1
|
Tian KJ, Yang Y, Chen GS, Deng NH, Tian Z, Bai R, Zhang F, Jiang ZS. Omics research in atherosclerosis. Mol Cell Biochem 2025; 480:2077-2102. [PMID: 39446251 DOI: 10.1007/s11010-024-05139-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by lipid deposition within the arterial intima, as well as fibrous tissue proliferation and calcification. AS has long been recognized as one of the primary pathological foundations of cardiovascular diseases in humans. Its pathogenesis is intricate and not yet fully elucidated. Studies have shown that AS is associated with oxidative stress, inflammatory response, lipid deposition, and changes in cell phenotype. Unfortunately, there is currently no effective prevention or targeted treatment for AS. The rapid advancement of omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, has opened up novel avenues to elucidate the fundamental pathophysiology and associated mechanisms of AS. Here, we review articles published over the past decade and focus on the current status, challenges, limitations, and prospects of omics in AS research and clinical practice. Emphasizing potential targets based on omics technologies will improve our understanding of this pathological condition and assist in the development of potential therapeutic approaches for AS-related diseases.
Collapse
Affiliation(s)
- Kai-Jiang Tian
- Pathology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Yu Yang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Guo-Shuai Chen
- Emergency Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Nian-Hua Deng
- Anesthesiology Department, Dongguan Songshanhu Central Hospital, Dongguan, 523000, China
| | - Zhen Tian
- Clinical Laboratory, Dongguan Songshanhu Central Hospital, Dongguan, 523000, China
| | - Rui Bai
- Pathology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Fan Zhang
- Pathology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Zhi-Sheng Jiang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China.
| |
Collapse
|
2
|
Li M, Meng Y, Hong X, Chai H, Huang J, Wang F, Zhang W, Wang J, Liu Q, Xu Y. Anti-atherosclerotic effect of tetrahydroxy stilbene glucoside via dual-targeting of hepatic lipid metabolisms and aortic M2 macrophage polarization in ApoE -/- mice. J Pharm Biomed Anal 2024; 248:116338. [PMID: 38971092 DOI: 10.1016/j.jpba.2024.116338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/13/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Tetrahydroxy stilbene glucoside (TSG) is a water-soluble natural product that has shown potential in treating atherosclerosis (AS). However, its underlying mechanisms remain unclear. Here, we demonstrate that an 8-week TSG treatment (100 mg/kg/d) significantly reduces atherosclerotic lesions and alleviates dyslipidemia symptoms in ApoE-/- mice. 1H nuclear magnetic resonance metabolomic analysis reveals differences in both lipid components and water-soluble metabolites in the livers of AS mice compared to control groups, and TSG treatment shifts the metabolic profiles of AS mice towards a normal state. At the transcriptional level, TSG significantly restores the expression of fatty acid metabolism-related genes (Srepb-1c, Fasn, Scd1, Gpat1, Dgat1, Pparα and Cpt1α), and regulates the expression levels of disturbed cholesterol metabolism-related genes (Srebp2, Hmgcr, Ldlr, Acat1, Acat2 and Cyp7a1) associated with lipid metabolism. Furthermore, at the cellular level, TSG remarkably polarizes aortic macrophages to their M2 phenotype. Our data demonstrate that TSG alleviates arthrosclerosis by dual-targeting to hepatic lipid metabolism and aortic M2 macrophage polarization in ApoE-/- mice, with significant implications for translational medicine and the treatment of AS using natural products.
Collapse
Affiliation(s)
- Minghui Li
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yuanyuan Meng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xuelian Hong
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Hui Chai
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jianye Huang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Fengge Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Wenjie Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Juncheng Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Qingwang Liu
- Institute of Heath & Medical Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Yuekang Xu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
3
|
Bashore AC, Yan H, Xue C, Zhu LY, Kim E, Mawson T, Coronel J, Chung A, Sachs N, Ho S, Ross LS, Kissner M, Passegué E, Bauer RC, Maegdefessel L, Li M, Reilly MP. High-Dimensional Single-Cell Multimodal Landscape of Human Carotid Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:930-945. [PMID: 38385291 PMCID: PMC10978277 DOI: 10.1161/atvbaha.123.320524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Atherosclerotic plaques are complex tissues composed of a heterogeneous mixture of cells. However, our understanding of the comprehensive transcriptional and phenotypic landscape of the cells within these lesions is limited. METHODS To characterize the landscape of human carotid atherosclerosis in greater detail, we combined cellular indexing of transcriptomes and epitopes by sequencing and single-cell RNA sequencing to classify all cell types within lesions (n=21; 13 symptomatic) to achieve a comprehensive multimodal understanding of the cellular identities of atherosclerosis and their association with clinical pathophysiology. RESULTS We identified 25 cell populations, each with a unique multiomic signature, including macrophages, T cells, NK (natural killer) cells, mast cells, B cells, plasma cells, neutrophils, dendritic cells, endothelial cells, fibroblasts, and smooth muscle cells (SMCs). Among the macrophages, we identified 2 proinflammatory subsets enriched in IL-1B (interleukin-1B) or C1Q expression, 2 TREM2-positive foam cells (1 expressing inflammatory genes), and subpopulations with a proliferative gene signature and SMC-specific gene signature with fibrotic pathways upregulated. Further characterization revealed various subsets of SMCs and fibroblasts, including SMC-derived foam cells. These foamy SMCs were localized in the deep intima of coronary atherosclerotic lesions. Utilizing cellular indexing of transcriptomes and epitopes by sequencing data, we developed a flow cytometry panel, using cell surface proteins CD29, CD142, and CD90, to isolate SMC-derived cells from lesions. Lastly, we observed reduced proportions of efferocytotic macrophages, classically activated endothelial cells, and contractile and modulated SMC-derived cells, while inflammatory SMCs were enriched in plaques of clinically symptomatic versus asymptomatic patients. CONCLUSIONS Our multimodal atlas of cell populations within atherosclerosis provides novel insights into the diversity, phenotype, location, isolation, and clinical relevance of the unique cellular composition of human carotid atherosclerosis. These findings facilitate both the mapping of cardiovascular disease susceptibility loci to specific cell types and the identification of novel molecular and cellular therapeutic targets for the treatment of the disease.
Collapse
Affiliation(s)
- Alexander C Bashore
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Hanying Yan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (H.Y., M.L.)
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Lucie Y Zhu
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Eunyoung Kim
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Thomas Mawson
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Johana Coronel
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Allen Chung
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Nadja Sachs
- Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (N.S., L.M.)
| | - Sebastian Ho
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Leila S Ross
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Michael Kissner
- Columbia Stem Cell Initiative, Department of Genetics and Development (M.K., E.P.), Columbia University Irving Medical Center, New York, NY
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development (M.K., E.P.), Columbia University Irving Medical Center, New York, NY
| | - Robert C Bauer
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Lars Maegdefessel
- Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (N.S., L.M.)
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance (L.M.)
- Department of Medicine, Karolinksa Institute, Stockholm, Sweden (L.M.)
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (H.Y., M.L.)
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
- Irving Institute for Clinical and Translational Research (M.P.R.), Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
4
|
Shahjahan, Dey JK, Dey SK. Translational bioinformatics approach to combat cardiovascular disease and cancers. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:221-261. [PMID: 38448136 DOI: 10.1016/bs.apcsb.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Bioinformatics is an interconnected subject of science dealing with diverse fields including biology, chemistry, physics, statistics, mathematics, and computer science as the key fields to answer complicated physiological problems. Key intention of bioinformatics is to store, analyze, organize, and retrieve essential information about genome, proteome, transcriptome, metabolome, as well as organisms to investigate the biological system along with its dynamics, if any. The outcome of bioinformatics depends on the type, quantity, and quality of the raw data provided and the algorithm employed to analyze the same. Despite several approved medicines available, cardiovascular disorders (CVDs) and cancers comprises of the two leading causes of human deaths. Understanding the unknown facts of both these non-communicable disorders is inevitable to discover new pathways, find new drug targets, and eventually newer drugs to combat them successfully. Since, all these goals involve complex investigation and handling of various types of macro- and small- molecules of the human body, bioinformatics plays a key role in such processes. Results from such investigation has direct human application and thus we call this filed as translational bioinformatics. Current book chapter thus deals with diverse scope and applications of this translational bioinformatics to find cure, diagnosis, and understanding the mechanisms of CVDs and cancers. Developing complex yet small or long algorithms to address such problems is very common in translational bioinformatics. Structure-based drug discovery or AI-guided invention of novel antibodies that too with super-high accuracy, speed, and involvement of considerably low amount of investment are some of the astonishing features of the translational bioinformatics and its applications in the fields of CVDs and cancers.
Collapse
Affiliation(s)
- Shahjahan
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Joy Kumar Dey
- Central Council for Research in Homoeopathy, Ministry of Ayush, Govt. of India, New Delhi, Delhi, India
| | - Sanjay Kumar Dey
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.
| |
Collapse
|
5
|
Xu T, Jiang Y, Fu H, Yang G, Hu X, Chen Y, Zhang Q, Wang Y, Wang Y, Xie HQ, Han F, Xu L, Zhao B. Exploring the adverse effects of 1,3,6,8-tetrabromo-9H-carbazole in atherosclerotic model mice by metabolomic profiling integrated with mechanism studies in vitro. CHEMOSPHERE 2024; 349:140767. [PMID: 37992903 DOI: 10.1016/j.chemosphere.2023.140767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/04/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Given its wide distribution in the environment and latent toxic effects, 1,3,6,8-tetrabromo-9H-carbazole (1368-BCZ) is an emerging concern that has gained increasing attention globally. 1368-BCZ exposure is reported to have potential cardiovascular toxicity. Although atherosclerosis is a cardiovascular disease and remains a primary cause of mortality worldwide, no evidence has been found regarding the impact of 1368-BCZ on atherosclerosis. Therefore, we aimed to explore the deleterious effects of 1368-BCZ on atherosclerosis and the underlying mechanisms. Serum samples from 1368-BCZ-treated atherosclerotic model mice were subjected to metabolomic profiling to investigate the adverse influence of the pollutant. Subsequently, the molecular mechanism associated with the metabolic pathway of atherosclerotic mice that was identified following 1368-BCZ exposure was validated in vitro. Serum metabolomics analysis revealed that 1368-BCZ significantly altered the tricarboxylic acid cycle, causing a disturbance in energy metabolism. In vitro, we further validated general markers of energy metabolism based on metabolome data: 1368-BCZ dampened adenosine triphosphate (ATP) synthesis and increased reactive oxygen species (ROS) production. Furthermore, blocking the aryl hydrocarbon receptor (AhR) reversed the high production of ROS induced by 1368-BCZ. It is concluded that 1368-BCZ decreased the ATP synthesis by disturbing the energy metabolism, thereby stimulating the AhR-mediated ROS production and presumably causing aggravated atherosclerosis. This is the first comprehensive study on the cardiovascular toxicity and mechanism of 1368-BCZ based on rodent models of atherosclerosis and integrated with in vitro models.
Collapse
Affiliation(s)
- Tong Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; PET/CT Center, Key Laboratory of Functional Molecular Imaging, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Yu Jiang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Hualing Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanglei Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxu Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Zhang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China
| | - Yuxi Wang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Yilan Wang
- PET/CT Center, Key Laboratory of Functional Molecular Imaging, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Han
- PET/CT Center, Key Laboratory of Functional Molecular Imaging, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China.
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Nieddu G, Formato M, Lepedda AJ. Searching for Atherosclerosis Biomarkers by Proteomics: A Focus on Lesion Pathogenesis and Vulnerability. Int J Mol Sci 2023; 24:15175. [PMID: 37894856 PMCID: PMC10607641 DOI: 10.3390/ijms242015175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Plaque rupture and thrombosis are the most important clinical complications in the pathogenesis of stroke, coronary arteries, and peripheral vascular diseases. The identification of early biomarkers of plaque presence and susceptibility to ulceration could be of primary importance in preventing such life-threatening events. With the improvement of proteomic tools, large-scale technologies have been proven valuable in attempting to unravel pathways of atherosclerotic degeneration and identifying new circulating markers to be utilized either as early diagnostic traits or as targets for new drug therapies. To address these issues, different matrices of human origin, such as vascular cells, arterial tissues, plasma, and urine, have been investigated. Besides, proteomics was also applied to experimental atherosclerosis in order to unveil significant insights into the mechanisms influencing atherogenesis. This narrative review provides an overview of the last twenty years of omics applications to the study of atherogenesis and lesion vulnerability, with particular emphasis on lipoproteomics and vascular tissue proteomics. Major issues of tissue analyses, such as plaque complexity, sampling, availability, choice of proper controls, and lipoproteins purification, will be raised, and future directions will be addressed.
Collapse
Affiliation(s)
| | | | - Antonio Junior Lepedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (G.N.); (M.F.); Antonio Junior Lepedda (A.J.L.)
| |
Collapse
|
7
|
Xu K, Saaoud F, Shao Y, Lu Y, Wu S, Zhao H, Chen K, Vazquez-Padron R, Jiang X, Wang H, Yang X. Early hyperlipidemia triggers metabolomic reprogramming with increased SAH, increased acetyl-CoA-cholesterol synthesis, and decreased glycolysis. Redox Biol 2023; 64:102771. [PMID: 37364513 PMCID: PMC10310484 DOI: 10.1016/j.redox.2023.102771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
To identify metabolomic reprogramming in early hyperlipidemia, unbiased metabolome was screened in four tissues from ApoE-/- mice fed with high fat diet (HFD) for 3 weeks. 30, 122, 67, and 97 metabolites in the aorta, heart, liver, and plasma, respectively, were upregulated. 9 upregulated metabolites were uremic toxins, and 13 metabolites, including palmitate, promoted a trained immunity with increased syntheses of acetyl-CoA and cholesterol, increased S-adenosylhomocysteine (SAH) and hypomethylation and decreased glycolysis. The cross-omics analysis found upregulation of 11 metabolite synthetases in ApoE‾/‾ aorta, which promote ROS, cholesterol biosynthesis, and inflammation. Statistical correlation of 12 upregulated metabolites with 37 gene upregulations in ApoE‾/‾ aorta indicated 9 upregulated new metabolites to be proatherogenic. Antioxidant transcription factor NRF2-/- transcriptome analysis indicated that NRF2 suppresses trained immunity-metabolomic reprogramming. Our results have provided novel insights on metabolomic reprogramming in multiple tissues in early hyperlipidemia oriented toward three co-existed new types of trained immunity.
Collapse
Affiliation(s)
- Keman Xu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ying Shao
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yifan Lu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Sheng Wu
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Medical Education and Data Science, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Kaifu Chen
- Computational Biology Program, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33125, USA
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Hong Wang
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
8
|
Bashore AC, Yan H, Xue C, Zhu LY, Kim E, Mawson T, Coronel J, Chung A, Ho S, Ross LS, Kissner M, Passegué E, Bauer RC, Maegdefessel L, Li M, Reilly MP. High-Dimensional Single-Cell Multimodal Landscape of Human Carotid Atherosclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.13.23292633. [PMID: 37502836 PMCID: PMC10370238 DOI: 10.1101/2023.07.13.23292633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background Atherosclerotic plaques are complex tissues composed of a heterogeneous mixture of cells. However, we have limited understanding of the comprehensive transcriptional and phenotypical landscape of the cells within these lesions. Methods To characterize the landscape of human carotid atherosclerosis in greater detail, we combined cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-cell RNA sequencing (scRNA-seq) to classify all cell types within lesions (n=21; 13 symptomatic) to achieve a comprehensive multimodal understanding of the cellular identities of atherosclerosis and their association with clinical pathophysiology. Results We identified 25 distinct cell populations each having a unique multi-omic signature, including macrophages, T cells, NK cells, mast cells, B cells, plasma cells, neutrophils, dendritic cells, endothelial cells, fibroblasts, and smooth muscle cells (SMCs). Within the macrophage populations, we identified 2 proinflammatory subsets that were enriched in IL1B or C1Q expression, 2 distinct TREM2 positive foam cell subsets, one of which also expressed inflammatory genes, as well as subpopulations displaying a proliferative gene expression signature and one expressing SMC-specific genes and upregulation of fibrotic pathways. An in-depth characterization uncovered several subsets of SMCs and fibroblasts, including a SMC-derived foam cell. We localized this foamy SMC to the deep intima of coronary atherosclerotic lesions. Using CITE-seq data, we also developed the first flow cytometry panel, using cell surface proteins CD29, CD142, and CD90, to isolate SMC-derived cells from lesions. Last, we found that the proportion of efferocytotic macrophages, classically activated endothelial cells, contractile and modulated SMC-derived cell types were reduced, and inflammatory SMCs were enriched in plaques of clinically symptomatic vs. asymptomatic patients. Conclusions Our multimodal atlas of cell populations within atherosclerosis provides novel insights into the diversity, phenotype, location, isolation, and clinical relevance of the unique cellular composition of human carotid atherosclerosis. This facilitates both the mapping of cardiovascular disease susceptibility loci to specific cell types as well as the identification of novel molecular and cellular therapeutic targets for treatment of the disease.
Collapse
Affiliation(s)
- Alexander C Bashore
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Hanying Yan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Lucie Y Zhu
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Eunyoung Kim
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Thomas Mawson
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Johana Coronel
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Allen Chung
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Sebastian Ho
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Leila S Ross
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Michael Kissner
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York
| | - Robert C Bauer
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Lars Maegdefessel
- Department of Vascular and Endovascular Surgery, Technical University Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance
- Karolinksa Institute, Department of Medicine
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
- Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
9
|
Chandran M, S S, Abhirami, Chandran A, Jaleel A, Plakkal Ayyappan J. Defining atherosclerotic plaque biology by mass spectrometry-based omics approaches. Mol Omics 2023; 19:6-26. [PMID: 36426765 DOI: 10.1039/d2mo00260d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Atherosclerosis is the principal cause of vascular diseases and one of the leading causes of worldwide death. Even though several insights into its natural course, risk factors and interventions have been identified, it is still an ongoing global pandemic. Since the structure and biochemical composition of the plaques show high heterogeneity, a comprehensive understanding of the intraplaque composition, its microenvironment, and the mechanisms of the progression and instability across different vascular beds at their progression stages is crucial for better risk stratification and treatment modalities. Even though several cell-based studies, animal studies, and extensive multicentric population studies have been conducted concerning cardiovascular diseases for assessing the risk factors and plaque biology, the studies on human clinical samples are very limited. New novel approaches utilize samples from percutaneous coronary interventions, which could possibly gain more access to clinical samples at different stages of the diseases without complex invasive resections. As an emerging technological platform in disease discovery research, mass spectrometry-based omics technologies offer capabilities for a comprehensive understanding of the mechanisms linked to several vascular diseases. Here, we discuss the cellular and molecular processes of atherosclerosis, different mass spectrometry-based omics approaches, and the studies mostly done on clinical samples of atheroma plaque using mass spectrometry-based proteomics, metabolomics and lipidomics approaches.
Collapse
Affiliation(s)
- Mahesh Chandran
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Thiruvananthapuram 695034, Kerala, India. .,Department of Biotechnology, University of Kerala, Thiruvananthapuram 695034, Kerala, India.,Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695012, India
| | - Sudhina S
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Thiruvananthapuram 695034, Kerala, India.
| | - Abhirami
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Thiruvananthapuram 695034, Kerala, India.
| | - Akash Chandran
- Department of Nanoscience and Nanotechnology, University of Kerala, Kariavattom, Thiruvananthapuram-695581, Kerala, India
| | - Abdul Jaleel
- Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695012, India
| | - Janeesh Plakkal Ayyappan
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Thiruvananthapuram 695034, Kerala, India. .,Department of Biotechnology, University of Kerala, Thiruvananthapuram 695034, Kerala, India.,Department of Nanoscience and Nanotechnology, University of Kerala, Kariavattom, Thiruvananthapuram-695581, Kerala, India.,Centre for Advanced Cancer Research, Department of Biochemistry, University of Kerala, Thiruvananthapuram 695034, Kerala, India
| |
Collapse
|
10
|
Li SJ, Wang YQ, Zhuang G, Jiang X, Shui D, Wang XY. Overall metabolic network analysis of urine in hyperlipidemic rats treated with Bidens bipinnata L. Biomed Chromatogr 2023; 37:e5509. [PMID: 36097410 DOI: 10.1002/bmc.5509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 12/15/2022]
Abstract
Hyperlipidemia has been highlighted as one of the most prominent and global chronic conditions nowadays. Bidens bipinnata L. (BBL), a folk medicine in contemporary China, has efficacy in the treatment of hyperlipidemia (HLP) in China. Although some physiological and pathological function parameters of hyperlipidemia have been investigated, little information about the changes in small metabolites in biofluids has been reported. In the present study, global metabolic profiling with high-performance liquid chromatography-linear ion trap/Orbitrap high-resolution mass spectrometry (HPLC-LTQ/Orbitrap MS) combined with a pattern recognition method was performed to discover the underlying lipid-regulating mechanisms of BBL on hyperlipidemic rats induced by high-fat diet (HFD). The total of four metabolites, up- or down-regulated (p < 0.05 or 0.01), were identified and contributed to the progression of hyperlipidemia. These promising identified biomarkers underpin the metabolic pathway, including glyoxylate and dicarboxylate metabolism, the TCA cycle, sphingolipid metabolism and purine metabolism. They are disturbed in hyperlipidemic rats, and are identified using pathway analysis with MetPA. The altered metabolite indices could be regulated closer to normal levels after BBL intervention. The results demonstrated that urinary metabolomics is a powerful tool in the clinical diagnosis and treatment of hyperlipidemia to provide information on changes in metabolite pathways.
Collapse
Affiliation(s)
- Shu-Jiao Li
- Center of Scientific Research, and Henan Key Laboratory of Traditional Chinese Medicine for Effective Substances and Quality Control, Nanyang Medical College, Nanyang, China
| | - Yu-Qing Wang
- Center of Scientific Research, and Henan Key Laboratory of Traditional Chinese Medicine for Effective Substances and Quality Control, Nanyang Medical College, Nanyang, China
| | - Guo Zhuang
- Center of Scientific Research, and Henan Key Laboratory of Traditional Chinese Medicine for Effective Substances and Quality Control, Nanyang Medical College, Nanyang, China
| | - Xu Jiang
- Center of Scientific Research, and Henan Key Laboratory of Traditional Chinese Medicine for Effective Substances and Quality Control, Nanyang Medical College, Nanyang, China
| | - Dong Shui
- Center of Scientific Research, and Henan Key Laboratory of Traditional Chinese Medicine for Effective Substances and Quality Control, Nanyang Medical College, Nanyang, China
| | - Xiao-Yu Wang
- Center of Scientific Research, and Henan Key Laboratory of Traditional Chinese Medicine for Effective Substances and Quality Control, Nanyang Medical College, Nanyang, China
| |
Collapse
|
11
|
The Metabolomic Characterization of Different Types of Coronary Atherosclerotic Heart Disease in Male. Cardiol Res Pract 2022; 2022:6491129. [PMID: 35865323 PMCID: PMC9296306 DOI: 10.1155/2022/6491129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/15/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background In clinical practice, many patients with coronary atherosclerotic heart disease (CAD) have atypical clinical symptoms. It is difficult to accurately identify stable CAD or unstable CAD early through clinical symptoms and coronary angiography. This study aimed to screen the potential metabolite biomarkers in male patients with stable CAD and unstable CAD. Methods In this work, the metabolomic characterization of the male patients with healthy control (n = 42), stable coronary artery disease (n = 60), non-ST-elevation acute coronary syndrome (n = 45), including prepercutaneous corona intervention (n = 14), and postpercutaneous coronary intervention (n = 31) were performed by using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The serum samples of patients were analyzed by multivariate statistics. Results Results showed that 17 altered metabolites were identified to have a clear distinction between the stable CAD group and the healthy subjects. Compared with the stable coronary artery disease group, 15 specific metabolite markers were found in the acute coronary syndrome group. The percutaneous coronary intervention also affected the metabolic behavior of patients with CAD. Conclusions In summary, CAD is closely related to energy metabolism, lipid metabolism, and amino acid metabolism disorders. The different metabolic pattern characteristics of healthy, stable coronary artery disease and acute coronary syndrome are constructed, which brings a novel theoretical basis for the early diagnosis of patients with stable and unstable CAD.
Collapse
|
12
|
Gonzalez-Covarrubias V, Martínez-Martínez E, del Bosque-Plata L. The Potential of Metabolomics in Biomedical Applications. Metabolites 2022; 12:metabo12020194. [PMID: 35208267 PMCID: PMC8880031 DOI: 10.3390/metabo12020194] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022] Open
Abstract
The metabolome offers a dynamic, comprehensive, and precise picture of the phenotype. Current high-throughput technologies have allowed the discovery of relevant metabolites that characterize a wide variety of human phenotypes with respect to health, disease, drug monitoring, and even aging. Metabolomics, parallel to genomics, has led to the discovery of biomarkers and has aided in the understanding of a diversity of molecular mechanisms, highlighting its application in precision medicine. This review focuses on the metabolomics that can be applied to improve human health, as well as its trends and impacts in metabolic and neurodegenerative diseases, cancer, longevity, the exposome, liquid biopsy development, and pharmacometabolomics. The identification of distinct metabolomic profiles will help in the discovery and improvement of clinical strategies to treat human disease. In the years to come, metabolomics will become a tool routinely applied to diagnose and monitor health and disease, aging, or drug development. Biomedical applications of metabolomics can already be foreseen to monitor the progression of metabolic diseases, such as obesity and diabetes, using branched-chain amino acids, acylcarnitines, certain phospholipids, and genomics; these can assess disease severity and predict a potential treatment. Future endeavors should focus on determining the applicability and clinical utility of metabolomic-derived markers and their appropriate implementation in large-scale clinical settings.
Collapse
Affiliation(s)
| | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication and Extracellular Vesicles, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Laura del Bosque-Plata
- Laboratory of Nutrigenetics and Nutrigenomics, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
- Correspondence: ; Tel.: +52-55-53-50-1974
| |
Collapse
|
13
|
Xiao-Rong L, Ning M, Xi-Wang L, Shi-Hong L, Zhe Q, Li-Xia B, Ya-Jun Y, Jian-Yong L. Untargeted and Targeted Metabolomics Reveal the Underlying Mechanism of Aspirin Eugenol Ester Ameliorating Rat Hyperlipidemia via Inhibiting FXR to Induce CYP7A1. Front Pharmacol 2021; 12:733789. [PMID: 34899293 PMCID: PMC8656224 DOI: 10.3389/fphar.2021.733789] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/01/2021] [Indexed: 01/14/2023] Open
Abstract
Hyperlipidemia is an important lipid disorder and a risk factor for health. Aspirin eugenol ester (AEE) is a novel synthetic compound which is made up of two chemical structural units from aspirin and eugenol. Therapeutic effect of AEE on hyperlipidemia has been confirmed in animal model. But the action mechanism of AEE on hyperlipidemia is still poorly understood. In this study, we investigated the effects of AEE on liver and feces metabolic profile through UPLC-Q-TOF/MS-based untargeted metabolomics in hyperlipidemia hamster induced with high fat diet (HFD), and the effects of AEE on the expression of genes and proteins related to cholesterol and bile acid (BA) in HFD-induced hyperlipidemia SD rat. The concentrations of 26 bile acids (BAs) in the liver from hyperlipidemia SD rat were also quantified with the application of BA targeted metabolomics. The results of untargeted metabolomics showed that the underlying mechanism of AEE on hyperlipidemia was mainly associated with amino acid metabolism, glutathione metabolism, energy metabolism, BA metabolism, and glycerophospholipid metabolism. AEE induced the expression of the BA-synthetic enzymes cholesterol 7α-hydroxylase (CYP7A1) by the inhibition of BA nuclear receptor farnesoid X receptor (FXR) in liver, which resulted in accelerating the conversion of cholesterol into bile acids and excrete in feces. The results of BA targeted metabolomics showed that AEE elevated the glycine-conjugated BA level and decreased the tauro-conjugated BA level. In conclusion, this study found that AEE decreased FXR and increased CYP7A1 in the liver, which might be the possible molecular mechanisms and targets of AEE for anti-hyperlipidemia therapies.
Collapse
Affiliation(s)
- Lu Xiao-Rong
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ma Ning
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Liu Xi-Wang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Li Shi-Hong
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qin Zhe
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bai Li-Xia
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yang Ya-Jun
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Li Jian-Yong
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
14
|
Wei SY, Shih YT, Wu HY, Wang WL, Lee PL, Lee CI, Lin CY, Chen YJ, Chien S, Chiu JJ. Endothelial Yin Yang 1 Phosphorylation at S118 Induces Atherosclerosis Under Flow. Circ Res 2021; 129:1158-1174. [PMID: 34747636 DOI: 10.1161/circresaha.121.319296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale: Disturbed flow occurring in arterial branches and curvatures induces vascular endothelial cell (EC) dysfunction and atherosclerosis. We postulated that disturbed flow plays important roles in modulating phosphoprotein expression profiles to regulate endothelial functions and atherogenesis. Objective: The goal of this study is to discover novel site-specific phosphorylation alterations induced by disturbed flow in ECs to contribute to atherosclerosis. Methods and Results: Quantitative phosphoproteomics analysis of ECs exposed to disturbed flow with low and oscillatory shear stress (OS, 0.5plusminus4 dynes/cm2) vs. pulsatile flow with high shear stress (PS, 124plusminus dynes/cm2) revealed that OS induces serine (S)118 phosphorylation of Yin Yang 1 (phospho-YY1S118) in ECs. Elevated phospho-YY1S118 level in ECs was further confirmed to be present in the disturbed flow regions in experimental animals and human atherosclerotic arteries. This disturbed flow-induced EC phospho-YY1S118 is mediated by casein kinase 2α (CK2α) through its direct interaction with YY1. Yeast two-hybrid library screening and in situ proximity ligation assays demonstrate that phospho-YY1S118 directly binds zinc finger with KRAB and SCAN domains 4 (ZKSCAN4) to induce promoter activity and gene expression of human double minute 2 (HDM2), which consequently induces EC proliferation through down-regulations of p53 and p21CIP1. Administration of apolipoprotein E-deficient (ApoE-/-) mice with CK2-specific inhibitor tetrabromocinnamic acid or atorvastatin inhibits atherosclerosis formation through down-regulations of EC phospho-YY1S118 and HDM2. Generation of novel transgenic mice bearing EC-specific overexpression of S118-non-phosphorylatable mutant of YY1 in ApoE-/- mice confirms the critical role of phospho-YY1S118 in promoting atherosclerosis through EC HDM2. Conclusions: Our findings provide new insights into the mechanisms by which disturbed flow induces endothelial phospho-YY1S118 to promote atherosclerosis, thus indicating phospho-YY1S118 as a potential molecular target for atherosclerosis treatment.
Collapse
Affiliation(s)
- Shu-Yi Wei
- Institute of Cellular and System Medicine, National Health Research Institutes, TAIWAN
| | - Yu-Tsung Shih
- Institute of Cellular and System Medicine, National Health Research Institutes, TAIWAN
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, TAIWAN
| | - Wei-Li Wang
- Institute of Cellular and System Medicine, TAIWAN
| | - Pei Ling Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, TAIWAN
| | - Chih-I Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, TAIWAN
| | - Chia-Yu Lin
- National Health Research Institutes, Taiwan, TAIWAN
| | | | - Shu Chien
- Bioengineering, University of California, San Diego, UNITED STATES
| | - Jeng-Jiann Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, TAIWAN
| |
Collapse
|
15
|
Wierer M, Werner J, Wobst J, Kastrati A, Cepele G, Aherrahrou R, Sager HB, Erdmann J, Dichgans M, Flockerzi V, Civelek M, Dietrich A, Mann M, Schunkert H, Kessler T. A proteomic atlas of the neointima identifies novel druggable targets for preventive therapy. Eur Heart J 2021; 42:1773-1785. [PMID: 33829256 PMCID: PMC8104955 DOI: 10.1093/eurheartj/ehab140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/30/2020] [Accepted: 02/19/2021] [Indexed: 11/21/2022] Open
Abstract
Aims In-stent restenosis is a complication after coronary stenting associated with morbidity and mortality. Here, we sought to investigate the molecular processes underlying neointima formation and to identify new treatment and prevention targets. Methods and results Neointima formation was induced by wire injury in mouse femoral arteries. High-accuracy proteomic measurement of single femoral arteries to a depth of about 5000 proteins revealed massive proteome remodelling, with more than half of all proteins exhibiting expression differences between injured and non-injured vessels. We observed major changes in the composition of the extracellular matrix and cell migration processes. Among the latter, we identified the classical transient receptor potential channel 6 (TRPC6) to drive neointima formation. While Trpc6
−/− mice presented reduced neointima formation compared to wild-type mice (1.44 ± 0.39 vs. 2.16 ± 0.48, P = 0.01), activating or repressing TRPC6 in human vascular smooth muscle cells resulted in increased [vehicle 156.9 ± 15.8 vs. 1-oleoyl-2-acetyl-sn-glycerol 179.1 ± 8.07 (103 pixels), P = 0.01] or decreased migratory capacity [vehicle 130.0 ± 26.1 vs. SAR7334 111.4 ± 38.0 (103 pixels), P = 0.04], respectively. In a cohort of individuals with angiographic follow-up (n = 3068, males: 69.9%, age: 59 ± 11 years, follow-up 217.1 ± 156.4 days), homozygous carriers of a common genetic variant associated with elevated TRPC6 expression were at increased risk of restenosis after coronary stenting (adjusted odds ratio 1.49, 95% confidence interval 1.08–2.05; P = 0.01). Conclusions Our study provides a proteomic atlas of the healthy and injured arterial wall that can be used to define novel factors for therapeutic targeting. We present TRPC6 as an actionable target to prevent neointima formation secondary to vascular injury and stent implantation.
Collapse
Affiliation(s)
- Michael Wierer
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Planegg, Germany
| | - Julia Werner
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Jana Wobst
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK e. V.), partner site Munich Heart Alliance, Munich, Germany
| | - Adnan Kastrati
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK e. V.), partner site Munich Heart Alliance, Munich, Germany
| | - Ganildo Cepele
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Redouane Aherrahrou
- Department of Biomedical Engineering, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Hendrik B Sager
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK e. V.), partner site Munich Heart Alliance, Munich, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,German Centre for Cardiovascular Research (DZHK e. V.), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Mete Civelek
- Department of Biomedical Engineering, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Alexander Dietrich
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the Center for Lung Research (DZL), Ludwig-Maximilians-University, Munich, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Planegg, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK e. V.), partner site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK e. V.), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
16
|
Joshi A, Rienks M, Theofilatos K, Mayr M. Systems biology in cardiovascular disease: a multiomics approach. Nat Rev Cardiol 2021; 18:313-330. [PMID: 33340009 DOI: 10.1038/s41569-020-00477-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Omics techniques generate large, multidimensional data that are amenable to analysis by new informatics approaches alongside conventional statistical methods. Systems theories, including network analysis and machine learning, are well placed for analysing these data but must be applied with an understanding of the relevant biological and computational theories. Through applying these techniques to omics data, systems biology addresses the problems posed by the complex organization of biological processes. In this Review, we describe the techniques and sources of omics data, outline network theory, and highlight exemplars of novel approaches that combine gene regulatory and co-expression networks, proteomics, metabolomics, lipidomics and phenomics with informatics techniques to provide new insights into cardiovascular disease. The use of systems approaches will become necessary to integrate data from more than one omic technique. Although understanding the interactions between different omics data requires increasingly complex concepts and methods, we argue that hypothesis-driven investigations and independent validation must still accompany these novel systems biology approaches to realize their full potential.
Collapse
Affiliation(s)
- Abhishek Joshi
- King's British Heart Foundation Centre, King's College London, London, UK
- Bart's Heart Centre, St. Bartholomew's Hospital, London, UK
| | - Marieke Rienks
- King's British Heart Foundation Centre, King's College London, London, UK
| | | | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, UK.
| |
Collapse
|
17
|
Newman AAC, Serbulea V, Baylis RA, Shankman LS, Bradley X, Alencar GF, Owsiany K, Deaton RA, Karnewar S, Shamsuzzaman S, Salamon A, Reddy MS, Guo L, Finn A, Virmani R, Cherepanova OA, Owens GK. Multiple cell types contribute to the atherosclerotic lesion fibrous cap by PDGFRβ and bioenergetic mechanisms. Nat Metab 2021; 3:166-181. [PMID: 33619382 PMCID: PMC7905710 DOI: 10.1038/s42255-020-00338-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/22/2020] [Indexed: 01/03/2023]
Abstract
Stable atherosclerotic plaques are characterized by a thick, extracellular matrix-rich fibrous cap populated by protective ACTA2+ myofibroblast (MF)-like cells, assumed to be almost exclusively derived from smooth muscle cells (SMCs). Herein, we show that in murine and human lesions, 20% to 40% of ACTA2+ fibrous cap cells, respectively, are derived from non-SMC sources, including endothelial cells (ECs) or macrophages that have undergone an endothelial-to-mesenchymal transition (EndoMT) or a macrophage-to-mesenchymal transition (MMT). In addition, we show that SMC-specific knockout of the Pdgfrb gene, which encodes platelet-derived growth factor receptor beta (PDGFRβ), in Apoe-/- mice fed a Western diet for 18 weeks resulted in brachiocephalic artery lesions nearly devoid of SMCs but with no changes in lesion size, remodelling or indices of stability, including the percentage of ACTA2+ fibrous cap cells. However, prolonged Western diet feeding of SMC Pdgfrb-knockout mice resulted in reduced indices of stability, indicating that EndoMT- and MMT-derived MFs cannot compensate indefinitely for loss of SMC-derived MFs. Using single-cell and bulk RNA-sequencing analyses of the brachiocephalic artery region and in vitro models, we provide evidence that SMC-to-MF transitions are induced by PDGF and transforming growth factor-β and dependent on aerobic glycolysis, while EndoMT is induced by interleukin-1β and transforming growth factor-β. Together, we provide evidence that the ACTA2+ fibrous cap originates from a tapestry of cell types, which transition to an MF-like state through distinct signalling pathways that are either dependent on or associated with extensive metabolic reprogramming.
Collapse
Affiliation(s)
- Alexandra A C Newman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Cardiovascular Research Center, New York University Langone Medical Center, NY, New York, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Vlad Serbulea
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Richard A Baylis
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Laura S Shankman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Xenia Bradley
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Gabriel F Alencar
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Katherine Owsiany
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Rebecca A Deaton
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Santosh Karnewar
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sohel Shamsuzzaman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Anita Salamon
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mahima S Reddy
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Liang Guo
- CVPath Institute, Gaithersburg, MD, USA
| | | | | | - Olga A Cherepanova
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Cardiovascular and Metabolic Sciences Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
18
|
Olkowicz M, Czyzynska-Cichon I, Szupryczynska N, Kostogrys RB, Kochan Z, Debski J, Dadlez M, Chlopicki S, Smolenski RT. Multi-omic signatures of atherogenic dyslipidaemia: pre-clinical target identification and validation in humans. J Transl Med 2021; 19:6. [PMID: 33407555 PMCID: PMC7789501 DOI: 10.1186/s12967-020-02663-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dyslipidaemia is a major risk factor for atherosclerosis and cardiovascular diseases. The molecular mechanisms that translate dyslipidaemia into atherogenesis and reliable markers of its progression are yet to be fully elucidated. To address this issue, we conducted a comprehensive metabolomic and proteomic analysis in an experimental model of dyslipidaemia and in patients with familial hypercholesterolemia (FH). METHODS Liquid chromatography/mass spectrometry (LC/MS) and immunoassays were used to find out blood alterations at metabolite and protein levels in dyslipidaemic ApoE-/-/LDLR-/- mice and in FH patients to evaluate their human relevance. RESULTS We identified 15 metabolites (inhibitors and substrates of nitric oxide synthase (NOS), low-molecular-weight antioxidants (glutamine, taurine), homocysteine, methionine, 1-methylnicotinamide, alanine and hydroxyproline) and 9 proteins (C-reactive protein, proprotein convertase subtilisin/kexin type 9, apolipoprotein C-III, soluble intercellular adhesion molecule-1, angiotensinogen, paraoxonase-1, fetuin-B, vitamin K-dependent protein S and biglycan) that differentiated FH patients from healthy controls. Most of these changes were consistently found in dyslipidaemic mice and were further amplified if mice were fed an atherogenic (Western or low-carbohydrate, high-protein) diet. CONCLUSIONS The alterations highlighted the involvement of an immune-inflammatory response system, oxidative stress, hyper-coagulation and impairment in the vascular function/regenerative capacity in response to dyslipidaemia that may also be directly engaged in development of atherosclerosis. Our study further identified potential biomarkers for an increased risk of atherosclerosis that may aid in clinical diagnosis or in the personalized treatment.
Collapse
Affiliation(s)
- Mariola Olkowicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St, 80-211, Gdansk, Poland. .,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348, Krakow, Poland.
| | - Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348, Krakow, Poland
| | - Natalia Szupryczynska
- Department of Nutritional Biochemistry, Faculty of Health Sciences, Medical University of Gdansk, 7 Debinki St., 80-211, Gdansk, Poland
| | - Renata B Kostogrys
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka St., 30-149, Krakow, Poland
| | - Zdzislaw Kochan
- Department of Nutritional Biochemistry, Faculty of Health Sciences, Medical University of Gdansk, 7 Debinki St., 80-211, Gdansk, Poland
| | - Janusz Debski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawinskiego St., 02-106, Warsaw, Poland
| | - Michal Dadlez
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawinskiego St., 02-106, Warsaw, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348, Krakow, Poland.,Chair of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka St., 31-531, Krakow, Poland
| | - Ryszard T Smolenski
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St, 80-211, Gdansk, Poland.
| |
Collapse
|
19
|
Quintero M, Tasic L, Annichino-Bizzacchi J. Thrombosis: Current knowledge based on metabolomics by nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). THROMBOSIS UPDATE 2020. [DOI: 10.1016/j.tru.2020.100011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
20
|
Wang YQ, Li SJ, Man YH, Zhuang G. Serum metabonomics coupled with HPLC-LTQ/orbitrap MS and multivariate data analysis on the ameliorative effects of Bidens bipinnata L. in hyperlipidemic rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113196. [PMID: 32730873 DOI: 10.1016/j.jep.2020.113196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/09/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hyperlipidemia (HLP) is a prevalence chronic cardiovascular disease, which is treated by traditional Chinese medicine (TCM) in China. More and more attention has been paid to the application of metabolomics in the study of TCM. Bidens bipinnata L. (BBL), a folk medicine in contemporary China, has the efficacy in the treatment of hyperlipidemia (HLP) in China. However, little is known of the underlying mechanism of BBL. This research aimed to investigate ameliorative effects of BBL on hyperlipidemic rats and explore the mechanism by metabolomics method. MATERIALS AND METHODS Hyperlipidemic rats were established by high fat diet (HFD). Biochemical assay was used to evaluate the efficacy of BBL. A metabolomics approach based on high performance liquid chromatography-linear ion trap/orbitrap high-resolution mass spectrometry (HPLC-LTQ/orbitrap MS) was performed to analyze the serum biomarkers from model group, control group and BBL group. Principle component analysis (PCA) and partial least-squares discriminate analysis (PLS-DA) were utilized to identify differences of metabolic profiles in rats among the three groups. In order to identify possible pathways that were affected by HLP, the identified endogenous metabolites were analyzed by using MetaboAnalyst. In the network pharmacology study, our research group found that PPAR signaling pathway was the most important pathway of BBL in the treatment of HLP. Then, it was found that changes in the major metabolic pathways would affect the PPAR signaling pathway through comprehensive analysis based on KEGG database. Therefore, the expression of key genes in the PPAR signaling pathway was detected by real-time quantitative fluorescence PCR (RT-qPCR). RESULTS Six metabolites, which showed a significantly restoring trend from HLP to normal condition, were regarded as potential biomarkers of BBL treatment. The levels of phosphorylcholine, mevalonic acid and leukotriene B4 (LTB4) increased significantly (P < 0.01) in hyperlipidemic rats, while the levels of linoleic acid, arachidonic acid (AA) and lysophosphatidylcholine (18:0) (Lyso PC (18:0)) decreased significantly (P < 0.01) in comparison with control rats. Those endogenous metabolites were chiefly involved in linoleic acid metabolism, AA metabolism and terpenoid backbone biosynthesis. According to the results of RT-qPCR analysis, the mRNA expressions of PPAR α, PPAR β and PPARγ in model group were difference compared with control group. And the expression difference could be regulated closer to normal level after BBL intervention. CONCLUSIONS The results of biochemical assay, serum metabolic pattern and RT-qPCR analysis showed that BBL could exert a significant improvement on lipid levels, liver function, renal function, as well as the mRNA expression level of PPAR signaling pathway.
Collapse
Affiliation(s)
- Yu-Qing Wang
- Center of Scientific Research, Nanyang Medical College, Nanyang, 473061, China.
| | - Shu-Jiao Li
- Center of Scientific Research, Nanyang Medical College, Nanyang, 473061, China
| | - Yong-Hong Man
- Center of Scientific Research, Nanyang Medical College, Nanyang, 473061, China
| | - Guo Zhuang
- Center of Scientific Research, Nanyang Medical College, Nanyang, 473061, China
| |
Collapse
|
21
|
Effect of Defatted Dabai Pulp Extract in Urine Metabolomics of Hypercholesterolemic Rats. Nutrients 2020; 12:nu12113511. [PMID: 33202660 PMCID: PMC7697915 DOI: 10.3390/nu12113511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
A source of functional food can be utilized from a source that might otherwise be considered waste. This study investigates the hypocholesterolemic effect of defatted dabai pulp (DDP) from supercritical carbon dioxide extraction and the metabolic alterations associated with the therapeutic effects of DDP using 1H NMR urinary metabolomic analysis. Male-specific pathogen-free Sprague-Dawley rats were fed with a high cholesterol diet for 30 days to induce hypercholesterolemia. Later, the rats were administered with a 2% DDP treatment diet for another 30 days. Supplementation with the 2% DDP treatment diet significantly reduced the level of total cholesterol (TC), triglyceride, low-density lipoprotein (LDL), and inflammatory markers (C-reactive protein (CRP), interleukin 6 (IL6) and tumour necrosis factor-α (α-TNF)) and significantly increased the level of antioxidant profile (total antioxidant status (TAS), superoxide dismutase (SOD), glutathione peroxide (GPX), and catalase (CAT)) compared with the positive control group (PG) group (p < 0.05). The presence of high dietary fibre (28.73 ± 1.82 g/100 g) and phenolic compounds (syringic acid, 4-hydroxybenzoic acid and gallic acid) are potential factors contributing to the beneficial effect. Assessment of 1H NMR urinary metabolomics revealed that supplementation of 2% of DDP can partially recover the dysfunction in the metabolism induced by hypercholesterolemia via choline metabolism. 1H-NMR-based metabolomic analysis of urine from hypercholesterolemic rats in this study uncovered the therapeutic effect of DDP to combat hypercholesterolemia.
Collapse
|
22
|
Zhang W, Qi X, Zhao Y, Liu Y, Xu L, Song X, Xiao C, Yuan X, Zhang J, Hou M. Study of injectable Blueberry anthocyanins-loaded hydrogel for promoting full-thickness wound healing. Int J Pharm 2020; 586:119543. [PMID: 32561307 DOI: 10.1016/j.ijpharm.2020.119543] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
Injectable hydrogels with high anti-inflammatory and wound-healing properties are highly desirable for clinical application. In the present study, injectable hydrogels were prepared based on carboxymethyl chitosan and oxidized hyaluronic acid. Blueberry anthocyanins (BA), which are known for their antioxidant and antiinflammatory properties, were successfully loaded into the hydrogels. The gelation kinetics and mechanical properties of the hydrogels were investigated. Oxidized hyaluronic acid with an oxidation degree of 38.1% conferred a suitable gelation time (~70 s) and mechanical properties (76.0 kPa compression stress at strain of 80%) of the hydrogel. The injectable BA-loaded hydrogel significantly accelerated the wound healing process in a full-thickness skin wound model in rats, promoted epithelial and tissue regeneration, exerted antiinflammatory effects, and promoted collagen deposition and angiogenesis. Besides, the hydrogel could upregulate the expression of VEGF and IL-10 proteins, downregulate the NF-κB level, and promote macrophage transformation from M1 phenotype to M2. The promotion of the BA-loaded hydrogel on wound healing were mainly realized by its biological effects, including antioxidant and anti-inflammatory effects, and regulation of various wound healing related factors. The results suggested that BA and the hydrogels exert synergistic effects in promoting wound healing. Injectable BA-loaded hydrogels appear to be promising candidates for wound healing application.
Collapse
Affiliation(s)
- Wenchang Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xiaomin Qi
- The People's Hospital of Liaoning Province, Shenyang 110016, PR China
| | - Yan Zhao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China.
| | - Yunen Liu
- Emergency Medicine, Department of General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Lei Xu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Xiaoqiang Song
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Chenjuan Xiao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xiaoxue Yuan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Jinsong Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China.
| | - Mingxiao Hou
- Emergency Medicine, Department of General Hospital of Northern Theater Command, Shenyang 110016, PR China
| |
Collapse
|
23
|
Papandreou C, Moré M, Bellamine A. Trimethylamine N-Oxide in Relation to Cardiometabolic Health-Cause or Effect? Nutrients 2020; 12:E1330. [PMID: 32392758 PMCID: PMC7284902 DOI: 10.3390/nu12051330] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Trimethylamine-N-oxide (TMAO) is generated in a microbial-mammalian co-metabolic pathway mainly from the digestion of meat-containing food and dietary quaternary amines such as phosphatidylcholine, choline, betaine, or L-carnitine. Fish intake provides a direct significant source of TMAO. Human observational studies previously reported a positive relationship between plasma TMAO concentrations and cardiometabolic diseases. Discrepancies and inconsistencies of recent investigations and previous studies questioned the role of TMAO in these diseases. Several animal studies reported neutral or even beneficial effects of TMAO or its precursors in cardiovascular disease model systems, supporting the clinically proven beneficial effects of its precursor, L-carnitine, or a sea-food rich diet (naturally containing TMAO) on cardiometabolic health. In this review, we summarize recent preclinical and epidemiological evidence on the effects of TMAO, in order to shed some light on the role of TMAO in cardiometabolic diseases, particularly as related to the microbiome.
Collapse
|
24
|
Li X, Zhou H, Guo D, Hu Y, Fang X, Chen Y, Zhang F. Oxidative stress and inflammation: Early predictive indicators of multiple recurrent coronary in‐stent chronic total occlusions in elderly patients after coronary stenting. IUBMB Life 2020; 72:1023-1033. [PMID: 32022379 DOI: 10.1002/iub.2239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 01/23/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Xia Li
- Department of GeriatricsThe Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| | - Hualan Zhou
- Department of GeriatricsThe Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| | - Dianxuan Guo
- Department of GeriatricsThe Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| | - Youdong Hu
- Department of GeriatricsThe Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| | - Xiang Fang
- Department of GeriatricsThe Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| | - Ying Chen
- Department of GeriatricsThe Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| | - Fenglin Zhang
- Department of GeriatricsThe Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| |
Collapse
|
25
|
Piacentini L, Saccu C, Bono E, Tremoli E, Spirito R, Colombo GI, Werba JP. Gene-expression profiles of abdominal perivascular adipose tissue distinguish aortic occlusive from stenotic atherosclerotic lesions and denote different pathogenetic pathways. Sci Rep 2020; 10:6245. [PMID: 32277146 PMCID: PMC7148291 DOI: 10.1038/s41598-020-63361-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Perivascular adipose tissue (PVAT) helps regulate arterial homeostasis and plays a role in the pathogenesis of large vessel diseases. In this study, we investigated whether the PVAT of aortic occlusive lesions shows specific gene-expression patterns related to pathophysiology. By a genome-wide approach, we investigated the PVAT transcriptome in patients with aortoiliac occlusive disease. We compared the adipose layer surrounding the distal aorta (atherosclerotic lesion) with the proximal aorta (plaque-free segment), both within and between patients with complete aortoiliac occlusion (Oc) and low-grade aortic stenosis (St). We found that PVAT of the distal versus proximal aorta within both Oc- and St-patients lacks specific, locally restricted gene-expression patterns. Conversely, singular gene-expression profiles distinguished the PVAT between Oc- and St-patients. Functional enrichment analysis revealed that these signatures were associated with pathways related to metabolism of cholesterol, vessel tone regulation, and remodeling, including TGF-β and SMAD signaling. We finally observed that gene-expression profiles in omental-visceral or subcutaneous fat differentiated between Oc- and St-patients, suggesting that the overall adipose component associates with a different atherosclerosis burden. Our work points out the role of PVAT and, likely, other adipose tissues play in the pathophysiological mechanisms underlying atherosclerotic disease, including the abdominal aortic occlusive forms.
Collapse
Affiliation(s)
- Luca Piacentini
- Immunology and Functional Genomics Unit, Centro Cardiologico Monzino, IRCCS, 20138, Milan, Italy.
| | - Claudio Saccu
- Vascular and Endovascular Surgery Unit, Centro Cardiologico Monzino, IRCCS, 20138, Milan, Italy
| | - Elisa Bono
- Immunology and Functional Genomics Unit, Centro Cardiologico Monzino, IRCCS, 20138, Milan, Italy
| | - Elena Tremoli
- Scientific Direction, Centro Cardiologico Monzino, IRCCS, 20138, Milan, Italy
| | - Rita Spirito
- Vascular and Endovascular Surgery Unit, Centro Cardiologico Monzino, IRCCS, 20138, Milan, Italy
| | - Gualtiero Ivanoe Colombo
- Immunology and Functional Genomics Unit, Centro Cardiologico Monzino, IRCCS, 20138, Milan, Italy
| | - José Pablo Werba
- Atherosclerosis Prevention Unit, Centro Cardiologico Monzino, IRCCS, 20138, Milan, Italy
| |
Collapse
|
26
|
Effect of Saffron Extract and Crocin in Serum Metabolites of Induced Obesity Rats. BIOMED RESEARCH INTERNATIONAL 2020. [DOI: 10.1155/2020/1247946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effect of saffron extract (Crocus sativus L.) and its primary compound crocin was studied on an induced obesity rat model. Our study is aimed at investigating and comparing the metabolite changes in obese and obese treated with saffron extract and crocin and at improving the understanding of the therapeutic effect of saffron extract and crocin. Two different doses of saffron extracts and crocin (40 and 80 mg/kg) were incorporated in a high-fat diet (HFD) and were given for eight weeks to the obese rats. The changes in metabolite profiles of the serum were determined using proton nuclear magnetic resonance (1H-NMR). Pattern recognition by multivariate data analysis (MVDA) showed that saffron extract and crocin at 80 mg/kg was the best dosage compared to 40 mg/kg. It also showed that both treatments work in different pathways, especially concerning glucose, lipid, and creatinine metabolism. In conclusion, although the pure compound, crocin, is superior to the saffron crude extract, this finding suggested that the saffron extract can be considered as an alternative aside from crocin in treating obesity.
Collapse
|
27
|
Kader T, Porteous CM, Jones GT, Dickerhof N, Narayana VK, Tull D, Taraknath S, McCormick SPA. Ribose-cysteine protects against the development of atherosclerosis in apoE-deficient mice. PLoS One 2020; 15:e0228415. [PMID: 32084149 PMCID: PMC7034848 DOI: 10.1371/journal.pone.0228415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/14/2020] [Indexed: 01/09/2023] Open
Abstract
Ribose-cysteine is a synthetic compound designed to increase glutathione (GSH) synthesis. Low levels of GSH and the GSH-dependent enzyme, glutathione peroxidase (GPx), is associated with cardiovascular disease (CVD) in both mice and humans. Here we investigate the effect of ribose-cysteine on GSH, GPx, oxidised lipids and atherosclerosis development in apolipoprotein E-deficient (apoE-/-) mice. Female 12-week old apoE-/- mice (n = 15) were treated with 4-5 mg/day ribose-cysteine in drinking water for 8 weeks or left untreated. Blood and livers were assessed for GSH, GPx activity and 8-isoprostanes. Plasma alanine transferase (ALT) and lipid levels were measured. Aortae were quantified for atherosclerotic lesion area in the aortic sinus and brachiocephalic arch and 8-isoprostanes measured. Ribose-cysteine treatment significantly reduced ALT levels (p<0.0005) in the apoE-/- mice. Treatment promoted a significant increase in GSH concentrations in the liver (p<0.05) and significantly increased GPx activity in the liver and erythrocytes of apoE-/-mice (p<0.005). The level of 8-isoprostanes were significantly reduced in the livers and arteries of apoE-/- mice (p<0.05 and p<0.0005, respectively). Ribose-cysteine treatment showed a significant decrease in total and low density lipoprotein (LDL) cholesterol (p<0.05) with no effect on other plasma lipids with the LDL reduction likely through upregulation of scavenger receptor-B1 (SR-B1). Ribose-cysteine treatment significantly reduced atherosclerotic lesion area by >50% in both the aortic sinus and brachiocephalic branch (p<0.05). Ribose-cysteine promotes a significant GSH-based antioxidant effect in multiple tissues as well as an LDL-lowering response. These effects are accompanied by a marked reduction in atherosclerosis suggesting that ribose-cysteine might increase protection against CVD.
Collapse
Affiliation(s)
- Tanjina Kader
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Carolyn M. Porteous
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Gregory T. Jones
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Vinod K. Narayana
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Australia
| | - Dedreia Tull
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Australia
| | - Sreya Taraknath
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sally P. A. McCormick
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- * E-mail:
| |
Collapse
|
28
|
Talib J, Hains PG, Tumanov S, Hodson MP, Robinson PJ, Stocker R. Barocycler-Based Concurrent Multiomics Method To Assess Molecular Changes Associated with Atherosclerosis Using Small Amounts of Arterial Tissue from a Single Mouse. Anal Chem 2019; 91:12670-12679. [PMID: 31509387 DOI: 10.1021/acs.analchem.9b01842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atherosclerosis is a complex, multifactorial disease characterized by the buildup of plaque in the arterial wall. Apolipoprotein E gene deficient (Apoe-/-) mice serve as a commonly used tool to elucidate the pathophysiology of atherosclerosis because of their propensity to spontaneously develop arterial lesions. To date, however, an integrated omics assessment of atherosclerotic lesions in individual Apoe-/- mice has been challenging because of the small amount of diseased and nondiseased tissue available. To address this current limitation, we developed a multiomics method (Multi-ABLE) based on the proteomic method called accelerated Barocycler lysis and extraction (ABLE) to assess the depth of information that can be obtained from arterial tissue derived from a single mouse by splitting ABLE to allow for a combined proteomics-metabolomics-lipidomics analysis (Multi-ABLE). The new method includes tissue lysis via pressure cycling technology (PCT) in a Barocycler, followed by proteomic analysis of half the sample by nanoLC-MS and sequential extraction of lipids (organic extract) and metabolites (aqueous extract) combined with HILIC and reversed phase chromatography and time-of-flight mass spectrometry on the other half. Proteomic analysis identified 845 proteins, 93 of which were significantly altered in lesion-containing arteries. Lipidomic and metabolomic analyses detected 851 lipid and 362 metabolite features, which included 215 and 65 identified lipids and metabolites, respectively. The Multi-ABLE method is the first to apply a concurrent multiomics pipeline to cardiovascular disease using small (<5 mg) tissue samples, and it is applicable to other diseases where limited size samples are available at specific points during disease progression.
Collapse
Affiliation(s)
- Jihan Talib
- Vascular Biology Division , Victor Chang Cardiac Research Institute , Lowy Packer Building, 405 Liverpool Street , Darlinghurst , New South Wales 2010 , Australia.,St Vincent's Clinical School , University of New South Wales Medicine , Camperdown , New South Wales 2050 , Australia
| | - Peter G Hains
- Cell Signalling Unit, Children's Medical Research Institute , The University of Sydney , 214 Hawkesbury Rd , Westmead , New South Wales 2145 , Australia
| | - Sergey Tumanov
- Vascular Biology Division , Victor Chang Cardiac Research Institute , Lowy Packer Building, 405 Liverpool Street , Darlinghurst , New South Wales 2010 , Australia
| | - Mark P Hodson
- Freedman Foundation Metabolomics Facility, Victor Chang Innovation Centre , Victor Chang Cardiac Research Institute , Lowy Packer Building, 405 Liverpool Street , Darlinghurst , New South Wales 2010 , Australia.,School of Pharmacy , University of Queensland , 20 Cornwall Street , Woolloongabba , Queensland 4102 , Australia
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute , The University of Sydney , 214 Hawkesbury Rd , Westmead , New South Wales 2145 , Australia
| | - Roland Stocker
- Vascular Biology Division , Victor Chang Cardiac Research Institute , Lowy Packer Building, 405 Liverpool Street , Darlinghurst , New South Wales 2010 , Australia.,St Vincent's Clinical School , University of New South Wales Medicine , Camperdown , New South Wales 2050 , Australia
| |
Collapse
|
29
|
Barba I, Andrés M, Garcia-Dorado D. Metabolomics and Heart Diseases: From Basic to Clinical Approach. Curr Med Chem 2019; 26:46-59. [PMID: 28990507 DOI: 10.2174/0929867324666171006151408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 03/15/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND The field of metabolomics has been steadily increasing in size for the last 15 years. Advances in analytical and statistical methods have allowed metabolomics to flourish in various areas of medicine. Cardiovascular diseases are some of the main research targets in metabolomics, due to their social and medical relevance, and also to the important role metabolic alterations play in their pathogenesis and evolution. Metabolomics has been applied to the full spectrum of cardiovascular diseases: from patient risk stratification to myocardial infarction and heart failure. However - despite the many proof-ofconcept studies describing the applicability of metabolomics in the diagnosis, prognosis and treatment evaluation in cardiovascular diseases - it is not yet used in routine clinical practice. Recently, large phenome centers have been established in clinical environments, and it is expected that they will provide definitive proof of the applicability of metabolomics in clinical practice. But there is also room for small and medium size centers to work on uncommon pathologies or to resolve specific but relevant clinical questions. OBJECTIVES In this review, we will introduce metabolomics, cover the metabolomic work done so far in the area of cardiovascular diseases. CONCLUSION The cardiovascular field has been at the forefront of metabolomics application and it should lead the transfer to the clinic in the not so distant future.
Collapse
Affiliation(s)
- Ignasi Barba
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autonoma de Barcelona, Barcelona, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Mireia Andrés
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - David Garcia-Dorado
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autonoma de Barcelona, Barcelona, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| |
Collapse
|
30
|
Kato R, Hayashi M, Aiuchi T, Sawada N, Obama T, Itabe H. Temporal and spatial changes of peroxiredoxin 2 levels in aortic media at very early stages of atherosclerotic lesion formation in apoE-knockout mice. Free Radic Biol Med 2019; 130:348-360. [PMID: 30395970 DOI: 10.1016/j.freeradbiomed.2018.10.458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 01/21/2023]
Abstract
The events that trigger early onset of atherosclerotic lesion formation are poorly understood. Initially, microscopic atherosclerotic lesions appear in the aortic root in 10-week-old apoE-knockout mice that are fed normal chow. Using proteome and immunohistochemical analyses, we investigated proteins in aortic media whose expression changes in athero-prone regions at the beginning of lesion formation. Protein profiles of the root/arch and thoracic/abdominal regions of aortas in 10-week-old apoE-knockout mice were analyzed using 2D-gel electrophoresis. Proteins in 81 spots with different abundance were identified. Among them, we focused on proteins related to oxidative stress and smooth muscle cells (SMCs). The level of peroxiredoxin 2 (Prx2), a major cellular antioxidant enzyme that reduces hydrogen peroxide, was lower in aortic root/arch compared with thoracic/abdominal aorta. Immunohistochemical staining demonstrated that Prx2 expression in SMCs in the aortic root was high at 4 weeks and decreased at 10 weeks in apoE-knockout mice, while Prx2 expression in the aorta was unchanged in wild-type mice. The level of Prx2 expression correlated positively with the SMC differentiation markers, α-smooth muscle actin and transgelin, suggesting that a decline in Prx2 expression accompanies SMC dedifferentiation. Accumulated acrolein-modified proteins and the infiltration of macrophages in aortic media were observed in areas with low Prx2 expression. These results showed that Prx2 expression declines in athero-prone aortic root before lesion formation, and this reduction in Prx2 expression correlates with lipid peroxidation, SMC dedifferentiation, and macrophage recruitment.
Collapse
Affiliation(s)
- Rina Kato
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Masataka Hayashi
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Toshihiro Aiuchi
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Naoko Sawada
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takashi Obama
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hiroyuki Itabe
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| |
Collapse
|
31
|
Proteomic Analysis of Liver from Human Lipoprotein(a) Transgenic Mice Shows an Oxidative Stress and Lipid Export Response. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4963942. [PMID: 30596094 PMCID: PMC6286786 DOI: 10.1155/2018/4963942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/11/2018] [Indexed: 12/26/2022]
Abstract
Background Mouse models of hypercholesterolaemia have been used to identify arterial proteins involved in atherosclerosis. As the liver is extremely sensitive to dyslipidemia, one might expect major changes in the abundance of liver proteins in these models even before atherosclerosis develops. Methods Lipid levels were measured and a proteomic approach was used to quantify proteins in the livers of mice with an elevated low-density lipoprotein (LDL) and the presence of lipoprotein(a) [Lp(a)] but no atherosclerosis. Results The livers of Lp(a) mice showed an increased triglyceride but reduced phospholipid and oxidised lipid content. Two-dimensional gel electrophoresis and mass spectrometry analysis identified 24 liver proteins with significantly increased abundance in Lp(a) mice (P<0.05). A bioinformatic analysis of the 24 proteins showed the major effect was that of an enhanced antioxidant and lipid efflux response with significant increases in antioxidant (Park7, Gpx1, Prdx6, and Sod1) and lipid metabolism proteins (Fabp4, Acaa2, apoA4, and ApoA1). Interestingly, human liver cells treated with Lp(a) showed significant increases in Gpx1 and Prdx6 but not Sod1 or Park7. Conclusions The presence of human LDL and Lp(a) in mice promotes an enhanced flux of lipids into the liver which elicits an antioxidant and lipid export response before the onset of atherosclerosis. The antioxidant response can be reproduced in human liver cells treated with Lp(a).
Collapse
|
32
|
Jin P, Bian Y, Wang K, Cong G, Yan R, Sha Y, Ma X, Zhou J, Yuan Z, Jia S. Homocysteine accelerates atherosclerosis via inhibiting LXRα-mediated ABCA1/ABCG1-dependent cholesterol efflux from macrophages. Life Sci 2018; 214:41-50. [PMID: 30393020 DOI: 10.1016/j.lfs.2018.10.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/15/2018] [Accepted: 10/26/2018] [Indexed: 11/19/2022]
Abstract
AIMS Macrophage-derived foam-cell formation plays a crucial role in the development of atherosclerosis, and liver X receptor alpha (LXRα) is a key regulator of lipid metabolism in macrophages. Homocysteine (Hcy) is an independent risk factor of atherosclerosis; however, the regulation of lipid metabolism and role of LXRα induced by Hcy in macrophages is still unknown. The present study aimed to investigate the potential role of Hcy in disordered lipid metabolism and atherosclerotic lesions, especially the effects of Hcy on cholesterol efflux in macrophages and the possible mechanisms. MAIN METHODS In vitro, lipid accumulation and cholesterol efflux were evaluated in THP-1 macrophages with Hcy intervention. Real-time quantitative PCR and western blot analyses were used to assess mRNA and protein levels. In vivo, atherosclerotic lesions and lipid profiles were evaluated by methionine diet-induced hyperhomocysteinemia (HHcy) in ApoE-/- mice. The LXRα agonist T0901317 was used to verify the role of LXRα in HHcy-accelerated atherosclerosis. KEY FINDINGS Hcy promoted lipid accumulation and inhibited cholesterol efflux in THP-1 macrophages. HHcy mice showed increased lesion area and lipid accumulation in plaque. Both studies in vitro and in vivo showed decreased expression of ATP binding cassette transporter A1 (ABCA1) and G1 (ABCG1). T0901317 treatment increased ABCA1 and ABCG1 levels; reversed macrophage-derived foam-cell formation in THP-1 macrophages and reduced atherosclerotic lesions in ApoE-/- mice. SIGNIFICANCE Inhibition of LXRα-mediated ABCA1/ABCG1-dependent cholesterol efflux from macrophages is a novel mechanism in Hcy-accelerated atherosclerosis.
Collapse
Affiliation(s)
- Ping Jin
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Yitong Bian
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kai Wang
- Heart Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Guangzhi Cong
- Heart Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Ru Yan
- Institute of Cardiovascular Diseases, General Hospital of Ningxia Medical University Yinchuan, Ningxia 750001, China
| | - Yong Sha
- Heart Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Xueping Ma
- Heart Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Juan Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zuyi Yuan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shaobin Jia
- Heart Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China; Institute of Cardiovascular Diseases, General Hospital of Ningxia Medical University Yinchuan, Ningxia 750001, China.
| |
Collapse
|
33
|
Targeted metabolomic approach in men with carotid plaque. PLoS One 2018; 13:e0200547. [PMID: 30011297 PMCID: PMC6047792 DOI: 10.1371/journal.pone.0200547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/28/2018] [Indexed: 12/22/2022] Open
Abstract
Background The aim of the study was to analyse the presence of several metabolites related to atherosclerosis in the plasma of patients with unstable carotid plaque and in the plasma of healthy subjects. Materials and methods We included 20 patients who had undergone carotid endarterectomy and 20 healthy subjects as a control group. All the subjects recruited were male. We used a metabolomic approach with liquid chromatography coupled to mass spectrometry to evaluate plasma metabolite levels in the metabolic pathway involved in the progression of atherosclerotic plaque. Results We observed that circulating levels of 20-HETE were significantly higher in patients with atheroma plaque than in healthy subjects (p = 0.018). No differences were found with regard to the other metabolites analysed. We also conducted a random forest analysis and found that 20-HETE was the main differentiator in the list of selected metabolites. In addition, plasma levels of 20-HETE correlated positively with body mass index (r = 0.427, p = 0.007) and diastolic blood pressure (r = 0.365, p = 0.028). Conclusion This study confirms that of all the molecules studied only 20-HETE is related to carotid plaque. Further studies are needed to compare patients with stable carotid plaque vs. patients with unstable carotid plaque in order to confirm that 20-HETE could be a potential factor related to carotid plaque.
Collapse
|
34
|
Herrington DM, Mao C, Parker SJ, Fu Z, Yu G, Chen L, Venkatraman V, Fu Y, Wang Y, Howard TD, Jun G, Zhao CF, Liu Y, Saylor G, Spivia WR, Athas GB, Troxclair D, Hixson JE, Vander Heide RS, Wang Y, Van Eyk JE. Proteomic Architecture of Human Coronary and Aortic Atherosclerosis. Circulation 2018; 137:2741-2756. [PMID: 29915101 PMCID: PMC6011234 DOI: 10.1161/circulationaha.118.034365] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/12/2018] [Indexed: 12/26/2022]
Abstract
BACKGOUND The inability to detect premature atherosclerosis significantly hinders implementation of personalized therapy to prevent coronary heart disease. A comprehensive understanding of arterial protein networks and how they change in early atherosclerosis could identify new biomarkers for disease detection and improved therapeutic targets. METHODS Here we describe the human arterial proteome and proteomic features strongly associated with early atherosclerosis based on mass spectrometry analysis of coronary artery and aortic specimens from 100 autopsied young adults (200 arterial specimens). Convex analysis of mixtures, differential dependent network modeling, and bioinformatic analyses defined the composition, network rewiring, and likely regulatory features of the protein networks associated with early atherosclerosis and how they vary across 2 anatomic distributions. RESULTS The data document significant differences in mitochondrial protein abundance between coronary and aortic samples (coronary>>aortic), and between atherosclerotic and normal tissues (atherosclerotic< CONCLUSIONS The human arterial proteome can be viewed as a complex network whose architectural features vary considerably as a function of anatomic location and the presence or absence of atherosclerosis. The data suggest important reductions in mitochondrial protein abundance in early atherosclerosis and also identify a subset of plasma proteins that are highly predictive of angiographically defined coronary disease.
Collapse
Affiliation(s)
- David M Herrington
- Section on Cardiovascular Medicine, Department of Internal Medicine (D.M.H., C.F.Z., G.S.)
| | - Chunhong Mao
- Biocomplexity Institute of Virginia Tech, Virginia Tech, Blacksburg (C.M.)
| | - Sarah J Parker
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Heart Institute, and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (S.T.P., V.V., W.R.S., J.E.V.E.)
| | - Zongming Fu
- Johns Hopkins Medical Institute, Baltimore, MD (Z.F.)
| | - Guoqiang Yu
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington (G.Y., L.C., Y.F., Yizhi Wang, Yue Wang)
| | - Lulu Chen
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington (G.Y., L.C., Y.F., Yizhi Wang, Yue Wang)
| | - Vidya Venkatraman
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Heart Institute, and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (S.T.P., V.V., W.R.S., J.E.V.E.)
| | - Yi Fu
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington (G.Y., L.C., Y.F., Yizhi Wang, Yue Wang)
| | - Yizhi Wang
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington (G.Y., L.C., Y.F., Yizhi Wang, Yue Wang)
| | | | - Goo Jun
- Department of Epidemiology, Human Genetics and Environmental Sciences, Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston (G.J., J.E.H.)
| | - Caroline F Zhao
- Section on Cardiovascular Medicine, Department of Internal Medicine (D.M.H., C.F.Z., G.S.)
| | - Yongmei Liu
- Department of Epidemiology, Division of Public Health Sciences (Y.L.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Georgia Saylor
- Section on Cardiovascular Medicine, Department of Internal Medicine (D.M.H., C.F.Z., G.S.)
| | - Weston R Spivia
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Heart Institute, and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (S.T.P., V.V., W.R.S., J.E.V.E.)
| | - Grace B Athas
- Department of Pathology, Louisiana State Health Science Center, New Orleans (G.B.A., D.T., R.C.V.H.)
| | - Dana Troxclair
- Department of Pathology, Louisiana State Health Science Center, New Orleans (G.B.A., D.T., R.C.V.H.)
| | - James E Hixson
- Department of Epidemiology, Human Genetics and Environmental Sciences, Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston (G.J., J.E.H.)
| | - Richard S Vander Heide
- Department of Pathology, Louisiana State Health Science Center, New Orleans (G.B.A., D.T., R.C.V.H.)
| | - Yue Wang
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington (G.Y., L.C., Y.F., Yizhi Wang, Yue Wang)
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Heart Institute, and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (S.T.P., V.V., W.R.S., J.E.V.E.)
| |
Collapse
|
35
|
Abstract
Disturbances in cardiac metabolism underlie most cardiovascular diseases. Metabolomics, one of the newer omics technologies, has emerged as a powerful tool for defining changes in both global and cardiac-specific metabolism that occur across a spectrum of cardiovascular disease states. Findings from metabolomics studies have contributed to better understanding of the metabolic changes that occur in heart failure and ischemic heart disease and have identified new cardiovascular disease biomarkers. As technologies advance, the metabolomics field continues to evolve rapidly. In this review, we will discuss the current state of metabolomics technologies, including consideration of various metabolomics platforms and elements of study design; the emerging utility of stable isotopes for metabolic flux studies; and the use of metabolomics to better understand specific cardiovascular diseases, with an emphasis on recent advances in the field.
Collapse
Affiliation(s)
- Robert W McGarrah
- From the Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute (R.W.M., S.B.C., G.F.Z., S.H.S., C.B.N.)
- Division of Cardiology (R.W.M., S.H.S.)
- Department of Medicine (R.W.M., G.F.Z., S.H.S., C.B.N.)
| | - Scott B Crown
- From the Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute (R.W.M., S.B.C., G.F.Z., S.H.S., C.B.N.)
| | - Guo-Fang Zhang
- From the Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute (R.W.M., S.B.C., G.F.Z., S.H.S., C.B.N.)
- Division of Endocrinology (G.F.Z., C.B.N.)
- Department of Medicine (R.W.M., G.F.Z., S.H.S., C.B.N.)
| | - Svati H Shah
- From the Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute (R.W.M., S.B.C., G.F.Z., S.H.S., C.B.N.)
- Division of Cardiology (R.W.M., S.H.S.)
- Department of Medicine (R.W.M., G.F.Z., S.H.S., C.B.N.)
| | - Christopher B Newgard
- From the Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute (R.W.M., S.B.C., G.F.Z., S.H.S., C.B.N.)
- Division of Endocrinology (G.F.Z., C.B.N.)
- Department of Medicine (R.W.M., G.F.Z., S.H.S., C.B.N.)
- Departments of Pharmacology and Cancer Biology (C.B.N.), Duke University Medical Center, Durham, NC
| |
Collapse
|
36
|
Veeravalli S, Karu K, Scott F, Fennema D, Phillips IR, Shephard EA. Effect of Flavin-Containing Monooxygenase Genotype, Mouse Strain, and Gender on Trimethylamine N-oxide Production, Plasma Cholesterol Concentration, and an Index of Atherosclerosis. Drug Metab Dispos 2018; 46:20-25. [PMID: 29070510 PMCID: PMC5733448 DOI: 10.1124/dmd.117.077636] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/19/2017] [Indexed: 11/22/2022] Open
Abstract
The objectives of the study were to determine the contribution, in mice, of members of the flavin-containing monooxygenase (FMO) family to the production of trimethylamine (TMA) N-oxide (TMAO), a potential proatherogenic molecule, and whether under normal dietary conditions differences in TMAO production were associated with changes in plasma cholesterol concentration or with an index of atherosclerosis (Als). Concentrations of urinary TMA and TMAO and plasma cholesterol were measured in 10-week-old male and female C57BL/6J and CD-1 mice and in mouse lines deficient in various Fmo genes (Fmo1-/- , 2-/- , 4-/- , and Fmo5-/- ). In female mice most TMA N-oxygenation was catalyzed by FMO3, but in both genders 11%-12% of TMA was converted to TMAO by FMO1. Gender-, Fmo genotype-, and strain-related differences in TMAO production were accompanied by opposite effects on plasma cholesterol concentration. Plasma cholesterol was negatively, but weakly, correlated with TMAO production and urinary TMAO concentration. Fmo genotype had no effect on Als. There was no correlation between Als and either TMAO production or urinary TMAO concentration. Our results indicate that under normal dietary conditions TMAO does not increase plasma cholesterol or act as a proatherogenic molecule.
Collapse
Affiliation(s)
- Sunil Veeravalli
- Institute of Structural and Molecular Biology (S.V., F.S., D.F., I.R.P., E.A.S.) and Mass Spectrometry Facility, Department of Chemistry (K.K.), University College London, London, United Kingdom; and School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (I.R.P.)
| | - Kersti Karu
- Institute of Structural and Molecular Biology (S.V., F.S., D.F., I.R.P., E.A.S.) and Mass Spectrometry Facility, Department of Chemistry (K.K.), University College London, London, United Kingdom; and School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (I.R.P.)
| | - Flora Scott
- Institute of Structural and Molecular Biology (S.V., F.S., D.F., I.R.P., E.A.S.) and Mass Spectrometry Facility, Department of Chemistry (K.K.), University College London, London, United Kingdom; and School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (I.R.P.)
| | - Diede Fennema
- Institute of Structural and Molecular Biology (S.V., F.S., D.F., I.R.P., E.A.S.) and Mass Spectrometry Facility, Department of Chemistry (K.K.), University College London, London, United Kingdom; and School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (I.R.P.)
| | - Ian R Phillips
- Institute of Structural and Molecular Biology (S.V., F.S., D.F., I.R.P., E.A.S.) and Mass Spectrometry Facility, Department of Chemistry (K.K.), University College London, London, United Kingdom; and School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (I.R.P.)
| | - Elizabeth A Shephard
- Institute of Structural and Molecular Biology (S.V., F.S., D.F., I.R.P., E.A.S.) and Mass Spectrometry Facility, Department of Chemistry (K.K.), University College London, London, United Kingdom; and School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (I.R.P.)
| |
Collapse
|
37
|
Xiong W, Zhao X, Garcia-Barrio MT, Zhang J, Lin J, Chen YE, Jiang Z, Chang L. MitoNEET in Perivascular Adipose Tissue Blunts Atherosclerosis under Mild Cold Condition in Mice. Front Physiol 2017; 8:1032. [PMID: 29311966 PMCID: PMC5742148 DOI: 10.3389/fphys.2017.01032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/28/2017] [Indexed: 02/04/2023] Open
Abstract
Background: Perivascular adipose tissue (PVAT), which surrounds most vessels, is de facto a distinct functional vascular layer actively contributing to vascular function and dysfunction. PVAT contributes to aortic remodeling by producing and releasing a large number of undetermined or less characterized factors that could target endothelial cells and vascular smooth muscle cells, and herein contribute to the maintenance of vessel homeostasis. Loss of PVAT in mice enhances atherosclerosis, but a causal relationship between PVAT and atherosclerosis and the possible underlying mechanisms remain to be addressed. The CDGSH iron sulfur domain 1 protein (referred to as mitoNEET), a mitochondrial outer membrane protein, regulates oxidative capacity and adipose tissue browning. The roles of mitoNEET in PVAT, especially in the development of atherosclerosis, are unknown. Methods: The brown adipocyte-specific mitoNEET transgenic mice were subjected to cold environmental stimulus. The metabolic rates and PVAT-dependent thermogenesis were investigated. Additionally, the brown adipocyte-specific mitoNEET transgenic mice were cross-bred with ApoE knockout mice. The ensuing mice were subsequently subjected to cold environmental stimulus and high cholesterol diet challenge for 3 months. The development of atherosclerosis was investigated. Results: Our data show that mitoNEET mRNA was downregulated in PVAT of both peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc1α)- and beta (Pgc1β)-knockout mice which are sensitive to cold. MitoNEET expression was higher in PVAT of wild type mice and increased upon cold stimulus. Transgenic mice with overexpression of mitoNEET in PVAT were cold resistant, and showed increased expression of thermogenic genes. ApoE knockout mice with mitoNEET overexpression in PVAT showed significant downregulation of inflammatory genes and showed reduced atherosclerosis development upon high fat diet feeding when kept in a 16°C environment. Conclusion: mitoNEET in PVAT is associated with PVAT-dependent thermogenesis and prevents atherosclerosis development. The results of this study provide new insights on PVAT and mitoNEET biology and atherosclerosis in cardiovascular diseases.
Collapse
Affiliation(s)
- Wenhao Xiong
- Key Laboratory for Atherosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, China.,Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, United States
| | - Xiangjie Zhao
- Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, United States
| | | | - Jifeng Zhang
- Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, United States
| | - Jiandie Lin
- Life Science Institute, University of Michigan, Ann Arbor, MI, United States
| | - Y Eugene Chen
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Zhisheng Jiang
- Key Laboratory for Atherosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Lin Chang
- Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
38
|
Wierer M, Prestel M, Schiller HB, Yan G, Schaab C, Azghandi S, Werner J, Kessler T, Malik R, Murgia M, Aherrahrou Z, Schunkert H, Dichgans M, Mann M. Compartment-resolved Proteomic Analysis of Mouse Aorta during Atherosclerotic Plaque Formation Reveals Osteoclast-specific Protein Expression. Mol Cell Proteomics 2017; 17:321-334. [PMID: 29208753 PMCID: PMC5795394 DOI: 10.1074/mcp.ra117.000315] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/20/2017] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis leads to vascular lesions that involve major rearrangements of the vascular proteome, especially of the extracellular matrix (ECM). Using single aortas from ApoE knock out mice, we quantified formation of plaques by single-run, high-resolution mass spectrometry (MS)-based proteomics. To probe localization on a proteome-wide scale we employed quantitative detergent solubility profiling. This compartment- and time-resolved resource of atherogenesis comprised 5117 proteins, 182 of which changed their expression status in response to vessel maturation and atherosclerotic plaque development. In the insoluble ECM proteome, 65 proteins significantly changed, including relevant collagens, matrix metalloproteinases and macrophage derived proteins. Among novel factors in atherosclerosis, we identified matrilin-2, the collagen IV crosslinking enzyme peroxidasin as well as the poorly characterized MAM-domain containing 2 (Mamdc2) protein as being up-regulated in the ECM during atherogenesis. Intriguingly, three subunits of the osteoclast specific V-ATPase complex were strongly increased in mature plaques with an enrichment in macrophages thus implying an active de-mineralization function.
Collapse
Affiliation(s)
- Michael Wierer
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Prestel
- §Institute for Stroke and Dementia Research, Klinikum der Universität München, München, Germany
| | - Herbert B Schiller
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany.,¶Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Guangyao Yan
- §Institute for Stroke and Dementia Research, Klinikum der Universität München, München, Germany
| | - Christoph Schaab
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Sepiede Azghandi
- §Institute for Stroke and Dementia Research, Klinikum der Universität München, München, Germany
| | - Julia Werner
- ‖Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Thorsten Kessler
- ‖Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Rainer Malik
- §Institute for Stroke and Dementia Research, Klinikum der Universität München, München, Germany
| | - Marta Murgia
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany.,**Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Zouhair Aherrahrou
- ‡‡Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany.,§§Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), e.V., Partner Site Hamburg/Kiel/Lübeck, Lübeck Germany
| | - Heribert Schunkert
- ‖Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany.,¶¶DZHK e.V. (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Martin Dichgans
- §Institute for Stroke and Dementia Research, Klinikum der Universität München, München, Germany;
| | - Matthias Mann
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany;
| |
Collapse
|
39
|
Hansmeier N, Buttigieg J, Kumar P, Pelle S, Choi KY, Kopriva D, Chao TC. Identification of Mature Atherosclerotic Plaque Proteome Signatures Using Data-Independent Acquisition Mass Spectrometry. J Proteome Res 2017; 17:164-176. [DOI: 10.1021/acs.jproteome.7b00487] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Nicole Hansmeier
- Department
of Biology/Chemistry, Division of Microbiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Josef Buttigieg
- Department
of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - Pankaj Kumar
- Department
of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - Shaneen Pelle
- Department
of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - Kyoo Yoon Choi
- Department
of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - David Kopriva
- Regina Qu’Appelle Health Region and University of Saskatchewan, 1440-14th Avenue, Regina, Saskatchewan S4P 0W5, Canada
| | - Tzu-Chiao Chao
- Department
of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
40
|
Ucciferri N, Rocchiccioli S, Comelli L, Marconi M, Ferrari M, Pelosi G, Cecchettini A. Extracellular matrix characterization in plaques from carotid endarterectomy by a proteomics approach. Talanta 2017; 174:341-346. [DOI: 10.1016/j.talanta.2017.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 05/19/2017] [Accepted: 06/02/2017] [Indexed: 11/30/2022]
|
41
|
Dietary salecan reverts partially the metabolic gene expressions and NMR-based metabolomic profiles from high-fat-diet-induced obese rats. J Nutr Biochem 2017; 47:53-62. [DOI: 10.1016/j.jnutbio.2017.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 01/14/2023]
|
42
|
Ha SH, Kim HK, Anh NTT, Kim N, Ko KS, Rhee BD, Han J. Time-dependent proteomic and genomic alterations in Toll-like receptor-4-activated human chondrocytes: increased expression of lamin A/C and annexins. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:531-546. [PMID: 28883757 PMCID: PMC5587603 DOI: 10.4196/kjpp.2017.21.5.531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 12/25/2022]
Abstract
Activation of Toll-like receptor-4 (TLR-4) in articular chondrocytes increases the catabolic compartment and leads to matrix degradation during the development of osteoarthritis. In this study, we determined the proteomic and genomic alterations in human chondrocytes during lipopolysaccharide (LPS)-induced inflammation to elucidate the underlying mechanisms and consequences of TLR-4 activation. Human chondrocytes were cultured with LPS for 12, 24, and 36 h to induce TLR-4 activation. The TLR-4-induced inflammatory response was confirmed by real-time PCR analysis of increased interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) expression levels. In TLR-4-activated chondrocytes, proteomic changes were determined by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-mass spectroscopy analysis, and genomic changes were determined by microarray and gene ontology analyses. Proteomics analysis identified 26 proteins with significantly altered expression levels; these proteins were related to the cytoskeleton and oxidative stress responses. Gene ontology analysis indicated that LPS treatment altered specific functional pathways including ‘chemotaxis’, ‘hematopoietic organ development’, ‘positive regulation of cell proliferation’, and ‘regulation of cytokine biosynthetic process’. Nine of the 26 identified proteins displayed the same increased expression patterns in both proteomics and genomics analyses. Western blot analysis confirmed the LPS-induced increases in expression levels of lamin A/C and annexins 4/5/6. In conclusion, this study identified the time-dependent genomic, proteomic, and functional pathway alterations that occur in chondrocytes during LPS-induced TLR-4 activation. These results provide valuable new insights into the underlying mechanisms that control the development and progression of osteoarthritis.
Collapse
Affiliation(s)
- Seung Hee Ha
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea.,Department of Health Technology Development, Health Project Management Team, Korea Health Industry Development Institute (KHIDI), Cheongju 28159, Korea
| | - Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Nguyen Thi Tuyet Anh
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| |
Collapse
|
43
|
Ma N, Karam I, Liu XW, Kong XJ, Qin Z, Li SH, Jiao ZH, Dong PC, Yang YJ, Li JY. UPLC-Q-TOF/MS-based urine and plasma metabonomics study on the ameliorative effects of aspirin eugenol ester in hyperlipidemia rats. Toxicol Appl Pharmacol 2017; 332:40-51. [PMID: 28733207 DOI: 10.1016/j.taap.2017.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/26/2017] [Accepted: 07/17/2017] [Indexed: 01/07/2023]
Abstract
The main objective of this study was to investigate the ameliorative effects of aspirin eugenol ester (AEE) in hyperlipidemic rat. After five-week oral administration of AEE in high fat diet (HFD)-induced hyperlipidemic rats, the impact of AEE on plasma and urine metabonomics was investigated to explore the underlying mechanism by UPLC-Q-TOF/MS analysis. Blood lipid levels and histopathological changes of liver, stomach and duodenum were also evaluated after AEE treatment. Without obvious gastrointestinal (GI) side effects, AEE significantly relieved fatty degeneration of liver and reduced triglyceride (TG), low density lipoprotein (LDL) and total cholesterol (TCH) (P<0.01). Clear separations of metabolic profiles were observed among control, model and AEE groups by using principal component analysis (PCA) and orthogonal partial least-squares-discriminate analysis (OPLS-DA). 16 endogenous metabolites in plasma and 18 endogenous metabolites in urine involved in glycerophospholipid metabolism, fatty acid metabolism, fatty acid beta-oxidation, amino acid metabolism, TCA cycle, sphingolipid metabolism, gut microflora and pyrimidine metabolism were considered as potential biomarkers of hyperlipidemia and be regulated by AEE administration. It might be concluded that AEE was a promising drug candidate for hyperlipidemia treatment. These findings could contribute to the understanding of action mechanisms of AEE and provide evidence for further studies.
Collapse
Affiliation(s)
- Ning Ma
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China
| | - Isam Karam
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China
| | - Xiao-Jun Kong
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China
| | - Zeng-Hua Jiao
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China
| | - Peng-Cheng Dong
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| |
Collapse
|
44
|
Mourino-Alvarez L, Baldan-Martin M, Rincon R, Martin-Rojas T, Corbacho-Alonso N, Sastre-Oliva T, Barderas MG. Recent advances and clinical insights into the use of proteomics in the study of atherosclerosis. Expert Rev Proteomics 2017; 14:701-713. [PMID: 28689450 DOI: 10.1080/14789450.2017.1353912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The application of new proteomics methods may help to identify new diagnostic/predictive molecular markers in an attempt to improve the clinical management of atherosclerosis. Areas covered: Technological advances in proteomics have enhanced its sensitivity and multiplexing capacity, as well as the possibility of studying protein interactions and tissue structure. These advances will help us better understand the molecular mechanisms at play in atherosclerosis as a biological system. Moreover, this should help identify new predictive/diagnostic biomarkers and therapeutic targets that may facilitate effective risk stratification and early diagnosis, with the ensuing rapid implementation of treatment. This review provides a comprehensive overview of the novel methods in proteomics, including state-of-the-art techniques, novel biological samples and applications for the study of atherosclerosis. Expert commentary: Collaboration between clinicians and researchers is crucial to further validate and introduce new molecular markers to manage atherosclerosis that are identified using the most up to date proteomic approaches.
Collapse
Affiliation(s)
- Laura Mourino-Alvarez
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | | | - Raul Rincon
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | - Tatiana Martin-Rojas
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | - Nerea Corbacho-Alonso
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | - Tamara Sastre-Oliva
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | - Maria G Barderas
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| |
Collapse
|
45
|
Sfyri P, Matsakas A. Crossroads between peripheral atherosclerosis, western-type diet and skeletal muscle pathophysiology: emphasis on apolipoprotein E deficiency and peripheral arterial disease. J Biomed Sci 2017; 24:42. [PMID: 28688452 PMCID: PMC5502081 DOI: 10.1186/s12929-017-0346-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/07/2017] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory process that, in the presence of hyperlipidaemia, promotes the formation of atheromatous plaques in large vessels of the cardiovascular system. It also affects peripheral arteries with major implications for a number of other non-vascular tissues such as the skeletal muscle, the liver and the kidney. The aim of this review is to critically discuss and assimilate current knowledge on the impact of peripheral atherosclerosis and its implications on skeletal muscle homeostasis. Accumulating data suggests that manifestations of peripheral atherosclerosis in skeletal muscle originates in a combination of increased i)-oxidative stress, ii)-inflammation, iii)-mitochondrial deficits, iv)-altered myofibre morphology and fibrosis, v)-chronic ischemia followed by impaired oxygen supply, vi)-reduced capillary density, vii)- proteolysis and viii)-apoptosis. These structural, biochemical and pathophysiological alterations impact on skeletal muscle metabolic and physiologic homeostasis and its capacity to generate force, which further affects the individual's quality of life. Particular emphasis is given on two major areas representing basic and applied science respectively: a)-the abundant evidence from a well-recognised atherogenic model; the Apolipoprotein E deficient mouse and the role of a western-type diet and b)-on skeletal myopathy and oxidative stress-induced myofibre damage from human studies on peripheral arterial disease. A significant source of reactive oxygen species production and oxidative stress in cardiovascular disease is the family of NADPH oxidases that contribute to several pathologies. Finally, strategies targeting NADPH oxidases in skeletal muscle in an attempt to attenuate cellular oxidative stress are highlighted, providing a better understanding of the crossroads between peripheral atherosclerosis and skeletal muscle pathophysiology.
Collapse
Affiliation(s)
- Peggy Sfyri
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom.
| |
Collapse
|
46
|
Deidda M, Piras C, Cadeddu Dessalvi C, Congia D, Locci E, Ascedu F, De Candia G, Cadeddu M, Lai G, Pirisi R, Atzori L, Mercuro G. Blood metabolomic fingerprint is distinct in healthy coronary and in stenosing or microvascular ischemic heart disease. J Transl Med 2017; 15:112. [PMID: 28535803 PMCID: PMC5442646 DOI: 10.1186/s12967-017-1215-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/17/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The endothelium is a key variable in the pathogenesis of atherosclerosis and its complications, particularly coronary artery disease (CAD). Current evidence suggests that the endothelial status can be regarded as an integrated index of individual atherogenic and anti-atherogenic properties, and that the interaction between circulating factors and the arterial wall might be critical for atherogenesis. In organism-level investigations, a functional view is provided by metabolomics, the study of the metabolic profile of small molecules. We sought to verify whether metabolomic analysis can reveal the presence of coronary microenvironment peculiarities associated with distinct manifestations of CAD. METHODS Thirty-two coronary blood samples were analyzed using 1H-NMR-based metabolomics. Samples collected from patients with evidence of myocardial ischemia formed the case group, and were further divided into the stenotic-disease (SD) group (N = 13) and absence of stenosis (microvascular disease; "Micro") group (N = 8); specimens of patients presenting no evidence of ischemic heart disease (dilated cardiomyopathy, valvular diseases) constituted the control group (N = 11). RESULTS Application of an orthogonal partial least squares discriminant analysis (OPLS-DA) model to the entire dataset clearly separated the samples into 3 groups, indicating 3 distinct metabolic fingerprints. Relative to control-group members, Micro patients showed a higher content of 2-hydroxybutirate, alanine, leucine, isoleucine, and N-acetyl groups and lower levels of creatine/phosphocreatine, creatinine, and glucose, whereas SD patients showed higher levels of 3-hydroxybutirate and acetate and a lower content of 2-hydroxybutirate. Moreover, relative to SD patients, Micro patients showed higher levels of 2-hydroxybutirate, alanine, leucine, and N-acetyl groups and lower levels of 3-hydroxybutirate and acetate. CONCLUSIONS Specific coronary microenvironments are likely associated with distinct development and pathological expression of CAD.
Collapse
Affiliation(s)
- Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy. .,Department of Medical Sciences and Public Health, University of Cagliari, Asse didattico Medicina, Cittadella Universitaria, SS Sestu KM 0.700, 09042, Monserrato, Italy.
| | - Cristina Piras
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | | | - Damiana Congia
- Cardiology Complex Unit, Azienda Osperaliera Brotzu, Cagliari, Italy
| | - Emanuela Locci
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Federica Ascedu
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | | | - Mauro Cadeddu
- Cath Lab, Azienda Ospedaliero-Universitaria di Cagliari, Cagliari, Italy
| | - Giorgio Lai
- Cath Lab, Azienda Ospedaliero-Universitaria di Cagliari, Cagliari, Italy
| | - Raimondo Pirisi
- Cath Lab, Azienda Ospedaliero-Universitaria di Cagliari, Cagliari, Italy
| | - Luigi Atzori
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| |
Collapse
|
47
|
Comprehensive Plasma Metabolomic Analyses of Atherosclerotic Progression Reveal Alterations in Glycerophospholipid and Sphingolipid Metabolism in Apolipoprotein E-deficient Mice. Sci Rep 2016; 6:35037. [PMID: 27721472 PMCID: PMC5056345 DOI: 10.1038/srep35037] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/22/2016] [Indexed: 01/04/2023] Open
Abstract
Atherosclerosis is the major underlying cause of most cardiovascular diseases. Despite recent advances, the molecular mechanisms underlying the pathophysiology of atherogenesis are not clear. In this study, comprehensive plasma metabolomics were used to investigate early-stage atherosclerotic development and progression in chow-fed apolipoprotein E-deficient mice at 5, 10 and 15 weeks of age. Comprehensive plasma metabolomic profiles, based on 4365 detected metabolite features, differentiate atherosclerosis-prone from atherosclerosis-resistant models. Metabolites in the sphingomyelin pathway were significantly altered prior to detectable lesion formation and at all subsequent time-points. The cytidine diphosphate-diacylglycerol pathway was up-regulated during stage I of atherosclerosis, while metabolites in the phosphatidylethanolamine and glycosphingolipid pathways were augmented in mice with stage II lesions. These pathways, involving glycerophospholipid and sphingolipid metabolism, were also significantly affected during the course of atherosclerotic progression. Our findings suggest that distinct plasma metabolomic profiles can differentiate the different stages of atherosclerotic progression. This study reveals that alteration of specific, previously unreported pathways of glycerophospholipid and sphingolipid metabolism are associated with atherosclerosis. The clear difference in the level of several metabolites supports the use of plasma lipid profiling as a diagnostic tool of atherogenesis.
Collapse
|
48
|
Guo W, Jiang C, Yang L, Li T, Liu X, Jin M, Qu K, Chen H, Jin X, Liu H, Zhu H, Wang Y. Quantitative Metabolomic Profiling of Plasma, Urine, and Liver Extracts by 1H NMR Spectroscopy Characterizes Different Stages of Atherosclerosis in Hamsters. J Proteome Res 2016; 15:3500-3510. [PMID: 27570155 DOI: 10.1021/acs.jproteome.6b00179] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Atherosclerosis (AS) is a progressive disease that contributes to cardiovascular disease and shows a complex etiology, including genetic and environmental factors. To understand systemic metabolic changes and to identify potential biomarkers correlated with the occurrence and perpetuation of diet-induced AS, we applied 1H NMR-based metabolomics to detect the time-related metabolic profiles of plasma, urine, and liver extracts from male hamsters fed a high fat and high cholesterol (HFHC) diet. Conventional biochemical assays and histopathological examinations as well as protein expression analyses were performed to provide complementary information. We found that diet treatment caused obvious aortic lesions, lipid accumulation, and inflammatory infiltration in hamsters. Downregulation of proteins related to cholesterol metabolism, including hepatic SREBP2, LDL-R, CYP7A1, SR-BI, HMGCR, LCAT, and SOAT1 was detected, which elucidated the perturbation of cholesterol homeostasis during the HFHC diet challenge. Using "targeted analysis", we quantified 40 plasma, 80 urine, and 60 liver hydrophilic extract metabolites. Multivariate analyses of the identified metabolites elucidated sophisticated metabolic disturbances in multiple matrices, including energy homeostasis, intestinal microbiota functions, inflammation, and oxidative stress coupled with the metabolisms of cholesterol, fatty acids, saccharides, choline, amino acids, and nucleotides. For the first time, our results demonstrate a time-dependent metabolic progression of multiple biological matrices in hamsters from physiological status to early AS and further to late-stage AS, demonstrating that 1H NMR-based metabolomics is a reliable tool for early diagnosis and monitoring of the process of AS.
Collapse
Affiliation(s)
- Wei Guo
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and ‡Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , No.1 Xiannongtan Street, Beijing 100050, P. R. China
| | - Chunying Jiang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and ‡Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , No.1 Xiannongtan Street, Beijing 100050, P. R. China
| | - Liu Yang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and ‡Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , No.1 Xiannongtan Street, Beijing 100050, P. R. China
| | - Tianqi Li
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and ‡Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , No.1 Xiannongtan Street, Beijing 100050, P. R. China
| | - Xia Liu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and ‡Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , No.1 Xiannongtan Street, Beijing 100050, P. R. China
| | - Mengxia Jin
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and ‡Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , No.1 Xiannongtan Street, Beijing 100050, P. R. China
| | - Kai Qu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and ‡Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , No.1 Xiannongtan Street, Beijing 100050, P. R. China
| | - Huili Chen
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and ‡Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , No.1 Xiannongtan Street, Beijing 100050, P. R. China
| | - Xiangju Jin
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and ‡Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , No.1 Xiannongtan Street, Beijing 100050, P. R. China
| | - Hongyue Liu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and ‡Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , No.1 Xiannongtan Street, Beijing 100050, P. R. China
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and ‡Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , No.1 Xiannongtan Street, Beijing 100050, P. R. China
| | - Yinghong Wang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and ‡Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , No.1 Xiannongtan Street, Beijing 100050, P. R. China
| |
Collapse
|
49
|
Li M, Shu X, Xu H, Zhang C, Yang L, Zhang L, Ji G. Integrative analysis of metabolome and gut microbiota in diet-induced hyperlipidemic rats treated with berberine compounds. J Transl Med 2016; 14:237. [PMID: 27495782 PMCID: PMC4975912 DOI: 10.1186/s12967-016-0987-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/21/2016] [Indexed: 12/26/2022] Open
Abstract
Background Hyperlipidemia is a major component of metabolic syndrome, and often predicts cardiovascular diseases. We developed a new therapeutic agent berberine compounds (BC), consisting of berberine, oryzanol and vitamin B6, and determined their anti-hyperlipidemia activity and underlying mechanisms. Methods Male Wistar rats were fed a high fat diet (HFD) to induce hyperlipidemia, and then given BC orally for 4 weeks. Body weight and food intake were recorded weekly, and lipid profiles in serum were determined biochemically. Metabolites in serum, urine, liver and feces were analyzed by GC–MS, and the structure of microbiota was determined by 16S rDNA sequencing. Results Lipid lowering was observed in the hyperlipidemic rats upon BC treatment without apparent adverse side effects. Metabolomics analysis indicated that the BC treatment resulted in increased pyruvic acid, serotonin, and ketogenic and glycogenic amino acid levels in the serum, increased pyridoxine and 4-pyridoxic acid in the urine, decreased hypotaurine and methionine in the liver, and increased putrescine and decreased deoxycholate and lithocholate in feces. The BC treatment also resulted in an enrichment of beneficial bacteria (e.g. Bacteroides, Blautia) and a decrease in Escherichia. Conclusions The lipid lowering effect of BC treatment in hyperlipidemic rats is associated with a global change in the metabolism of lipids, carbohydrates and amino acids, as well as the structure of microbiota. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0987-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meng Li
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xiangbing Shu
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hanchen Xu
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chunlei Zhang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lili Yang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Li Zhang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China. .,E-institute of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
50
|
Simmons RD, Kumar S, Thabet SR, Sur S, Jo H. Omics-based approaches to understand mechanosensitive endothelial biology and atherosclerosis. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:378-401. [PMID: 27341633 DOI: 10.1002/wsbm.1344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 12/16/2022]
Abstract
Atherosclerosis is a multifactorial disease that preferentially occurs in arterial regions exposed to d-flow can be used to indicate disturbed flow or disturbed blood flow. The mechanisms by which d-flow induces atherosclerosis involve changes in the transcriptome, methylome, proteome, and metabolome of multiple vascular cells, especially endothelial cells. Initially, we begin with the pathogenesis of atherosclerosis and the changes that occur at multiple levels owing to d-flow, especially in the endothelium. Also, there are a variety of strategies used for the global profiling of the genome, transcriptome, miRNA-ome, DNA methylome, and metabolome that are important to define the biological and pathophysiological mechanisms of endothelial dysfunction and atherosclerosis. Finally, systems biology can be used to integrate these 'omics' datasets, especially those that derive data based on a single animal model, in order to better understand the pathophysiology of atherosclerosis development in a holistic manner and how this integrative approach could be used to identify novel molecular diagnostics and therapeutic targets to prevent or treat atherosclerosis. WIREs Syst Biol Med 2016, 8:378-401. doi: 10.1002/wsbm.1344 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Rachel D Simmons
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sandeep Kumar
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Salim Raid Thabet
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sanjoli Sur
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hanjoong Jo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|