMF) algorithm to find different subtypes of LIHC. Then the difference of prognosis and immune microenvironment between patients of different subtypes was evaluated. In addition, a prognostic risk model was obtained by least shrinkage and selection operator (LASSO) and Cox analysis, while a nomogram was drawn. Furthermore, functional enrichment analysis between high and low risk groups was conducted. Finally, the expressions of model genes were explored by quantitative real-time polymerase chain reaction (qRT-PCR). The 371 LIHC patients were classified into four subtypes by NMF clustering, and survival analysis revealed that disease-free survival (DFS) of these four subtypes were clearly different. Cancer-related pathways and immune microenvironment among these four subtypes were dysregulated. Moreover, 58 common differentially expressed genes (DEGs) between four subtypes were identified and were mainly associated with PPAR signaling pathway and amino acid metabolism. Furthermore, a prognostic model consisting of IGSF11, CD8A, ALCAM, CLDN6, JAM2, ITGB7, SDC3, CNTNAP1, and MPZ was built. A nomogram consisting of pathologic T and riskScore was built, and the calibration curve illustrated that the nomogram could better forecast LIHC prognosis. Gene Set Enrichment Analysis (GSEA) demonstrated that DEGs between high and low risk groups were mainly involved in cell cycle. Finally, the qRT-PCR illustrated the expressions of nine model genes between normal and LIHC tissue. A prognostic model consisting of IGSF11, CD8A, ALCAM, CLDN6, JAM2, ITGB7, SDC3, CNTNAP1, and MPZ was obtained, which provides an important reference for the molecular diagnosis of patient prognosis.
Collapse
Affiliation(s)
- Ruge Sun
- College of Medicine, Shanxi Medical University, Taiyuan, China
- Department of Gastroenterology and Hepatoloy, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanchao Gao
- Department of Hepatobiliary Surgery, Liaocheng People’s Hospital, Liaocheng, China
| | - Fengjun Shen
- Department of Gastroenterology and Hepatoloy, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
28
|
Overexpression of CDCP1 is Associated with Poor Prognosis and Enhanced Immune Checkpoints Expressions in Breast Cancer. JOURNAL OF ONCOLOGY 2022; 2022:1469354. [PMID: 36090897 PMCID: PMC9452972 DOI: 10.1155/2022/1469354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022]
Abstract
CUB-domain containing protein 1 (CDCP1) is a transmembrane protein acting as an effector of SRC family kinases, which play an oncogenic role in multiple human cancers. However, its clinical and immune correlations in breast cancer (BrCa) have not been explored. To define the expression, prognostic value, and potential molecular role of CDCP1 in BrCa, multiple public datasets, and an in-house cohort were used. Compared with paratumor tissue, CDCP1 was remarkably upregulated in the tumor tissues at both mRNA and protein levels. In the in-house cohort, CDCP1 protein expression was related to several clinicopathological parameters, including age, ER status, PR status, molecular type, and survival status. Kaplan–Meier analysis and Cox regression analysis exhibited that CDCP1 was an important prognostic biomarker in BrCa. In addition, enrichment analysis uncovered that CDCP1 was not only involved in multiple oncogenic pathways, but correlated with overexpression of immune checkpoints. Overall, we reported that increased expression of CDCP1 is a favorable prognostic factor in patients with BrCa. In addition, the correlations between CDCP1 and immune checkpoints provide a novel insight into the adjuvant treatment for immune checkpoint blockade via targeting CDCP1.
Collapse
|
29
|
Kajiwara K, Chen PK, Abe Y, Okuda S, Kon S, Adachi J, Tomonaga T, Fujita Y, Okada M. Src activation in lipid rafts confers epithelial cells with invasive potential to escape from apical extrusion during cell competition. Curr Biol 2022; 32:3460-3476.e6. [PMID: 35809567 DOI: 10.1016/j.cub.2022.06.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/28/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Abnormal/cancerous cells within healthy epithelial tissues undergo apical extrusion to protect against carcinogenesis, although they acquire invasive capacity once carcinogenesis progresses. However, the molecular mechanisms by which cancer cells escape from apical extrusion and invade surrounding tissues remain elusive. In this study, we demonstrate a molecular mechanism for cell fate switching during epithelial cell competition. We found that during competition within epithelial cell layers, Src transformation promotes maturation of focal adhesions and degradation of extracellular matrix. Src-transformed cells underwent basal delamination by Src activation within sphingolipid/cholesterol-enriched membrane microdomains/lipid rafts, whereas they were apically extruded when Src was outside of lipid rafts. A comparative analysis of contrasting phenotypes revealed that activation of the Src-STAT3-MMP axis through lipid rafts was required for basal delamination. CUB-domain-containing protein 1 (CDCP1) was identified as an Src-activating scaffold and as a Met regulator in lipid rafts, and its overexpression induced basal delamination. In renal cancer models, CDCP1 promoted epithelial-mesenchymal transition-mediated invasive behavior by activating the Src-STAT3-MMP axis through Met activation. Overall, these results suggest that spatial activation of Src signaling in lipid rafts confers resistance to apical extrusion and invasive potential on epithelial cells to promote carcinogenesis.
Collapse
Affiliation(s)
- Kentaro Kajiwara
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | - Ping-Kuan Chen
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yuichi Abe
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Division of Molecular Diagnosis, Aichi Cancer Center Research Institute, Aichi 464-8681, Japan
| | - Satoru Okuda
- World Premier International Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Shunsuke Kon
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Yasuyuki Fujita
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Center for Infectious Diseases Education and Research, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
30
|
Black JD, Affandi T, Black AR, Reyland ME. PKCα and PKCδ: Friends and Rivals. J Biol Chem 2022; 298:102194. [PMID: 35760100 PMCID: PMC9352922 DOI: 10.1016/j.jbc.2022.102194] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
PKC comprises a large family of serine/threonine kinases that share a requirement for allosteric activation by lipids. While PKC isoforms have significant homology, functional divergence is evident among subfamilies and between individual PKC isoforms within a subfamily. Here, we highlight these differences by comparing the regulation and function of representative PKC isoforms from the conventional (PKCα) and novel (PKCδ) subfamilies. We discuss how unique structural features of PKCα and PKCδ underlie differences in activation and highlight the similar, divergent, and even opposing biological functions of these kinases. We also consider how PKCα and PKCδ can contribute to pathophysiological conditions and discuss challenges to targeting these kinases therapeutically.
Collapse
Affiliation(s)
- Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.
| | - Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus.
| |
Collapse
|
31
|
Targeting CDCP1 gene transcription coactivated by BRD4 and CBP/p300 in castration-resistant prostate cancer. Oncogene 2022; 41:3251-3262. [PMID: 35513563 DOI: 10.1038/s41388-022-02327-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
Abstract
CUB domain-containing protein 1 (CDCP1), a transmembrane protein with tumor pro-metastatic activity, is highly expressed in late-stage and castrate-resistant prostate cancer (CRPC). However, the molecular mechanism driving CDCP1 overexpression in CRPC progress remains elusive. Here we report that transcription cofactors BRD4 and CBP/p300 co-regulate transcriptional expression of CDCP1 in CRPC tumorigenesis. In contrast to androgen receptor (AR) in CRPC, increased expression of BRD4 and CBP/p300 is strongly correlated with CDCP1 gene amplification. Combined knockdown or dual-inhibition of BRD4 and CBP/p300 down-regulated CDCP1 transcription and downstream PI3K/AKT and/or SRC/MAPK signaling pathways in CRPC cells much more so than single-protein perturbation. Our biochemical and structural analyses further showed that NEO2734, a dual-inhibitor targeting BRD4 and p300 bromodomains exhibits greater efficacy than single inhibitors for BRD4 or CBP/p300 in suppressing CDCP1 transcriptional expression and its downstream signaling pathways in CRPC cell proliferation and metastasis. Our study illustrates that targeting CDCP1 through dual-inhibition of BRD4 and CBP/p300 represents a synergistic therapeutic strategy for new treatment of CRPC.
Collapse
|
32
|
Donahue KL, Pasca di Magliano M. Cleaved CDCP1 marks the spot: a neoepitope for RAS-driven cancers. J Clin Invest 2022; 132:e157168. [PMID: 35166242 PMCID: PMC8843638 DOI: 10.1172/jci157168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A challenge in cancer treatment is targeting cancer cells while sparing normal cells. Thus, identifying cancer-specific neoepitopes is an active research area. Neoepitopes are generated by the accumulation of mutations; however, deadly cancer types, including pancreatic cancer, have a low mutational burden and, consequently, a paucity of neoantigens. In this issue of the JCI, Lim, Zhou, and colleagues describe a neoepitope generated upon proteolytic cleavage of the transmembrane CUB domain containing protein 1 (CDCP1). CDCP1 is overexpressed in cancer and portends a worse prognosis; previous attempts to target CDCP1 reduced cancer growth, but adversely affected the host. Here, the authors generated an antibody that specifically targeted cleaved CDCP1 (c-CDCP1) and developed a drug conjugate, a vector for radioactive ions, and a mediator of T cell activation. The therapeutics inhibited pancreatic cancer cell growth in vitro and in vivo. Exploiting proteolytic cleavage-derived neoantigens opens an attractive way for specifically targeting cancer cells.
Collapse
Affiliation(s)
| | - Marina Pasca di Magliano
- Department of Surgery, Department of Cell and Developmental Biology, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
33
|
Kumar AA, Buckley BJ, Ranson M. The Urokinase Plasminogen Activation System in Pancreatic Cancer: Prospective Diagnostic and Therapeutic Targets. Biomolecules 2022; 12:152. [PMID: 35204653 PMCID: PMC8961517 DOI: 10.3390/biom12020152] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is a highly aggressive malignancy that features high recurrence rates and the poorest prognosis of all solid cancers. The urokinase plasminogen activation system (uPAS) is strongly implicated in the pathophysiology and clinical outcomes of patients with pancreatic ductal adenocarcinoma (PDAC), which accounts for more than 90% of all pancreatic cancers. Overexpression of the urokinase-type plasminogen activator (uPA) or its cell surface receptor uPAR is a key step in the acquisition of a metastatic phenotype via multiple mechanisms, including the increased activation of cell surface localised plasminogen which generates the serine protease plasmin. This triggers multiple downstream processes that promote tumour cell migration and invasion. Increasing clinical evidence shows that the overexpression of uPA, uPAR, or of both is strongly associated with worse clinicopathological features and poor prognosis in PDAC patients. This review provides an overview of the current understanding of the uPAS in the pathogenesis and progression of pancreatic cancer, with a focus on PDAC, and summarises the substantial body of evidence that supports the role of uPAS components, including plasminogen receptors, in this disease. The review further outlines the clinical utility of uPAS components as prospective diagnostic and prognostic biomarkers for PDAC, as well as a rationale for the development of novel uPAS-targeted therapeutics.
Collapse
Affiliation(s)
- Ashna A. Kumar
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.A.K.); (B.J.B.)
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Benjamin J. Buckley
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.A.K.); (B.J.B.)
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.A.K.); (B.J.B.)
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
34
|
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010146. [PMID: 35008569 PMCID: PMC8745566 DOI: 10.3390/ijms23010146] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.
Collapse
|
35
|
Inhibition of cotranslational translocation by apratoxin S4: Effects on oncogenic receptor tyrosine kinases and the fate of transmembrane proteins produced in the cytoplasm. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100053. [PMID: 34909679 PMCID: PMC8663948 DOI: 10.1016/j.crphar.2021.100053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/07/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) have become major targets for anticancer therapy. However, resistance and signaling pathway redundancy has been problematic. The marine-derived apratoxins act complementary to direct kinase inhibitors by downregulating the levels of multiple of these receptors and additionally prevent the secretion of growth factors that act on these receptors by targeting Sec61α, therefore interfering with cotranslational translocation. We have profiled the synthetic, natural product-inspired apratoxin S4 against panels of cancer cells characterized by differential sensitivity to RTK inhibitors due to receptor mutations, oncogenic KRAS mutations, or activation of compensatory pathways. Apratoxin S4 was active at low-nanomolar to sub-nanomolar concentrations against panels of lung, head and neck, bladder, and pancreatic cancer cells, concomitant with the downregulation of levels of several RTKs, including EGFR, MET and others. However, the requisite concentration to inhibit certain receptors varied, suggesting some differential substrate selectivity in cellular settings. This selectivity was most pronounced in breast cancer cells, where apratoxin S4 selectively targeted HER3 over HER2 and showed greater activity against ER+ and triple negative breast cancer cells than HER2+ cancer cells. Depending on the breast cancer subtype, apratoxin S4 differentially downregulated transmembrane protein CDCP1, which is linked to metastasis and invasion in breast cancer and modulates EGFR activity. We followed the fate of CDCP1 through proteomics and found that nonglycosylated CDCP1 associates with chaperone HSP70 and HUWE1 that functions as an E3 ubiquitin ligase and presumably targets CDCP1, as well as potentially other substrates inhibited by apratoxins, for proteasomal degradation. By preventing cotranslational translocation of VEGF and other proangiogenic factors as well as VEGFR2 and other receptors, apratoxins also possess antiangiogenic activity, which was validated in endothelial cells where downregulation of VEGFR2 was observed, extending the therapeutic scope to angiogenic diseases.
Collapse
|
36
|
van Dam MA, Vuijk FA, Stibbe JA, Houvast RD, Luelmo SAC, Crobach S, Shahbazi Feshtali S, de Geus-Oei LF, Bonsing BA, Sier CFM, Kuppen PJK, Swijnenburg RJ, Windhorst AD, Burggraaf J, Vahrmeijer AL, Mieog JSD. Overview and Future Perspectives on Tumor-Targeted Positron Emission Tomography and Fluorescence Imaging of Pancreatic Cancer in the Era of Neoadjuvant Therapy. Cancers (Basel) 2021; 13:6088. [PMID: 34885196 PMCID: PMC8656821 DOI: 10.3390/cancers13236088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Despite recent advances in the multimodal treatment of pancreatic ductal adenocarcinoma (PDAC), overall survival remains poor with a 5-year cumulative survival of approximately 10%. Neoadjuvant (chemo- and/or radio-) therapy is increasingly incorporated in treatment strategies for patients with (borderline) resectable and locally advanced disease. Neoadjuvant therapy aims to improve radical resection rates by reducing tumor mass and (partial) encasement of important vascular structures, as well as eradicating occult micrometastases. Results from recent multicenter clinical trials evaluating this approach demonstrate prolonged survival and increased complete surgical resection rates (R0). Currently, tumor response to neoadjuvant therapy is monitored using computed tomography (CT) following the RECIST 1.1 criteria. Accurate assessment of neoadjuvant treatment response and tumor resectability is considered a major challenge, as current conventional imaging modalities provide limited accuracy and specificity for discrimination between necrosis, fibrosis, and remaining vital tumor tissue. As a consequence, resections with tumor-positive margins and subsequent early locoregional tumor recurrences are observed in a substantial number of patients following surgical resection with curative intent. Of these patients, up to 80% are diagnosed with recurrent disease after a median disease-free interval of merely 8 months. These numbers underline the urgent need to improve imaging modalities for more accurate assessment of therapy response and subsequent re-staging of disease, thereby aiming to optimize individual patient's treatment strategy. In cases of curative intent resection, additional intra-operative real-time guidance could aid surgeons during complex procedures and potentially reduce the rate of incomplete resections and early (locoregional) tumor recurrences. In recent years intraoperative imaging in cancer has made a shift towards tumor-specific molecular targeting. Several important molecular targets have been identified that show overexpression in PDAC, for example: CA19.9, CEA, EGFR, VEGFR/VEGF-A, uPA/uPAR, and various integrins. Tumor-targeted PET/CT combined with intraoperative fluorescence imaging, could provide valuable information for tumor detection and staging, therapy response evaluation with re-staging of disease and intraoperative guidance during surgical resection of PDAC. METHODS A literature search in the PubMed database and (inter)national trial registers was conducted, focusing on studies published over the last 15 years. Data and information of eligible articles regarding PET/CT as well as fluorescence imaging in PDAC were reviewed. Areas covered: This review covers the current strategies, obstacles, challenges, and developments in targeted tumor imaging, focusing on the feasibility and value of PET/CT and fluorescence imaging for integration in the work-up and treatment of PDAC. An overview is given of identified targets and their characteristics, as well as the available literature of conducted and ongoing clinical and preclinical trials evaluating PDAC-targeted nuclear and fluorescent tracers.
Collapse
Affiliation(s)
- Martijn A. van Dam
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Floris A. Vuijk
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Judith A. Stibbe
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Ruben D. Houvast
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Saskia A. C. Luelmo
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Stijn Crobach
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | | | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, University Medical Center Leiden, 2333 ZA Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
| | - Bert A. Bonsing
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
- Percuros B.V., 2333 CL Leiden, The Netherlands
| | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | | | - Albert D. Windhorst
- Department of Radiology, Section of Nuclear Medicine, Amsterdam UMC, Location VUmc, 1081 HV Amsterdam, The Netherlands;
| | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - J. Sven D. Mieog
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| |
Collapse
|
37
|
Preclinical Molecular PET-CT Imaging Targeting CDCP1 in Colorectal Cancer. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:3153278. [PMID: 34621145 PMCID: PMC8455202 DOI: 10.1155/2021/3153278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/05/2021] [Indexed: 01/16/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy in the world, with 22% of patients presenting with metastatic disease and a further 50% destined to develop metastasis. Molecular imaging uses antigen-specific ligands conjugated to radionuclides to detect and characterise primary cancer and metastases. Expression of the cell surface protein CDCP1 is increased in CRC, and here we sought to assess whether it is a suitable molecular imaging target for the detection of this cancer. CDCP1 expression was assessed in CRC cell lines and a patient-derived xenograft to identify models suitable for evaluation of radio-labelled 10D7, a CDCP1-targeted, high-affinity monoclonal antibody, for preclinical molecular imaging. Positron emission tomography-computed tomography was used to compare zirconium-89 (89Zr)-10D7 avidity to a nonspecific, isotype control 89Zr-labelled IgGκ1 antibody. The specificity of CDCP1-avidity was further confirmed using CDCP1 silencing and blocking models. Our data indicate high avidity and specificity for of 89Zr-10D7 in CDCP1 expressing tumors at. Significantly higher levels than normal organs and blood, with greatest tumor avidity observed at late imaging time points. Furthermore, relatively high avidity is detected in high CDCP1 expressing tumors, with reduced avidity where CDCP1 expression was knocked down or blocked. The study supports CDCP1 as a molecular imaging target for CRC in preclinical PET-CT models using the radioligand 89Zr-10D7.
Collapse
|
38
|
Substrate-biased activity-based probes identify proteases that cleave receptor CDCP1. Nat Chem Biol 2021; 17:776-783. [PMID: 33859413 DOI: 10.1038/s41589-021-00783-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/04/2021] [Indexed: 02/02/2023]
Abstract
CUB domain-containing protein 1 (CDCP1) is an oncogenic orphan transmembrane receptor and a promising target for the detection and treatment of cancer. Extracellular proteolysis of CDCP1 by poorly defined mechanisms induces pro-metastatic signaling. We describe a new approach for the rapid identification of proteases responsible for key proteolytic events using a substrate-biased activity-based probe (sbABP) that incorporates a substrate cleavage motif grafted onto a peptidyl diphenyl phosphonate warhead for specific target protease capture, isolation and identification. Using a CDCP1-biased probe, we identify urokinase (uPA) as the master regulator of CDCP1 proteolysis, which acts both by directly cleaving CDCP1 and by activating CDCP1-cleaving plasmin. We show that coexpression of uPA and CDCP1 is strongly predictive of poor disease outcome across multiple cancers and demonstrate that uPA-mediated CDCP1 proteolysis promotes metastasis in disease-relevant preclinical in vivo models. These results highlight CDCP1 cleavage as a potential target to disrupt cancer and establish sbABP technology as a new approach to identify disease-relevant proteases.
Collapse
|
39
|
Montemagno C, Cassim S, De Leiris N, Durivault J, Faraggi M, Pagès G. Pancreatic Ductal Adenocarcinoma: The Dawn of the Era of Nuclear Medicine? Int J Mol Sci 2021; 22:6413. [PMID: 34203923 PMCID: PMC8232627 DOI: 10.3390/ijms22126413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), accounting for 90-95% of all pancreatic tumors, is a highly devastating disease associated with poor prognosis. The lack of accurate diagnostic tests and failure of conventional therapies contribute to this pejorative issue. Over the last decade, the advent of theranostics in nuclear medicine has opened great opportunities for the diagnosis and treatment of several solid tumors. Several radiotracers dedicated to PDAC imaging or internal vectorized radiotherapy have been developed and some of them are currently under clinical consideration. The functional information provided by Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) could indeed provide an additive diagnostic value and thus help in the selection of patients for targeted therapies. Moreover, the therapeutic potential of β-- and α-emitter-radiolabeled agents could also overcome the resistance to conventional therapies. This review summarizes the current knowledge concerning the recent developments in the nuclear medicine field for the management of PDAC patients.
Collapse
Affiliation(s)
- Christopher Montemagno
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- Institute for Research on Cancer and Aging of Nice, Centre Antoine Lacassagne, CNRS UMR 7284 and IN-SERM U1081, Université Cote d’Azur, 06200 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Shamir Cassim
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Nicolas De Leiris
- Nuclear Medicine Department, Grenoble-Alpes University Hospital, 38000 Grenoble, France;
- Laboratoire Radiopharmaceutiques Biocliniques, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, 38000 Grenoble, France
| | - Jérôme Durivault
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Marc Faraggi
- Centre Hospitalier Princesse Grace, Nuclear Medicine Department, 98000 Monaco, Monaco;
| | - Gilles Pagès
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- Institute for Research on Cancer and Aging of Nice, Centre Antoine Lacassagne, CNRS UMR 7284 and IN-SERM U1081, Université Cote d’Azur, 06200 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| |
Collapse
|