1
|
Li Y, Piao Z, Ge X, Feng J, Sun D, Zhang J. Environmental pollutants and rectal cancer: The impact of water contamination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118072. [PMID: 40127547 DOI: 10.1016/j.ecoenv.2025.118072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND Water is a fundamental resource for life, and exposure to water contamination has far-reaching implications for an increased risk of tumor diseases. METHODS Studies of rectal and colorectal cancer related to water contamination were identified from the published literature in the PUBMED databases from 2010 to 2024. RESULTS This review provides a critical analysis of the current evidence, summarizing the association of water contamination, including industrial waste, pesticides, heavy metals, with rectal and colorectal cancer. It highlights their impact on rectal and colorectal cancer progression by underlying processes of DNA damage, chronic inflammation, and microbial contamination. CONCLUSION Rectal cancer is a significant global health concern with a strong association between environmental pollutants in water sources and increased incidence of rectal cancer. It is vital to identify how waster pollutants influence the development and progression of rectal cancer and formulate targeted preventive approaches and social interventions to decrease the disease's impact.
Collapse
Affiliation(s)
- Yezhou Li
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Zhe Piao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xinbin Ge
- Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Jinbao Feng
- Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Denghua Sun
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China.
| | - Jiayu Zhang
- Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China.
| |
Collapse
|
2
|
Ponce-Hernández A, Carranza-Álvarez C, Ceballos-Maldonado JG, Rubio-Gómez JA, Martínez-Soto D. Overview of the heavy metal contamination in Mexico: sources of the contamination and issues in human health. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:82. [PMID: 39979554 DOI: 10.1007/s10653-025-02390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
This paper discusses information collected from original articles published between 1992 and 2022 regarding heavy metals (HMs) contamination in various environments across Mexico. The primary aim of this work was to identify the Mexican states where concentrations of HMs have been reported to exceed the maximum permissible limits for several types of soil, water, and sediment according to Mexican standards NOM-147-SEMARNAT/SSA1-2004, NOM-127-SSA1-2021, as well as international standards. The data collected indicates that 25 states in Mexico have reported at least one metal exceeding the maximum permissible limits in soil. Among these, Zacatecas, Nuevo Leon and Chihuahua had the highest number of HMs exceeding the standards. For sediment contamination, 26 states exceeded the permissible limits, with San Luis Potosí and Guerrero showing the highest number of HMs above the standards. Additionally, 26 states have reports of HMs exceeding the permissible limits in water, with Guanajuato and Guerrero having the highest number of HMs. Interestingly, the most frequent metals reported as soil contaminants are Cu, Fe, Pb and Zn; in sediment, they are Cd, Cr, Cu, Fe, Pb and Zn; and in water, they are Cd, Cr, Cu, Fe, Mn, Pb and Zn. The compiled information indicates that the primary anthropogenic sources of HMs release in Mexico include industrial activities, urban wastewater, mining, and agricultural practices. Furthermore, the data analyzed highlights several serious health risks associated with exposure to HMs, including cancer, central nervous system damage, DNA damage, and issues related to kidneys and lungs. This paper provides a comprehensive overview of HMs contamination in Mexico as well as the health challenges that arise from this contamination..
Collapse
Affiliation(s)
- Amauri Ponce-Hernández
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava #6, Zona Universitaria, CP. 78210, San Luis Potosí, S.L.P., México
| | - Candy Carranza-Álvarez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava #6, Zona Universitaria, CP. 78210, San Luis Potosí, S.L.P., México.
| | - Juan Gilberto Ceballos-Maldonado
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava #6, Zona Universitaria, CP. 78210, San Luis Potosí, S.L.P., México
| | - Javier Alexis Rubio-Gómez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava #6, Zona Universitaria, CP. 78210, San Luis Potosí, S.L.P., México
| | - Domingo Martínez-Soto
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada - Tijuana No. 3918, Zona Playitas, CP. 22860, Ensenada, B.C., México.
| |
Collapse
|
3
|
Zhang ZH, Yan HX, Liu MD, Niu FW, Yao K, Feng SY, Li X, Chen YH, Xie DD. Chronic NaAsO 2 exposure promotes migration and invasion of prostate cancer cells by Akt/GSK-3β/β-catenin/TCF4 axis-mediated epithelial-mesenchymal transition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117741. [PMID: 39818140 DOI: 10.1016/j.ecoenv.2025.117741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Inorganic arsenic is a Class I human Carcinogen. However, the role of chronic inorganic arsenic exposure on prostate cancer metastasis still unclear. This study aimed to investigate the effects and mechanism of chronic NaAsO2 exposure on migration and invasion of prostate cancer cells. DU145 and PC-3 cells were exposed to NaAsO2 (2 μM) for 25 generations. Wound healing and Transwell assays showed that chronic NaAsO2 exposure promoted migration and invasion of DU145 and PC-3 cells. In addition, chronic NaAsO2 exposure induced epithelial-mesenchymal transition (EMT) of DU145 cells by promoting β-catenin/TCF4 transcriptional activity. Mechanically, NaAsO2 promoted GSK-3β inactivation in the "disruption complex" through Akt- mediated phosphorylation at serine 9, and then inhibited the phosphorylation and ubiquitination degradation of β-catenin, which led to its nuclear translocation. Ly294002, a selective phosphatidylinositol 3-kinase (PI3K)/Akt inhibitor, suppressed the β-catenin/TCF4 complex activation and EMT through blocking Akt-mediated GSK-3β inactivation in the "disruption complex" in chronic NaAsO2 exposed DU145 and PC-3 cells. Moreover, Ly294002 alleviated chronic NaAsO2-induced migration and invasion in DU145 and PC-3 cells. These findings provide evidence that chronic arsenic exposure promotes migration and invasion of prostate cancer cells via an EMT mechanism driven by the AKT/GSK-3β/β-catenin/TCF4 signaling axis. Akt is expected to be a potential therapeutic target for chronic arsenic exposure-mediated prostate cancer metastasis.
Collapse
Affiliation(s)
- Zhi-Hui Zhang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Hai-Xin Yan
- Department of Urology, Chaohu Hospital of Anhui Medical University, Chaohu 238000, China
| | - Ming-Dong Liu
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Feng-Wen Niu
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Kai Yao
- Department of Urology, Chaohu Hospital of Anhui Medical University, Chaohu 238000, China
| | - Shi-Yao Feng
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Xi Li
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yuan-Hua Chen
- Department of Histology and Embryology, Anhui Medical University, Hefei 230032, China
| | - Dong-Dong Xie
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Department of Urology, Chaohu Hospital of Anhui Medical University, Chaohu 238000, China.
| |
Collapse
|
4
|
Jasmine F, Almazan A, Khamkevych Y, Argos M, Shahriar M, Islam T, Shea CR, Ahsan H, Kibriya MG. Gene-Environment Interaction: Small Deletions (DELs) and Transcriptomic Profiles in Non-Melanoma Skin Cancer (NMSC) and Potential Implications for Therapy. Cells 2025; 14:95. [PMID: 39851523 PMCID: PMC11764317 DOI: 10.3390/cells14020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
Arsenic (As) is a risk factor for non-melanoma skin cancer (NMSC). From a six-year follow-up study on 7000 adults exposed to As, we reported the associations of single-nucleotide variation in tumor tissue and gene expression. Here, we identify the associations of small deletions (DELs) and transcriptomic profiles in NMSC. Comparing the (a) NMSC tissue (n = 32) and corresponding blood samples from each patient, and (b) an independent set of non-lesional, healthy skin (n = 16) and paired blood, we identified NMSC-associated DELs. Differential expressions of certain gene pathways (TGF-β signaling pathway, IL-17 pathway, PD-L1 pathway, etc.) showed significant interactions with these somatic DELs and As exposure. In low-As-exposure cases, the DELs in APC were associated with the up-regulation of inflamed T-Cell-associated genes by a fold change (FC) of 8.9 (95% CI 4.5-17.6), compared to 5.7 (95% CI 2.9-10.8) without APC DELs; in high-As-exposure cases, the APC DELs were associated with an FC of 5.8 (95% CI 3.5-9.8) compared to 1.2 (95% CI -1.3 to 1.8) without APC DELs. We report, for the first time, the significant associations of somatic DELs (many in STR regions) in NMSC tissue and As exposure with many dysregulated gene pathways. These findings may help in selecting groups of patients for potential targeted therapy like PD-L1 inhibitors, IL-17 inhibitors, and TGF-β inhibitors in the future.
Collapse
Affiliation(s)
- Farzana Jasmine
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.); (A.A.); (Y.K.); (M.S.); (H.A.)
| | - Armando Almazan
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.); (A.A.); (Y.K.); (M.S.); (H.A.)
| | - Yuliia Khamkevych
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.); (A.A.); (Y.K.); (M.S.); (H.A.)
| | - Maria Argos
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA 02118, USA;
| | - Mohammad Shahriar
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.); (A.A.); (Y.K.); (M.S.); (H.A.)
| | - Tariqul Islam
- UChicago Research Bangladesh (URB), University of Chicago, Dhaka 1230, Bangladesh;
| | - Christopher R. Shea
- Division of Dermatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Habibul Ahsan
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.); (A.A.); (Y.K.); (M.S.); (H.A.)
- Department of Public Health Sciences, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Muhammad G. Kibriya
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.); (A.A.); (Y.K.); (M.S.); (H.A.)
- Department of Public Health Sciences, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Ning Y, Wang C, Li S, Chen S, Zhang F, Zhou R, Yuan Y, Lv X, Wu Y, Zhang Y, Fan Z, Li X, Guo X, Shi Z, Liu Y, Chen F, Bai G, Liu X, Li Y, Bai A, Zhang Q, Dai H, Wang Y, Chen P, Wang X. Combating coal-burning-borne endemic arsenism in Shaanxi Province, Northwest China: The impact of high-arsenic coal ban, improved cook-stoves, and health education. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135421. [PMID: 39126853 DOI: 10.1016/j.jhazmat.2024.135421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
To eliminate the epidemic of coal-burning-borne endemic arsenism (CBBA), our study organized and implemented comprehensive measures including high-arsenic coal ban, improved cook-stoves, and health education. We also aimed to promote the application value of these measures in preventing and controlling CBBA to the world. From 2004 to 2005, through a stratified random sampling method, we selected 58,256 individuals to investigate the prevalence of CBBA and the arsenic levels in 1287 environmental and biological specimens. The prevalence of CBBA was 19.26 % and significantly associated with the arsenic levels in coal, pepper, corn and hair, which were at or exceeded national upper limits. To timely prevent and control the disease, the comprehensive measures have been implemented since 2005 to present. Comparison and correlation analyses were utilized to evaluate the effectiveness of these measures in reducing the prevalence of CBBA. According to statistics, 73 high-arsenic coal mines were banned and over 99 % households in endemic areas accepted stove improvements and diversified health education. Monitoring studies during 2010-2019 has confirmed that these measures led to a decrease in urine arsenic levels among endemic residents, and they developed novel dietary practices, such as properly drying, storage, and washing of food. Additionally, the awareness rate of CBBA increased from less than 70 % to over 95 %. Finally, the prevalence of CBBA has decreased to 0.153 % investigated by a census involving 2.076 million endemic residents in 2019. In summary, CBBA in northwest China has been successfully controlled through banning on high-arsenic coal, introducing improved cook-stoves, and providing health education.
Collapse
Affiliation(s)
- Yujie Ning
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P. R. China; NHC Key Laboratory of Environment and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Chaowei Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P. R. China; NHC Key Laboratory of Environment and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Shujin Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P. R. China; NHC Key Laboratory of Environment and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Sijie Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P. R. China; NHC Key Laboratory of Environment and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Feiyu Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P. R. China; NHC Key Laboratory of Environment and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Rong Zhou
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an 710054, P. R. China
| | - Yuequan Yuan
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P. R. China; NHC Key Laboratory of Environment and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Xi Lv
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P. R. China; NHC Key Laboratory of Environment and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Yifan Wu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P. R. China; Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P. R. China
| | - Yu Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P. R. China; Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P. R. China
| | - Zhongxue Fan
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an 710054, P. R. China.
| | - Xiaoqian Li
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an 710054, P. R. China.
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P. R. China; NHC Key Laboratory of Environment and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China; Clinical Research Center for Endemic Disease of Shaanxi Province, the Second Affiliated Hospital of Xi'an Jiaotong University, No.157 Xi Wu Road, Xi'an, Shaanxi 710004, P. R. China
| | - Zhi Shi
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an 710054, P. R. China
| | - Yanli Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P. R. China; Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P. R. China
| | - Feihong Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P. R. China; Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P. R. China
| | - Guanglu Bai
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an 710054, P. R. China
| | - Xiaoli Liu
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an 710054, P. R. China
| | - Yue Li
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an 710054, P. R. China
| | - Aimei Bai
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an 710054, P. R. China
| | - Qingping Zhang
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an 710054, P. R. China
| | - Hongxing Dai
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an 710054, P. R. China
| | - Yaofei Wang
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an 710054, P. R. China
| | - Ping Chen
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an 710054, P. R. China
| | - Xi Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P. R. China; Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P. R. China.
| |
Collapse
|
6
|
Dennis LK, Langston ME, Beane Freeman L, Canales RA, Lynch CF. Trace Element Concentrations of Arsenic and Selenium in Toenails and Risk of Prostate Cancer among Pesticide Applicators. Curr Oncol 2024; 31:5472-5483. [PMID: 39330033 PMCID: PMC11430890 DOI: 10.3390/curroncol31090405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Prostate cancer is a common cancer among males in the US, but little is known about its risk factors, including trace elements. The primary aim of this study was to examine prostate cancer and its association with arsenic and selenium in toenails. We conducted a small, nested case-control study of men residing in Iowa within the Agricultural Health Study cohort, where we also collected toenail samples to test for arsenic and other trace elements. Toenail samples were sent for neutron activation analysis aimed at long-lived trace elements, including arsenic. Logistic regression was used to estimate odds ratios (ORs) for trace element exposures and prostate cancer. A total of 66 prostate cancer cases and 173 healthy controls returned questionnaires, over 99% of which included toenail samples. An increased risk was seen for the highest levels of arsenic (OR = 3.4 confidence interval (CI) of 1.3-8.6 and OR = 2.2, 95% CI of 0.9-5.6) and the highest level of selenium (2.0, 95% CI of 1.0-4.0). These data also show detectable levels of over 50% for 14 of 22 elements detected in the toenails. The association seen here with arsenic and prostate cancer further supports ecological studies finding an association with community levels of arsenic and prostate cancer incidence and mortality.
Collapse
Affiliation(s)
- Leslie K. Dennis
- Department of Epidemiology & Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85721, USA;
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA;
| | - Marvin E. Langston
- Department of Epidemiology & Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85721, USA;
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Laura Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA;
| | - Robert A. Canales
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA;
- Department of Community and Environmental Health, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85721, USA
| | - Charles F. Lynch
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
7
|
Sum S. Impact of Droughts on Served Drinking Water Disparities in California, 2007-2020. Am J Public Health 2024; 114:935-945. [PMID: 39110932 PMCID: PMC11306608 DOI: 10.2105/ajph.2024.307758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Objectives. To quantify the impact of droughts on drinking water arsenic and nitrate levels provided by community water systems (CWSs) in California and to assess whether this effect varies across sociodemographic subgroups. Methods. I integrated CWS characteristics, drought records, sociodemographic data, and regulatory drinking water samples (n = 83 317) from 2378 water systems serving 34.8 million residents from 2007 to 2020. I analyzed differential drought effects using fixed-effect regression analyses that cumulatively accounted for CWS-level trends, income, and agricultural measures. Results. CWSs serving majority Latino/a communities show persistently higher and more variable drinking water nitrate levels. Drought increased nitrate concentrations in majority Latino/a communities, with the effect doubling for CWSs with more than 75% Latino/a populations served. Arsenic concentrations in surface sources also increased during drought for all groups. Differential effects are driven by very small (< 500) and privately owned systems. Conclusions. Impending droughts driven by climate change may further increase drinking water disparities and arsenic threats. This underscores the critical need to address existing inequities in climate resilience planning and grant making. (Am J Public Health. 2024;114(9):935-945. https://doi.org/10.2105/AJPH.2024.307758).
Collapse
Affiliation(s)
- Sandy Sum
- Sandy Sum is with the Bren School and the Department of Economics, University of California, Santa Barbara
| |
Collapse
|
8
|
Singh PK, Kumar U, Kumar I, Dwivedi A, Singh P, Mishra S, Seth CS, Sharma RK. Critical review on toxic contaminants in surface water ecosystem: sources, monitoring, and its impact on human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56428-56462. [PMID: 39269525 DOI: 10.1007/s11356-024-34932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Surface water pollution is a critical and urgent global issue that demands immediate attention. Surface water plays a crucial role in supporting and sustaining life on the earth, but unfortunately, till now, we have less understanding of its spatial and temporal dynamics of discharge and storage variations at a global level. The contamination of surface water arises from various sources, classified into point and non-point sources. Point sources are specific, identifiable origins of pollution that release pollutants directly into water bodies through pipes or channels, allowing for easier identification and management, e.g., industrial discharges, sewage treatment plants, and landfills. However, non-point sources originate from widespread activities across expansive areas and present challenges due to its diffuse nature and multiple pathways of contamination, e.g., agricultural runoff, urban storm water runoff, and atmospheric deposition. Excessive accumulation of heavy metals, persistent organic pollutants, pesticides, chlorination by-products, pharmaceutical products in surface water through different pathways threatens food quality and safety. As a result, there is an urgent need for developing and designing new tools for identifying and quantifying various environmental contaminants. In this context, chemical and biological sensors emerge as fascinating devices well-suited for various environmental applications. Numerous chemical and biological sensors, encompassing electrochemical, magnetic, microfluidic, and biosensors, have recently been invented by hydrological scientists for the detection of water pollutants. Furthermore, surface water contaminants are monitored through different sensors, proving their harmful effects on human health.
Collapse
Affiliation(s)
- Prince Kumar Singh
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Umesh Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Indrajeet Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Akanksha Dwivedi
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Singh
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saumya Mishra
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | | | - Rajesh Kumar Sharma
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
9
|
Bradley PM, Hicks EC, Levitt JP, Lloyd DC, McDonald MM, Romanok KM, Smalling KL, Ayotte JD. A brief note on substantial sub-daily arsenic variability in pumping drinking-water wells in New Hampshire. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170838. [PMID: 38340869 DOI: 10.1016/j.scitotenv.2024.170838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Large variations in redox-related water parameters, like pH and dissolved oxygen (DO), have been documented in New Hampshire (United States) drinking-water wells over the course of a few hours under pumping conditions. These findings suggest that comparable sub-daily variability in dissolved concentrations of redox-reactive and toxic arsenic (As) also may occur, representing a potentially critical public-health data gap and a fundamental challenge for long-term As-trends monitoring. To test this hypothesis, discrete groundwater As samples were collected approximately hourly during one day in May and again in August 2019 from three New Hampshire drinking-water wells (2 public-supply, 1 private) under active pumping conditions. Collected samples were assessed by laboratory analysis (total As [AsTot], As(III), As(V)) and by field analysis (AsTot) using a novel integrated biosensor system. Laboratory analysis revealed sub-daily variability (range) in AsTot concentrations equivalent to 16 % - 36 % of that observed in the antecedent 3-year bimonthly trend monitoring. Thus, the results indicated that, along with previously demonstrated seasonality effects, the timing and duration of pumping are important considerations when assessing trends in drinking-water As exposures and concomitant risks. Results also illustrated the utility of the field sensor for monitoring and management of AsTot exposures in near-real-time.
Collapse
Affiliation(s)
- Paul M Bradley
- U.S. Geological Survey, South Atlantic Water Science Center, Columbia, SC, USA.
| | | | - Joseph P Levitt
- U.S. Geological Survey, New England Water Science Center, Pembroke, NH, USA
| | | | | | - Kristin M Romanok
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ, USA
| | - Kelly L Smalling
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ, USA
| | - Joseph D Ayotte
- U.S. Geological Survey, New England Water Science Center, Pembroke, NH, USA
| |
Collapse
|
10
|
George CM, Zacher T, Endres K, Richards F, Bear Robe L, Harvey D, Best LG, Red Cloud R, Black Bear A, Skinner L, Cuny C, Rule A, Schwab KJ, Gittelsohn J, Glabonjat RA, Schilling K, O’Leary M, Thomas ED, Umans J, Zhu J, Moulton LH, Navas-Acien A. Effect of an Arsenic Mitigation Program on Arsenic Exposure in American Indian Communities: A Cluster Randomized Controlled Trial of the Community-Led Strong Heart Water Study Program. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:37007. [PMID: 38534131 PMCID: PMC10967367 DOI: 10.1289/ehp12548] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/12/2023] [Accepted: 01/24/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Chronic arsenic exposure has been associated with an increased risk of cardiovascular disease; diabetes; cancers of the lung, pancreas and prostate; and all-cause mortality in American Indian communities in the Strong Heart Study. OBJECTIVE The Strong Heart Water Study (SHWS) designed and evaluated a multilevel, community-led arsenic mitigation program to reduce arsenic exposure among private well users in partnership with Northern Great Plains American Indian Nations. METHODS A cluster randomized controlled trial (cRCT) was conducted to evaluate the effectiveness of the SHWS arsenic mitigation program over a 2-y period on a) urinary arsenic, and b) reported use of arsenic-safe water for drinking and cooking. The cRCT compared the installation of a point-of-use arsenic filter and a mobile Health (mHealth) program (3 phone calls; SHWS mHealth and Filter arm) to a more intensive program, which included this same program plus three home visits (3 phone calls and 3 home visits; SHWS Intensive arm). RESULTS A 47% reduction in urinary arsenic [geometric mean ( GM ) = 13.2 to 7.0 μ g / g creatinine] was observed from baseline to the final follow-up when both study arms were combined. By treatment arm, the reduction in urinary arsenic from baseline to the final follow-up visit was 55% in the mHealth and Filter arm (GM = 14.6 to 6.55 μ g / g creatinine) and 30% in the Intensive arm (GM = 11.2 to 7.82 μ g / g creatinine). There was no significant difference in urinary arsenic levels by treatment arm at the final follow-up visit comparing the Intensive vs. mHealth and Filter arms: GM ratio of 1.21 (95% confidence interval: 0.77, 1.90). In both arms combined, exclusive use of arsenic-safe water from baseline to the final follow-up visit significantly increased for water used for cooking (17% to 53%) and drinking (12% to 46%). DISCUSSION Delivery of the interventions for the community-led SHWS arsenic mitigation program, including the installation of a point-of-use arsenic filter and a mHealth program on the use of arsenic-safe water (calls only, no home visits), resulted in a significant reduction in urinary arsenic and increases in reported use of arsenic-safe water for drinking and cooking during the 2-y study period. These results demonstrate that the installation of an arsenic filter and phone calls from a mHealth program presents a promising approach to reduce water arsenic exposure among private well users. https://doi.org/10.1289/EHP12548.
Collapse
Affiliation(s)
- Christine Marie George
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Tracy Zacher
- Missouri Breaks Industries Research Inc., Eagle Butte, South Dakota, USA
| | - Kelly Endres
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Francine Richards
- Missouri Breaks Industries Research Inc., Eagle Butte, South Dakota, USA
| | - Lisa Bear Robe
- Missouri Breaks Industries Research Inc., Eagle Butte, South Dakota, USA
| | | | - Lyle G. Best
- Missouri Breaks Industries Research Inc., Eagle Butte, South Dakota, USA
| | - Reno Red Cloud
- Environmental Resource Department, Oglala Sioux Tribe, Pine Ridge, South Dakota, USA
| | | | - Leslie Skinner
- Missouri Breaks Industries Research Inc., Eagle Butte, South Dakota, USA
| | - Christa Cuny
- Missouri Breaks Industries Research Inc., Eagle Butte, South Dakota, USA
| | - Ana Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kellogg J. Schwab
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Joel Gittelsohn
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ronald Alexander Glabonjat
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Kathrin Schilling
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Marcia O’Leary
- Missouri Breaks Industries Research Inc., Eagle Butte, South Dakota, USA
| | - Elizabeth D. Thomas
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jason Umans
- Biomarker, Biochemistry, and Biorepository Core, Medstar Health, Washington, District of Columbia, USA
- Department of Medicine, School of Medicine, Georgetown University, Washington, District of Columbia, USA
| | - Jianhui Zhu
- Biomarker, Biochemistry, and Biorepository Core, Medstar Health, Washington, District of Columbia, USA
| | - Lawrence H. Moulton
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ana Navas-Acien
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, New York, USA
| |
Collapse
|
11
|
Pizzorno J. Time to Recognize and Address the Serious Arsenic Problem. Integr Med (Encinitas) 2024; 23:6-9. [PMID: 38618164 PMCID: PMC11007617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Chronic low-level exposure to arsenic has a dose-dependent relationship with many chronic diseases. However, the typical arsenic safety standards used by governmental entities and laboratories appear inconsistent with current research. This editorial reviews the research and suggests that the random first-morning-urine total arsenic threshold for increased disease risk should be 5.0 μg/g creatinine or lower.
Collapse
|
12
|
Khandayataray P, Samal D, Murthy MK. Arsenic and adipose tissue: an unexplored pathway for toxicity and metabolic dysfunction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8291-8311. [PMID: 38165541 DOI: 10.1007/s11356-023-31683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Arsenic-contaminated drinking water can induce various disorders by disrupting lipid and glucose metabolism in adipose tissue, leading to insulin resistance. It inhibits adipocyte development and exacerbates insulin resistance, though the precise impact on lipid synthesis and lipolysis remains unclear. This review aims to explore the processes and pathways involved in adipogenesis and lipolysis within adipose tissue concerning arsenic-induced diabetes. Although arsenic exposure is linked to type 2 diabetes, the specific role of adipose tissue in its pathogenesis remains uncertain. The review delves into arsenic's effects on adipose tissue and related signaling pathways, such as SIRT3-FOXO3a, Ras-MAP-AP-1, PI(3)-K-Akt, endoplasmic reticulum stress proteins, CHOP10, and GPCR pathways, emphasizing the role of adipokines. This analysis relies on existing literature, striving to offer a comprehensive understanding of different adipokine categories contributing to arsenic-induced diabetes. The findings reveal that arsenic detrimentally impacts white adipose tissue (WAT) by reducing adipogenesis and promoting lipolysis. Epidemiological studies have hinted at a potential link between arsenic exposure and obesity development, with limited research suggesting a connection to lipodystrophy. Further investigations are needed to elucidate the mechanistic association between arsenic exposure and impaired adipose tissue function, ultimately leading to insulin resistance.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha, 752057, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Madhya Pradesh, 466001, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
13
|
Issanov A, Adewusi B, Saint-Jacques N, Dummer TJB. Arsenic in drinking water and lung cancer: A systematic review of 35 years of evidence. Toxicol Appl Pharmacol 2024; 483:116808. [PMID: 38218206 DOI: 10.1016/j.taap.2024.116808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
The association between higher arsenic concentrations in drinking water and lung cancer is well-established. However, the risk associated with lower levels of arsenic exposure remains uncertain. This systematic review and meta-analysis summarizes the evidence on the relationship between exposure to arsenic in drinking water and lung cancer outcomes as measured over a broad range of exposures, including lower levels. A total of 51 studies were included in the review and 15 met criteria for inclusion in meta-analysis. Risk estimates for lung cancer incidence and mortality were pooled and analyzed separately using Bayesian hierarchical random-effects models with a Gaussian observation submodel for log(Risk), computed using the "brms" R package. For lung cancer incidence, the predicted posterior mean relative risks (RRs) at arsenic concentrations of 10, 50 and 150 μg/L were 1.11 (0.86-1.43), 1.67 (1.27-2.17) and 2.21 (1.61-3.02), respectively, with posterior probabilities of 79%, 100% and 100%, respectively, for the RRs to be >1. The posterior mean mortality ratios at 20, 50 and 150 μg/L were 1.22 (0.83-1.78), 2.10 (1.62-2.71) and 2.41 (1.88-3.08), respectively, with posterior probabilities being above 80%. In addition to observing the dose-response relationship, these findings demonstrate that individuals exposed to low to moderate levels of arsenic (<150 μg/L) were at an elevated risk of developing or dying from lung cancer. Given the widespread exposure to lower levels of arsenic, there is an urgent need for vigilance and potential revisions to regulatory guidelines to protect people from the cancer risks associated with arsenic exposure.
Collapse
Affiliation(s)
- Alpamys Issanov
- School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Betty Adewusi
- Nova Scotia Health Cancer Care Program, Nova Scotia Health, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada
| | - Nathalie Saint-Jacques
- Nova Scotia Health Cancer Care Program, Nova Scotia Health, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada; Department of Medicine, Dalhousie University, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada
| | - Trevor J B Dummer
- School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
14
|
Mukherjee AG, Gopalakrishnan AV. Arsenic-induced prostate cancer: an enigma. Med Oncol 2024; 41:50. [PMID: 38184511 DOI: 10.1007/s12032-023-02266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/21/2023] [Indexed: 01/08/2024]
Abstract
Arsenic exhibits varying degrees of toxicity depending on its many chemical forms. The carcinogenic properties of arsenic have already been established. However, the precise processes underlying the development of diseases following acute or chronic exposure to arsenic remain poorly known. Most of the existing investigation has focused on studying the occurrence of cancer following significant exposure to elevated levels of arsenic. Nevertheless, multiple investigations have documented diverse health consequences from prolonged exposure to low levels of arsenic. Inorganic arsenic commonly causes lung, bladder, and skin cancer. Some investigations have shown an association between arsenic in drinking water and prostate cancer, but few investigations have focused on exploring this connection. There is currently a lack of relevant animal models demonstrating a clear link between inorganic arsenic exposure and the development of prostate cancer. Nevertheless, studies using cellular model systems have demonstrated that arsenic can potentially promote the malignant transformation of human prostate epithelial cells in vitro. The administration of elevated levels of arsenic has been demonstrated to elicit cell death in instances of acute experimental exposure. Conversely, in cases of chronic exposure, arsenic prompts cellular proliferation and sustains cellular viability, thereby circumventing the constraints imposed by telomere shortening and apoptosis. Furthermore, cells consistently exposed to the stimulus exhibit an augmented ability to invade surrounding tissues and an enhanced potential to form tumors. This review aims to portray mechanistic insights into arsenic-induced prostate cancer.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
15
|
Levin R, Villanueva CM, Beene D, Cradock AL, Donat-Vargas C, Lewis J, Martinez-Morata I, Minovi D, Nigra AE, Olson ED, Schaider LA, Ward MH, Deziel NC. US drinking water quality: exposure risk profiles for seven legacy and emerging contaminants. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:3-22. [PMID: 37739995 PMCID: PMC10907308 DOI: 10.1038/s41370-023-00597-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Advances in drinking water infrastructure and treatment throughout the 20th and early 21st century dramatically improved water reliability and quality in the United States (US) and other parts of the world. However, numerous chemical contaminants from a range of anthropogenic and natural sources continue to pose chronic health concerns, even in countries with established drinking water regulations, such as the US. OBJECTIVE/METHODS In this review, we summarize exposure risk profiles and health effects for seven legacy and emerging drinking water contaminants or contaminant groups: arsenic, disinfection by-products, fracking-related substances, lead, nitrate, per- and polyfluorinated alkyl substances (PFAS) and uranium. We begin with an overview of US public water systems, and US and global drinking water regulation. We end with a summary of cross-cutting challenges that burden US drinking water systems: aging and deteriorated water infrastructure, vulnerabilities for children in school and childcare facilities, climate change, disparities in access to safe and reliable drinking water, uneven enforcement of drinking water standards, inadequate health assessments, large numbers of chemicals within a class, a preponderance of small water systems, and issues facing US Indigenous communities. RESULTS Research and data on US drinking water contamination show that exposure profiles, health risks, and water quality reliability issues vary widely across populations, geographically and by contaminant. Factors include water source, local and regional features, aging water infrastructure, industrial or commercial activities, and social determinants. Understanding the risk profiles of different drinking water contaminants is necessary for anticipating local and general problems, ascertaining the state of drinking water resources, and developing mitigation strategies. IMPACT STATEMENT Drinking water contamination is widespread, even in the US. Exposure risk profiles vary by contaminant. Understanding the risk profiles of different drinking water contaminants is necessary for anticipating local and general public health problems, ascertaining the state of drinking water resources, and developing mitigation strategies.
Collapse
Affiliation(s)
- Ronnie Levin
- Harvard TH Chan School of Public Health, Boston, MA, USA.
| | - Cristina M Villanueva
- ISGlobal, Barcelona, Spain
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Daniel Beene
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- University of New Mexico Department of Geography & Environmental Studies, Albuquerque, NM, USA
| | | | - Carolina Donat-Vargas
- ISGlobal, Barcelona, Spain
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Johnnye Lewis
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Irene Martinez-Morata
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Darya Minovi
- Center for Science and Democracy, Union of Concerned Scientists, Washington, DC, USA
| | - Anne E Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Erik D Olson
- Natural Resources Defense Council, Washington, DC, USA
| | | | - Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | |
Collapse
|
16
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Broberg K, Dogliotti E, Fletcher T, Rylander L, Abrahantes JC, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Update of the risk assessment of inorganic arsenic in food. EFSA J 2024; 22:e8488. [PMID: 38239496 PMCID: PMC10794945 DOI: 10.2903/j.efsa.2024.8488] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 μg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.
Collapse
|
17
|
Tyagi B, Chandrasekaran B, Tyagi A, Shukla V, Saran U, Tyagi N, Talluri S, Juneau AD, Fu H, Ankem MK, Damodaran C. Exposure of environmental trace elements in prostate cancer patients: A multiple metal analysis. Toxicol Appl Pharmacol 2023; 479:116728. [PMID: 37858873 DOI: 10.1016/j.taap.2023.116728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related deaths among men. To elucidate the connection between trace elements (arsenic: As, cadmium: Cd, lead: Pb, chromium: Cr, and nickel: Ni) and the risk of PCa, we analyzed trace element levels in the serum, urine, and tissues of PCa patients, while also examining their smoking status. We correlated these levels with their smoking habits. Notably, levels of Cd (P ≤ 0.05) and As (P ≤ 0.01) were significantly higher in the tumor tissue than in adjacent tissues. No significant differences were observed in the levels of Pb, Cr and Ni. Additionally, urinary Cd levels in 70% and arsenic levels in 2.3% of the PCa cohort were markedly higher than the CDC-reported cutoff (Cd ≤ 0.185 μg/L & As ≤100 μg/L). None displayed elevated levels of urinary Pb, Cr, and Ni. Conversely, in serum samples, the concentration of arsenic exceeded the CDC-determined limit (As ≤1.0 μg/L) in 31.69% of PCa patients. However, only 7.04% of patients had higher serum Cd levels than the CDC standard values (Cd ≤ 0.315 μg/L), while all PCa patients exceeded the Cr CDC limit (Cr ≤ 0.16 μg/L) and the Ni CDC limit (Ni ≤ 0.2 μg/L). On the contrary, no significant differences were observed in serum Pb (Pb ≤ 35.0 μg/L). Our findings establish a positive link between Cd and arsenic tissue concentrations and the risk of PCa. Subsequent studies are essential to determine whether elevated trace element levels pose a risk for the development of prostate carcinogenesis. Interestingly, among the PCa cohort comprising smokers, notably higher Cd levels were observed only in tumor tissues (P ≤ 0.01) and urine (P ≤ 0.05) compared to other elements or in other specimens.
Collapse
Affiliation(s)
- Bhawna Tyagi
- School of Pharmacy, Texas A&M University, TX, USA
| | | | - Ashish Tyagi
- School of Pharmacy, Texas A&M University, TX, USA
| | | | - Uttara Saran
- School of Pharmacy, Texas A&M University, TX, USA
| | - Neha Tyagi
- School of Pharmacy, Texas A&M University, TX, USA
| | | | | | - Hangcheng Fu
- Department of Urology, University of Louisville, KY, USA
| | - Murali K Ankem
- Department of Urology, University of Louisville, KY, USA
| | | |
Collapse
|
18
|
Ortiz-Garcia NY, Cipriano Ramírez AI, Juarez K, Brand Galindo J, Briceño G, Calderon Martinez E. Maternal Exposure to Arsenic and Its Impact on Maternal and Fetal Health: A Review. Cureus 2023; 15:e49177. [PMID: 38130554 PMCID: PMC10734558 DOI: 10.7759/cureus.49177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Arsenic exposure is a significant public health issue, with harmful effects caused by its use in commercial products such as car batteries, pesticides, and herbicides. Arsenic has three main compounds: inorganic, organic, and arsine gas. Inorganic arsenic compounds in water are highly toxic. The daily intake of arsenic from food and beverages is between 20 and 300 mcg/day. Arsenic is known for its carcinogenic properties and is classified as a human carcinogen by different institutions. Exposure can lead to oxidative stress, DNA damage, and epigenetic deregulation, which can cause endocrine disorders, altered signal transduction pathways, and cell proliferation. In addition, arsenic can easily cross the placenta, making it a critical concern for maternal and fetal health. Exposure can lead to complications such as gestational diabetes, anemia, low birth weight, miscarriage, and congenital anomalies. Female babies are particularly vulnerable to the negative impact of arsenic exposure, with a higher risk of low weight for gestational age and congenital cardiac anomalies. Therefore, it is crucial to monitor and regulate the levels of arsenic in drinking water and food sources to prevent these adverse health outcomes. Further research is necessary to fully understand the impact of arsenic exposure on human health, especially during pregnancy and infancy, by implementing preventative measures and monitoring the levels of arsenic in the environment.
Collapse
Affiliation(s)
| | | | - Karen Juarez
- Infectious Disease, Universidad Nacional Autónoma de México (UNAM), Mexico City, MEX
| | | | - Gabriela Briceño
- Obstetrics and Gynecology, Universidad de Oriente, Barcelona, VEN
| | | |
Collapse
|
19
|
Vázquez Cervantes GI, González Esquivel DF, Ramírez Ortega D, Blanco Ayala T, Ramos Chávez LA, López-López HE, Salazar A, Flores I, Pineda B, Gómez-Manzo S, Pérez de la Cruz V. Mechanisms Associated with Cognitive and Behavioral Impairment Induced by Arsenic Exposure. Cells 2023; 12:2537. [PMID: 37947615 PMCID: PMC10649068 DOI: 10.3390/cells12212537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Arsenic (As) is a metalloid naturally present in the environment, in food, water, soil, and air; however, its chronic exposure, even with low doses, represents a public health concern. For a long time, As was used as a pigment, pesticide, wood preservative, and for medical applications; its industrial use has recently decreased or has been discontinued due to its toxicity. Due to its versatile applications and distribution, there is a wide spectrum of human As exposure sources, mainly contaminated drinking water. The fact that As is present in drinking water implies chronic human exposure to this metalloid; it has become a worldwide health problem, since over 200 million people live where As levels exceed safe ranges. Many health problems have been associated with As chronic exposure including cancer, cardiovascular diseases, gastrointestinal disturbances, and brain dysfunctions. Because As can cross the blood-brain barrier (BBB), the brain represents a target organ where this metalloid can exert its long-term toxic effects. Many mechanisms of As neurotoxicity have been described: oxidative stress, inflammation, DNA damage, and mitochondrial dysfunction; all of them can converge, thus leading to impaired cellular functions, cell death, and in consequence, long-term detrimental effects. Here, we provide a current overview of As toxicity and integrated the global mechanisms involved in cognitive and behavioral impairment induced by As exposure show experimental strategies against its neurotoxicity.
Collapse
Affiliation(s)
- Gustavo Ignacio Vázquez Cervantes
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Dinora Fabiola González Esquivel
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Daniela Ramírez Ortega
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Tonali Blanco Ayala
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Lucio Antonio Ramos Chávez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Humberto Emanuel López-López
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Alelí Salazar
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Itamar Flores
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, México City 04530, Mexico;
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| |
Collapse
|
20
|
Eaves LA, Keil AP, Jukic AM, Dhingra R, Brooks JL, Manuck TA, Rager JE, Fry RC. Toxic metal mixtures in private well water and increased risk for preterm birth in North Carolina. Environ Health 2023; 22:69. [PMID: 37845729 PMCID: PMC10577978 DOI: 10.1186/s12940-023-01021-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/23/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Prenatal exposure to metals in private well water may increase the risk of preterm birth (PTB) (delivery < 37 weeks' gestation). In this study, we estimated associations between arsenic, manganese, lead, cadmium, chromium, copper, and zinc concentrations in private well water and PTB incidence in North Carolina (NC). METHODS Birth certificates from 2003-2015 (n = 1,329,071) were obtained and pregnancies were assigned exposure using the mean concentration and the percentage of tests above the maximum contaminant level (MCL) for the census tract of each individuals' residence at the time of delivery using the NCWELL database (117,960 well water tests from 1998-2019). We evaluated associations between single metals and PTB using adjusted logistic regression models. Metals mixtures were assessed using quantile-based g-computation. RESULTS Compared with those in other census tracts, individuals residing in tracts where > 25% of tests exceeded the MCL for lead (aOR 1.10, 95%CI 1.02,1.18) or cadmium (aOR 1.11, 95% CI 1.00,1.23) had an increased odds of PTB. Conversely, those residing in areas with > 25% MCL for zinc (aOR 0.77 (95% CI: 0.56,1.02) and copper (aOR 0.53 (95% CI: 0.13,1.34)) had a reduced odds of PTB. A quartile increase in the concentrations of a mixture of lead, cadmium, and chromium was associated with a small increased odds for PTB (aOR 1.02, 95% CI 1.01, 1.03). This metal mixture effect was most pronounced among American Indian individuals (aOR per quartile increase in all metals: 1.19 (95% CI 1.06,1.34)). CONCLUSIONS In a large study population of over one million births, lead and cadmium were found to increase the risk of PTB individually and in a mixture, with additional mixtures-related impacts estimated from co-exposure with chromium. This study highlights critical racial and ethnic health disparities in relation to private well water thereby emphasizing the urgent need for improved private well water quality to protect vulnerable populations.
Collapse
Affiliation(s)
- Lauren A Eaves
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 166A Rosenau Hall, CB #7431, Chapel Hill, NC, 27599, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander P Keil
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anne Marie Jukic
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Radhika Dhingra
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 166A Rosenau Hall, CB #7431, Chapel Hill, NC, 27599, USA
- Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Jada L Brooks
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tracy A Manuck
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Julia E Rager
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 166A Rosenau Hall, CB #7431, Chapel Hill, NC, 27599, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 166A Rosenau Hall, CB #7431, Chapel Hill, NC, 27599, USA.
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
21
|
Spaur M, Bostick BC, Chillrud SN, Factor-Litvak P, Navas-Acien A, Nigra AE. Impact of lowering the US maximum contaminant level on arsenic exposure: Differences by race, region, and water arsenic in NHANES 2003-2014. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122047. [PMID: 37331581 PMCID: PMC10529840 DOI: 10.1016/j.envpol.2023.122047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Our objective was to evaluate regional and sociodemographic inequalities in water arsenic exposure reductions associated with the US Environmental Protection Agency's Final Arsenic Rule, which lowered the arsenic maximum contaminant level to 10 μg/L in public water systems. We analyzed 8544 participants from the 2003-14 National Health and Nutrition Examination Survey (NHANES) reliant on community water systems (CWSs). We estimated arsenic exposure from water by recalibrating urinary dimethylarsinate (rDMA) to remove smoking and dietary contributions. We evaluated mean differences and corresponding percent reductions of urinary rDMA comparing subsequent survey cycles to 2003-04 (baseline), stratified by region, race/ethnicity, educational attainment, and tertile of CWS arsenic assigned at the county level. The overall difference (percent reduction) in urine rDMA was 0.32 μg/L (9%) among participants with the highest tertile of CWS arsenic, comparing 2013-14 to 2003-04. Declines in urinary rDMA were largest in regions with the highest water arsenic: the South [0.57 μg/L (16%)] and West [0.46 μg/L, (14%)]. Declines in urinary rDMA levels were significant and largest among Mexican American [0.99 μg/L (26%)] and Non-Hispanic White [0.25 μg/L (10%)] participants. Reductions in rDMA following the Final Arsenic Rule were highest among participants with the highest CWS arsenic concentrations, supporting legislation can benefit those who need it the most, although additional efforts are still needed to address remaining inequalities in CWS arsenic exposure.
Collapse
Affiliation(s)
- Maya Spaur
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health. 722 W 168th St, New York, NY, USA.
| | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory of Columbia University. 61 Route 9W, Palisades, NY, USA
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory of Columbia University. 61 Route 9W, Palisades, NY, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Columbia University Mailman School of Public Health. 722 W 168th St, New York, NY, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health. 722 W 168th St, New York, NY, USA
| | - Anne E Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health. 722 W 168th St, New York, NY, USA
| |
Collapse
|
22
|
Demanelis K, Delgado DA, Tong L, Jasmine F, Ahmed A, Islam T, Parvez F, Kibriya MG, Graziano JH, Ahsan H, Pierce BL. Somatic loss of the Y chromosome is associated with arsenic exposure among Bangladeshi men. Int J Epidemiol 2023; 52:1035-1046. [PMID: 36130227 PMCID: PMC10695470 DOI: 10.1093/ije/dyac176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/01/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Arsenic exposure increases the risk of several cancers in humans and contributes to genomic instability. Somatic loss of the Y chromosome (LoY) is a potential biomarker of genomic instability and cancer risk. Smoking is associated with LoY, but few other carcinogens have been investigated. We tested the cross-sectional association between arsenic exposure and LoY in leukocytes among genotyped Bangladeshi men (age 20-70 years) from the Health Effects of Arsenic Longitudinal Study. METHODS We extracted the median of logR-ratios from probes on the Y chromosome (mLRR-chrY) from genotyping arrays (n = 1364) and estimated the percentage of cells with LoY (% LoY) from mLRR-chrY. We evaluated the association between arsenic exposure (measured in drinking water and urine) and LoY using multivariable linear and logistic regression models. The association between LoY and incident arsenic-induced skin lesions was also examined. RESULTS Ten percent of genotyped men had LoY in at least 5% of cells and % LoY increased with age. Among men randomly selected for genotyping (n = 778), higher arsenic in drinking water, arsenic consumed and urinary arsenic were associated with increased % LoY (P = 0.006, P = 0.06 and P = 0.13, respectively). LoY was associated with increased risk of incident skin lesions (P = 0.008). CONCLUSION Arsenic exposure was associated with increased LoY, providing additional evidence that arsenic contributes to genomic instability. LoY was associated with developing skin lesions, a risk factor for cancer, suggesting that LoY may be a biomarker of susceptibility in arsenic-exposed populations. The effect of arsenic on somatic events should be further explored in cancer-prone tissue types.
Collapse
Affiliation(s)
- Kathryn Demanelis
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Dayana A Delgado
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Lin Tong
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Farzana Jasmine
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | | | | | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Muhammad G Kibriya
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
- Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
- Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Brandon L Pierce
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
- Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
23
|
Baghery F, Lau LDW, Mohamadi M, Vazirinejad R, Ahmadi Z, Javedani H, Eslami H, Nazari A. Risk of urinary tract cancers following arsenic exposure and tobacco smoking: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5579-5598. [PMID: 37248359 DOI: 10.1007/s10653-023-01627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
Bladder cancer, prostate cancer, and kidney cancer, due to their high morbidity and mortality rates, result in significant economic and health care costs. Arsenic exposure affects the drinking water of millions of people worldwide. Long-term exposure to arsenic, even in low concentrations, increases the risk of developing various cancers. Smoking is also one of the leading causes of bladder, prostate and kidney cancers. Accordingly, this research reviews the relationship between arsenic exposure and smoking with three kinds of urinary tract cancers (bladder cancer, prostate cancer, and kidney cancer) due to their widespread concern for their negative impact on public health globally. In this review, we have gathered the most current information from scientific databases [PubMed, Scopus, Google Scholar, ISI web of science] regarding the relationship between arsenic exposure and tobacco smoking with the risk of bladder, prostate, and kidney cancer. In several studies, a significant relationship was determined between the incidence and mortality rate of the above-mentioned cancers in humans with arsenic exposure and tobacco smoking. The decrease or cessation of smoking and consumption of arsenic-free water significantly declined the incidence of bladder, prostate, and kidney cancers.
Collapse
Affiliation(s)
- Fatemeh Baghery
- Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Maryam Mohamadi
- Occupational Safety and Health Research Center, NICICO, WorldSafety Organization and Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Reza Vazirinejad
- Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Ahmadi
- Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Javedani
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hadi Eslami
- Occupational Safety and Health Research Center, NICICO, WorldSafety Organization and Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Alireza Nazari
- Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Surgery, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
24
|
Su LJ, Chiang TC, O’Connor SN. Arsenic in brown rice: do the benefits outweigh the risks? Front Nutr 2023; 10:1209574. [PMID: 37521417 PMCID: PMC10375490 DOI: 10.3389/fnut.2023.1209574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Brown rice has been advocated for as a healthier alternative to white rice. However, the concentration of arsenic and other pesticide contaminants is greater in brown rice than in white. The potential health risks and benefits of consuming more brown rice than white rice remain unclear; thus, mainstream nutritional messaging should not advocate for brown rice over white rice. This mini-review aims to summarize the most salient concepts related to dietary arsenic exposure with emphasis on more recent findings and provide consumers with evidence of both risks and benefits of consuming more brown rice than white rice. Despite risk-benefit assessments being a challenging new frontier in nutrition, researchers should pursue an assessment to validate findings and solidify evidence. In the interim, consumers should be cognizant that the dose of arsenic exposure determines its toxicity, and brown rice contains a greater concentration of arsenic than white rice.
Collapse
Affiliation(s)
- Lihchyun Joseph Su
- Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Tung-Chin Chiang
- Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sarah N. O’Connor
- Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
25
|
Endres K, Zacher T, Richards F, Bear Robe L, Powers M, Yracheta J, Harvey D, Best LG, Red Cloud R, Black Bear A, Ristau S, Aurand D, Skinner L, Perin J, Cuny C, Gross M, Thomas ED, Rule A, Schwab K, Moulton LH, O'Leary M, Navas-Acien A, George CM. Behavioral determinants of arsenic-safe water use among Great Plains Indian Nation private well users: results from the Community-Led Strong Heart Water Study Arsenic Mitigation Program. Environ Health 2023; 22:42. [PMID: 37183246 PMCID: PMC10183246 DOI: 10.1186/s12940-023-00965-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/11/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND The objective of this study was to evaluate the behavioral determinants associated with exclusive use of arsenic-safe water in the community-led Strong Heart Water Study (SHWS) arsenic mitigation program. METHODS The SHWS is a randomized controlled trial of a community-led arsenic mitigation program designed to reduce arsenic exposure among private well users in American Indian Great Plains communities. All households received point-of-use (POU) arsenic filters installed at baseline and were followed for 2 years. Behavioral determinants selected were those targeted during the development of the SHWS program, and were assessed at baseline and follow-up. RESULTS Among participants, exclusive use of arsenic-safe water for drinking and cooking at follow-up was associated with higher self-efficacy for accessing local resources to learn about arsenic (OR: 5.19, 95% CI: 1.48-18.21) and higher self-efficacy to resolve challenges related to arsenic in water using local resources (OR: 3.11, 95% CI: 1.11-8.71). Higher commitment to use the POU arsenic filter faucet at baseline was also a significant predictor of exclusive arsenic-safe water use for drinking (OR: 32.57, 95% CI: 1.42-746.70) and cooking (OR: 15.90, 95% CI: 1.33-189.52) at follow-up. From baseline to follow-up, the SHWS program significantly increased perceived vulnerability to arsenic exposure, self-efficacy, descriptive norms, and injunctive norms. Changing one's arsenic filter cartridge after installation was associated with higher self-efficacy to obtain arsenic-safe water for drinking (OR: 6.22, 95% CI: 1.33-29.07) and cooking (OR: 10.65, 95% CI: 2.48-45.68) and higher perceived vulnerability of personal health effects (OR: 7.79, 95% CI: 1.17-51.98) from drinking arsenic-unsafe water. CONCLUSIONS The community-led SHWS program conducted a theory-driven approach for intervention development and evaluation that allowed for behavioral determinants to be identified that were associated with the use of arsenic safe water and changing one's arsenic filter cartridge. These results demonstrate that theory-driven, context-specific formative research can influence behavior change interventions to reduce water arsenic exposure. The SHWS can serve as a model for the design of theory-driven intervention approaches that engage communities to reduce arsenic exposure. TRIAL REGISTRATION The SHWS is registered with ClinicalTrials.gov (Identifier: NCT03725592).
Collapse
Affiliation(s)
- Kelly Endres
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Tracy Zacher
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, USA
| | | | - Lisa Bear Robe
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, USA
| | - Martha Powers
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joseph Yracheta
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, USA
| | - David Harvey
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Indian Health Service, Rockville, MD, USA
| | - Lyle G Best
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, USA
| | | | | | - Steve Ristau
- Mid Continent Testing Labs, Inc., Rapid City, SD, USA
| | - Dean Aurand
- Mid Continent Testing Labs, Inc., Rapid City, SD, USA
| | - Leslie Skinner
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, USA
| | - Jamie Perin
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christa Cuny
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, USA
| | - Marie Gross
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, USA
| | - Elizabeth D Thomas
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ana Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kellogg Schwab
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lawrence H Moulton
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Marcia O'Leary
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, USA
| | - Ana Navas-Acien
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Christine Marie George
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
26
|
Song M, Huang X, Wei X, Tang X, Rao Z, Hu Z, Yang H. Spatial patterns and the associated factors for breast cancer hospitalization in the rural population of Fujian Province, China. BMC Womens Health 2023; 23:247. [PMID: 37161393 PMCID: PMC10170828 DOI: 10.1186/s12905-023-02336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/07/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Despite the known increasing incidence of breast cancer in China, evidence on the spatial pattern of hospitalization for breast cancer is scarce. This study aimed to describe the disparity of breast cancer hospitalization in the rural population of Southeast China and to explore the impacts of socioeconomic factors and heavy metal pollution in soil. METHODS This study was conducted using the New Rural Cooperative Medical Scheme (NRCMS) claims data covering 20.9 million rural residents from 73 counties in Southeast China during 2015-2016. The associations between breast cancer hospitalization and socioeconomic factors and soil heavy metal pollutants were evaluated with quasi-Poisson regression models and geographically weighted Poisson regressions (GWPR). RESULTS The annual hospitalization rate for breast cancer was 101.40/100,000 in the studied area and the rate varied across different counties. Overall, hospitalization for breast cancer was associated with road density (β = 0.43, P = 0.02), urbanization (β = 0.02, P = 0.002) and soil cadmium (Cd) pollution (β = 0.01, P = 0.02). In the GWPR model, a stronger spatial association of Cd, road density and breast cancer hospitalization was found in the northeast regions of the study area while breast cancer hospitalization was mainly related to urbanization in the western regions. CONCLUSIONS Soil Cd pollution, road density, and urbanization were associated with breast cancer hospitalization in different regions. Findings in this study might provide valuable information for healthcare policies and intervention strategies for breast cancer.
Collapse
Affiliation(s)
- Mengjie Song
- Department of Epidemiology and Health Statistics, School of Public Health & Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, China
| | - Xiaoxi Huang
- Department of Breast, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujjan Medical University, Fuzhou, 350001, China
| | - Xueqiong Wei
- School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xuwei Tang
- Department of Epidemiology and Health Statistics, School of Public Health & Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, China
| | - Zhixiang Rao
- Department of Epidemiology and Health Statistics, School of Public Health & Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, China
| | - Zhijian Hu
- Department of Epidemiology and Health Statistics, School of Public Health & Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, China
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, University Town, Xue Yuan Road 1, Fuzhou, 350122, China
| | - Haomin Yang
- Department of Epidemiology and Health Statistics, School of Public Health & Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, China.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, 17177, Sweden.
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, University Town, Xue Yuan Road 1, Fuzhou, 350122, China.
| |
Collapse
|
27
|
Boffetta P, Collatuzzo G, Cohen SM. Re: Yang et al., Arsenic exposures and prostate cancer risk: A multilevel meta-analysis [J. Trace Elem. Med. Biol. (2022) 72 126992]. J Trace Elem Med Biol 2023; 78:127191. [PMID: 37163820 DOI: 10.1016/j.jtemb.2023.127191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Affiliation(s)
- Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giulia Collatuzzo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Samuel M Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
28
|
Li W, Jiang X, Qian H, Li X, Su J, Zhang G, Li X. Associations of arsenic exposure with liver injury in US adults: NHANES 2003-2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48260-48269. [PMID: 36754906 DOI: 10.1007/s11356-023-25540-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Arsenic is a natural element with complex toxicity. Long-term exposure to arsenic can cause a variety of health damage. In recent years, there are some studies on arsenic exposure and liver injury. But few of them tried to measure the quantitative relationship between arsenic exposure and indicators of liver injury in adult. Therefore, this study aimed to elucidate the relationship between them. This cross-sectional study utilized data from the National Health and Nutrition Examination Survey (NHANES) in 2003-2018. Arsenic exposure was assessed using total urinary arsenic and dimethylarsenate acid (DMA). We selected alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), total protein (TP), ALT/AST, total bilirubin (TBIL), and albumin (ALB) as markers of liver injury. Multiple linear regression was used to explore the relationship between urinary arsenic concentrations and these markers of liver function injury. In addition, six covariables (age, sex, smoker, alcohol user, BMI, diabetes) were further analyzed in subgroups. A total of 13,420 adults were included in the analysis. The multivariate linear regression analyses showed that urinary DMA was positively correlated with ALT (β 0.135, 95%CI 0.090, 0.180, p < 0.001), AST (β 0.053, 95%CI 0.014, 0.092, p < 0.01), ALT/AST (β 0.052, 95%CI 0.030, 0.074, p < 0.001), TBIL (β 0.061, 95%CI 0.034, 0.089, p < 0.001), and GGT (β 0.178, 95%CI 0.110, 0.246, p < 0.001). Similar results were observed for total urinary arsenic, suggesting a positive association with AST (β 0.048, 95%CI 0.016, 0.081, p < 0.01), ALT (β 0.090, 95%CI 0.049, 0.132, p < 0.001), and TBIL (β 0.062, 95%CI 0.037, 0.088, p < 0.001). In subgroup analysis, sex and smoker showed significant differences between subgroups. Our results demonstrate a positive association between urinary arsenic exposure and liver injury in adults. Sex and smokers may be related to arsenic pathogenicity.
Collapse
Affiliation(s)
- Wenjie Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xingzhou Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Haisheng Qian
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xinyan Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jing Su
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Guoxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
29
|
Fu Y, Bi Z, Ji H, Elangbam M, Zhang Q, Qiu Y, Zhang W, Thakur C, Chen F. Disruption of the tumor suppressor-like activity of aryl hydrocarbon receptor by arsenic in epithelial cells and human lung cancer. Int J Biol Sci 2023; 19:1983-2001. [PMID: 37151890 PMCID: PMC10158013 DOI: 10.7150/ijbs.81423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/25/2023] [Indexed: 05/09/2023] Open
Abstract
As the most classic and extensively studied transcription factor in response to environmental toxic chemicals, the human aryl hydrocarbon receptor (AHR) has been implicated in mediating some oncogenic responses also. Limited information is available, however, on whether arsenic, a widely presented environmental carcinogen, can regulate AHR to exert its carcinogenic activity. Through chromatin immunoprecipitation and sequencing (ChIP-seq), CRISPR-Cas9 gene editing, RNA-seq, and immunohistochemistry (IHC), in this report we provided evidence showing that arsenic enforces TGFβ and other oncogenic signaling pathways in bronchial epithelial cells through disrupting the tumor suppressor-like activity of AHR. AHR is normally enriched on a number of oncogenic genes in addition to the known phase I/II enzymes, such as genes in TGFβ and Nrf2 signaling pathways and several known oncogenes. Arsenic treatment substantially reduced the binding of AHR on these genes followed by an increased expression of these genes. CRISPR-Cas9-based knockout of AHR followed by RNA-seq further demonstrated increased expression of the TGFβ signaling and some oncogenic signaling pathway genes in the AHR knockout cells. IHC studies on human tissue samples revealed that normal human lung tissues expressed high level of AHR. In contrast, the AHR expression was diminished in the lung cancer tissues. Accordingly, the data from this study suggest that AHR has tumor suppressor-like activity for human lung cancer, and one of the carcinogenic mechanisms of arsenic is likely mediated by the inhibition of arsenic on the tumor suppressor-like activity of AHR.
Collapse
Affiliation(s)
- Yao Fu
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Zhuoyue Bi
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Haoyan Ji
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Millie Elangbam
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Qian Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Yiran Qiu
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Wenxuan Zhang
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Chitra Thakur
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Fei Chen
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| |
Collapse
|
30
|
Zacher T, Endres K, Richards F, Robe LB, Powers M, Yracheta J, Harvey D, Best LG, Red Cloud R, Black Bear A, Ristau S, Aurand D, Skinner L, Cuny C, Gross M, Thomas E, Rule A, Schwab KJ, O'Leary M, Moulton LH, Navas-Acien A, George CM. Evaluation of a water arsenic filter in a participatory intervention to reduce arsenic exposure in American Indian communities: The Strong Heart Water Study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160217. [PMID: 36410482 PMCID: PMC10373100 DOI: 10.1016/j.scitotenv.2022.160217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/10/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Many rural populations, including American Indian communities, that use private wells from groundwater for their source of drinking and cooking water are disproportionately exposed to elevated levels of arsenic. However, programs aimed at reducing arsenic in American Indian communities are limited. The Strong Heart Water Study (SHWS) is a randomized controlled trial aimed at reducing arsenic exposure among private well users in American Indian Northern Great Plains communities. The community-led SHWS program installed point-of-use (POU) arsenic filters in the kitchen sink of households, and health promoters delivered arsenic health communication programs. In this study we evaluated the efficacy of these POU arsenic filters in removing arsenic during the two-year installation period. Participants were randomized into two arms. In the first arm households received a POU arsenic filter, and 3 calls promoting filter use (SHWS mobile health (mHealth) & filter arm). The second arm received the same filter and phone calls, and 3 in-person home visits and 3 Facebook messages (SHWS intensive arm) for program delivery. Temporal variability in water arsenic concentrations from the main kitchen faucet was also evaluated. A total of 283 water samples were collected from 50 households with private wells from groundwater (139 filter and 144 kitchen faucet samples). Ninety-three percent of households followed after baseline had filter faucet water arsenic concentrations below the arsenic maximum contaminant level of 10 μg/L at the final visit during our 2 year study period with no difference between study arms (98 % in the intensive arm vs. 94 % in the mHealth & filter arm). No significant temporal variation in kitchen arsenic concentration was observed over the study period (intraclass correlation coefficient = 0.99). This study demonstrates that POU arsenic filters installed for the community participatory SHWS program were effective in reducing water arsenic concentration in study households in both arms, even with delivery of the POU arsenic filter and mHealth program only. Furthermore, we observed limited temporal variability of water arsenic concentrations from kitchen faucet samples collected over time from private wells in our study setting.
Collapse
Affiliation(s)
- Tracy Zacher
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - Kelly Endres
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Lisa Bear Robe
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - Martha Powers
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joseph Yracheta
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - David Harvey
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Indian Health Services, Rockville, MD, USA
| | - Lyle G Best
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - Reno Red Cloud
- Environmental Resource Department, Oglala Sioux Tribe, USA
| | | | - Steve Ristau
- Mid Continent Testing Labs, Inc, Rapid City, SD, USA
| | - Dean Aurand
- Mid Continent Testing Labs, Inc, Rapid City, SD, USA
| | - Leslie Skinner
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - Christa Cuny
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - Marie Gross
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - Elizabeth Thomas
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ana Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kellogg J Schwab
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Marcia O'Leary
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - Lawrence H Moulton
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ana Navas-Acien
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, NY, New York, USA
| | - Christine Marie George
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
31
|
Nuvolone D, Stoppa G, Petri D, Voller F. Long-term exposure to low-level arsenic in drinking water is associated with cause-specific mortality and hospitalization in the Mt. Amiata area (Tuscany, Italy). BMC Public Health 2023; 23:71. [PMID: 36627610 PMCID: PMC9832768 DOI: 10.1186/s12889-022-14818-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Arsenic in drinking water is a global public health concern. This study aims to investigate the association between chronic low-level exposure to arsenic in drinking water and health outcomes in the volcanic area of Mt. Amiata in Italy, using a residential cohort study design. METHODS Chronic exposure to arsenic in drinking water was evaluated using monitoring data collected by the water supplier. A time-weighted average arsenic exposure was estimated for the period 2005-2010. The population-based cohort included people living in five municipalities in the Mt. Amiata area between 01/01/1998 and 31/12/2019. Residence addresses were georeferenced and each subject was matched with arsenic exposure and socio-economic status. Mortality and hospital discharge data were selected from administrative health databases. Cox proportional hazard models were used to test the associations between arsenic exposure and outcomes, with age as the temporal axis and adjusting for gender, socio-economic status and calendar period. RESULTS The residential cohort was composed of 30,910 subjects for a total of 407,213 person-years. Analyses reported risk increases associated with exposure to arsenic concentrations in drinking water > 10 µg/l for non-accidental mortality (HR = 1.07 95%CI:1.01-1.13) and malignant neoplasms in women (HR = 1.14 95%CI:0.97-1.35). Long-term exposure to arsenic concentrations > 10 µg/l resulted positively associated with several hospitalization outcomes: non-accidental causes (HR = 1.06 95%CI:1.03-1.09), malignant neoplasms (HR = 1.10 95%CI:1.02-1.19), lung cancer (HR = 1.85 95%CI:1.14-3.02) and breast cancer (HR = 1.23 95%CI:0.99-1.51), endocrine disorders (HR = 1.13 95%CI:1.02-1.26), cardiovascular (HR = 1.12 95%CI:1.06-1.18) and respiratory diseases (HR = 1.10 95%CI:1.03-1.18). Some risk excesses were also observed for an exposure to arsenic levels below the regulatory standard, with evidence of exposure-related trends. CONCLUSIONS Our population-based cohort study in the volcanic area of Mt. Amiata showed that chronic exposure to arsenic concentrations in drinking water above the current regulatory limit was associated with a plurality of outcomes, in terms of both mortality and hospitalization. Moreover, some signs of associations emerge even at very low levels of exposure, below the current regulatory limit, highlighting the need to monitor arsenic concentrations continuously and implement policies to reduce concentrations in the environment as far as possible.
Collapse
Affiliation(s)
- Daniela Nuvolone
- Unit of Epidemiology, Regional Health Agency of Tuscany, Via Pietro Dazzi 1, 50124, Florence, Italy.
| | - Giorgia Stoppa
- Unit of Epidemiology, Regional Health Agency of Tuscany, Via Pietro Dazzi 1, 50124, Florence, Italy
- Unit of Biostatistics, Epidemiology and Public Health, DCTVPH, University of Padua, 35131, Padua, Italy
| | - Davide Petri
- Unit of Epidemiology, Regional Health Agency of Tuscany, Via Pietro Dazzi 1, 50124, Florence, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Fabio Voller
- Unit of Epidemiology, Regional Health Agency of Tuscany, Via Pietro Dazzi 1, 50124, Florence, Italy
| |
Collapse
|
32
|
Aslan A, Karapinar HS, Kilicel F, Boyacıoğlu T, Pekin C, Toprak ŞS, Cihan M, Yilmaz BS. Trace element levels in serum and gastric mucosa in patients with Helicobacter pylori positive and negative gastritis. J Trace Elem Med Biol 2023; 75:127108. [PMID: 36435152 DOI: 10.1016/j.jtemb.2022.127108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/26/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Most trace elements are inhibited by Helicobacter pylori-infection, and variations in specific element levels are linked to the development of stomach cancer. This is the first study to show the relationship between serum and tissue concentrations of twenty-five trace elements and H. pylori infection status. This study purposed to define serum and tissue trace element levels of 25 healthy individuals with Helicobacter pylori-positive gastritis and Helicobacter pylori-negative gastritis and to reveal their relationship with the disease. METHODS Study groups consisted of sixty-two patients with Helicobacter pylori-positive, thirty-seven patients with Helicobacter pylori-negative, and thirty healthy individuals. Serum and tissue concentrations of twenty-five elements (aluminum, boron, arsenic, barium, calcium, beryllium, copper, cadmium, iron, chromium, mercury, lithium, potassium, magnesium, sodium, manganese, nickel, phosphorus, lead, scandium, strontium, selenium, tellurium, titanium, zinc) were defined by inductively coupled plasma optical emission spectrometry. RESULTS Except for copper, lithium, and strontium elements in serum samples, other trace elements differed significantly between the groups (p < 0.05). The serum chromium (p = 0.002), mercury (p = 0.001), boron (p < 0.001), and cadmium (p < 0.001) levels of H. pylori-negative gastritis and H. pylori-positive gastritis participants were significantly different, and their serum concentrations were less than 0.5 µ/l. Boron, barium, beryllium, chromium, lithium, phosphorus and strontium elements in tissue samples did not differ significantly between the groups (p > 0.05). Manganese, nickel, tellurium and titanium elements were not detected in tissue and serum samples. The mean concentrations of calcium, beryllium, chromium, iron, potassium, lithium, magnesium, scandium, and selenium were higher in the tissues of patients with H. pylori gastritis compared to healthy control tissues. Also, cadmium could not be detected in tissue samples. There was a significant difference between H. pylori-infected tissue and serum chromium levels (p = 0.001), with lower levels detected in tissue samples. CONCLUSION This is the first study that we are knowledgeable of that reports the concentrations of twenty five elements in both serum and tissue samples, as well as the relationship between trace elements and Helicobacter pylori-infection status. Dietary adjustment is indicated as an adjunct to medical therapy to stabilize trace elements because Helicobacter pylori bacteria cause inflammation and impair element absorption in gastritis patients. We also think that this study will shed light on studies on the relationship between Helicobacter pylori-trace elements and serum-tissue/healthy serum-tissue trace element levels of patients with Helicobacter pylori gastritis.
Collapse
Affiliation(s)
- Ahmet Aslan
- Department of General Surgery, Karamanoğlu Mehmetbey University, 70100 Karaman, Turkey
| | - Hacer Sibel Karapinar
- Scientific and Technological Research & Application Center, Karamanoğlu Mehmetbey University, 70100 Karaman, Turkey.
| | - Fevzi Kilicel
- Department of Chemistry, Karamanoğlu Mehmetbey University, 70100 Karaman, Turkey
| | - Tülin Boyacıoğlu
- Institute of Science, Department of Chemistry, Karamanoğlu Mehmetbey University, 70100 Karaman, Turkey
| | - Ceyhun Pekin
- Department of General Surgery, Karamanoğlu Mehmetbey University, 70100 Karaman, Turkey
| | - Şükrü Salih Toprak
- Department of General Surgery, Karamanoğlu Mehmetbey University, 70100 Karaman, Turkey
| | - Mehmethan Cihan
- Department of General Surgery, Karaman Training and Research Hospital, 70100 Karaman, Turkey
| | - Burcu Sanal Yilmaz
- Department of Medical Pathology, Karamanoğlu Mehmetbey University, 70100 Karaman, Turkey
| |
Collapse
|
33
|
Bradley PM, Romanok KM, Smalling KL, Focazio MJ, Evans N, Fitzpatrick SC, Givens CE, Gordon SE, Gray JL, Green EM, Griffin DW, Hladik ML, Kanagy LK, Lisle JT, Loftin KA, Blaine McCleskey R, Medlock-Kakaley EK, Navas-Acien A, Roth DA, South P, Weis CP. Bottled water contaminant exposures and potential human effects. ENVIRONMENT INTERNATIONAL 2023; 171:107701. [PMID: 36542998 PMCID: PMC10123854 DOI: 10.1016/j.envint.2022.107701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bottled water (BW) consumption in the United States and globally has increased amidst heightened concern about environmental contaminant exposures and health risks in drinking water supplies, despite a paucity of directly comparable, environmentally-relevant contaminant exposure data for BW. This study provides insight into exposures and cumulative risks to human health from inorganic/organic/microbial contaminants in BW. METHODS BW from 30 total domestic US (23) and imported (7) sources, including purified tapwater (7) and spring water (23), were analyzed for 3 field parameters, 53 inorganics, 465 organics, 14 microbial metrics, and in vitro estrogen receptor (ER) bioactivity. Health-benchmark-weighted cumulative hazard indices and ratios of organic-contaminant in vitro exposure-activity cutoffs were assessed for detected regulated and unregulated inorganic and organic contaminants. RESULTS 48 inorganics and 45 organics were detected in sampled BW. No enforceable chemical quality standards were exceeded, but several inorganic and organic contaminants with maximum contaminant level goal(s) (MCLG) of zero (no known safe level of exposure to vulnerable sub-populations) were detected. Among these, arsenic, lead, and uranium were detected in 67 %, 17 %, and 57 % of BW, respectively, almost exclusively in spring-sourced samples not treated by advanced filtration. Organic MCLG exceedances included frequent detections of disinfection byproducts (DBP) in tapwater-sourced BW and sporadic detections of DBP and volatile organic chemicals in BW sourced from tapwater and springs. Precautionary health-based screening levels were exceeded frequently and attributed primarily to DBP in tapwater-sourced BW and co-occurring inorganic and organic contaminants in spring-sourced BW. CONCLUSION The results indicate that simultaneous exposures to multiple drinking-water contaminants of potential human-health concern are common in BW. Improved understandings of human exposures based on more environmentally realistic and directly comparable point-of-use exposure characterizations, like this BW study, are essential to public health because drinking water is a biological necessity and, consequently, a high-vulnerability vector for human contaminant exposures.
Collapse
Affiliation(s)
| | | | | | | | - Nicola Evans
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | | | - Emily M Green
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | - John T Lisle
- U.S. Geological Survey, Saint Petersburg, Florida, USA
| | | | | | | | | | | | - Paul South
- U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Christopher P Weis
- National Institute of Environmental Health Sciences/NIH, Bethesda, MD, USA
| |
Collapse
|
34
|
García Salcedo JJ, Roh T, Nava Rivera LE, Betancourt Martínez ND, Carranza Rosales P, San Miguel Salazar MF, Rivera Guillén MA, Serrano Gallardo LB, Niño Castañeda MS, Guzmán Delgado NE, Millán Orozco J, Ortega Morales N, Morán Martínez J. Comparative Biomonitoring of Arsenic Exposure in Mothers and Their Neonates in Comarca Lagunera, Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16232. [PMID: 36498305 PMCID: PMC9739351 DOI: 10.3390/ijerph192316232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Multiple comorbidities related to arsenic exposure through drinking water continue to be public problems worldwide, principally in chronically exposed populations, such as those in the Comarca Lagunera (CL), Mexico. In addition, this relationship could be exacerbated by an early life exposure through the placenta and later through breast milk. This study conducted a comparative analysis of arsenic levels in multiple biological samples from pregnant women and their neonates in the CL and the comparison region, Saltillo. Total arsenic levels in placenta, breast milk, blood, and urine were measured in pregnant women and their neonates from rural areas of seven municipalities of the CL using atomic absorption spectrophotometry with hydride generation methodology. The average concentrations of tAs in drinking water were 47.7 µg/L and 0.05 µg/L in the exposed and non-exposed areas, respectively. Mean levels of tAs were 7.80 µg/kg, 77.04 µg/g-Cr, and 4.30 µg/L in placenta, blood, urine, and breast milk, respectively, in mothers, and 107.92 µg/g-Cr in neonates in the exposed group, which were significantly higher than those in the non-exposed area. High levels of urinary arsenic in neonates were maintained 4 days after birth, demonstrating an early arsenic exposure route through the placenta and breast milk. In addition, our study suggested that breastfeeding may reduce arsenic exposure in infants in arsenic-contaminated areas. Further studies are necessary to follow up on comorbidities later in life in neonates and to provide interventions in this region.
Collapse
Affiliation(s)
- José Javier García Salcedo
- Departamento de Bioquímica y Farmacología, Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad Autónoma de Coahuila Torreón, Torreón 27000, Mexico
| | - Taehyun Roh
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Lydia Enith Nava Rivera
- Departamento de Biología Celular y Ultraestructura, Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad Autónoma de Coahuila Torreón, Torreón 27000, Mexico
| | - Nadia Denys Betancourt Martínez
- Departamento de Biología Celular y Ultraestructura, Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad Autónoma de Coahuila Torreón, Torreón 27000, Mexico
| | - Pilar Carranza Rosales
- Centro de Investigaciones Biomédicas del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64000, Mexico
| | - María Francisco San Miguel Salazar
- Departamento de Bioquímica y Farmacología, Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad Autónoma de Coahuila Torreón, Torreón 27000, Mexico
| | - Mario Alberto Rivera Guillén
- Departamento de Bioquímica y Farmacología, Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad Autónoma de Coahuila Torreón, Torreón 27000, Mexico
| | - Luis Benjamín Serrano Gallardo
- Departamento de Bioquímica y Farmacología, Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad Autónoma de Coahuila Torreón, Torreón 27000, Mexico
| | - María Soñadora Niño Castañeda
- Departamento de Biología Celular y Ultraestructura, Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad Autónoma de Coahuila Torreón, Torreón 27000, Mexico
| | - Nacny Elena Guzmán Delgado
- División de Investigaciones en Salud, Unidad Médica de Alta Especialidad, Hospital de Cardiología #34, Instituto Mexicano del Seguro Social, Monterrey 64000, Mexico
| | - Jair Millán Orozco
- Unidad Laguna, Universidad Autónoma Agraria Antonio Narro, Raúl López Sánchez, Torreon 27000, Mexico
| | - Natalia Ortega Morales
- División de Investigaciones en Salud, Unidad Médica de Alta Especialidad, Hospital de Cardiología #34, Instituto Mexicano del Seguro Social, Monterrey 64000, Mexico
| | - Javier Morán Martínez
- Departamento de Biología Celular y Ultraestructura, Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad Autónoma de Coahuila Torreón, Torreón 27000, Mexico
| |
Collapse
|
35
|
Bradley PM, Romanok KM, Smalling KL, Focazio MJ, Charboneau R, George CM, Navas-Acien A, O’Leary M, Red Cloud R, Zacher T, Breitmeyer SE, Cardon MC, Cuny CK, Ducheneaux G, Enright K, Evans N, Gray JL, Harvey DE, Hladik ML, Kanagy LK, Loftin KA, McCleskey RB, Medlock-Kakaley EK, Meppelink SM, Valder JF, Weis CP. Tapwater Exposures, Effects Potential, and Residential Risk Management in Northern Plains Nations. ACS ES&T WATER 2022; 2:1772-1788. [PMID: 36277121 PMCID: PMC9578051 DOI: 10.1021/acsestwater.2c00293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 09/12/2022] [Indexed: 05/10/2023]
Abstract
In the United States (US), private-supply tapwater (TW) is rarely monitored. This data gap undermines individual/community risk-management decision-making, leading to an increased probability of unrecognized contaminant exposures in rural and remote locations that rely on private wells. We assessed point-of-use (POU) TW in three northern plains Tribal Nations, where ongoing TW arsenic (As) interventions include expansion of small community water systems and POU adsorptive-media treatment for Strong Heart Water Study participants. Samples from 34 private-well and 22 public-supply sites were analyzed for 476 organics, 34 inorganics, and 3 in vitro bioactivities. 63 organics and 30 inorganics were detected. Arsenic, uranium (U), and lead (Pb) were detected in 54%, 43%, and 20% of samples, respectively. Concentrations equivalent to public-supply maximum contaminant level(s) (MCL) were exceeded only in untreated private-well samples (As 47%, U 3%). Precautionary health-based screening levels were exceeded frequently, due to inorganics in private supplies and chlorine-based disinfection byproducts in public supplies. The results indicate that simultaneous exposures to co-occurring TW contaminants are common, warranting consideration of expanded source, point-of-entry, or POU treatment(s). This study illustrates the importance of increased monitoring of private-well TW, employing a broad, environmentally informative analytical scope, to reduce the risks of unrecognized contaminant exposures.
Collapse
Affiliation(s)
- Paul M. Bradley
- U.S.
Geological Survey, Columbia, South Carolina 29210, United States
| | | | - Kelly L. Smalling
- U.S.
Geological Survey, Lawrenceville, New Jersey 08648, United States
| | | | - Robert Charboneau
- Spirit
Lake Tribe Office of Environmental Health, Fort Totten, North Dakota 58335, United States
| | - Christine Marie George
- Johns
Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Ana Navas-Acien
- Columbia
University Mailman School of Public Health, New York, New York 10032, United States
| | - Marcia O’Leary
- Missouri
Breaks Industries Research Inc., Eagle Butte, South Dakota 57625, United States
| | - Reno Red Cloud
- Oglala
Sioux Tribe Natural Resources Regulatory Agency, Pine Ridge, South Dakota 57770, United States
| | - Tracy Zacher
- Missouri
Breaks Industries Research Inc., Eagle Butte, South Dakota 57625, United States
| | | | - Mary C. Cardon
- U.S.
Environmental Protection Agency, Durham, North Carolina 27709, United States
| | - Christa K. Cuny
- Missouri
Breaks Industries Research Inc., Eagle Butte, South Dakota 57625, United States
| | - Guthrie Ducheneaux
- Missouri
Breaks Industries Research Inc., Eagle Butte, South Dakota 57625, United States
| | - Kendra Enright
- Missouri
Breaks Industries Research Inc., Eagle Butte, South Dakota 57625, United States
| | - Nicola Evans
- U.S.
Environmental Protection Agency, Durham, North Carolina 27709, United States
| | - James L. Gray
- U.S.
Geological Survey, Lakewood, Colorado 80228-3742, United States
| | - David E. Harvey
- Indian Health Service/HHS, Rockville, Maryland 20857, United States
| | | | - Leslie K. Kanagy
- U.S.
Geological Survey, Lakewood, Colorado 80228-3742, United States
| | - Keith A. Loftin
- U.S.
Geological Survey, Lawrence, Kansas 66049, United States
| | | | | | | | - Joshua F. Valder
- U.S. Geological
Survey, Rapid City, South Dakota 57702, United States
| | - Christopher P. Weis
- National Institute of Environmental Health
Sciences/NIH, Bethesda, Maryland 20814, United
States
| |
Collapse
|
36
|
Treas J, Roy P, Singh KP. Chronic coexposure to arsenic and estrogen potentiates genotoxic estrogen metabolic pathway and hypermethylation of DNA glycosylase MBD4 in human prostate epithelial cells. Prostate 2022; 82:1273-1283. [PMID: 35747940 DOI: 10.1002/pros.24401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/14/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Previously we reported that arsenic and estrogen cause synergistic effects in the neoplastic transformation of human prostate epithelial cells. In addition to receptor-mediated pathways, DNA-reactive estrogen metabolites have also been shown to play a critical role in mutagenicity and carcinogenicity. Both estrogen and arsenic are known prostate carcinogens, however, the effect of coexposure to these two chemicals on genes involved in estrogen metabolism is not known. Therefore, the objective of this study was to evaluate the role of arsenic and estrogen coexposure on the expression of estrogen receptors and estrogen metabolism-associated genes. Earlier, we also reported the synergistic effect of arsenic and estrogen on decreased expression of MBD4 genes that play an important role in DNA repair through its DNA glycosylase activity. To further understand the mechanism, the promoter methylation of this gene was also analyzed. METHODS Total RNA and protein were isolated from RWPE-1 human prostate epithelial cells that were coexposed to arsenic and estrogen for a chronic duration (6 months). The expression of estrogen receptors, estrogen metabolism associated phase I genes (CYP 1A1, 1A2, 3A4, and 1B1) and phase II gene catechol-O-methyltransferase (COMT), as well as antioxidant MnSOD, were analyzed either at the RNA level by quantitative reverse transcriptase-polymerase chain reaction or at the protein level by western blot. Promoter methylation of MBD4 was analyzed by pyrosequencing. RESULTS Expression of MnSOD and phase I genes that convert E2 into genotoxic metabolites 2-OH-E2 and 4-OH-E2 were significantly increased, whereas the expression of phase II gene COMT that detoxifies estrogen metabolites was significantly decreased in arsenic and estrogen coexposed cells. MBD4 promoter was hypermethylated in arsenic and estrogen coexposed cells. Coexposure to arsenic and estrogen has synergistic effects on the expression of these genes as well as in MBD4 promoter hypermethylation. CONCLUSIONS These novel findings suggest that coexposure to arsenic and estrogen acts synergistically in the activation of not only the estrogen receptors but also the genes associated with genotoxic estrogen metabolism and epigenetic inactivation of DNA glycosylase MBD4. Together, these genetic and epigenetic aberrations provide the molecular basis for the potentiation of carcinogenicity of arsenic and estrogen coexposure in prostate epithelial cells.
Collapse
Affiliation(s)
- Justin Treas
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Priti Roy
- Department of Internal Medicine, University of California San Francisco, San Francisco, California, USA
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
37
|
Guo X, Su W, Li N, Song Q, Wang H, Liang Q, Li Y, Lowe S, Bentley R, Zhou Z, Song EJ, Cheng C, Zhou Q, Sun C. Association of urinary or blood heavy metals and mortality from all causes, cardiovascular disease, and cancer in the general population: a systematic review and meta-analysis of cohort studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67483-67503. [PMID: 35917074 DOI: 10.1007/s11356-022-22353-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Amounting epidemiological evidence has shown detrimental effects of heavy metals on a wide range of diseases. However, the effect of heavy metal exposure on mortality in the general population remains unclear. The primary objective of this study was to clarify the associations between heavy metals and mortality from all causes, cardiovascular disease (CVD), and cancer based on prospective studies. We comprehensively searched Pubmed, Embase, and Web of Science electronic databases to identify studies published from their inception until 1 March 2022. Investigators identified inclusion criteria, extracted study characteristics, and assessed the methodological quality of included studies according to standardized guidelines. Meta-analysis was conducted if the effect estimates of the same outcome were reported in at least three studies. Finally, 42 original studies were identified. The results of meta-analysis showed that cadmium and lead exposure was significantly associated with mortality from all causes, CVD, and cancer in the general population. Moderate evidence suggested there was a link between arsenic exposure and mortality. The adverse effects of mercury and other heavy metals on mortality were inconclusive. Epidemiological evidence for the joint effect of heavy metal exposure on mortality was still indeterminate. In summary, our study provided compelling evidence that exposure to cadmium, lead, and arsenic were associated with mortality from all causes, CVD, and cancer, while the evidence on other heavy metals, for example mercury, was insignificant or indeterminate. Nevertheless, further prospective studies are warranted to explore the joint effects of multiple metal exposure on mortality.
Collapse
Affiliation(s)
- Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Wanying Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Qiuxia Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Hao Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Qiwei Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Yaru Li
- Internal Medicine, Swedish Hospital, 5140 N California Ave, Chicago, IL, 60625, USA
- College of Osteopathic Medicine, Des Moines University, 3200 Grand Ave, Des Moines, IA, 50312, USA
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Rachel Bentley
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, TAS, 7000, Australia
| | - Evelyn J Song
- Division of Hospital Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Ce Cheng
- The University of Arizona College of Medicine, 1501 N Campbell Ave, Tucson, AZ, 85724, USA
- Banner-University Medical Center South, 2800 E Ajo Way, Tucson, AZ, 85713, USA
| | - Qin Zhou
- Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA.
| |
Collapse
|
38
|
Yang Y, McDonald AC, Wang X, Pan Y, Wang M. Arsenic exposures and prostate cancer risk: A multilevel meta-analysis. J Trace Elem Med Biol 2022; 72:126992. [PMID: 35550984 DOI: 10.1016/j.jtemb.2022.126992] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/14/2022] [Accepted: 05/03/2022] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Previous studies found that arsenic exposures have been linked to prostate cancer risk. However, this finding has been inconsistent. The purpose of this paper was to estimate the effects of arsenic exposures on prostate cancer risk. METHOD We conducted a meta-analysis of epidemiologic studies of arsenic exposures and prostate cancer risk. We searched for both arsenic exposure and prostate cancer studies published until January 2021 from the following electronic databases: PubMed, Scopus, and Web of Science. Multilevel meta-analysis via random-effects modeling was used to examine the association between arsenic exposures and prostate cancer risk. RESULTS There were 12 studies included with an effect size of 23. Arsenic exposure was determined from water and soil (n = 8), urinary measurements (n = 2), or self-reported questionnaire (n = 2). Overall, arsenic exposure was found to be statistically significantly associated with prostate cancer risk (Relative risk [RR] = 1.18, 95% confidence interval [CI]: 1.06 - 1.30). In the sub-analysis, arsenic exposure from water and soil was found to be statistically significantly associated with prostate cancer risk (RR= 1.22, 95% CI: 1.05 - 1.41). CONCLUSION Data suggest that arsenic exposures may play a role in increasing prostate cancer risk. Further prospective studies are warranted to verify the association between arsenic exposure and prostate cancer risk.
Collapse
Affiliation(s)
- Yanxu Yang
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Alicia C McDonald
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States; Penn State Cancer Institute, Hershey, PA, United States
| | - Xingyan Wang
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Yunqi Pan
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Ming Wang
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States; Penn State Cancer Institute, Hershey, PA, United States.
| |
Collapse
|
39
|
Abstract
Arsenic intoxication represents a worldwide health problem and occurs mainly through drinking water. Arsenic, a metalloid and naturally occurring element, is one of the most abundant elements in the earth’s crust, whose toxicity depends on the reduction state. The trivalent arsenicals are more toxic than the pentavalent arsenicals. In the trivalent state, inorganic and organic arsenic may react with thiol groups in proteins inhibiting their activity, whereas inorganic arsenic in the pentavalent state may replace phosphate ions in several reactions. Arsenic induces various epigenetic changes in mammalian cells, both in vivo and in vitro, often leading to the development of various types of cancers, including skin, lung, liver, urinary tract, prostate, and hematopoietic cancers. Potential mechanisms of arsenic toxicity in cancer include genotoxicity, altered DNA methylation and cell proliferation, co-carcinogenesis, tumor promotion, and oxidative stress. On the other hand, the FDA-certified drug arsenic trioxide provides solutions for various diseases, including several types of cancers. Detoxification from arsenic includes chelation therapy. Recently, investigations of the capability of some plants, such as Eucalyptus camadulensis L., Terminalia arjuna L. and Salix tetrasperma L., to remove arsenic from polluted soil and water have been studied. Moreover, nanophytoremediation is a green technology including the nanoscale materials used for absorption and degradation of organic and inorganic pollutants, such as arsenic compounds. This brief review represents an overview of arsenic uses, toxicity, epigenetics, and detoxification therapies.
Collapse
|
40
|
Nádudvari Á, Cabała J, Marynowski L, Jabłońska M, Dziurowicz M, Malczewski D, Kozielska B, Siupka P, Piotrowska-Seget Z, Simoneit BRT, Szczyrba M. High concentrations of HgS, MeHg and toxic gas emissions in thermally affected waste dumps from hard coal mining in Poland. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128542. [PMID: 35248960 DOI: 10.1016/j.jhazmat.2022.128542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/13/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
This study aims to provide numerous environmental research approaches to understand the formation of mineral and organic mercury compounds in self-heating coal waste dumps of the Upper Silesian Coal Basin (USCB). The results are combined with environmental and health risk assessments. The mineralogy comprised accessory minerals in the fine fraction of thermally affected waste, i.e., Hg sulfides, most likely cinnabar or metacinnabar. Moreover, other metals, e.g., Pb, Zn and Cu, were found as sulfide forms. Apart from Hg, the ICP-ES/MS data confirmed the high content of Mn, Zn, Pb, Hg, Cr and Ba in these wastes. The high concentration of available Hg resulted in elevated MeHg concentrations in the dumps. There were no correlations or trends between MeHg concentrations and elemental Hg, TS, TOC, and pH. Furthermore, we did not detect microbial genes responsible for Hg methylation. The organic compounds identified in waste and emitted gases, such as organic acids, or free methyl radicals, common in such burn environments, could be responsible for the formation of MeHg. The concentration levels of gases, e.g., benzene, formaldehyde, NH3, emitted by the vents, reached or surpassed acceptable levels numerous times. The potential ecological and human health risks of these dumps were moderate to very high due to the significant influence of the high Hg concentrations.
Collapse
Affiliation(s)
- Ádám Nádudvari
- University of Silesia in Katowice, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland.
| | - Jerzy Cabała
- University of Silesia in Katowice, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland
| | - Leszek Marynowski
- University of Silesia in Katowice, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland
| | - Mariola Jabłońska
- University of Silesia in Katowice, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland
| | - Maria Dziurowicz
- University of Silesia in Katowice, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland
| | - Dariusz Malczewski
- University of Silesia in Katowice, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland
| | - Barbara Kozielska
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Department of Air Protection, 22B Konarskiego St., 44-100 Gliwice, Poland
| | - Piotr Siupka
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| | - Zofia Piotrowska-Seget
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| | - Bernd R T Simoneit
- Oregon State University, Department of Chemistry, College of Science, Corvallis, OR 97331, USA
| | - Mirosław Szczyrba
- University of Silesia in Katowice, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland
| |
Collapse
|
41
|
Lin MH, Li CY, Cheng YY, Guo HR. Arsenic in Drinking Water and Incidences of Leukemia and Lymphoma: Implication for Its Dual Effects in Carcinogenicity. Front Public Health 2022; 10:863882. [PMID: 35570949 PMCID: PMC9099091 DOI: 10.3389/fpubh.2022.863882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/08/2022] [Indexed: 01/11/2023] Open
Abstract
Arsenic in drinking water has been recognized as carcinogenic to humans and can cause solid cancers of lung, urinary bladder, and skin. Positive associations have also been reported between arsenic ingestion and cancers of kidney, liver and prostate. Nevertheless, arsenic trioxide has been used successfully in the treatment of acute promyelocytic leukemia. Therefore, arsenic might play different roles in the carcinogenesis of solid cancers and hematologic malignancies. The relationship between arsenic in drinking water and the incidences of hematologic malignancies has not been fully investigated. We established a cohort of Taiwanese population and assorted 319 townships of Taiwan into two exposure categories using 0.05 mg/L as the cutoff. Then, we linked these data to the Taiwan Cancer Registry and computed standardized incidence ratios (SIRs) of lymphoma and leukemia by sex, exposure category and time period. The trend of changes in the SIRs over time was assessed, from 1981-1990 to 1991-2000 and then to 2001-2010. We found that in both lymphoma and leukemia, the higher exposure category was associated with lower SIRs in both men and women. In terms of time trends, the SIRs in both lymphoma and leukemia showed increasing trends in both sexes, while exposure to arsenic in drinking water decreased over time. The arsenic level in drinking water was negatively associated with the incidences of lymphoma and leukemia in both men and women. This study supports the dual effects of arsenic on carcinogenesis, with a potential protective effect against hematologic malignancies.
Collapse
Affiliation(s)
- Ming-Hsien Lin
- Division of Hematology and Oncology, Department of Internal Medicine, An Nan Hospital, China Medical University, Tainan, Taiwan,Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Yi Li
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Yun Cheng
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - How-Ran Guo
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan,Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, Taiwan,*Correspondence: How-Ran Guo
| |
Collapse
|
42
|
Li Y, Sun R, Fang X, Ruan Y, Hu Y, Wang K, Liu J, Wang H, Pi J, Chen Y, Xu Y. Long-isoform NFE2L1 silencing inhibits acquisition of malignant phenotypes induced by arsenite in human bronchial epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113268. [PMID: 35124418 DOI: 10.1016/j.ecoenv.2022.113268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Chronic arsenic exposure is associated with the increased risk of several types of cancer, among which, lung cancer is the most deadly one. Nuclear factor erythroid 2 like 1 (NFE2L1), a transcription factor belonging to CNC-bZIP family, regulates multiple important cellular functions in response to acute arsenite exposure. However, the role of NFE2L1 in lung cancer induced by chronic arsenite exposure is unknown. In this study, we firstly showed that chronic arsenite exposure (36 weeks) led to epithelial-mesenchymal transition (EMT) and malignant transformation in human bronchial epithelial cells (BEAS-2B). During the process of malignant transformation, the expression of long isoforms of NFE2L1 (NFE2L1-L) was elevated. Thereafter, BEAS-2B cells with NFE2L1-L stable knockdown (NFE2L1-L-KD) was chronically exposed to arsenite. As expected, silencing of NFE2L1-L gene strikingly inhibited the arsenite-induced EMT and the subsequent malignant transformation. Additionally, NFE2L1-L silencing suppressed the transcription of EMT-inducer SNAIL1 and increased the expression of E-cadherin. Conversely, NFE2L1-L overexpression increased SNAIL1 transcription but decreased E-cadherin expression. Collectively, our data suggest that NFE2L1-L promotes EMT by positively regulating SNAIL1 transcription, and is involved in malignant transformation induced by arsenite.
Collapse
Affiliation(s)
- Yongfang Li
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Ru Sun
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Xin Fang
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Yihui Ruan
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuxin Hu
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Kemu Wang
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Jiao Liu
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Huihui Wang
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Yanyan Chen
- The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China.
| | - Yuanyuan Xu
- School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
43
|
Domingo-Relloso A, Bozack A, Kiihl S, Rodriguez-Hernandez Z, Rentero-Garrido P, Casasnovas JA, Leon-Latre M, Garcia-Barrera T, Gomez-Ariza JL, Moreno B, Cenarro A, de Marco G, Parvez F, Siddique AB, Shahriar H, Uddin MN, Islam T, Navas-Acien A, Gamble M, Tellez-Plaza M. Arsenic exposure and human blood DNA methylation and hydroxymethylation profiles in two diverse populations from Bangladesh and Spain. ENVIRONMENTAL RESEARCH 2022; 204:112021. [PMID: 34516978 PMCID: PMC8734953 DOI: 10.1016/j.envres.2021.112021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Associations of arsenic (As) with the sum of 5-mC and 5-hmC levels have been reported; however, As exposure-related differences of the separated 5-mC and 5-hmC markers have rarely been studied. METHODS In this study, we evaluated the association of arsenic exposure biomarkers and 5-mC and 5-hmC in 30 healthy men (43-55 years) from the Aragon Workers Health Study (AWHS) (Spain) and 31 healthy men (31-50 years) from the Folic Acid and Creatinine Trial (FACT) (Bangladesh). We conducted 5-mC and 5-hmC profiling using Infinium MethylationEPIC arrays, on paired standard and modified (ox-BS in AWHS and TAB in FACT) bisulfite converted blood DNA samples. RESULTS The median for the sum of urine inorganic and methylated As species (ΣAs) (μg/L) was 12.5 for AWHS and 89.6 for FACT. The median of blood As (μg/L) was 8.8 for AWHS and 10.2 for FACT. At a statistical significance p-value cut-off of 0.01, the differentially methylated (DMP) and hydroxymethylated (DHP) positions were mostly located in different genomic sites. Several DMPs and DHPs were consistently found in AWHS and FACT both for urine ΣAs and blood models, being of special interest those attributed to the DIP2C gene. Three DMPs (annotated to CLEC12A) for AWHS and one DHP (annotated to NPLOC4) for FACT remained statistically significant after false discovery rate (FDR) correction. Pathways related to chronic diseases including cardiovascular, cancer and neurological were enriched. CONCLUSIONS While we identified common 5-hmC and 5-mC signatures in two populations exposed to varying levels of inorganic As, differences in As-related epigenetic sites across the study populations may additionally reflect low and high As-specific associations. This work contributes a deeper understanding of potential epigenetic dysregulations of As. However, further research is needed to confirm biological consequences associated with DIP2C epigenetic regulation and to investigate the role of 5-hmC and 5-mC separately in As-induced health disorders at different exposure levels.
Collapse
Affiliation(s)
- Arce Domingo-Relloso
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain; Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA; Department of Statistics and Operations Research, University of Valencia, Spain
| | - Anne Bozack
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA; Department of Environmental Health Sciences, School of Public Health, University of California, Berkeley, USA
| | - Samara Kiihl
- Department of Statistics, State University of Campinas, Brazil
| | - Zulema Rodriguez-Hernandez
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Rentero-Garrido
- Precision Medicine Unit, Biomedical Research Institute Hospital Clinic de Valencia INCLIVA, Valencia, Spain
| | - J Antonio Casasnovas
- CIBERCV, And Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain; Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Montserrat Leon-Latre
- CIBERCV, And Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain; Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Tamara Garcia-Barrera
- Research Center on Natural Resources, Health and the Environment, Department of Chemistry, University of Huelva, Huelva, Spain
| | - J Luis Gomez-Ariza
- Research Center on Natural Resources, Health and the Environment, Department of Chemistry, University of Huelva, Huelva, Spain
| | - Belen Moreno
- Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain; Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Ana Cenarro
- CIBERCV, And Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain; Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Griselda de Marco
- Genomics Area, Foundation for the Promotion of Health and Biomedical Research of the Valencian Region (FISABIO), Valencia, Spain
| | - Faruque Parvez
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Abu B Siddique
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Hasan Shahriar
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Mohammad N Uddin
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Tariqul Islam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| | - Mary Gamble
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| | - Maria Tellez-Plaza
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
44
|
Kuo CC, Balakrishnan P, Gribble MO, Best LG, Goessler W, Umans JG, Navas-Acien A. The association of arsenic exposure and arsenic metabolism with all-cause, cardiovascular and cancer mortality in the Strong Heart Study. ENVIRONMENT INTERNATIONAL 2022; 159:107029. [PMID: 34890900 PMCID: PMC9123362 DOI: 10.1016/j.envint.2021.107029] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 05/24/2023]
Abstract
The effect of low-moderate levels of arsenic exposure and of arsenic metabolism on mortality remains uncertain. We used data from a prospective cohort study in 3600 men and women aged 45 to 75 years living in Arizona, Oklahoma, and North and South Dakota. The biomarker of inorganic arsenic exposure was the sum of urine inorganic (iAs), monomethylated (MMA) and dimethylated (DMA) arsenic compounds (ƩAs) at baseline. The proportions of urine iAs, MMA and DMA over the ƩiAs, expressed as iAs%, MMA%, and DMA%, respectively, were used as biomarkers of arsenic metabolism. Arsenic exposure and arsenic metabolism were associated with all-cause, cardiovascular, and cancer mortality. For each interquartile range (IQR) increase in ƩAs (12.5 μg/L, overall range 0.7-194.1 μg/L), the adjusted hazard ratios (aHRs) were 1.28 (95% CI 1.16-1.41) for all-cause mortality, 1.28 (1.08-1.52) for cardiovascular mortality and 1.15 (0.92-1.44) for cancer mortality. The aHR for mortality for each IQR increase in MMA%, when iAs% is decreasing, was 1.52 (95% CI 1.16-1.99) for cardiovascular disease, 0.73 (0.55-0.98) for cancer, and 1.03 (0.90-1.19) for all-cause mortality. These findings at low-moderate levels of arsenic exposure highlight the need to implement public health measures to protect populations from involuntary arsenic exposure and for research to advance the biological and clinical understanding of arsenic-related health effects in general populations.
Collapse
Affiliation(s)
- Chin-Chi Kuo
- Big Data Center, China Medical University Hospital and China Medical University, Taichung, Taiwan; Division of Nephrology, Department of Internal Medicine, China Medical University Hospital and China Medical University, Taichung, Taiwan; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| | - Poojitha Balakrishnan
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Matthew O Gribble
- Department of Environmental Health, Emory University, Atlanta, GA, USA; Department of Epidemiology, Emory University, Atlanta, GA, USA
| | - Lyle G Best
- Missouri Breaks Industries Research, Inc., Timber Lake, South Dakota
| | - Walter Goessler
- Institute of Chemistry - Analytical Chemistry, Karl-Franzens University Graz, Graz, Austria
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, MD, USA; Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| |
Collapse
|
45
|
Lin P, Guo Y, He L, Liao X, Chen X, He L, Lu Z, Qian ZJ, Zhou C, Hong P, Sun S, Li C. Nanoplastics aggravate the toxicity of arsenic to AGS cells by disrupting ABC transporter and cytoskeleton. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112885. [PMID: 34634601 DOI: 10.1016/j.ecoenv.2021.112885] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
The coexistence of nanoplastics (NPs) and pollutants such as arsenic (As) has become an unignorable environmental problem. However, there is still a considerable knowledge gap about the impact of NPs and pollutants on human health risks. In this study, the human gastric adenocarcinoma (AGS) cells were used as a model to investigate the toxicity of NPs with different particle sizes and As by MTT assay, western blotting, immunofluorescence and so on. The results showed that 20 nm (8 μg/mL), 50 nm (128 μg/mL), 200 nm (128 μg/mL), 500 nm (128 μg/mL), 1000 nm (128 μg/mL) polystyrene (PS) did not affect cell viability, ROS, intracellular calcium and activate apoptosis pathway in AGS cells. However, noncytotoxic concentration of NPs enhanced the cytotoxicity and intracellular accumulation of As. NPs destroys the fluidity of cell membrane and cytoskeleton, inhibits the activity of ABC transporter, and leads to the accumulation of As in cells. This work highlights that the damage caused by NPs, especially at the level of noncytotoxicity, joint with As cannot be ignored and provides a specific toxicological mechanism of NPs accompanied by exposure to As.
Collapse
Affiliation(s)
- Peichun Lin
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Yitao Guo
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xiuchun Liao
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xueru Chen
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Liuying He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zifan Lu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| | - Zhong-Ji Qian
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Chunxia Zhou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China; School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Pengzhi Hong
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China; School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Shengli Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| |
Collapse
|
46
|
Vergara-Gerónimo CA, León Del Río A, Rodríguez-Dorantes M, Ostrosky-Wegman P, Salazar AM. Arsenic-protein interactions as a mechanism of arsenic toxicity. Toxicol Appl Pharmacol 2021; 431:115738. [PMID: 34619159 DOI: 10.1016/j.taap.2021.115738] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
Millions of people worldwide are exposed to arsenic, a metalloid listed as one of the top chemical pollutants of concern to human health. Epidemiological and experimental studies link arsenic exposure to the development of cancer and other diseases. Several mechanisms have been proposed to explain the effects induced by arsenic. Notably, arsenic and its metabolites interact with proteins by direct binding to individual cysteine residues, cysteine clusters, zinc finger motifs, and RING finger domains. Consequently, arsenic interactions with proteins disrupt the functions of proteins and may lead to the development and progression of diseases. In this review, we focus on current evidence in the literature that implicates the interaction of arsenic with proteins as a mechanism of arsenic toxicity. Data show that arsenic-protein interactions affect multiple cellular processes and alter epigenetic regulation, cause endocrine disruption, inhibit DNA damage repair mechanisms, and deregulate gene expression, among other adverse effects.
Collapse
Affiliation(s)
- Cristian A Vergara-Gerónimo
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | - Alfonso León Del Río
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | | | - Patricia Ostrosky-Wegman
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | - Ana María Salazar
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico.
| |
Collapse
|
47
|
Rahaman MS, Rahman MM, Mise N, Sikder MT, Ichihara G, Uddin MK, Kurasaki M, Ichihara S. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117940. [PMID: 34426183 DOI: 10.1016/j.envpol.2021.117940] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 05/27/2023]
Abstract
Arsenic is a well-recognized environmental contaminant that occurs naturally through geogenic processes in the aquifer. More than 200 million people around the world are potentially exposed to the elevated level of arsenic mostly from Asia and Latin America. Many adverse health effects including skin diseases (i.e., arsenicosis, hyperkeratosis, pigmentation changes), carcinogenesis, and neurological diseases have been reported due to arsenic exposure. In addition, arsenic has recently been shown to contribute to the onset of non-communicable diseases, such as diabetes mellitus and cardiovascular diseases. The mechanisms involved in arsenic-induced diabetes are pancreatic β-cell dysfunction and death, impaired insulin secretion, insulin resistance and reduced cellular glucose transport. Whereas, the most proposed mechanisms of arsenic-induced hypertension are oxidative stress, disruption of nitric oxide signaling, altered vascular response to neurotransmitters and impaired vascular muscle calcium (Ca2+) signaling, damage of renal, and interference with the renin-angiotensin system (RAS). However, the contributions of arsenic exposure to non-communicable diseases are complex and multifaceted, and little information is available about the molecular mechanisms involved in arsenic-induced non-communicable diseases and also no suitable therapeutic target identified yet. Therefore, in the future, more basic research is necessary to identify the appropriate therapeutic target for the treatment and management of arsenic-induced non-communicable diseases. Several reports demonstrated that a daily balanced diet with proper nutrient supplements (vitamins, micronutrients, natural antioxidants) has shown effective to reduce the damages caused by arsenic exposure. Arsenic detoxication through natural compounds or nutraceuticals is considered a cost-effective treatment/management and researchers should focus on these alternative options. This review paper explores the scenarios of arsenic contamination in groundwater with an emphasis on public health concerns. It also demonstrated arsenic sources, biogeochemistry, toxicity mechanisms with therapeutic targets, arsenic exposure-related human diseases, and onsets of cardiovascular diseases as well as feasible management options for arsenic toxicity.
Collapse
Affiliation(s)
- Md Shiblur Rahaman
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan; Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Md Tajuddin Sikder
- Department of Public Health and Informatics, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Md Khabir Uddin
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Masaaki Kurasaki
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
48
|
McMurray H, Singaraju R. Three Primary Cancers in a Veteran With Agent Orange and Agent Blue Exposures. Fed Pract 2021; 38:S40-S45. [PMID: 34733094 DOI: 10.12788/fp.0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A Vietnam War veteran's exposures likely contributed to his cancer diagnoses, but these associations are confounded by his substance use, particularly cigarette smoking.
Collapse
Affiliation(s)
- Haana McMurray
- is a Medical Student and is an Assistant Professor in the Department of Medicine, both at the Uniformed Services University of the Health Sciences in Bethesda, Maryland
| | - Raj Singaraju
- is a Medical Student and is an Assistant Professor in the Department of Medicine, both at the Uniformed Services University of the Health Sciences in Bethesda, Maryland
| |
Collapse
|
49
|
Sobel M, Sanchez TR, Zacher T, Mailloux B, Powers M, Yracheta J, Harvey D, Best LG, Bear AB, Hasan K, Thomas E, Morgan C, Aurand D, Ristau S, Olmedo P, Chen R, Rule A, O'Leary M, Navas-Acien A, George CM, Bostick B. Spatial relationship between well water arsenic and uranium in Northern Plains native lands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117655. [PMID: 34426377 PMCID: PMC8434972 DOI: 10.1016/j.envpol.2021.117655] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 05/09/2023]
Abstract
Arsenic and uranium in unregulated private wells affect many rural populations across the US. The distribution of these contaminants in the private wells of most American Indian communities is poorly characterized, and seldom studied together. Here, we evaluate the association between drinking water arsenic and uranium levels in wells (n = 441) from three tribal regions in North Dakota and South Dakota participating in the Strong Heart Water Study. Groundwater contamination was extensive; 29% and 7% of wells exceeded maximum contaminant levels for arsenic and uranium respectively. 81% of wells had both arsenic and uranium concentrations at one-tenth of their human-health benchmark (arsenic, 1 μg/L; uranium 3 μg/L). Well arsenic and uranium concentrations were uncorrelated (rs = 0.06); however, there appeared to be a spatial correlation of wells co-contaminated by arsenic and uranium associated with flow along a geologic contact. These findings indicate the importance of measuring multiple metals in well water, and to understand underlying hydrogeological conditions. The underlying mechanisms for the prevalence of arsenic and uranium across Northern Plains Tribal Lands in the US, and in particular the occurrence of both elevated arsenic and uranium in drinking water wells in this region, demands further study.
Collapse
Affiliation(s)
- Marisa Sobel
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, USA.
| | - Tiffany R Sanchez
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, USA.
| | | | | | - Martha Powers
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, USA; Department of Health Sciences, Northeastern University, USA.
| | - Joseph Yracheta
- Missouri Breaks Industries Research, Inc., USA; Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, USA.
| | | | - Lyle G Best
- Missouri Breaks Industries Research, Inc., USA.
| | | | - Khaled Hasan
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, USA.
| | - Elizabeth Thomas
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, USA.
| | - Camille Morgan
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, USA.
| | | | | | - Pablo Olmedo
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, USA; Department of Toxicology, University of Granada, Spain.
| | - Rui Chen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, USA.
| | - Ana Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, USA.
| | | | - Ana Navas-Acien
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, USA.
| | - Christine Marie George
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, USA.
| | | |
Collapse
|
50
|
Rhoades DA, Farley J, Schwartz SM, Malloy KM, Wang W, Best LG, Zhang Y, Ali T, Yeh F, Rhoades ER, Lee E, Howard BV. Cancer mortality in a population-based cohort of American Indians - The strong heart study. Cancer Epidemiol 2021; 74:101978. [PMID: 34293639 PMCID: PMC8455435 DOI: 10.1016/j.canep.2021.101978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cancer mortality among American Indian (AI) people varies widely, but factors associated with cancer mortality are infrequently assessed. METHODS Cancer deaths were identified from death certificate data for 3516 participants of the Strong Heart Study, a population-based cohort study of AI adults ages 45-74 years in Arizona, Oklahoma, and North and South Dakota. Cancer mortality was calculated by age, sex and region. Cox proportional hazards model was used to assess independent associations between baseline factors in 1989 and cancer death by 2010. RESULTS After a median follow-up of 15.3 years, the cancer death rate per 1000 person-years was 6.33 (95 % CI 5.67-7.04). Cancer mortality was highest among men in North/South Dakota (8.18; 95 % CI 6.46-10.23) and lowest among women in Arizona (4.57; 95 % CI 2.87-6.92). Factors independently associated with increased cancer mortality included age, current or former smoking, waist circumference, albuminuria, urinary cadmium, and prior cancer history. Factors associated with decreased cancer mortality included Oklahoma compared to Dakota residence, higher body mass index and total cholesterol. Sex was not associated with cancer mortality. Lung cancer was the leading cause of cancer mortality overall (1.56/1000 person-years), but no lung cancer deaths occurred among Arizona participants. Mortality from unspecified cancer was relatively high (0.48/100 person-years; 95 % CI 0.32-0.71). CONCLUSIONS Regional variation in AI cancer mortality persisted despite adjustment for individual risk factors. Mortality from unspecified cancer was high. Better understanding of regional differences in cancer mortality, and better classification of cancer deaths, will help healthcare programs address cancer in AI communities.
Collapse
Affiliation(s)
- Dorothy A Rhoades
- Stephenson Cancer Center and Department of Medicine, University of Oklahoma Health Sciences Center, Robert M. Bird Library, 1105 N. Stonewall Ave. LIB 175, Oklahoma City, OK, 73117, United States.
| | - John Farley
- Dignity Health Cancer Institute at St. Joseph's Hospital and Medical Center, 500 West Thomas Road Phoenix, AZ, 85013, USA.
| | - Stephen M Schwartz
- M4-C308, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | - Kimberly M Malloy
- Department of Biostatistics and Epidemiology, Center for American Indian Health Research, Hudson College of Public Health, University of Oklahoma Health Sciences Center, 801 NE 13th St, Oklahoma City, OK, 73104, USA.
| | - Wenyu Wang
- Department of Biostatistics and Epidemiology, Center for American Indian Health Research, Hudson College of Public Health, University of Oklahoma Health Sciences Center, 801 NE 13th St, Oklahoma City, OK, 73104, USA.
| | - Lyle G Best
- Epidemiology Department, Missouri Breaks Industries Research Inc., 118 South Willow St, Eagle Butte, SD, 57625, USA.
| | - Ying Zhang
- Department of Biostatistics and Epidemiology, Center for American Indian Health Research, Hudson College of Public Health, University of Oklahoma Health Sciences Center, 801 NE 13th St, Oklahoma City, OK, 73104, USA.
| | - Tauqeer Ali
- Department of Biostatistics and Epidemiology, Center for American Indian Health Research, Hudson College of Public Health, University of Oklahoma Health Sciences Center, 801 NE 13th St, Oklahoma City, OK, 73104, USA.
| | - Fawn Yeh
- Department of Biostatistics and Epidemiology, Center for American Indian Health Research, Hudson College of Public Health, University of Oklahoma Health Sciences Center, 801 NE 13th St, Oklahoma City, OK, 73104, USA.
| | - Everett R Rhoades
- Department of Biostatistics and Epidemiology, Center for American Indian Health Research, Hudson College of Public Health, University of Oklahoma Health Sciences Center, 801 NE 13th St, Oklahoma City, OK, 73104, USA.
| | - Elisa Lee
- Department of Biostatistics and Epidemiology, Center for American Indian Health Research, Hudson College of Public Health, University of Oklahoma Health Sciences Center, 801 NE 13th St, Oklahoma City, OK, 73104, USA.
| | - Barbara V Howard
- MedStar Health Research Institute, 6525 Belcrest Road, Suite 700, Hyattsville, MD, 20782, USA; Georgetown, Howard Universities Center for Clinical and Translational Research, Washington, DC, 2000, USA.
| |
Collapse
|