1
|
Casari G, Romaldi B, Scirè A, Minnelli C, Marzioni D, Ferretti G, Armeni T. Epigenetic Properties of Compounds Contained in Functional Foods Against Cancer. Biomolecules 2024; 15:15. [PMID: 39858410 PMCID: PMC11762081 DOI: 10.3390/biom15010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Epigenetics encompasses reversible and heritable genomic changes in histones, DNA expression, and non-coding RNAs that occur without modifying the nucleotide DNA sequence. These changes play a critical role in modulating cell function in both healthy and pathological conditions. Dysregulated epigenetic mechanisms are implicated in various diseases, including cardiovascular disorders, neurodegenerative diseases, obesity, and mainly cancer. Therefore, to develop innovative therapeutic strategies, research for compounds able to modulate the complex epigenetic landscape of cancer is rapidly surging. Dietary phytochemicals, mostly flavonoids but also tetraterpenoids, organosulfur compounds, and isothiocyanates, represent biologically active molecules found in vegetables, fruits, medicinal plants, and beverages. These natural organic compounds exhibit epigenetic modulatory properties by influencing the activity of epigenetics key enzymes, such as DNA methyltransferases, histone acetyltransferases and deacetylases, and histone methyltransferases and demethylases. Due to the reversibility of the modifications that they induce, their minimal adverse effects, and their potent epigenetic regulatory activity, dietary phytochemicals hold significant promise as antitumor agents and warrant further investigation. This review aims to consolidate current data on the diverse epigenetic effects of the six major flavonoid subclasses, as well as other natural compounds, in the context of cancer. The goal is to identify new therapeutic epigenetic targets for drug development, whether as stand-alone treatments or in combination with conventional antitumor approaches.
Collapse
Affiliation(s)
- Giulia Casari
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| | - Brenda Romaldi
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| | - Andrea Scirè
- Department of Life and Environmental Sciences (DISVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.)
| | - Cristina Minnelli
- Department of Life and Environmental Sciences (DISVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.)
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - Gianna Ferretti
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| | - Tatiana Armeni
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| |
Collapse
|
2
|
Chuang YT, Yen CY, Chien TM, Chang FR, Tsai YH, Wu KC, Tang JY, Chang HW. Ferroptosis-Regulated Natural Products and miRNAs and Their Potential Targeting to Ferroptosis and Exosome Biogenesis. Int J Mol Sci 2024; 25:6083. [PMID: 38892270 PMCID: PMC11173094 DOI: 10.3390/ijms25116083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Ferroptosis, which comprises iron-dependent cell death, is crucial in cancer and non-cancer treatments. Exosomes, the extracellular vesicles, may deliver biomolecules to regulate disease progression. The interplay between ferroptosis and exosomes may modulate cancer development but is rarely investigated in natural product treatments and their modulating miRNAs. This review focuses on the ferroptosis-modulating effects of natural products and miRNAs concerning their participation in ferroptosis and exosome biogenesis (secretion and assembly)-related targets in cancer and non-cancer cells. Natural products and miRNAs with ferroptosis-modulating effects were retrieved and organized. Next, a literature search established the connection of a panel of ferroptosis-modulating genes to these ferroptosis-associated natural products. Moreover, ferroptosis-associated miRNAs were inputted into the miRNA database (miRDB) to bioinformatically search the potential targets for the modulation of ferroptosis and exosome biogenesis. Finally, the literature search provided a connection between ferroptosis-modulating miRNAs and natural products. Consequently, the connections from ferroptosis-miRNA-exosome biogenesis to natural product-based anticancer treatments are well-organized. This review sheds light on the research directions for integrating miRNAs and exosome biogenesis into the ferroptosis-modulating therapeutic effects of natural products on cancer and non-cancer diseases.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Tsu-Ming Chien
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung 820111, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung 907101, Taiwan;
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung 900391, Taiwan;
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
3
|
Shahiwala AF, Khan GA. Potential Phytochemicals for Prevention of Familial Breast Cancer with BRCA Mutations. Curr Drug Targets 2023; 24:521-531. [PMID: 36918779 DOI: 10.2174/1389450124666230314110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/17/2022] [Accepted: 01/12/2023] [Indexed: 03/16/2023]
Abstract
Breast cancer has remained a global challenge and the second leading cause of cancer mortality in women and family history. Hereditary factors are some of the major risk factors associated with breast cancer. Out of total breast cancer cases, 5-10% account only for familial breast cancer, and nearly 50% of all hereditary breast cancer are due to BRCA1/BRCA2 germline mutations. BRCA1/2 mutations play an important role not only in determining the clinical prognosis of breast cancer but also in the survival curves. Since this risk factor is known, a significant amount of the healthcare burden can be reduced by taking preventive measures among people with a known history of familial breast cancer. There is increasing evidence that phytochemicals of nutrients and supplements help in the prevention and cure of BRCA-related cancers by different mechanisms such as limiting DNA damage, altering estrogen metabolism, or upregulating expression of the normal BRCA allele, and ultimately enhancing DNA repair. This manuscript reviews different approaches used to identify potential phytochemicals to mitigate the risk of familial breast cancer with BRCA mutations. The findings of this review can be extended for the prevention and cure of any BRCAmutated cancer after proper experimental and clinical validation of the data.
Collapse
Affiliation(s)
| | - Gazala Afreen Khan
- Department of Clinical Pharmacy & Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| |
Collapse
|
4
|
Iahtisham-Ul-Haq, Khan S, Awan KA, Iqbal MJ. Sulforaphane as a potential remedy against cancer: Comprehensive mechanistic review. J Food Biochem 2021; 46:e13886. [PMID: 34350614 DOI: 10.1111/jfbc.13886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/30/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022]
Abstract
Sulforaphane belongs to the active class of isothiocyanates capable of delivering various biological benefits for health promotion and disease prevention. This compound is considered vital to curtail numerous metabolic disorders. Various studies have proven its beneficial effects against cancer prevention and its possible utilization as a therapeutic agent in cancer treatment. Understanding the mechanistic pathways and possible interactions at cellular and subcellular levels is key to design and develop cancer therapeutics for humans. In this respect, a number of mechanisms such as modulation of carcinogen metabolism & phase II enzymatic activities, cell cycle arrest, activation of Nrf2, cytotoxic, proapoptotic and apoptotic pathways have been reported to be involved in cancer prevention. This article provides sufficient information by critical analysis to understand the mechanisms involved in cancer prevention attributed to sulforaphane. Furthermore, various clinical studies have also been included for design and development of novel therapies for cancer prevention and cure. PRACTICAL APPLICATIONS: Diet and dietary components are potential tools to address various lifestyle-related disorders. Due to plenty of environmental and cellular toxicants, the chances of cancer prevalence are quite large which are worsen by adopting unhealthy lifestyles. Cancer can be treated with various therapies but those are acquiring side effects causing the patients to suffer the treatment regime. Nutraceuticals and functional foods provide safer options to prevent or delay the onset of cancer. In this regard, sulforaphane is a pivotal compound to be targeted as a potential agent for cancer treatment both in preventive and therapeutic regimes. This article provides sufficient evidence via discussing the underlying mechanisms of positive effects of sulforaphane to further the research for developing anticancer drugs that will help assuage this lethal morbidity.
Collapse
Affiliation(s)
- Iahtisham-Ul-Haq
- School of Food and Nutrition, Faculty of Allied Health Sciences, Minhaj University, Lahore, Pakistan
| | - Sipper Khan
- Institute of Agricultural Engineering, Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Kanza Aziz Awan
- Department of Food Science and Technology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | | |
Collapse
|
5
|
Esteve M. Mechanisms Underlying Biological Effects of Cruciferous Glucosinolate-Derived Isothiocyanates/Indoles: A Focus on Metabolic Syndrome. Front Nutr 2020; 7:111. [PMID: 32984393 PMCID: PMC7492599 DOI: 10.3389/fnut.2020.00111] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
An inverse correlation between vegetable consumption and the incidence of cancer has long been described. This protective effect is stronger when cruciferous vegetables are specifically consumed. The beneficial properties of vegetables are attributed to their bioactive components like fiber, antioxidants vitamins, antioxidants, minerals, and phenolic compounds. Cruciferous vegetables contain all these molecules; however, what makes them different are their sulfurous components, called glucosinolates, responsible for their special smell and taste. Glucosinolates are inactive biologically in the organism but are hydrolyzed by the enzyme myrosinase released as a result of chewing, leading to the formation of active derivatives such as isothiocyanates and indoles. A considerable number of in vitro and in vivo studies have reported that isothiocyanates and indoles elicit chemopreventive potency through multiple mechanisms that include modulation of phases I and II detoxification pathway enzymes, regulation of cell cycle arrest, and control of cell growth, induction of apoptosis, antioxidant activity, anti-angiogenic effects, and epigenetic regulation. Nuclear erythroid 2-related factor 2 (Nrf2) and Nuclear factor-κB (NF-κB) are key and central regulators in all these processes with a main role in oxidative stress and inflammation control. It has been described that isothiocyanates and indoles regulate their activity directly and indirectly. Today, the metabolic syndrome (central obesity, insulin resistance, hyperlipidemia, and hypertension) is responsible for a majority of deaths worldwide. All components of metabolic syndrome are characterized by chronic inflammation with deregulation of the PI3K/AKT/mTOR, MAPK/EKR/JNK, Nrf2, and NF-κB signaling pathways. The effects of GLSs derivatives controlling these pathways have been widely described in relation to cancer. Changes in food consumption patterns observed in the last decades to higher consumption of ultra-processed foods, with elevation in simple sugar and saturated fat contents and lower consumption of vegetables and fruits have been directly correlated with metabolic syndrome prevalence. In this review, it is summarized the knowledge regarding the mechanisms by which cruciferous glucosinolate derivatives (isothiocyanates and indoles) directly and indirectly regulate these pathways. However, the review places a special focus on the knowledge of the effects of glucosinolates derivatives in metabolic syndrome, since this has not been reviewed before.
Collapse
Affiliation(s)
- Montserrat Esteve
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
- Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Balasubramanian S, Gunasekaran K, Sasidharan S, Jeyamanickavel Mathan V, Perumal E. MicroRNAs and Xenobiotic Toxicity: An Overview. Toxicol Rep 2020; 7:583-595. [PMID: 32426239 PMCID: PMC7225592 DOI: 10.1016/j.toxrep.2020.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/13/2020] [Accepted: 04/19/2020] [Indexed: 12/27/2022] Open
Abstract
The advent of new technologies has paved the rise of various chemicals that are being employed in industrial as well as consumer products. This leads to the accumulation of these xenobiotic compounds in the environment where they pose a serious threat to both target and non-target species. miRNAs are one of the key epigenetic mechanisms that have been associated with toxicity by modulating the gene expression post-transcriptionally. Here, we provide a comprehensive view on miRNA biogenesis, their mechanism of action and, their possible role in xenobiotic toxicity. Further, we review the recent in vitro and in vivo studies involved in xenobiotic exposure induced miRNA alterations and the mRNA-miRNA interactions. Finally, we address the challenges associated with the miRNAs in toxicological studies.
Collapse
Key Words
- ADAMTS9, A disintegrin and metalloproteinase with thrombospondin motifs 9
- AHR, Aryl Hydrocarbon Receptor
- AMPK, Adenosine Monophosphate-activated protein kinase
- ARRB1, Arrestin beta 1
- Ag, Silver
- Al2O3, Aluminium oxide
- Au, Gold
- Aβ, Amyloid Beta
- BCB, Blood-cerebrospinal fluid barrier
- BNIP3−3, BCL2/adenovirus E1B 19 kDa protein-interacting protein 3
- BaP, Benzo[a]pyrene
- Biomarkers
- CCNB1, Cyclin B1
- CDC25A, M-phase inducer phosphatase 1
- CDC25C, M-phase inducer phosphatase 3
- CDK, Cyclin-dependent Kinase
- CDK1, Cyclin-dependent kinase 1
- CDK6, Cyclin-dependent kinase 6
- CDKN1b, Cyclin-dependent kinase Inhibitor 1B
- CEC, Contaminants of Emerging Concern
- COPD, Chronic obstructive pulmonary disease
- COX2, Cyclooxygenase-2
- CTGF, Connective Tissue Growth Factor
- DGCR8, DiGeorge syndrome chromosomal [or critical] region 8
- DNA, Deoxy ribonucleic acid
- DON, Deoxynivalenol
- ER, Endoplasmic Reticulum
- Environment
- Epigenetics
- Fadd, Fas-associated protein with death domain
- GTP, Guanosine triphosphate
- Gene regulation
- Grp78/BIP, Binding immunoglobulin protein
- HSPA1A, Heat shock 70 kDa protein 1
- Hpf, Hours post fertilization
- IL-6, Interleukin 6
- IL1R1, Interleukin 1 receptor, type 1
- LIN28B, Lin-28 homolog B
- LRP-1-, Low density lipoprotein receptor-related protein 1
- MAPK, Mitogen Activated Protein Kinase
- MC-LR, Microcystin-Leucine Arginine
- MC-RR, Microcystin-Arginine Arginine
- MRE, MicroRNA Response Elements
- Mn, Manganese
- NASH, Non-alcoholic steatohepatitis
- NET1, Neuroepithelial Cell Transforming 1
- NF- ҡB, Nuclear Factor kappa-light-chain-enhancer of activated B cells
- NFKBAP, NFKB Activating protein-1
- NMDAR, N-methyl-d-aspartate receptor
- NPs, Nanoparticles
- Non-coding RNAs
- Nrf2, Nuclear factor erythroid 2-related factor 2
- PDCD4, Programmed cell death protein 4
- PFAS, Poly-fluoroalkyl substances
- PM2.5, Particulate Matter2.5
- RISC, RNA-induced silencing complex
- RNA, Ribonucleic acid
- RNAi, RNA interference
- RNase III, Ribonuclease III
- SEMA6D, Semaphorin-6D
- SOLiD, Sequencing by Oligonucleotide Ligation and Detection
- SPIONs, Superparamagnetic Iron Oxide Nanoparticles
- SiO2, Silicon dioxide
- TCDD, 2,3,7,8-Tetrachlorodibenzodioxin
- TNF-α, Tumor necrosis factor – alpha
- TP53, Tumor protein 53
- TRBP, Transactivation Response RNA Binding Protein
- Toxicity
- UTR, Untranslated region
- WHO, World Health Organization
- Wnt, Wingless-related integration site
- ZEA, Zearalanone
- Zn, Zinc
- bcl2l11, B-cell lymphoma-2-like protein 11
- ceRNA, Competing endogenous RNA
- lncRNAs, Long non-coding RNA
- mRNA, Messenger RNA
- miRNA, MicroRNA
- qRT-PCR, quantitative Real Time-Polymerase Chain Reaction
- ripk 1, Receptor-interacting serine/threonine-protein kinase 1
Collapse
Affiliation(s)
| | - Kanmani Gunasekaran
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India
| | - Saranyadevi Sasidharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India
| | | | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India
| |
Collapse
|
7
|
Zong D, Liu X, Li J, Ouyang R, Chen P. The role of cigarette smoke-induced epigenetic alterations in inflammation. Epigenetics Chromatin 2019; 12:65. [PMID: 31711545 PMCID: PMC6844059 DOI: 10.1186/s13072-019-0311-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background Exposure to cigarette smoke (CS) is a major threat to human health worldwide. It is well established that smoking increases the risk of respiratory diseases, cardiovascular diseases and different forms of cancer, including lung, liver, and colon. CS-triggered inflammation is considered to play a central role in various pathologies by a mechanism that stimulates the release of pro-inflammatory cytokines. During this process, epigenetic alterations are known to play important roles in the specificity and duration of gene transcription. Main text Epigenetic alterations include three major modifications: DNA modifications via methylation; various posttranslational modifications of histones, namely, methylation, acetylation, phosphorylation, and ubiquitination; and non-coding RNA sequences. These modifications work in concert to regulate gene transcription in a heritable fashion. The enzymes that regulate these epigenetic modifications can be activated by smoking, which further mediates the expression of multiple inflammatory genes. In this review, we summarize the current knowledge on the epigenetic alterations triggered by CS and assess how such alterations may affect smoking-mediated inflammatory responses. Conclusion The recognition of the molecular mechanisms of the epigenetic changes in abnormal inflammation is expected to contribute to the understanding of the pathophysiology of CS-related diseases such that novel epigenetic therapies may be identified in the near future.
Collapse
Affiliation(s)
- Dandan Zong
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Xiangming Liu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Jinhua Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
8
|
Veerappan I, Sankareswaran SK, Palanisamy R. Morin Protects Human Respiratory Cells from PM 2.5 Induced Genotoxicity by Mitigating ROS and Reverting Altered miRNA Expression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2389. [PMID: 31284452 PMCID: PMC6651735 DOI: 10.3390/ijerph16132389] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
Abstract
Chronic fine particulate matter (PM2.5) exposure causes oxidative stress and leads to many diseases in human like respiratory and cardiovascular disorders, and lung cancer. It is known that toxic responses elicited by PM2.5 particles depend on its physical and chemical characteristics that are greatly influenced by the source. Dietary polyphenolic compounds that possess antioxidant and free radical scavenging properties could be used for therapeutic or preventive approaches against air pollution related health hazards. This study evaluates characteristics and toxicity of PM2.5 collected from rural, urban, industrial, and traffic regions in and around Coimbatore City, Tamilnadu, India. Traffic PM2.5 particles contained higher amounts of metals and polycyclic aromatic hydrocarbons (PAHs). It also possessed higher levels of oxidative potential, induced more intracellular reactive oxygen species (ROS), and caused more levels of cell death and DNA damage in human respiratory cells. Its exposure up regulated DNA damage response related miR222, miR210, miR101, miR34a, and miR93 and MycN and suppressed Rad52. Pre-treatment with morin significantly decreased the PM2.5 induced toxicity and conferred protection against PM2.5 induced altered miRNA expression. Results of this study showed that cytoprotective effect of morin is due to its antioxidative and free radical scavenging activity.
Collapse
Affiliation(s)
- Indhumathi Veerappan
- Department of Biotechnology, Anna University, BIT Campus, Tiruchirappalli 620 024, India
| | | | - Rajaguru Palanisamy
- Department of Biotechnology, Anna University, BIT Campus, Tiruchirappalli 620 024, India.
| |
Collapse
|
9
|
In Search of Panacea-Review of Recent Studies Concerning Nature-Derived Anticancer Agents. Nutrients 2019; 11:nu11061426. [PMID: 31242602 PMCID: PMC6627480 DOI: 10.3390/nu11061426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Cancers are one of the leading causes of deaths affecting millions of people around the world, therefore they are currently a major public health problem. The treatment of cancer is based on surgical resection, radiotherapy, chemotherapy or immunotherapy, much of which is often insufficient and cause serious, burdensome and undesirable side effects. For many years, assorted secondary metabolites derived from plants have been used as antitumor agents. Recently, researchers have discovered a large number of new natural substances which can effectively interfere with cancer cells’ metabolism. The most famous groups of these compounds are topoisomerase and mitotic inhibitors. The aim of the latest research is to characterize natural compounds found in many common foods, especially by means of their abilities to regulate cell cycle, growth and differentiation, as well as epigenetic modulation. In this paper, we focus on a review of recent discoveries regarding nature-derived anticancer agents.
Collapse
|
10
|
Biersack B. Relations between approved platinum drugs and non-coding RNAs in mesothelioma. Noncoding RNA Res 2018; 3:161-173. [PMID: 30809599 PMCID: PMC6260483 DOI: 10.1016/j.ncrna.2018.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/29/2018] [Indexed: 12/23/2022] Open
Abstract
Malignant mesothelioma diseases feature an increasing risk due to their severe forms and their association with asbestos exposure. Platinum(II) complexes such as cisplatin and carboplatin are clinically approved for the therapy of mesothelioma often in combination with antimetabolites such as pemetrexed or gemcitabine. It was observed that pathogenic properties of mesothelioma cells and the response of mesothelioma tumors towards platinum-based drugs are strongly influenced by non-coding RNAs, in particular, by small microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). These non-coding RNAs controlled drug sensitivity and the development of tumor resistance towards platinum drugs. An overview of the interactions between platinum drugs and non-coding RNAs is given and the influence of non-coding RNAs on platinum drug efficacy in mesothelioma is discussed. Suitable non-coding RNA-modulating agents with potentially beneficial effects on cisplatin treatment of mesothelioma diseases are mentioned. The understanding of mesothelioma diseases concerning the interactions of non-coding RNAs and platinum drugs will optimize existing therapy schemes and pave the way to new treatment options in future.
Collapse
Key Words
- ABC, ATP-binding cassette
- AKBA, 3-acetyl-11-keto-β-boswellic acid
- AKI, acute kidney injury
- Anticancer drugs
- Bcl-2, B-cell lymphoma 2
- CAF, cancer-associated fibroblast
- CBDCA, cyclobutane-1,1-dicarboxylate
- Carboplatin
- Cisplatin
- DADS, diallyl sulfide
- DHA, docosahexaenoic acid
- DIM, 3,3′-diindolylmethane
- DMPM, diffuse malignant peritoneal mesothelioma
- EGCG, epigallocatechin-3-gallate
- EMT, epithelial-mesenchymal transition
- HOTAIR, HOX transcript antisense RNA
- I3C, indole-3-carbinol
- Long non-coding RNA
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MPM, malignant pleural mesothelioma
- MRP1, multidrug resistance protein 1
- Mesothelioma
- MicroRNA
- NSCLC, non-small cell lung cancer
- NaB, sodium butyrate
- PDCD4, programmed cell death 4
- PEG, polyethylene glycole
- PEITC, phenethylisothiocyanate
- PTEN, phosphatase and tensin homolog
- RA, retinoic acid
- SAHA, suberoylanilide hydroxamic acid
- SFN, sulforaphane
- TNBC, triple-negative breast cancer
- TSA, trichostatin A
Collapse
|
11
|
Biersack B. Interplay of non-coding RNAs and approved antimetabolites such as gemcitabine and pemetrexed in mesothelioma. Noncoding RNA Res 2018; 3:213-225. [PMID: 30809600 PMCID: PMC6257890 DOI: 10.1016/j.ncrna.2018.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/03/2018] [Accepted: 11/03/2018] [Indexed: 12/13/2022] Open
Abstract
Gemcitabine and pemetrexed are clinically approved antimetabolites for the therapy of mesothelioma diseases. These drugs are often applied in combination with platinum complexes and other drugs. The activity of antimetabolites depended on the expression levels of certain non-coding RNAs, in particular, of small microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). The development of tumor resistance towards antimetabolites was regulated by non-coding RNAs. An overview of the interplay between gemcitabine/pemetrexed antimetabolites and non-coding RNAs in mesothelioma is provided. Further to this, various non-coding RNA-modulating agents are discussed which displayed positive effects on gemcitabine or pemetrexed treatment of mesothelioma diseases. A detailed knowledge of the connections of non-coding RNAs with antimetabolites will be constructive for the design of improved therapies in future.
Collapse
Key Words
- AKBA, 3-acetyl-11-keto-β-boswellic acid
- Anticancer drugs
- Bcl-2, B-cell lymphoma 2
- DADS, diallyl sulfide
- DHA, docosahexaenoic acid
- DIM, 3,3‘-diindolylmethane
- DMPM, diffuse malignant peritoneal mesothelioma
- EGCG, epigallocatechin-3-gallate
- EMT, epithelial-mesenchymal transition
- Gemcitabine
- HOTAIR, HOX transcript antisense RNA
- I3C, indole-3-carbinol
- Long non-coding RNA
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MPM, malignant pleural mesothelioma
- Mesothelioma
- MicroRNA
- NSCLC, non-small cell lung cancer
- NaB, sodium butyrate
- PDCD4, programmed cell death 4
- PEG, polyethylene glycole
- PEITC, phenethylisothiocyanate
- PTEN, phosphatase and tensin homolog
- Pemetrexed
- RA, retinoic acid
- SAHA, suberoylanilide hydroxamic acid
- SFN, sulforaphane
- TSA, trichostatin A
Collapse
|
12
|
Regulatory mechanisms of miR-145 expression and the importance of its function in cancer metastasis. Biomed Pharmacother 2018; 109:195-207. [PMID: 30396077 DOI: 10.1016/j.biopha.2018.10.037] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are post-transcriptional mediators of gene expression and regulation, which play influential roles in tumorigenesis and cancer metastasis. The expression of tumor suppressor miR-145 is reduced in various cancer cell lines, containing both solid tumors and blood malignancies. However, the responsible mechanisms of its down-regulation are a complicated network. miR-145 is potentially able to inhbit tumor cell metastasis by targeting of multiple oncogenes, including MUC1, FSCN1, Vimentin, Cadherin, Fibronectin, Metadherin, GOLM1, ARF6, SMAD3, MMP11, Snail1, ZEB1/2, HIF-1α and Rock-1. This distinctive role of miR-145 in the regulation of metastasis-related gene expression may introduce miR-145 as an ideal candidate for controlling of cancer metastasis by miRNA replacement therapy. The present review aims to discuss the current understanding of the different aspects of molecular mechanisms of miR-145 regulation as well as its role in r metastasis regulation.
Collapse
|
13
|
Izzotti A, La Maestra S, Micale RT, Pulliero A, Geretto M, Balansky R, De Flora S. Modulation of genomic and epigenetic end-points by celecoxib. Oncotarget 2018; 9:33656-33681. [PMID: 30263093 PMCID: PMC6154745 DOI: 10.18632/oncotarget.26062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/16/2018] [Indexed: 01/20/2023] Open
Abstract
Celecoxib, a nonsteroidal anti-inflammatory drug that selectively targets cyclooxygenase-2, is a promising cancer chemopreventive agent. However, safety concerns have been raised in clinical trials evaluating its ability to prevent colorectal adenomas. The rationale for the herein reported studies was to analyze genomic and epigenetic end-points aimed at investigating both the chemopreventive properties of celecoxib towards cigarette smoke-associated molecular alterations and its possible adverse effects. We carried out three consecutive studies in mice treated with either smoke and/or celecoxib. Study 1 investigated early DNA alterations (DNA adducts, oxidative DNA damage, and systemic genotoxic damage) and epigenetic alterations (expression of 1,135 microRNAs) in lung and blood of Swiss H mice; Study 2 evaluated the formation of DNA adducts in lung, liver, and heart; and Study 3 evaluated the expression of microRNAs in 10 organs and 3 body fluids of ICR (CD-1) mice. Surprisingly, the oral administration of celecoxib to smoke-free mice resulted in the formation of DNA adducts in both lung and heart and in dysregulation of microRNAs in mouse organs and body fluids. On the other hand, celecoxib attenuated smoke-related DNA damage and dysregulation of microRNA expression. In conclusion, celecoxib showed pleiotropic properties and multiple mechanisms by counteracting the molecular damage produced by smoke in a variety of organs and body fluids. However, administration of celecoxib to non-smoking mice resulted in evident molecular alterations, also including DNA and RNA alterations in the heart, which may bear relevance in the pathogenesis of the cardiovascular adverse effects of this drug.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | - Rosanna T Micale
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | | | - Marta Geretto
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Roumen Balansky
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy.,National Center of Oncology, 1756 Sofia, Bulgaria
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
14
|
Phenethyl Isothiocyanate Inhibits In Vivo Growth of Xenograft Tumors of Human Glioblastoma Cells. Molecules 2018; 23:molecules23092305. [PMID: 30201893 PMCID: PMC6225357 DOI: 10.3390/molecules23092305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022] Open
Abstract
Phenethyl isothiocyanate (PEITC) from cruciferous vegetables can inhibit the growth of various human cancer cells. In previous studies, we determined that PEITC inhibited the in vitro growth of human glioblastoma GBM 8401 cells by inducing apoptosis, inhibiting migration and invasion, and altering gene expression. Nevertheless, there are no further in vivo reports disclosing whether PEITC can suppress the growth of glioblastoma. Therefore, in this study we investigate the anti-tumor effects of PEITC in a xenograft model of glioblastoma in nude mice. Thirty nude mice were inoculated subcutaneously with GBM 8401 cells. Mice with one palpable tumor were divided randomly into three groups: control, PEITC-10, and PEITC-20 groups treated with 0.1% dimethyl sulfoxide (DMSO), and 10 and 20 μmole PEITC/100 μL PBS daily by oral gavage, respectively. PEITC significantly decreased tumor weights and volumes of GBM 8401 cells in mice, but did not affect the total body weights of mice. PEITC diminished the levels of anti-apoptotic proteins MCL-1 (myeloid cell leukemia 1) and XIAP (X-linked inhibitor of apoptosis protein) in GBM 8401 cells. PEITC enhanced the levels of caspase-3 and Bax in GBM 8401 cells. The growth of glioblastoma can be suppressed by the biological properties of PEITC in vivo. These effects might support further investigations into the potential use of PEITC as an anticancer drug for glioblastoma.
Collapse
|
15
|
Zhang Z, Bergan R, Shannon J, Slatore CG, Bobe G, Takata Y. The Role of Cruciferous Vegetables and Isothiocyanates for Lung Cancer Prevention: Current Status, Challenges, and Future Research Directions. Mol Nutr Food Res 2018; 62:e1700936. [PMID: 29663679 DOI: 10.1002/mnfr.201700936] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 04/06/2018] [Indexed: 01/07/2023]
Abstract
Lung cancer remains a leading cause of cancer-related deaths in the United States. Although smoking and air pollution exposure are primary risk factors of lung cancer, diet has also been reported to contribute to lung cancer risk. Cruciferous vegetables contain many bioactive compounds that alter the detoxification process of air-borne carcinogenic compounds and, thereby, may decrease lung cancer risk. In the meta-analysis of 31 observational studies, cruciferous vegetable intake is inversely associated with lung cancer risk (summary odds ratio/relative risk = 0.81 and 95% confidence interval = 0.74-0.89 for comparing the highest with lowest intake categories). More observational studies need to measure urinary isothiocyanate (ITC) concentrations and investigate their association with lung cancer risk in populations with relatively high intake of cruciferous vegetables. Current evidence is limited to two phase 2 clinical trials with incomplete reporting. Hence, more short-term clinical phase 2 trials need to examine effects of various amounts and types of cruciferous vegetables on biomarkers of risk and efficacy before a large phase 3 trial can be conducted to assess effects upon lung cancer risk. This would help further elucidate whether the inverse association observed with self-reported cruciferous vegetable intake is indeed due to ITC content or other bioactive compounds.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- OHSU-PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Raymond Bergan
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jackilen Shannon
- OHSU-PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Christopher G Slatore
- Health Services Research & Development and Section of Pulmonary & Critical Care Medicine, VA Portland Health Care System, Portland, OR, 97239, USA.,Department of Medicine and Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Gerd Bobe
- Linus Pauling Institute, Department of Animal Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Yumie Takata
- College of Public Health and Human Sciences, School of Biological and Population Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
16
|
Advani J, Subbannayya Y, Patel K, Khan AA, Patil AH, Jain AP, Solanki HS, Radhakrishnan A, Pinto SM, Sahasrabuddhe NA, Thomas JK, Mathur PP, Nair BG, Chang X, Prasad TSK, Sidransky D, Gowda H, Chatterjee A. Long-Term Cigarette Smoke Exposure and Changes in MiRNA Expression and Proteome in Non-Small-Cell Lung Cancer. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:390-403. [PMID: 28692419 DOI: 10.1089/omi.2017.0045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic exposure to cigarette smoke markedly increases the risk for lung cancer. Regulation of gene expression at the post-transcriptional level by miRNAs influences a variety of cancer-related interactomes. Yet, relatively little is known on the effects of long-term cigarette smoke exposure on miRNA expression and gene regulation. NCI-H292 (H292) is a cell line sensitive to cigarette smoke with mucoepidermoid characteristics in culture. We report, in this study, original observations on long-term (12 months) cigarette smoke effects in the H292 cell line, using microarray-based miRNA expression profiling, and stable isotopic labeling with amino acids in cell culture-based quantitative proteomic analysis. We identified 112 upregulated and 147 downregulated miRNAs (by twofold) in cigarette smoke-treated H292 cells. The liquid chromatography-tandem mass spectrometry analysis identified 3,959 proteins, of which, 303 proteins were overexpressed and 112 proteins downregulated (by twofold). We observed 39 miRNA target pairs (proven targets) that were differentially expressed in response to chronic cigarette smoke exposure. Gene ontology analysis of the target proteins revealed enrichment of proteins in biological processes driving metabolism, cell communication, and nucleic acid metabolism. Pathway analysis revealed the enrichment of phagosome maturation, antigen presentation pathway, nuclear factor erythroid 2-related factor 2-mediated oxidative stress response, and cholesterol biosynthesis pathways in cigarette smoke-exposed cells. In conclusion, this report makes an important contribution to knowledge on molecular changes in a lung cell line in response to long term cigarette smoke exposure. The findings might inform future strategies for drug target, biomarker and diagnostics innovation in lung cancer, and clinical oncology. These observations also call for further research on the extent to which continuing or stopping cigarette smoking in patients diagnosed with lung cancer translates into molecular and clinical outcomes.
Collapse
Affiliation(s)
- Jayshree Advani
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | - Yashwanth Subbannayya
- 2 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India
| | - Krishna Patel
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,3 Amrita School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | - Aafaque Ahmad Khan
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Arun H Patil
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,2 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India .,4 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Ankit P Jain
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Hitendra S Solanki
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 School of Biotechnology, KIIT University , Bhubaneswar, India
| | | | - Sneha M Pinto
- 2 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India
| | | | - Joji K Thomas
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | | | - Bipin G Nair
- 3 Amrita School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | - Xiaofei Chang
- 5 Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - T S Keshava Prasad
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,2 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India
| | - David Sidransky
- 5 Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Harsha Gowda
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,2 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India
| | - Aditi Chatterjee
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,2 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India
| |
Collapse
|
17
|
Izzotti A, Longobardi M, La Maestra S, Micale RT, Pulliero A, Camoirano A, Geretto M, D'Agostini F, Balansky R, Miller MS, Steele VE, De Flora S. Release of MicroRNAs into Body Fluids from Ten Organs of Mice Exposed to Cigarette Smoke. Theranostics 2018; 8:2147-2160. [PMID: 29721069 PMCID: PMC5928877 DOI: 10.7150/thno.22726] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/06/2018] [Indexed: 12/13/2022] Open
Abstract
Purpose: MicroRNAs are small non-coding RNAs that regulate gene expression, thereby playing a role in a variety of physiological and pathophysiological states. Exposure to cigarette smoke extensively downregulates microRNA expression in pulmonary cells of mice, rats, and humans. Cellular microRNAs are released into body fluids, but a poor parallelism was previously observed between lung microRNAs and circulating microRNAs. The purpose of the present study was to validate the application of this epigenetic biomarker by using less invasive collection procedures. Experimental design: Using microarray analyses, we measured 1135 microRNAs in 10 organs and 3 body fluids of mice that were either unexposed or exposed to mainstream cigarette smoke for up to 8 weeks. The results obtained with selected miRNAs were validated by qPCR. Results: The lung was the main target affected by smoke (190 dysregulated miRNAs), followed by skeletal muscle (180), liver (138), blood serum (109), kidney (96), spleen (89), stomach (36), heart (33), bronchoalveolar lavage fluid (32), urine (27), urinary bladder (12), colon (5), and brain (0). Skeletal muscle, kidney, and lung were the most important sources of smoke-altered microRNAs in blood serum, urine, and bronchoalveolar lavage fluid, respectively. Conclusions: microRNA expression analysis was able to identify target organs after just 8 weeks of exposure to smoke, well before the occurrence of any detectable histopathological alteration. The present translational study validates the use of body fluid microRNAs as biomarkers applicable to human biomonitoring for mechanistic studies, diagnostic purposes, preventive medicine, and therapeutic strategies.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | | | - Rosanna T. Micale
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | | | - Anna Camoirano
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Marta Geretto
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | | | - Roumen Balansky
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
- National Center of Oncology, Sofia-1756, Bulgaria
| | - Mark Steven Miller
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA
| | - Vernon E. Steele
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
18
|
Gründemann C, Huber R. Chemoprevention with isothiocyanates - From bench to bedside. Cancer Lett 2017; 414:26-33. [PMID: 29111351 DOI: 10.1016/j.canlet.2017.10.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/10/2017] [Accepted: 10/20/2017] [Indexed: 12/15/2022]
Abstract
Isothiocyanates (ITCs) are naturally occurring hydrolization products from glucosinolates (GLSs) in brassicaceae and in epidemiological studies their intake has been weakly to moderately inversely correlated with the risk of colorectal cancer, prostate cancer and lung cancer. Numerous preclinical studies demonstrate chemopreventive mode of actions of ITCs, mainly related to a.) detoxification (induction of phase II enzymes), b.) anti-inflammatory properties by down-regulation of NFkappaB activity, c.) cyclin-mediated cell cycle arrest and d.) epigenetic modulation by inhibition of histone deacetylase activity. First prospective clinical trials were promising in patients with risk of prostate cancer recurrence. The glutathione-S-transferase gene expression seems to play a major role in the individual susceptibility towards ITCs. Safety issues are widely unclear and should be more addressed in future studies because ITCs can, in low concentrations, compromise the function of human immune cells and might impair genome stability.
Collapse
Affiliation(s)
- Carsten Gründemann
- Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Roman Huber
- Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
19
|
Castro D, Moreira M, Gouveia AM, Pozza DH, De Mello RA. MicroRNAs in lung cancer. Oncotarget 2017; 8:81679-81685. [PMID: 29113423 PMCID: PMC5655318 DOI: 10.18632/oncotarget.20955] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/26/2017] [Indexed: 01/03/2023] Open
Abstract
Lung cancer (LC) is a serious public health problem responsible for the majority of cancer deaths and comorbidities in developed countries. Tobacco smoking is considered the main risk factor for LC; however, only a few smokers will be affected by this cancer. Current screening methods are focused on identifying the early stages of this malignancy. Thus, new data concerning the roles of microRNA alterations in inflammation, epithelial-mesenchymal transition and lung disease have increased hope about LC pathogenesis, diagnosis, treatment and prognosis. MicroRNA mechanisms include angiogenesis promotion, cell cycle regulation by modulating cellular proliferation and apoptosis, and migration and invasion inhibition. In this context, this manuscript reviews the current information about many important microRNAs as they relate to the initiation and progression of LC.
Collapse
Affiliation(s)
- Diana Castro
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Márcia Moreira
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Alexandra Monteiro Gouveia
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Cellular and Molecular Biology (IBMC), Institute for Health Innovation, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Daniel Humberto Pozza
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Ramon Andrade De Mello
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Department of Medicine, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
20
|
Estrogen Repression of MicroRNAs Is Associated with High Guanine Content in the Terminal Loop Sequences of Their Precursors. Biomedicines 2017; 5:biomedicines5030047. [PMID: 28805722 PMCID: PMC5618305 DOI: 10.3390/biomedicines5030047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/20/2017] [Accepted: 08/09/2017] [Indexed: 01/09/2023] Open
Abstract
Widespread microRNA (miRNA) repression is a phenomenon observed in mammals after exposure to cigarette smoke and in many types of cancer. A comprehensive reduction in miRNA expression after treatment with the hormone estrogen has also previously been described. Here, we reveal a conserved association of miRNA downregulation after estrogen exposure in zebrafish, mouse, and human breast cancer cell line, with a high guanine content in the terminal loop sequences of their precursors, and offer a possible link between estrogen-related miRNA-adducts formation and carcinogenesis. We also show common gene expression patterns shared by breast cancer tumors and estrogen-treated zebrafish, suggesting that this organism can be used as a powerful model system for the study of human breast cancer.
Collapse
|
21
|
Pan JH, Abernathy B, Kim YJ, Lee JH, Kim JH, Shin EC, Kim JK. Cruciferous vegetables and colorectal cancer prevention through microRNA regulation: A review. Crit Rev Food Sci Nutr 2017; 58:2026-2038. [DOI: 10.1080/10408398.2017.1300134] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jeong Hoon Pan
- School of Human Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Breann Abernathy
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Jun Ho Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Eui Cheol Shin
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju, Republic of Korea
| | - Jae Kyeom Kim
- School of Human Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
22
|
Biersack B. Non-coding RNA/microRNA-modulatory dietary factors and natural products for improved cancer therapy and prevention: Alkaloids, organosulfur compounds, aliphatic carboxylic acids and water-soluble vitamins. Noncoding RNA Res 2016; 1:51-63. [PMID: 30159411 PMCID: PMC6096427 DOI: 10.1016/j.ncrna.2016.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 02/06/2023] Open
Abstract
Non-coding small RNA molecules, the microRNAs (miRNAs), contribute decisively to the epigenetic regulation processes in cancer cells. Problematic pathogenic properties of cancer cells and the response of cancers towards anticancer drugs are highly influenced by miRNAs. Both increased drug activity and formation of tumor resistance are regulated by miRNAs. Further to this, the survival and proliferation of cancer cells and the formation of metastases is based on the modulated expression of certain miRNAs. In particular, drug-resistant cancer stem-like cells (CSCs) depend on the presence and absence of specific miRNAs. Fortunately, several small molecule natural compounds were discovered that target miRNAs involved in the modulation of tumor aggressiveness and drug resistance. This review gives an overview of the effects of a selection of naturally occurring small molecules (alkaloids, organosulfur compounds, aliphatic carboxylic acids and water-soluble vitamins) on miRNAs that are closely tangled with cancer diseases.
Collapse
Key Words
- AM, allyl mercaptan
- AOM, azoxymethane
- Aliphatic carboxylic acids
- Alkaloids
- Anticancer drugs
- CPT, camptothecin
- DADS, diallyl disulfide
- DHA, docosahexaenoic acid
- DIM, 3,3′-diindolylmethane
- EPA, eicosapentaenoic acid
- FA, folic acid
- GTC, green tea catechins
- I3C, indole-3-carbinol
- MiRNA
- NaB, sodium butyrate
- Organosulfur compounds
- PEITC, phenethylisothiocyanate
- PUFA, polyunsaturated fatty acid
- SAMC, S-allylmercaptocysteine
- SFN, sulforaphane
- TSA, trichostatin A
- Water-soluble vitamins
Collapse
|
23
|
Aggarwal R, Jha M, Shrivastava A, Jha AK. Natural Compounds: Role in Reversal of Epigenetic Changes. BIOCHEMISTRY (MOSCOW) 2016; 80:972-89. [PMID: 26547065 DOI: 10.1134/s0006297915080027] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hallmarks of carcinogenesis are characterized by alterations in the expression of multiple genes that occur via genetic and epigenetic alterations, leading to genome rearrangements and instability. The reversible process of epigenetic regulation, which includes changes in DNA methylation, histone modifications, and alteration in microRNA (miRNA) expression that alter phenotype without any change in the DNA sequence, is recognized as a key mechanism in cancer cell metabolism. Recent advancements in the rapidly evolving field of cancer epigenetics have shown the anticarcinogenic potential of natural compounds targeting epigenetic mechanism as a common molecular approach for cancer treatment. This review summarizes the potential of natural chemopreventive agents to reverse cancer-related epigenetic aberrations by regulating the activity of histone deacetylases, histone acetyltransferases, DNA methyltransferase I, and miRNAs. Furthermore, there is impetus for determining novel and effective chemopreventive strategies, either alone or in combination with other anticancer agents that exhibit similar properties, for improving the therapeutic aspects of cancer.
Collapse
Affiliation(s)
- Ruchi Aggarwal
- Department of Biotechnology, IMS Engineering College, U. P. 201009, India.
| | | | | | | |
Collapse
|
24
|
Cohen A, Burgos-Aceves MA, Smith Y. A potential role for estrogen in cigarette smoke-induced microRNA alterations and lung cancer. Transl Lung Cancer Res 2016; 5:322-30. [PMID: 27413713 DOI: 10.21037/tlcr.2016.06.08] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alteration in the expression of microRNAs (miRNAs) is associated with oncogenesis and cancer progression. In this review we aim to suggest that elevated levels of estrogens and their metabolites inside the lungs as a result of cigarette smoke exposure can cause widespread repression of miRNA and contribute to lung tumor development. Anti-estrogenic compounds, such as the components of cruciferous vegetables, can attenuate this effect and potentially reduce the risk of lung cancer (LC) among smokers.
Collapse
Affiliation(s)
- Amit Cohen
- 1 Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel ; 2 Centro de Investigaciones Biológicas de Noroeste, S.C., Mar Bermejo 195, Col. Playa Palo de Sta, Rita, La Paz, BCS, México
| | - Mario Alberto Burgos-Aceves
- 1 Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel ; 2 Centro de Investigaciones Biológicas de Noroeste, S.C., Mar Bermejo 195, Col. Playa Palo de Sta, Rita, La Paz, BCS, México
| | - Yoav Smith
- 1 Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel ; 2 Centro de Investigaciones Biológicas de Noroeste, S.C., Mar Bermejo 195, Col. Playa Palo de Sta, Rita, La Paz, BCS, México
| |
Collapse
|
25
|
Pellatt DF, Stevens JR, Wolff RK, Mullany LE, Herrick JS, Samowitz W, Slattery ML. Expression Profiles of miRNA Subsets Distinguish Human Colorectal Carcinoma and Normal Colonic Mucosa. Clin Transl Gastroenterol 2016; 7:e152. [PMID: 26963002 PMCID: PMC4822091 DOI: 10.1038/ctg.2016.11] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/03/2016] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES MicroRNAs (miRNAs) are small, non-protein-coding RNA molecules that are commonly dysregulated in colorectal tumors. The objective of this study was to identify smaller subsets of highly predictive miRNAs. METHODS Data come from population-based studies of colorectal cancer conducted in Utah and the Kaiser Permanente Medical Care Program. Tissue samples were available for 1,953 individuals, of which 1,894 had carcinoma tissue and 1,599 had normal mucosa available for statistical analysis. Agilent Human miRNA Microarray V.19.0 was used to generate miRNA expression profiles; validation of expression levels was carried out using quantitative PCR. We used random forest analysis and verified findings with logistic modeling in separate data sets. Important microRNAs are identified and bioinformatics tools are used to identify target genes and related biological pathways. RESULTS We identified 16 miRNAs for colon and 17 miRNAs for rectal carcinoma that appear to differentiate between carcinoma and normal mucosa; of these, 12 were important for both colon and rectal cancer, hsa-miR-663b, hsa-miR-4539, hsa-miR-17-5p, hsa-miR-20a-5p, hsa-miR-21-5p, hsa-miR-4506, hsa-miR-92a-3p, hsa-miR-93-5p, hsa-miR-145-5p, hsa-miR-3651, hsa-miR-378a-3p, and hsa-miR-378i. Estimated misclassification rates were low at 4.83% and 2.5% among colon and rectal observations, respectively. Among independent observations, logistic modeling reinforced the importance of these miRNAs, finding the primary principal components of their variation statistically significant (P<0.001 among both colon and rectal observations) and again producing low misclassification rates. Repeating our analysis without those miRNAs initially identified as important identified other important miRNAs; however, misclassification rates increased and distinctions between remaining miRNAs in terms of classification importance were reduced. CONCLUSIONS Our data support the hypothesis that while many miRNAs are dysregulated between carcinoma and normal mucosa, smaller subsets of these miRNAs are useful and informative in discriminating between these tissues.
Collapse
Affiliation(s)
- Daniel F Pellatt
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - John R Stevens
- Department of Mathematics and Statistics, Utah State University, Logan Utah, USA
| | - Roger K Wolff
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Lila E Mullany
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Jennifer S Herrick
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Wade Samowitz
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
26
|
Chang LC, Yu YL. Dietary components as epigenetic-regulating agents against cancer. Biomedicine (Taipei) 2016; 6:2. [PMID: 26872811 PMCID: PMC4752550 DOI: 10.7603/s40681-016-0002-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/08/2016] [Indexed: 12/12/2022] Open
Abstract
Carcinogenesis is a complicated process that involves the deregulation of epigenetics resulting in cellular transformational events, such proliferation, differentiation, and metastasis. Epigenetic machinery changes the accessibility of chromatin to transcriptional regulation through DNA modification. The collaboration of epigenetics and gene transcriptional regulation creates a suitable microenvironment for cancer development, which is proved by the alternation in cell proliferation, differentiation, division, metabolism, DNA repair and movement. Therefore, the reverse of epigenetic dysfunction may provide a possible strategy and new therapeutic targets for cancer treatment. Many dietary components such as sulforaphane and epigallocatechin- 3-gallate have been demonstrated to exert chemopreventive influences, such as reducing tumor growth and enhancing cancer cell death. Anticancer mechanistic studies also indicated that dietary components could display the ability to reverse epigenetic deregulation in assorted tumors via reverting the adverse epigenetic regulation, including alternation of DNA methylation and histone modification, and modulation of microRNA expression. Therefore, dietary components as therapeutic agents on epigenetics becomes an attractive approach for cancer prevention and intervention at the moment. In this review, we summarize the recent discoveries and underlying mechanisms of the most common dietary components for cancer prevention via epigenetic regulation.
Collapse
Affiliation(s)
- Ling-Chu Chang
- Chinese Medicinal Research and Development Center, China Medical University Hospital, 404, Taichung, Taiwan
| | - Yung-Luen Yu
- Graduate Institute of Cancer Biology, China Medical University, 404, Taichung, Taiwan. .,Center for Molecular Medicine, China Medical University Hospital, 404, Taichung, Taiwan. .,Department of Biotechnology, Asia University, 413, Taichung, Taiwan.
| |
Collapse
|
27
|
Licznerska B, Baer-Dubowska W. Indole-3-Carbinol and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:131-154. [PMID: 27671815 DOI: 10.1007/978-3-319-41334-1_6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Indole-3-carbinol (I3C), a common phytochemical in cruciferous vegetables, and its condensation product, 3,3'-diindolylmethane (DIM) exert several biological activities on cellular and molecular levels, which contribute to their well-recognized chemoprevention potential. Initially, these compounds were classified as blocking agents that increase drug-metabolizing enzyme activity. Now it is widely accepted that I3C and DIM affect multiple signaling pathways and target molecules controlling cell division, apoptosis, or angiogenesis deregulated in cancer cells. Although most of the current data support the role of I3C and DIM in prevention of hormone-dependent cancers, it seems that their application in prevention of the other cancer as well as cardiovascular disease, obesity, and diabetes reduction is also possible. This chapter summarizes the current experimental data on the I3C and DIM activity and the results of clinical studies indicating their role in prevention of chronic diseases.
Collapse
Affiliation(s)
- Barbara Licznerska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Wanda Baer-Dubowska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
28
|
Cabrera M, Cerecetto H, González M. New hybrid bromopyridine-chalcones as in vivo phase II enzyme inducers: potential chemopreventive agents. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00456c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis of eighteen new potential cancer chemopreventive agents, structurally designed to combine (naphtho)chalcone and (bromo)pyridine skeletons.
Collapse
Affiliation(s)
- Mauricio Cabrera
- Grupo de Química Medicinal
- Laboratorio de Química Orgánica
- Facultad de Ciencias
- Universidad de la República
- 11400 Montevideo
| | - Hugo Cerecetto
- Grupo de Química Medicinal
- Laboratorio de Química Orgánica
- Facultad de Ciencias
- Universidad de la República
- 11400 Montevideo
| | - Mercedes González
- Grupo de Química Medicinal
- Laboratorio de Química Orgánica
- Facultad de Ciencias
- Universidad de la República
- 11400 Montevideo
| |
Collapse
|
29
|
Lin VW, Baccarelli AA, Burris HH. Epigenetics-a potential mediator between air pollution and preterm birth. ENVIRONMENTAL EPIGENETICS 2016; 2:dvv008. [PMID: 26900485 PMCID: PMC4760696 DOI: 10.1093/eep/dvv008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 05/29/2023]
Abstract
Preterm birth is a major cause of infant morbidity and mortality and a potential risk factor for adult chronic disease. With over 15 million infants born preterm worldwide each year, preterm birth poses a global health concern. There is a possible association between air pollution and preterm birth, though studies have been inconsistent, likely due to variation in study design. How air pollution induces health effects is uncertain; however, studies have repeatedly demonstrated the effects of air pollution on epigenetic modifications. More recent evidence suggests that epigenetics may, in turn, be linked to preterm birth. Discovery of environmentally modifiable epigenetic processes connected to preterm birth may help to identify women at risk of preterm birth, and ultimately lead to development of new preterm birth prevention measures.
Collapse
Affiliation(s)
- Vania W. Lin
- Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064 USA
- Department of Neonatology, Beth Israel Deaconess Medical Center & Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215 USA
| | - Andrea A. Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115 USA
| | - Heather H. Burris
- Department of Neonatology, Beth Israel Deaconess Medical Center & Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215 USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115 USA
| |
Collapse
|
30
|
Singh BN, Singh HB, Singh A, Naqvi AH, Singh BR. Dietary phytochemicals alter epigenetic events and signaling pathways for inhibition of metastasis cascade: phytoblockers of metastasis cascade. Cancer Metastasis Rev 2015; 33:41-85. [PMID: 24390421 DOI: 10.1007/s10555-013-9457-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer metastasis is a multistep process in which a cancer cell spreads from the site of the primary lesion, passes through the circulatory system, and establishes a secondary tumor at a new nonadjacent organ or part. Inhibition of cancer progression by dietary phytochemicals (DPs) offers significant promise for reducing the incidence and mortality of cancer. Consumption of DPs in the diet has been linked to a decrease in the rate of metastatic cancer in a number of preclinical animal models and human epidemiological studies. DPs have been reported to modulate the numerous biological events including epigenetic events (noncoding micro-RNAs, histone modification, and DNA methylation) and multiple signaling transduction pathways (Wnt/β-catenin, Notch, Sonic hedgehog, COX-2, EGFR, MAPK-ERK, JAK-STAT, Akt/PI3K/mTOR, NF-κB, AP-1, etc.), which can play a key role in regulation of metastasis cascade. Extensive studies have also been performed to determine the molecular mechanisms underlying antimetastatic activity of DPs, with results indicating that these DPs have significant inhibitory activity at nearly every step of the metastatic cascade. DPs have anticancer effects by inducing apoptosis and by inhibiting cell growth, migration, invasion, and angiogenesis. Growing evidence has also shown that these natural agents potentiate the efficacy of chemotherapy and radiotherapy through the regulation of multiple signaling pathways. In this review, we discuss the variety of molecular mechanisms by which DPs regulate metastatic cascade and highlight the potentials of these DPs as promising therapeutic inhibitors of cancer.
Collapse
Affiliation(s)
- B N Singh
- Research and Development Division, Sowbhagya Biotech Private Limited, Cherlapally, Hyderabad, 500051, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
31
|
Wei J, Li F, Yang J, Liu X, Cho WC. MicroRNAs as regulators of airborne pollution-induced lung inflammation and carcinogenesis. Arch Toxicol 2015; 89:677-685. [PMID: 25667014 DOI: 10.1007/s00204-015-1462-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/08/2015] [Indexed: 12/14/2022]
Abstract
The increasing incidence of pulmonary inflammation and lung cancer, as well as exacerbation of pre-existing chronic lung diseases by exposure to airborne pollutants, e.g., particulate matter and cigarette smoke, is becoming a major public health concern in the world. However, the exact mechanisms of pulmonary injury from exposure to these airborne insults have not been fully elucidated. Nevertheless, accumulating evidence suggests that microRNAs (miRNAs) may play a unique role in the regulation of airborne agent-induced lung inflammation and carcinogenesis. Since epigenetic modifications are heritable and reversible, this may provide a new insight into the relationship of miRNAs and environmental pollution-related lung disorders. The aim of this review was to update our existing knowledge regarding the mechanisms by which airborne pollutants altering miRNA profiles in the lung, specifically for cigarette smoke and airborne particulate matter, and the potential biological roles of miRNAs in the initiation of pulmonary inflammation and lung cancer, as well as the regulation of underlying genetic susceptibility to these environmental stressors.
Collapse
Affiliation(s)
- Jun Wei
- Center of Medical Research, General Hospital, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
| | | | | | | | | |
Collapse
|
32
|
Hargraves KG, He L, Firestone GL. Phytochemical regulation of the tumor suppressive microRNA, miR-34a, by p53-dependent and independent responses in human breast cancer cells. Mol Carcinog 2015; 55:486-98. [PMID: 25789847 DOI: 10.1002/mc.22296] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/07/2015] [Accepted: 01/14/2015] [Indexed: 01/09/2023]
Abstract
The tumor suppressive microRNA miR-34a is transcriptionally regulated by p53 and shown to inhibit breast cancer cell proliferation as well as being a marker of increased disease free survival. Indole-3-carbinol (I3C) derived from cruciferous vegetables, artemisinin, extracted from the sweet wormwood plant, and artesunate, a semi-synthetic derivative of artemisinin, are phytochemicals with anti-tumorigenic properties however, little is known about the role of microRNAs in their mechanism of action. Human breast cancer cells expressing wild-type (MCF-7) or mutant p53 (T47D) were treated with a concentration range and time course of each phytochemical under conditions of cell cycle arrest as detected by flow cytometry to examine the potential connection between miR-34a expression and their anti-proliferative responses. Real-time PCR and western blot analysis of extracted RNA and total protein revealed artemsinin and artesunate increased miR-34a expression in a dose-dependent manner correlating with down-regulation of the miR-34a target gene, CDK4. I3C stimulation of miR-34a expression required functional p53, whereas, both artemisinin and artesunate up-regulated miR-34a expression regardless of p53 mutational status or in the presence of dominant negative p53. Phytochemical treatments inhibited the luciferase activity of a construct containing the wild-type 3'UTR of CDK4, but not those with a mutated miR-34a binding site, whereas, transfection of miR-34a inhibitors ablated the phytochemical mediated down-regulation of CDK4 and induction of cell cycle arrest. Our results suggest that miR-34a is an essential component of the anti-proliferative activities of I3C, artemisinin, and artesunate and demonstrate that both wild-type p53 dependent and independent pathways are responsible for miR-34a induction.
Collapse
Affiliation(s)
- Kris G Hargraves
- Department of Molecular and Cell Biology, The Cancer Research Laboratory, University of California at Berkeley, Berkeley, California
| | - Lin He
- Department of Molecular and Cell Biology, The Cancer Research Laboratory, University of California at Berkeley, Berkeley, California
| | - Gary L Firestone
- Department of Molecular and Cell Biology, The Cancer Research Laboratory, University of California at Berkeley, Berkeley, California
| |
Collapse
|
33
|
Pulliero A, Wu Y, Fenoglio D, Parodi A, Romani M, Soares CP, Filaci G, Lee JL, Sinkam PN, Izzotti A. Nanoparticles increase the efficacy of cancer chemopreventive agents in cells exposed to cigarette smoke condensate. Carcinogenesis 2015; 36:368-77. [PMID: 25653234 DOI: 10.1093/carcin/bgv008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lung cancer is a leading cause of death in developed countries. Although smoking cessation is a primary strategy for preventing lung cancer, former smokers remain at high risk of cancer. Accordingly, there is a need to increase the efficacy of lung cancer prevention. Poor bioavailability is the main factor limiting the efficacy of chemopreventive agents. The aim of this study was to increase the efficacy of cancer chemopreventive agents by using lipid nanoparticles (NPs) as a carrier. This study evaluated the ability of lipid NPs to modify the pharmacodynamics of chemopreventive agents including N-acetyl-L-cysteine, phenethyl isothiocyanate and resveratrol (RES). The chemopreventive efficacy of these drugs was determined by evaluating their abilities to counteract cytotoxic damage (DNA fragmentation) induced by cigarette smoke condensate (CSC) and to activate protective apoptosis (annexin-V cytofluorimetric staining) in bronchial epithelial cells both in vitro and in ex vivo experiment in mice. NPs decreased the toxicity of RES and increased its ability to counteract CSC cytotoxicity. NPs significantly increased the ability of phenethyl isothiocyanate to attenuate CSC-induced DNA fragmentation at the highest tested dose. In contrast, this potentiating effect was observed at all tested doses of RES, NPs dramatically increasing RES-induced apoptosis in CSC-treated cells. These results provide evidence that NPs are highly effective at increasing the efficacy of lipophilic drugs (RES) but are not effective towards hydrophilic agents (N-acetyl-L-cysteine), which already possess remarkable bioavailability. Intermediate effects were observed for phenethyl isothiocyanate. These findings are relevant to the identification of cancer chemopreventive agents that would benefit from lipid NP delivery.
Collapse
Affiliation(s)
| | - Yun Wu
- Nanoscale Science and Engineering Center for Affordable Nano-engineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, OH 43210, USA
| | - Daniela Fenoglio
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | | | - Massimo Romani
- Mutagenesis Unit, IRCCS AOU (Institute for Hospitalization and Cure with Scientific Character) San Martino-IST Genoa, 16132 Genoa, Italy
| | - Christiane P Soares
- Mutagenesis Unit, IRCCS AOU (Institute for Hospitalization and Cure with Scientific Character) San Martino-IST Genoa, 16132 Genoa, Italy
| | - Gilberto Filaci
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | - James L Lee
- Nanoscale Science and Engineering Center for Affordable Nano-engineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, OH 43210, USA, William G. Lowrie Department of Chemical and Bimolecular Engineering, 125A Koffolt Labs and
| | - Patrick N Sinkam
- Division of Pulmonary Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy, Mutagenesis Unit, IRCCS AOU (Institute for Hospitalization and Cure with Scientific Character) San Martino-IST Genoa, 16132 Genoa, Italy,
| |
Collapse
|
34
|
Dietary Glucosinolates Sulforaphane, Phenethyl Isothiocyanate, Indole-3-Carbinol/3,3'-Diindolylmethane: Anti-Oxidative Stress/Inflammation, Nrf2, Epigenetics/Epigenomics and In Vivo Cancer Chemopreventive Efficacy. ACTA ACUST UNITED AC 2015; 1:179-196. [PMID: 26457242 DOI: 10.1007/s40495-015-0017-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucosinolates are a group of sulfur-containing glycosides found in many plant species, including cruciferous vegetables such as broccoli, cabbage, brussels sprouts, and cauliflower. Accumulating evidence increasingly supports the beneficial effects of dietary glucosinolates on overall health, including as potential anti-cancer agents, because of their role in the prevention of the initiation of carcinogenesis via the induction of cellular defense detoxifying/antioxidant enzymes and their epigenetic mechanisms, including modification of the CpG methylation of cancer-related genes, histone modification regulation and changes in the expression of miRNAs. In this context, the defense mechanism mediated by Nrf2-antioxidative stress and anti-inflammatory signaling pathways can contribute to cellular protection against oxidative stress and reactive metabolites of carcinogens. In this review, we summarize the cancer chemopreventive role of naturally occurring glucosinolate derivatives as inhibitors of carcinogenesis, with particular emphasis on specific molecular targets and epigenetic alterations in in vitro and in vivo human cancer animal models.
Collapse
|
35
|
MicroRNAs: New players in cancer prevention targeting Nrf2, oxidative stress and inflammatory pathways. ACTA ACUST UNITED AC 2015; 1:21-30. [PMID: 26618104 DOI: 10.1007/s40495-014-0013-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
miRNAs are endogenous small non-coding RNAs of 20-22 nucleotides that repress gene expression at the post-transcriptional level. There is growing interest in the role of miRNAs in cancer chemoprevention, and several naturally occurring chemopreventive agents have been found to be modulators of miRNA expression both in vitro and in vivo. Moreover, these chemopreventive phytochemicals commonly possess anti-oxidative and/or anti-inflammatory properties, and Nrf2 has been extensively studied as a molecular target in cancer prevention. The crosstalk between miRNAs and the traditional cellular signaling pathways of chemoprevention remain to be fully elucidated. This review summarizes the data regarding the potential interactions between miRNAs and anti-oxidative and anti-inflammatory pathways. Cellular redox homeostasis can affect the biogenesis and processing of miRNAs, which in turn regulate the Nrf2 pathway of detoxifying/anti-oxidative genes. We also discuss the miRNA regulatory mechanisms in relation to inflammation-related cancer signaling pathways.
Collapse
|
36
|
Gupta P, Wright SE, Kim SH, Srivastava SK. Phenethyl isothiocyanate: a comprehensive review of anti-cancer mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1846:405-424. [PMID: 25152445 PMCID: PMC4260992 DOI: 10.1016/j.bbcan.2014.08.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 01/22/2023]
Abstract
The epidemiological evidence suggests a strong inverse relationship between dietary intake of cruciferous vegetables and the incidence of cancer. Among other constituents of cruciferous vegetables, isothiocyanates (ITC) are the main bioactive chemicals present. Phenethyl isothiocyanate (PEITC) is present as gluconasturtiin in many cruciferous vegetables with remarkable anti-cancer effects. PEITC is known to not only prevent the initiation phase of carcinogenesis process but also to inhibit the progression of tumorigenesis. PEITC targets multiple proteins to suppress various cancer-promoting mechanisms such as cell proliferation, progression and metastasis. Pre-clinical evidence suggests that combination of PEITC with conventional anti-cancer agents is also highly effective in improving overall efficacy. Based on accumulating evidence, PEITC appears to be a promising agent for cancer therapy and is already under clinical trials for leukemia and lung cancer. This is the first review which provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of PEITC as a future anti-cancer agent.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Stephen E Wright
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sung-Hoon Kim
- Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, 1 Hoegi-dong, Dongdaemun-ku, Seoul 131-701, South Korea.
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, 1 Hoegi-dong, Dongdaemun-ku, Seoul 131-701, South Korea.
| |
Collapse
|
37
|
miR-3940-5p associated with genetic damage in workers exposed to hexavalent chromium. Toxicol Lett 2014; 229:319-26. [DOI: 10.1016/j.toxlet.2014.06.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 06/21/2014] [Accepted: 06/24/2014] [Indexed: 11/19/2022]
|
38
|
Balansky R, Izzotti A, D'Agostini F, Longobardi M, Micale RT, La Maestra S, Camoirano A, Ganchev G, Iltcheva M, Steele VE, De Flora S. Assay of lapatinib in murine models of cigarette smoke carcinogenesis. Carcinogenesis 2014; 35:2300-7. [PMID: 25053627 DOI: 10.1093/carcin/bgu154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Lapatinib, a dual tyrosine kinase inhibitor targeting the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), is prescribed for the treatment of patients with metastatic breast cancer overexpressing HER-2. Involvement of this drug in pulmonary carcinogenesis has been poorly investigated. We used murine models suitable to evaluate cigarette smoke-related molecular and histopathological alterations. A total of 481 Swiss H mice were used. The mice were exposed to mainstream cigarette smoke (MCS) during the first four months of life. After 10 weeks, MCS caused an elevation of bulky DNA adducts, oxidative DNA damage and an extensive downregulation of microRNAs in lung. After four months, an increase in micronucleus frequency was observed in peripheral blood erythrocytes. After 7.5 months, histopathological alterations were detected in the lung, also including benign tumors and malignant tumors, and in the urinary tract. A subchronic toxicity study assessed the non-toxic doses of lapatinib, administered daily with the diet after weaning. After 10 weeks, lapatinib significantly attenuated the MCS-related nucleotide changes and upregulated several low-intensity microRNAs in lung. The drug poorly affected the MCS systemic genotoxicity and had modest protective effects on MCS-induced preneoplastic lesions in lung and kidney, when administered under conditions that temporarily mimicked interventions either in current smokers or ex-smokers. On the other hand, it caused some toxicity to the liver. Thus, on the whole, lapatinib appears to have a low impact in the smoke-related lung carcinogenesis models used, especially in terms of tumorigenic response.
Collapse
Affiliation(s)
- Roumen Balansky
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy, National Center of Oncology, Sofia-1756, Bulgaria
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy, IRCCS AOU San Martino - IST, 16132 Genoa, Italy and
| | - Francesco D'Agostini
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Mariagrazia Longobardi
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Rosanna T Micale
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Sebastiano La Maestra
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Anna Camoirano
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | | | | | - Vernon E Steele
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20892, USA
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy,
| |
Collapse
|
39
|
Landis-Piwowar KR, Iyer NR. Cancer chemoprevention: current state of the art. CANCER GROWTH AND METASTASIS 2014; 7:19-25. [PMID: 24987270 PMCID: PMC4064948 DOI: 10.4137/cgm.s11288] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 12/20/2022]
Abstract
The aim of cancer chemoprevention is disruption or delay of the molecular pathways that lead to carcinogenesis. Chemopreventive blocking and/or suppressing agents disrupt the molecular mechanisms that drive carcinogenesis such as DNA damage by reactive oxygen species, increased signal transduction to NF-κB, epigenomic deregulation, and the epithelial mesenchymal transition that leads to metastatic progression. Numerous dietary phytochemicals have been observed to inhibit the initiation phase of carcinogenesis, and therefore are useful in primary chemoprevention. Moreover, phytochemicals are capable of interfering with the molecular mechanisms of metastasis. Likewise, numerous synthetic compounds are relevant and clinically viable as chemopreventive agents during the fundamental stages of carcinogenesis. While molecularly targeted anti-cancer therapies are in constant stages of development, superior patient outcomes are observed if carcinogenic processes are prevented altogether. This article reviews the role of chemopreventive compounds in inhibition of cancer initiation and their ability to reduce cancer progression.
Collapse
Affiliation(s)
- Kristin R Landis-Piwowar
- Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Oakland University, Rochester, MI, USA
| | - Neena R Iyer
- Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Oakland University, Rochester, MI, USA
| |
Collapse
|
40
|
Liclican EL, Walser TC, Hazra S, Krysan K, Park SJ, Pagano PC, Gardner BK, Larsen JE, Minna JD, Dubinett SM. Loss of miR125a expression in a model of K-ras-dependent pulmonary premalignancy. Cancer Prev Res (Phila) 2014; 7:845-55. [PMID: 24913817 DOI: 10.1158/1940-6207.capr-14-0063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Understanding the molecular pathogenesis of lung cancer is necessary to identify biomarkers/targets specific to individual airway molecular profiles and to identify options for targeted chemoprevention. Herein, we identify mechanisms by which loss of microRNA (miRNA)125a-3p (miR125a) contributes to the malignant potential of human bronchial epithelial cells (HBEC) harboring an activating point mutation of the K-ras proto-oncogene (HBEC K-ras). Among other miRNAs, we identified significant miR125a loss in HBEC K-ras lines and determined that miR125a is regulated by the PEA3 transcription factor. PEA3 is upregulated in HBEC K-ras cells, and genetic knockdown of PEA3 restores miR125a expression. From a panel of inflammatory/angiogenic factors, we identified increased CXCL1 and vascular endothelial growth factor (VEGF) production by HBEC K-ras cells and determined that miR125a overexpression significantly reduces K-ras-mediated production of these tumorigenic factors. miR125a overexpression also abrogates increased proliferation of HBEC K-ras cells and suppresses anchorage-independent growth (AIG) of HBEC K-ras/P53 cells, the latter of which is CXCL1-dependent. Finally, pioglitazone increases levels of miR125a in HBEC K-ras cells via PEA3 downregulation. In addition, pioglitazone and miR125a overexpression elicit similar phenotypic responses, including suppression of both proliferation and VEGF production. Our findings implicate miR125a loss in lung carcinogenesis and lay the groundwork for future studies to determine whether miR125a is a possible biomarker for lung carcinogenesis and/or a chemoprevention target. Moreover, our studies illustrate that pharmacologic augmentation of miR125a in K-ras-mutated pulmonary epithelium effectively abrogates several deleterious downstream events associated with the mutation.
Collapse
Affiliation(s)
- Elvira L Liclican
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; Departments of Jonsson Comprehensive Cancer Center
| | - Tonya C Walser
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; Departments of Jonsson Comprehensive Cancer Center
| | - Saswati Hazra
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; Departments of Jonsson Comprehensive Cancer Center
| | - Kostyantyn Krysan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; Departments of Jonsson Comprehensive Cancer Center
| | - Stacy J Park
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; Departments of Jonsson Comprehensive Cancer Center
| | - Paul C Pagano
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA
| | - Brian K Gardner
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; Departments of Jonsson Comprehensive Cancer Center
| | - Jill E Larsen
- Departments of Medicine and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - John D Minna
- Departments of Medicine and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Steven M Dubinett
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; Departments of Pathology and Laboratory Medicine and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA; Jonsson Comprehensive Cancer Center; VA Greater Los Angeles Health Care Center, Los Angeles, California; and
| |
Collapse
|
41
|
Wang F, Li C, Liu W, Jin Y. Modulation of microRNA expression by volatile organic compounds in mouse lung. ENVIRONMENTAL TOXICOLOGY 2014; 29:679-689. [PMID: 24733833 DOI: 10.1002/tox.21795] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/17/2012] [Accepted: 06/30/2012] [Indexed: 06/03/2023]
Abstract
Volatile organic compounds (VOCs) are one of main pollutants indoors. Exposure to VOCs is associated with cancer, asthma disease, and multiple chemical allergies. Despite the adverse health effects of VOCs, the molecular mechanisms underlying VOCs-induced disease remain largely unknown. MicroRNAs (miRNAs), as key post-transcriptional regulators of gene expression, may influence cellular disease state. To investigate whether lung miRNA expression profiles in mice are modified by VOCs mixture exposure, 44 male Kunming mice were exposed in 4 similar static chambers, 0 (control) and 3 different doses of VOCs mixture (groups 1-3). The concentrations of VOCs mixture were as follows: formaldehyde, benzene, toluene, and xylene 3.0 + 3.3 + 6.0 + 6.0 mg/m(3) , 5.0 + 5.5 + 10.0 + 10.0 mg/m(3) , 10.0 + 11.0 + 20.0 + 20.0 mg/m(3) , respectively, which corresponded to 30, 50, and 100 times of indoor air quality standard in China, after exposure to 2 weeks (2 h/day, 5 days/week). Small RNAs in lung and protein isolated from bronchoalveolar lavage fluid (BALF) were collected and analyzed for miRNA expression using microarray analysis and for interleukin-8 (IL-8) protein levels by enzyme-linked immunosorbent assay, respectively. VOCs exposure altered the miRNA expression profiles in lung in mice. Specifically, 69 miRNAs were significantly differentially expressed in VOCs-exposed samples versus controls. Functional annotation analysis of the predicted miRNA transcript targets revealed that VOCs exposure potentially alters signaling pathways associated with cancer, chemokine signaling, Wnt signaling, neuroactive ligand-receptor interaction, and cell adhesion molecules. IL-8 isolated from BALF and nitric oxide synthase of lung increased significantly, whereas GSH of lung decreased significantly in mice exposed to VOCs. These results indicate that inhalation of VOCs alters miRNA patterns that regulate gene expression, potentially leading to the initiation of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Fan Wang
- School of Environmental Science and Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, Dalian 116024, China; Department of Biological Science, Luoyang Normal University, Luoyang 471022, China
| | | | | | | |
Collapse
|
42
|
Christofidou-Solomidou M, Pietrofesa R, Arguiri E, McAlexander MA, Witwer KW. Dietary flaxseed modulates the miRNA profile in irradiated and non-irradiated murine lungs: a novel mechanism of tissue radioprotection by flaxseed. Cancer Biol Ther 2014; 15:930-7. [PMID: 24755684 DOI: 10.4161/cbt.28905] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Dietary flaxseed (FS) displays antioxidant and anti-inflammatory properties in preclinical models of lung disease including radiation-induced pneumonopathy, however the mechanisms of lung radioprotection are incompletely understood. MicroRNAs (miRNAs) are short oligonucleotides that act as important posttranscriptional regulators of diverse networks including inflammatory response networks. Responses of miRNA profiles to diet and radiation exposure have been reported, but the potential contribution of miRNAs to diet-related radioprotection has never been tested. METHODS In this exploratory pilot study, mice were fed 10% FS or a 0% FS isocaloric control diet and exposed to a single-fraction 13.5 Gy thoracic X-ray radiation treatment (XRT). Lung RNA was extracted 48 h post-XRT and small RNAs profiled by OpenArray. RESULTS FS significantly modulated expression of multiple miRNAs, including 7 with P<0.001. miR-150 was downregulated approximately 2.9-fold in the FS groups and is disproportionately integrated into immune response-related networks. Although few miRNAs were significantly changed by radiation, interaction between diet and radiation was observed. For example, miR-29c was greatly downregulated in the FS/Control group (10- to 50-fold) but slightly upregulated in the FS/radiation group. Compared with FS/control, the FS/radiation group experienced a 50% decrease of the p53-responsive miR-34a, which regulates senescence- and apoptosis-related factors. CONCLUSIONS FS induced significant changes in lung miRNA profile suggesting that modulation of small RNA by dietary supplements may represent a novel strategy to prevent adverse side-effects of thoracic radiotherapy. This pilot study provides insight into a potential mechanism of flaxseed's radioprotection and provides a useful model-system to further explore and optimize such small RNA-based therapies.
Collapse
Affiliation(s)
- Melpo Christofidou-Solomidou
- Department of Medicine, Pulmonary Allergy and Critical Care Division; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| | - Ralph Pietrofesa
- Department of Medicine, Pulmonary Allergy and Critical Care Division; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| | - Evguenia Arguiri
- Department of Medicine, Pulmonary Allergy and Critical Care Division; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| | - Melissa A McAlexander
- Department of Molecular and Comparative Pathobiology; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology; Johns Hopkins University School of Medicine; Baltimore, MD USA
| |
Collapse
|
43
|
Izzotti A, Balansky R, D'Agostini F, Longobardi M, Cartiglia C, Micale RT, La Maestra S, Camoirano A, Ganchev G, Iltcheva M, Steele VE, De Flora S. Modulation by metformin of molecular and histopathological alterations in the lung of cigarette smoke-exposed mice. Cancer Med 2014; 3:719-30. [PMID: 24683044 PMCID: PMC4101764 DOI: 10.1002/cam4.234] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 12/22/2022] Open
Abstract
The anti-diabetic drug metformin is endowed with anti-cancer properties. Epidemiological and experimental studies, however, did not provide univocal results regarding its role in pulmonary carcinogenesis. We used Swiss H mice of both genders in order to detect early molecular alterations and tumors induced by mainstream cigarette smoke. Based on a subchronic toxicity study, oral metformin was used at a dose of 800 mg/kg diet, which is 3.2 times higher than the therapeutic dose in humans. Exposure of mice to smoke for 4 months, starting at birth, induced a systemic clastogenic damage, formation of DNA adducts, oxidative DNA damage, and extensive downregulation of microRNAs in lung after 10 weeks. Preneoplastic lesions were detectable after 7.5 months in both lung and urinary tract along with lung tumors, both benign and malignant. Modulation by metformin of 42 of 1281 pulmonary microRNAs in smoke-free mice highlighted a variety of mechanisms, including modulation of AMPK, stress response, inflammation, NFκB, Tlr9, Tgf, p53, cell cycle, apoptosis, antioxidant pathways, Ras, Myc, Dicer, angiogenesis, stem cell recruitment, and angiogenesis. In smoke-exposed mice, metformin considerably decreased DNA adduct levels and oxidative DNA damage, and normalized the expression of several microRNAs. It did not prevent smoke-induced lung tumors but inhibited preneoplastic lesions in both lung and kidney. In conclusion, metformin was able to protect the mouse lung from smoke-induced DNA and microRNA alterations and to inhibit preneoplastic lesions in lung and kidney but failed to prevent lung adenomas and malignant tumors induced by this complex mixture.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
De Flora S, Izzotti A, D'Agostini F, La Maestra S, Micale RT, Ceccaroli C, Steele VE, Balansky R. Rationale and approaches to the prevention of smoking-related diseases: overview of recent studies on chemoprevention of smoking-induced tumors in rodent models. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2014; 32:105-120. [PMID: 24875440 DOI: 10.1080/10590501.2014.907459] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Tobacco smoke plays a dominant role in the epidemiology of lung cancer, cancer at other sites, and a variety of other chronic diseases. It is the leading cause of death in developed countries, and the global burden of cancer is escalating in less developed regions. For a rational implementation of strategies exploitable for the prevention smoking-related diseases, it is crucial to elucidate both the mechanisms of action of cigarette smoke and the protective mechanisms of the host organism. The imperative primary prevention goal is to avoid any type of exposure to smoke. Epidemiological studies have shown that a decrease in the consumption of cigarettes can be successful in attenuating the epidemic of lung cancer in several countries. Chemoprevention by means of dietary and/or pharmacological agents provides a complementary strategy aimed at decreasing the risk of developing smoking-associated diseases in addicted current smokers, who are unable to quit smoking, and especially in involuntary smokers and ex-smokers. The availability of new animal models that are suitable to detect the carcinogenicity of cigarette smoke and to assess the underlying molecular mechanisms provides new tools for evaluating both safety and efficacy of putative chemopreventive agents.
Collapse
Affiliation(s)
- Silvio De Flora
- a Department of Health Sciences , University of Genoa , Italy
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Health promoting effects of brassica-derived phytochemicals: from chemopreventive and anti-inflammatory activities to epigenetic regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:964539. [PMID: 24454992 PMCID: PMC3885109 DOI: 10.1155/2013/964539] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/20/2013] [Indexed: 12/19/2022]
Abstract
A high intake of brassica vegetables may be associated with a decreased chronic disease risk. Health promoting effects of Brassicaceae have been partly attributed to glucosinolates and in particular to their hydrolyzation products including isothiocyanates. In vitro and in vivo studies suggest a chemopreventive activity of isothiocyanates through the redox-sensitive transcription factor Nrf2. Furthermore, studies in cultured cells, in laboratory rodents, and also in humans support an anti-inflammatory effect of brassica-derived phytochemicals. However, the underlying mechanisms of how these compounds mediate their health promoting effects are yet not fully understood. Recent findings suggest that brassica-derived compounds are regulators of epigenetic mechanisms. It has been shown that isothiocyanates may inhibit histone deacetylase transferases and DNA-methyltransferases in cultured cells. Only a few papers have dealt with the effect of brassica-derived compounds on epigenetic mechanisms in laboratory animals, whereas data in humans are currently lacking. The present review aims to summarize the current knowledge regarding the biological activities of brassica-derived phytochemicals regarding chemopreventive, anti-inflammatory, and epigenetic pathways.
Collapse
|
46
|
Thakur VS, Deb G, Babcook MA, Gupta S. Plant phytochemicals as epigenetic modulators: role in cancer chemoprevention. AAPS JOURNAL 2013; 16:151-63. [PMID: 24307610 DOI: 10.1208/s12248-013-9548-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/18/2013] [Indexed: 12/18/2022]
Abstract
In recent years, "nutri-epigenetics," which focuses on the influence of dietary agents on epigenetic mechanism(s), has emerged as an exciting novel area in epigenetics research. Targeting of aberrant epigenetic modifications has gained considerable attention in cancer chemoprevention research because, unlike genetic changes, epigenetic alterations are reversible and occur during early carcinogenesis. Aberrant epigenetic mechanisms, such as promoter DNA methylation, histone modifications, and miRNA-mediated post-transcriptional alterations, can silence critical tumor suppressor genes, such as transcription factors, cell cycle regulators, nuclear receptors, signal transducers, and apoptosis-inducing and DNA repair gene products, and ultimately contribute to carcinogenesis. In an effort to identify and develop anticancer agents which cause minimal harm to normal cells while effectively killing cancer cells, a number of naturally occurring phytochemicals in food and medicinal plants have been investigated. This review highlights the potential role of plant-derived phytochemicals in targeting epigenetic alterations that occur during carcinogenesis, by modulating the activity or expression of DNA methyltransferases, histone modifying enzymes, and miRNAs. We present in detail the epigenetic mode of action of various phytochemicals and discuss their potential as safe and clinically useful chemopreventive strategies.
Collapse
Affiliation(s)
- Vijay S Thakur
- Department of Urology, Case Western Reserve University, University Hospitals Case Medical Center, 10900 Euclid Avenue, Cleveland, Ohio, 44106, USA
| | | | | | | |
Collapse
|
47
|
Joo MS, Lee CG, Koo JH, Kim SG. miR-125b transcriptionally increased by Nrf2 inhibits AhR repressor, which protects kidney from cisplatin-induced injury. Cell Death Dis 2013; 4:e899. [PMID: 24176857 PMCID: PMC3920955 DOI: 10.1038/cddis.2013.427] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 01/04/2023]
Abstract
MicroRNAs (miRNAs) have a role in the cellular defense mechanism. Nuclear factor erythroid-2-related factor 2 (Nrf2) increases antioxidant enzyme capacity. However, miRNA transcriptionally controlled by Nrf2 had been uncharacterized. Here we report that miR-125b is transactivated by Nrf2 and inhibits aryl hydrocarbon receptor (AhR) repressor (AhRR). Bioinformatic approaches enabled us to extract six candidate miRNAs. Of them, only miR-125b was increased in the kidney of mice treated with oltipraz. Nrf2 overexpression enhanced primary, precursor and mature miR-125b levels. Functional assays revealed MIR125B1 is a bona fide target gene of Nrf2. Oltipraz treatment protected the kidney from cisplatin toxicity with increase of miR-125b. Consistently, Nrf2 knockout abrogated an adaptive increase of miR-125b elicited by cisplatin, augmenting kidney injury. An integrative network of miRNA and messenger RNA changes enabled us to predict miR-125b as an inhibitor of AhRR for the control of AhR activity and cell survival. In our molecular study, miR-125b inhibited AhRR and thereby activated AhR, leading to the induction of mdm2. Consistently, p53 activation by cisplatin was diminished by either miR-125b or oltipraz treatment. The results of experiments using miR-125b mimic or small interfering RNA of AhRR verified the role of miR-125b in AhRR regulation for kidney protection. In conclusion, miR-125b is transcriptionally activated by Nrf2 and serves as an inhibitor of AhRR, which contributes to protecting kidney from acute injury.
Collapse
Affiliation(s)
- M S Joo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
48
|
Izzotti A, Balansky R, D’Agostini F, Longobardi M, Cartiglia C, La Maestra S, Micale RT, Camoirano A, Ganchev G, Iltcheva M, Steele VE, De Flora S. Relationships between pulmonary micro-RNA and proteome profiles, systemic cytogenetic damage and lung tumors in cigarette smoke-exposed mice treated with chemopreventive agents. Carcinogenesis 2013; 34:2322-9. [PMID: 23708261 PMCID: PMC3786376 DOI: 10.1093/carcin/bgt178] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 01/20/2023] Open
Abstract
Assessing the correlation between molecular endpoints and cancer induction or prevention aims at validating the use of intermediate biomarkers. We previously developed murine models that are suitable to detect both the carcinogenicity of mainstream cigarette smoke (MCS) and the induction of molecular alterations. In this study, we used 931 Swiss mice in two parallel experiments and in a preliminary toxicity study. The chemopreventive agents included vorinostat, myo-inositol, bexarotene, pioglitazone and a combination of bexarotene and pioglitazone. Pulmonary micro-RNAs and proteins were evaluated by microarray analyses at 10 weeks of age in male and female mice, either unexposed or exposed to MCS since birth, and either untreated or receiving each one of the five chemopreventive regimens with the diet after weaning. At 4 months of age, the frequency of micronucleated normochromatic erythrocytes was evaluated. At 7 months, the lungs were subjected to standard histopathological analysis. The results showed that exposure to MCS significantly downregulated the expression of 79 of 694 lung micro-RNAs (11.4%) and upregulated 66 of 1164 proteins (5.7%). Administration of chemopreventive agents modulated the baseline micro-RNA and proteome profiles and reversed several MCS-induced alterations, with some intergender differences. The stronger protective effects were produced by the combination of bexarotene and pioglitazone, which also inhibited the MCS-induced clastogenic damage and the yield of malignant tumors. Pioglitazone alone increased the yield of lung adenomas. Thus, micro-RNAs, proteins, cytogenetic damage and lung tumors were closely related. The molecular biomarkers contributed to evaluate both protective and adverse effects of chemopreventive agents and highlighted the mechanisms involved.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Roumen Balansky
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
- Laboratory of Chemical Mutagenesis and Carcinogenesis, National Center of Oncology, Sofia 1756, Bulgaria and
| | - Francesco D’Agostini
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Mariagrazia Longobardi
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Cristina Cartiglia
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Sebastiano La Maestra
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Rosanna T. Micale
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Anna Camoirano
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Gancho Ganchev
- Laboratory of Chemical Mutagenesis and Carcinogenesis, National Center of Oncology, Sofia 1756, Bulgaria and
| | - Marietta Iltcheva
- Laboratory of Chemical Mutagenesis and Carcinogenesis, National Center of Oncology, Sofia 1756, Bulgaria and
| | - Vernon E. Steele
- Chemoprevention Agent Development Research Program, Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20892, USA
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| |
Collapse
|
49
|
Martinez-Outschoorn UE, Curry JM, Ko YH, Lin Z, Tuluc M, Cognetti D, Birbe RC, Pribitkin E, Bombonati A, Pestell RG, Howell A, Sotgia F, Lisanti MP. Oncogenes and inflammation rewire host energy metabolism in the tumor microenvironment: RAS and NFκB target stromal MCT4. Cell Cycle 2013; 12:2580-97. [PMID: 23860378 PMCID: PMC3865048 DOI: 10.4161/cc.25510] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Here, we developed a model system to evaluate the metabolic effects of oncogene(s) on the host microenvironment. A matched set of "normal" and oncogenically transformed epithelial cell lines were co-cultured with human fibroblasts, to determine the "bystander" effects of oncogenes on stromal cells. ROS production and glucose uptake were measured by FACS analysis. In addition, expression of a panel of metabolic protein biomarkers (Caveolin-1, MCT1, and MCT4) was analyzed in parallel. Interestingly, oncogene activation in cancer cells was sufficient to induce the metabolic reprogramming of cancer-associated fibroblasts toward glycolysis, via oxidative stress. Evidence for "metabolic symbiosis" between oxidative cancer cells and glycolytic fibroblasts was provided by MCT1/4 immunostaining. As such, oncogenes drive the establishment of a stromal-epithelial "lactate-shuttle", to fuel the anabolic growth of cancer cells. Similar results were obtained with two divergent oncogenes (RAS and NFκB), indicating that ROS production and inflammation metabolically converge on the tumor stroma, driving glycolysis and upregulation of MCT4. These findings make stromal MCT4 an attractive target for new drug discovery, as MCT4 is a shared endpoint for the metabolic effects of many oncogenic stimuli. Thus, diverse oncogenes stimulate a common metabolic response in the tumor stroma. Conversely, we also show that fibroblasts protect cancer cells against oncogenic stress and senescence by reducing ROS production in tumor cells. Ras-transformed cells were also able to metabolically reprogram normal adjacent epithelia, indicating that cancer cells can use either fibroblasts or epithelial cells as "partners" for metabolic symbiosis. The antioxidant N-acetyl-cysteine (NAC) selectively halted mitochondrial biogenesis in Ras-transformed cells, but not in normal epithelia. NAC also blocked stromal induction of MCT4, indicating that NAC effectively functions as an "MCT4 inhibitor". Taken together, our data provide new strategies for achieving more effective anticancer therapy. We conclude that oncogenes enable cancer cells to behave as selfish "metabolic parasites", like foreign organisms (bacteria, fungi, viruses). Thus, we should consider treating cancer like an infectious disease, with new classes of metabolically targeted "antibiotics" to selectively starve cancer cells. Our results provide new support for the "seed and soil" hypothesis, which was first proposed in 1889 by the English surgeon, Stephen Paget.
Collapse
|
50
|
MicroRNA 'signature' during estrogen-mediated mammary carcinogenesis and its reversal by ellagic acid intervention. Cancer Lett 2013; 339:175-84. [PMID: 23791885 DOI: 10.1016/j.canlet.2013.06.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/28/2013] [Accepted: 06/02/2013] [Indexed: 12/21/2022]
Abstract
Dysregulated miRNA expression has been associated with the development and progression of cancers, including breast cancer. The role of estrogen (E2) in regulation of cell proliferation and breast carcinogenesis is well-known. Recent reports have associated several miRNAs with estrogen receptors in breast cancers. Investigation of the regulatory role of miRNAs is critical for understanding the effect of E2 in human breast cancer, as well as developing strategies for cancer chemoprevention. In the present study we used the well-established ACI rat model that develops mammary tumors upon E2 exposure and identified a 'signature' of 33 significantly modulated miRNAs during the process of mammary tumorigenesis. Several of these miRNAs were altered as early as 3 weeks after initial E2 treatment and their modulation persisted throughout the mammary carcinogenesis process, suggesting that these molecular changes are early events. Furthermore, ellagic acid, which inhibited E2-induced mammary tumorigenesis in our previous study, reversed the dysregulation of miR-375, miR-206, miR-182, miR-122, miR-127 and miR-183 detected with E2 treatment and modulated their target proteins (ERα, cyclin D1, RASD1, FoxO3a, FoxO1, cyclin G1, Bcl-w and Bcl-2). This is the first systematic study examining the changes in miRNA expression associated with E2 treatment in ACI rats as early as 3 week until tumor time point. The effect of a chemopreventive agent, ellagic acid in reversing miRNAs modulated during E2-mediated mammary tumorigenesis is also established. These observations provide mechanistic insights into the new molecular events behind the chemopreventive action of ellagic acid and treatment of breast cancer.
Collapse
|