1
|
Sexton D, Kichev A, Juethner S, Yeung D, MacDonald A, Anokian E, Li B. Hereditary angioedema plasma proteomics following specific plasma kallikrein inhibition with lanadelumab. Front Immunol 2025; 15:1471168. [PMID: 40417315 PMCID: PMC12098075 DOI: 10.3389/fimmu.2024.1471168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/26/2024] [Indexed: 05/27/2025] Open
Abstract
Introduction Plasma proteomics analyses were performed to identify novel disease state biomarkers of hereditary angioedema due to C1 inhibitor deficiency (HAE-C1INH) and investigate the biological consequences of specific plasma kallikrein inhibition with lanadelumab. Methods Affinity proteomic analyses were performed using plasma from healthy controls (n=30) and patients with HAE-C1INH before (baseline, n=125) and after 6 months of treatment with lanadelumab (300 mg every 2 weeks, n=112) using the SomaScan platform. Results Relative plasma levels for several proteins differed significantly between controls and patients with HAE-C1INH, and between matched baseline and post-treatment samples from patients with HAE-C1INH. As expected, C1 inhibitor and complement C4 were significantly lower (P<1.10e-39 false discovery rate [fdr], P<6.6e-25 fdr, respectively) in HAE-C1INH baseline plasma versus controls. Cleaved high-molecular-weight kininogen, a biomarker of excess kallikrein-kinin system (KKS) activation, was higher in HAE-C1INH baseline plasma versus controls (P<6.7e-6 fdr) and was reduced in HAE-C1INH plasma after lanadelumab treatment. Of 1041 identified proteins that differed significantly (P<0.05) from controls and HAE-C1INH baseline plasma, 120 proteins were no longer different between controls and patients with HAE-C1INH after 6 months of lanadelumab treatment. Canonical pathway and local network analyses of HAE-C1INH plasma proteomics suggest dysregulation in KKS, coagulation, cell adhesion, and connective tissue degradation that approach that of healthy controls following treatment with lanadelumab. Conclusion Proteomic analyses of plasma from patients with HAE-C1INH before and after treatment with lanadelumab compared with healthy controls confirmed known HAE-C1INH biomarkers and identified additional potential biomarkers of plasma kallikrein dysregulation for further investigation.
Collapse
Affiliation(s)
- Dan Sexton
- Takeda Development Center Americas, Inc., Cambridge, MA, United States
| | | | - Salomé Juethner
- Takeda Pharmaceuticals USA Inc., Lexington, MA, United States
| | - Dave Yeung
- Takeda Development Center Americas, Inc., Cambridge, MA, United States
| | - Amanda MacDonald
- Takeda Development Center Americas, Inc., Cambridge, MA, United States
| | | | - Bin Li
- Takeda Development Center Americas, Inc., Cambridge, MA, United States
| |
Collapse
|
2
|
Donado CA, Theisen E, Zhang F, Nathan A, Fairfield ML, Rupani KV, Jones D, Johannes KP, Raychaudhuri S, Dwyer DF, Jonsson AH, Brenner MB. Granzyme K activates the entire complement cascade. Nature 2025; 641:211-221. [PMID: 39914456 DOI: 10.1038/s41586-025-08713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/29/2025] [Indexed: 03/21/2025]
Abstract
Granzymes are a family of serine proteases that are mainly expressed by CD8+ T cells, natural killer cells and innate-like lymphocytes1. Although their primary function is thought to be the induction of cell death in virally infected cells and tumours, accumulating evidence indicates that some granzymes can elicit inflammation by acting on extracellular substrates1. We previously found that most tissue CD8+ T cells in rheumatoid arthritis synovium, and in inflamed organs for some other diseases, express granzyme K (GZMK)2, a tryptase-like protease with poorly defined function. Here, we show that GZMK can activate the complement cascade by cleaving the C2 and C4 proteins. The nascent C4b and C2b fragments form a C3 convertase that cleaves C3, enabling the assembly of a C5 convertase that cleaves C5. The resulting convertases generate all the effector molecules of the complement cascade: the anaphylatoxins C3a and C5a, the opsonins C4b and C3b, and the membrane attack complex. In rheumatoid arthritis synovium, GZMK is enriched in regions with abundant complement activation, and fibroblasts are the main producers of complement proteins that serve as substrates for GZMK-mediated complement activation. Furthermore, Gzmk-deficient mice are significantly protected from inflammatory disease, exhibiting reduced arthritis and dermatitis, with concomitant decreases in complement activation. Our findings describe the discovery of a previously unidentified mechanism of complement activation that is driven entirely by lymphocyte-derived GZMK. Given the widespread abundance of GZMK-expressing T cells in tissues in chronic inflammatory diseases, GZMK-mediated complement activation is likely to be an important contributor to tissue inflammation in multiple disease contexts.
Collapse
Affiliation(s)
- Carlos A Donado
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Erin Theisen
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA
| | - Fan Zhang
- Division of Rheumatology and Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Aparna Nathan
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Madison L Fairfield
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Karishma Vijay Rupani
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dominique Jones
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kellsey P Johannes
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel F Dwyer
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - A Helena Jonsson
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael B Brenner
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Kristoffersson AC, Sköld A, Welinder C, Wendler M, Kalliokoski G, Bekassy Z, Karpman D. Angiotensinogen and C3 compete for renin-induced complement activation. Front Immunol 2025; 16:1563868. [PMID: 40242769 PMCID: PMC11999838 DOI: 10.3389/fimmu.2025.1563868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Renin from plasma, kidney, and recombinant sources was previously demonstrated to cleave C3 to C3a and C3b. C3a was generated at a similar rate to that by C3 convertase, and C3 cleavage was inhibited by the renin inhibitor aliskiren. Renin endogenously produced by Calu6 cells also led to C3 deposition on cells. These results have been challenged by another group suggesting that recombinant renin does not cleave C3 or that renin was contaminated by trypsin, which also cleaves C3. Here, we investigated C3 cleavage by recombinant renin and competitive inhibition in the presence of angiotensinogen. Recombinant renin was analyzed by mass spectrometry using endopeptidase LysC digestion and did not contain trypsin. C3 cleavage, using our protocol and that of the other group, showed cleavage to C3b by immunoblotting. Cleavage was inhibited by aliskiren, which inhibits renin but not trypsin. Cleavage to C3a occurred within 1 min as detected by enzyme-linked immunosorbent assay (ELISA). Angiotensinogen competed for renin-mediated C3 cleavage and inhibited C3a generation, but C3 did not inhibit cleavage of angiotensinogen to angiotensin I (detected by ELISA). The results suggest that renin cleaves C3 but angiotensinogen is its preferred substrate. The interaction between renin and C3 may gain importance in the kidney where renin concentrations are considerably higher than in the circulation and when the primary substrate, angiotensinogen, is cleaved and thereby depleted.
Collapse
Affiliation(s)
| | - Albin Sköld
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Charlotte Welinder
- Mass Spectrometry, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Markus Wendler
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Zivile Bekassy
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Lee KSW, Zhang Q, Suwa T, Clark H, Olcina MM. The role of the complement system in the response to cytotoxic therapy. Semin Immunol 2025; 77:101927. [PMID: 39765018 DOI: 10.1016/j.smim.2024.101927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 03/12/2025]
Abstract
The complement system is increasingly recognised as a key player in tumour progression and response to cancer treatment. Cytotoxic therapies, including chemo- and radiotherapy are standard-of-care for the majority of cancer patients. Cytotoxics have been found to alter the expression of complement system proteins and activation of components. Many recent reports highlight the role of local dysregulation of complement proteins in the tumour microenvironment and how targeting such dysregulation can have either anti- or pro-tumoricidal effects depending on several factors including treatment scheduling, the tumour type and its microenvironment characteristics. This review will explore the complex effects of cytotoxic therapy on complement regulation and what lessons can be learnt to identify the most effective way to therapeutically modulate complement system proteins for cancer therapy.
Collapse
Affiliation(s)
- Kelly S W Lee
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Qingyang Zhang
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Tatsuya Suwa
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Heather Clark
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Monica M Olcina
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom.
| |
Collapse
|
5
|
Dong XQ, Zhang YH, Luo J, Li MJ, Ma LQ, Qi YT, Miao YL. Keratin 1 modulates intestinal barrier and immune response via kallikrein kinin system in ulcerative colitis. World J Gastroenterol 2025; 31:102070. [PMID: 39958441 PMCID: PMC11752705 DOI: 10.3748/wjg.v31.i6.102070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 01/10/2025] Open
Abstract
BACKGROUND External factors in ulcerative colitis (UC) exacerbate colonic epithelial permeability and inflammatory responses. Keratin 1 (KRT1) is crucial in regulating these alterations, but its specific role in the progression of UC remains to be fully elucidated. AIM To explore the role and mechanisms of KRT1 in the regulation of colonic epithelial permeability and inflammation in UC. METHODS A KRT1 antibody concentration gradient test, along with a dextran sulfate sodium (DSS)-induced animal model, was implemented to investigate the role of KRT1 in modulating the activation of the kallikrein kinin system (KKS) and the cleavage of bradykinin (BK)/high molecular weight kininogen (HK) in UC. RESULTS Treatment with KRT1 antibody in Caco-2 cells suppressed cell proliferation, induced apoptosis, reduced HK expression, and increased BK expression. It further downregulated intestinal barrier proteins, including occludin, zonula occludens-1, and claudin, and negatively impacted the coagulation factor XII. These changes led to enhanced activation of BK and HK cleavage, thereby intensifying KKS-mediated inflammation in UC. In the DSS-induced mouse model, administration of KRT1 antibody mitigated colonic injury, increased colon length, alleviated weight loss, and suppressed inflammatory cytokines such as interleukin (IL)-1, IL-6, tumor necrosis factor-α. It also facilitated repair of the intestinal barrier, reducing DSS-induced injury. CONCLUSION KRT1 inhibits BK expression, suppresses inflammatory cytokines, and enhances markers of intestinal barrier function, thus ameliorating colonic damage and maintaining barrier integrity. KRT1 is a viable therapeutic target for UC.
Collapse
Affiliation(s)
- Xiang-Qian Dong
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Ying-Hui Zhang
- Department of Gastroenterology, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan Province, China
| | - Juan Luo
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Mao-Juan Li
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Lan-Qing Ma
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Ya-Ting Qi
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Ying-Lei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| |
Collapse
|
6
|
Lopatko Fagerström I, Gerogianni A, Wendler M, Arvidsson I, Tontanahal A, Kristoffersson AC, Qadri F, Bader M, Karpman D. Bradykinin B1 receptor signaling triggers complement activation on endothelial cells. Front Immunol 2025; 16:1527065. [PMID: 39991158 PMCID: PMC11842366 DOI: 10.3389/fimmu.2025.1527065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/16/2025] [Indexed: 02/25/2025] Open
Abstract
Introduction The complement and kallikrein-kinin systems (KKS) are both activated during vascular inflammation, and there are many known interactions between the two systems. This study investigated if KKS activation induced complement activation on endothelial cells, and if activation was dependent on bradykinin B1 receptor (B1R) signaling. Methods KKS was activated in normal human serum by kaolin or activated factor XII (FXIIa). ADP-preactivated primary glomerular endothelial cells (PGECs) were incubated with serum, with or without kaolin or FXIIa, and with or without the B1R antagonist (R715) or the inositol triphosphate receptor (IP3R) inhibitor 2-aminoethoxydiphenyl borate (2-APB). Complement factors C3a, factor Ba and C5b-9 were evaluated by ELISA or immunoblotting. B1/B2 receptor double knock-out and wild-type mice were injected with lipopolysaccharide from E. coli B5:O55, to induce KKS activation. Results Supernatants from PGECs incubated with serum exposed to kaolin or FXIIa exhibited higher levels of Ba and C5b-9, which were significantly reduced in the presence of the B1R antagonist. Complement activation induced by FXIIa was also reduced in the presence of the IP3R inhibitor. Likewise, cell lysates showed higher levels of C3a and C5b-9 in the presence of kaolin and FXIIa, and complement activation was significantly reduced in the presence of the B1R antagonist. B1/B2 receptor double knock-out mice exhibited less C3 and C5b-9 deposition in glomeruli compared to wild-type mice. Conclusion This study demonstrates that KKS activation contributes to complement activation on the endothelium by B1R signaling. Blocking the B1R may have a role in reducing complement deposition and its effects on the endothelium.
Collapse
Affiliation(s)
| | | | - Markus Wendler
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ida Arvidsson
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ashmita Tontanahal
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Fatimunnisa Qadri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité -Universitätsmedizin Berlin, Berlin, Germany
- Institute of Biology, University of Lübeck, Lübeck, Germany
| | - Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Sunamoto M, Morohoshi K, Sato B, Mihashi R, Inui M, Yamada M, Miyado K, Kawano N. Complement Factor B Deficiency Is Dispensable for Female Fertility but Affects Microbiome Diversity and Complement Activity. Int J Mol Sci 2025; 26:1393. [PMID: 39941161 PMCID: PMC11818189 DOI: 10.3390/ijms26031393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Complement factor B (CFB) is a crucial component for the activation of the alternative pathway due to the formation of the C3 convertase with C3b, which further produces C3b to enhance the overall complement activity. Although Cfb is expressed not only in the immune tissues, but also in the reproductive tract, the physiological role of the alternative complement pathway in reproduction remains unclear. In this study, we addressed this issue by producing Cfb-knockout (KO) mice and analyzing their phenotypes. Sperm function, number of ovulated oocytes, and litter size were normal in KO mice. In contrast, the diversity of microbiomes in the gut and vaginal tract significantly increased in KO mice. Some serine protease activity in the serum from KO mice was lower than that of wild-type mice. Since the serum from KO mice showed significantly lower activity of the alternative complement pathway, CFB was found to be essential for this pathway. Our results indicate that although the alternative pathway is dispensable for normal fertility and development, it maintains the gut and vaginal microbiomes by suppressing their diversity and activating the alternative complement pathway.
Collapse
Affiliation(s)
- Manato Sunamoto
- Laboratory of Regulatory Biology, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Kawasaki 214-8571, Japan; (M.S.); (K.M.); (B.S.)
| | - Kazunori Morohoshi
- Laboratory of Regulatory Biology, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Kawasaki 214-8571, Japan; (M.S.); (K.M.); (B.S.)
- Division of Biomedical Engineering, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa 359-8513, Japan
| | - Ban Sato
- Laboratory of Regulatory Biology, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Kawasaki 214-8571, Japan; (M.S.); (K.M.); (B.S.)
| | - Ryo Mihashi
- Laboratory of Regulatory Biology, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Kawasaki 214-8571, Japan; (M.S.); (K.M.); (B.S.)
| | - Masafumi Inui
- Laboratory of Animal Regeneration Systemology, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Kawasaki 214-8571, Japan;
| | - Mitsutoshi Yamada
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan;
| | - Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan;
| | - Natsuko Kawano
- Laboratory of Regulatory Biology, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Kawasaki 214-8571, Japan; (M.S.); (K.M.); (B.S.)
| |
Collapse
|
8
|
Gaffar NR, Valand N, Venkatraman Girija U. Candidiasis: Insights into Virulence Factors, Complement Evasion and Antifungal Drug Resistance. Microorganisms 2025; 13:272. [PMID: 40005639 PMCID: PMC11858274 DOI: 10.3390/microorganisms13020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Invasive fungal infections constitute a substantial global health burden, with invasive candidiasis representing approximately 70% of reported cases worldwide. The emergence of antifungal resistance among Candida species has further exacerbated this challenge to healthcare systems. Recent epidemiological studies have documented a concerning shift towards non-albicans Candida species, exhibiting reduced antifungal susceptibility, in invasive candidiasis cases. The complement system serves as a crucial first-line defence mechanism against Candida infections. These fungal pathogens can activate the complement cascade through three conventional pathways-classical, lectin, and alternative-in addition to activation through the coagulation system. While these pathways are initiated by distinct molecular triggers, they converge at C3 convertase formation, ultimately generating biologically active products and the membrane attack complex. Candida species have evolved sophisticated mechanisms to evade complement-mediated host defence, including the masking of cell wall components, proteolytic cleavage and inhibition of complement proteins, recruitment of complement regulators, and acquisition of host proteins. This review examines the intricate interplay between Candida species and the host complement system, with emphasis on complement evasion strategies. Furthermore, we highlight the importance of exploring the crosstalk between antifungal resistance and immune evasion strategies employed by Candida species. Understanding these interactions may facilitate the development of novel therapeutic approaches and strategies to overcome treatment failures in Candida species infections.
Collapse
Affiliation(s)
| | | | - Umakhanth Venkatraman Girija
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, Leicester LE1 9BH, UK
| |
Collapse
|
9
|
廖 锦, 郭 鑫, 梁 波, 李 许, 徐 明. [Berberine ameliorates coronary artery endothelial cell injury in Kawasaki disease through complement and coagulation cascades]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2025; 27:101-108. [PMID: 39825659 PMCID: PMC11750244 DOI: 10.7499/j.issn.1008-8830.2406075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/14/2024] [Indexed: 01/20/2025]
Abstract
OBJECTIVES To explore the role of berberine (BBR) in ameliorating coronary endothelial cell injury in Kawasaki disease (KD) by regulating the complement and coagulation cascade. METHODS Human coronary artery endothelial cells (HCAEC) were divided into a healthy control group, a KD group, and a BBR treatment group (n=3 for each group). The healthy control group and KD group were supplemented with 15% serum from healthy children and KD patients, respectively, while the BBR treatment group received 15% serum from KD patients followed by the addition of 20 mmol/L BBR. Differential protein expression was analyzed and identified using isobaric tags for relative and absolute quantitation technology and liquid chromatography-tandem mass spectrometry, followed by GO functional enrichment analysis and KEGG signaling pathway enrichment analysis of the differential proteins. Western blot was used to detect differential protein expression. RESULTS A total of 518 differential proteins were identified between the KD group and the healthy control group (300 upregulated proteins and 218 downregulated proteins). A total of 422 differential proteins were identified between the BBR treatment group and the KD group (221 upregulated proteins and 201 downregulated proteins). Bioinformatics analysis showed that compared to the healthy control group, the differential proteins in the KD group were enriched in the complement and coagulation cascade and ribosome biogenesis in eukaryotes. Compared to the KD group, the differential proteins in the BBR treatment group were also enriched in the complement and coagulation cascade and ribosome biogenesis in eukaryotes. Western blot results indicated that compared to the healthy control group, the expression of complement C1q subcomponent subunit C (C1QC), kininogen-1 (KNG1), complement C1s subcomponent (C1S), and C4b-binding protein alpha chain (C4BPA) was increased in the KD group (P<0.05). Compared to the KD group, the expression of KNG1, C1S, C1QC, and C4BPA was decreased in the BBR treatment group (P<0.05). CONCLUSIONS The complement and coagulation cascade may be involved in the regulation of BBR treatment for coronary injury in KD, and C1QC, KNG1, C1S, and C4BPA may serve as biomarkers for this treatment.
Collapse
Affiliation(s)
| | | | - 波 梁
- 深圳市龙岗区第三人民医院儿科,广东深圳518020
| | - 许霞 李
- 深圳市龙岗区第三人民医院儿科,广东深圳518020
| | - 明国 徐
- 深圳市龙岗区第三人民医院儿科,广东深圳518020
| |
Collapse
|
10
|
Alic L, Dendinovic K, Papac-Milicevic N. The complement system in lipid-mediated pathologies. Front Immunol 2024; 15:1511886. [PMID: 39635529 PMCID: PMC11614835 DOI: 10.3389/fimmu.2024.1511886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
The complement system, a coordinator and facilitator of the innate immune response, plays an essential role in maintaining host homeostasis. It promotes clearance of pathogen- and danger-associated molecular patterns, regulates adaptive immunity, and can modify various metabolic processes such as energy expenditure, lipid metabolism, and glucose homeostasis. In this review, we will focus on the intricate interplay between complement components and lipid metabolism. More precisely, we will display how alterations in the activation and regulation of the complement system affect pathological outcome in lipid-associated diseases, such as atherosclerosis, obesity, metabolic syndrome, age-related macular degeneration, and metabolic dysfunction-associated steatotic liver disease. In addition to that, we will present and evaluate underlying complement-mediated physiological mechanisms, observed both in vitro and in vivo. Our manuscript will demonstrate the clinical significance of the complement system as a bridging figure between innate immunity and lipid homeostasis.
Collapse
Affiliation(s)
- Lejla Alic
- Department of Medical Biochemistry, Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Kristina Dendinovic
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Nikolina Papac-Milicevic
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Lee H, Assaraf R, Subramanian S, Goetschius D, Bieri J, DiNunno NM, Leisi R, Bator CM, Hafenstein SL, Ros C. Infectious parvovirus B19 circulates in the blood coated with active host protease inhibitors. Nat Commun 2024; 15:9543. [PMID: 39500886 PMCID: PMC11538491 DOI: 10.1038/s41467-024-53794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/20/2024] [Indexed: 11/08/2024] Open
Abstract
The lack of a permissive cell culture system has limited high-resolution structures of parvovirus B19 (B19V) to virus-like particles (VLPs). In this study, we present the atomic resolution structure (2.2 Å) of authentic B19V purified from a patient blood sample. There are significant differences compared to non-infectious VLPs. Most strikingly, two host protease inhibitors (PIs), inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) and serpinA3, were identified in complex with the capsids in all patient samples tested. The ITIH4 binds specifically to the icosahedral fivefold axis and serpinA3 occupies the twofold axis. The protein-coated virions remain infectious, and the capsid-associated PIs retain activity; however, upon virion interaction with target cells, the PIs dissociate from the capsid prior to viral entry. Our finding of an infectious virion shielded by bound host serum proteins suggests an evolutionarily favored phenomenon to evade immune surveillance and escape host protease activity.
Collapse
Affiliation(s)
- Hyunwook Lee
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ruben Assaraf
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, Bern, Switzerland
| | | | - Dan Goetschius
- The Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Jan Bieri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Nadia M DiNunno
- The Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Remo Leisi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Carol M Bator
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Susan L Hafenstein
- The Hormel Institute, University of Minnesota, Austin, MN, USA.
- Department of Biochemistry, Biophysics and Molecular Biology, University of Minnesota, Minneapolis, MN, USA.
- Department of Infectious Diseases, Mayo Clinic, Rochester, MN, USA.
| | - Carlos Ros
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
12
|
Avdonin PP, Blinova MS, Serkova AA, Komleva LA, Avdonin PV. Immunity and Coagulation in COVID-19. Int J Mol Sci 2024; 25:11267. [PMID: 39457048 PMCID: PMC11508857 DOI: 10.3390/ijms252011267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Discovered in late 2019, the SARS-CoV-2 coronavirus has caused the largest pandemic of the 21st century, claiming more than seven million lives. In most cases, the COVID-19 disease caused by the SARS-CoV-2 virus is relatively mild and affects only the upper respiratory tract; it most often manifests itself with fever, chills, cough, and sore throat, but also has less-common mild symptoms. In most cases, patients do not require hospitalization, and fully recover. However, in some cases, infection with the SARS-CoV-2 virus leads to the development of a severe form of COVID-19, which is characterized by the development of life-threatening complications affecting not only the lungs, but also other organs and systems. In particular, various forms of thrombotic complications are common among patients with a severe form of COVID-19. The mechanisms for the development of thrombotic complications in COVID-19 remain unclear. Accumulated data indicate that the pathogenesis of severe COVID-19 is based on disruptions in the functioning of various innate immune systems. The key role in the primary response to a viral infection is assigned to two systems. These are the pattern recognition receptors, primarily members of the toll-like receptor (TLR) family, and the complement system. Both systems are the first to engage in the fight against the virus and launch a whole range of mechanisms aimed at its rapid elimination. Normally, their joint activity leads to the destruction of the pathogen and recovery. However, disruptions in the functioning of these innate immune systems in COVID-19 can cause the development of an excessive inflammatory response that is dangerous for the body. In turn, excessive inflammation entails activation of and damage to the vascular endothelium, as well as the development of the hypercoagulable state observed in patients seriously ill with COVID-19. Activation of the endothelium and hypercoagulation lead to the development of thrombosis and, as a result, damage to organs and tissues. Immune-mediated thrombotic complications are termed "immunothrombosis". In this review, we discuss in detail the features of immunothrombosis associated with SARS-CoV-2 infection and its potential underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (P.P.A.)
| |
Collapse
|
13
|
Kong Y, Wang N, Tong Z, Wang D, Wang P, Yang Q, Yan X, Song W, Jin Z, Zhang M. Role of complement factor D in cardiovascular and metabolic diseases. Front Immunol 2024; 15:1453030. [PMID: 39416783 PMCID: PMC11479899 DOI: 10.3389/fimmu.2024.1453030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
In the genesis and progression of cardiovascular and metabolic diseases (CVMDs), adipose tissue plays a pivotal and dual role. Complement factor D (CFD, also known as adipsin), which is mainly produced by adipocytes, is the rate-limiting enzyme of the alternative pathway. Abnormalities in CFD generation or function lead to aberrant immune responses and energy metabolism. A large number of studies have revealed that CFD is associated with CVMDs. Herein, we will review the current studies on the function and mechanism of CFD in CVMDs such as hypertension, coronary heart disease, ischemia/reperfusion injury, heart failure, arrhythmia, aortic aneurysm, obesity, insulin resistance, and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yingjin Kong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Naixin Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Zhonghua Tong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Dongni Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Penghe Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Qiannan Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Xiangyu Yan
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Weijun Song
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Zexi Jin
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Maomao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
14
|
Lira AL, Kohs TC, Moellmer SA, Shatzel JJ, McCarty OJ, Puy C. Substrates, Cofactors, and Cellular Targets of Coagulation Factor XIa. Semin Thromb Hemost 2024; 50:962-969. [PMID: 36940715 PMCID: PMC11069399 DOI: 10.1055/s-0043-1764469] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Coagulation factor XI (FXI) has increasingly been shown to play an integral role in several physiologic and pathological processes. FXI is among several zymogens within the blood coagulation cascade that are activated by proteolytic cleavage, with FXI converting to the active serine protease form (FXIa). The evolutionary origins of FXI trace back to duplication of the gene that transcribes plasma prekallikrein, a key factor in the plasma kallikrein-kinin system, before further genetic divergence led to FXI playing a unique role in blood coagulation. While FXIa is canonically known for activating the intrinsic pathway of coagulation by catalyzing the conversion of FIX into FIXa, it is promiscuous in nature and has been shown to contribute to thrombin generation independent of FIX. In addition to its role in the intrinsic pathway of coagulation, FXI also interacts with platelets, endothelial cells, and mediates the inflammatory response through activation of FXII and cleavage of high-molecular-weight kininogen to generate bradykinin. In this manuscript, we critically review the current body of knowledge surrounding how FXI navigates the interplay of hemostasis, inflammatory processes, and the immune response and highlight future avenues for research. As FXI continues to be clinically explored as a druggable therapeutic target, understanding how this coagulation factor fits into physiological and disease mechanisms becomes increasingly important.
Collapse
Affiliation(s)
- André L. Lira
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Tia C.L. Kohs
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Samantha A. Moellmer
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Joseph J. Shatzel
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Divison of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Owen J.T. McCarty
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Divison of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Cristina Puy
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Divison of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
15
|
Radouani F, Jalta P, Rapon C, Lezin C, Branford C, Florentin J, Gutierrez JM, Resiere D, Neviere R, Pierre-Louis O. The Contrasting Effects of Bothrops lanceolatus and Bothrops atrox Venom on Procoagulant Activity and Thrombus Stability under Blood Flow Conditions. Toxins (Basel) 2024; 16:400. [PMID: 39330858 PMCID: PMC11435654 DOI: 10.3390/toxins16090400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Consumption coagulopathy and hemorrhagic syndrome are the typical features of Bothrops sp. snake envenoming. In contrast, B. lanceolatus envenoming can induce thrombotic complications. Our aim was to test whether crude B. lanceolatus and B. atrox venoms would display procoagulant activity and induce thrombus formation under flow conditions. METHODS AND PRINCIPAL FINDINGS Fibrin formation in human plasma was observed for B. lanceolatus venom at 250-1000 ng/mL concentrations, which also induced clot formation in purified human fibrinogen, indicating thrombin-like activity. The degradation of fibrinogen confirmed the fibrinogenolytic activity of B. lanceolatus venom. B. lanceolatus venom displayed consistent thrombin-like and kallikrein-like activity increases in plasma conditions. The well-known procoagulant B. atrox venom activated plasmatic coagulation factors in vitro and induced firm thrombus formation under high shear rate conditions. In contrast, B. lanceolatus venom induced the formation of fragile thrombi that could not resist shear stress. CONCLUSIONS Our results suggest that crude B. lanceolatus venom displays amidolytic activity and can activate the coagulation cascade, leading to prothrombin activation. B. lanceolatus venom induces the formation of an unstable thrombus under flow conditions, which can be prevented by the specific monovalent antivenom Bothrofav®.
Collapse
Affiliation(s)
- Fatima Radouani
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort-de-France, France; (F.R.); (P.J.); (C.R.); (C.L.); (J.F.); (D.R.); (O.P.-L.)
- Department of Research, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France
| | - Prisca Jalta
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort-de-France, France; (F.R.); (P.J.); (C.R.); (C.L.); (J.F.); (D.R.); (O.P.-L.)
- Department of Research, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France
| | - Caroline Rapon
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort-de-France, France; (F.R.); (P.J.); (C.R.); (C.L.); (J.F.); (D.R.); (O.P.-L.)
| | - Chloe Lezin
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort-de-France, France; (F.R.); (P.J.); (C.R.); (C.L.); (J.F.); (D.R.); (O.P.-L.)
- Department of Biology, Faculté des Sciences Exactes et Naturelles (SEN), Campus Fouillole, 97157 Pointe-à-Pitre, France
| | - Chelsea Branford
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort-de-France, France; (F.R.); (P.J.); (C.R.); (C.L.); (J.F.); (D.R.); (O.P.-L.)
| | - Jonathan Florentin
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort-de-France, France; (F.R.); (P.J.); (C.R.); (C.L.); (J.F.); (D.R.); (O.P.-L.)
- Department of Research, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France
| | - Jose Maria Gutierrez
- Clodomiro Picado Institute, School of Microbiology, University of Costa Rica, San José 11501, Costa Rica
| | - Dabor Resiere
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort-de-France, France; (F.R.); (P.J.); (C.R.); (C.L.); (J.F.); (D.R.); (O.P.-L.)
- Department of Toxicology and Critical Care Medicine, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France
| | - Remi Neviere
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort-de-France, France; (F.R.); (P.J.); (C.R.); (C.L.); (J.F.); (D.R.); (O.P.-L.)
- Department of Clinical Physiology, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France
| | - Olivier Pierre-Louis
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort-de-France, France; (F.R.); (P.J.); (C.R.); (C.L.); (J.F.); (D.R.); (O.P.-L.)
| |
Collapse
|
16
|
Kulkarni DH, Starick M, Aponte Alburquerque R, Kulkarni HS. Local complement activation and modulation in mucosal immunity. Mucosal Immunol 2024; 17:739-751. [PMID: 38838816 PMCID: PMC11929374 DOI: 10.1016/j.mucimm.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
The complement system is an evolutionarily conserved arm of innate immunity, which forms one of the first lines of host response to pathogens and assists in the clearance of debris. A deficiency in key activators/amplifiers of the cascade results in recurrent infection, whereas a deficiency in regulating the cascade predisposes to accelerated organ failure, as observed in colitis and transplant rejection. Given that there are over 60 proteins in this system, it has become an attractive target for immunotherapeutics, many of which are United States Food and Drug Administration-approved or in multiple phase 2/3 clinical trials. Moreover, there have been key advances in the last few years in the understanding of how the complement system operates locally in tissues, independent of its activities in circulation. In this review, we will put into perspective the abovementioned discoveries to optimally modulate the spatiotemporal nature of complement activation and regulation at mucosal surfaces.
Collapse
Affiliation(s)
- Devesha H Kulkarni
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marick Starick
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Rafael Aponte Alburquerque
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
17
|
Gensemer C, Beck T, Guo L, Petrucci T, Morningstar J, Kornblau I, Byerly K, Biggs R, Weintraub A, Moore K, Koren N, Daylor V, Hastings C, Oberlies E, Zientara ER, Devey E, Dooley S, Stayer K, Fenner R, Singleton K, Luzbetak S, Bear D, Byrd R, Weninger J, Bistran E, Beeson G, Kerns J, Griggs M, Griggs C, Osterhaus M, Fleck E, Schnaudigel J, Butler S, Severance S, Kendall W, Delaney JR, Judge DP, Chen P, Yao H, Guz J, Awgulewitsch A, Kautz SA, Mukherjee R, Price R, Henderson F, Shapiro S, Francomano CA, Kovacic JC, Lavallee M, Patel S, Berrandou TE, Slaugenhaupt SA, Milan D, Kontorovich AR, Bouatia-Naji N, Norris RA. Variants in the Kallikrein Gene Family and Hypermobile Ehlers-Danlos Syndrome. RESEARCH SQUARE 2024:rs.3.rs-4547888. [PMID: 38947032 PMCID: PMC11213194 DOI: 10.21203/rs.3.rs-4547888/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Hypermobile Ehlers-Danlos syndrome (hEDS) is a common heritable connective tissue disorder that lacks a known genetic etiology. To identify genetic contributions to hEDS, whole exome sequencing was performed on families and a cohort of sporadic hEDS patients. A missense variant in Kallikrein-15 (KLK15 p. Gly226Asp), segregated with disease in two families and genetic burden analyses of 197 sporadic hEDS patients revealed enrichment of variants within the Kallikrein gene family. To validate pathogenicity, the variant identified in familial studies was used to generate knock-in mice. Consistent with our clinical cohort, Klk15 G224D/+ mice displayed structural and functional connective tissue defects within multiple organ systems. These findings support Kallikrein gene variants in the pathogenesis of hEDS and represent an important step towards earlier diagnosis and better clinical outcomes.
Collapse
|
18
|
Ong J, Zarnegar A, Selvam A, Driban M, Chhablani J. The Complement System as a Therapeutic Target in Retinal Disease. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:945. [PMID: 38929562 PMCID: PMC11205777 DOI: 10.3390/medicina60060945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
The complement cascade is a vital system in the human body's defense against pathogens. During the natural aging process, it has been observed that this system is imperative for ensuring the integrity and homeostasis of the retina. While this system is critical for proper host defense and retinal integrity, it has also been found that dysregulation of this system may lead to certain retinal pathologies, including geographic atrophy and diabetic retinopathy. Targeting components of the complement system for retinal diseases has been an area of interest, and in vivo, ex vivo, and clinical trials have been conducted in this area. Following clinical trials, medications targeting the complement system for retinal disease have also become available. In this manuscript, we discuss the pathophysiology of complement dysfunction in the retina and specific pathologies. We then describe the results of cellular, animal, and clinical studies targeting the complement system for retinal diseases. We then provide an overview of complement inhibitors that have been approved by the Food and Drug Administration (FDA) for geographic atrophy. The complement system in retinal diseases continues to serve as an emerging therapeutic target, and further research in this field will provide additional insights into the mechanisms and considerations for treatment of retinal pathologies.
Collapse
Affiliation(s)
- Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI 48105, USA
| | - Arman Zarnegar
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Amrish Selvam
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Matthew Driban
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
19
|
Isaksson GL, Hinrichs GR, Andersen H, Bach ML, Weyer K, Zachar R, Henriksen JE, Madsen K, Lund IK, Mollet G, Bistrup C, Birn H, Jensen BL, Palarasah Y. Amiloride Reduces Urokinase/Plasminogen-Driven Intratubular Complement Activation in Glomerular Proteinuria. J Am Soc Nephrol 2024; 35:410-425. [PMID: 38254266 PMCID: PMC11000727 DOI: 10.1681/asn.0000000000000312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
SIGNIFICANCE STATEMENT Proteinuria predicts accelerated decline in kidney function in CKD. The pathologic mechanisms are not well known, but aberrantly filtered proteins with enzymatic activity might be involved. The urokinase-type plasminogen activator (uPA)-plasminogen cascade activates complement and generates C3a and C5a in vitro / ex vivo in urine from healthy persons when exogenous, inactive, plasminogen, and complement factors are added. Amiloride inhibits uPA and attenuates complement activation in vitro and in vivo . In conditional podocin knockout (KO) mice with severe proteinuria, blocking of uPA with monoclonal antibodies significantly reduces the urine excretion of C3a and C5a and lowers tissue NLRP3-inflammasome protein without major changes in early fibrosis markers. This mechanism provides a link to proinflammatory signaling in proteinuria with possible long-term consequences for kidney function. BACKGROUND Persistent proteinuria is associated with tubular interstitial inflammation and predicts progressive kidney injury. In proteinuria, plasminogen is aberrantly filtered and activated by urokinase-type plasminogen activator (uPA), which promotes kidney fibrosis. We hypothesized that plasmin activates filtered complement factors C3 and C5 directly in tubular fluid, generating anaphylatoxins, and that this is attenuated by amiloride, an off-target uPA inhibitor. METHODS Purified C3, C5, plasminogen, urokinase, and urine from healthy humans were used for in vitro / ex vivo studies. Complement activation was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotting, and ELISA. Urine and plasma from patients with diabetic nephropathy treated with high-dose amiloride and from mice with proteinuria (podocin knockout [KO]) treated with amiloride or inhibitory anti-uPA antibodies were analyzed. RESULTS The combination of uPA and plasminogen generated anaphylatoxins C3a and C5a from intact C3 and C5 and was inhibited by amiloride. Addition of exogenous plasminogen was sufficient for urine from healthy humans to activate complement. Conditional podocin KO in mice led to severe proteinuria and C3a and C5a urine excretion, which was attenuated reversibly by amiloride treatment for 4 days and reduced by >50% by inhibitory anti-uPA antibodies without altering proteinuria. NOD-, LRR- and pyrin domain-containing protein 3-inflammasome protein was reduced with no concomitant effect on fibrosis. In patients with diabetic nephropathy, amiloride reduced urinary excretion of C3dg and sC5b-9 significantly. CONCLUSIONS In conditions with proteinuria, uPA-plasmin generates anaphylatoxins in tubular fluid and promotes downstream complement activation sensitive to amiloride. This mechanism links proteinuria to intratubular proinflammatory signaling. In perspective, amiloride could exert reno-protective effects beyond natriuresis and BP reduction. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER Increased Activity of a Renal Salt Transporter (ENaC) in Diabetic Kidney Disease, NCT01918488 and Increased Activity of ENaC in Proteinuric Kidney Transplant Recipients, NCT03036748 .
Collapse
Affiliation(s)
- Gustaf L. Isaksson
- Department of Molecular Medicine–Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Gitte R. Hinrichs
- Department of Molecular Medicine–Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Henrik Andersen
- Department of Molecular Medicine–Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Marie L. Bach
- Department of Molecular Medicine–Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Kathrin Weyer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rikke Zachar
- Department of Molecular Medicine–Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Jan Erik Henriksen
- Steno Diabetes Center Odense, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kirsten Madsen
- Department of Molecular Medicine–Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Ida K. Lund
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Géraldine Mollet
- Laboratory of Hereditary Kidney Diseases, Inserm UMR1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Claus Bistrup
- Department of Nephrology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Henrik Birn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Boye L. Jensen
- Department of Molecular Medicine–Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Yaseelan Palarasah
- Department of Molecular Medicine–Cancer and Inflammation, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
20
|
Wang X, Gong Q, Nie H, Tu J, Fan W, Tan X. High level of C3 is associated with Th2 immune response and liver fibrosis in patients with schistosomiasis. Parasite Immunol 2024; 46:e13029. [PMID: 38465509 DOI: 10.1111/pim.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/10/2024] [Accepted: 02/05/2024] [Indexed: 03/12/2024]
Abstract
Long-term infection of schistosomiasis will seriously affect the liver health of patients. The serum of 334 chronic Schistosoma japonicum patients and 149 healthy volunteers was collected. Compared with heathy people, the level of C4 (complement 4) was increased, and the level of C3 (complement 3) was in an obvious skewed distribution. ELISA was performed to detect the serum cytokines, the results showed that the levels of IFN-γ (interferon-γ), IL (interleukin)-2 and TNF-α (tumour necrosis factor-α) were reduced, while the levels of Th2 cytokines (IL-4, IL-6 and IL-10) were increased. In the serum of patients with high C3, the secretion of HA (hyaluronic acid), LN (laminin), IV-C (type IV collagen) and PCIII (type III procollagen) were increased, the activation of hepatic stellate cells was promoted. Exogenous human recombinant C3 made mice liver structure of the mice damaged and collagen deposition. IFN-γ and IFN-γ/IL-4 were decreased, while HA, LN, PCIII and IV-C were increased, and the expressions of α-SMA and TGF-β1 in liver tissues were up-regulated. However, the addition of IFN-γ partially reversed the effect of C3 on promoting fibrosis. High level of C3 is associated with Th2 immune response and liver fibrosis in patients with schistosomiasis.
Collapse
Affiliation(s)
- Xianmo Wang
- Clinical Laboratory, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei Province, China
| | - Quan Gong
- Yangtze University, Jingzhou, Hubei Province, China
| | - Hao Nie
- Yangtze University, Jingzhou, Hubei Province, China
| | - Jiancheng Tu
- Clinical Laboratory, The Second Clinical College of Wuhan University, Wuhan, Hubei province, China
| | - Wen Fan
- Clinical Laboratory, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei Province, China
| | - Xiaoping Tan
- Gastroenterology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei Province, China
| |
Collapse
|
21
|
Heggli I, Teixeira GQ, Iatridis JC, Neidlinger‐Wilke C, Dudli S. The role of the complement system in disc degeneration and Modic changes. JOR Spine 2024; 7:e1312. [PMID: 38312949 PMCID: PMC10835744 DOI: 10.1002/jsp2.1312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
Disc degeneration and vertebral endplate bone marrow lesions called Modic changes are prevalent spinal pathologies found in chronic low back pain patients. Their pathomechanisms are complex and not fully understood. Recent studies have revealed that complement system proteins and interactors are dysregulated in disc degeneration and Modic changes. The complement system is part of the innate immune system and plays a critical role in tissue homeostasis. However, its dysregulation has also been associated with various pathological conditions such as rheumatoid arthritis and osteoarthritis. Here, we review the evidence for the involvement of the complement system in intervertebral disc degeneration and Modic changes. We found that only a handful of studies reported on complement factors in Modic changes and disc degeneration. Therefore, the level of evidence for the involvement of the complement system is currently low. Nevertheless, the complement system is tightly intertwined with processes known to occur during disc degeneration and Modic changes, such as increased cell death, autoantibody production, bacterial defense processes, neutrophil activation, and osteoclast formation, indicating a contribution of the complement system to these spinal pathologies. Based on these mechanisms, we propose a model how the complement system could contribute to the vicious cycle of tissue damage and chronic inflammation in disc degeneration and Modic changes. With this review, we aim to highlight a currently understudied but potentially important inflammatory pathomechanism of disc degeneration and Modic changes that may be a novel therapeutic target.
Collapse
Affiliation(s)
- Irina Heggli
- Center of Experimental Rheumatology, Department of RheumatologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland
- Department of Physical Medicine and RheumatologyBalgrist University Hospital, Balgrist Campus, University of ZurichZurichSwitzerland
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Graciosa Q. Teixeira
- Institute of Orthopedic Research and Biomechanics, Trauma Research Centre, Ulm UniversityUlmGermany
| | - James C. Iatridis
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Stefan Dudli
- Center of Experimental Rheumatology, Department of RheumatologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland
- Department of Physical Medicine and RheumatologyBalgrist University Hospital, Balgrist Campus, University of ZurichZurichSwitzerland
| |
Collapse
|
22
|
Mastellos DC, Hajishengallis G, Lambris JD. A guide to complement biology, pathology and therapeutic opportunity. Nat Rev Immunol 2024; 24:118-141. [PMID: 37670180 DOI: 10.1038/s41577-023-00926-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 09/07/2023]
Abstract
Complement has long been considered a key innate immune effector system that mediates host defence and tissue homeostasis. Yet, growing evidence has illuminated a broader involvement of complement in fundamental biological processes extending far beyond its traditional realm in innate immunity. Complement engages in intricate crosstalk with multiple pattern-recognition and signalling pathways both in the extracellular and intracellular space. Besides modulating host-pathogen interactions, this crosstalk guides early developmental processes and distinct cell trajectories, shaping tissue immunometabolic and regenerative programmes in different physiological systems. This Review provides a guide to the system-wide functions of complement. It highlights illustrative paradigm shifts that have reshaped our understanding of complement pathobiology, drawing examples from evolution, development of the central nervous system, tissue regeneration and cancer immunity. Despite its tight spatiotemporal regulation, complement activation can be derailed, fuelling inflammatory tissue pathology. The pervasive contribution of complement to disease pathophysiology has inspired a resurgence of complement therapeutics with major clinical developments, some of which have challenged long-held dogmas. We thus highlight major therapeutic concepts and milestones in clinical complement intervention.
Collapse
Affiliation(s)
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Zhang Y, Martin B, Spies MA, Roberts SM, Nott J, Goodfellow RX, Nelson AFM, Blain SJ, Redondo E, Nester CM, Smith RJH. Renin and renin blockade have no role in complement activity. Kidney Int 2024; 105:328-337. [PMID: 38008161 PMCID: PMC10872535 DOI: 10.1016/j.kint.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/28/2023]
Abstract
Renin, an aspartate protease, regulates the renin-angiotensin system by cleaving its only known substrate angiotensinogen to angiotensin. Recent studies have suggested that renin may also cleave complement component C3 to activate complement or contribute to its dysregulation. Typically, C3 is cleaved by C3 convertase, a serine protease that uses the hydroxyl group of a serine residue as a nucleophile. Here, we provide seven lines of evidence to show that renin does not cleave C3. First, there is no association between renin plasma levels and C3 levels in patients with C3 Glomerulopathies (C3G) and atypical Hemolytic Uremic Syndrome (aHUS), implying that serum C3 consumption is not increased in the presence of high renin. Second, in vitro tests of C3 conversion to C3b do not detect differences when sera from patients with high renin levels are compared to sera from patients with normal/low renin levels. Third, aliskiren, a renin inhibitor, does not block abnormal complement activity introduced by nephritic factors in the fluid phase. Fourth, aliskiren does not block dysregulated complement activity on cell surfaces. Fifth, recombinant renin from different sources does not cleave C3 even after 24 hours of incubation at 37 °C. Sixth, direct spiking of recombinant renin into sera samples of patients with C3G and aHUS does not enhance complement activity in either the fluid phase or on cell surfaces. And seventh, molecular modeling and docking place C3 in the active site of renin in a position that is not consistent with a productive ground state complex for catalytic hydrolysis. Thus, our study does not support a role for renin in the activation of complement.
Collapse
Affiliation(s)
- Yuzhou Zhang
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Bertha Martin
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - M Ashley Spies
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; Departments of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, USA
| | - Sarah M Roberts
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Joel Nott
- Protein Facility, Office of Biotechnology, Iowa State University, Ames, Iowa, USA
| | - Renee X Goodfellow
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Angela F M Nelson
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Samantha J Blain
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Elena Redondo
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Carla M Nester
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
24
|
Heurich M, McCluskey G. Complement and coagulation crosstalk - Factor H in the spotlight. Immunobiology 2023; 228:152707. [PMID: 37633063 DOI: 10.1016/j.imbio.2023.152707] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 08/28/2023]
Abstract
The immune complement and the coagulation systems are blood-based proteolytic cascades that are activated by pathway-specific triggers, based on protein-protein interactions and enzymatic cleavage reactions. Activation of these systems is finely balanced and controlled through specific regulatory mechanisms. The complement and coagulation systems are generally viewed as distinct, but have common evolutionary origins, and several interactions between these homologous systems have been reported. This complement and coagulation crosstalk can affect activation, amplification and regulatory functions in both systems. In this review, we summarize the literature on coagulation factors contributing to complement alternative pathway activation and regulation and highlight molecular interactions of the complement alternative pathway regulator factor H with several coagulation factors. We propose a mechanism where factor H interactions with coagulation factors may contribute to both complement and coagulation activation and regulation within the haemostatic system and fibrin clot microenvironment and introduce the emerging role of factor H as a modulator of coagulation. Finally, we discuss the potential impact of these protein interactions in diseases associated with factor H dysregulation or deficiency as well as evidence of coagulation dysfunction.
Collapse
Affiliation(s)
- Meike Heurich
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, United Kingdom.
| | - Geneviève McCluskey
- Université Paris-Saclay, INSERM, Hémostase, Inflammation, Thrombose HITH U1176, 94276 Le Kremlin-Bicêtre, France
| |
Collapse
|
25
|
Zhou L, Chai JH, Zhang Y, Jing XJ, Kong XW, Liang J, Xia YG. TMT-Based Proteomics Reveal the Mechanism of Action of Amygdalin against Rheumatoid Arthritis in a Rat Model through Regulation of Complement and Coagulation Cascades. Molecules 2023; 28:7126. [PMID: 37894605 PMCID: PMC10609517 DOI: 10.3390/molecules28207126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The limitations of current medications for treating rheumatoid arthritis (RA) emphasize the urgent need for the development of new drugs. This study aimed to investigate the potential anti-RA mechanism of amygdalin using tandem mass tag (TMT)-based quantitative proteomics technology. First, the anti-RA activity of amygdalin was evaluated in a Complete Freund's adjuvant (CFA)-induced rat model. Then, the roles and importance of proteins in the extracted rat joint tissue were evaluated using TMT-based quantitative proteomics technology. A bioinformatics analysis was used to analyze differentially abundant proteins (DAPs). A proteomics analysis identified 297 DAPs in the amygdalin group compared with the model group, of which 53 upregulated proteins and 51 downregulated proteins showed opposite regulatory trends to the DAPs produced after modeling. According to enrichment analyses of the DAPs, the signaling pathways with a high correlation degree were determined to be the complement and coagulation cascades. Furthermore, western blotting and molecular docking were used to further validate the key node proteins, e.g., complement C1s subcomponent (C1s), component C3 (C3) and kininogen 1 (Kng1). These results suggest that amygdalin may be a promising agent for treating RA by regulating the complement and coagulation cascades.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, 24 Heping Road, Harbin 150040, China
| |
Collapse
|
26
|
Motta G, Juliano L, Chagas JR. Human plasma kallikrein: roles in coagulation, fibrinolysis, inflammation pathways, and beyond. Front Physiol 2023; 14:1188816. [PMID: 37711466 PMCID: PMC10499198 DOI: 10.3389/fphys.2023.1188816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
Human plasma kallikrein (PKa) is obtained by activating its precursor, prekallikrein (PK), historically named the Fletcher factor. Human PKa and tissue kallikreins are serine proteases from the same family, having high- and low-molecular weight kininogens (HKs and LKs) as substrates, releasing bradykinin (Bk) and Lys-bradykinin (Lys-Bk), respectively. This review presents a brief history of human PKa with details and recent observations of its evolution among the vertebrate coagulation proteins, including the relations with Factor XI. We explored the role of Factor XII in activating the plasma kallikrein-kinin system (KKS), the mechanism of activity and control in the KKS, and the function of HK on contact activation proteins on cell membranes. The role of human PKa in cell biology regarding the contact system and KSS, particularly the endothelial cells, and neutrophils, in inflammatory processes and infectious diseases, was also approached. We examined the natural plasma protein inhibitors, including a detailed survey of human PKa inhibitors' development and their potential market.
Collapse
Affiliation(s)
- Guacyara Motta
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luiz Juliano
- Departamento de Biofisica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jair Ribeiro Chagas
- Departamento de Biofisica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Rankawat S, Kundal K, Chakraborty S, Kumar R, Ray S. A comprehensive rhythmicity analysis of host proteins and immune factors involved in malaria pathogenesis to decipher the importance of host circadian clock in malaria. Front Immunol 2023; 14:1210299. [PMID: 37638001 PMCID: PMC10449258 DOI: 10.3389/fimmu.2023.1210299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Background Circadian rhythms broadly impact human health by regulating our daily physiological and metabolic processes. The circadian clocks substantially regulate our immune responses and susceptibility to infections. Malaria parasites have intrinsic molecular oscillations and coordinate their infection cycle with host rhythms. Considering the cyclical nature of malaria, a clear understanding of the circadian regulations in malaria pathogenesis and host responses is of immense importance. Methods We have thoroughly investigated the transcript level rhythmic patterns in blood proteins altered in falciparum and vivax malaria and malaria-related immune factors in mice, baboons, and humans by analyzing datasets from published literature and comprehensive databases. Using the Metascape and DAVID platforms, we analyzed Gene Ontology terms and physiological pathways associated with the rhythmic malaria-associated host immune factors. Results We observed that almost 50% of the malaria-associated host immune factors are rhythmic in mice and humans. Overlapping rhythmic genes identified in mice, baboons, and humans, exhibited enrichment (Q < 0.05, fold-enrichment > 5) of multiple physiological pathways essential for host immune and defense response, including cytokine production, leukocyte activation, cellular defense, and response, regulation of kinase activity, B-cell receptor signaling pathway, and cellular response to cytokine stimulus. Conclusions Our analysis indicates a robust circadian regulation on multiple interconnected host response pathways and immunological networks in malaria, evident from numerous rhythmic genes involved in those pathways. Host immune rhythms play a vital role in the temporal regulation of host-parasite interactions and defense machinery in malaria.
Collapse
Affiliation(s)
| | | | | | | | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| |
Collapse
|
28
|
Shu Y, Zhao X, Yang C, Yan Y, Zheng Y, Wang X, Qiu C. Circulating prekallikrein levels are correlated with lipid levels in the chinese population: a cross-sectional study. Lipids Health Dis 2023; 22:79. [PMID: 37353816 DOI: 10.1186/s12944-023-01849-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Recent evidence has revealed that circulating coagulation factor prekallikrein (PK), an important part of the kallikrein-kinin system, regulates cholesterol metabolism, but the association between serum PK and lipid levels is unclear. METHODS This cross-sectional study included 256 subjects (aged from 1 month to 90 years) who underwent physical examinations at the First People's Hospital of Huaihua, China. After overnight fasting, serum was collected for PK and lipid testing. Spearman correlation analysis and multivariable logistic regression analysis were used to analyze the association of PK level with lipid levels and the likelihood risk of hyperlipidemia. The possible threshold value of PK was calculated according to the receiver operating characteristic (ROC) curve. RESULTS The median serum PK level was 280.9 µg/mL (IQR 168.0, 377.0), and this level changed with age but not sex. The serum PK level was positively correlated with the serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) levels. A nonlinear relationship was observed between serum PK and high-density lipoprotein cholesterol (HDL-C) levels. The serum PK level was positively correlated with HDL-C when its level was lower than 240 µg/mL and negatively correlated with HDL-C when its level was higher than 240 µg/mL. The regression analysis demonstrated that an elevated serum PK level was significantly associated with the likelihood risk of hypercholesterolemia and hypertriglyceridemia. The ROC curve showed that the possible threshold values of serum PK for hypercholesterolemia and hypertriglyceridemia occurrences were 344.9 µg/mL and 305.7 µg/mL, respectively. CONCLUSIONS Elevated serum PK levels were significantly associated with the likelihood of hypercholesterolemia and hypertriglyceridemia, and the possible threshold values of PK levels were 344.9 µg/mL and 305.70 µg/mL, respectively, suggesting that higher PK levels may be a risk factor for cardiovascular diseases.
Collapse
Affiliation(s)
- Yuanlu Shu
- Evidence-based Medicine and Clinical Center, The First People's Hospital of Huaihua, Huaihua, 418000, P.R. China
| | - Xiang Zhao
- Department of General Practice, The First People's Hospital of Huaihua, Huaihua, 418000, P.R. China
| | - Changshun Yang
- Department of Laboratory Medicine, The First People's Hospital of Huaihua, Huaihua, 418000, P.R. China
| | - Yan Yan
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, 418000, P.R. China
| | - Yao Zheng
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, P.R. China
| | - Xijie Wang
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, P.R. China
| | - Chengfeng Qiu
- Evidence-based Medicine and Clinical Center, The First People's Hospital of Huaihua, Huaihua, 418000, P.R. China.
- Department of Clinical Pharmacy, The First People's Hospital of Huaihua, Huaihua, 418000, P.R. China.
- School of Basic Medical Sciences, University of South China, Hengyang, 421000, P.R. China.
| |
Collapse
|
29
|
Tzoumas N, Riding G, Williams MA, Steel DH. Complement inhibitors for age-related macular degeneration. Cochrane Database Syst Rev 2023; 6:CD009300. [PMID: 37314061 PMCID: PMC10266126 DOI: 10.1002/14651858.cd009300.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a common eye disease and leading cause of sight loss worldwide. Despite its high prevalence and increasing incidence as populations age, AMD remains incurable and there are no treatments for most patients. Mounting genetic and molecular evidence implicates complement system overactivity as a key driver of AMD development and progression. The last decade has seen the development of several novel therapeutics targeting complement in the eye for the treatment of AMD. This review update encompasses the results of the first randomised controlled trials in this field. OBJECTIVES To assess the effects and safety of complement inhibitors in the prevention or treatment of AMD. SEARCH METHODS We searched CENTRAL on the Cochrane Library, MEDLINE, Embase, LILACS, Web of Science, ISRCTN registry, ClinicalTrials.gov, and the WHO ICTRP to 29 June 2022 with no language restrictions. We also contacted companies running clinical trials for unpublished data. SELECTION CRITERIA We included randomised controlled trials (RCTs) with parallel groups and comparator arms that studied complement inhibition for advanced AMD prevention/treatment. DATA COLLECTION AND ANALYSIS Two authors independently assessed search results and resolved discrepancies through discussion. Outcome measures evaluated at one year included change in best-corrected visual acuity (BCVA), untransformed and square root-transformed geographic atrophy (GA) lesion size progression, development of macular neovascularisation (MNV) or exudative AMD, development of endophthalmitis, loss of ≥ 15 letters of BCVA, change in low luminance visual acuity, and change in quality of life. We assessed risk of bias and evidence certainty using Cochrane risk of bias and GRADE tools. MAIN RESULTS Ten RCTs with 4052 participants and eyes with GA were included. Nine evaluated intravitreal (IVT) administrations against sham, and one investigated an intravenous agent against placebo. Seven studies excluded patients with prior MNV in the non-study eye, whereas the three pegcetacoplan studies did not. The risk of bias in the included studies was low overall. We also synthesised results of two intravitreal agents (lampalizumab, pegcetacoplan) at monthly and every-other-month (EOM) dosing intervals. Efficacy and safety of IVT lampalizumab versus sham for GA For 1932 participants in three studies, lampalizumab did not meaningfully change BCVA given monthly (+1.03 letters, 95% confidence interval (CI) -0.19 to 2.25) or EOM (+0.22 letters, 95% CI -1.00 to 1.44) (high-certainty evidence). For 1920 participants, lampalizumab did not meaningfully change GA lesion growth given monthly (+0.07 mm², 95% CI -0.09 to 0.23; moderate-certainty due to imprecision) or EOM (+0.07 mm², 95% CI -0.05 to 0.19; high-certainty). For 2000 participants, lampalizumab may have also increased MNV risk given monthly (RR 1.77, 95% CI 0.73 to 4.30) and EOM (RR 1.70, 95% CI 0.67 to 4.28), based on low-certainty evidence. The incidence of endophthalmitis in patients treated with monthly and EOM lampalizumab was 4 per 1000 (0 to 87) and 3 per 1000 (0 to 62), respectively, based on moderate-certainty evidence. Efficacy and safety of IVT pegcetacoplan versus sham for GA For 242 participants in one study, pegcetacoplan probably did not meaningfully change BCVA given monthly (+1.05 letters, 95% CI -2.71 to 4.81) or EOM (-1.42 letters, 95% CI -5.25 to 2.41), as supported by moderate-certainty evidence. In contrast, for 1208 participants across three studies, pegcetacoplan meaningfully reduced GA lesion growth when given monthly (-0.38 mm², 95% CI -0.57 to -0.19) and EOM (-0.29 mm², 95% CI -0.44 to -0.13), with high certainty. These reductions correspond to 19.2% and 14.8% versus sham, respectively. A post hoc analysis showed possibly greater benefits in 446 participants with extrafoveal GA given monthly (-0.67 mm², 95% CI -0.98 to -0.36) and EOM (-0.60 mm², 95% CI -0.91 to -0.30), representing 26.1% and 23.3% reductions, respectively. However, we did not have data on subfoveal GA growth to undertake a formal subgroup analysis. In 1502 participants, there is low-certainty evidence that pegcetacoplan may have increased MNV risk when given monthly (RR 4.47, 95% CI 0.41 to 48.98) or EOM (RR 2.29, 95% CI 0.46 to 11.35). The incidence of endophthalmitis in patients treated with monthly and EOM pegcetacoplan was 6 per 1000 (1 to 53) and 8 per 1000 (1 to 70) respectively, based on moderate-certainty evidence. Efficacy and safety of IVT avacincaptad pegol versus sham for GA In a study of 260 participants with extrafoveal or juxtafoveal GA, monthly avacincaptad pegol probably did not result in a clinically meaningful change in BCVA at 2 mg (+1.39 letters, 95% CI -5.89 to 8.67) or 4 mg (-0.28 letters, 95% CI -8.74 to 8.18), based on moderate-certainty evidence. Despite this, the drug was still found to have probably reduced GA lesion growth, with estimates of 30.5% reduction at 2 mg (-0.70 mm², 95% CI -1.99 to 0.59) and 25.6% reduction at 4 mg (-0.71 mm², 95% CI -1.92 to 0.51), based on moderate-certainty evidence. Avacincaptad pegol may have also increased the risk of developing MNV (RR 3.13, 95% CI 0.93 to 10.55), although this evidence is of low certainty. There were no cases of endophthalmitis reported in this study. AUTHORS' CONCLUSIONS Despite confirmation of the negative findings of intravitreal lampalizumab across all endpoints, local complement inhibition with intravitreal pegcetacoplan meaningfully reduces GA lesion growth relative to sham at one year. Inhibition of complement C5 with intravitreal avacincaptad pegol is also an emerging therapy with probable benefits on anatomical endpoints in the extrafoveal or juxtafoveal GA population. However, there is currently no evidence that complement inhibition with any agent improves functional endpoints in advanced AMD; further results from the phase 3 studies of pegcetacoplan and avacincaptad pegol are eagerly awaited. Progression to MNV or exudative AMD is a possible emergent adverse event of complement inhibition, requiring careful consideration should these agents be used clinically. Intravitreal administration of complement inhibitors is probably associated with a small risk of endophthalmitis, which may be higher than that of other intravitreal therapies. Further research is likely to have an important impact on our confidence in the estimates of adverse effects and may change these. The optimal dosing regimens, treatment duration, and cost-effectiveness of such therapies are yet to be established.
Collapse
Affiliation(s)
- Nikolaos Tzoumas
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Sunderland Eye Infirmary, Sunderland, UK
| | - George Riding
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
- North Middlesex University Hospital NHS Trust, London, UK
| | - Michael A Williams
- School of Medicine, Dentistry and Biomedical Science, Queen's University of Belfast, Belfast, UK
| | - David Hw Steel
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Sunderland Eye Infirmary, Sunderland, UK
| |
Collapse
|
30
|
Ghosh M, Rana S. The anaphylatoxin C5a: Structure, function, signaling, physiology, disease, and therapeutics. Int Immunopharmacol 2023; 118:110081. [PMID: 36989901 DOI: 10.1016/j.intimp.2023.110081] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
The complement system is one of the oldest known tightly regulated host defense systems evolved for efficiently functioning cell-based immune systems and antibodies. Essentially, the complement system acts as a pivot between the innate and adaptive arms of the immune system. The complement system collectively represents a cocktail of ∼50 cell-bound/soluble glycoproteins directly involved in controlling infection and inflammation. Activation of the complement cascade generates complement fragments like C3a, C4a, and C5a as anaphylatoxins. C5a is the most potent proinflammatory anaphylatoxin, which is involved in inflammatory signaling in a myriad of tissues. This review provides a comprehensive overview of human C5a in the context of its structure and signaling under several pathophysiological conditions, including the current and future therapeutic applications targeting C5a.
Collapse
Affiliation(s)
- Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
31
|
Tweddell JS, Kharnaf M, Zafar F, Riggs KW, Reagor JA, Monia BP, Revenko A, Leino DG, Owens AP, Martin JK, Gourley B, Rosenfeldt L, Palumbo JS. Targeting the contact system in a rabbit model of extracorporeal membrane oxygenation. Blood Adv 2023; 7:1404-1417. [PMID: 36240297 PMCID: PMC10139951 DOI: 10.1182/bloodadvances.2022007586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
Abstract
Previous studies suggested that contact pathway factors drive thrombosis in mechanical circulation. We used a rabbit model of veno-arterial extracorporeal circulation (VA-ECMO) to evaluate the role of factors XI and XII in ECMO-associated thrombosis and organ damage. Factors XI and XII (FXI, FXII) were depleted using established antisense oligonucleotides before placement on a blood-primed VA-ECMO circuit. Decreasing FXII or FXI to < 5% of baseline activity significantly prolonged ECMO circuit lifespan, limited the development of coagulopathy, and prevented fibrinogen consumption. Histological analysis suggested that FXII depletion mitigated interstitial pulmonary edema and hemorrhage whereas heparin and FXI depletion did not. Neither FXI nor FXII depletion was associated with significant hemorrhage in other organs. In vitro analysis showed that membrane oxygenator fibers (MOFs) alone are capable of driving significant thrombin generation in a FXII- and FXI-dependent manner. MOFs also augment thrombin generation triggered by low (1 pM) or high (5 pM) tissue factor concentrations. However, only FXI elimination completely prevented the increase in thrombin generation driven by MOFs, suggesting MOFs augment thrombin-mediated FXI activation. Together, these results suggest that therapies targeting FXII or FXI limit thromboembolic complications associated with ECMO. Further studies are needed to determine the contexts wherein targeting FXI and FXII, either alone or in combination, would be most beneficial in ECMO. Moreover, studies are also needed to determine the potential mechanisms coupling FXII to end-organ damage in ECMO.
Collapse
Affiliation(s)
- James S. Tweddell
- The Heart Institute, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH
| | - Mousa Kharnaf
- The Heart Institute, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH
| | - Farhan Zafar
- The Heart Institute, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH
| | - Kyle W. Riggs
- The Heart Institute, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH
| | - James A. Reagor
- The Heart Institute, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH
| | | | | | - Daniel G. Leino
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH
| | - A. Phillip Owens
- Department of Internal Medicine, The University of Cincinnati College of Medicine, Cincinnati, OH
| | - Janine K. Martin
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH
| | - Benjamin Gourley
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH
| | - Leah Rosenfeldt
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH
| | - Joseph S. Palumbo
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
32
|
Moghimi SM, Haroon HB, Yaghmur A, Hunter AC, Papini E, Farhangrazi ZS, Simberg D, Trohopoulos PN. Perspectives on complement and phagocytic cell responses to nanoparticles: From fundamentals to adverse reactions. J Control Release 2023; 356:115-129. [PMID: 36841287 PMCID: PMC11000211 DOI: 10.1016/j.jconrel.2023.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023]
Abstract
The complement system, professional phagocytes and other cells such as Natural killer cells and mast cells are among the important components of the innate arm of the immune system. These constituents provide an orchestrated array of defences and responses against tissue injury and foreign particles, including nanopharmaceuticals. While interception of nanopharmaceuticals by the immune system is beneficial for immunomodulation and treatment of phagocytic cell disorders, it is imperative to understand the multifaceted mechanisms by which nanopharmaceuticals interacts with the immune system and evaluate the subsequent balance of beneficial versus adverse reactions. An example of the latter is adverse infusion reactions to regulatory-approved nanopharmaceuticals seen in human subjects. Here, we discuss collective opinions and findings from our laboratories in mapping nanoparticle-mediated complement and leucocyte/macrophage responses.
Collapse
Affiliation(s)
- S Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| | - Hajira B Haroon
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - A Christy Hunter
- School of Pharmacy, College of Science, University of Lincoln, Lincoln LN6 7TS, UK
| | - Emanuele Papini
- Department of Biomedical Sciences, University of Padua, Padua 35121, Italy
| | - Z Shadi Farhangrazi
- S. M. Discovery Group Inc., Centennial, CO, USA; S. M. Discovery Group Ltd., Durham, UK
| | - Dmitri Simberg
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, CO, USA; Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | | |
Collapse
|
33
|
Coliță CI, Olaru DG, Coliță D, Hermann DM, Coliță E, Glavan D, Popa-Wagner A. Induced Coma, Death, and Organ Transplantation: A Physiologic, Genetic, and Theological Perspective. Int J Mol Sci 2023; 24:ijms24065744. [PMID: 36982814 PMCID: PMC10059721 DOI: 10.3390/ijms24065744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
In the clinic, the death certificate is issued if brain electrical activity is no longer detectable. However, recent research has shown that in model organisms and humans, gene activity continues for at least 96 h postmortem. The discovery that many genes are still working up to 48 h after death questions our definition of death and has implications for organ transplants and forensics. If genes can be active up to 48 h after death, is the person technically still alive at that point? We discovered a very interesting parallel between genes that were upregulated in the brain after death and genes upregulated in the brains that were subjected to medically-induced coma, including transcripts involved in neurotransmission, proteasomal degradation, apoptosis, inflammation, and most interestingly, cancer. Since these genes are involved in cellular proliferation, their activation after death could represent the cellular reaction to escape mortality and raises the question of organ viability and genetics used for transplantation after death. One factor limiting the organ availability for transplantation is religious belief. However, more recently, organ donation for the benefit of humans in need has been seen as “posthumous giving of organs and tissues can be a manifestation of love spreading also to the other side of death”.
Collapse
Affiliation(s)
- Cezar-Ivan Coliță
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 020276 Bucharest, Romania; (C.-I.C.)
| | - Denissa-Greta Olaru
- Department of Psychiatry, University for Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
| | - Daniela Coliță
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 020276 Bucharest, Romania; (C.-I.C.)
| | - Dirk M. Hermann
- Chair of Vascular Neurology, Dementia and Ageing, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
| | - Eugen Coliță
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 020276 Bucharest, Romania; (C.-I.C.)
| | - Daniela Glavan
- Department of Psychiatry, University for Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
- Correspondence: (D.G.); (A.P.-W.)
| | - Aurel Popa-Wagner
- Department of Psychiatry, University for Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
- Chair of Vascular Neurology, Dementia and Ageing, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
- Correspondence: (D.G.); (A.P.-W.)
| |
Collapse
|
34
|
Isaksson GL, Nielsen LH, Palarasah Y, Jensen DM, Andersen LLT, Madsen K, Bistrup C, Jørgensen JS, Ovesen PG, Jensen BL. Urine excretion of C3dg and sC5b-9 coincide with proteinuria and development of preeclampsia in pregnant women with type-1 diabetes. J Hypertens 2023; 41:223-232. [PMID: 36583350 DOI: 10.1097/hjh.0000000000003288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Pregnant women with type-1 diabetes have an increased risk of preeclampsia with kidney injury and cardiovascular complications. Urine excretion of plasmin and soluble membrane attack complex (sC5b-9) is elevated in severe preeclampsia. We hypothesized a coupling between these events and that active plasmin promotes intratubular complement activation and membrane deposition. METHODS Stored urine and plasma samples from pregnant women with type-1 diabetes (n = 88) collected at gestational weeks 12, 20, 28, 32, 36 and 38 were used. In the cohort, 14 women developed preeclampsia and were compared with 16 nonpreeclampsia controls. RESULTS Urine C3dg and sC5b-9-associated C9 neoantigen/creatinine ratios increased and were significantly higher in women who developed preeclampsia. Plasma concentrations did not change with gestation. Urine plasmin(ogen) correlated to urine C3dg (r = 0.51, P < 0.001) and C9 neoantigen (r = 0.68, P < 0.001); urine albumin correlated to C3dg (r = 0.44, P < 0.001) and C9 (r = 0.59, P < 0.001). Membrane-associated C3dg and C9 neoantigen was detected in urinary extracellular vesicles from patients but not controls at 36 weeks. Receiver operating characteristic curves showed that C3dg and C9 neoantigen were inferior to albumin as predictive biomarkers for preeclampsia. CONCLUSION In preeclampsia, urinary excretion of activated complement relates significantly to albuminuria and to plasmin(ogen) but not to activation in plasma. Intratubular complement activation in preeclampsia is a postfiltration event tightly related to proteinuria/plasminogenuria and a possible mechanistic link to cellular damage and kidney injury.
Collapse
Affiliation(s)
- Gustaf L Isaksson
- Department of Nephrology, Odense University Hospital, Odense
- Department of Molecular Medicine - Cardiovascular and Renal Research, University of Southern Denmark
| | - Lise H Nielsen
- Department of Clinical Medicine - Obstetrics and Gynecology, Aarhus University, Aarhus
| | - Yaseelan Palarasah
- Department of Molecular Medicine - Cancer and Inflammation, University of Southern Denmark
| | - Dorte M Jensen
- Steno Diabetes Center Odense, Odense University Hospital
- Department of Clinical Research, University of Southern Denmark
| | - Lise L T Andersen
- Department of Clinical Research, University of Southern Denmark
- Department of Obstetrics and Gynecology, Odense University Hospital
| | - Kirsten Madsen
- Department of Molecular Medicine - Cardiovascular and Renal Research, University of Southern Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Claus Bistrup
- Department of Nephrology, Odense University Hospital, Odense
- Department of Clinical Research, University of Southern Denmark
| | - Jan S Jørgensen
- Department of Clinical Research, University of Southern Denmark
- Department of Obstetrics and Gynecology, Odense University Hospital
| | - Per G Ovesen
- Department of Clinical Medicine - Obstetrics and Gynecology, Aarhus University, Aarhus
| | - Boye L Jensen
- Department of Molecular Medicine - Cardiovascular and Renal Research, University of Southern Denmark
| |
Collapse
|
35
|
Thurman JM, Harrison RA. The susceptibility of the kidney to alternative pathway activation-A hypothesis. Immunol Rev 2023; 313:327-338. [PMID: 36369971 DOI: 10.1111/imr.13168] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The glomerulus is often the prime target of dysregulated alternative pathway (AP) activation. In particular, AP activation is the key driver of two severe kidney diseases: atypical hemolytic uremic syndrome and C3 glomerulopathy. Both conditions are associated with a variety of predisposing molecular defects in AP regulation, such as genetic variants in complement regulators, autoantibodies targeting AP proteins, or autoantibodies that stabilize the AP convertases (C3- and C5-activating enzymes). It is noteworthy that these are systemic AP defects, yet in both diseases pathologic complement activation primarily affects the kidneys. In particular, AP activation is often limited to the glomerular capillaries. This tropism of AP-mediated inflammation for the glomerulus points to a unique interaction between AP proteins in plasma and this particular anatomic structure. In this review, we discuss the pre-clinical and clinical data linking the molecular causes of aberrant control of the AP with activation in the glomerulus, and the possible causes of this tropism. Based on these data, we propose a model for why the kidney is so uniquely and frequently targeted in patients with AP defects. Finally, we discuss possible strategies for preventing pathologic AP activation in the kidney.
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | | |
Collapse
|
36
|
Schubart A, Flohr S, Junt T, Eder J. Low-molecular weight inhibitors of the alternative complement pathway. Immunol Rev 2023; 313:339-357. [PMID: 36217774 PMCID: PMC10092480 DOI: 10.1111/imr.13143] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dysregulation of the alternative complement pathway predisposes individuals to a number of diseases. It can either be evoked by genetic alterations in or by stabilizing antibodies to important pathway components and typically leads to severe diseases such as paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, C3 glomerulopathy, and age-related macular degeneration. In addition, the alternative pathway may also be involved in many other diseases where its amplifying function for all complement pathways might play a role. To identify specific alternative pathway inhibitors that qualify as therapeutics for these diseases, drug discovery efforts have focused on the two central proteases of the pathway, factor B and factor D. Although drug discovery has been challenging for a number of reasons, potent and selective low-molecular weight (LMW) oral inhibitors have now been discovered for both proteases and several molecules are in clinical development for multiple complement-mediated diseases. While the clinical development of these inhibitors initially focuses on diseases with systemic and/or peripheral tissue complement activation, the availability of LMW inhibitors may also open up the prospect of inhibiting complement in the central nervous system where its activation may also play an important role in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Schubart
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stefanie Flohr
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Tobias Junt
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jörg Eder
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
37
|
Abstract
Hemolysis is a problem associated with a variety of red cell pathologies and physiologies not limited to the transfusion of cells. Various pathways lead to the observed outcomes when a hemolytic event occurs. Each event, and the pathway it follows, is based on characteristics of the red cell, the location in which the hemolysis occurs, and the interaction of the immune system. The severity of an event can be predicted with the knowledge of how these 3 factors interface. Although not all hemolytic events are alike, similarities may exist when the pathways overlap.
Collapse
|
38
|
Boada P, Fatou B, Belperron AA, Sigdel TK, Smolen KK, Wurie Z, Levy O, Ronca SE, Murray KO, Liberto JM, Rashmi P, Kerwin M, Montgomery RR, Bockenstedt LK, Steen H, Sarwal MM. Longitudinal serum proteomics analyses identify unique and overlapping host response pathways in Lyme disease and West Nile virus infection. Front Immunol 2022; 13:1012824. [PMID: 36569838 PMCID: PMC9784464 DOI: 10.3389/fimmu.2022.1012824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022] Open
Abstract
Advancement in proteomics methods for interrogating biological samples has helped identify disease biomarkers for early diagnostics and unravel underlying molecular mechanisms of disease. Herein, we examined the serum proteomes of 23 study participants presenting with one of two common arthropod-borne infections: Lyme disease (LD), an extracellular bacterial infection or West Nile virus infection (WNV), an intracellular viral infection. The LC/MS based serum proteomes of samples collected at the time of diagnosis and during convalescence were assessed using a depletion-based high-throughput shotgun proteomics (dHSP) pipeline as well as a non-depleting blotting-based low-throughput platform (MStern). The LC/MS integrated analyses identified host proteome responses in the acute and recovery phases shared by LD and WNV infections, as well as differentially abundant proteins that were unique to each infection. Notably, we also detected proteins that distinguished localized from disseminated LD and asymptomatic from symptomatic WNV infection. The proteins detected in both diseases with the dHSP pipeline identified unique and overlapping proteins detected with the non-depleting MStern platform, supporting the utility of both detection methods. Machine learning confirmed the use of the serum proteome to distinguish the infection from healthy control sera but could not develop discriminatory models between LD and WNV at current sample numbers. Our study is the first to compare the serum proteomes in two arthropod-borne infections and highlights the similarities in host responses even though the pathogens and the vectors themselves are different.
Collapse
Affiliation(s)
- Patrick Boada
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, CA, United States
| | - Benoit Fatou
- Department of Pathology, Boston Children’s Hospital - Harvard Medical School, Boston, MA, United States
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
| | - Alexia A. Belperron
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Tara K. Sigdel
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, CA, United States
| | - Kinga K. Smolen
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital – Harvard Medical School, Boston, MA, United States
| | - Zainab Wurie
- Department of Pathology, Boston Children’s Hospital - Harvard Medical School, Boston, MA, United States
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
| | - Ofer Levy
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital – Harvard Medical School, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology & Harvard, Cambridge, MA, United States
| | - Shannon E. Ronca
- Division of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX, United States
| | - Kristy O. Murray
- Division of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX, United States
| | - Juliane M. Liberto
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, CA, United States
| | - Priyanka Rashmi
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, CA, United States
| | - Maggie Kerwin
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, CA, United States
| | - Ruth R. Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Linda K. Bockenstedt
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Hanno Steen
- Department of Pathology, Boston Children’s Hospital - Harvard Medical School, Boston, MA, United States
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
| | - Minnie M. Sarwal
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, CA, United States
| |
Collapse
|
39
|
Duckworth EJ, Murugesan N, Li L, Rushbrooke LJ, Lee DK, De Donatis GM, Maetzel A, Yea CM, Hampton SL, Feener EP. Pharmacological suppression of the kallikrein kinin system with KVD900: An orally available plasma kallikrein inhibitor for the on-demand treatment of hereditary angioedema. Clin Exp Allergy 2022; 52:1059-1070. [PMID: 35278245 PMCID: PMC9544254 DOI: 10.1111/cea.14122] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hereditary angioedema (HAE) is a rare genetic disease that leads to recurrent episodes of swelling and pain caused by uncontrolled plasma kallikrein (PKa) activity. Current guidelines recommend ready availability of on-demand HAE treatments that can be administered early upon attack onset. This report describes the pharmacological and pharmacodynamic properties of the novel oral small-molecule PKa inhibitor KVD900 as a potential on-demand treatment for HAE. METHODS Pharmacological properties of KVD900 on PKa and closely related serine proteases were characterized using kinetic fluorogenic substrate activity assays. Effects of KVD900 on PKa activity and kallikrein kinin system activation in whole plasma were measured in the presence of dextran sulphate (DXS)-stimulation using a fluorogenic substrate and capillary immunoassays to quantify high molecular weight kininogen (HK), plasma prekallikrein and Factor XII cleavage. Pharmacodynamic effects of orally administered KVD900 were characterized in plasma samples from six healthy controls in a first in human phase 1 clinical trial and from 12 participants with HAE in a phase 2 clinical trial. RESULTS KVD900 is a selective, competitive and reversible inhibitor of human PKa enzyme with a Ki of 3.02 nM. The association constant (Kon ) of KVD900 for PKa is >10 × 106 M-1 s-1 . Oral administration of KVD900 in a first-in-human clinical trial achieved rapid and near complete inhibition of DXS-stimulated PKa enzyme activity and HK cleavage and reduced plasma prekallikrein and Factor XII activation in plasma. In individuals with HAE, orally administered KVD900 inhibited DXS-stimulated PKa activity in plasma by ≥95% from 45 min to at least 4 h post-dose and provided rapid protection of HK from cleavage. CONCLUSION KVD900 is a fast-acting oral PKa inhibitor that rapidly inhibits PKa activity, kallikrein kinin system activation and HK cleavage in plasma. On-demand administration of KVD900 may provide an opportunity to halt the generation of bradykinin and reverse HAE attacks.
Collapse
Affiliation(s)
| | | | - Lily Li
- KalVista PharmaceuticalsCambridgeMassachusettsUSA
| | | | | | | | - Andreas Maetzel
- KalVista PharmaceuticalsCambridgeMassachusettsUSA
- Institute for Health Policy, Management & EvaluationUniversity of TorontoTorontoOntarioCanada
| | | | | | | |
Collapse
|
40
|
Skendros P, Germanidis G, Mastellos DC, Antoniadou C, Gavriilidis E, Kalopitas G, Samakidou A, Liontos A, Chrysanthopoulou A, Ntinopoulou M, Kogias D, Karanika I, Smyrlis A, Cepaityte D, Fotiadou I, Zioga N, Mitroulis I, Gatselis NK, Papagoras C, Metallidis S, Milionis H, Dalekos GN, Willems L, Persson B, Manivel VA, Nilsson B, Connolly ES, Iacobelli S, Papadopoulos V, Calado RT, Huber-Lang M, Risitano AM, Yancopoulou D, Ritis K, Lambris JD. Complement C3 inhibition in severe COVID-19 using compstatin AMY-101. SCIENCE ADVANCES 2022; 8:eabo2341. [PMID: 35977025 PMCID: PMC9385148 DOI: 10.1126/sciadv.abo2341] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/01/2022] [Indexed: 05/14/2023]
Abstract
Complement C3 activation contributes to COVID-19 pathology, and C3 targeting has emerged as a promising therapeutic strategy. We provide interim data from ITHACA, the first randomized trial evaluating a C3 inhibitor, AMY-101, in severe COVID-19 (PaO2/FiO2 ≤ 300 mmHg). Patients received AMY-101 (n = 16) or placebo (n = 15) in addition to standard of care. AMY-101 was safe and well tolerated. Compared to placebo (8 of 15, 53.3%), a higher, albeit nonsignificant, proportion of AMY-101-treated patients (13 of 16, 81.3%) were free of supplemental oxygen at day 14. Three nonresponders and two placebo-treated patients succumbed to disease-related complications. AMY-101 significantly reduced CRP and ferritin and restrained thrombin and NET generation. Complete and sustained C3 inhibition was observed in all responders. Residual C3 activity in the three nonresponders suggested the presence of a convertase-independent C3 activation pathway overriding the drug's inhibitory activity. These findings support the design of larger trials exploring the potential of C3-based inhibition in COVID-19 or other complement-mediated diseases.
Collapse
Affiliation(s)
- Panagiotis Skendros
- First Department of Internal Medicine and Laboratory of Molecular Hematology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, and Basic and Translational Research Unit, Special Unit for Biomedical Research and Education (SUBRE), School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Christina Antoniadou
- First Department of Internal Medicine and Laboratory of Molecular Hematology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Efstratios Gavriilidis
- First Department of Internal Medicine and Laboratory of Molecular Hematology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Georgios Kalopitas
- First Department of Internal Medicine, AHEPA University Hospital, and Basic and Translational Research Unit, Special Unit for Biomedical Research and Education (SUBRE), School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna Samakidou
- Department of Medicine and Research Laboratory of Internal Medicine, National and European Expertise Center of Greece in Autoimmune Liver Diseases (ERN Rare-Liver), General University Hospital of Larissa, Larissa, Greece
| | - Angelos Liontos
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Akrivi Chrysanthopoulou
- First Department of Internal Medicine and Laboratory of Molecular Hematology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Maria Ntinopoulou
- First Department of Internal Medicine and Laboratory of Molecular Hematology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Dionysios Kogias
- First Department of Internal Medicine and Laboratory of Molecular Hematology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Ioanna Karanika
- First Department of Internal Medicine, AHEPA University Hospital, and Basic and Translational Research Unit, Special Unit for Biomedical Research and Education (SUBRE), School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Smyrlis
- First Department of Internal Medicine and Laboratory of Molecular Hematology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Dainora Cepaityte
- First Department of Internal Medicine, AHEPA University Hospital, and Basic and Translational Research Unit, Special Unit for Biomedical Research and Education (SUBRE), School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Iliana Fotiadou
- First Department of Internal Medicine and Laboratory of Molecular Hematology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Nikoleta Zioga
- First Department of Internal Medicine and Laboratory of Molecular Hematology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Ioannis Mitroulis
- First Department of Internal Medicine and Laboratory of Molecular Hematology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Nikolaos K. Gatselis
- Department of Medicine and Research Laboratory of Internal Medicine, National and European Expertise Center of Greece in Autoimmune Liver Diseases (ERN Rare-Liver), General University Hospital of Larissa, Larissa, Greece
| | - Charalampos Papagoras
- First Department of Internal Medicine and Laboratory of Molecular Hematology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Simeon Metallidis
- First Department of Internal Medicine, AHEPA University Hospital, and Basic and Translational Research Unit, Special Unit for Biomedical Research and Education (SUBRE), School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Haralampos Milionis
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - George N. Dalekos
- Department of Medicine and Research Laboratory of Internal Medicine, National and European Expertise Center of Greece in Autoimmune Liver Diseases (ERN Rare-Liver), General University Hospital of Larissa, Larissa, Greece
| | - Loek Willems
- R&D Department, Hycult Biotechnology, Uden, Netherlands
| | - Barbro Persson
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Vivek Anand Manivel
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Bo Nilsson
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - E. Sander Connolly
- Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Simona Iacobelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Vasileios Papadopoulos
- First Department of Internal Medicine and Laboratory of Molecular Hematology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Rodrigo T. Calado
- Department of Medical Imaging, Hematology and Oncology, University of São Paulo, School of Medicine, Ribeirão Preto, Brazil
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology, Ulm University Hospital, Ulm, Germany
| | - Antonio M. Risitano
- AORN Moscati Avellino, Italy and Federico II University of Naples, Naples, Italy
| | | | - Konstantinos Ritis
- First Department of Internal Medicine and Laboratory of Molecular Hematology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
41
|
Salukhov VV, Lopatin YR, Minakov AA. Adipsin – summing up large-scale results: A review. CONSILIUM MEDICUM 2022. [DOI: 10.26442/20751753.2022.5.201280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Adipsin is one of the first discovered adipokines hormones produced by adipose tissue. Adipsin performs the function of a regulator of carbohydrate and lipid metabolism and participates in the adaptation of metabolism to the real needs of the body, being a powerful stimulant of anabolic processes. A characteristic feature of adipsin is that it is also a complement factor D, which is necessary for the normal functioning of an alternative pathway of activation of the complement system. Due to this, adipsin is represented in the body as a link between the energy block of the endocrine system and the humoral block of the immune system. Adipsin is known as a regulator of the function of pancreatic beta cells, a stimulator of lipogenesis, a modulator of inflammation processes. Recently, there have been works indicating the effect of adipsin on the microbiota, as well as its role in non-alcoholic fatty liver disease. To date, there are a large number of publications describing the biochemical structure, functions of adipsin, mechanisms of regulation of its synthesis, as well as changes in the level of adipsin in various pathological conditions. Attempts are also described to pharmacologically influence adipsin in order to modulate its functions or use it as a biomarker for the diagnosis of diseases. However, there is currently no structured review that summarizes and systematizes all available information about this adipokine. This is exactly the task we set ourselves in this study. The paper contains the results of all available studies on adipsin. In some cases, they are contradictory in nature, which indicates the need for further research in detecting connections between the body's systems.
Collapse
|
42
|
Heal SL, Hardy LJ, Wilson CL, Ali M, Ariëns RAS, Foster R, Philippou H. Novel interaction of properdin and coagulation factor XI: Crosstalk between complement and coagulation. Res Pract Thromb Haemost 2022; 6:e12715. [PMID: 35647477 PMCID: PMC9130567 DOI: 10.1002/rth2.12715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 12/18/2022] Open
Abstract
Background Evidence of crosstalk between the complement and coagulation cascades exists, and dysregulation of either pathway can lead to serious thromboinflammatory events. Both the intrinsic pathway of coagulation and the alternative pathway of complement interact with anionic surfaces, such as glycosaminoglycans. Hitherto, there is no evidence for a direct interaction of properdin (factor P [FP]), the only known positive regulator of complement, with coagulation factor XI (FXI) or activated FXI (FXIa). Objectives The aim was to investigate crosstalk between FP and the intrinsic pathway and the potential downstream consequences. Methods Chromogenic assays were established to characterize autoactivation of FXI in the presence of dextran sulfate (DXS), enzyme kinetics of FXIa, and the downstream effects of FP on intrinsic pathway activity. Substrate specificity changes were investigated using SDS-PAGE and liquid chromatography-mass spectrometry (LC-MS). Surface plasmon resonance (SPR) was used to determine direct binding between FP and FXIa. Results/Conclusions We identified a novel interaction of FP with FXIa resulting in functional consequences. FP reduces activity of autoactivated FXIa toward S-2288. FXIa can cleave FP in the presence of DXS, demonstrated using SDS-PAGE, and confirmed by LC-MS. FXIa can cleave factor IX (FIX) and FP in the presence of DXS, determined by SDS-PAGE. DXS alone modulates FXIa activity, and this effect is further modulated by FP. We demonstrate that FXI and FXIa bind to FP with high affinity. Furthermore, FX activation downstream of FXIa cleavage of FIX is modulated by FP. These findings suggest a novel intercommunication between complement and coagulation pathways.
Collapse
Affiliation(s)
- Samantha L. Heal
- Discovery and Translational Science DepartmentLeeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Lewis J. Hardy
- Discovery and Translational Science DepartmentLeeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Clare L. Wilson
- Discovery and Translational Science DepartmentLeeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Majid Ali
- Discovery and Translational Science DepartmentLeeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Robert A. S. Ariëns
- Discovery and Translational Science DepartmentLeeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | | | - Helen Philippou
- Discovery and Translational Science DepartmentLeeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| |
Collapse
|
43
|
Drouet C, López-Lera A, Ghannam A, López-Trascasa M, Cichon S, Ponard D, Parsopoulou F, Grombirikova H, Freiberger T, Rijavec M, Veronez CL, Pesquero JB, Germenis AE. SERPING1 Variants and C1-INH Biological Function: A Close Relationship With C1-INH-HAE. FRONTIERS IN ALLERGY 2022; 3:835503. [PMID: 35958943 PMCID: PMC9361472 DOI: 10.3389/falgy.2022.835503] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Hereditary angioedema with C1 Inhibitor deficiency (C1-INH-HAE) is caused by a constellation of variants of the SERPING1 gene (n = 809; 1,494 pedigrees), accounting for 86.8% of HAE families, showing a pronounced mutagenic liability of SERPING1 and pertaining to 5.6% de novo variants. C1-INH is the major control serpin of the kallikrein–kinin system (KKS). In addition, C1-INH controls complement C1 and plasminogen activation, both systems contributing to inflammation. Recognizing the failed control of C1s protease or KKS provides the diagnosis of C1-INH-HAE. SERPING1 variants usually behave in an autosomal-dominant character with an incomplete penetrance and a low prevalence. A great majority of variants (809/893; 90.5%) that were introduced into online database have been considered as pathogenic/likely pathogenic. Haploinsufficiency is a common feature in C1-INH-HAE where a dominant-negative variant product impacts the wild-type allele and renders it inactive. Small (36.2%) and large (8.3%) deletions/duplications are common, with exon 4 as the most affected one. Point substitutions with missense variants (32.2%) are of interest for the serpin structure–function relationship. Canonical splice sites can be affected by variants within introns and exons also (14.3%). For noncanonical sequences, exon skipping has been confirmed by splicing analyses of patients' blood-derived RNAs (n = 25). Exonic variants (n = 6) can affect exon splicing. Rare deep-intron variants (n = 6), putatively acting as pseudo-exon activating mutations, have been characterized as pathogenic. Some variants have been characterized as benign/likely benign/of uncertain significance (n = 74). This category includes some homozygous (n = 10) or compound heterozygous variants (n = 11). They are presenting with minor allele frequency (MAF) below 0.00002 (i.e., lower than C1-INH-HAE frequency), and may be quantitatively unable to cause haploinsufficiency. Rare benign variants could contribute as disease modifiers. Gonadal mosaicism in C1-INH-HAE is rare and must be distinguished from a de novo variant. Situations with paternal or maternal disomy have been recorded (n = 3). Genotypes must be interpreted with biological investigation fitting with C1-INH expression and typing. Any SERPING1 variant reminiscent of the dysfunctional phenotype of serpin with multimerization or latency should be identified as serpinopathy.
Collapse
Affiliation(s)
- Christian Drouet
- Department of Infection, Immunity and Inflammation, Institut Cochin, INSERM UMR1016, Université de Paris, Paris, France
- Univ. Grenoble-Alpes & Centre Hospitalier Universitaire de Grenoble, Grenoble, France
- *Correspondence: Christian Drouet
| | - Alberto López-Lera
- Hospital La Paz Institute for Health Research (IdiPAZ), CIBERER U-754, Madrid, Spain
| | | | - Margarita López-Trascasa
- Hospital La Paz Institute for Health Research (IdiPAZ), Universidad Autónoma de Madrid, Madrid, Spain
| | - Sven Cichon
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Denise Ponard
- Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | | | - Hana Grombirikova
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation Brno and Medical Faculty, Masaryk University, Brno, Czechia
| | - Tomáš Freiberger
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation Brno and Medical Faculty, Masaryk University, Brno, Czechia
| | - Matija Rijavec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
| | - Camila L. Veronez
- Department of Biophysics, Centre for Research and Genetic Diagnosis of Genetic Diseases, Federal University of São Paolo, São Paolo, Brazil
| | - João Bosco Pesquero
- Department of Biophysics, Centre for Research and Genetic Diagnosis of Genetic Diseases, Federal University of São Paolo, São Paolo, Brazil
| | - Anastasios E. Germenis
- CeMIA SA, Larissa, Greece
- Department of Immunology & Histocompatibility, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
44
|
Kizhakkedathu JN, Conway EM. Biomaterial and cellular implants: foreign surfaces where immunity and coagulation meet. Blood 2022; 139:1987-1998. [PMID: 34415324 DOI: 10.1182/blood.2020007209] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022] Open
Abstract
Exposure of blood to a foreign surface in the form of a diagnostic or therapeutic biomaterial device or implanted cells or tissue elicits an immediate, evolutionarily conserved thromboinflammatory response from the host. Primarily designed to protect against invading organisms after an injury, this innate response features instantaneous activation of several blood-borne, highly interactive, well-orchestrated cascades and cellular events that limit bleeding, destroy and eliminate the foreign substance or cells, and promote healing and a return to homeostasis via delicately balanced regenerative processes. In the setting of blood-contacting synthetic or natural biomaterials and implantation of foreign cells or tissues, innate responses are robust, albeit highly context specific. Unfortunately, they tend to be less than adequately regulated by the host's natural anticoagulant or anti-inflammatory pathways, thereby jeopardizing the functional integrity of the device, as well as the health of the host. Strategies to achieve biocompatibility with a sustained return to homeostasis, particularly while the device remains in situ and functional, continue to elude scientists and clinicians. In this review, some of the complex mechanisms by which biomaterials and cellular transplants provide a "hub" for activation and amplification of coagulation and immunity, thromboinflammation, are discussed, with a view toward the development of innovative means of overcoming the innate challenges.
Collapse
Affiliation(s)
- Jayachandran N Kizhakkedathu
- Centre for Blood Research
- Department of Pathology and Laboratory Medicine
- School of Biomedical Engineering, Life Sciences Institute
- Department of Chemistry; and
| | - Edward M Conway
- Centre for Blood Research
- School of Biomedical Engineering, Life Sciences Institute
- Department of Chemistry; and
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
45
|
Kefalogianni R, Kamani F, Gaspar M, Aw TC, Donovan J, Laffan M, Pickering MC, Arachchillage DJ. Complement activation during cardiopulmonary bypass and association with clinical outcomes. EJHAEM 2022; 3:86-96. [PMID: 35846208 PMCID: PMC9175769 DOI: 10.1002/jha2.371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/08/2022]
Abstract
In this prospective, single-centre observational study of 30 patients undergoing cardiopulmonary bypass (CPB), the effect of unfractionated heparin (UFH), CPB surgery and protamine sulphate on complement and on post-operative blood loss were assessed. Although C3 and C4 levels decreased significantly immediately following the administration of UFH, C3a, C5a, Bb fragment and SC5b-9 remained unchanged. During CPB, C3 and C4 continued to fall whilst both alternative and classical pathways activation markers, Bb, C3a, C5a and SC5b-9 increased significantly. Protamine sulphate had no effect on classical pathway components or activation markers but decreased alternative pathway activation marker Bb. Over the 12-24 h post-surgery, both classical and alternative pathway activation markers returned to baseline, whilst C3 and C4 levels increased significantly but not to baseline values. Total drain volume 24 h after the surgery showed a moderate inverse correlation with post-protamine C3 (r = -0.46, p = 0.01) and C4 (r = -0.57, p = 0.0009) levels, whilst a moderate positive correlation was observed with post-protamine C3a (r = 0.46, p = 0.009), C5a (r = 0.37, p = 0.04) and SC5b-9 (r = 0.56, p = 0.001) levels but not with Bb fragment (r = 0.25, p = 0.17). Thus, inhibition of complement activation may be a therapeutic intervention to reduce post-operative blood in patients undergoing CPB.
Collapse
Affiliation(s)
| | - Farah Kamani
- Department of HaematologyRoyal Brompton HospitalLondonUK
| | - Mihaela Gaspar
- Department of HaematologyRoyal Brompton HospitalLondonUK
| | - TC Aw
- Department of Anesthesia and Critical CareRoyal Brompton HospitalLondonUK
| | - Jackie Donovan
- Department of BiochemistryRoyal Brompton HospitalLondonUK
| | - Mike Laffan
- Centre for HaematologyDepartment of Immunology and InflammationImperial College LondonLondonUK
| | | | - Deepa J. Arachchillage
- Department of HaematologyRoyal Brompton HospitalLondonUK
- Centre for HaematologyDepartment of Immunology and InflammationImperial College LondonLondonUK
| |
Collapse
|
46
|
Lim MS, Mcrae S. COVID-19 and immunothrombosis: Pathophysiology and therapeutic implications. Crit Rev Oncol Hematol 2021; 168:103529. [PMID: 34800652 PMCID: PMC8596655 DOI: 10.1016/j.critrevonc.2021.103529] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/11/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
The coagulopathy of COVID-19 is characterised by significantly elevated D Dimer and fibrinogen, mild thrombocytopenia and a mildly prolonged PT/APTT. A high incidence of thrombotic complications occurs despite standard thromboprophylaxis. The evidence to date supports immunothrombosis as the underlying mechanism for this coagulopathy which is triggered by a hyperinflammatory response and endotheliopathy. A hypercoagulable state results from endothelial damage/activation, complement activation, platelet hyperactivity, release of Extracellular Neutrophil Traps, activation of the coagulation system and a "hypofibrinolytic" state. Significant cross-talk occurs between the innate/adaptive immune system, endothelium and the coagulation system. D dimer has been shown to be the most reliable predictor of disease severity, thrombosis, and overall survival. In this context, targeting pathways upstream of coagulation using novel or repurposed drugs alone or in combination with other anti-thrombotic agents may be a rational approach to prevent the mortality/morbidity due to COVID-19 associated coagulopathy.
Collapse
Affiliation(s)
- Ming Sheng Lim
- Department of Hematology, Launceston General Hospital, WP Holman Clinic, Level 1. PO Box 1963, Launceston, Tasmania, Australia.
| | - Simon Mcrae
- Department of Hematology, Launceston General Hospital, WP Holman Clinic, Level 1. PO Box 1963, Launceston, Tasmania, Australia.
| |
Collapse
|
47
|
The versatile role of the contact system in cardiovascular disease, inflammation, sepsis and cancer. Biomed Pharmacother 2021; 145:112429. [PMID: 34801854 DOI: 10.1016/j.biopha.2021.112429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
The human contact system consists of plasma proteins, which - after contact to foreign surfaces - are bound to them, thereby activating the zymogens of the system into enzymes. This activation mechanism gave the system its name - contact system. It is considered as a procoagulant and proinflammatory response mechanism, as activation finally leads to the generation of fibrin and bradykinin. To date, no physiological processes have been described that are mediated by contact activation. However, contact system factors play a pathophysiological role in numerous diseases, such as cardiovascular diseases, arthritis, colitis, sepsis, and cancer. Contact system factors are therefore an interesting target for new therapeutic options in different clinical conditions.
Collapse
|
48
|
Crosstalk between the renin-angiotensin, complement and kallikrein-kinin systems in inflammation. Nat Rev Immunol 2021; 22:411-428. [PMID: 34759348 PMCID: PMC8579187 DOI: 10.1038/s41577-021-00634-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/28/2022]
Abstract
During severe inflammatory and infectious diseases, various mediators modulate the equilibrium of vascular tone, inflammation, coagulation and thrombosis. This Review describes the interactive roles of the renin–angiotensin system, the complement system, and the closely linked kallikrein–kinin and contact systems in cell biological functions such as vascular tone and leakage, inflammation, chemotaxis, thrombosis and cell proliferation. Specific attention is given to the role of these systems in systemic inflammation in the vasculature and tissues during hereditary angioedema, cardiovascular and renal glomerular disease, vasculitides and COVID-19. Moreover, we discuss the therapeutic implications of these complex interactions, given that modulation of one system may affect the other systems, with beneficial or deleterious consequences. The renin–angiotensin, complement and kallikrein–kinin systems comprise a multitude of mediators that modulate physiological responses during inflammatory and infectious diseases. This Review investigates the complex interactions between these systems and how these are dysregulated in various conditions, including cardiovascular diseases and COVID-19, as well as their therapeutic implications.
Collapse
|
49
|
Feng Q, Xia W, Wang S, Dai G, Jiao W, Guo N, Li H, Zhang G. Etodolac improves collagen induced rheumatoid arthritis in rats by inhibiting synovial inflammation, fibrosis and hyperplasia. MOLECULAR BIOMEDICINE 2021; 2:33. [PMID: 35006449 PMCID: PMC8607370 DOI: 10.1186/s43556-021-00052-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Synovial hyperplasia is the main cause of chronic rheumatoid arthritis (RA), but the mechanism of synovial hyperplasia is still unclear. Etodolac (ETD) is a selective COX-2 inhibitor for relieving pain and stiffness in RA, but the disease modifying effect is still lack of evidence. Proteomics method was used to study the differential proteome of synovial tissue in collagen induced arthritis (CIA) in rats. With the help of STRING analysis, the upregulated proteins enriched in the cluster of complement and coagulation cascades and platelet degranulation were highlighted, these proteins with fibrogenic factors Lum, CIV, CXI and Tgfbi participated in the synovial inflammation, fibrosis and hyperplasia in CIA. Based on KOG function class analysis, the proteins involved in the events of the central dogma was explored. They might be hyperplasia related proteins for most of them are related to the proliferation of cancer. ETD significantly attenuated synovial inflammation, fibrosis and hyperplasia in CIA rats by downregulating these proteins. Several proteins have not been observed in RA so far, such as Tmsb4x, Pura, Nfic, Ruvbl1, Snrpd3, U2af2, Srrm2, Srsf7, Elavl1, Hnrnph1, Wars, Yars, Bzw2, Mcts1, Eif4b, Ctsh, Lamp1, Dpp7, Ptges3, Cdc37 and Septin9, they might be potentials targets for RA. Blood biochemistry tests showed the safety of 7 months use of ETD on rats. In conclusion, present study displayed a comprehensive mechanism of synovial hyperplasia in CIA rats, on this basis, the clinical value of ETD in the treatment of RA was well confirmed.
Collapse
Affiliation(s)
- Qin Feng
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China.,National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Wenkai Xia
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Shenglan Wang
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Guoxin Dai
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Weimei Jiao
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Na Guo
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Honghua Li
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Guimin Zhang
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China. .,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China. .,National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China.
| |
Collapse
|
50
|
Prohászka Z, Frazer-Abel A. Complement multiplex testing: Concept, promises and pitfalls. Mol Immunol 2021; 140:120-126. [PMID: 34688958 DOI: 10.1016/j.molimm.2021.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/15/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
Complement is a complex system. This complexity becomes more obvious when looking at complement analysis in health and disease, where one presentation can require a number of measurements to understand the full role of this cascade in the disease. The current state of clinical testing requires multiple tests to cover the whole of the complement cascade. There is a clear potential for multiplex testing to help address this need for comprehensive analysis of the state of complement deficiency, activation or inhibition. Fortunately, there are a number of potential methods for multiplex analysis, each with advantages and disadvantages that need to be considered in light of the intricacy of the complement cascade and its interconnection to other systems. Despite the complexities of such methods several groups have started utilizing multiplex analysis for research and even for diagnostic testing. The potential methods, current successes, and the type of testing that needs to be streamlined are reviewed in this text.
Collapse
Affiliation(s)
- Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, and Research Group for Immunology and Haematology, Semmelweis University- EötvösLoránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Ashley Frazer-Abel
- Exsera BioLabs, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|