1
|
Fernandez G, Cabral A, De Francesco PN, Uriarte M, Reynaldo M, Castrogiovanni D, Zubiría G, Giovambattista A, Cantel S, Denoyelle S, Fehrentz JA, Tolle V, Schiöth HB, Perello M. GHSR controls food deprivation-induced activation of CRF neurons of the hypothalamic paraventricular nucleus in a LEAP2-dependent manner. Cell Mol Life Sci 2022; 79:277. [PMID: 35504998 PMCID: PMC11072678 DOI: 10.1007/s00018-022-04302-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Prolonged fasting is a major challenge for living organisms. An appropriate metabolic response to food deprivation requires the activation of the corticotropin-releasing factor-producing neurons of the hypothalamic paraventricular nucleus (PVHCRF neurons), which are a part of the hypothalamic-pituitary-adrenal axis (HPA), as well as the growth hormone secretagogue receptor (GHSR) signaling, whose activity is up- or down-regulated, respectively, by the hormones ghrelin and the liver-expressed antimicrobial peptide 2 (LEAP2). Since ghrelin treatment potently up-regulates the HPA axis, we studied the role of GHSR in mediating food deprivation-induced activation of the PVHCRF neurons in mice. METHODS We estimated the activation of the PVHCRF neurons, using immuno-staining against CRF and the marker of neuronal activation c-Fos in brain sections, and assessed plasma levels of corticosterone and glucose in different pharmacologically or genetically manipulated mouse models exposed, or not, to a 2-day food deprivation protocol. In particular, we investigated ad libitum fed or food-deprived male mice that: (1) lacked GHSR gene expression, (2) had genetic deletion of the ghrelin gene, (3) displayed neurotoxic ablation of the hypothalamic arcuate nucleus, (4) were centrally treated with an anti-ghrelin antibody to block central ghrelin action, (5) were centrally treated with a GHSR ligand that blocks ghrelin-evoked and constitutive GHSR activities, or (6) received a continuous systemic infusion of LEAP2(1-12). RESULTS We found that food deprivation results in the activation of the PVHCRF neurons and in a rise of the ghrelin/LEAP2 molar ratio. Food deprivation-induced activation of PVHCRF neurons required the presence and the signaling of GHSR at hypothalamic level, but not of ghrelin. Finally, we found that preventing the food deprivation-induced fall of LEAP2 reverses the activation of the PVHCRF neurons in food-deprived mice, although it has no effect on body weight or blood glucose. CONCLUSION Food deprivation-induced activation of the PVHCRF neurons involves ghrelin-independent actions of GHSR at hypothalamic level and requires a decrease of plasma LEAP2 levels. We propose that the up-regulation of the actions of GHSR associated to the fall of plasma LEAP2 level are physiologically relevant neuroendocrine signals during a prolonged fasting.
Collapse
Affiliation(s)
- Gimena Fernandez
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Agustina Cabral
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Maia Uriarte
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Mirta Reynaldo
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Daniel Castrogiovanni
- Cell Culture Facility, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Guillermina Zubiría
- Laboratory of Neuroendocrinology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Andrés Giovambattista
- Laboratory of Neuroendocrinology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Sonia Cantel
- Institut Des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Montpellier, France
| | - Severine Denoyelle
- Institut Des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Montpellier, France
| | - Jean-Alain Fehrentz
- Institut Des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Montpellier, France
| | - Virginie Tolle
- Institute of Psychiatry and Neuroscience of Paris, Université de Paris, UMR-S 1266 INSERM, Paris, France
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Institute for Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina.
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Wang C, Zhou W, He Y, Yang T, Xu P, Yang Y, Cai X, Wang J, Liu H, Yu M, Liang C, Yang T, Liu H, Fukuda M, Tong Q, Wu Q, Sun Z, He Y, Xu Y. AgRP neurons trigger long-term potentiation and facilitate food seeking. Transl Psychiatry 2021; 11:11. [PMID: 33414382 PMCID: PMC7791100 DOI: 10.1038/s41398-020-01161-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 11/17/2022] Open
Abstract
Sufficient feeding is essential for animals' survival, which requires a cognitive capability to facilitate food seeking, but the neurobiological processes regulating food seeking are not fully understood. Here we show that stimulation of agouti-related peptide-expressing (AgRP) neurons triggers a long-term depression (LTD) of spontaneous excitatory post-synaptic current (sEPSC) in adjacent pro-opiomelanocortin (POMC) neurons and in most of their distant synaptic targets, including neurons in the paraventricular nucleus of the thalamus (PVT). The AgRP-induced sEPCS LTD can be enhanced by fasting but blunted by satiety signals, e.g. leptin and insulin. Mice subjected to food-seeking tasks develop similar neural plasticity in AgRP-innervated PVT neurons. Further, ablation of the majority of AgRP neurons, or only a subset of AgRP neurons that project to the PVT, impairs animals' ability to associate spatial and contextual cues with food availability during food seeking. A similar impairment can be also induced by optogenetic inhibition of the AgRP→PVT projections. Together, these results indicate that the AgRP→PVT circuit is necessary for food seeking.
Collapse
Affiliation(s)
- Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wenjun Zhou
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yang He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tiffany Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pingwen Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xing Cai
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Julia Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hesong Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Meng Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chen Liang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tingting Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hailan Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Makoto Fukuda
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Qi Wu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zheng Sun
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA.
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Cabral A, Fernandez G, Tolosa MJ, Rey Moggia Á, Calfa G, De Francesco PN, Perello M. Fasting induces remodeling of the orexigenic projections from the arcuate nucleus to the hypothalamic paraventricular nucleus, in a growth hormone secretagogue receptor-dependent manner. Mol Metab 2019; 32:69-84. [PMID: 32029231 PMCID: PMC7005150 DOI: 10.1016/j.molmet.2019.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
Objective Arcuate nucleus (ARC) neurons producing Agouti-related peptide (AgRP) and neuropeptide Y (NPY; ARCAgRP/NPY neurons) are activated under energy-deficit states. ARCAgRP/NPY neurons innervate the hypothalamic paraventricular nucleus (PVH), and ARC→PVH projections are recognized as key regulators of food intake. Plasma ghrelin levels increase under energy-deficit states and activate ARCAgRP/NPY neurons by acting on the growth hormone secretagogue receptor (GHSR). Here, we hypothesized that activation of ARCAgRP/NPY neurons in fasted mice would promote morphological remodeling of the ARCAgRP/NPY→PVH projections in a GHSR-dependent manner. Methods We performed 1) fluorescent immunohistochemistry, 2) imaging of green fluorescent protein (GFP) signal in NPY-GFP mice, and 3) DiI axonal labeling in brains of ad libitum fed or fasted mice with pharmacological or genetic blockage of the GHSR signaling and then estimated the density and strength of ARCAgRP/NPY→PVH fibers by assessing the mean fluorescence intensity, the absolute area with fluorescent signal, and the intensity of the fluorescent signal in the fluorescent area of the PVH. Results We found that 1) the density and strength of ARCAgRP/NPY fibers increase in the PVH of fasted mice, 2) the morphological remodeling of the ARCAgRP/NPY→PVH projections correlates with the activation of PVH neurons, and 3) PVH neurons are not activated in ARC-ablated mice. We also found that fasting-induced remodeling of ARCAgRP/NPY→PVH fibers and PVH activation are impaired in mice with pharmacological or genetic blockage of GHSR signaling. Conclusion This evidence shows that the connectivity between hypothalamic circuits controlling food intake can be remodeled in the adult brain, depending on the energy balance conditions, and that GHSR activity is a key regulator of this phenomenon. The density and strength of ARCAgRP/NPY→PVH fibers increase in fasted mice. Remodeling of ARCAgRP/NPY→PVH projections correlates with the activation of PVH neurons. GHSR signaling is required for fasting-induced ARCAgRP/NPY→PVH projection remodeling.
Collapse
Affiliation(s)
- Agustina Cabral
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - María J Tolosa
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - Ángeles Rey Moggia
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - Gastón Calfa
- Instituto de Farmacología Experimental de Córdoba (IFEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo N De Francesco
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Fernandez G, Cabral A, Andreoli MF, Labarthe A, M'Kadmi C, Ramos JG, Marie J, Fehrentz JA, Epelbaum J, Tolle V, Perello M. Evidence Supporting a Role for Constitutive Ghrelin Receptor Signaling in Fasting-Induced Hyperphagia in Male Mice. Endocrinology 2018; 159:1021-1034. [PMID: 29300858 DOI: 10.1210/en.2017-03101] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/21/2017] [Indexed: 01/22/2023]
Abstract
Ghrelin is a potent orexigenic peptide hormone that acts through the growth hormone secretagogue receptor (GHSR), a G protein-coupled receptor highly expressed in the hypothalamus. In vitro studies have shown that GHSR displays a high constitutive activity, whose physiological relevance is uncertain. As GHSR gene expression in the hypothalamus is known to increase in fasting conditions, we tested the hypothesis that constitutive GHSR activity at the hypothalamic level drives the fasting-induced hyperphagia. We found that refed wild-type (WT) mice displayed a robust hyperphagia that continued for 5 days after refeeding and changed their food intake daily pattern. Fasted WT mice showed an increase in plasma ghrelin levels, as well as in GHSR expression levels and ghrelin binding sites in the hypothalamic arcuate nucleus. When fasting-refeeding responses were evaluated in ghrelin- or GHSR-deficient mice, only the latter displayed an ∼15% smaller hyperphagia, compared with WT mice. Finally, fasting-induced hyperphagia of WT mice was significantly smaller in mice centrally treated with the GHSR inverse agonist K-(D-1-Nal)-FwLL-NH2, compared with mice treated with vehicle, whereas it was unaffected in mice centrally treated with the GHSR antagonists D-Lys3-growth hormone-releasing peptide 6 or JMV2959. Taken together, genetic models and pharmacological results support the notion that constitutive GHSR activity modulates the magnitude of the compensatory hyperphagia triggered by fasting. Thus, the hypothalamic GHSR signaling system could affect the set point of daily food intake, independently of plasma ghrelin levels, in situations of negative energy balance.
Collapse
Affiliation(s)
- Gimena Fernandez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology (Argentine Research Council, Scientific Research Commission of the Province of Buenos Aires and National University of La Plata), La Plata, Buenos Aires, Argentina
| | - Agustina Cabral
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology (Argentine Research Council, Scientific Research Commission of the Province of Buenos Aires and National University of La Plata), La Plata, Buenos Aires, Argentina
| | - María F Andreoli
- School of Biochemistry and Biological Sciences, National University of Litoral and Institute of Environmental Health, Santa Fe, Argentina
| | - Alexandra Labarthe
- Centre de Psychiatrie et Neurosciences Unité Mixte de Recherche Scientifique_S894 INSERM Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
| | - Céline M'Kadmi
- Institut des Biomolécules Max Mousseron, Unité Mixte de Recherche Scientifique 5247 Centre National de la Recherche Scientifique-Université Montpellier-École Nationale Supérieure de Chimie de Montpellier, Faculté de Pharmacie, Montpellier, France
| | - Jorge G Ramos
- School of Biochemistry and Biological Sciences, National University of Litoral and Institute of Environmental Health, Santa Fe, Argentina
| | - Jacky Marie
- Institut des Biomolécules Max Mousseron, Unité Mixte de Recherche Scientifique 5247 Centre National de la Recherche Scientifique-Université Montpellier-École Nationale Supérieure de Chimie de Montpellier, Faculté de Pharmacie, Montpellier, France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, Unité Mixte de Recherche Scientifique 5247 Centre National de la Recherche Scientifique-Université Montpellier-École Nationale Supérieure de Chimie de Montpellier, Faculté de Pharmacie, Montpellier, France
| | - Jacques Epelbaum
- Centre de Psychiatrie et Neurosciences Unité Mixte de Recherche Scientifique_S894 INSERM Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
- Mécanismes Adaptatifs et Evolution, Unité Mixte de Recherche Scientifique 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle France, Brunoy, France
| | - Virginie Tolle
- Centre de Psychiatrie et Neurosciences Unité Mixte de Recherche Scientifique_S894 INSERM Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology (Argentine Research Council, Scientific Research Commission of the Province of Buenos Aires and National University of La Plata), La Plata, Buenos Aires, Argentina
| |
Collapse
|
5
|
Clarifying the Ghrelin System's Ability to Regulate Feeding Behaviours Despite Enigmatic Spatial Separation of the GHSR and Its Endogenous Ligand. Int J Mol Sci 2017; 18:ijms18040859. [PMID: 28422060 PMCID: PMC5412441 DOI: 10.3390/ijms18040859] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 12/23/2022] Open
Abstract
Ghrelin is a hormone predominantly produced in and secreted from the stomach. Ghrelin is involved in many physiological processes including feeding, the stress response, and in modulating learning, memory and motivational processes. Ghrelin does this by binding to its receptor, the growth hormone secretagogue receptor (GHSR), a receptor found in relatively high concentrations in hypothalamic and mesolimbic brain regions. While the feeding and metabolic effects of ghrelin can be explained by the effects of this hormone on regions of the brain that have a more permeable blood brain barrier (BBB), ghrelin produced within the periphery demonstrates a limited ability to reach extrahypothalamic regions where GHSRs are expressed. Therefore, one of the most pressing unanswered questions plaguing ghrelin research is how GHSRs, distributed in brain regions protected by the BBB, are activated despite ghrelin’s predominant peripheral production and poor ability to transverse the BBB. This manuscript will describe how peripheral ghrelin activates central GHSRs to encourage feeding, and how central ghrelin synthesis and ghrelin independent activation of GHSRs may also contribute to the modulation of feeding behaviours.
Collapse
|
6
|
Increase in plasma acyl ghrelin levels is associated with abatement of dyspepsia following Helicobacter pylori eradication. J Gastroenterol 2016; 51:548-59. [PMID: 26412402 DOI: 10.1007/s00535-015-1124-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/13/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Ghrelin has been indicated as one of the etiological factors in functional dyspepsia (FD). METHODS We analyzed 179 patients with FD (based on the Rome III criteria) and 103 asymptomatic healthy individuals (controls) who had undergone endoscopy at Seoul National University Bundang Hospital from February 2011 to June 2014. FD patients were classified into three groups by means of a self-reported questionnaire: patients with postprandial distress syndrome (PDS; n = 49), patients with epigastric pain syndrome (EPS; n = 45), and patients with a combination of these two types (mixed group; n = 85). The fasting blood levels of acyl ghrelin and desacyl ghrelin and messenger RNA (mRNA) expression of preproghrelin in the fundic mucosa were measured by ELISAs and reverse transcription quantitative real-time PCR, respectively. One year after participant enrollment, they were measured again in 79 participants and the changes in the values were compared according to Helicobacter pylori eradication or symptom response. RESULTS Plasma acyl ghrelin level was lower in the PDS group than in the control and EPS groups (control group 14.1 fmol/mL, PDS group 8.9 fmol/mL, EPS group 13.8 fmol/mL, mixed group 11.3 fmol/mL; P = 0.003 and P = 0.012, respectively). One year after the eradication of H. pylori, plasma acyl ghrelin level was increased and gastric preproghrelin mRNA expression was upregulated (P = 0.004 and P < 0.001, respectively). Patients with abatement of symptoms demonstrated an increase in plasma acyl ghrelin level (from 11.51 to 21.00 fmol/L, P = 0.040). CONCLUSIONS Our results suggest that plasma acyl ghrelin plays a role in the development of PDS. H. pylori eradication upregulates preproghrelin mRNA expression and increases plasma acyl ghrelin level, contributing to the abatement of PDS symptoms.
Collapse
|
7
|
Lu YH, Dallner OS, Birsoy K, Fayzikhodjaeva G, Friedman JM. Nuclear Factor-Y is an adipogenic factor that regulates leptin gene expression. Mol Metab 2015; 4:392-405. [PMID: 25973387 PMCID: PMC4420997 DOI: 10.1016/j.molmet.2015.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/05/2015] [Indexed: 12/22/2022] Open
Abstract
Objective Leptin gene expression is highly correlated with cellular lipid content in adipocytes but the transcriptional mechanisms controlling leptin expression in vivo are poorly understood. In this report, we set out to identify cis- and trans-regulatory elements controlling leptin expression. Methods Leptin-BAC luciferase transgenic mice combining with other computational and molecular techniques were used to identify transcription regulatory elements including a CCAAT-binding protein Nuclear Factor Y (NF-Y). The function of NF-Y in adipocyte was studied in vitro with 3T3-L1 cells and in vivo with adipocyte-specific knockout of NF-Y. Results Using Leptin-BAC luciferase mice, we showed that DNA sequences between −22 kb and +8.8 kb can confer quantitative expression of a leptin reporter. Computational analysis of sequences and gel shift assays identified a 32 bp sequence (chr6: 28993820–2899385) consisting a CCAAT binding site for Nuclear Factor Y (NF-Y) and this was confirmed by a ChIP assay in vivo. A deletion of this 32 bp sequence in the −22 kb to +8.8 kb leptin-luciferase BAC reporter completely abrogates luciferase reporter activity in vivo. RNAi mediated knockdown of NF-Y interfered with adipogenesis in vitro and adipocyte-specific knockout of NF-Y in mice reduced expression of leptin and other fat specific genes in vivo. Further analyses of the fat specific NF-Y knockout revealed that these animals develop a moderately severe lipodystrophy that is remediable with leptin therapy. Conclusions These studies advance our understanding of leptin gene expression and show that NF-Y controls the expression of leptin and other adipocyte genes and identifies a new form of lipodystrophy.
Collapse
Affiliation(s)
- Yi-Hsueh Lu
- Laboratory of Molecular Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Olof Stefan Dallner
- Laboratory of Molecular Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Kivanc Birsoy
- Laboratory of Molecular Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Gulya Fayzikhodjaeva
- Laboratory of Molecular Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA ; Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
8
|
Méquinion M, Langlet F, Zgheib S, Dickson S, Dehouck B, Chauveau C, Viltart O. Ghrelin: central and peripheral implications in anorexia nervosa. Front Endocrinol (Lausanne) 2013; 4:15. [PMID: 23549309 PMCID: PMC3581855 DOI: 10.3389/fendo.2013.00015] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/01/2013] [Indexed: 11/15/2022] Open
Abstract
Increasing clinical and therapeutic interest in the neurobiology of eating disorders reflects their dramatic impact on health. Chronic food restriction resulting in severe weight loss is a major symptom described in restrictive anorexia nervosa (AN) patients, and they also suffer from metabolic disturbances, infertility, osteopenia, and osteoporosis. Restrictive AN, mostly observed in young women, is the third largest cause of chronic illness in teenagers of industrialized countries. From a neurobiological perspective, AN-linked behaviors can be considered an adaptation that permits the endurance of reduced energy supply, involving central and/or peripheral reprograming. The severe weight loss observed in AN patients is accompanied by significant changes in hormones involved in energy balance, feeding behavior, and bone formation, all of which can be replicated in animals models. Increasing evidence suggests that AN could be an addictive behavior disorder, potentially linking defects in the reward mechanism with suppressed food intake, heightened physical activity, and mood disorder. Surprisingly, the plasma levels of ghrelin, an orexigenic hormone that drives food-motivated behavior, are increased. This increase in plasma ghrelin levels seems paradoxical in light of the restrained eating adopted by AN patients, and may rather result from an adaptation to the disease. The aim of this review is to describe the role played by ghrelin in AN focusing on its central vs. peripheral actions. In AN patients and in rodent AN models, chronic food restriction induces profound alterations in the « ghrelin » signaling that leads to the development of inappropriate behaviors like hyperactivity or addiction to food starvation and therefore a greater depletion in energy reserves. The question of a transient insensitivity to ghrelin and/or a potential metabolic reprograming is discussed in regard of new clinical treatments currently investigated.
Collapse
Affiliation(s)
- Mathieu Méquinion
- UMR INSERM 837, Development and Plasticity of Postnatal BrainLille, France
| | - Fanny Langlet
- UMR INSERM 837, Development and Plasticity of Postnatal BrainLille, France
| | - Sara Zgheib
- Pathophysiology of inflammatory of bone diseases, Université Lille Nord de France-ULCO – Lille 2Boulogne sur Mer, France
| | - Suzanne Dickson
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
- Department of Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Bénédicte Dehouck
- UMR INSERM 837, Development and Plasticity of Postnatal BrainLille, France
- Université Lille Nord de France – Université d’ArtoisLiévin, France
| | - Christophe Chauveau
- Pathophysiology of inflammatory of bone diseases, Université Lille Nord de France-ULCO – Lille 2Boulogne sur Mer, France
| | - Odile Viltart
- UMR INSERM 837, Development and Plasticity of Postnatal BrainLille, France
- Université Lille Nord de France-USTL (Lille 1)Villeneuve d’Ascq, France
- *Correspondence: Odile Viltart, Development and Plasticity of the Postnatal Brain, Team 2, Jean-Pierre Aubert Research Center, UMR INSERM 837, Bât Biserte, 1 place de Verdun, 59,045 Lille cedex, France. e-mail:
| |
Collapse
|
9
|
Zeltser LM, Seeley RJ, Tschöp MH. Synaptic plasticity in neuronal circuits regulating energy balance. Nat Neurosci 2012; 15:1336-42. [DOI: 10.1038/nn.3219] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Cardona Cano S, Merkestein M, Skibicka KP, Dickson SL, Adan RAH. Role of ghrelin in the pathophysiology of eating disorders: implications for pharmacotherapy. CNS Drugs 2012; 26:281-96. [PMID: 22452525 DOI: 10.2165/11599890-000000000-00000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ghrelin is the only known circulating orexigenic hormone. It increases food intake by interacting with hypothalamic and brainstem circuits involved in energy balance, as well as reward-related brain areas. A heightened gut-brain ghrelin axis is an emerging feature of certain eating disorders such as anorexia nervosa and Prader-Willi syndrome. In common obesity, ghrelin levels are lowered, whereas post-meal ghrelin levels remain higher than in lean individuals. Agents that interfere with ghrelin signalling have therapeutic potential for eating disorders, including obesity. However, most of these drugs are only in the preclinical phase of development. Data obtained so far suggest that ghrelin agonists may have potential in the treatment of anorexia nervosa, while ghrelin antagonists seem promising for other eating disorders such as obesity and Prader-Willi syndrome. However, large clinical trials are needed to evaluate the efficacy and safety of these drugs.
Collapse
|
11
|
Caquineau C, Douglas AJ, Leng G. Effects of cholecystokinin in the supraoptic nucleus and paraventricular nucleus are negatively modulated by leptin in 24-h fasted lean male rats. J Neuroendocrinol 2010; 22:446-52. [PMID: 20163516 PMCID: PMC2948420 DOI: 10.1111/j.1365-2826.2010.01982.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 01/27/2010] [Accepted: 02/09/2010] [Indexed: 11/30/2022]
Abstract
Cholecystokinin (CCK) and leptin are two important satiety factors that are considered to act in synergy to reduce meal size. Peripheral injection of CCK activates neurones in several hypothalamic nuclei, including the supraoptic (SON) and paraventricular (PVN) nuclei and neurones in the brainstem of fed rats. We investigated whether peripheral leptin would modulate the effects of CCK on neuronal activity in the hypothalamus and brainstem of fasted rats by investigating Fos expression in the PVN, SON, arcuate nucleus, ventromedial hypothalamus (VMH), dorsomedial hypothalamus (DMH), area postrema (AP) and the nucleus tractus solitarii (NTS). Male rats, fasted for 24 h, received either one i.p. injection of vehicle, leptin or CCK-8 alone, or received one injection of vehicle or leptin before an i.p. injection of CCK-8. We found that CCK increased Fos expression in the PVN and SON as well as in the NTS and AP, but had no effect on Fos expression in the arcuate nucleus, VMH or DMH compared to vehicle. Leptin injected alone significantly increased Fos expression in the arcuate nucleus but had no effect on Fos expression in the VMH, DMH, SON, PVN, AP or NTS compared to vehicle. Fos expression was significantly increased in the AP in rats injected with both leptin and CCK compared to rats injected with vehicle and CCK. Unexpectedly, there was significantly less Fos expression in the PVN and SON of fasted rats injected with leptin and CCK than in rats injected with vehicle and CCK, suggesting that leptin attenuated CCK-induced Fos expression in the SON and PVN. However, Fos expression in the NTS was similar in fasted rats injected with vehicle and CCK or with leptin and CCK. Taken together, these results suggest that leptin dampens the effects of CCK on Fos expression in the SON and PVN, independently from NTS pathways, and this may reflect a direct action on magnocellular neurones.
Collapse
Affiliation(s)
- C Caquineau
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK.
| | | | | |
Collapse
|
12
|
Ghrelin in the CNS: from hunger to a rewarding and memorable meal? ACTA ACUST UNITED AC 2008; 58:160-70. [PMID: 18308399 DOI: 10.1016/j.brainresrev.2008.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 01/20/2008] [Accepted: 01/23/2008] [Indexed: 01/19/2023]
Abstract
Ghrelin, the endogenous agonist of the growth hormone secretagogue receptor, has been shown to induce robust feeding responses in numerous experimental models. Although ghrelin comes from both peripheral and central sources, its hyperphagic properties, to a large extent, arise from activity at the brain level. The current review focuses on describing central mechanisms through which this peptide affects consumption. We address the issue of whether ghrelin serves just as a signal of energy needs of the organism or - as suggested by the most recent findings - also affects food intake via other feeding-related mechanisms, including reward and memory. Complexity of ghrelin's role in the regulation of ingestive behavior is discussed by characterizing its influence on consumption, reward and memory as well as by defining its function within the brain circuitry and interplay with other neuropeptides.
Collapse
|
13
|
Yannielli PC, Molyneux PC, Harrington ME, Golombek DA. Ghrelin effects on the circadian system of mice. J Neurosci 2007; 27:2890-5. [PMID: 17360911 PMCID: PMC6672577 DOI: 10.1523/jneurosci.3913-06.2007] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The orexigenic peptide ghrelin stimulates both food intake and growth hormone release and is synthesized in the stomach and in hypothalamic areas involved in feeding control. The suprachiasmatic nuclei of the hypothalamus (SCN) control most circadian rhythms, although there is evidence that some oscillators, such as food-entrainable oscillators, can drive activity rhythms even after SCN ablation. Ghrelin levels exhibit a circadian rhythm and closely follow feeding schedules, making this peptide a putative candidate for food-related entraining signals. We examined the response of the SCN to ghrelin treatments in vitro, by means of electrophysiological and bioluminescence recordings, and in vivo, by assessing effects on the phase of locomotor activity rhythms. Ghrelin applied at circadian time 6 in vitro to cultured SCN slices induced an approximately 3 h phase advance. In addition, ghrelin phase advanced the rhythm of PER2::LUC (Period2::Luciferase) expression in cultured SCN explants from mPer2(Luc) transgenic mice. In vivo, intraperitoneal administration of ghrelin or a synthetic analog, growth hormone-releasing protein-6 (GHRP-6), to ad libitum fed animals failed to alter circadian phase. When injected after 30 h of food deprivation, GHRP-6 induced a phase advance compared with saline-injected animals. These results indicate that ghrelin may play a role in the circadian system by exerting a direct action on the SCN and that the system as a whole may become sensitive to ghrelin and other feeding-related neuropeptides under conditions of food restriction.
Collapse
Affiliation(s)
- Paola C Yannielli
- Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas, Bernal, 1876 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
14
|
Scott V, McDade DM, Luckman SM. Rapid changes in the sensitivity of arcuate nucleus neurons to central ghrelin in relation to feeding status. Physiol Behav 2007; 90:180-5. [PMID: 17078977 DOI: 10.1016/j.physbeh.2006.09.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 09/11/2006] [Accepted: 09/20/2006] [Indexed: 01/21/2023]
Abstract
Ghrelin, the endogenous ligand for the growth hormone secretagogue (GHS) receptor, stimulates feeding and increases body weight. Systemic ghrelin administration induces the immediate-early gene protein product, c-Fos, in the arcuate nucleus of the hypothalamus (ARC) of satiated rats and this increase is potentiated in fasted rats. The aim of this study was to determine whether potentiation was seen in fasted animals after intracerebroventricular (i.c.v) administration of ghrelin and to identify the hypothalamic nuclei activated by this peptide. In addition we investigated if allowing fasted animals to re-feed for 1 h prior to i.c.v. ghrelin injection affected the c-Fos response. Using c-Fos immunocytochemistry, we demonstrated that i.c.v. ghrelin activated several hypothalamic nuclei, including the ARC, paraventricular nucleus (PVH) and the lateral hypothalamus (LH). The c-Fos response was greater in fasted animals compared with satiated animals. Fasted rats allowed access to food for 1 h prior to central ghrelin administration showed an attenuated response in the ARC, similar to the response seen in fed animals. However, the response in the LH (including in the orexin neurons) was further potentiated. The latter may reflect a connection between the hypothalamus and regions of the brain responding to the reward value of the meal.
Collapse
Affiliation(s)
- Victoria Scott
- Faculty of Life Science, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
15
|
Tung YCL, Hewson AK, Carter RN, Dickson SL. Central responsiveness to a ghrelin mimetic (GHRP-6) is rapidly altered by acute changes in nutritional status in rats. J Neuroendocrinol 2005; 17:387-93. [PMID: 15929744 DOI: 10.1111/j.1365-2826.2005.01316.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The hypothalamus appears to be more responsive to ghrelin and growth hormone secretagogues (GHS) in fasting, as reflected by a two- to three-fold increase in the number of cells detected that express Fos protein in the arcuate nucleus, in 48-h fasted rats compared to fed controls. Moreover, this increased hypothalamic responsiveness to GHS in fasting is regulated by the central action of exogenous leptin and insulin, although it is unknown whether these hormones mediate the changes in hypothalamic responsiveness to GHS associated with the fasting/fed state. In the present study, we show that refeeding with normal rat chow for only 2 h at the end of a 48-h fast reversed the potentiation of the Fos response to GHRP-6 observed in fasted rats. Circulating leptin and insulin levels remained significantly lower in refed rats compared to ad lib-fed rats, suggesting that the change in the hypothalamic sensitivity brought about by refeeding was independent of these hormones. By contrast, 2 h of chow refeeding at the end of a fast restored plasma glucose levels to those of the fed state. Refeeding with sugar alone for 2 h at the end of a 48-h fast also reduced the potentiated Fos response in fasting, indicating that elevated blood glucose can influence the central responsiveness to ghrelin/GHS. By contrast, infusion of the ileal satiety factor, PYY(3-36) (known to increase postprandially) did not alter the central responsiveness to GHRP-6, although it suppressed feeding and body weight as expected. This study highlights the importance of nutritional status in regulating the action of exogenous GHS (and presumably endogenous ghrelin) on the hypothalamic circuits controlling food intake.
Collapse
Affiliation(s)
- Y C L Tung
- Department of Physiology, University of Cambridge, UK
| | | | | | | |
Collapse
|
16
|
Kurose Y, Iqbal J, Rao A, Murata Y, Hasegawa Y, Terashima Y, Kojima M, Kangawa K, Clarke IJ. Changes in expression of the genes for the leptin receptor and the growth hormone-releasing peptide/ghrelin receptor in the hypothalamic arcuate nucleus with long-term manipulation of adiposity by dietary means. J Neuroendocrinol 2005; 17:331-40. [PMID: 15929739 DOI: 10.1111/j.1365-2826.2005.01318.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Changes in leptin and ghrelin levels occur with alterations in adiposity, but signalling may be affected by levels of the relevant receptors. We measured expression of the leptin receptor (Ob-Rb) and the ghrelin/growth hormone releasing peptide receptor (GHS-R) in the arcuate nucleus of sheep held at either high or low levels of adiposity. Plasma growth hormone (GH) levels were lower in Fat animals and higher in Lean animals. Plasma insulin and leptin levels were higher in Fat animals and lower in Lean animals. Frozen hypothalamic sections of arcuate nucleus were extracted and mRNA levels measured for mRNA for Ob-Rb and GHS-R. Gene expression for both Ob-Rb and GHS-R was higher in Lean animals than in Fat animals, with no difference in expression between Fat and Normal animals. A second group of animals (n = 4 per group) was used for double-labelling immunohistochemistry to determine whether the increase in Ob-Rb gene expression was translated into Ob-Rb protein and to ascertain whether this effect is localised to the cells of the arcuate nucleus that produce either neuropeptide Y (NPY) and/or pro-opiomelanocortin-derived peptides. Lean animals displayed a 255% increase in immunoreactive NPY cells (P < 0.005), a 167% increase in cells with Ob-Rb (P < 0.037) protein and a 344% increase in cells that were staining for both NPY and Ob-Rb (P < 0.02). There was no difference between the Normal and Lean animals in the number of cells that were detected with an adrenocorticotrophic hormone (ACTH) antibody or the number of ACTH-immunoreactive cells that also stained for Ob-Rb. Finally, we measured plasma ghrelin levels in Normal, Fat and Lean ewes (n = 4/group); levels were higher (P < 0.05) in Fat animals than in Lean animals. We conclude that lowering body weight leads to increased expression of Ob-Rb, ghrelin/GHS-R expression and proportion of NPY cells that express Ob-Rb in the arcuate nucleus. This may be an adaptive mechanism to increase responsivity to both leptin and ghrelin.
Collapse
Affiliation(s)
- Y Kurose
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gottero C, Broglio F, Prodam F, Destefanis S, Bellone S, Benso A, Gauna C, Arvat E, van der Lely AJ, Ghigo E. Ghrelin: a link between eating disorders, obesity and reproduction. Nutr Neurosci 2005; 7:255-70. [PMID: 15682922 DOI: 10.1080/10284150400017363] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ghrelin, a 28-amino acid acylated peptide predominantly produced by the stomach, displays strong GH-releasing activity mediated by the hypothalamic-pituitary GH secretagogues (GHS) receptors (GHS-R) which had been shown specific for a family of synthetic, orally active molecules known as GHS. However, ghrelin and GHS, acting on central and peripheral receptors, also exert other actions. These include influence on pituitary functions, orexigenic action, influence on exocrine and endocrine gastro-entero-pancreatic functions, cardiovascular and anti-proliferative effects. In particular, the effect of ghrelin in promoting food intake and modulating energy metabolism strongly suggested that ghrelin has a key role in managing the neuroendocrine and metabolic response to starvation and that could be involved in the pathogenesis and/or in the metabolic and neuro-hormonal alterations of obesity and eating disorders. Although specific alterations in ghrelin secretion and/or action in obesity and anorexia nervosa (AN) have already been reported, the possibility that ghrelin analogues acting as agonists or antagonists has clinical perspectives for treatment of eating disorders presently remains a dream.
Collapse
Affiliation(s)
- C Gottero
- Department of Internal Medicine, University of Turin, 10126 Turin, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nogueiras R, Tovar S, Mitchell SE, Rayner DV, Archer ZA, Dieguez C, Williams LM. Regulation of growth hormone secretagogue receptor gene expression in the arcuate nuclei of the rat by leptin and ghrelin. Diabetes 2004; 53:2552-8. [PMID: 15448083 DOI: 10.2337/diabetes.53.10.2552] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The anorexigenic and orexigenic hormones leptin and ghrelin act in opposition to one another. When leptin signaling is reduced, as in the Zucker fatty rat, or when circulating ghrelin is increased during fasting, the effect of ghrelin becomes more dominant, indicating an influence of both hormones on ghrelin action. This effect could be mediated via the level of expression of ghrelin receptor (growth hormone secretagogue receptor [GHS-R]). For testing this, GHS-R expression was measured using in situ hybridization in Zucker fatty versus lean rats; in fed versus fasted (48 h) rats, treated with either ghrelin or leptin; and in GH-deficient, dwarf versus control rats. In the arcuate nuclei of the Zucker fatty rat and in fasted rats, GHS-R expression is significantly increased. A single leptin intracerebroventricular injection attenuated the fasting-induced increase in GHS-R but had no effect in fed rats 2 h after injection, whereas leptin infusion for 24 h or longer significantly decreased GHS-R expression in fed rats. Ghrelin significantly increased GHS-R expression but not in dwarf rats. These results show that the level of GHS-R expression in the ARC is reduced by leptin and increased by ghrelin and that the effect of ghrelin may be GH dependent.
Collapse
Affiliation(s)
- Ruben Nogueiras
- Departmetn of Physiology, University of Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Tang-Christensen M, Vrang N, Ortmann S, Bidlingmaier M, Horvath TL, Tschöp M. Central administration of ghrelin and agouti-related protein (83-132) increases food intake and decreases spontaneous locomotor activity in rats. Endocrinology 2004; 145:4645-52. [PMID: 15231700 DOI: 10.1210/en.2004-0529] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ghrelin was recently identified as an endogenous ligand of the GH secretagogue receptor. The novel peptide hormone is produced by gastric A-like cells, and circulating levels rise before feeding, suggestive of ghrelin as an endogenous hunger factor. ghrelin stimulates food intake and promotes adiposity after peripheral or central administration, likely by activating hypothalamic neurons expressing the orexigenic neuropeptides neuropeptide Y (NPY) and agouti-related protein (AGRP). To examine whether ghrelin-induced feeding resembles NPY and AGRP [AGRP fragment (83-132)] induced orexia, we compared the short- and long-term orexigenic capacity of the three peptides. A single intracerebroventricular injection of ghrelin (0.2, 1.0, and 5.0 microg) increased food intake in a dose-dependent manner. A prolonged and uncompensated increase in feeding was seen after the highest dose of ghrelin. The prolonged effects on feeding (+72 h) closely resembled those of AGRP (83-132) but not NPY. Surprisingly, ghrelin injections reduced overall locomotor activity by 20% during the first 24-h observation period. AGRP (83-132) had similar effects on locomotor behavior, whereas NPY had no effect. In summary, ghrelin causes long-term increases of food intake and, like AGRP, plays a previously unknown role as a suppressor of spontaneous physical activity. Expanding the current model of food intake control to include mechanisms regulating physical activity may promote our understanding of two major etiological factors causing obesity.
Collapse
|
20
|
van der Lely AJ, Tschöp M, Heiman ML, Ghigo E. Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr Rev 2004; 25:426-57. [PMID: 15180951 DOI: 10.1210/er.2002-0029] [Citation(s) in RCA: 813] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ghrelin is a peptide predominantly produced by the stomach. Ghrelin displays strong GH-releasing activity. This activity is mediated by the activation of the so-called GH secretagogue receptor type 1a. This receptor had been shown to be specific for a family of synthetic, peptidyl and nonpeptidyl GH secretagogues. Apart from a potent GH-releasing action, ghrelin has other activities including stimulation of lactotroph and corticotroph function, influence on the pituitary gonadal axis, stimulation of appetite, control of energy balance, influence on sleep and behavior, control of gastric motility and acid secretion, and influence on pancreatic exocrine and endocrine function as well as on glucose metabolism. Cardiovascular actions and modulation of proliferation of neoplastic cells, as well as of the immune system, are other actions of ghrelin. Therefore, we consider ghrelin a gastrointestinal peptide contributing to the regulation of diverse functions of the gut-brain axis. So, there is indeed a possibility that ghrelin analogs, acting as either agonists or antagonists, might have clinical impact.
Collapse
Affiliation(s)
- Aart J van der Lely
- Department of Internal Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
21
|
Toshinai K, Date Y, Murakami N, Shimada M, Mondal MS, Shimbara T, Guan JL, Wang QP, Funahashi H, Sakurai T, Shioda S, Matsukura S, Kangawa K, Nakazato M. Ghrelin-induced food intake is mediated via the orexin pathway. Endocrinology 2003; 144:1506-12. [PMID: 12639935 DOI: 10.1210/en.2002-220788] [Citation(s) in RCA: 309] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hypothalamus regulates energy intake by integrating the degree of starvation or satiation with the status of the environment through a variety of neuronal and blood-derived signals. Ghrelin, a peptide produced in the stomach and hypothalamus, stimulates feeding and GH secretion. Centrally administered ghrelin exerts an orexigenic activity through the neuropeptide Y (NPY) and agouti-related protein systems. The interaction between ghrelin and other hypothalamic orexigenic peptides, however, has not been clarified. Here, we investigated the anatomical interactions and functional relationship between ghrelin and two orexigenic peptides, orexin and melanin-concentrating hormone (MCH), present in the lateral hypothalamus. Ghrelin-immunoreactive axonal terminals made direct synaptic contacts with orexin-producing neurons. Intracerebroventricular administration of ghrelin induced Fos expression, a marker of neuronal activation, in orexin-producing neurons but not in MCH-producing neurons. Ghrelin remained competent to induce Fos expression in orexin-producing neurons following pretreatment with anti-NPY IgG. Pretreatment with anti-orexin-A IgG and anti-orexin-B IgG, but not anti-MCH IgG, attenuated ghrelin-induced feeding. Administration of NPY receptor antagonist further attenuated ghrelin-induced feeding in rats treated with anti-orexin-IgGs. Ghrelin-induced feeding was also suppressed in orexin knockout mice. This study identifies a novel hypothalamic pathway that links ghrelin and orexin in the regulation of feeding behavior and energy homeostasis.
Collapse
Affiliation(s)
- Koji Toshinai
- Department of Internal Medicine, Miyazaki Medical College, Miyazaki 889-1692, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hewson AK, Tung LYC, Connell DW, Tookman L, Dickson SL. The rat arcuate nucleus integrates peripheral signals provided by leptin, insulin, and a ghrelin mimetic. Diabetes 2002; 51:3412-9. [PMID: 12453894 DOI: 10.2337/diabetes.51.12.3412] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The hypothalamic circuits controlling food intake and body weight receive and integrate information from circulating satiety signals such as leptin and insulin and also from ghrelin, the only known circulating hormone that stimulates appetite following systemic injection. Activation of arcuate neurons by ghrelin and ghrelin mimetics (the growth hormone secretagogues) is augmented in 48-h-fasted rats compared with fed rats, as reflected by a greater number of cells expressing Fos protein in response to administration of the same maximally effective dose. Here we sought to determine whether this increased responsiveness in fasting might reflect or be influenced by low levels of circulating satiety factors such as leptin or insulin. Chronic central infusion of insulin or leptin during a 48-h fast suppressed the threefold increase in the Fos response to intravenous injection of a maximally effective dose of growth hormone-releasing peptide (GHRP)-6, a synthetic growth hormone secretagogue. This appears to be a direct central action of insulin and leptin because the marked decrease in plasma levels of insulin, leptin, and glucose during fasting were unaffected by central administration of either hormone. Furthermore, the GHRP-6-induced Fos response was twofold greater in obese leptin- and insulin-resistant Zucker rats compared with lean controls. These data provide evidence that the ghrelin-sensitive circuits in the hypothalamus are dynamically regulated by central insulin and leptin action.
Collapse
Affiliation(s)
- Adrian K Hewson
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, U.K
| | | | | | | | | |
Collapse
|
23
|
Abstract
Feeding provides substrate for energy metabolism, which is vital to the survival of every living animal and therefore is subject to intense regulation by brain homeostatic and hedonic systems. Over the last decade, our understanding of the circuits and molecules involved in this process has changed dramatically, in large part due to the availability of animal models with genetic lesions. In this review, we examine the role played in homeostatic regulation of feeding by systemic mediators such as leptin and ghrelin, which act on brain systems utilizing neuropeptide Y, agouti-related peptide, melanocortins, orexins, and melanin concentrating hormone, among other mediators. We also examine the mechanisms for taste and reward systems that provide food with its intrinsically reinforcing properties and explore the links between the homeostatic and hedonic systems that ensure intake of adequate nutrition.
Collapse
Affiliation(s)
- Clifford B Saper
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | |
Collapse
|
24
|
Muccioli G, Tschöp M, Papotti M, Deghenghi R, Heiman M, Ghigo E. Neuroendocrine and peripheral activities of ghrelin: implications in metabolism and obesity. Eur J Pharmacol 2002; 440:235-54. [PMID: 12007539 DOI: 10.1016/s0014-2999(02)01432-2] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ghrelin, a 28-amino acid acylated peptide predominantly produced by the stomach, displays strong growth hormone (GH)-releasing activity mediated by the hypothalamus-pituitary GH secretagogue (GHS)-receptors specific for synthetic GHS. The discovery of ghrelin definitely changes our understanding of GH regulation but it is also already clear that ghrelin is much more than simply a natural GHS. Ghrelin acts also on other central and peripheral receptors and shows other actions including stimulation of lactotroph and corticotroph secretion, orexia, influence on gastro-entero-pancreatic functions, metabolic, cardiovascular and anti-proliferative effects. GHS were born more than 20 years ago as synthetic molecules suggesting the option that GH deficiency could be treated by orally active GHS as an alternative to recombinant human GH (rhGH). Up to now, this has not been the case and also their usefulness as anabolic anti-aging intervention restoring GH/insulin-like growth factor-I axis in somatopause is still unclear. We are now confronted with the theoretical possibility that GHS analogues could become candidate drugs for treatment of pathophysiological conditions in internal medicine totally unrelated to disorders of GH secretion. Particularly, GHS receptor agonists or antagonists acting on appetite could represent new drug intervention in eating disorders.
Collapse
|
25
|
Tschöp M, Statnick MA, Suter TM, Heiman ML. GH-releasing peptide-2 increases fat mass in mice lacking NPY: indication for a crucial mediating role of hypothalamic agouti-related protein. Endocrinology 2002; 143:558-68. [PMID: 11796511 DOI: 10.1210/endo.143.2.8633] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ghrelin, an endogenous GH secretagogue, is capable of stimulating adiposity in rodents. Because such adiposity was thought to be mediated by hypothalamic NPY neurons, we investigated by which mechanism a synthetic ghrelin receptor agonist, GHRP-2, would generate a positive energy balance in NPY-deficient [Npy(-/-) mice] and wild-type controls. A dose-dependent increase in body weight and food intake was observed during daily sc injections with GHRP-2. Pre- and posttreatment analysis of body composition indicated increased fat mass and bone mass but not lean mass. Respiratory quotient was increased in GHRP-2-treated mice, indicating preservation of fat. Hypothalamic mRNA levels of agouti- related protein (AGRP), an orexigenic melanocortin receptor antagonist, increased after GHRP-2 treatment. Competitive blockade of AGRP action by melanocortin-receptor agonist MT-II prevented GHRP-induced weight gain in Npy(-/-) mice. In conclusion, chronic peripheral treatment with a ghrelin receptor agonist induced a positive energy balance leading to fat gain in the absence of NPY. These effects could be mediated in part by AGRP. To date, there are few therapeutics that can produce a positive energy balance. Ghrelin receptor agonists offer a treatment option for syndromes like anorexia nervosa, cancer cachexia, or AIDS wasting.
Collapse
MESH Headings
- Absorptiometry, Photon
- Adipose Tissue/drug effects
- Adipose Tissue/physiology
- Agouti-Related Protein
- Animals
- Body Weight/drug effects
- Bone Development/drug effects
- Calorimetry, Indirect
- Chromatography, High Pressure Liquid
- Eating/drug effects
- Genotype
- Hormones/blood
- Hypothalamus/physiology
- Intercellular Signaling Peptides and Proteins
- Male
- Mice
- Mice, Knockout
- Neuropeptide Y/genetics
- Neuropeptide Y/physiology
- Oligopeptides/pharmacology
- Proteins/physiology
- Receptors, Cell Surface/agonists
- Receptors, Cell Surface/physiology
- Receptors, Corticotropin/agonists
- Receptors, G-Protein-Coupled
- Receptors, Ghrelin
- Receptors, Melanocortin
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Matthias Tschöp
- Endocrine Research, Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana 46285, USA.
| | | | | | | |
Collapse
|
26
|
Muller AF, Janssen JA, Lamberts SW, Bidlingmaier M, Strasburger CJ, Hofland L, van der Lely AJ. Effects of fasting and pegvisomant on the GH-releasing hormone and GH-releasing peptide-6 stimulated growth hormone secretion. Clin Endocrinol (Oxf) 2001; 55:461-7. [PMID: 11678828 DOI: 10.1046/j.1365-2265.2001.01374.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Pegvisomant is a mutated GH molecule which prevents functional dimerization and subsequent activation of the growth hormone receptor. Pegvisomant and fasting both lead to GH resistance. DESIGN AND PATIENTS We performed a double-blind placebo-controlled cross-over study comparing the effects of pegvisomant and fasting on the GH-releasing hormone (GHRH)- and GH-releasing peptide-6 (GHRP-6)-stimulated GH-release before and after 3 days of fasting in 10 healthy lean male subjects. We also performed a single-arm open label study under nonfasting conditions in five of these subjects. On day 1, in random order, at 0800 h, a GHRP-6 or GHRH test was performed. At 1600 h, a GHRH (if the first test was a GHRP-6 test) or GHRP-6-test (if the first test was a GHRH test) was done. After the second test either pegvisomant (80 mg as a single subcutaneous injection) or placebo was administered. On day 4, GHRP-6 and GHRH tests were performed in the same order as on day 1. During the cross-over study, subjects fasted from 2400 h on day 1 until the end of the study. MEASUREMENTS During the GH stimulation tests, blood samples were drawn every 15 min from 15 to 120 min. GH was determined in all samples. Total insulin-like growth factor (IGF)-I and free IGF-I were determined from the samples at 0 min only. RESULTS Three days of fasting alone and pegvisomant alone as well as in combination increased GH concentrations, whereas a decrease in serum-free, but not total, IGF-I concentrations was observed. On day 4, fasting and pegvisomant, either alone or in combination, significantly increased GH concentrations after GHRH compared to baseline. Pegvisomant alone did not increase GH concentrations after GHRP-6 administration. Fasting alone increased GH levels after GHRP-6 administration. The combination of fasting and pegvisomant had a synergistic effect on GH release after GHRP-6. CONCLUSION These human in vivo data suggest that: (1) circulating free IGF-I, and not total IGF-I, is the major component in the negative feedback on GH secretion; (2) increased pituitary GHRH receptor expression plays a role in the mechanism whereby fasting leads to increased GH concentrations; (3) in vivo, GHRP-6 sensitivity seems to be regulated primarily by metabolic factors and not by changes in GH-IGF-I axis.
Collapse
Affiliation(s)
- A F Muller
- Department of Internal Medicine, Erasmus University Medical Centre Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
27
|
Horvath TL, Diano S, Sotonyi P, Heiman M, Tschöp M. Minireview: ghrelin and the regulation of energy balance--a hypothalamic perspective. Endocrinology 2001; 142:4163-9. [PMID: 11564668 DOI: 10.1210/endo.142.10.8490] [Citation(s) in RCA: 310] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The recently discovered hormone, ghrelin, has been recognized as an important regulator of GH secretion and energy homeostasis. Orexigenic and adipogenic ghrelin is produced by the stomach, intestine, placenta, pituitary, and possibly in the hypothalamus. The concentration of circulating ghrelin, principally derived from the stomach, is influenced by acute and chronic changes in nutritional state. To date, most studies focused on the role of ghrelin in GH secretion or its function in complementing leptin action to prevent energy deficits. The potential significance of ghrelin in the etiology of obesity and cachexia as well as in the regulation of growth processes is the subject of ongoing discussions. A large quantity of information based on clinical trials and experimental studies with ghrelin and previously available synthetic ghrelin receptor agonists (GH secretagogues) must now be integrated with a rapidly increasing amount of data on the central regulation of metabolism and appetite. In this overview, we summarize recent findings and strategies on the integration of ghrelin into neuroendocrine networks that regulate energy homeostasis.
Collapse
Affiliation(s)
- T L Horvath
- Reproductive Neuroscience Unit, Department of Obstetrics and Gynecology, Yale Medical School, New Haven, Connecticut 06520, USA.
| | | | | | | | | |
Collapse
|
28
|
Tebbe JJ, Dietze T, Grote C, Mönnikes H. Excitatory stimulation of neurons in the arcuate nucleus inhibits gastric acid secretion via vagal pathways in anesthetized rats. Brain Res 2001; 913:10-7. [PMID: 11532242 DOI: 10.1016/s0006-8993(01)02746-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is well established that autonomic control of gastrointestinal function is modulated by central autonomic neurotransmission. In this context it has been shown that gastrointestinal motility and secretion can be modulated by exogenous neuropeptides microinjected into the paraventricular nucleus of the hypothalamus (PVN). Furthermore, there is considerable evidence suggesting that neurons projecting from the arcuate nucleus (Arc) to the PVN may be the source of endogenous neuropeptide release in the PVN. This poses the question whether stimulation of neurons in the arcuate nucleus, e.g. by an excitatory amino acid, alters gastrointestinal function. In the present study, we investigated the effect of an excitatory amino acid, kainate, microinjected into the arcuate nucleus on gastric acid secretion in urethane-anesthetized rats. Kainate (140 pmol/rat) bilaterally microinjected into the Arc induced an significant inhibition of pentagastrin (PG) stimulated (16 mg/kg per h) gastric acid secretion throughout an observation period of 120 min after microinjection. Microinjection of kainate into hypothalamic areas outside the arcuate nucleus did not modify gastric secretion. Bilateral cervical vagotomy blocked the effect of kainate injected into the Arc on PG-stimulated gastric acid secretion. These data show that gastric secretory function can be modulated by stimulation of neuronal activity in the Arc via efferent vagal pathways. The results suggest that the arcuate nucleus is a forebrain area involved in the CNS regulation of gastrointestinal function.
Collapse
Affiliation(s)
- J J Tebbe
- Department of Anatomy and Cell Biology, Philipps-Universität zu Marburg, Marburg, Germany
| | | | | | | |
Collapse
|
29
|
Torsello A, Locatelli V, Melis MR, Succu S, Spano MS, Deghenghi R, Müller EE, Argiolas A. Differential orexigenic effects of hexarelin and its analogs in the rat hypothalamus: indication for multiple growth hormone secretagogue receptor subtypes. Neuroendocrinology 2000; 72:327-32. [PMID: 11146415 DOI: 10.1159/000054601] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously reported that hexarelin and some of its analogs, including EP 50885, stimulated GH secretion and feeding after systemic administration in the rat, whereas EP 40904 selectively stimulated food intake and EP 40737 only GH release. The precise mechanism of growth hormone-releasing peptides (GHRPs) actions is still unclear, but the integrity of the arcuate nucleus of the hypothalamus (ARC) appears crucial for their endocrine effects. To better characterize the site(s) and mechanisms(s) of the orexigenic action of GHRPs, we have investigated their effects after infusion into the arcuate, paraventricular, ventromedial and medial preoptic areas of the hypothalamus. Food intake was measured for 60 min following injection of the test compound (2 microg/rat). Hexarelin, EP 40904 and EP 50885 had significant orexigenic effects after injection into the ARC. A specific NPY antagonist significantly inhibited the effect of hexarelin, whereas a GHRH antagonist was ineffective. In the paraventricular nucleus, only EP 50885 stimulated feeding, whereas all peptides were ineffective in the ventromedial nucleus and medial preoptic area. Taken altogether, these results demonstrate that GHRPs are endowed with site-specific orexigenic actions and that endogenous NPY, but not GHRH, mediates these effects. The additional orexigenic action of EP 50885 in the paraventricular nucleus suggests the existence of a GHRP receptor subtype different from the already cloned one.
Collapse
Affiliation(s)
- A Torsello
- Department of Experimental and Environmental Medicine and Biotechnologies, University of Milano-Bicocca, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hewson AK, Dickson SL. Systemic administration of ghrelin induces Fos and Egr-1 proteins in the hypothalamic arcuate nucleus of fasted and fed rats. J Neuroendocrinol 2000; 12:1047-9. [PMID: 11069119 DOI: 10.1046/j.1365-2826.2000.00584.x] [Citation(s) in RCA: 265] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ghrelin, a recently identified endogenous ligand for the growth hormone secretagogue (GHS) receptor, induces growth hormone (GH) secretion following systemic administration. We sought to determine whether systemic administration of ghrelin activates cells in the hypothalamic arcuate nucleus by examining the distribution of cells expressing Fos and Egr-1 proteins. In normally fed rats, both ghrelin and GHRP-6 (a synthetic GHS) significantly increased the number of cells expressing Fos and Egr-1 in the arcuate nucleus. The effects of ghrelin and GHRP-6 to induce Fos or Egr-1 protein expression was significantly greater in fasted than in fed rats. Thus, we show that (i) ghrelin is a centrally active peptide; (ii) it acts in a similar manner to synthetic GHS; and (iii) its central actions are increased in fasting, presumably reflecting physiological changes that accompany altered food intake and/or nutritional state.
Collapse
Affiliation(s)
- A K Hewson
- Department of Physiology, University of Cambridge, UK.
| | | |
Collapse
|
31
|
Abstract
The discovery of the peptide hormone ghrelin, an endogenous ligand for the growth hormone secretagogue (GHS) receptor, yielded the surprising result that the principal site of ghrelin synthesis is the stomach and not the hypothalamus. Although ghrelin is likely to regulate pituitary growth hormone (GH) secretion along with GH-releasing hormone and somatostatin, GHS receptors have also been identified on hypothalamic neurons and in the brainstem. Apart from potential paracrine effects, ghrelin may thus offer an endocrine link between stomach, hypothalamus and pituitary, suggesting an involvement in regulation of energy balance. Here we show that peripheral daily administration of ghrelin caused weight gain by reducing fat utilization in mice and rats. Intracerebroventricular administration of ghrelin generated a dose-dependent increase in food intake and body weight. Rat serum ghrelin concentrations were increased by fasting and were reduced by re-feeding or oral glucose administration, but not by water ingestion. We propose that ghrelin, in addition to its role in regulating GH secretion, signals the hypothalamus when an increase in metabolic efficiency is necessary.
Collapse
Affiliation(s)
- M Tschöp
- Endocrine Research and BioResearch Technologies & Proteins, Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | | | |
Collapse
|
32
|
|