1
|
Maklad A, Sedeeq M, Baghaei K, Wilson R, Heath JA, Gueven N, Azimi I. Role of LIN28B in the Regulation of Ribosomal Biogenesis and Lipid Metabolism in Medulloblastoma Brain Cancer Cells. Proteomes 2025; 13:14. [PMID: 40265419 PMCID: PMC12015845 DOI: 10.3390/proteomes13020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/07/2025] [Accepted: 03/20/2025] [Indexed: 04/24/2025] Open
Abstract
Background: Medulloblastoma (MB) is the most aggressive paediatric brain cancer, highlighting the urgent need for new diagnostic and prognostic biomarkers and improved treatments to enhance patient outcomes. Our previous study identified LIN28B, an RNA-binding protein, as a potential diagnostic and prognostic marker for MB and a pharmacological target to inhibit MB cell proliferation and stemness. However, the specific role of LIN28B and its mechanism of action in MB had not been studied. Methods: This study assessed LIN28B's role in Daoy MB cells using siRNA-mediated silencing. LIN28B silencing was achieved with Dharmacon ON-TARGETplus SMARTpool and confirmed by Western blotting. Proliferation and protein assays evaluated the cell metabolic activity and viability. A proteomics analysis was conducted to examine the effect of LIN28B knockdown on the MB cell protein expression profile. The intracellular lipid droplets were assessed using the Nile Red Staining Kit, and nucleolar B23 protein levels were assessed by immunofluorescence. Both were visualised with a high-content IN Cell Analyser 2200. Results: Effective LIN28B silencing (>80%) was achieved in each experiment. LIN28B knockdown reduced the MB cell viability, impaired ribosome biogenesis, and promoted cellular lipid accumulation, as supported by proteomics and cell-based assays. Conclusions: This study highlights LIN28B as a promising target for regulating MB cell growth, ribosomal biogenesis, and lipid metabolism.
Collapse
Affiliation(s)
- Ahmed Maklad
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (A.M.); (M.S.); (N.G.)
| | - Mohammed Sedeeq
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (A.M.); (M.S.); (N.G.)
| | - Kaveh Baghaei
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, VIC 3168, Australia;
| | - Richard Wilson
- Central Science Laboratory, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia;
| | - John A. Heath
- Children’s Cancer Centre, Monash Children’s Hospital, Melbourne, VIC 3168, Australia;
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (A.M.); (M.S.); (N.G.)
| | - Iman Azimi
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (A.M.); (M.S.); (N.G.)
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, VIC 3168, Australia;
| |
Collapse
|
2
|
Zoghi S, Tabesh Z, Ansari A, Yousefi O, Masoudi MS, Taheri R. Development of a simple prediction model for tracheostomy requirement after surgical resection of medulloblastoma in children. BMC Res Notes 2025; 18:8. [PMID: 39794849 PMCID: PMC11720505 DOI: 10.1186/s13104-025-07085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
OBJECTIVE Postoperative tracheostomy is a significant complication following medulloblastoma (MB) resection. This study aimed to develop a predictive model for postoperative tracheostomy requirement in children undergoing MB surgical resection. This model was derived as a side product of a larger research project analyzing surgical outcomes in pediatric MB patients. RESULTS Forty-five patients (26%) required tracheostomy postoperatively. Using multivariable logistic regression, five models were developed, and the final model was selected based on performance and simplicity. The simplified version included two predictors: preoperative brainstem invasion and postoperative brainstem contusion, each contributing equally to the score. The model demonstrated an AUC of 0.845. Predicted risks of requiring a tracheostomy were 5.8%, 57.7%, and 75% for scores of 0, 1, and 2, respectively. This tool provides clinicians with a quantitative approach to assess tracheostomy risk, improving decision-making and patient management.
Collapse
Affiliation(s)
- Sina Zoghi
- Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran.
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zahra Tabesh
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Ansari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Yousefi
- Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Reza Taheri
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
3
|
Yang Y, Valdés-Rives SA, Liu Q, Gao T, Burudpakdee C, Li Y, Tan J, Tan Y, Koch CA, Rong Y, Houser SR, Wei S, Cai KQ, Wu J, Cheng SY, Wechsler-Reya R, Yang ZJ. Thyroid hormone suppresses medulloblastoma progression through promoting terminal differentiation of tumor cells. Cancer Cell 2024; 42:1434-1449.e5. [PMID: 39137728 PMCID: PMC11565524 DOI: 10.1016/j.ccell.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024]
Abstract
Hypothyroidism is commonly detected in patients with medulloblastoma (MB). However, whether thyroid hormone (TH) contributes to MB pathogenicity remains undetermined. Here, we find that TH plays a critical role in promoting tumor cell differentiation. Reduction in TH levels frees the TH receptor, TRα1, to bind to EZH2 and repress expression of NeuroD1, a transcription factor that drives tumor cell differentiation. Increased TH reverses EZH2-mediated repression of NeuroD1 by abrogating the binding of EZH2 and TRα1, thereby stimulating tumor cell differentiation and reducing MB growth. Importantly, TH-induced differentiation of tumor cells is not restricted by the molecular subgroup of MB, suggesting that TH can be used to broadly treat MB subgroups. These findings establish an unprecedented association between TH signaling and MB pathogenicity, providing solid evidence for TH as a promising modality for MB treatment.
Collapse
Affiliation(s)
- Yijun Yang
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA; Cancer Epigenetic Institute, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Silvia Anahi Valdés-Rives
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA; Cancer Epigenetic Institute, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tong Gao
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Chakkapong Burudpakdee
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA; Cancer Epigenetic Institute, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Yuzhe Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yinfei Tan
- Department of Pathology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Christian A Koch
- Department of Medicine, Division of Endocrinology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Yuan Rong
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University Health System, Philadelphia, PA 19140, USA
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University Health System, Philadelphia, PA 19140, USA
| | - Shuanzeng Wei
- Department of Pathology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Jinhua Wu
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Robert Wechsler-Reya
- Brain Tumor Research, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Zeng-Jie Yang
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA; Cancer Epigenetic Institute, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA.
| |
Collapse
|
4
|
Upton DH, Ziegler DS, Tsoli M. Development of Orthotopic Patient-Derived Xenograft Models of Pediatric Intracranial Tumors. Methods Mol Biol 2024; 2806:75-90. [PMID: 38676797 DOI: 10.1007/978-1-0716-3858-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
The development of clinically relevant and reliable models of central nervous system tumors has been instrumental in advancing the field of Neuro-Oncology. The orthotopic intracranial injection is widely used to study the growth, invasion, and spread of tumors in a controlled environment. Orthotopic models are performed to examine tumor cells isolated from a specific region in a patient in the same site or location in an animal model. Orthotopic brain tumor models are also utilized for preclinical testing of therapeutics as they closely recapitulate the behavior of such cancer and the brain environment of patients. Below, we describe our experiences in the development of murine models of pediatric brain tumors including diffuse midline glioma (DMG), glioblastoma (GBM), and medulloblastoma. The method provides an overview of intracranial stereotactic injections in mice.
Collapse
Affiliation(s)
- Dannielle H Upton
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - David S Ziegler
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Sydney, NSW, Australia.
- Kid's Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia.
| | - Maria Tsoli
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Sokolov D, Sharda N, Banerjee A, Denisenko K, Basalious EB, Shukla H, Waddell J, Hamdy NM, Banerjee A. Differential Signaling Pathways in Medulloblastoma: Nano-biomedicine Targeting Non-coding Epigenetics to Improve Current and Future Therapeutics. Curr Pharm Des 2024; 30:31-47. [PMID: 38151840 DOI: 10.2174/0113816128277350231219062154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/15/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Medulloblastomas (MDB) are malignant, aggressive brain tumors that primarily affect children. The survival rate for children under 14 is approximately 72%, while for ages 15 to 39, it is around 78%. A growing body of evidence suggests that dysregulation of signaling mechanisms and noncoding RNA epigenetics play a pivotal role in this disease. METHODOLOGY This study conducted an electronic search of articles on websites like PubMed and Google. The current review also used an in silico databases search and bioinformatics analysis and an extensive comprehensive literature search for original research articles and review articles as well as retrieval of current and future medications in clinical trials. RESULTS This study indicates that several signaling pathways, such as sonic hedgehog, WNT/β-catenin, unfolded protein response mediated ER stress, notch, neurotrophins and TGF-β and ERK, MAPK, and ERK play a crucial role in the pathogenesis of MDB. Gene and ncRNA/protein are also involved as an axis long ncRNA to sponge micro-RNAs that affect downstream signal proteins expression and translation affection disease pathophysiology, prognosis and present potential target hit for drug repurposing. Current treatment options include surgery, radiation, and chemotherapy; unfortunately, the disease often relapses, and the survival rate is less than 5%. Therefore, there is a need to develop more effective treatments to combat recurrence and improve survival rates. CONCLUSION This review describes various MDB disease hallmarks, including the signaling mechanisms involved in pathophysiology, related-causal genes, epigenetics, downstream genes/epigenes, and possibly the causal disease genes/non-protein coding (nc)RNA/protein axis. Additionally, the challenges associated with MDB treatment are discussed, along with how they are being addressed using nano-technology and nano-biomedicine, with a listing of possible treatment options and future potential treatment modalities.
Collapse
Affiliation(s)
- Daniil Sokolov
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| | - Neha Sharda
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| | - Aindrila Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kseniia Denisenko
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| | - Emad B Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Al Kasr Al Aini 11562, Cairo, Egypt
| | - Hem Shukla
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| | - Nadia M Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| |
Collapse
|
6
|
Echavidre W, Durivault J, Gotorbe C, Blanchard T, Pagnuzzi M, Vial V, Raes F, Broisat A, Villeneuve R, Amblard R, Garnier N, Ortholan C, Faraggi M, Serrano B, Picco V, Montemagno C. Integrin-αvβ3 is a Therapeutically Targetable Fundamental Factor in Medulloblastoma Tumorigenicity and Radioresistance. CANCER RESEARCH COMMUNICATIONS 2023; 3:2483-2496. [PMID: 38009896 PMCID: PMC10702273 DOI: 10.1158/2767-9764.crc-23-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/05/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Medulloblastoma is one of the most prevalent solid tumors found in children, occurring in the brain's posterior fossa. The standard treatment protocol involves maximal resection surgery followed by craniospinal irradiation and chemotherapy. Despite a long-term survival rate of 70%, wide disparities among patients have been observed. The identification of pertinent targets for both initial and recurrent medulloblastoma cases is imperative. Both primary and recurrent medulloblastoma are marked by their aggressive infiltration into surrounding brain tissue, robust angiogenesis, and resistance to radiotherapy. While the significant role of integrin-αvβ3 in driving these characteristics has been extensively documented in glioblastoma, its impact in the context of medulloblastoma remains largely unexplored. Integrin-αvβ3 was found to be expressed in a subset of patients with medulloblastoma. We investigated the role of integrin-αvβ3 using medulloblastoma-derived cell lines with β3-subunit depletion or overexpression both in vitro and in vivo settings. By generating radioresistant medulloblastoma cell lines, we uncovered an increased integrin-αvβ3 expression, which correlated with increased susceptibility to pharmacologic integrin-αvβ3 inhibition with cilengitide, a competitive ligand mimetic. Finally, we conducted single-photon emission computed tomography (SPECT)/MRI studies on orthotopic models using a radiolabeled integrin-αvβ3 ligand (99mTc-RAFT-RGD). This innovative approach presents the potential for a novel predictive imaging technique in the realm of medulloblastoma. Altogether, our findings lay the foundation for employing SPECT/MRI to identify a specific subset of patients with medulloblastoma eligible for integrin-αvβ3-directed therapies. This breakthrough offers a pathway toward more targeted and effective interventions in the treatment of medulloblastoma. SIGNIFICANCE This study demonstrates integrin-αvβ3's fundamental role in medulloblastoma tumorigenicity and radioresistance and the effect of its expression on cilengitide functional activity.
Collapse
Affiliation(s)
- William Echavidre
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Jérôme Durivault
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Célia Gotorbe
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Thays Blanchard
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Marina Pagnuzzi
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Valérie Vial
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Florian Raes
- Université de Grenoble Alpes, INSERM, LRB, Grenoble, France
| | - Alexis Broisat
- Université de Grenoble Alpes, INSERM, LRB, Grenoble, France
| | - Rémy Villeneuve
- Medical Physics Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Régis Amblard
- Medical Physics Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Nicolas Garnier
- Medical Physics Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Cécile Ortholan
- Radiotherapy Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Marc Faraggi
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Benjamin Serrano
- Medical Physics Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Vincent Picco
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | | |
Collapse
|
7
|
Das A, Gaikwad U, Krishnan G, Rajendran A, Patil S, Subramaniam P, Krishna U, Wakde MG, Chilukuri S, Jalali R. Successful Implementation of Image-Guided Pencil-Beam Scanning Proton Therapy in Medulloblastomas. Diagnostics (Basel) 2023; 13:3378. [PMID: 37958274 PMCID: PMC10647744 DOI: 10.3390/diagnostics13213378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Medulloblastoma is the most common malignant brain tumour in children, while much rarer in adults. Although the prognosis and outcomes have greatly improved in the era of modern multidisciplinary management, long-term treatment-induced toxicities are common. Craniospinal irradiation followed by a boost to the primary and metastatic tumour sites forms the backbone of treatment. Proton therapy has been endorsed over conventional photon-based radiotherapy due to its superior dosimetric advantages and subsequently lower incidence and severity of toxicities. We report here our experience from South-East Asia's first proton therapy centre of treating 40 patients with medulloblastoma (38 children and adolescents, 2 adults) who received image-guided, intensity-modulated proton therapy with pencil-beam scanning between 2019 and 2023, with a focus on dosimetry, acute toxicities, and early survival outcomes. All patients could complete the planned course of proton therapy, with mostly mild acute toxicities that were manageable on an outpatient basis. Haematological toxicity was not dose-limiting and did not prolong the overall treatment time. Preliminary data on early outcomes including overall survival and disease-free survival are encouraging, although a longer follow-up and data on long-term toxicities are needed.
Collapse
Affiliation(s)
- Anindita Das
- Neuro-Oncology Cancer Management Team, Department of Radiation Oncology, Apollo Proton Cancer Centre, Chennai 600041, India; (A.D.)
| | - Utpal Gaikwad
- Neuro-Oncology Cancer Management Team, Department of Radiation Oncology, Apollo Proton Cancer Centre, Chennai 600041, India; (A.D.)
| | - Ganapathy Krishnan
- Department of Medical Physics, Apollo Proton Cancer Centre, Chennai 600041, India
| | - Adhithyan Rajendran
- Department of Diagnostic and Intervention Radiology, Apollo Proton Cancer Centre, Chennai 600041, India
| | - Sushama Patil
- Department of Pathology, Apollo Proton Cancer Centre, Chennai 600041, India
| | - Preethi Subramaniam
- Neuro-Oncology Cancer Management Team, Department of Radiation Oncology, Apollo Proton Cancer Centre, Chennai 600041, India; (A.D.)
| | - Uday Krishna
- Neuro-Oncology Cancer Management Team, Department of Radiation Oncology, Apollo Proton Cancer Centre, Chennai 600041, India; (A.D.)
| | - Manoj G. Wakde
- Neuro-Oncology Cancer Management Team, Department of Radiation Oncology, Apollo Proton Cancer Centre, Chennai 600041, India; (A.D.)
| | - Srinivas Chilukuri
- Paediatric Oncology Cancer Management Team, Department of Radiation Oncology, Apollo Proton Cancer Centre, Chennai 600041, India
| | - Rakesh Jalali
- Neuro-Oncology Cancer Management Team, Department of Radiation Oncology, Apollo Proton Cancer Centre, Chennai 600041, India; (A.D.)
| |
Collapse
|
8
|
Sanghrajka RM, Koche R, Medrano H, El Nagar S, Stephen DN, Lao Z, Bayin NS, Ge K, Joyner AL. KMT2D suppresses Sonic hedgehog-driven medulloblastoma progression and metastasis. iScience 2023; 26:107831. [PMID: 37822508 PMCID: PMC10562805 DOI: 10.1016/j.isci.2023.107831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/29/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023] Open
Abstract
The major cause of treatment failure and mortality among medulloblastoma patients is metastasis intracranially or along the spinal cord. The molecular mechanisms driving tumor metastasis in Sonic hedgehog-driven medulloblastoma (SHH-MB) patients, however, remain largely unknown. In this study we define a tumor suppressive role of KMT2D (MLL2), a gene frequently mutated in the most metastatic β-subtype. Strikingly, genetic mouse models of SHH-MB demonstrate that heterozygous loss of Kmt2d in conjunction with activation of the SHH pathway causes highly penetrant disease with decreased survival, increased hindbrain invasion and spinal cord metastasis. Loss of Kmt2d attenuates neural differentiation and shifts the transcriptional/chromatin landscape of primary and metastatic tumors toward a decrease in differentiation genes and tumor suppressors and an increase in genes/pathways implicated in advanced stage cancer and metastasis (TGFβ, Notch, Atoh1, Sox2, and Myc). Thus, secondary heterozygous KMT2D mutations likely have prognostic value for identifying SHH-MB patients prone to develop metastasis.
Collapse
Affiliation(s)
- Reeti Mayur Sanghrajka
- Developmental Biology Program, Sloan Kettering Institute of Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Richard Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hector Medrano
- Developmental Biology Program, Sloan Kettering Institute of Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Salsabiel El Nagar
- Developmental Biology Program, Sloan Kettering Institute of Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel N. Stephen
- Developmental Biology Program, Sloan Kettering Institute of Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhimin Lao
- Developmental Biology Program, Sloan Kettering Institute of Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - N. Sumru Bayin
- Developmental Biology Program, Sloan Kettering Institute of Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alexandra L. Joyner
- Developmental Biology Program, Sloan Kettering Institute of Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| |
Collapse
|
9
|
Adile AA, Bakhshinyan D, Suk Y, Uehling D, Saini M, Aman A, Magolan J, Subapanditha MK, McKenna D, Chokshi C, Savage N, Kameda-Smith MM, Venugopal C, Singh SK. An effective kinase inhibition strategy for metastatic recurrent childhood medulloblastoma. J Neurooncol 2023; 163:635-645. [PMID: 37354357 DOI: 10.1007/s11060-023-04372-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
PURPOSE Medulloblastomas (MBs) constitute the most common malignant brain tumor in children and adolescents. MYC-amplified Group 3 MBs are characterized by disease recurrence, specifically in the leptomeninges, whereby patients with these metastatic tumors have a mortality rate nearing 100%. Despite limited research on such tumors, studies on MB metastases at diagnosis suggest targeting kinases to be beneficial. METHODS To identify kinase inhibitors that eradicate cells driving therapy evasion and tumor dissemination, we utilized our established patient-derived xenograft (PDX) mouse-adapted therapy platform that models human MB metastatic recurrences following standard chemoradiotherapy. High-throughput screens of 640 kinase inhibitors were conducted against cells isolated from mouse spines in the PDX model and human fetal neural stem cells to reveal compounds that targeted these treatment-refractory, metastatic cells, whilst sparing healthy cells. Blood-brain barrier permeability assays and additional in vitro experimentation helped select top candidates for in vivo studies. RESULTS Recurrent Group 3 MB PDX spine cells were therapeutically vulnerable to a selective checkpoint kinase 1 (CHK1) inhibitor and small molecular inhibitor of platelet-derived growth factor receptor beta (PDGFRβ). Inhibitor-treated cells showed a significant reduction in MB stem cell properties associated with treatment failure. Mice also demonstrated survival advantage when treated with a CHK1 inhibitor ex vivo. CONCLUSION We identified CHK1 and PDGFRβ inhibitors that effectively target MB cells fueling treatment-refractory metastases. With limited research on effective therapies for Group 3 MB metastatic recurrences, this work highlights promising therapeutic options to treat these aggressive tumors. Additional studies are warranted to investigate these inhibitors' mechanisms and recommended in vivo administration.
Collapse
Affiliation(s)
- Ashley A Adile
- Centre for Discovery in Cancer Research, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - David Bakhshinyan
- Centre for Discovery in Cancer Research, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Yujin Suk
- Centre for Discovery in Cancer Research, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - David Uehling
- Ontario Institute for Cancer Research, MaRS Centre, Toronto, ON, M5G 0A3, Canada
| | - Mehakpreet Saini
- Ontario Institute for Cancer Research, MaRS Centre, Toronto, ON, M5G 0A3, Canada
| | - Ahmed Aman
- Ontario Institute for Cancer Research, MaRS Centre, Toronto, ON, M5G 0A3, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Jakob Magolan
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Minomi K Subapanditha
- Centre for Discovery in Cancer Research, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Dillon McKenna
- Centre for Discovery in Cancer Research, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Chirayu Chokshi
- Centre for Discovery in Cancer Research, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Neil Savage
- Centre for Discovery in Cancer Research, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Michelle M Kameda-Smith
- Centre for Discovery in Cancer Research, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Chitra Venugopal
- Centre for Discovery in Cancer Research, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Sheila K Singh
- Centre for Discovery in Cancer Research, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
- Department of Surgery, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
- Human Cancer Stem Cell Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
- Neurosurgey, McMaster Children's Hospital, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
10
|
Huang Z, Li X, Wei B, Yu Y. Global metabolomics study on the pathogenesis of pediatric medulloblastoma via UPLC- Q/E-MS/MS. PLoS One 2023; 18:e0287121. [PMID: 37319142 PMCID: PMC10270352 DOI: 10.1371/journal.pone.0287121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
Medulloblastoma is one of the most frequent malignant brain tumors in infancy and childhood. Early diagnosis and treatment are quite crucial for the prognosis. However, the pathogenesis of medulloblastoma is still not completely clarified. High-resolution mass spectrometry has enabled a comprehensive investigation on the mechanism of disease from the perspective of metabolism. Herein, we compared the difference of metabolic profiles of serum between medulloblastoma (n = 33) and healthy control (HC, n = 16) by using UPLC-Q/E-MS/MS. Principal component analysis and orthogonal projections to latent structures discriminant analysis (OPLS-DA) intuitively revealed the significantly distinct metabolic profiles between medulloblastoma and HC (p < 0.01 for permutation test on OPLS-DA model). Total of 25 significantly changed metabolites were identified. ROC analysis reported that six of them (Phosphatidic acid (8:0/15:0), 3'-Sialyllactose, Isocoproporphyrin, Acetylspermidine, Fructoseglycine and 3-Hydroxydodecanedioate) showed high specificity and precision to be potential diagnosis biomarkers (AUC > 0.98). Functional analysis discovered that there are four pathways notably perturbed for medulloblastoma. These pathways are related with the dysfunction of arachidonic acid metabolism, steroid hormone biosynthesis, and folate-related metabolism. The target intervention on these pathways may reduce the mortality of medulloblastoma.
Collapse
Affiliation(s)
- Zhehao Huang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xianglan Li
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Bo Wei
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yin Yu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
McLachlan T, Matthews WC, Jackson ER, Staudt DE, Douglas AM, Findlay IJ, Persson ML, Duchatel RJ, Mannan A, Germon ZP, Dun MD. B-cell Lymphoma 6 (BCL6): From Master Regulator of Humoral Immunity to Oncogenic Driver in Pediatric Cancers. Mol Cancer Res 2022; 20:1711-1723. [PMID: 36166198 PMCID: PMC9716245 DOI: 10.1158/1541-7786.mcr-22-0567] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 01/15/2023]
Abstract
B-cell lymphoma 6 (BCL6) is a protooncogene in adult and pediatric cancers, first identified in diffuse large B-cell lymphoma (DLBCL) where it acts as a repressor of the tumor suppressor TP53, conferring survival, protection, and maintenance of lymphoma cells. BCL6 expression in normal B cells is fundamental in the regulation of humoral immunity, via initiation and maintenance of the germinal centers (GC). Its role in B cells during the production of high affinity immunoglobins (that recognize and bind specific antigens) is believed to underpin its function as an oncogene. BCL6 is known to drive the self-renewal capacity of leukemia-initiating cells (LIC), with high BCL6 expression in acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), and glioblastoma (GBM) associated with disease progression and treatment resistance. The mechanisms underpinning BCL6-driven therapy resistance are yet to be uncovered; however, high activity is considered to confer poor prognosis in the clinical setting. BCL6's key binding partner, BCL6 corepressor (BCOR), is frequently mutated in pediatric cancers and appears to act in concert with BCL6. Using publicly available data, here we show that BCL6 is ubiquitously overexpressed in pediatric brain tumors, inversely to BCOR, highlighting the potential for targeting BCL6 in these often lethal and untreatable cancers. In this review, we summarize what is known of BCL6 (role, effect, mechanisms) in pediatric cancers, highlighting the two sides of BCL6 function, humoral immunity, and tumorigenesis, as well as to review BCL6 inhibitors and highlight areas of opportunity to improve the outcomes of patients with pediatric cancer.
Collapse
Affiliation(s)
- Tabitha McLachlan
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - William C. Matthews
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Evangeline R. Jackson
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Dilana E. Staudt
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Alicia M. Douglas
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Izac J. Findlay
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Mika L. Persson
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Ryan J. Duchatel
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Abdul Mannan
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Zacary P. Germon
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Matthew D. Dun
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Corresponding Author: Matthew D. Dun, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Level 3, Life Sciences Bldg, Callaghan, NSW 2308, Australia. Phone: 612-4921-5693; E-mail:
| |
Collapse
|
12
|
Giakoumettis G, Mantzavinou A, Moschos G, Giakoumettis D, Capizzello A. Re-irradiation of Pediatric Medulloblastoma: A Case Report and Systematic Review. Cureus 2022; 14:e31585. [PMID: 36540431 PMCID: PMC9757891 DOI: 10.7759/cureus.31585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the optimal treatment given to children with medulloblastoma, many relapses are seen after combining treatments. Re-irradiation is part of salvage therapy for children who relapse and might provide long-term disease control. Nevertheless, it is challenging because there is a concern about exceeding radiation tolerances and late treatment toxicities. Re-irradiation is an option for many brain tumors, including medulloblastoma in children. This study presents a case of recurrent medulloblastoma treated with re-irradiation. A systematic review of the literature provided up-to-date data on the re-irradiation of medulloblastoma in children. This study aims to contribute to the scarce literature on the treatment strategy, which may help improve patients' outcomes.
Collapse
Affiliation(s)
| | - Artemis Mantzavinou
- Medicine, Barts and The London School of Medicine and Dentistry, London, GBR
| | - Georgios Moschos
- Department of Radiation Oncology, AHEPA University Hospital, Thessaloniki, GRC
| | | | - Antonio Capizzello
- Department of Radiation Oncology, AHEPA University Hospital, Thessaloniki, GRC
| |
Collapse
|
13
|
Role of Circular RNA in Brain Tumor Development. Cells 2022; 11:cells11142130. [PMID: 35883576 PMCID: PMC9315629 DOI: 10.3390/cells11142130] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
Central nervous system tumors are a leading cause of cancer-related death in children and adults, with medulloblastoma (MB) and glioblastoma (GBM) being the most prevalent malignant brain tumors, respectively. Despite tremendous breakthroughs in neurosurgery, radiation, and chemotherapeutic techniques, cell heterogeneity and various genetic mutations impacting cell cycle control, cell proliferation, apoptosis, and cell invasion result in unwanted resistance to treatment approaches, with a 5-year survival rate of 70–80% for medulloblastoma, and the median survival time for patients with glioblastoma is only 15 months. Developing new medicines and utilizing combination medications may be viewed as excellent techniques for battling MB and GBM. Circular RNAs (circRNAs) can affect cancer-developing processes such as cell proliferation, cell apoptosis, invasion, and chemoresistance in this regard. As a result, several compounds have been introduced as prospective therapeutic targets in the fight against MB and GBM. The current study aims to elucidate the fundamental molecular and cellular mechanisms underlying the pathogenesis of GBM in conjunction with circRNAs. Several mechanisms were examined in detail, including PI3K/Akt/mTOR signaling, Wnt/-catenin signaling, angiogenic processes, and metastatic pathways, in order to provide a comprehensive knowledge of the involvement of circRNAs in the pathophysiology of MB and GBM.
Collapse
|
14
|
Radiomics signature for the prediction of progression-free survival and radiotherapeutic benefits in pediatric medulloblastoma. Childs Nerv Syst 2022; 38:1085-1094. [PMID: 35394210 DOI: 10.1007/s00381-022-05507-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 03/18/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE To develop and validate a radiomics signature for progression-free survival (PFS) and radiotherapeutic benefits in pediatric medulloblastoma. MATERIALS AND METHODS We retrospectively enrolled 253 consecutive children with medulloblastoma from two hospitals. A total of 1294 radiomic features were extracted from the region of tumor on the T1-weighted and contrast-enhanced T1-weighted (CE-T1w) MRI. Radiomic feature selection and machine learning modelling were performed to build radiomics signature for the prediction of PFS on the training set. Moreover, the prognostic performance of the clinical parameters was investigated for PFS. The Concordance index (a value of 0.5 indicates no predictive discrimination, and a value of 1 indicates perfect predictive discrimination) was used to measure and compare the prognostic performance of these models. RESULTS The radiomics signature for the prediction of the PFS yielded Concordance indices of 0.711, 0.707, and 0.717 on the training and held-out test sets 1 and 2, respectively. The radiomics nomogram integrating the radiomics signature, age, and metastasis performed better than the nomogram incorporating only clinicopathological factors (C-index, 0.723 vs. 0.665 and 0.722 vs. 0.677 on the held-out test sets 1 and 2, respectively), which was also validated by the good calibration and decision curve analysis. Further analysis demonstrated that patients with lower value of radiomics signature were associated with better clinical outcomes after postoperative radiotherapy (p < 0.001). CONCLUSION The radiomics signature and nomogram performed well for the prediction of PFS and could stratify patients underwent postoperative radiotherapy into the high- and low-risk groups with significantly different clinical outcomes.
Collapse
|
15
|
Chaudhary N, Bapuraj RJ. Radiogenomics for Pediatric Medulloblastoma to Predict Tumor Subtypes and Guide Therapy. Radiology 2022; 304:417-418. [PMID: 35438567 DOI: 10.1148/radiol.213165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Neeraj Chaudhary
- From the Departments of Radiology (N.C., R.J.B.), Neurosurgery (N.C.), Neurology (N.C.), and Otorhinolaryngology (N.C.), University of Michigan Health System (Michigan Medicine), 1500 E Medical Center Dr, Ann Arbor, MI 48109
| | - Rajiv Jayapalli Bapuraj
- From the Departments of Radiology (N.C., R.J.B.), Neurosurgery (N.C.), Neurology (N.C.), and Otorhinolaryngology (N.C.), University of Michigan Health System (Michigan Medicine), 1500 E Medical Center Dr, Ann Arbor, MI 48109
| |
Collapse
|
16
|
Hernández-Rojas R, Jiménez-Arellano C, de la Fuente-Granada M, Ordaz-Rosado D, García-Becerra R, Valencia-Mayoral P, Álvarez-Arellano L, Eguía-Aguilar P, Velasco-Velázquez MA, González-Arenas A. The interplay between estrogen receptor beta and protein kinase C, a crucial collaboration for medulloblastoma cell proliferation and invasion. Cell Signal 2022; 92:110246. [PMID: 35033667 DOI: 10.1016/j.cellsig.2022.110246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 11/03/2022]
Abstract
Medulloblastoma (MB) is the most common and aggressive pediatric intracranial tumor. Estrogen receptor β (ERβ) expression correlates with MB development and its phosphorylation modifies its transcriptional activity in a ligand-dependent or independent manner. Using in silico tools, we have identified several residues in ERβ protein as potential targets of protein kinases C (PKCs) α and δ. Using Daoy cells, we observed that PKCα and PKCδ associate with ERβ and induce its phosphorylation. The activation of ERβ promotes MB cells proliferation and invasion, and PKCs downregulation dysregulates these steroid receptor mediated processes. Our data suggest that these kinases may play a crucial role in the regulation of the ERβ transcriptional activity. Overexpression of both PKCα and PKCδ in MB biopsies samples supports their relevance in MB progression.
Collapse
Affiliation(s)
- Rubí Hernández-Rojas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Carolina Jiménez-Arellano
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Marisol de la Fuente-Granada
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - David Ordaz-Rosado
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080 Ciudad de México, México
| | - Rocío García-Becerra
- Programa de Investigación de Cáncer de Mama y Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Pedro Valencia-Mayoral
- Departamento de Patología, Hospital Infantil de México Federico Gómez, 06720 Ciudad de México, México
| | | | - Pilar Eguía-Aguilar
- Laboratorio de Biología Molecular, Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, México
| | - Marco A Velasco-Velázquez
- Laboratorio de Farmacología Molecular, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México.
| |
Collapse
|
17
|
Pritha A, Anderson R, Anderson DE, Nicolaides T. A Holistic Review on the Current and Future Status of Biology-Driven and Broad-Spectrum Therapeutic Options for Medulloblastoma. Cureus 2022; 14:e23447. [PMID: 35481313 PMCID: PMC9034720 DOI: 10.7759/cureus.23447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2022] [Indexed: 11/05/2022] Open
Abstract
With a thorough investigation of the etiology of medulloblastomas, a comprehensive review was done to categorize available clinical trials in order to discuss the future potential of breakthroughs in treatment options. The pertinent issues of medulloblastoma therapy with radiation being inapplicable to children under the age of 3, and therapies causing toxicity are detailed and discussed in the context of understanding how the current therapies may address these suboptimal treatment modalities. This study aggregated published studies from the US government clinical trials website and filtered them based on their direct treatment towards medulloblastomas. Thirty-two clinical trials were applicable to be analyzed and the treatment mechanisms were discussed along with the efficacy; molecular groupings of medulloblastomas were also investigated. The investigated therapies tend to target sonic hedgehog (SHH)-subtype medulloblastomas, but there is a necessity for group 3 subtype and group 4 subtype to be targeted as well. Due to the heterogeneous nature of tumor relapse in groups 3 and 4, there are less specified trials towards those molecular groupings, and radiation seems to be the main scope of treatment. Medulloblastomas being primarily a pediatric tumor require treatment options that minimize radiation to increase the quality of living in children and to prevent long-term symptoms of over radiation. Exploring symptomatic treatment with donepezil in children with combination therapies may be a potential route for future trials; immunotherapies seem to hold potential in treating patients reacting adversely to radiation therapy.
Collapse
|
18
|
Coca-Pelaz A, Bishop JA, Zidar N, Agaimy A, Gebrim EMMS, Mondin V, Cohen O, Strojan P, Rinaldo A, Shaha AR, de Bree R, Hamoir M, Mäkitie AA, Kowalski LP, Saba NF, Ferlito A. Cervical Lymph Node Metastases from Central Nervous System Tumors: A Systematic Review. Cancer Manag Res 2022; 14:1099-1111. [PMID: 35300060 PMCID: PMC8921675 DOI: 10.2147/cmar.s348102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/17/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Lymph node metastasis (LNM) from primary tumors of the central nervous system (CNS) is an infrequent condition, and classically it was thought that CNS tumors could not spread via the lymphatic route. Recent discoveries about this route of dissemination make its knowledge necessary for surgeons and pathologists to avoid delays in diagnosis and unnecessary treatments. The aim of this paper is to review the literature and to discuss the relevant pathogenetic mechanism and the cytologic features along with recommendations for surgical treatment of these cervical LNM. Materials and Methods Using PRISMA guidelines, we conducted a systematic review of the literature published from 1944 to 2021, updating the comprehensive review published in 2010 by our group. Results Our review includes data of 143 articles obtaining 174 patients with LNM from a primary CNS tumor. The mean age of the patients was 31.9 years (range, 0.1–87) and there were 61 females (35.1%) and 103 males (59.2%), and in 10 cases (5.7%) the gender was not specified. The more frequent sites of distant metastasis were bones (23%), lungs (11.5%) and non-cervical lymph nodes (11%). Conclusion Cervical LNM from CNS tumors is infrequent. Pathologic diagnosis can be obtained by fine-needle aspiration cytology in most cases, giving surgeons the option to plan the appropriate surgical treatment. Given the poor prognosis of these cases, the most conservative possible cervical dissection is usually the treatment of choice.
Collapse
Affiliation(s)
- Andrés Coca-Pelaz
- Department of Otolaryngology, Hospital Universitario Central de Asturias-University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias, IUOPA, CIBERONC, Oviedo (Asturias), Spain
- Correspondence: Andrés Coca-Pelaz, Department of Otolaryngology, Hospital Universitario Central de Asturias-University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias, IUOPA, CIBERONC, Avenida de Roma s/n, Oviedo (Asturias), 33011, Spain, Email
| | - Justin A Bishop
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Abbas Agaimy
- Institute of Pathology, Friedrich Alexander University Erlangen-Nürnberg, University Hospital, Erlangen, Germany
| | - Eloisa Maria Mello Santiago Gebrim
- Otorhinolaryngology Department, National Institute of Rehabilitation, Mexico City, Mexico
- Radiology Department, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Vanni Mondin
- ENT Clinic, Policlinico Città di Udine, Udine, Italy
| | - Oded Cohen
- ARM - Center for Otolaryngology - Head and Neck Surgery and Oncology, Assuta Medical Center, Tel Aviv, Affiliated with Ben Gurion University, Beer Sheva, Israel
| | - Primož Strojan
- Department of Radiation Oncology, Institute of Oncology, Ljubljana, Slovenia
| | | | - Ashok R Shaha
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht, The NetherlAnds
| | - Marc Hamoir
- Department of Head and Neck Surgery, UC Louvain, St Luc University Hospital and King Albert II Cancer Institute, Brussels, Belgium
| | - Antti A Mäkitie
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Luiz P Kowalski
- Head and Neck Surgery and Otorhinolaryngology Department, A C Camargo Cancer Center and Department of Head and Neck Surgery, University of São Paulo Medical School, São Paulo, Brazil
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, The Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Alfio Ferlito
- International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
19
|
Nawar N, Bukhari S, Adile AA, Suk Y, Manaswiyoungkul P, Toutah K, Olaoye OO, Raouf YS, Sedighi A, Garcha HK, Hassan MM, Gwynne W, Israelian J, Radu TB, Geletu M, Abdeldayem A, Gawel JM, Cabral AD, Venugopal C, de Araujo ED, Singh SK, Gunning PT. Discovery of HDAC6-Selective Inhibitor NN-390 with in Vitro Efficacy in Group 3 Medulloblastoma. J Med Chem 2022; 65:3193-3217. [PMID: 35119267 DOI: 10.1021/acs.jmedchem.1c01585] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Histone deacetylase 6 (HDAC6) has been targeted in clinical studies for anticancer effects due to its role in oncogenic transformation and metastasis. Through a second-generation structure-activity relationship (SAR) study, the design, and biological evaluation of the selective HDAC6 inhibitor NN-390 is reported. With nanomolar HDAC6 potency, >200-550-fold selectivity for HDAC6 in analogous HDAC isoform functional assays, potent intracellular target engagement, and robust cellular efficacy in cancer cell lines, NN-390 is the first HDAC6-selective inhibitor to show therapeutic potential in metastatic Group 3 medulloblastoma (MB), an aggressive pediatric brain tumor often associated with leptomeningeal metastases and therapy resistance. MB stem cells contribute to these patients' poor clinical outcomes. NN-390 selectively targets this cell population with a 44.3-fold therapeutic margin between patient-derived Group 3 MB cells in comparison to healthy neural stem cells. NN-390 demonstrated a 45-fold increased potency over HDAC6-selective clinical candidate citarinostat. In summary, HDAC6-selective molecules demonstrated in vitro therapeutic potential against Group 3 MB.
Collapse
Affiliation(s)
- Nabanita Nawar
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Shazreh Bukhari
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Ashley A Adile
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Yujin Suk
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Pimyupa Manaswiyoungkul
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Krimo Toutah
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Olasunkanmi O Olaoye
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Yasir S Raouf
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Abootaleb Sedighi
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Harsimran Kaur Garcha
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Muhammad Murtaza Hassan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - William Gwynne
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Johan Israelian
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Tudor B Radu
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mulu Geletu
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Ayah Abdeldayem
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Justyna M Gawel
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Aaron D Cabral
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Chitra Venugopal
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Sheila K Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
20
|
Ray S, Chaturvedi NK, Bhakat KK, Rizzino A, Mahapatra S. Subgroup-Specific Diagnostic, Prognostic, and Predictive Markers Influencing Pediatric Medulloblastoma Treatment. Diagnostics (Basel) 2021; 12:diagnostics12010061. [PMID: 35054230 PMCID: PMC8774967 DOI: 10.3390/diagnostics12010061] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 12/24/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant central nervous system tumor in pediatric patients. Mainstay of therapy remains surgical resection followed by craniospinal radiation and chemotherapy, although limitations to this therapy are applied in the youngest patients. Clinically, tumors are divided into average and high-risk status on the basis of age, metastasis at diagnosis, and extent of surgical resection. However, technological advances in high-throughput screening have facilitated the analysis of large transcriptomic datasets that have been used to generate the current classification system, dividing patients into four primary subgroups, i.e., WNT (wingless), SHH (sonic hedgehog), and the non-SHH/WNT subgroups 3 and 4. Each subgroup can further be subdivided on the basis of a combination of cytogenetic and epigenetic events, some in distinct signaling pathways, that activate specific phenotypes impacting patient prognosis. Here, we delve deeper into the genetic basis for each subgroup by reviewing the extent of cytogenetic events in key genes that trigger neoplastic transformation or that exhibit oncogenic properties. Each of these discussions is further centered on how these genetic aberrations can be exploited to generate novel targeted therapeutics for each subgroup along with a discussion on challenges that are currently faced in generating said therapies. Our future hope is that through better understanding of subgroup-specific cytogenetic events, the field may improve diagnosis, prognosis, and treatment to improve overall quality of life for these patients.
Collapse
Affiliation(s)
- Sutapa Ray
- Department of Pediatrics, University of Nebraska Medical Center, 601 S Saddle Creek Road, Omaha, NE 68198, USA; (S.R.); (N.K.C.)
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
| | - Nagendra K. Chaturvedi
- Department of Pediatrics, University of Nebraska Medical Center, 601 S Saddle Creek Road, Omaha, NE 68198, USA; (S.R.); (N.K.C.)
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
| | - Kishor K. Bhakat
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Angie Rizzino
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
- Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sidharth Mahapatra
- Department of Pediatrics, University of Nebraska Medical Center, 601 S Saddle Creek Road, Omaha, NE 68198, USA; (S.R.); (N.K.C.)
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: ; Tel.: +1-(402)-599-7754
| |
Collapse
|
21
|
EHMT2/G9a as an Epigenetic Target in Pediatric and Adult Brain Tumors. Int J Mol Sci 2021; 22:ijms222011292. [PMID: 34681949 PMCID: PMC8539543 DOI: 10.3390/ijms222011292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/09/2021] [Indexed: 02/08/2023] Open
Abstract
Epigenetic mechanisms, including post-translational modifications of DNA and histones that influence chromatin structure, regulate gene expression during normal development and are also involved in carcinogenesis and cancer progression. The histone methyltransferase G9a (euchromatic histone lysine methyltransferase 2, EHMT2), which mostly mediates mono- and dimethylation by histone H3 lysine 9 (H3K9), influences gene expression involved in embryonic development and tissue differentiation. Overexpression of G9a has been observed in several cancer types, and different classes of G9a inhibitors have been developed as potential anticancer agents. Here, we review the emerging evidence suggesting the involvement of changes in G9a activity in brain tumors, namely glioblastoma (GBM), the main type of primary malignant brain cancer in adults, and medulloblastoma (MB), the most common type of malignant brain cancer in children. We also discuss the role of G9a in neuroblastoma (NB) and the drug development of G9a inhibitors.
Collapse
|
22
|
Epigenetic-Based Therapy-A Prospective Chance for Medulloblastoma Patients' Recovery. Int J Mol Sci 2021; 22:ijms22094925. [PMID: 34066495 PMCID: PMC8124462 DOI: 10.3390/ijms22094925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
Medulloblastoma (MB) is one of the most frequent and malignant brain tumors in children. The prognosis depends on the advancement of the disease and the patient's age. Current therapies, which include surgery, chemotherapy, and irradiation, despite being quite effective, cause significant side effects that influence the central nervous system's function and cause neurocognitive deficits. Therefore, they substantially lower the quality of life, which is especially severe in a developing organism. Thus, there is a need for new therapies that are less toxic and even more effective. Recently, knowledge about the epigenetic mechanisms that are responsible for medulloblastoma development has increased. Epigenetics is a phenomenon that influences gene expression but can be easily modified by external factors. The best known epigenetic mechanisms are histone modifications, DNA methylation, or noncoding RNAs actions. Epigenetic mechanisms comprehensively explain the complex phenomena of carcinogenesis. At the same time, they seem to be a potential key to treating medulloblastoma with fewer complications than past therapies. This review presents the currently known epigenetic mechanisms that are involved in medulloblastoma pathogenesis and the potential therapies that use epigenetic traits to cure medulloblastoma while maintaining a good quality of life and ensuring a higher median overall survival rate.
Collapse
|
23
|
García-Espinosa P, Molina-Ayala M, Botello-Hernández E, Villareal-Garza E, Barbosa-Quintana Á. Congenital medulloblastoma presented in the neonatal period. AUTOPSY AND CASE REPORTS 2021; 11:e2021258. [PMID: 33968829 PMCID: PMC8087391 DOI: 10.4322/acr.2021.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Congenital medulloblastoma is a rare brain tumor that appears in less than 1% of pediatric patients. Congenital medulloblastoma has a poor prognosis and should be suspected in patients with clinical manifestations of hyporeactivity, slow suction reflexes, and the presence of hydrocephalus. Herein we present the case of a 12-day-old female newborn who developed non-communicative hydrocephalus, hyporeactivity, and hyporeflexia. Magnetic resonance imaging of her brain showed a heterogeneous and cystic mass on the posterior cranial fossa. A suboccipital craniotomy was performed. The histopathologic analysis reported a congenital medulloblastoma. She remained in hospital until her death at 112 days old. This is one of the first case reports with clinical-radiological and pathological documentation. Awareness of this diagnosis can allow prenatal intervention, rendering a better prognosis. This case report exemplifies the importance of good prenatal follow-up.
Collapse
Affiliation(s)
- Patricio García-Espinosa
- Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Departamento de Neurología Monterrey, México
| | - Max Molina-Ayala
- Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Departamento de Patología y Citología, Monterrey, México
| | - Edgar Botello-Hernández
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Hospital Universitario "Dr. José Eleuterio González", Monterrey, México
| | - Estefania Villareal-Garza
- Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Departamento de Neurología Monterrey, México
| | - Álvaro Barbosa-Quintana
- Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Departamento de Patología y Citología, Monterrey, México
| |
Collapse
|
24
|
Zaragoza-Ojeda M, Apatiga-Vega E, Arenas-Huertero F. Role of aryl hydrocarbon receptor in central nervous system tumors: Biological and therapeutic implications. Oncol Lett 2021; 21:460. [PMID: 33907570 PMCID: PMC8063300 DOI: 10.3892/ol.2021.12721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, whose canonical pathway mainly regulates the genes involved in xenobiotic metabolism. However, it can also regulate several responses in a non-canonical manner, such as proliferation, differentiation, cell death and cell adhesion. AhR plays an important role in central nervous system tumors, as it can regulate several cellular responses via different pathways. The polymorphisms of the AHR gene have been associated with the development of gliomas. In addition, the metabolism of tumor cells promotes tumor growth, particularly in tryptophan synthesis, where some metabolites, such as kynurenine, can activate the AhR pathway, triggering cell proliferation in astrocytomas, medulloblastomas and glioblastomas. Furthermore, as part of the changes in neuroblastomas, AHR is able to downregulate the expression of proto-oncogene c-Myc, induce differentiation in tumor cells, and cause cell cycle arrest and apoptosis. Collectively, these data suggested that the modulation of the AhR pathway may downregulate tumor growth, providing a novel strategy for applications for the treatment of certain tumors through the control of the AhR pathway.
Collapse
Affiliation(s)
- Montserrat Zaragoza-Ojeda
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, México.,Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, México
| | - Elisa Apatiga-Vega
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, México
| | - Francisco Arenas-Huertero
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, México
| |
Collapse
|
25
|
Drug Repurposing in Medulloblastoma: Challenges and Recommendations. Curr Treat Options Oncol 2020; 22:6. [PMID: 33245404 DOI: 10.1007/s11864-020-00805-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
OPINION STATEMENT Medulloblastoma is the most frequently diagnosed primary malignant brain tumor among children. Currently available therapeutic strategies are based on surgical resection, chemotherapy, and/or radiotherapy. However, majority of patients quickly develop therapeutic resistance and are often left with long-term therapy-related side effects and sequelae. Therefore, there remains a dire need to develop more effective therapeutics to overcome the acquired resistance to currently available therapies. Unfortunately, the process of developing novel anti-neoplastic drugs from bench to bedside is highly time-consuming and very expensive. A wide range of drugs that are already in clinical use for treating non-cancerous diseases might commonly target tumor-associated signaling pathways as well and hence be of interest in treating different cancers. This is referred to as drug repurposing or repositioning. In medulloblastoma, drug repurposing has recently gained a remarkable interest as an alternative therapy to overcome therapy resistance, wherein existing non-tumor drugs are being tested for their potential anti-neoplastic effects outside the scope of their original use.
Collapse
|
26
|
Thomaz A, Jaeger M, Brunetto AL, Brunetto AT, Gregianin L, de Farias CB, Ramaswamy V, Nör C, Taylor MD, Roesler R. Neurotrophin Signaling in Medulloblastoma. Cancers (Basel) 2020; 12:E2542. [PMID: 32906676 PMCID: PMC7564905 DOI: 10.3390/cancers12092542] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/11/2022] Open
Abstract
Neurotrophins are a family of secreted proteins that act by binding to tropomyosin receptor kinase (Trk) or p75NTR receptors to regulate nervous system development and plasticity. Increasing evidence indicates that neurotrophins and their receptors in cancer cells play a role in tumor growth and resistance to treatment. In this review, we summarize evidence indicating that neurotrophin signaling influences medulloblastoma (MB), the most common type of malignant brain cancer afflicting children. We discuss the potential of neurotrophin receptors as new therapeutic targets for the treatment of MB. Overall, activation of TrkA and TrkC types of receptors seem to promote cell death, whereas TrkB might stimulate MB growth, and TrkB inhibition displays antitumor effects. Importantly, we show analyses of the gene expression profile of neurotrophins and their receptors in MB primary tumors, which indicate, among other findings, that higher levels of NTRK1 or NTRK2 are associated with reduced overall survival (OS) of patients with SHH MB tumors.
Collapse
Affiliation(s)
- Amanda Thomaz
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil
| | - Mariane Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Algemir L. Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - André T. Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Lauro Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Michael D. Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
27
|
Paul R, Bharambe H, Shirsat NV. Autophagy inhibition impairs the invasion potential of medulloblastoma cells. Mol Biol Rep 2020; 47:5673-5680. [PMID: 32621115 DOI: 10.1007/s11033-020-05603-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/17/2020] [Indexed: 11/28/2022]
Abstract
Medulloblastoma, a highly malignant pediatric brain tumor, consists of four distinct molecular subgroups called WNT, SHH, Group 3, and Group 4 that differ in their clinical characteristics with the WNT subgroup having excellent survival rate. About 1/3rd medulloblastomas have metastasis at the time of diagnosis suggesting, high invasion potential of these tumors. We have earlier reported that the tumor-suppressive role of miR-204 and miR-30a is accompanied by inhibition of autophagy in medulloblastoma cells. In the present study, we have investigated the role of autophagy in medulloblastoma biology. Autophagy was inhibited in the medulloblastoma cell lines belonging to the SHH, Group 3, and Group 4 using the shRNA mediated knockdown of ATG5, an upstream regulator of autophagy. The effect of autophagy inhibition was studied on the growth and malignant behavior of medulloblastoma cells. ATG5 knockdown resulted in the autophagy inhibition in medulloblastoma cells as judged by the reduction in the flux of LC3B, a marker for autophagy. Autophagy inhibition did not result in a significant difference in the proliferation and anchorage-independent growth of the medulloblastoma cells. On the other hand, autophagy inhibition brought about a substantial reduction in the invasion potential of all three medulloblastoma cell lines studied. The present study suggests a therapeutic potential for autophagy inhibitors in the treatment of medulloblastoma. Autophagy inhibitors could be effective in reducing the dose of craniospinal radiation, thereby leading to a significant reduction in the treatment-related side effects.
Collapse
Affiliation(s)
- Raikamal Paul
- Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Harish Bharambe
- Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Neelam Vishwanath Shirsat
- Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India. .,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India.
| |
Collapse
|
28
|
Laneve P, Caffarelli E. The Non-coding Side of Medulloblastoma. Front Cell Dev Biol 2020; 8:275. [PMID: 32528946 PMCID: PMC7266940 DOI: 10.3389/fcell.2020.00275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Abstract
Medulloblastoma (MB) is the most common pediatric brain tumor and a primary cause of cancer-related death in children. Until a few years ago, only clinical and histological features were exploited for MB pathological classification and outcome prognosis. In the past decade, the advancement of high-throughput molecular analyses that integrate genetic, epigenetic, and expression data, together with the availability of increasing wealth of patient samples, revealed the existence of four molecularly distinct MB subgroups. Their further classification into 12 subtypes not only reduced the well-characterized intertumoral heterogeneity, but also provided new opportunities for the design of targets for precision oncology. Moreover, the identification of tumorigenic and self-renewing subpopulations of cancer stem cells in MB has increased our knowledge of its biology. Despite these advancements, the origin of MB is still debated, and its molecular bases are poorly characterized. A major goal in the field is to identify the key genes that drive tumor growth and the mechanisms through which they are able to promote tumorigenesis. So far, only protein-coding genes acting as oncogenic drivers have been characterized in each MB subgroup. The contribution of the non-coding side of the genome, which produces a plethora of transcripts that control fundamental biological processes, as the cell choice between proliferation and differentiation, is still unappreciated. This review wants to fill this major gap by summarizing the recent findings on the impact of non-coding RNAs in MB initiation and progression. Furthermore, their potential role as specific MB biomarkers and novel therapeutic targets is also highlighted.
Collapse
Affiliation(s)
- Pietro Laneve
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Elisa Caffarelli
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| |
Collapse
|
29
|
Heme Oxygenase-1 in Central Nervous System Malignancies. J Clin Med 2020; 9:jcm9051562. [PMID: 32455831 PMCID: PMC7290325 DOI: 10.3390/jcm9051562] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/23/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022] Open
Abstract
Central nervous system tumors are the most common pediatric solid tumors and account for 20–25% of all childhood malignancies. Several lines of evidence suggest that brain tumors show altered redox homeostasis that triggers the activation of various survival pathways, leading to disease progression and chemoresistance. Among these pathways, heme oxygenase-1 (HO-1) plays an important role. HO-1 catalyzes the enzymatic degradation of heme with the simultaneous release of carbon monoxide (CO), ferrous iron (Fe2+), and biliverdin. The biological effects of HO-1 in tumor cells have been shown to be cell-specific since, in some tumors, its upregulation promotes cell cycle arrest and cellular death, whereas, in other neoplasms, it is associated with tumor survival and progression. This review focuses on the role of HO-1 in central nervous system malignancies and the possibility of exploiting such a target to improve the outcome of well-established therapeutic regimens. Finally, several studies show that HO-1 overexpression is involved in the development and resistance of brain tumors to chemotherapy and radiotherapy, suggesting the use of HO-1 as an innovative therapeutic target to overcome drug resistance. The following keywords were used to search the literature related to this topic: nuclear factor erythroid 2 p45-related factor 2, heme oxygenase, neuroblastoma, medulloblastoma, meningioma, astrocytoma, oligodendroglioma, glioblastoma multiforme, and gliomas.
Collapse
|
30
|
Kanchan RK, Perumal N, Atri P, Chirravuri Venkata R, Thapa I, Klinkebiel DL, Donson AM, Perry D, Punsoni M, Talmon GA, Coulter DW, Boue' DR, Snuderl M, Nasser MW, Batra SK, Vibhakar R, Mahapatra S. MiR-1253 exerts tumor-suppressive effects in medulloblastoma via inhibition of CDK6 and CD276 (B7-H3). Brain Pathol 2020; 30:732-745. [PMID: 32145124 PMCID: PMC7383594 DOI: 10.1111/bpa.12829] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Of the four primary subgroups of medulloblastoma, the most frequent cytogenetic abnormality, i17q, distinguishes Groups 3 and 4 which carry the highest mortality; haploinsufficiency of 17p13.3 is a marker for particularly poor prognosis. At the terminal end of this locus lies miR-1253, a brain-enriched microRNA that regulates bone morphogenic proteins during cerebellar development. We hypothesized miR-1253 confers novel tumor-suppressive properties in medulloblastoma. Using two different cohorts of medulloblastoma samples, we first studied the expression and methylation profiles of miR-1253. We then explored the anti-tumorigenic properties of miR-1253, in parallel with a biochemical analysis of apoptosis and proliferation, and isolated oncogenic targets using high-throughput screening. Deregulation of miR-1253 expression was noted, both in medulloblastoma clinical samples and cell lines, by epigenetic silencing via hypermethylation; specific de-methylation of miR-1253 not only resulted in rapid recovery of expression but also a sharp decline in tumor cell proliferation and target gene expression. Expression restoration also led to a reduction in tumor cell virulence, concomitant with activation of apoptotic pathways, cell cycle arrest and reduction of markers of proliferation. We identified two oncogenic targets of miR-1253, CDK6 and CD276, whose silencing replicated the negative trophic effects of miR-1253. These data reveal novel tumor-suppressive properties for miR-1253, i.e., (i) loss of expression via epigenetic silencing; (ii) negative trophic effects on tumor aggressiveness; and (iii) downregulation of oncogenic targets.
Collapse
Affiliation(s)
- Ranjana K Kanchan
- Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE
| | - Naveenkumar Perumal
- Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE
| | - Pranita Atri
- Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE
| | | | - Ishwor Thapa
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE
| | - David L Klinkebiel
- Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE
| | - Andrew M Donson
- Morgan Adams Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Denver, CO
| | - Deborah Perry
- Department of Pathology, Children's Hospital and Medical Center, Omaha, NE
| | - Michael Punsoni
- Department of Pathology, University of Nebraska Medical Center, Omaha, NE
| | - Geoffrey A Talmon
- Department of Pathology, University of Nebraska Medical Center, Omaha, NE
| | - Donald W Coulter
- Department of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE
| | - Daniel R Boue'
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital and the Ohio State University, Columbus, OH
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, NY
| | - Mohd W Nasser
- Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE
| | - Surinder K Batra
- Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE
| | - Rajeev Vibhakar
- Morgan Adams Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Denver, CO
| | - Sidharth Mahapatra
- Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE.,Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
31
|
Bahmad HF, Poppiti RJ. Medulloblastoma cancer stem cells: molecular signatures and therapeutic targets. J Clin Pathol 2020; 73:243-249. [PMID: 32034059 DOI: 10.1136/jclinpath-2019-206246] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
Medulloblastoma (MB) is the most common malignant primary intracranial neoplasm diagnosed in childhood. Although numerous efforts have been made during the past few years to exploit novel targeted therapies for this aggressive neoplasm, there still exist substantial hitches hindering successful management of MB. Lately, progress in cancer biology has shown evidence that a subpopulation of cells within the tumour, namely cancer stem cells (CSCs), are thought to be responsible for the resistance to most chemotherapeutic agents and radiation therapy, accounting for cancer recurrence. Hence, it is crucial to identify the molecular signatures and genetic aberrations that characterise those CSCs and develop therapies that specifically target them. In this review, we aim to give an overview of the main genetic and molecular cues that depict MB-CSCs and provide a synopsis of the novel therapeutic approaches that specifically target this population of cells to attain enhanced antitumorous effects and therefore overcome resistance to therapy.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Arkadi M Rywlin MD Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, Florida, USA.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Robert J Poppiti
- Arkadi M Rywlin MD Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, Florida, USA .,Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| |
Collapse
|
32
|
Spiombi E, Angrisani A, Fonte S, De Feudis G, Fabretti F, Cucchi D, Izzo M, Infante P, Miele E, Po A, Di Magno L, Magliozzi R, Guardavaccaro D, Maroder M, Canettieri G, Giannini G, Ferretti E, Gulino A, Di Marcotullio L, Moretti M, De Smaele E. KCTD15 inhibits the Hedgehog pathway in Medulloblastoma cells by increasing protein levels of the oncosuppressor KCASH2. Oncogenesis 2019; 8:64. [PMID: 31685809 PMCID: PMC6828672 DOI: 10.1038/s41389-019-0175-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant childhood brain tumor. About 30% of all MBs belong to the I molecular subgroup, characterized by constitutive activation of the Sonic Hedgehog (Hh) pathway. The Hh pathway is involved in several fundamental processes during embryogenesis and in adult life and its deregulation may lead to cerebellar tumorigenesis. Indeed, Hh activity must be maintained via a complex network of activating and repressor signals. One of these repressor signals is KCASH2, belonging to the KCASH family of protein, which acts as negative regulators of the Hedgehog signaling pathway during cerebellar development and differentiation. KCASH2 leads HDAC1 to degradation, allowing hyperacetylation and inhibition of transcriptional activity of Gli1, the main effector of the Hh pathway. In turn, the KCASH2 loss leads to persistent Hh activity and eventually tumorigenesis. In order to better characterize the physiologic role and modulation mechanisms of KCASH2, we have searched through a proteomic approach for new KCASH2 interactors, identifying Potassium Channel Tetramerization Domain Containing 15 (KCTD15). KCTD15 is able to directly interact with KCASH2, through its BTB/POZ domain. This interaction leads to increase KCASH2 stability which implies a reduction of the Hh pathway activity and a reduction of Hh-dependent MB cells proliferation. Here we report the identification of KCTD15 as a novel player in the complex network of regulatory proteins, which modulate Hh pathway, this could be a promising new target for therapeutic approach against MB.
Collapse
Affiliation(s)
- Eleonora Spiombi
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090, Segrate, Milan, Italy
| | - Annapaola Angrisani
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Simone Fonte
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Giuseppina De Feudis
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy.,Department of Experimental Oncology, European Institute of Oncology, 20139, Milan, Italy
| | - Francesca Fabretti
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Danilo Cucchi
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy.,Barts Cancer Institute, Queen Mary University of London, Centre for Molecular Oncology, John Vane Science Center, London, EC1M 6BQ, UK
| | - Mariapaola Izzo
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - Paola Infante
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - Evelina Miele
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy.,Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Agnese Po
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Laura Di Magno
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | | | | | - Marella Maroder
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University, 00161, Rome, Italy
| | - Alberto Gulino
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Marta Moretti
- Department of Experimental Medicine, Sapienza University, 00161, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University, 00161, Rome, Italy.
| |
Collapse
|
33
|
Xu XH, Zhang SJ, Hu QB, Song XY, Pan W. Retracted: Effects of microRNA-494 on proliferation, migration, invasion, and apoptosis of medulloblastoma cells by mediating c-myc through the p38 MAPK signaling pathway. J Cell Biochem 2019; 120:2594-2606. [PMID: 30304554 DOI: 10.1002/jcb.27559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 08/06/2018] [Indexed: 02/02/2023]
Abstract
Medulloblastoma (MB) is the most prevalent brain tumor that occurs during childhood and originates from cerebellar granule cell precursors. Based on recent studies, the differential expression of several microRNAs is involved in MB, while the role of microRNA-494 (miR-494) in MB remains unclear. Therefore, we conducted this study to investigate the regulative role of miR-494 in MB cells via the p38 mitogen-activated protein kinase (MAPK) signaling pathway by mediating c-myc. In the current study, MB cells were collected and transfected with miR-494 mimic, miR-494 inhibitor, siRNA- c-myc, and miR-494 inhibitor + siRNA-c-myc. The expressions of miR-494, c-myc, p38 MAPK, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), interleukin-6 (IL-6), metadherin (MTDH), phosphatase and tensin homolog (PTEN) and survivin were determined. Cell proliferation, cell-cycle distribution, apoptosis, migration, and invasion were evaluated. The results revealed that there was a poor expression of miR-494 and high expression of c-myc in MB tissues. C-myc was determined as the target gene of miR-494. In response to miR-494 mimic, MB cells were found to have increased Bax and PTEN expressions, as well as cell number in G1 phase and cell apoptosis and decreased c-myc, p38 MAPK, Bcl-2, MTDH, IL-6, and survivin expression and cell number count in the S phase, cell proliferation, migration, and invasion. In conclusion, the results demonstrated that the upregulation of miR-494 results in the suppression of cell proliferation, migration, and invasion, while it promotes apoptosis of MB cells through the negative mediation of c-myc, which in turn inactivates the p38 MAPK pathway.
Collapse
Affiliation(s)
- Xiao-Heng Xu
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun, China
| | - Si-Jin Zhang
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun, China
| | - Qi-Bo Hu
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun, China
| | - Xing-Yu Song
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun, China
| | - Wei Pan
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
34
|
Shaabanpour Aghamaleki F, Mollashahi B, Aghamohammadi N, Rostami N, Mazloumi Z, Mirzaei H, Moradi A, Sheikhpour M, Movafagh A. Bioinformatics Analysis of Key Genes and Pathways for Medulloblastoma as a Therapeutic Target. Asian Pac J Cancer Prev 2019; 20:221-227. [PMID: 30678435 PMCID: PMC6485566 DOI: 10.31557/apjcp.2019.20.1.221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Introduction: One of the major challenges in cancer treatment is the lack of specific and accurate treatment in cancer. Data analysis can help to understand the underlying molecular mechanism that leads to better treatment. Increasing availability and reliability of DNA microarray data leads to increase the use of these data in a variety of cancers. This study aimed at applying and evaluating microarray data analyzing, identification of important pathways and gene network for medulloblastoma patients to improve treatment approaches especially target therapy. Methods: In the current study, Microarray gene expression data (GSE50161) were extracted from Geo datasets and then analyzed by the affylmGUI package to predict and investigate upregulated and downregulated genes in medulloblastoma. Then, the important pathways were determined by using software and gene enrichment analyses. Pathways visualization and network analyses were performed by Cytoscape. Results: A total number of 249 differentially expressed genes (DEGs) were identified in medulloblastoma compared to normal samples. Cell cycle, p53, and FoxO signaling pathways were indicated in medulloblastoma, and CDK1, CCNB1, CDK2, and WEE1 were identified as some of the important genes in the medulloblastoma. Conclusion: Identification of critical and specific pathway in any disease, in our case medulloblastoma, can lead us to better clinical management and accurate treatment and target therapy.
Collapse
Affiliation(s)
- Fateme Shaabanpour Aghamaleki
- Department of Cellular-Molecular Biology, Faculty of Biological Sciences and Technologies, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Krishnankutty R, Iskandarani A, Therachiyil L, Uddin S, Azizi F, Kulinski M, Bhat AA, Mohammad RM. Anticancer Activity of Camel Milk via Induction of Autophagic Death in Human Colorectal and Breast Cancer Cells. Asian Pac J Cancer Prev 2018; 19:3501-3509. [PMID: 30583676 PMCID: PMC6428541 DOI: 10.31557/apjcp.2018.19.12.3501] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/27/2018] [Indexed: 01/07/2023] Open
Abstract
Background/ Objective: Camel milk is traditionally known for its human health benefits and believed to be a remedy for various human ailments including cancer. The study was aimed to evaluate the inhibitory effects of commercially available camel milk on cancer cells and its underlying mechanism(s). Materials and Methods: Two cell lines: colorectal cancer HCT 116 and breast cancer MCF-7 were cultured with different doses of camel milk. The effects of camel milk on cell death were determined by MTT assay, viability by trypan blue exclusion assay and migration by in vitro scratch assay. The mechanism was elucidated by western blotting and confocal microscopy was used to confirm autophagy. Results: Camel milk significantly reduced proliferation, viability as well as migration of both the cells. The accumulation of LC3-II protein along with reduction in expression of p62 and Atg 5-12, the autophagy proteins implied induction of autophagy. The (GFP)-LC3 puncta detected by confocal microscopy confirmed the autophagosome formation in response to camel milk treatment. Conclusion: Camel milk exerted antiproliferative effects on human colorectal HCT 116 and breast MCF-7 cancer cells by inducing autophagy.
Collapse
Affiliation(s)
- Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, State of Qatar.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Pediatric brain tumors are the primary cause of cancer-related death during childhood. Unfortunately, the number of primary and metastatic brain tumors is steadily increasing while the mortality rates for many central nervous system (CNS) lesions have remained stagnant. Molecularly defined tumor classes have been added to the most recent 2016 World Health Organization (WHO) Classification System of Central Nervous System Brain Tumors, driving potential new treatments and identifying targets to improve survival for these patients. Focusing on the genetic mutations most commonly seen in the pediatric CNS tumor population provides the ability to better define tumors based on shared molecular characteristics. Consequently, there is the potential for greater efficacy in targeted therapy to treat these identified genetic aberrations. Understanding the growing importance of molecular diagnosis in pediatric CNS tumors is vital to successfully using novel targeted therapies and improving patient outcomes.
Collapse
|
37
|
Molecular characterization of Wnt pathway and function of β-catenin overexpression in medulloblastoma cell lines. Cytotechnology 2018; 70:1713-1722. [PMID: 30374857 DOI: 10.1007/s10616-018-0260-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/17/2018] [Indexed: 02/07/2023] Open
Abstract
Medulloblastoma (MB) is the most common malignant childhood brain tumor. MB is currently classified into four molecular subgroups (Wnt, Shh, Group 3, and Group 4). The wingless (Wnt) pathway is responsible for embryonic development and is deregulated in MB. We analyzed the activation of the Wnt pathway in MB cell lines and its correlation with the Shh pathway, with emphasis on the importance of cellular characterization. Transient β-catenin transfection led to an increase in the β-catenin gene and protein expression in MB cell lines. Wnt pathway activation resulted in a reduced number of colonies in all cell lines studied and a significant increase in the G2/M cell cycle phase only in ONS-76 cells. Regarding the Shh pathway, transfection caused a reduced expression of the PTCH1 and SMO genes only in the UW473 cells. Further studies are needed to understand the mechanism underlying the molecular events associated with the effects of Wnt activation in MB.
Collapse
|
38
|
Okolie O, Irvin DM, Bago JR, Sheets K, Satterlee A, Carey-Ewend AG, Lettry V, Dumitru R, Elton S, Ewend MG, Miller CR, Hingtgen SD. Intra-cavity stem cell therapy inhibits tumor progression in a novel murine model of medulloblastoma surgical resection. PLoS One 2018; 13:e0198596. [PMID: 29990322 PMCID: PMC6038981 DOI: 10.1371/journal.pone.0198596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 05/22/2018] [Indexed: 12/02/2022] Open
Abstract
Background Cytotoxic neural stem cells (NSCs) have emerged as a promising treatment for Medulloblastoma (MB), the most common malignant primary pediatric brain tumor. The lack of accurate pre-clinical models incorporating surgical resection and tumor recurrence limits advancement in post-surgical MB treatments. Using cell lines from two of the 5 distinct MB molecular sub-groups, in this study, we developed an image-guided mouse model of MB surgical resection and investigate intra-cavity NSC therapy for post-operative MB. Methods Using D283 and Daoy human MB cells engineered to express multi-modality optical reporters, we created the first image-guided resection model of orthotopic MB. Brain-derived NSCs and novel induced NSCs (iNSCs) generated from pediatric skin were engineered to express the pro-drug/enzyme therapy thymidine kinase/ganciclovir, seeded into the post-operative cavity, and used to investigate intra-cavity therapy for post-surgical MB. Results We found that surgery reduced MB volumes by 92%, and the rate of post-operative MB regrowth increased 3-fold compared to pre-resection growth. Real-time imaging showed NSCs rapidly homed to MB, migrating 1.6-fold faster and 2-fold farther in the presence of tumors, and co-localized with MB present in the contra-lateral hemisphere. Seeding of cytotoxic NSCs into the post-operative surgical cavity decreased MB volumes 15-fold and extended median survival 133%. As an initial step towards novel autologous therapy in human MB patients, we found skin-derived iNSCs homed to MB cells, while intra-cavity iNSC therapy suppressed post-surgical tumor growth and prolonged survival of MB-bearing mice by 123%. Conclusions We report a novel image-guided model of MB resection/recurrence and provide new evidence of cytotoxic NSCs/iNSCs delivered into the surgical cavity effectively target residual MB foci.
Collapse
Affiliation(s)
- Onyinyechukwu Okolie
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David M. Irvin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Neuroscience Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Juli R. Bago
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kevin Sheets
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Andrew Satterlee
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Abigail G. Carey-Ewend
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Vivien Lettry
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Raluca Dumitru
- UNC Human Pluripotent Stem Cell Core, Genetics Department, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Scott Elton
- Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Matthew G. Ewend
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - C. Ryan Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Neuroscience Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC Neuroscience Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shawn D. Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC Neuroscience Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
39
|
Totapally BR, Shah AH, Niazi T. Epidemiology and short-term surgical outcomes of children presenting with cerebellar tumors. Clin Neurol Neurosurg 2018. [PMID: 29533850 DOI: 10.1016/j.clineuro.2018.02.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Posterior fossa tumor surgery in children poses a significant morbidity and mortality. Large multi-institutional datasets characterizing the epidemiology and morbidity of children undergoing posterior fossa tumor surgery are lacking. The objective of this study is to describe the epidemiology and short term surgical outcomes of children presenting with cerebellar tumors. PATIENTS AND METHODS A retrospective review of the Kids Inpatient Database (KID) for all hospital discharges in 2012 with a diagnosis of cerebellar tumor (ICD-9 diagnosis code 191.6) was performed and filtered with the ICD-9 procedure code 01.59 (other excision or destruction of lesion or tissue of brain). All children in this cohort were compared with all other children discharged without cerebellar tumors recorded in the database. RESULTS A total of 461 (1.7/10,000 discharges) children with a diagnosis of cerebellar tumor who had surgical resection of their tumor were discharged during 2012. Compared with the control group, children undergoing cerebellar tumor excision had an increased length of hospital stay (8 vs. 2 days, p < 0.001), discharge to skilled nursing home facilities/home health care (12% vs. 4.6%, p < 0.001), increased hospital charges ($125,747 vs. $14,018, p < 0.001), and mortality (0.87% vs. 0.3%, p = 0.028). Hydrocephalus was treated via external ventriculostomy (EVD) (31%, n = 143) and/or shunt (17%, n = 78), and patients who required an EVD were more likely to receive a shunt (56% vs. 26%, p < 0.001). Mechanical ventilation (7.8%) and ultimately tracheostomy (1.5%) was necessary in few children following cerebellar tumor excision. CONCLUSIONS As expected, surgical treatment of cerebellar tumors in children may pose significant morbidity. Our exploratory study identifies these patients as a potential high-risk cohort in the United States that may require intensive airway management, treatment of hydrocephalus and long-term nursing support.
Collapse
Affiliation(s)
- Balagangadhar R Totapally
- Division of Critical Care Medicine, Nicklaus Children's Hospital, Miami, FL, 33155, United States; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, United States.
| | - Ashish H Shah
- Division of Neurosurgery, Nicklaus Children's Hospital, Miami, FL, 33155, United States; Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, 33133, United States
| | - Toba Niazi
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, United States; Division of Neurosurgery, Nicklaus Children's Hospital, Miami, FL, 33155, United States; Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, 33133, United States
| |
Collapse
|
40
|
Yoon JH, Park KD, Kang HJ, Kim H, Lee JW, Kim SK, Wang KC, Park SH, Kim IH, Shin HY. Treatment of pediatric average-risk medulloblastoma using craniospinal irradiation less than 2500 cGy and chemotherapy: single center experience in Korea. World J Pediatr 2017; 13:367-373. [PMID: 28550392 DOI: 10.1007/s12519-017-0044-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/30/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Although craniospinal irradiation (CSI) of 2340 cGy plus tumor booster with chemotherapy have been established as a standard treatment of childhood average-risk (AvR) medulloblastoma (MBL) in Western counties, there are a few recent reports in outcomes of AvR MBL using this strategy in Korean and other Asian children. We investigated the outcome of the Korean children with AvR MBL who were treated with CSI <2500 cGy and chemotherapy. METHODS Between January 2001 and December 2010, clinical characteristics and outcomes of 42 patients who were diagnosed with AvR MBL postoperatively and treated with radiation including CSI <2500 cGy and chemotherapy in Seoul National University Children's Hospital were analyzed. RESULTS Their median age was 9 years (range: 3-18.8), and 29 were male. Histological subtypes were classic type in 28 patients, nodular/desmoplastic in 7, and large cell/anaplastic (LCA) in 7. All the patients received adjuvant radiotherapy (CSI with median 2340 cGy and booster) and multiagent chemotherapy as the first-line treatment. With a median follow-up of 54 months, 12 patients experienced relapse or progression of the tumor. The 3- and 5-year disease-free survival (DFS) rates were 78.0%±6.5% and 75.0%±6.9%, respectively, and overall survival (OS) rates were 85.3%±5.6% and 76.8%±6.9%, respectively. The LCA subtype was associated with poorer DFS (P=0.023) and OS (P=0.008), compared with non-LCA subtypes. CONCLUSIONS The outcomes of children and adolescents with AvR MBL treated with radiation including CSI <2500 cGy and chemotherapy, are compatible to those in Western countries; however, the LCA subtype has a poor outcome with this strategy.
Collapse
Affiliation(s)
- Jong Hyung Yoon
- Department of Pediatrics, Cancer Research Institute, New York, USA.,Department of Pediatrics, Hallym University College of medicine, Chuncheon Sacred Heart Hospital, Chuncheon, Korea
| | - Kyung Duk Park
- Department of Pediatrics, Cancer Research Institute, New York, USA
| | - Hyoung Jin Kang
- Department of Pediatrics, Cancer Research Institute, New York, USA
| | - Hyery Kim
- Department of Pediatrics, Cancer Research Institute, New York, USA
| | - Ji Won Lee
- Department of Pediatrics, Cancer Research Institute, New York, USA
| | - Seung-Ki Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Kyu-Chang Wang
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Il Han Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Young Shin
- Department of Pediatrics, Cancer Research Institute, New York, USA. .,Division of Hematology/Oncology, Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
41
|
Zhan M, Sun X, Liu J, Li Y, Li Y, He X, Zhou Z, Lu L. Usp7 promotes medulloblastoma cell survival and metastasis by activating Shh pathway. Biochem Biophys Res Commun 2017; 484:429-434. [PMID: 28137592 DOI: 10.1016/j.bbrc.2017.01.144] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 01/25/2017] [Indexed: 11/24/2022]
Abstract
The ubiquitin-specific protease Usp7 plays roles in multiple cellular processes through deubiquitinating and stabilizing numerous substrates, including P53, Pten and Gli. Aberrant Usp7 activity has been implicated in many disorders and tumorigenesis, making it as a potential target for therapeutic intervention. Although it is clear that Usp7 is involved in many types of cancer, its role in regulating medulloblastoma (MB) is still unknown. In this study, we show that knockdown of Usp7 inhibits the proliferation and migration of MB cells, while Usp7 overexpression exerts an opposite effect. Furthermore, we establish Usp7 knockout MB cell line using the CRISPR/Cas9 system and further confirm that Usp7 knockout also blocks MB cell proliferation and metastasis. In addition, we reveal that knockdown of Usp7 compromises Shh pathway activity and decrease Gli protein levels, while P53 level and P53 target gene expression have no obvious changes. Finally, we find that Usp7 inhibitors apparently inhibit MB cell viability and migration. Taken together, our findings suggest that Usp7 is important for MB cell proliferation and metastasis by activating Shh pathway, and is a putative therapeutic target for MBs.
Collapse
Affiliation(s)
- Meixiao Zhan
- Department of Interventional Oncology, Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Jinan University, Zhuhai, China
| | - Xiaohan Sun
- College of Life Sciences, Shandong Agricultural University, Taian, Shangdong, China
| | - Jinxiao Liu
- College of Life Sciences, Shandong Agricultural University, Taian, Shangdong, China
| | - Yan Li
- College of Life Sciences, Shandong Agricultural University, Taian, Shangdong, China
| | - Yong Li
- Department of Interventional Oncology, Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Jinan University, Zhuhai, China
| | - Xu He
- Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Jinan University, Zhuhai, China
| | - Zizhang Zhou
- College of Life Sciences, Shandong Agricultural University, Taian, Shangdong, China.
| | - Ligong Lu
- Department of Interventional Oncology, Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Jinan University, Zhuhai, China.
| |
Collapse
|
42
|
Ginn KF, Fangman B, Terai K, Wise A, Ziazadeh D, Shah K, Gartrell R, Ricke B, Kimura K, Mathur S, Borrego-Diaz E, Farassati F. RalA is overactivated in medulloblastoma. J Neurooncol 2016; 130:99-110. [PMID: 27566179 DOI: 10.1007/s11060-016-2236-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/21/2016] [Indexed: 12/18/2022]
Abstract
Medulloblastoma (MDB) represents a major form of malignant brain tumors in the pediatric population. A vast spectrum of research on MDB has advanced our understanding of the underlying mechanism, however, a significant need still exists to develop novel therapeutics on the basis of gaining new knowledge about the characteristics of cell signaling networks involved. The Ras signaling pathway, one of the most important proto-oncogenic pathways involved in human cancers, has been shown to be involved in the development of neurological malignancies. We have studied an important effector down-stream of Ras, namely RalA (Ras-Like), for the first time and revealed overactivation of RalA in MDB. Affinity precipitation analysis of active RalA (RalA-GTP) in eight MDB cell lines (DAOY, RES256, RES262, UW228-1, UW426, UW473, D283 and D425) revealed that the majority contained elevated levels of active RalA (RalA-GTP) as compared with fetal cerebellar tissue as a normal control. Additionally, total RalA levels were shown to be elevated in 20 MDB patient samples as compared to normal brain tissue. The overall expression of RalA, however, was comparable in cancerous and normal samples. Other important effectors of RalA pathway including RalA binding protein-1 (RalBP1) and protein phosphatase A (PP2A) down-stream of Ral and Aurora kinase A (AKA) as an upstream RalA activator were also investigated in MDB. Considering the lack of specific inhibitors for RalA, we used gene specific silencing in order to inhibit RalA expression. Using a lentivirus expressing anti-RalA shRNA we successfully inhibited RalA expression in MDB and observed a significant reduction in proliferation and invasiveness. Similar results were observed using inhibitors of AKA and geranyl-geranyl transferase (non-specific inhibitors of RalA signaling) in terms of loss of in vivo tumorigenicity in heterotopic nude mouse model. Finally, once tested in cells expressing CD133 (a marker for MDB cancer stem cells), higher levels of RalA activation was observed. These data not only bring RalA to light as an important contributor to the malignant phenotype of MDB but introduces this pathway as a novel target in the treatment of this malignancy.
Collapse
Affiliation(s)
- Kevin F Ginn
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA.,Division of Hematology and Oncology, Children's Mercy Hospital and Clinics, Kansas City, MO, USA
| | - Ben Fangman
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Kaoru Terai
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Amanda Wise
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Daniel Ziazadeh
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Kushal Shah
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Robyn Gartrell
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Brandon Ricke
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Kyle Kimura
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Sharad Mathur
- Research Service (151), Kansas City Veteran Affairs Medical Center & Midwest Biomedical Research Foundation-Saint Luke's Marion Bloch Brain Tumor Research Program, 4801 E Linwood Blvd, F5-123, Kansas City, MO, 64128, USA
| | - Emma Borrego-Diaz
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Faris Farassati
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA. .,Research Service (151), Kansas City Veteran Affairs Medical Center & Midwest Biomedical Research Foundation-Saint Luke's Marion Bloch Brain Tumor Research Program, 4801 E Linwood Blvd, F5-123, Kansas City, MO, 64128, USA.
| |
Collapse
|
43
|
Bassani B, Bartolini D, Pagani A, Principi E, Zollo M, Noonan DM, Albini A, Bruno A. Fenretinide (4-HPR) Targets Caspase-9, ERK 1/2 and the Wnt3a/β-Catenin Pathway in Medulloblastoma Cells and Medulloblastoma Cell Spheroids. PLoS One 2016; 11:e0154111. [PMID: 27367907 PMCID: PMC4930187 DOI: 10.1371/journal.pone.0154111] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/08/2016] [Indexed: 12/11/2022] Open
Abstract
Medulloblastoma (MB), a neuroectodermal tumor arising in the cerebellum, represents the most frequent childhood brain malignancy. Current treatments for MB combine radiation and chemotherapy and are often associated with relevant side effects; novel therapeutic strategies are urgently needed. N-(4-Hydroxyphenyl) retinamide (4-HPR, fenretinide), a synthetic analogue of all-trans retinoic acid, has emerged as a promising and well-tolerated cancer chemopreventive and chemotherapeutic agent for various neoplasms, from breast cancer to neuroblastoma. Here we investigated the effects of 4-HPR on MB cell lines and identified the mechanism of action for a potential use in therapy of MB. Flow cytometry analysis was performed to evaluate 4-HPR induction of apoptosis and oxygen reactive species (ROS) production, as well as cell cycle effects. Functional analysis to determine 4-HPR ability to interfere with MB cell migration and invasion were performed. Western Blot analysis were used to investigate the crucial molecules involved in selected signaling pathways associated with apoptosis (caspase-9 and PARP-1), cell survival (ERK 1/2) and tumor progression (Wnt3a and β-catenin). We show that 4-HPR induces caspase 9-dependent cell death in DAOY and ONS-76 cells, associated with increased ROS generation, suggesting that free radical intermediates might be directly involved. We observed 4-HPR induction of cell cycle arrest in G1/S phase, inactivated β-catenin, and inhibition of MB cell migration and invasion. We also evaluated the ability of 4-HPR to target MB cancer-stem/cancer-initiating cells, using an MB spheroids model, followed by flow cytometry and quantitative real-time PCR. 4-HPR treatment reduced DAOY and ONS-76 spheroid formation, in term of number and size. Decreased expression of the surface markers CD133+ and ABCG2+ as well as Oct-4 and Sox-2 gene expression were observed on BTICs treated with 4-HPR further reducing BITIC invasive activities. Finally, we analyzed 4-HPR ability to inhibit MB tumor cell growth in vivo in nude mice. Taken together, our data suggest that 4-HPR targets both parental and MB tumor stem/initiating cell-like populations. Since 4-HPR exerts low toxicity, it could represent a valid compound in the treatment of human MB.
Collapse
Affiliation(s)
- Barbara Bassani
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
| | | | - Arianna Pagani
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
| | - Elisa Principi
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Ceinge Biotecnologie Avanzate, Naples, Italy
| | - Douglas M. Noonan
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Adriana Albini
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
- * E-mail:
| | - Antonino Bruno
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
| |
Collapse
|
44
|
Yin JJ, Zhou Q, Wang L, Xu W, Zhang JL. Protective effect of extract ofMauremys muticaagainst cyclophosphamide (CY)-induced suppression of immune function in mice. FOOD AGR IMMUNOL 2016. [DOI: 10.1080/09540105.2016.1148122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
45
|
Geron L, Borges KS, Andrade AF, Suazo VK, Scrideli CA, Tone LG. Antitumour activity of AMG 900 alone or in combination with histone deacetylase inhibitor SaHa on medulloblastoma cell lines. Neurol Res 2015; 37:703-11. [PMID: 26000978 DOI: 10.1179/1743132815y.0000000048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Medulloblastoma (MB) is the most common malignant childhood brain tumour. Aurora kinases are essential for cell division and are primarily active during mitosis. Recently, the combination of aurora kinases inhibitors (iAURK) and histone deacetylase inhibitors (iHDAC) has shown potential antitumour effects and had significant biological effects in preclinical cancer models. In this study, we analysed the effects of the pan-aurora kinases inhibitor AMG 900 alone or in combination with the iHDAC SaHa (Vorinostat) on paediatric MB cell lines (UW402, UW473 and ONS-76). METHODS Cell proliferation was measured by XTT assay, apoptosis was determined by flow cytometry and clonogenic capacity was studied. qRT-PCR assays were used to determine the mRNA expression in MB cell lines after treatment. Drug combination analyses were made based on Chou-Talalay method. RESULTS AMG 900 caused the inhibition of cell proliferation, diminution of clonogenic capacity and increased the apoptosis rate in cell lines (P < 0.05). A synergistic effect in the AMG900-SaHa combination was evidenced on the inhibition of cell proliferation in all cell lines, especially in sequential drug treatment. Moreover, the combination of these drugs reached 100% of the inhibition in colony formation (synergistic effect). The treatment with AMG 900 increased the p21 and GDF15 expression, but did not alter the TP53 in one of the cell lines. CONCLUSIONS These results indicate that AMG 900 may be a promising drug for the adjuvant treatment of MB, mainly when combined with iHDAC.
Collapse
|
46
|
Sobral ACL, Neto VM, Traiano G, Percicote AP, Gugelmin ES, de Souza CM, Nakao L, Torres LFB, de Noronha L. Immunohistochemical expression of sulfhydryl oxidase (QSOX1) in pediatric medulloblastomas. Diagn Pathol 2015; 10:37. [PMID: 25908093 PMCID: PMC4414442 DOI: 10.1186/s13000-015-0268-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 04/07/2015] [Indexed: 12/15/2022] Open
Abstract
Background Medulloblastoma is a malignant, invasive embryonal tumor of the cerebellum and accounts for 20% of intracranial tumors in children. QSOX1, whose functions include formation of disulphide bridges, which are needed for correct protein folding and stability, formation of the extracellular matrix, regulation of the redox status and cell cycle control, appears to be involved in apoptosis in pathological states such as cancer. Thus, the aim of this study was to investigate the immunohistochemical expression of QSOX1 in medulloblastomas and nonneoplastic cerebellum. Methods Histology blocks of pediatric medulloblastomas were separated and two representative areas of the tumors and non-neoplastic cerebellum samples were used to construct tissue microarrays (TMAs) that were stained with an anti-QSOX1 antibody, and the slides were read using image analysis software. Results QSOX1 immunoexpression was observed in the non-neoplastic cerebellum samples and the medulloblastoma samples. There was no statistically significant relationship between QSOX1 immunopositivity in the medulloblastoma samples and the clinical and pathological variables. Conclusions Although QSOX1 did not prove useful for stratifying patients into risk groups, tumor cells and the fibrillar extracellular matrix were positive for this marker, indicating that this enzyme may be involved in the pathogenesis of medulloblastoma. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1822040654139436
Collapse
Affiliation(s)
| | | | - Gabriela Traiano
- School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Brazil.
| | - Ana Paula Percicote
- Department of Basic Pathology and Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil.
| | | | - Cleber Machado de Souza
- School of Health and Biosciences, Pontifical Catholic University of Paraná, Curitiba, Brazil.
| | - Lia Nakao
- Department of Basic Pathology and Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil.
| | - Luiz Fernando Bleggi Torres
- Department of Basic Pathology and Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil.
| | - Lucia de Noronha
- School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Brazil.
| |
Collapse
|
47
|
MiR-148a, a microRNA upregulated in the WNT subgroup tumors, inhibits invasion and tumorigenic potential of medulloblastoma cells by targeting Neuropilin 1. Oncoscience 2015; 2:334-48. [PMID: 26097868 PMCID: PMC4468320 DOI: 10.18632/oncoscience.137] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/27/2015] [Indexed: 01/03/2023] Open
Abstract
Medulloblastoma, a common pediatric malignant brain tumor consists of four molecular subgroups viz. WNT, SHH, Group 3 and Group 4. MiR-148a is over-expressed in the WNT subgroup tumors, which have the lowest incidence of metastasis and excellent survival among all medulloblastomas. MiR-148a was expressed either in a transient manner using a synthetic mimic or in a stable doxycycline inducible manner using a lentiviral vector in non-WNT medulloblastoma cell lines. Expression of miR-148a to levels comparable to that in the WNT subgroup tumors was found to inhibit proliferation, clonogenic potential, invasion potential and tumorigenicity of medulloblastoma cells. MiR-148a expression in medulloblastoma cells brought about reduction in the expression of NRP1, a novel miR-148a target. Restoration of NRP1 expression in medulloblastoma cells was found to rescue the reduction in the invasion potential and tumorigenicity brought about by miR-148a expression. NRP1 is known to play role in multiple signaling pathways that promote tumor growth, invasion and metastasis. NRP1 expression in medulloblastomas was found to be associated with poor survival, with little or no expression in majority of the WNT tumors. The tumor suppressive effect of miR-148a expression accompanied by the down-regulation of NRP1 makes miR-148a an attractive therapeutic agent for the treatment of medulloblastomas.
Collapse
|
48
|
Jing J, Zhao Y, Wang C, Zhao Q, Liang Q, Wang S, Ma J. Effect of small nuclear ribonucleoprotein-associated polypeptide N on the proliferation of medulloblastoma cells. Mol Med Rep 2015; 11:3337-43. [PMID: 25571951 PMCID: PMC4368083 DOI: 10.3892/mmr.2015.3148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 10/02/2014] [Indexed: 01/04/2023] Open
Abstract
Spliceosome mutations have been reported in various types of cancer and a number of antitumor drugs have been observed to tightly bind to spliceosome components. Small nuclear ribonucleoprotein-associated polypeptide N (SNRPN) is a small ribonuclear protein and is a key spliceosome constituent. However, the role of SNRPN in human medulloblastoma remains unknown. In the present study, the effect of SNRPN on cell growth was investigated in vitro using the Daoy human medulloblastoma cell line. Lentivirus (Lv)-mediated short hairpin (sh) RNA was used to silence SNRPN expression, which was verified by reverse transcription-quantitative polymerase chain reaction and western blotting. Cell proliferation was examined by MTT and colony formation assays. Knockdown of SNRPN markedly reduced the proliferation and colony formation ability of Daoy medulloblastoma cells. In addition, flow cytometric analysis revealed that the cell cycle distribution was altered when the Daoy cells were infected with Lv-shSNRPN. To the best of our knowledge, this is the first study to investigate the effect of SNRPN on cell proliferation in medulloblastoma. The results indicate that SNRPN may be a potential novel target for the development of pharmacological therapeutics in human medulloblastoma.
Collapse
Affiliation(s)
- Junjie Jing
- Department of Neurosurgery, Fuzhou General Hospital of Nanjing Military Region, Fuzhou, Fujian 350025, P.R. China
| | - Yang Zhao
- Department of Pediatric Neurosurgery, The Affiliated Xinhua Hospital of the Medical College, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Chengfeng Wang
- Department of Pediatrics, Fuzhou General Hospital of Nanjing Military Region, Fuzhou, Fujian 350025, P.R. China
| | - Qingshuang Zhao
- Department of Neurosurgery, Fuzhou General Hospital of Nanjing Military Region, Fuzhou, Fujian 350025, P.R. China
| | - Qinchuan Liang
- Department of Pediatric Neurosurgery, The Affiliated Xinhua Hospital of the Medical College, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Shousen Wang
- Department of Neurosurgery, Fuzhou General Hospital of Nanjing Military Region, Fuzhou, Fujian 350025, P.R. China
| | - Jie Ma
- Department of Pediatric Neurosurgery, The Affiliated Xinhua Hospital of the Medical College, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| |
Collapse
|
49
|
Xiao H, Bid HK, Jou D, Wu X, Yu W, Li C, Houghton PJ, Lin J. A novel small molecular STAT3 inhibitor, LY5, inhibits cell viability, cell migration, and angiogenesis in medulloblastoma cells. J Biol Chem 2014; 290:3418-29. [PMID: 25313399 DOI: 10.1074/jbc.m114.616748] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Signal transducers and activators of transcription 3 (STAT3) signaling is persistently activated and could contribute to tumorigenesis of medulloblastoma. Numerous studies have demonstrated that inhibition of the persistent STAT3 signaling pathway results in decreased proliferation and increased apoptosis in human cancer cells, indicating that STAT3 is a viable molecular target for cancer therapy. In this study, we investigated a novel non-peptide, cell-permeable small molecule, named LY5, to target STAT3 in medulloblastoma cells. LY5 inhibited persistent STAT3 phosphorylation and induced apoptosis in human medulloblastoma cell lines expressing constitutive STAT3 phosphorylation. The inhibition of STAT3 signaling by LY5 was confirmed by down-regulating the expression of the downstream targets of STAT3, including cyclin D1, bcl-XL, survivin, and micro-RNA-21. LY5 also inhibited the induction of STAT3 phosphorylation by interleukin-6 (IL-6), insulin-like growth factor (IGF)-1, IGF-2, and leukemia inhibitory factor in medulloblastoma cells, but did not inhibit STAT1 and STAT5 phosphorylation stimulated by interferon-γ (IFN-γ) and EGF, respectively. In addition, LY5 blocked the STAT3 nuclear localization induced by IL-6, but did not block STAT1 and STAT5 nuclear translocation mediated by IFN-γ and EGF, respectively. A combination of LY5 with cisplatin or x-ray radiation also showed more potent effects than single treatment alone in the inhibition of cell viability in human medulloblastoma cells. Furthermore, LY5 demonstrated a potent inhibitory activity on cell migration and angiogenesis. Taken together, these findings indicate LY5 inhibits persistent and inducible STAT3 phosphorylation and suggest that LY5 is a promising therapeutic drug candidate for medulloblastoma by inhibiting persistent STAT3 signaling.
Collapse
Affiliation(s)
- Hui Xiao
- From the Department of Pediatrics, College of Medicine, Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio 43205 and
| | - Hemant Kumar Bid
- From the Department of Pediatrics, College of Medicine, Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio 43205 and
| | - David Jou
- From the Department of Pediatrics, College of Medicine, Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio 43205 and
| | - Xiaojuan Wu
- From the Department of Pediatrics, College of Medicine, Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio 43205 and
| | - Wenying Yu
- the Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Chenglong Li
- the Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Peter J Houghton
- From the Department of Pediatrics, College of Medicine, Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio 43205 and
| | - Jiayuh Lin
- From the Department of Pediatrics, College of Medicine, Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio 43205 and
| |
Collapse
|
50
|
Revealing the role of SGK1 in the dynamics of medulloblastoma using a mathematical model. J Theor Biol 2014; 354:105-12. [PMID: 24685888 DOI: 10.1016/j.jtbi.2014.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 02/06/2014] [Accepted: 03/16/2014] [Indexed: 11/19/2022]
Abstract
Deregulation of signaling pathways and subsequent abnormal interactions of downstream genes very often results in carcinogenesis. In this paper, we propose a two-compartment model describing intricate dynamics of the target genes of the Wnt signaling pathway in medulloblastoma. The system of nine nonlinear ordinary differential equations accounts for the formation and dissociation of complexes as well as for the transcription, translation and transport between the cytoplasm and the nucleus. We focus on the interplay between MYC and SGK1 (serum and glucocorticoid-inducible kinase 1), which are the products of Wnt/β-catenin signaling pathway, and GSK3β (glycogen synthase kinase). Numerical simulations of the model solutions yield a better understanding of the process and indicate the importance of the SGK1 gene in the development of medulloblastoma, which has been confirmed in our recent experiments. The model is calibrated based on the gene expression microarray data for two types of medulloblastoma, characterized by monosomy and trisomy of chromosome 6q to highlight the difference between diagnoses.
Collapse
|