1
|
Almawash S. Revolutionary Cancer Therapy for Personalization and Improved Efficacy: Strategies to Overcome Resistance to Immune Checkpoint Inhibitor Therapy. Cancers (Basel) 2025; 17:880. [PMID: 40075727 PMCID: PMC11899125 DOI: 10.3390/cancers17050880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains a significant public health issue worldwide, standing as a primary contributor to global mortality, accounting for approximately 10 million fatalities in 2020 [...].
Collapse
Affiliation(s)
- Saud Almawash
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
2
|
Kim J, Pena JV, McQueen HP, Kong L, Michael D, Lomashvili EM, Cook PR. Downstream STING pathways IRF3 and NF-κB differentially regulate CCL22 in response to cytosolic dsDNA. Cancer Gene Ther 2024; 31:28-42. [PMID: 37990062 DOI: 10.1038/s41417-023-00678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/22/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023]
Abstract
Double-stranded DNA (dsDNA) in the cytoplasm of eukaryotic cells is abnormal and typically indicates the presence of pathogens or mislocalized self-DNA. Multiple sensors detect cytosolic dsDNA and trigger robust immune responses via activation of type I interferons. Several cancer immunotherapy treatments also activate cytosolic nucleic acid sensing pathways, including oncolytic viruses, nucleic acid-based cancer vaccines, and pharmacological agonists. We report here that cytosolic dsDNA introduced into malignant cells can robustly upregulate expression of CCL22, a chemokine responsible for the recruitment of regulatory T cells (Tregs). Tregs in the tumor microenvironment are thought to repress anti-tumor immune responses and contribute to tumor immune evasion. Surprisingly, we found that CCL22 upregulation by dsDNA was mediated primarily by interferon regulatory factor 3 (IRF3), a key transcription factor that activates type I interferons. This finding was unexpected given previous reports that type I interferon alpha (IFN-α) inhibits CCL22 and that IRF3 is associated with strong anti-tumor immune responses, not Treg recruitment. We also found that CCL22 upregulation by dsDNA occurred concurrently with type I interferon beta (IFN-β) upregulation. IRF3 is one of two transcription factors downstream of the STimulator of INterferon Genes (STING), a hub adaptor protein through which multiple dsDNA sensors transmit their signals. The other transcription factor downstream of STING, NF-κB, has been reported to regulate CCL22 expression in other contexts, and NF-κB has also been associated with multiple pro-tumor functions, including Treg recruitment. However, we found that NF-κB in the context of activation by cytosolic dsDNA contributed minimally to CCL22 upregulation compared with IRF3. Lastly, we observed that two strains of the same cell line differed profoundly in their capacity to upregulate CCL22 and IFN-β in response to dsDNA, despite apparent STING activation in both cell lines. This finding suggests that during tumor evolution, cells can acquire, or lose, the ability to upregulate CCL22. This study adds to our understanding of factors that may modulate immune activation in response to cytosolic DNA and has implications for immunotherapy strategies that activate DNA sensing pathways in cancer cells.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Jocelyn V Pena
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Hannah P McQueen
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Lingwei Kong
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Dina Michael
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Elmira M Lomashvili
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Pamela R Cook
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| |
Collapse
|
3
|
Yang J, Bae H. Drug conjugates for targeting regulatory T cells in the tumor microenvironment: guided missiles for cancer treatment. Exp Mol Med 2023; 55:1996-2004. [PMID: 37653036 PMCID: PMC10545761 DOI: 10.1038/s12276-023-01080-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 09/02/2023] Open
Abstract
Within the tumor microenvironment (TME), regulatory T cells (Tregs) play a key role in suppressing anticancer immune responses; therefore, various strategies targeting Tregs are becoming important for tumor therapy. To prevent the side effects of nonspecific Treg depletion, such as immunotherapy-related adverse events (irAEs), therapeutic strategies that specifically target Tregs in the TME are being investigated. Tumor-targeting drug conjugates are efficient drugs in which a cytotoxic payload is assembled into a carrier that binds Tregs via a linker. By allowing the drug to act selectively on target cells, this approach has the advantage of increasing the therapeutic effect and minimizing the side effects of immunotherapy. Antibody-drug conjugates, immunotoxins, peptide-drug conjugates, and small interfering RNA conjugates are being developed as Treg-targeting drug conjugates. In this review, we discuss key themes and recent advances in drug conjugates targeting Tregs in the TME, as well as future design strategies for successful use of drug conjugates for Treg targeting in immunotherapy.
Collapse
Affiliation(s)
- Juwon Yang
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyunsu Bae
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Zhao Y, Guo R, Cao X, Zhang Y, Sun R, Lu W, Zhao M. Role of chemokines in T-cell acute lymphoblastic Leukemia: From pathogenesis to therapeutic options. Int Immunopharmacol 2023; 121:110396. [PMID: 37295031 DOI: 10.1016/j.intimp.2023.110396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/11/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a highly heterogeneous and aggressive subtype of hematologic malignancy, with limited therapeutic options due to the complexity of its pathogenesis. Although high-dose chemotherapy and allogeneic hematopoietic stem cell transplantation have improved outcomes for T-ALL patients, there remains an urgent need for novel treatments in cases of refractory or relapsed disease. Recent research has demonstrated the potential of targeted therapies aimed at specific molecular pathways to improve patient outcomes. Chemokine-related signals, both upstream and downstream, modulate the composition of distinct tumor microenvironments, thereby regulating a multitude of intricate cellular processes such as proliferation, migration, invasion and homing. Furthermore, the progress in research has made significant contributions to precision medicine by targeting chemokine-related pathways. This review article summarizes the crucial roles of chemokines and their receptors in T-ALL pathogenesis. Moreover, it explores the advantages and disadvantages of current and potential therapeutic options that target chemokine axes, including small molecule antagonists, monoclonal antibodies, and chimeric antigen receptor T-cells.
Collapse
Affiliation(s)
- YiFan Zhao
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - RuiTing Guo
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - XinPing Cao
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - Yi Zhang
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - Rui Sun
- School of Medicine, Nankai University, Tianjin 300192, China
| | - WenYi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - MingFeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China.
| |
Collapse
|
5
|
Watanabe K, Gomez AM, Kuramitsu S, Siurala M, Da T, Agarwal S, Song D, Scholler J, Rotolo A, Posey AD, Rook AH, Haun PL, Ruella M, Young RM, June CH. Identifying highly active anti-CCR4 CAR T cells for the treatment of T-cell lymphoma. Blood Adv 2023; 7:3416-3430. [PMID: 37058474 PMCID: PMC10345856 DOI: 10.1182/bloodadvances.2022008327] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
A challenge when targeting T-cell lymphoma with chimeric antigen receptor (CAR) T-cell therapy is that target antigens are often shared between T cells and tumor cells, resulting in fratricide between CAR T cells and on-target cytotoxicity on normal T cells. CC chemokine receptor 4 (CCR4) is highly expressed in many mature T-cell malignancies, such as adult T-cell leukemia/lymphoma (ATLL) and cutaneous T-cell lymphoma (CTCL), and has a unique expression profile in normal T cells. CCR4 is predominantly expressed by type-2 and type-17 helper T cells (Th2 and Th17) and regulatory T cells (Treg), but it is rarely expressed by other T helper (Th) subsets and CD8+ cells. Although fratricide in CAR T cells is generally thought to be detrimental to anticancer functions, in this study, we demonstrated that anti-CCR4 CAR T cells specifically depleted Th2 and Tregs, while sparing CD8+ and Th1 T cells. Moreover, fratricide increased the percentage of CAR+ T cells in the final product. CCR4-CAR T cells were characterized by high transduction efficiency, robust T-cell expansion, and rapid fratricidal depletion of CCR4-positive T cells during CAR transduction and expansion. Furthermore, mogamulizumab-based CCR4-CAR T cells induced superior antitumor efficacy and long-term remission in mice engrafted with human T-cell lymphoma cells. In summary, CCR4-depleted anti-CCR4 CAR T cells are enriched in Th1 and CD8+ T cells and exhibit high antitumor efficacy against CCR4-expressing T-cell malignancies.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Cancer Immunology, National Cancer Center Research Institute, Tokyo, Japan
| | - Angela M. Gomez
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Shunichiro Kuramitsu
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mikko Siurala
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Tong Da
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Sangya Agarwal
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Decheng Song
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - John Scholler
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Antonia Rotolo
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA
| | - Avery D. Posey
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Alain H. Rook
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Paul L. Haun
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Regina M. Young
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Carl H. June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Dabaja B, Spiotto M. Radiation for hematologic malignancies: from cell killing to immune cell priming. Front Oncol 2023; 13:1205836. [PMID: 37384297 PMCID: PMC10299853 DOI: 10.3389/fonc.2023.1205836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Over the past half-century, the role of radiotherapy has been revolutionized, in part, by a shift from intent to directly kill cancer cells to the goal of priming anti-tumor immune responses that attack both irradiated and non-irradiated tumors. Stimulation of anti-tumor immunity depends on the interplay between radiation, the tumor microenvironment, and the host immune system, which is a burgeoning concept in cancer immunology. While the interplay of radiotherapy and the immune system has been primarily studied in solid tumors, we are beginning to understand this interplay in hematological malignancies. The intent of this review is to lead readers through some of the important recent advances in immunotherapy and adoptive cell therapy, highlighting the best available evidence in support of incorporating radiation therapy and immunotherapy into the treatment of hematological malignancies. Evidence is presented regarding how radiation therapy 'converses' with the immune system to stimulate and enhance anti-tumor immune responses. This pro-immunogenic role of radiotherapy can be combined with monoclonal antibodies, cytokines and/or other immunostimulatory agents to enhance the regression of hematological malignancies. Furthermore, we will discuss how radiotherapy facilitates the effectiveness of cellular immunotherapies by acting as a "bridge" that facilitated CAR T cell engraftment and activity. These initial studies suggest radiotherapy may help catalyze a shift from using chemotherapy-intensive treatment to treatment that is "chemo-free" by combining with immunotherapy to target both the radiated and non-irradiated disease sites. This "journey" has opened the door for novel uses of radiotherapy in hematological malignancies due to its ability to prime anti-tumor immune responses which can augment immunotherapy and adoptive cell-based therapy.
Collapse
|
7
|
Peru S, Prochazkova-Carlotti M, Cherrier F, Velazquez J, Richard E, Idrissi Y, Cappellen D, Azzi-Martin L, Pham-Ledard A, Beylot-Barry M, Merlio JP, Poglio S. Cutaneous Lymphocyte Antigen Is a Potential Therapeutic Target in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2022; 142:3243-3252.e10. [PMID: 35850209 DOI: 10.1016/j.jid.2022.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 01/05/2023]
Abstract
Cutaneous T-cell lymphoma (CTCL) such as Sézary syndrome or mycosis fungoides corresponds to an abnormal infiltration of T lymphocytes in the skin. CTCL cells have a heterogeneous phenotype and express cell adhesion molecules such as cutaneous lymphocyte antigen (CLA) supporting skin homing. The use of a mAb (HECA-452) against CLA significantly decreased transendothelial migration and survival of CTCL cells from patient samples and My-La cell line. The decrease of CLA expression by inhibition of its maturation enzyme, ST3 β-galactoside α-2,3-sialyltransferase 4, also impaired CTCL cell migration, proliferation, and survival. We confirmed in vivo that treatment with anti-CLA mAb decreased the tumorigenicity as well as dissemination of CTCL cells in different tissues compared with the control group. Our findings provide evidence of the involvement of CLA in CTCL cell migration and survival, supporting that CLA inhibition could represent an actionable therapy in patients with CTCL.
Collapse
Affiliation(s)
- Sara Peru
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, Univ. Bordeaux, Bordeaux, France
| | | | - Floriane Cherrier
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, Univ. Bordeaux, Bordeaux, France
| | - Joanne Velazquez
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, Univ. Bordeaux, Bordeaux, France
| | - Elodie Richard
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, Univ. Bordeaux, Bordeaux, France
| | - Yamina Idrissi
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, Univ. Bordeaux, Bordeaux, France
| | - David Cappellen
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, Univ. Bordeaux, Bordeaux, France; Tumor Bank and Tumor Biology Laboratory, Bordeaux University Hospital, Pessac, France
| | - Lamia Azzi-Martin
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, Univ. Bordeaux, Bordeaux, France; UFR des Sciences Médicales, Bordeaux University, Bordeaux, France
| | - Anne Pham-Ledard
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, Univ. Bordeaux, Bordeaux, France; Dermatology Department, Bordeaux University Hospital, Bordeaux, France
| | - Marie Beylot-Barry
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, Univ. Bordeaux, Bordeaux, France; Dermatology Department, Bordeaux University Hospital, Bordeaux, France
| | - Jean-Philippe Merlio
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, Univ. Bordeaux, Bordeaux, France; Tumor Bank and Tumor Biology Laboratory, Bordeaux University Hospital, Pessac, France
| | - Sandrine Poglio
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, Univ. Bordeaux, Bordeaux, France.
| |
Collapse
|
8
|
Vu SH, Vetrivel P, Kim J, Lee MS. Cancer Resistance to Immunotherapy: Molecular Mechanisms and Tackling Strategies. Int J Mol Sci 2022; 23:10906. [PMID: 36142818 PMCID: PMC9513751 DOI: 10.3390/ijms231810906] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer immunotherapy has fundamentally altered cancer treatment; however, its efficacy is limited to a subset of patients in most clinical settings. The immune system plays a key role in cancer progression from tumor initiation to the metastatic state. Throughout the treatment course, communications between the immune cells in the tumor microenvironment and the immune macroenvironment, as well as interactions between the immune system and cancer cells, are dynamic and constantly evolving. To improve the clinical benefit for patients who do not respond completely to immunotherapy, the molecular mechanisms of resistance to immunotherapy must be elucidated in order to develop effective strategies to overcome resistance. In an attempt to improve and update the current understanding of the molecular mechanisms that hinder immunotherapy, we discuss the molecular mechanisms of cancer resistance to immunotherapy and the available treatment strategies.
Collapse
Affiliation(s)
- Son Hai Vu
- Institute of Applied Sciences, HUTECH University, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City 72308, Vietnam
- Cellular Heterogeneity Research Center, Department of Biological Science, Sookmyung Women’s University, Seoul 04310, Korea
| | - Preethi Vetrivel
- Department of Pharmacy, National University of Singapore, Singapore 117643, Singapore
| | - Jongmin Kim
- Cellular Heterogeneity Research Center, Department of Biological Science, Sookmyung Women’s University, Seoul 04310, Korea
| | - Myeong-Sok Lee
- Cellular Heterogeneity Research Center, Department of Biological Science, Sookmyung Women’s University, Seoul 04310, Korea
| |
Collapse
|
9
|
Joo EH, Bae JH, Park J, Bang YJ, Han J, Gulati N, Kim JI, Park CG, Park WY, Kim HJ. Deconvolution of Adult T-Cell Leukemia/Lymphoma With Single-Cell RNA-Seq Using Frozen Archived Skin Tissue Reveals New Subset of Cancer-Associated Fibroblast. Front Immunol 2022; 13:856363. [PMID: 35464471 PMCID: PMC9021607 DOI: 10.3389/fimmu.2022.856363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Adult T-cell Leukemia/Lymphoma (ATLL) is a rare aggressive T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1) infection. However, little is known about the underlying activated molecular pathways at the single cell level. Moreover, the intercellular communications between the tumor microenvironment (TME) and tumor cells in this malignancy are currently unknown. Difficulties in harvesting fresh tissue in a clinical setting have hampered our deeper understanding of this malignancy. Herein, we examined ATLL using archived fresh frozen tissue after biopsy using single-cell RNA sequencing (scRNA-seq) with T-cell receptor (TCR) clonal analysis. Highly clonal tumor cells showed multiple activating pathways, suggesting dynamic evolution of the malignancy. By dissecting diverse cell types comprising the TME, we identified a novel subset of cancer-associated fibroblast, which showed enriched epidermal growth factor receptor (EGFR)-related transcripts including early growth response 1 and 2 (EGR1 and EGR2). Cancer associated fibroblasts (CAFs) of ATLL play an important role for CD4 T-cell proliferation via FGF7-FGF1 and PDGFA-PDGFRA/B signaling, and CAFs, particularly EGR-enriched, are also associated with CD8 and NKT expansion by EGFR. These findings suggest a potential targeted therapeutic pathway to better treat this neoplasm.
Collapse
Affiliation(s)
- Eun-Hye Joo
- Samsung Genomic Institute, Samsung Medical Center, Seoul, South Korea.,Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Jai Hee Bae
- Department of Dermatology, Samsung Medical Center, Seoul, South Korea
| | - Jihye Park
- Department of Dermatology, Samsung Medical Center, Seoul, South Korea
| | - Yoon Ji Bang
- Department of Biomedical Science, Seoul National University Graduate School, Seoul, South Korea
| | - Joseph Han
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nicholas Gulati
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jong-Il Kim
- Genome Medicine Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Chung-Gyu Park
- Department of Biomedical Science, Seoul National University Graduate School, Seoul, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Woong-Yang Park
- Samsung Genomic Institute, Samsung Medical Center, Seoul, South Korea.,Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Hyun Je Kim
- Genome Medicine Institute, Seoul National University College of Medicine, Seoul, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
10
|
Challenging Cutaneous T-Cell Lymphoma: What Animal Models Tell us So Far. J Invest Dermatol 2022; 142:1533-1540. [PMID: 35000751 DOI: 10.1016/j.jid.2021.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Cutaneous T-cell lymphomas are characterized by heterogeneity of clinical variants, further complicated by genomic and microenvironmental variables. Furthermore, in vitro experiments are hampered by the low culture efficiency of these malignant cells. Animal models are essential for understanding the pathogenetic mechanisms underlying malignancy and for discovering new anticancer treatments. They are divided into two main categories: those in which tumors arise in the host owing to genetic modifications and those that use tumor cell transplantation. In this review, we summarize the attempts to decipher the complexity of the pathogenesis of cutaneous T-cell lymphoma by exploiting genetically modified and xenograft models.
Collapse
|
11
|
Bashash D, Zandi Z, Kashani B, Pourbagheri-Sigaroodi A, Salari S, Ghaffari SH. Resistance to immunotherapy in human malignancies: Mechanisms, research progresses, challenges, and opportunities. J Cell Physiol 2021; 237:346-372. [PMID: 34498289 DOI: 10.1002/jcp.30575] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022]
Abstract
Despite remarkable advances in different types of cancer therapies, an effective therapeutic strategy is still a major and significant challenge. One of the most promising approaches in this regard is immunotherapy, which takes advantage of the patients' immune system; however, the many mechanisms that cancerous cells harbor to extend their survival make it impossible to gain perfect eradication of tumors. The response rate to cancer immunotherapies, especially checkpoint inhibitors and adoptive T cell therapy, substantially differs in various cancer types with the highest rates in advanced melanoma and non-small cell lung cancer. Indeed, the lack of response in many tumors indicates primary resistance that can originate from either tumor cells (intrinsic) or tumor microenvironment (extrinsic). On the other hand, some tumors show an initial response to immunotherapy followed by relapse in few months (acquired resistance). Understanding the underlying molecular mechanisms of immunotherapy resistance makes it possible to develop effective strategies to overcome this hurdle and boost therapy outcomes. In this review, we take a look at immunotherapy strategies and go through a number of primary and acquired resistance mechanisms. Also, we present various ongoing methods to overcoming resistance and introduce some promising fields to improve the outcome of immunotherapy in patients affected with cancer.
Collapse
Affiliation(s)
- Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Zandi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Kashani
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Salari
- Department of Medical Oncology, Hematology and Bone Marrow Transplantation, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Pavlidis A, Piperi C, Papadavid E. Novel therapeutic approaches for cutaneous T cell lymphomas. Expert Rev Clin Immunol 2021; 17:629-641. [PMID: 33890833 DOI: 10.1080/1744666x.2021.1919085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Cutaneous T-cell lymphoma (CTCL) is a rare non-Hodgkin's lymphoma, characterized by malignant T cells infiltrating the skin. CTCL exhibits vast heterogeneity which complicates diagnosis and therapeutic strategies. Current CTCL treatment includes skin-directed therapies (such as topical corticosteroid, topical mechlorethamine, topical bexarotene, ultraviolet phototherapy and localized radiotherapy), total skin electron beam therapy and systemic therapies. Elucidation of molecular and signaling pathways underlying CTCL pathogenesis leads to identification of innovative and personalized treatment schemes.Areas covered: The authors reviewed the molecular and immunological aspects of CTCL with special focus on Mycosis Fungoides (MF), Sézary Syndrome (SS) and associated systemic treatment. A literature search was conducted in PubMed and Web of Science for peer-reviewed articles published until November 2020. Novel treatment approaches including retinoids, targeted therapies, immune checkpoint and JAK/STAT inhibitors, histones deacetylase (HDAC) and mTOR inhibitors as well as proteasome inhibitors, are discussed as potential therapeutic tools for the treatment of CTCL.Expert opinion: Novel therapeutic agents exhibit potential beneficial effects in CTCL patients of high need for therapy such as refractory early stage cutaneous and advanced stage disease. Therapeutic schemes employing a combination of novel agents with current treatment options may prove valuable for the future management of CTCL patients.
Collapse
Affiliation(s)
- Antreas Pavlidis
- 2nd Department of Dermatology and Venereal Diseases, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Papadavid
- 2nd Department of Dermatology and Venereal Diseases, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Durgin JS, Weiner DM, Wysocka M, Rook AH. The immunopathogenesis and immunotherapy of cutaneous T cell lymphoma: Pathways and targets for immune restoration and tumor eradication. J Am Acad Dermatol 2021; 84:587-595. [PMID: 33352267 PMCID: PMC7897252 DOI: 10.1016/j.jaad.2020.12.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/27/2022]
Abstract
Cutaneous T cell lymphomas (CTCLs) are malignancies of skin-trafficking T cells. Patients with advanced CTCL manifest immune dysfunction that predisposes to infection and suppresses the antitumor immune response. Therapies that stimulate immunity have produced superior progression-free survival compared with conventional chemotherapy, reinforcing the importance of addressing the immune deficient state in the care of patients with CTCL. Recent research has better defined the pathogenesis of these immune deficits, explaining the mechanisms of disease progression and revealing potential therapeutic targets. The features of the malignant cell in mycosis fungoides and Sézary syndrome are now significantly better understood, including the T helper 2 cell phenotype, regulatory T cell cytokine production, immune checkpoint molecule expression, chemokine receptors, and interactions with the microenvironment. The updated model of CTCL immunopathogenesis provides understanding into clinical progression and therapeutic response.
Collapse
Affiliation(s)
- Joseph S Durgin
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David M Weiner
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maria Wysocka
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alain H Rook
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
14
|
Hu-Lieskovan S, Malouf GG, Jacobs I, Chou J, Liu L, Johnson ML. Addressing resistance to immune checkpoint inhibitor therapy: an urgent unmet need. Future Oncol 2021; 17:1401-1439. [PMID: 33475012 DOI: 10.2217/fon-2020-0967] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of various cancers by reversing the immunosuppressive mechanisms employed by tumors to restore anticancer immunity. Although ICIs have demonstrated substantial clinical efficacy, patient response can vary in depth and duration, and many do not respond at all or eventually develop resistance. ICI resistance mechanisms can be tumor-intrinsic, related to the tumor microenvironment or patient-specific factors. Multiple resistance mechanisms may be present within one tumor subtype, or heterogeneity exists among patients with the same tumor type. Consequently, designing effective combination treatment strategies is challenging. This review will discuss ICI resistance mechanisms, and summarize findings from key preclinical and clinical trials of ICIs, to identify potential treatment strategies or pathways to overcome ICI resistance.
Collapse
Affiliation(s)
- Siwen Hu-Lieskovan
- Department of Medicine, Division of Oncology, Huntsman Cancer Institute / University of Utah, Salt Lake City, UT 84112, USA
| | - Gabriel G Malouf
- Department of Medical Oncology, Institut de Cancérologie de Strasbourg & Department of Functional Genomics & Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, Illkirch Cedex, Strasbourg, France
| | | | | | - Li Liu
- Pfizer Inc, San Diego, CA 92121, USA
| | - Melissa L Johnson
- Sarah Cannon Research Institute/Tennessee Oncology, PLLC, Nashville, TN 37203, USA
| |
Collapse
|
15
|
Ustyanovska Avtenyuk N, Visser N, Bremer E, Wiersma VR. The Neutrophil: The Underdog That Packs a Punch in the Fight against Cancer. Int J Mol Sci 2020; 21:E7820. [PMID: 33105656 PMCID: PMC7659937 DOI: 10.3390/ijms21217820] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
The advent of immunotherapy has had a major impact on the outcome and overall survival in many types of cancer. Current immunotherapeutic strategies typically aim to (re)activate anticancer T cell immunity, although the targeting of macrophage-mediated anticancer innate immunity has also emerged in recent years. Neutrophils, although comprising ≈ 60% of all white blood cells in the circulation, are still largely overlooked in this respect. Nevertheless, neutrophils have evident anticancer activity and can induce phagocytosis, trogocytosis, as well as the direct cytotoxic elimination of cancer cells. Furthermore, therapeutic tumor-targeting monoclonal antibodies trigger anticancer immune responses through all innate Fc-receptor expressing cells, including neutrophils. Indeed, the depletion of neutrophils strongly reduced the efficacy of monoclonal antibody treatment and increased tumor progression in various preclinical studies. In addition, the infusion of neutrophils in murine cancer models reduced tumor progression. However, evidence on the anticancer effects of neutrophils is fragmentary and mostly obtained in in vitro assays or murine models with reports on anticancer neutrophil activity in humans lagging behind. In this review, we aim to give an overview of the available knowledge of anticancer activity by neutrophils. Furthermore, we will describe strategies being explored for the therapeutic activation of anticancer neutrophil activity.
Collapse
Affiliation(s)
| | | | - Edwin Bremer
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1/DA13, 9713 GZ Groningen, The Netherlands; (N.U.A.); (N.V.)
| | - Valerie R. Wiersma
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1/DA13, 9713 GZ Groningen, The Netherlands; (N.U.A.); (N.V.)
| |
Collapse
|
16
|
Mechanisms of resistance to immune checkpoint inhibitors and strategies to reverse drug resistance in lung cancer. Chin Med J (Engl) 2020; 133:2444-2455. [PMID: 32969861 PMCID: PMC7575183 DOI: 10.1097/cm9.0000000000001124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In recent years, the research of immune checkpoint inhibitors has made a great breakthrough in lung cancer treatment. Currently, a variety of immune checkpoint inhibitors have been applied into clinical practice, including antibodies targeting the programmed cell death-1, programmed cell death-ligand 1, and cytotoxic T-lymphocyte antigen 4, and so on. However, not all patients can benefit from the treatment. Abnormal antigen presentation, functional gene mutation, tumor microenvironment, and other factors can lead to primary or secondary resistance. In this paper, we reviewed the molecular mechanism of immune checkpoint inhibitor resistance and various combination strategies to overcome resistance, in order to expand the beneficial population and enable precision medicine.
Collapse
|
17
|
Trojaniello C, Vitale MG, Scarpato L, Esposito A, Ascierto PA. Melanoma immunotherapy: strategies to overcome pharmacological resistance. Expert Rev Anticancer Ther 2020; 20:289-304. [PMID: 32195606 DOI: 10.1080/14737140.2020.1745634] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Introduction: Although checkpoint inhibitors have provided a breakthrough in how melanoma is treated, about half of patients still do not respond due to primary or acquired resistance. New strategies are, therefore, required to increase the number of patients benefiting from immunotherapy. This systematic review investigates novel combinations that may overcome immune resistance in patients with melanoma.Areas covered: We provide an overview of immune-related resistance mechanisms and the various therapeutic strategies that can be considered in attempting to overcome these barriers, including combined immunotherapy approaches and combinations with chemotherapy, radiotherapy, and targeted therapy.Expert opinion: The immune response is a dynamic process in which the tumor microenvironment and immune cells interact in a variety of ways. New treatment approaches aim to enrich the tumor microenvironment with immune-infiltrate and increase response to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Claudia Trojaniello
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | | | - Luigi Scarpato
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Assunta Esposito
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Paolo A Ascierto
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
18
|
Houssein M, Fatfat M, Habli Z, Ghazal N, Moodad S, Khalife H, Khalil M, Gali-Muhtasib H. Thymoquinone synergizes with arsenic and interferon alpha to target human T-cell leukemia/lymphoma. Life Sci 2020; 251:117639. [PMID: 32272181 DOI: 10.1016/j.lfs.2020.117639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022]
Abstract
AIMS To reduce the dose of arsenic used against human T-cell leukemia/lymphoma and to sensitize cells to drug treatment, we combined arsenic/interferon-alpha (As/IFN-α) with thymoquinone (TQ) in HTLV-I positive (HuT-102 and C91) and HTLV-1 negative (CEM and Jurkat) cell lines. MAIN METHODS Cells were treated with TQ, As/IFN-α and combinations. Trypan blue and flow cytometry were used to investigate viability and cell cycle effects. Annexin-V staining, rhodamine assay and western blotting were used to determine apoptosis induction and changes in protein expression. Efficacy of single drugs and combinations were tested in adult T-cell leukemia (HuT-102) mouse xenograft model. KEY FINDINGS TQ/As/IFN-α led to a more pronounced and synergistic time-dependent inhibitory effect on HTLV-I positive cells in comparison to As/IFN-α. While As/IFN-α combination was not effective against CEM or Jurkat cells, the triple combination TQ/As/IFN-α sensitized these two cell lines and led to a pronounced time-dependent inhibition of cell viability. TQ/As/IFN-α significantly induced apoptosis in all four cell lines and disrupted the mitochondrial membrane potential. Apoptosis was confirmed by the cleavage of caspase 3 and poly (ADP-ribose) polymerase (PARP), downregulation of Bcl-2 and XIAP and upregulation of Bax. TQ alone or in combination activated p53 in HTLV-1 positive cell lines. Strikingly, TQ/As/IFN-α resulted in a pronounced significant decrease in tumor volume in HuT-102 xenograft mouse model, as compared to separate treatments or double combination therapy. SIGNIFICANCE Our results suggest a strong potential for TQ to enhance the drug targeting effects of the standard clinical drugs As and IFN-α against CD4+ malignant T-cells.
Collapse
Affiliation(s)
- Marwa Houssein
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Lebanon
| | - Maamoun Fatfat
- Center for Drug Discovery, American University of Beirut, Lebanon
| | - Zeina Habli
- Center for Drug Discovery, American University of Beirut, Lebanon
| | - Nasab Ghazal
- Department of Biology and Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Lebanon
| | - Sara Moodad
- Department of Biology and Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Lebanon; Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Lebanon
| | - Hala Khalife
- Rammal Laboratory (ATAC), Faculty of Sciences I, Lebanese University Hadath, Beirut, Lebanon
| | - Mahmoud Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Lebanon
| | - Hala Gali-Muhtasib
- Department of Biology and Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Lebanon; Center for Drug Discovery, American University of Beirut, Lebanon.
| |
Collapse
|
19
|
Mechanisms of Resistance to Checkpoint Blockade Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:83-117. [PMID: 32185708 DOI: 10.1007/978-981-15-3266-5_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immune checkpoint blockades (ICBs), as a major breakthrough in cancer immunotherapy, target CTLA-4 and the PD-1/PD-L1 axis and reinvigorate anti-tumor activities by disrupting co-inhibitory T-cell signaling. With unprecedented performance in clinical trials, ICBs have been approved by FDA for the treatment of malignancies such as melanoma, non-small-cell lung cancer, colorectal cancer, and hepatocellular carcinoma. However, while ICBs are revolutionizing therapeutic algorithms for cancers, the frequently observed innate, adaptive or acquired drug resistance remains an inevitable obstacle to a durable antitumor activity, thus leading to non-response or tumor relapse. Researches have shown that resistance could occur at each stage of the tumor's immune responses. From the current understanding, the molecular mechanisms for the resistance of ICB can be categorized into the following aspects: 1. Tumor-derived mechanism, 2. T cell-based mechanism, and 3. Tumor microenvironment-determined resistance. In order to overcome resistance, potential therapeutic strategies include enhancing antigen procession and presentation, reinforcing the activity and infiltration of T cells, and destroying immunosuppression microenvironment. In future, determining the driving factors behind ICB resistance by tools of precision medicine may maximize clinical benefits from ICBs. Moreover, efforts in individualized dosing, intermittent administration and/or combinatory regimens have opened new directions for overcoming ICB resistance.
Collapse
|
20
|
Shafiee F, Aucoin MG, Jahanian-Najafabadi A. Targeted Diphtheria Toxin-Based Therapy: A Review Article. Front Microbiol 2019; 10:2340. [PMID: 31681205 PMCID: PMC6813239 DOI: 10.3389/fmicb.2019.02340] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/25/2019] [Indexed: 12/26/2022] Open
Abstract
Cancer remains one of the leading causes of death worldwide. Conventional therapeutic strategies usually offer limited specificity, resulting in severe side effects and toxicity to normal tissues. Targeted cancer therapy, on the other hand, can improve the therapeutic potential of anti-cancer agents and decrease unwanted side effects. Targeted applications of cytolethal bacterial toxins have been found to be especially useful for the specific eradication of cancer cells. Targeting is either mediated by peptides or by protein-targeting moieties, such as antibodies, antibody fragments, cell-penetrating peptides (CPPs), growth factors, or cytokines. Together with a toxin domain, these molecules are more commonly referred to as immunotoxins. Targeting can also be achieved through gene delivery and cell-specific expression of a toxin. Of the available cytolethal toxins, diphtheria toxin (DT) is one of the most frequently used for these strategies. Of the many DT-based therapeutic strategies investigated to date, two immunotoxins, OntakTM and TagraxofuspTM, have gained FDA approval for clinical application. Despite some success with immunotoxins, suicide-gene therapy strategies, whereby controlled tumor-specific expression of DT is used for the eradication of malignant cells, are gaining prominence. The first part of this review focuses on DT-based immunotoxins, and it then discusses recent developments in tumor-specific expression of DT.
Collapse
Affiliation(s)
- Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marc G Aucoin
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
21
|
Tanita K, Fujimura T, Sato Y, Lyu C, Kambayashi Y, Ogata D, Fukushima S, Miyashita A, Nakajima H, Nakamura M, Morita A, Aiba S. Bexarotene Reduces Production of CCL22 From Tumor-Associated Macrophages in Cutaneous T-Cell Lymphoma. Front Oncol 2019; 9:907. [PMID: 31616630 PMCID: PMC6763730 DOI: 10.3389/fonc.2019.00907] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/02/2019] [Indexed: 01/27/2023] Open
Abstract
Bexarotene is a third-generation retinoid X receptor-selective retinoid that has been approved for use in the treatment of both early and advanced cutaneous T-cell lymphoma (CTCL). Although bexarotene has been used for decades in the treatment of CTCL, little is known about the mechanisms underlying its anti-tumor effects in CTCL patients. This study therefore focused on the immunomodulatory effects of bexarotene in vivo using an EL4 mouse T-cell lymphoma model, followed by investigation in CTCL patients treated with bexarotene. Intraperitoneal injection of bexarotene significantly decreased expressions of CCL22, CXCL5, CXCL10, and p19 in the tumor microenvironment. Based on those results, we then evaluated serum levels of CCL22, CXCL5, and CXCL10 in 25 patients with CTCL, revealing that CCL22 was significantly increased in advanced CTCL compared with early CTCL. Next, we evaluated serum levels of CCL22, CXCL5, and CXCL10 in CTCL patients treated with bexarotene. Serum levels of CCL22 were significantly decreased in 80% of CTCL patients who responded to bexarotene therapy. In addition, immunofluorescence staining revealed CD163+ M2 macrophages as the main source of CCL22. Moreover, bexarotene decreased the production of CCL22 by M2 macrophages generated from monocytes in vitro. Our findings suggest that the clinical benefits of bexarotene are partially attributable to suppressive effects on the production of CCL22 by M2-polarized tumor-associated macrophages.
Collapse
Affiliation(s)
- Kayo Tanita
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yota Sato
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chunbing Lyu
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yumi Kambayashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Dai Ogata
- Department of Dermatology, Saitama Medical University, Saitama, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Azusa Miyashita
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideki Nakajima
- Department of Dermatology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Motoki Nakamura
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
22
|
Fares CM, Van Allen EM, Drake CG, Allison JP, Hu-Lieskovan S. Mechanisms of Resistance to Immune Checkpoint Blockade: Why Does Checkpoint Inhibitor Immunotherapy Not Work for All Patients? Am Soc Clin Oncol Educ Book 2019; 39:147-164. [PMID: 31099674 DOI: 10.1200/edbk_240837] [Citation(s) in RCA: 451] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The emergence of immune checkpoint blockade therapies over the last decade has transformed cancer treatment in a wide range of tumor types. Unprecedented and durable clinical responses in difficult-to-treat cancer histologies have been observed. However, despite these promising long-term responses, the majority of patients fail to respond to immune checkpoint blockade, demonstrating primary resistance. Additionally, many of those who initially respond to treatment eventually experience relapse secondary to acquired resistance. Both primary and acquired resistance are a result of complex and constantly evolving interactions between cancer cells and the immune system. Many mechanisms of resistance have been characterized to date, and more continue to be uncovered. By elucidating and targeting mechanisms of resistance, treatments can be tailored to improve clinical outcomes. This review will discuss the landscape of immune checkpoint blockade response data, different resistance mechanisms, and potential therapeutic strategies to overcome resistance.
Collapse
Affiliation(s)
- Charlene M Fares
- 1 Department of Medicine, Division of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA
| | | | - Charles G Drake
- 3 Department of Medicine, Division of Hematology/Oncology, Columbia University Medical Center, New York, NY
| | - James P Allison
- 4 Department of Immunology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Siwen Hu-Lieskovan
- 5 Division of Hematology and Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
23
|
Cuesta-Mateos C, Alcaraz-Serna A, Somovilla-Crespo B, Muñoz-Calleja C. Monoclonal Antibody Therapies for Hematological Malignancies: Not Just Lineage-Specific Targets. Front Immunol 2018; 8:1936. [PMID: 29387053 PMCID: PMC5776327 DOI: 10.3389/fimmu.2017.01936] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Today, monoclonal antibodies (mAbs) are a widespread and necessary tool for biomedical science. In the hematological cancer field, since rituximab became the first mAb approved by the Food and Drug Administration for the treatment of B-cell malignancies, a number of effective mAbs targeting lineage-specific antigens (LSAs) have been successfully developed. Non-LSAs (NLSAs) are molecules that are not restricted to specific leukocyte subsets or tissues but play relevant pathogenic roles in blood cancers including the development, proliferation, survival, and refractoriness to therapy of tumor cells. In consequence, efforts to target NLSAs have resulted in a plethora of mAbs-marketed or in development-to achieve different goals like neutralizing oncogenic pathways, blocking tumor-related chemotactic pathways, mobilizing malignant cells from tumor microenvironment to peripheral blood, modulating immune-checkpoints, or delivering cytotoxic drugs into tumor cells. Here, we extensively review several novel mAbs directed against NLSAs undergoing clinical evaluation for treating hematological malignancies. The review focuses on the structure of these antibodies, proposed mechanisms of action, efficacy and safety profile in clinical studies, and their potential applications in the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Carlos Cuesta-Mateos
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
- IMMED S.L., Immunological and Medicinal Products, Madrid, Spain
| | - Ana Alcaraz-Serna
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
| | - Beatriz Somovilla-Crespo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|
24
|
Chimeric antigen receptor T cells secreting anti-PD-L1 antibodies more effectively regress renal cell carcinoma in a humanized mouse model. Oncotarget 2018; 7:34341-55. [PMID: 27145284 PMCID: PMC5085160 DOI: 10.18632/oncotarget.9114] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/16/2016] [Indexed: 01/03/2023] Open
Abstract
Advances in the treatment of metastatic clear cell renal cell carcinoma (ccRCC) have led to improved progression-free survival of many patients; however the therapies are toxic, rarely achieve durable long-term complete responses and are not curative. Herein we used a single bicistronic lentiviral vector to develop a new combination immunotherapy that consists of human anti-carbonic anhydrase IX (CAIX)-targeted chimeric antigen receptor (CAR) T cells engineered to secrete human anti-programmed death ligand 1 (PD-L1) antibodies at the tumor site. The local antibody delivery led to marked immune checkpoint blockade. Tumor growth diminished 5 times and tumor weight reduced 50–80% when compared with the anti-CAIX CAR T cells alone in a humanized mice model of ccRCC. The expression of PD-L1 and Ki67 in the tumors decreased and an increase in granzyme B levels was found in CAR T cells. The anti-PD-L1 IgG1 isotype, which is capable of mediating ADCC, was also able to recruit human NK cells to the tumor site in vivo. These armed second-generation CAR T cells empowered to secrete human anti-PD-L1 antibodies in the ccRCC milieu to combat T cell exhaustion is an innovation in this field that should provide renewed potential for CAR T cell immunotherapy of solid tumors where limited efficacy is currently seen.
Collapse
|
25
|
Fülle L, Steiner N, Funke M, Gondorf F, Pfeiffer F, Siegl J, Opitz FV, Haßel SK, Erazo AB, Schanz O, Stunden HJ, Blank M, Gröber C, Händler K, Beyer M, Weighardt H, Latz E, Schultze JL, Mayer G, Förster I. RNA Aptamers Recognizing Murine CCL17 Inhibit T Cell Chemotaxis and Reduce Contact Hypersensitivity In Vivo. Mol Ther 2017; 26:95-104. [PMID: 29103909 PMCID: PMC5763148 DOI: 10.1016/j.ymthe.2017.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 01/21/2023] Open
Abstract
The chemokine CCL17, mainly produced by dendritic cells (DCs) in the immune system, is involved in the pathogenesis of various inflammatory diseases. As a ligand of CCR4, CCL17 induces chemotaxis and facilitates T cell-DC interactions. We report the identification of two novel RNA aptamers, which were validated in vitro and in vivo for their capability to neutralize CCL17. Both aptamers efficiently inhibited the directed migration of the CCR4+ lymphoma line BW5147.3 toward CCL17 in a dose-dependent manner. To study the effect of these aptamers in vivo, we used a murine model of contact hypersensitivity. Systemic application of the aptamers significantly prevented ear swelling and T cell infiltration into the ears of sensitized mice after challenge with the contact sensitizer. The results of this proof-of-principle study establish aptamers as potent inhibitors of CCL17-mediated chemotaxis. Potentially, CCL17-specific aptamers may be used therapeutically in humans to treat or prevent allergic and inflammatory diseases.
Collapse
Affiliation(s)
- Lorenz Fülle
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Nancy Steiner
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Markus Funke
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany; Centre of Aptamer Research and Development, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Fabian Gondorf
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Franziska Pfeiffer
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany; Centre of Aptamer Research and Development, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Julia Siegl
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany; Centre of Aptamer Research and Development, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Friederike V Opitz
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Silvana K Haßel
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany; Centre of Aptamer Research and Development, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Anna Belen Erazo
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Oliver Schanz
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - H James Stunden
- Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Michael Blank
- AptaIT, Am Klopferspitz 19a, 82152 Planegg-Martinsried, Germany
| | - Carsten Gröber
- AptaIT, Am Klopferspitz 19a, 82152 Planegg-Martinsried, Germany
| | - Kristian Händler
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany; Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases (DZNE) and the University of Bonn, Sigmund-Freud-Straße 27, 53127 Bonn, Germany
| | - Marc Beyer
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany; Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases (DZNE) and the University of Bonn, Sigmund-Freud-Straße 27, 53127 Bonn, Germany; Molecular Immunology in Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Straße 27, 53127 Bonn, Germany
| | - Heike Weighardt
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Joachim L Schultze
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany; Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases (DZNE) and the University of Bonn, Sigmund-Freud-Straße 27, 53127 Bonn, Germany
| | - Günter Mayer
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany; Centre of Aptamer Research and Development, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany.
| |
Collapse
|
26
|
Nieto Gutierrez A, McDonald PH. GPCRs: Emerging anti-cancer drug targets. Cell Signal 2017; 41:65-74. [PMID: 28931490 DOI: 10.1016/j.cellsig.2017.09.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest and most diverse protein family in the human genome with over 800 members identified to date. They play critical roles in numerous cellular and physiological processes, including cell proliferation, differentiation, neurotransmission, development and apoptosis. Consequently, aberrant receptor activity has been demonstrated in numerous disorders/diseases, and as a result GPCRs have become the most successful drug target class in pharmaceuticals treating a wide variety of indications such as pain, inflammation, neurobiological and metabolic disorders. Many independent studies have also demonstrated a key role for GPCRs in tumourigenesis, establishing their involvement in cancer initiation, progression, and metastasis. Given the growing appreciation of the role(s) that GPCRs play in cancer pathogenesis, it is surprising to note that very few GPCRs have been effectively exploited in pursuit of anti-cancer therapies. The present review provides a broad overview of the roles that various GPCRs play in cancer growth and development, highlighting the potential of pharmacologically modulating these receptors for the development of novel anti-cancer therapeutics.
Collapse
Affiliation(s)
- Ainhoa Nieto Gutierrez
- The Scripps Research Institute, Department of Molecular Medicine, 130 Scripps Way, Jupiter, FL 33458, United States.
| | - Patricia H McDonald
- The Scripps Research Institute, Department of Molecular Medicine, 130 Scripps Way, Jupiter, FL 33458, United States.
| |
Collapse
|
27
|
Perera LP, Zhang M, Nakagawa M, Petrus MN, Maeda M, Kadin ME, Waldmann TA, Perera PY. Chimeric antigen receptor modified T cells that target chemokine receptor CCR4 as a therapeutic modality for T-cell malignancies. Am J Hematol 2017; 92:892-901. [PMID: 28543380 DOI: 10.1002/ajh.24794] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 02/06/2023]
Abstract
With the emerging success of treating CD19 expressing B cell malignancies with ex vivo modified, autologous T cells that express CD19-directed chimeric antigen receptors (CAR), there is intense interest in expanding this evolving technology to develop effective modalities to treat other malignancies including solid tumors. Exploiting this approach to develop a therapeutic modality for T cell malignancies for which the available regimens are neither curative, nor confer long term survival we generated a lentivirus-based CAR gene transfer system to target the chemokine receptor CCR4 that is over-expressed in a spectrum of T cell malignancies as well as in CD4+ CD25+ Foxp3+ T regulatory cells that accumulate in the tumor microenvironment constituting a barrier against anti-tumor immunity. Ex vivo modified, donor-derived T cells that expressed CCR4 directed CAR displayed antigen-dependent potent cytotoxicity against patient-derived cell lines representing ATL, CTCL, ALCL and a subset of HDL. Furthermore, these CAR T cells also eradicated leukemia in a mouse xenograft model of ATL illustrating the potential utility of this modality in the treatment of a wide spectrum of T cell malignancies.
Collapse
Affiliation(s)
- Liyanage P. Perera
- Lymphoid Malignancies Branch, National Cancer Institute; Bethesda Maryland 20892-1374 USA
| | - Meili Zhang
- Lymphoid Malignancies Branch, National Cancer Institute; Bethesda Maryland 20892-1374 USA
| | - Masao Nakagawa
- Lymphoid Malignancies Branch, National Cancer Institute; Bethesda Maryland 20892-1374 USA
| | - Michael N. Petrus
- Lymphoid Malignancies Branch, National Cancer Institute; Bethesda Maryland 20892-1374 USA
| | - Michiyuki Maeda
- Institute for Virus Research, Kyoto University; Sakyo-ku Kyoto Japan
| | - Marshall E. Kadin
- Boston University School of Medicine, Department of Dermatology and Skin Surgery; Roger Williams Medical Center; Providence Rhode 02908
| | - Thomas A. Waldmann
- Lymphoid Malignancies Branch, National Cancer Institute; Bethesda Maryland 20892-1374 USA
| | - Pin-Yu Perera
- Veterans Affairs Medical Center; Washington D.C. 20422 USA
| |
Collapse
|
28
|
Hu-Lieskovan S, Ribas A. New Combination Strategies Using Programmed Cell Death 1/Programmed Cell Death Ligand 1 Checkpoint Inhibitors as a Backbone. Cancer J 2017; 23:10-22. [PMID: 28114250 PMCID: PMC5844278 DOI: 10.1097/ppo.0000000000000246] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of immune checkpoints and subsequent clinical development of checkpoint inhibitors have revolutionized the field of oncology. The durability of the antitumor immune responses has raised the hope for long-term patient survival and potential cure; however, currently, only a minority of patients respond. Combination strategies to help increase antigen release and T-cell priming, promote T-cell activation and homing, and improve the tumor immune microenvironment, all guided by predictive biomarkers, can help overcome the tumor immune-evasive mechanisms and maximize efficacy to ultimately benefit the majority of patients. Great challenges remain because of the complex underlying biology, unpredictable toxicity, and accurate assessment of response. Carefully designed clinical trials guided by translational studies of paired biopsies will be key to develop reliable predictive biomarkers to choose which patients would most likely benefit from each strategy.
Collapse
Affiliation(s)
- Siwen Hu-Lieskovan
- From the Division of Hematology-Oncology, Department of Medicine, Jonsson Comprehensive Cancer Center at the University of California Los Angeles, Los Angeles, CA
| | | |
Collapse
|
29
|
Decker WK, da Silva RF, Sanabria MH, Angelo LS, Guimarães F, Burt BM, Kheradmand F, Paust S. Cancer Immunotherapy: Historical Perspective of a Clinical Revolution and Emerging Preclinical Animal Models. Front Immunol 2017; 8:829. [PMID: 28824608 PMCID: PMC5539135 DOI: 10.3389/fimmu.2017.00829] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/30/2017] [Indexed: 01/13/2023] Open
Abstract
At the turn of the last century, the emerging field of medical oncology chose a cytotoxic approach to cancer therapy over an immune-centered approach at a time when evidence in support of either paradigm did not yet exist. Today, nearly 120 years of data have established that (a) even the best cytotoxic regimens only infrequently cure late-stage malignancy and (b) strategies that supplement and augment existing antitumor immune responses offer the greatest opportunities to potentiate durable remission in cancer. Despite widespread acceptance of these paradigms today, the ability of the immune system to recognize and fight cancer was a highly controversial topic for much of the twentieth century. Why this modern paradigmatic mainstay should have been both dubious and controversial for such an extended period is a topic of considerable interest that merits candid discussion. Herein, we review the literature to identify and describe the watershed events that ultimately led to the acceptance of immunotherapy as a viable regimen for the treatment of neoplastic malignancy. In addition to noting important clinical discoveries, we also focus on research milestones and the development of critical model systems in rodents and dogs including the advanced modeling techniques that allowed development of patient-derived xenografts. Together, their use will further our understanding of cancer biology and tumor immunology, allow for a speedier assessment of the efficacy and safety of novel approaches, and ultimately provide a faster bench to beside transition.
Collapse
Affiliation(s)
- William K. Decker
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L Duncan Cancer Center, Texas Children’s Hospital, Houston, TX, United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Rodrigo F. da Silva
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
- Women’s Hospital – CAISM, University of Campinas, Campinas, Brazil
| | - Mayra H. Sanabria
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, United States
| | - Laura S. Angelo
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
| | | | - Bryan M. Burt
- Dan L Duncan Cancer Center, Texas Children’s Hospital, Houston, TX, United States
- Michael E. DeBakey Department of Surgery, Division of Thoracic Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Farrah Kheradmand
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L Duncan Cancer Center, Texas Children’s Hospital, Houston, TX, United States
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX, United States
| | - Silke Paust
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L Duncan Cancer Center, Texas Children’s Hospital, Houston, TX, United States
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
| |
Collapse
|
30
|
Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nat Rev Drug Discov 2017; 16:787-810. [PMID: 28706220 DOI: 10.1038/nrd.2017.91] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors (GPCRs) are activated by a diverse range of ligands, from large proteins and proteases to small peptides, metabolites, neurotransmitters and ions. They are expressed on all cells in the body and have key roles in physiology and homeostasis. As such, GPCRs are one of the most important target classes for therapeutic drug discovery. The development of drugs targeting GPCRs has therapeutic value across a wide range of diseases, including cancer, immune and inflammatory disorders as well as neurological and metabolic diseases. The progress made by targeting GPCRs with antibody-based therapeutics, as well as technical hurdles to overcome, are presented and discussed in this Review. Antibody therapeutics targeting C-C chemokine receptor type 4 (CCR4), CCR5 and calcitonin gene-related peptide (CGRP) are used as illustrative clinical case studies.
Collapse
|
31
|
Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 2017; 168:707-723. [PMID: 28187290 DOI: 10.1016/j.cell.2017.01.017] [Citation(s) in RCA: 3693] [Impact Index Per Article: 461.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy can induce long lasting responses in patients with metastatic cancers of a wide range of histologies. Broadening the clinical applicability of these treatments requires an improved understanding of the mechanisms limiting cancer immunotherapy. The interactions between the immune system and cancer cells are continuous, dynamic, and evolving from the initial establishment of a cancer cell to the development of metastatic disease, which is dependent on immune evasion. As the molecular mechanisms of resistance to immunotherapy are elucidated, actionable strategies to prevent or treat them may be derived to improve clinical outcomes for patients.
Collapse
Affiliation(s)
- Padmanee Sharma
- Department of Genitourinary Medical Oncology and Immunology,The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Siwen Hu-Lieskovan
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles and the Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Jennifer A Wargo
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles and the Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA.
| |
Collapse
|
32
|
Abstract
Hematological malignancies manifest as lymphoma, leukemia, and myeloma, and remain a burden on society. From initial therapy to endless relapse-related treatment, societal burden is felt not only in the context of healthcare cost, but also in the compromised quality of life of patients. Long-term therapeutic strategies have become the standard in keeping hematological malignancies at bay as these cancers develop resistance to each round of therapy with time. As a result, there is a continual need for the development of new drugs to combat resistant disease in order to prolong patient life, if not to produce a cure. This review aims to summarize advances in targeting lymphoma, leukemia, and myeloma through both cutting-edge and well established platforms. Current standard of treatment will be reviewed for these malignancies and emphasis will be made on new therapy development in the areas of antibody engineering, epigenetic small molecule inhibiting drugs, vaccine development, and chimeric antigen receptor cell engineering. In addition, platforms for the delivery of these and other drugs will be reviewed including antibody-drug conjugates, micro- and nanoparticles, and multimodal hydrogels. Lastly, we propose that tissue engineered constructs for hematological malignancies are the missing link in targeted drug discovery alongside mouse and patient-derived xenograft models.
Collapse
|
33
|
Swart M, Verbrugge I, Beltman JB. Combination Approaches with Immune-Checkpoint Blockade in Cancer Therapy. Front Oncol 2016; 6:233. [PMID: 27847783 PMCID: PMC5088186 DOI: 10.3389/fonc.2016.00233] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/18/2016] [Indexed: 12/11/2022] Open
Abstract
In healthy individuals, immune-checkpoint molecules prevent autoimmune responses and limit immune cell-mediated tissue damage. Tumors frequently exploit these molecules to evade eradication by the immune system. Over the past years, immune-checkpoint blockade of cytotoxic T lymphocyte antigen-4 and programed death-1 emerged as promising strategies to activate antitumor cytotoxic T cell responses. Although complete regression and long-term survival is achieved in some patients, not all patients respond. This review describes promising, novel combination approaches involving immune-checkpoint blockade in the context of the cancer-immunity cycle, aimed at increasing response rates to the single treatments. Specifically, we discuss combinations that promote antigen release and presentation, that further amplify T cell activation, that inhibit trafficking of regulatory T cells or MSDCs, that stimulate intratumoral T cell infiltration, that increase cancer recognition by T cells, and that stimulate tumor killing.
Collapse
Affiliation(s)
- Maarten Swart
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Inge Verbrugge
- Division of Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Joost B. Beltman
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
34
|
Zhang YF, Ho M. Humanization of high-affinity antibodies targeting glypican-3 in hepatocellular carcinoma. Sci Rep 2016; 6:33878. [PMID: 27667400 PMCID: PMC5036187 DOI: 10.1038/srep33878] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/05/2016] [Indexed: 01/03/2023] Open
Abstract
Glypican-3 (GPC3) is a cell-surface heparan sulfate proteoglycan highly expressed in hepatocellular carcinoma (HCC). We have generated a group of high-affinity mouse monoclonal antibodies targeting GPC3. Here, we report the humanization and testing of these antibodies for clinical development. We compared the affinity and cytotoxicity of recombinant immunotoxins containing mouse single-chain variable regions fused with a Pseudomonas toxin. To humanize the mouse Fvs, we grafted the combined KABAT/IMGT complementarity determining regions (CDR) into a human IgG germline framework. Interestingly, we found that the proline at position 41, a non-CDR residue in heavy chain variable regions (VH), is important for humanization of mouse antibodies. We also showed that two humanized anti-GPC3 antibodies (hYP7 and hYP9.1b) in the IgG format induced antibody-dependent cell-mediated cytotoxicity and complement-dependent-cytotoxicity in GPC3-positive cancer cells. The hYP7 antibody was tested and showed inhibition of HCC xenograft tumor growth in nude mice. This study successfully humanizes and validates high affinity anti-GPC3 antibodies and sets a foundation for future development of these antibodies in various clinical formats in the treatment of liver cancer.
Collapse
Affiliation(s)
- Yi-Fan Zhang
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Mitchell Ho
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
35
|
Chang DK, Kurella VB, Biswas S, Avnir Y, Sui J, Wang X, Sun J, Wang Y, Panditrao M, Peterson E, Tallarico A, Fernandes S, Goodall M, Zhu Q, Brown JR, Jefferis R, Marasco WA. Humanized mouse G6 anti-idiotypic monoclonal antibody has therapeutic potential against IGHV1-69 germline gene-based B-CLL. MAbs 2016; 8:787-98. [PMID: 26963739 DOI: 10.1080/19420862.2016.1159365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In 10-20% of the cases of chronic lymphocytic leukemia of B-cell phenotype (B-CLL), the IGHV1-69 germline is utilized as VH gene of the B cell receptor (BCR). Mouse G6 (MuG6) is an anti-idiotypic monoclonal antibody discovered in a screen against rheumatoid factors (RFs) that binds with high affinity to an idiotope expressed on the 51p1 alleles of IGHV1-69 germline gene encoded antibodies (G6-id(+)). The finding that unmutated IGHV1-69 encoded BCRs are frequently expressed on B-CLL cells provides an opportunity for anti-idiotype monoclonal antibody immunotherapy. In this study, we first showed that MuG6 can deplete B cells encoding IGHV1-69 BCRs using a novel humanized GTL mouse model. Next, we humanized MuG6 and demonstrated that the humanized antibodies (HuG6s), especially HuG6.3, displayed ∼2-fold higher binding affinity for G6-id(+) antibody compared to the parental MuG6. Additional studies showed that HuG6.3 was able to kill G6-id(+) BCR expressing cells and patient B-CLL cells through antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Finally, both MuG6 and HuG6.3 mediate in vivo depletion of B-CLL cells in NSG mice. These data suggest that HuG6.3 may provide a new precision medicine to selectively kill IGHV1-69-encoding G6-id(+) B-CLL cells.
Collapse
Affiliation(s)
- De-Kuan Chang
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA.,b Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Vinodh B Kurella
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA.,b Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Subhabrata Biswas
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA.,b Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Yuval Avnir
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA.,b Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Jianhua Sui
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA.,b Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Xueqian Wang
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA.,b Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Jiusong Sun
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA.,b Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Yanyan Wang
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Madhura Panditrao
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Eric Peterson
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Aimee Tallarico
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA.,b Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Stacey Fernandes
- c Department of Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Margaret Goodall
- d Division of Immunity and Infection, University of Birmingham, School of Medicine , Edgbaston, Birmingham , UK
| | - Quan Zhu
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA.,b Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Jennifer R Brown
- c Department of Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Roy Jefferis
- d Division of Immunity and Infection, University of Birmingham, School of Medicine , Edgbaston, Birmingham , UK
| | - Wayne A Marasco
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA.,b Department of Medicine , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
36
|
Chang DK, Peterson E, Sun J, Goudie C, Drapkin RI, Liu JF, Matulonis U, Zhu Q, Marasco WA. Anti-CCR4 monoclonal antibody enhances antitumor immunity by modulating tumor-infiltrating Tregs in an ovarian cancer xenograft humanized mouse model. Oncoimmunology 2015; 5:e1090075. [PMID: 27141347 PMCID: PMC4839340 DOI: 10.1080/2162402x.2015.1090075] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/27/2015] [Accepted: 08/29/2015] [Indexed: 12/21/2022] Open
Abstract
Recent studies have demonstrated that regulatory T cells (Tregs) are recruited to tumor sites where they can suppress antitumor immunity. The chemokine receptor CCR4 is expressed at high levels on functional CD4+CD25+FoxP3+ Tregs and production of the CCR4 ligand CCL22 by tumor cells and tumor-associated macrophages is associated with Treg recruitment to the tumor site. Here, we tested IgG1 and IgG4 isotypes of human anti-CCR4 mAb2-3 for their in vitro activity and in vivo capacity in a NSG mouse model bearing CCL22-secreting ovarian cancer (OvCA) xenograft to modulate Tregs and restore antitumor activity. Both mAb2-3 isotypes blocked in vitro chemoattraction of Tregs to CCL22-secreting OvCA cells. However, they differed in their in vivo mode of action with IgG1 causing Treg depletion and IgG4 blocking migration to the tumors. Primary T cells that were primed with OvCA-pulsed dendritic cells (DCs) demonstrated INFγ secretion that could be enhanced through Treg depletion by mAb2-3. Humanized mice reconstructed with allogeneic tumor-primed T cells (TP-T) were used to evaluate the restoration of OvCA immunity by depletion or blockade of Tregs with mAb2-3. We observed that IgG1 was more potent than IgG4 in inhibiting tumor growth. Mechanism studies demonstrated that mAb2-3 treatment lead to inhibition of IL-2 binding to its receptor. Further studies showed that mAb2-3 induced CD25 shedding (sCD25) from Tregs which lead to a decrease in IL-2-dependent survival. Together, the results demonstrate that mAb2-3 is an agonist antibody that can restore anti-OvCA immunity through modulation of Treg activity.
Collapse
Affiliation(s)
- De-Kuan Chang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Eric Peterson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, MA, USA
| | - Jiusong Sun
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, MA, USA
| | - Calum Goudie
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, MA, USA
| | - Ronny I Drapkin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Ovarian Cancer Research Center, Department of Obstetrics & Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joyce F Liu
- Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ursula Matulonis
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, MA, USA
| | - Quan Zhu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Wayne A Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Chang DK, Moniz RJ, Xu Z, Sun J, Signoretti S, Zhu Q, Marasco WA. Human anti-CAIX antibodies mediate immune cell inhibition of renal cell carcinoma in vitro and in a humanized mouse model in vivo. Mol Cancer 2015; 14:119. [PMID: 26062742 PMCID: PMC4464115 DOI: 10.1186/s12943-015-0384-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/11/2015] [Indexed: 12/17/2022] Open
Abstract
Background Carbonic anhydrase (CA) IX is a surface-expressed protein that is upregulated by the hypoxia inducible factor (HIF) and represents a prototypic tumor-associated antigen that is overexpressed on renal cell carcinoma (RCC). Therapeutic approaches targeting CAIX have focused on the development of CAIX inhibitors and specific immunotherapies including monoclonal antibodies (mAbs). However, current in vivo mouse models used to characterize the anti-tumor properties of fully human anti-CAIX mAbs have significant limitations since the role of human effector cells in tumor cell killing in vivo is not directly evaluated. Methods The role of human anti-CAIX mAbs on CAIX+ RCC tumor cell killing by immunocytes or complement was tested in vitro by antibody-dependent cell-mediated cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC) and antibody-dependent cellular phagocytosis (ADCP) as well as on CAIX+ RCC cellular motility, wound healing, migration and proliferation. The in vivo therapeutic activity mediated by anti-CAIX mAbs was determined by using a novel orthotopic RCC xenograft humanized animal model and analyzed by histology and FACS staining. Results Our studies demonstrate the capacity of human anti-CAIX mAbs that inhibit CA enzymatic activity to result in immune-mediated killing of RCC, including nature killer (NK) cell-mediated ADCC, CDC, and macrophage-mediated ADCP. The killing activity correlated positively with the level of CAIX expression on RCC tumor cell lines. In addition, Fc engineering of anti-CAIX mAbs was shown to enhance the ADCC activity against RCC. We also demonstrate that these anti-CAIX mAbs inhibit migration of RCC cells in vitro. Finally, through the implementation of a novel orthotopic RCC model utilizing allogeneic human peripheral blood mononuclear cells in NOD/SCID/IL2Rγ−/− mice, we show that anti-CAIX mAbs are capable of mediating human immune response in vivo including tumor infiltration of NK cells and activation of T cells, resulting in inhibition of CAIX+ tumor growth. Conclusions Our findings demonstrate that these novel human anti-CAIX mAbs have therapeutic potential in the unmet medical need of targeted killing of HIF-driven CAIX+RCC. The orthotopic tumor xenografted humanized mouse provides an improved model to evaluate the in vivo anti-tumor capabilities of fully human mAbs for RCC therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0384-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- De-Kuan Chang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, USA. .,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA.
| | - Raymond J Moniz
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, USA. .,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA.
| | - Zhongyao Xu
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, USA.
| | - Jiusong Sun
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, USA. .,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA.
| | - Sabina Signoretti
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, USA. .,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Quan Zhu
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, USA. .,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA.
| | - Wayne A Marasco
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, USA. .,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA.
| |
Collapse
|
38
|
Wang Z, Wei M, Zhang H, Chen H, Germana S, Huang CA, Madsen JC, Sachs DH, Wang Z. Diphtheria-toxin based anti-human CCR4 immunotoxin for targeting human CCR4(+) cells in vivo. Mol Oncol 2015; 9:1458-70. [PMID: 25958791 DOI: 10.1016/j.molonc.2015.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/07/2015] [Accepted: 04/15/2015] [Indexed: 10/23/2022] Open
Abstract
CC chemokine receptor 4 (CCR4) has attracted much attention as a promising therapeutic drug target for CCR4(+) tumor cells and Tregs. CCR4 is expressed on some tumor cells such as T-cell acute lymphoblastic leukemia (ALL), adult T-cell leukemia/lymphoma (ATLL), adult peripheral T cell lymphoma (PTCL) and cutaneous T cell lymphoma (CTCL). CCR4 is also expressed on majority of Tregs, mainly effector Tregs. In this study we have successfully developed three versions of diphtheria-toxin based anti-human CCR4 immunotoxins (monovalent, bivalent and single-chain fold-back diabody). Binding analysis by flow cytometry showed that all three versions of the anti-human CCR4 immunotoxins bound to the human CCR4(+) tumor cell line as well as CCR4(+) human PBMC. The bivalent isoform bound stronger than its monovalent counterpart and the single-chain foldback diabody isoform was the strongest among the three versions. In vitro efficacy analysis demonstrated that the bivalent isoform was 20 fold more potent in inhibiting cellular proliferation and protein synthesis in human CCR4(+) tumor cells compared to the monovalent anti-human CCR4 immunotoxin. The single-chain fold-back diabody isoform was 10 fold more potent than its bivalent counterpart and 200 fold more potent than its monovalent counterpart. The in vivo efficacy was assessed using a human CCR4(+) tumor-bearing mouse model. The immunotoxin significantly prolonged the survival of tumor-bearing NOD/SCID IL-2 receptor γ(-/-) (NSG) mice injected with human CCR4(+) acute lymphoblastic leukemia cells compared with the control group. This novel anti-human CCR4 immunotoxin is a promising drug candidate for targeting human CCR4(+) tumor cells and Tregs in vivo.
Collapse
Affiliation(s)
- Zhaohui Wang
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Min Wei
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Huiping Zhang
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hongyuan Chen
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sharon Germana
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christene A Huang
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joren C Madsen
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David H Sachs
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; TBRC Laboratories, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhirui Wang
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Persa E, Balogh A, Sáfrány G, Lumniczky K. The effect of ionizing radiation on regulatory T cells in health and disease. Cancer Lett 2015; 368:252-61. [PMID: 25754816 DOI: 10.1016/j.canlet.2015.03.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 02/07/2023]
Abstract
Treg cells are key elements of the immune system which are responsible for the immune suppressive phenotype of cancer patients. Interaction of Treg cells with conventional anticancer therapies might fundamentally influence cancer therapy response rates. Radiotherapy, apart from its direct tumor cell killing potential, has a contradictory effect on the antitumor immune response: it augments certain immune parameters, while it depresses others. Treg cells are intrinsically radioresistant due to reduced apoptosis and increased proliferation, which leads to their systemic and/or intratumoral enrichment. While physiologically Treg suppression is not enhanced by irradiation, this is not the case in a tumorous environment, where Tregs acquire a highly suppressive phenotype, which is further increased by radiotherapy. This is the reason why the interest for combined radiotherapy and immunotherapy approaches focusing on the abrogation of Treg suppression has increased in cancer therapy in the last few years. Here we summarize the basic mechanisms of Treg radiation response both in healthy and cancerous environments and discuss Treg-targeted pre-clinical and clinical immunotherapy approaches used in combination with radiotherapy. Finally, the discrepant findings regarding the predictive value of Tregs in therapy response are also reviewed.
Collapse
Affiliation(s)
- Eszter Persa
- Frédéric Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Andrea Balogh
- Frédéric Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Géza Sáfrány
- Frédéric Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Katalin Lumniczky
- Frédéric Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary.
| |
Collapse
|
40
|
Vela M, Aris M, Llorente M, Garcia-Sanz JA, Kremer L. Chemokine receptor-specific antibodies in cancer immunotherapy: achievements and challenges. Front Immunol 2015; 6:12. [PMID: 25688243 PMCID: PMC4311683 DOI: 10.3389/fimmu.2015.00012] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/07/2015] [Indexed: 12/22/2022] Open
Abstract
The 1990s brought a burst of information regarding the structure, expression pattern, and role in leukocyte migration and adhesion of chemokines and their receptors. At that time, the FDA approved the first therapeutic antibodies for cancer treatment. A few years later, it was reported that the chemokine receptors CXCR4 and CCR7 were involved on directing metastases to liver, lung, bone marrow, or lymph nodes, and the over-expression of CCR4, CCR6, and CCR9 by certain tumors. The possibility of inhibiting the interaction of chemokine receptors present on the surface of tumor cells with their ligands emerged as a new therapeutic approach. Therefore, many research groups and companies began to develop small molecule antagonists and specific antibodies, aiming to neutralize signaling from these receptors. Despite great expectations, so far, only one anti-chemokine receptor antibody has been approved for its clinical use, mogamulizumab, an anti-CCR4 antibody, granted in Japan to treat refractory adult T-cell leukemia and lymphoma. Here, we review the main achievements obtained with anti-chemokine receptor antibodies for cancer immunotherapy, including discovery and clinical studies, proposed mechanisms of action, and therapeutic applications.
Collapse
Affiliation(s)
- Maria Vela
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB/CSIC), Madrid, Spain
| | - Mariana Aris
- Centro de Investigaciones Oncológicas, Fundación Cáncer, Buenos Aires, Argentina
| | - Mercedes Llorente
- Protein Tools Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB/CSIC), Madrid, Spain
| | - Jose A. Garcia-Sanz
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB/CSIC), Madrid, Spain
| | - Leonor Kremer
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB/CSIC), Madrid, Spain
- Protein Tools Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB/CSIC), Madrid, Spain
| |
Collapse
|
41
|
Schon HT, Weiskirchen R. Immunomodulatory effects of transforming growth factor-β in the liver. Hepatobiliary Surg Nutr 2015; 3:386-406. [PMID: 25568862 DOI: 10.3978/j.issn.2304-3881.2014.11.06] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 10/20/2014] [Indexed: 12/12/2022]
Abstract
Members of the transforming growth factor-β (TGF-β) family are potent regulatory cytokines that affect multiple cell types of the immune system mediating pro-inflammatory or anti-inflammatory responses. In the liver, TGF-β is produced by a multitude of non-parenchymal liver cells including hepatic stellate cells (HSCs), liver sinusoidal endothelial cells (LSECs), Kupffer cells (KCs), and dendritic cells (DCs) as well as natural killer (NK) T cells among other hepatic lymphocytes. The effect of TGF-β on other cells is highly versatile. In concert with other soluble factors, it controls the maturation, differentiation and activity of various T cell subsets that either prevent or actuate infections, graft-versus-host reactions, immune diseases, and cancer formation. During the last decades, it became evident that some TGFB1 polymorphisms are associated with the pathogenesis of hepatic disease and that plasma TGF-β is a suitable biomarker to detect liver lesions. Moreover, since TGF-β has capacity to influence the quantity and quality of T cell subsets as well as their activity, it is obvious that a well-balanced TGF-β activity is essential for liver homeostasis. In the present review, we highlight some pivotal functions of TGF-β in hepatic immunobiology. We discuss its regulatory function on adaptive immunity, the impact on differentiation of various T cell subsets, its crosstalk with Toll like receptor signaling, and its contribution to functional impairment of the liver.
Collapse
Affiliation(s)
- Hans-Theo Schon
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
42
|
Ni X, Jorgensen JL, Goswami M, Challagundla P, Decker WK, Kim YH, Duvic MA. Reduction of Regulatory T Cells by Mogamulizumab, a Defucosylated Anti-CC Chemokine Receptor 4 Antibody, in Patients with Aggressive/Refractory Mycosis Fungoides and Sézary Syndrome. Clin Cancer Res 2014; 21:274-85. [DOI: 10.1158/1078-0432.ccr-14-0830] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Remer M, Al-Shamkhani A, Glennie M, Johnson P. Mogamulizumab and the treatment of CCR4-positive T-cell lymphomas. Immunotherapy 2014; 6:1187-206. [DOI: 10.2217/imt.14.94] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glyco-engineering has been developed to enhance the pharmacological properties of monoclonal antibodies (mAbs) resulting in superior immune effector function. Mogamulizumab is the first approved glyco-engineered therapeutic antibody and first approved mAb to target the CC chemokine receptor 4 (CCR4). CCR4 is principally expressed on Tregs and helper T cells (Th) where it functions to induce homing of these leukocytes to sites of inflammation. Tregs play an essential role in maintaining immune balance; however, in malignancy, Tregs impair host antitumor immunity and provide a favorable environment for tumors to grow. CCR4 is highly expressed by aggressive peripheral T-cell lymphomas (PTCLs), particularly adult T-cell leukemia/lymphoma (ATL) and cutaneous T-cell lymphomas (CTCLs). Mogamulizumab is a humanized anti-CCR4 mAb with a defucosylated Fc region that enhances antibody-dependent cellular cytotoxicity (ADCC). In addition, mogamulizumab depletes CCR4+ Tregs, potentially evoking antitumor immune responses by autologous effector cells. This ability is highly pertinent as subsets of malignant T cells are believed to function as CD4+ Tregs, overexpressing CCR4. Clinical trials with mogamulizumab have demonstrated clinical efficacy and tolerability for the treatment of relapsed/refractory aggressive T-cell lymphomas, previously associated with very poor outcomes.
Collapse
Affiliation(s)
- Marcus Remer
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, SO16 6YD, UK
| | - Aymen Al-Shamkhani
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, SO16 6YD, UK
| | - Martin Glennie
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, SO16 6YD, UK
| | - Peter Johnson
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, SO16 6YD, UK
| |
Collapse
|
44
|
|
45
|
Hagemann UB, Gunnarsson L, Géraudie S, Scheffler U, Griep RA, Reiersen H, Duncan AR, Kiprijanov SM. Fully human antagonistic antibodies against CCR4 potently inhibit cell signaling and chemotaxis. PLoS One 2014; 9:e103776. [PMID: 25080123 PMCID: PMC4117600 DOI: 10.1371/journal.pone.0103776] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 06/30/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND CC chemokine receptor 4 (CCR4) represents a potentially important target for cancer immunotherapy due to its expression on tumor infiltrating immune cells including regulatory T cells (Tregs) and on tumor cells in several cancer types and its role in metastasis. METHODOLOGY Using phage display, human antibody library, affinity maturation and a cell-based antibody selection strategy, the antibody variants against human CCR4 were generated. These antibodies effectively competed with ligand binding, were able to block ligand-induced signaling and cell migration, and demonstrated efficient killing of CCR4-positive tumor cells via ADCC and phagocytosis. In a mouse model of human T-cell lymphoma, significant survival benefit was demonstrated for animals treated with the newly selected anti-CCR4 antibodies. SIGNIFICANCE For the first time, successful generation of anti- G-protein coupled chemokine receptor (GPCR) antibodies using human non-immune library and phage display on GPCR-expressing cells was demonstrated. The generated anti-CCR4 antibodies possess a dual mode of action (inhibition of ligand-induced signaling and antibody-directed tumor cell killing). The data demonstrate that the anti-tumor activity in vivo is mediated, at least in part, through Fc-receptor dependent effector mechanisms, such as ADCC and phagocytosis. Anti-CC chemokine receptor 4 antibodies inhibiting receptor signaling have potential as immunomodulatory antibodies for cancer.
Collapse
|
46
|
|
47
|
Tuzova M, Richmond J, Wolpowitz D, Curiel-Lewandrowski C, Chaney K, Kupper T, Cruikshank W. CCR4+T cell recruitment to the skin in mycosis fungoides: potential contributions by thymic stromal lymphopoietin and interleukin-16. Leuk Lymphoma 2014; 56:440-9. [PMID: 24794807 DOI: 10.3109/10428194.2014.919634] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mycosis fungoides (MF) is characterized by skin accumulation of CCR4+CCR7- effector memory T cells; however the mechanism for their recruitment is not clearly identified. Thymic Stromal Lymphopoietin (TSLP) is a keratinocyte-derived cytokine that triggers Th2 immunity and is associated with T cell recruitment to the skin in atopic dermatitis. Interleukin-16 (IL-16) is a chemoattractant and growth factor for CD4+T cells. We hypothesized that TSLP and IL-16 could contribute to recruitment of malignant T cells in MF. We found elevated TSLP and IL-16 in very early stage patients' plasma and skin biopsies, prior to elevation in CCL22. Both TSLP and IL-16 induced migratory responses of CCR4+TSLPR+CD4+CCR7-CD31+cells, characteristic of malignant T cells in the skin. Co-stimulation also resulted in significant proliferative responses. We conclude that TSLP and IL-16, expressed at early stages of disease, function to recruit malignant T cells to the skin and contribute to their enhanced proliferation.
Collapse
|
48
|
Jawed SI, Myskowski PL, Horwitz S, Moskowitz A, Querfeld C. Primary cutaneous T-cell lymphoma (mycosis fungoides and Sézary syndrome): part II. Prognosis, management, and future directions. J Am Acad Dermatol 2014; 70:223.e1-17; quiz 240-2. [PMID: 24438970 DOI: 10.1016/j.jaad.2013.08.033] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/13/2013] [Accepted: 08/16/2013] [Indexed: 12/20/2022]
Abstract
Both mycosis fungoides (MF) and Sézary syndrome (SS) have a chronic, relapsing course, with patients frequently undergoing multiple, consecutive therapies. Treatment is aimed at the clearance of skin disease, the minimization of recurrence, the prevention of disease progression, and the preservation of quality of life. Other important considerations are symptom severity, including pruritus and patient age/comorbidities. In general, for limited patch and plaque disease, patients have excellent prognosis on ≥1 topical formulations, including topical corticosteroids and nitrogen mustard, with widespread patch/plaque disease often requiring phototherapy. In refractory early stage MF, transformed MF, and folliculotropic MF, a combination of skin-directed therapy plus low-dose immunomodulators (eg, interferon or bexarotene) may be effective. Patients with advanced and erythrodermic MF/SS can have profound immunosuppression, with treatments targeting tumor cells aimed for immune reconstitution. Biologic agents or targeted therapies either alone or in combination--including immunomodulators and histone-deacetylase inhibitors--are tried first, with more immunosuppressive therapies, such as alemtuzumab or chemotherapy, being generally reserved for refractory or rapidly progressive disease or extensive lymph node and metastatic involvement. Recently, an increased understanding of the pathogenesis of MF and SS with identification of important molecular markers has led to the development of new targeted therapies that are currently being explored in clinical trials in advanced MF and SS.
Collapse
Affiliation(s)
- Sarah I Jawed
- Dermatology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Patricia L Myskowski
- Dermatology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Steven Horwitz
- Lymphoma Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Alison Moskowitz
- Lymphoma Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Christiane Querfeld
- Dermatology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College, New York, New York.
| |
Collapse
|
49
|
Bayry J, Tartour E, Tough DF. Targeting CCR4 as an emerging strategy for cancer therapy and vaccines. Trends Pharmacol Sci 2014; 35:163-5. [PMID: 24612600 DOI: 10.1016/j.tips.2014.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Unité 1138, Paris, F-75006, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 6, UMR S 1138, 15 rue de l'Ecole de Médicine, Paris, F-75006, France; Université Paris Descartes, UMR S 1138 Paris, F-75006, France.
| | - Eric Tartour
- Institut National de la Santé et de la Recherche Médicale, Unité 970, PARCC (Paris Cardiovascular Research Center), Université Paris Descartes, Sorbonne Paris Cité, 56 rue Leblanc, F-75015, Paris, France; Hôpital Européen Georges-Pompidou, Service d'Immunologie Biologique, AP-HP, F-75015, Paris, France
| | - David F Tough
- Epinova Discovery Performance Unit, Immuno-inflammation Therapeutic Area, GlaxoSmithKline, Medicines Discovery Centre, SG1 2NY, Stevenage, UK
| |
Collapse
|
50
|
Abstract
Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of primary cutaneous T-cell lymphoproliferative processes, mainly composed of mycosis fungoides and Sézary syndrome, the aggressive forms of which lack an effective treatment. The molecular pathogenesis of CTCL is largely unknown, although neoplastic cells show increased signaling from T-cell receptors (TCRs). DNAs from 11 patients with CTCL, both normal and tumoral, were target-enriched and sequenced by massive parallel sequencing for a selection of 524 TCR-signaling-related genes. Identified variants were validated by capillary sequencing. Multiple mutations were found that affected several signaling pathways, such as TCRs, nuclear factor κB, or Janus kinase/signal transducer and activator of transcription, but PLCG1 was found to be mutated in 3 samples, 2 of which featured a redundant mutation (c.1034T>C, S345F) in exon 11 that affects the PLCx protein catalytic domain. This mutation was further analyzed by quantitative polymerase chain reaction genotyping in a new cohort of 42 patients with CTCL, where it was found in 19% of samples. Immunohistochemical analysis for nuclear factor of activated T cells (NFAT) showed that PLCG1-mutated cases exhibited strong NFAT nuclear immunostaining. Functional studies demonstrated that PLCG1 mutants elicited increased downstream signaling toward NFAT activation, and inhibition of this pathway resulted in reduced CTCL cell proliferation and cell viability. Thus, increased proliferative and survival mechanisms in CTCL may partially depend on the acquisition of somatic mutations in PLCG1 and other genes that are essential for normal T-cell differentiation.
Collapse
|