1
|
Zhou Y, Wang L, Sun L, Tan R, Wang Z, Pei R. Progress in Chinese medicine monomers and their nanoformulations on myocardial ischemia/reperfusion injury. J Mater Chem B 2025; 13:1159-1179. [PMID: 39670754 DOI: 10.1039/d4tb02091j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Myocardial ischemia/reperfusion injury (MIRI) is the entire process of myocardial injury resulting from ischemia and hypoxia following acute myocardial infarction, which involves complicated pathogenesis including energy metabolism disorders, calcium overload, oxidative stress and mitochondrial dysfunction. Traditional Chinese medicine (TCM) has attracted intensive attention in the treatment of MIRI owing to its multitarget therapeutic effects and low systemic toxicity. Increasing evidence indicates the promising application of TCM on the protection of cardiomyocytes, improvement of endothelial cell functions and regulation of energy metabolism and inflammatory response. Although the efficacy of TCM has been well-proven, the underlying mechanisms remain unclear. Additionally, the clinical application of much TCM had been hampered due to its low aqueous solubility, poor gastrointestinal absorption, and decreased bioavailability. In this review, we examined the pathological mechanism of MIRI and highlighted recent research studies on the therapeutic effects and molecular mechanisms of monomer compounds derived from TCM. We also summarized the latest studies in nanoformulation-based strategies for improving the targeting and stability of TCM monomers and exerting synergistic effects. The aim of this study was to provide a scientific basis for the treatment of MIRI with TCM monomers combined with nanomaterials, revealing their clinical significance and development prospects.
Collapse
Affiliation(s)
- Yanrong Zhou
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Li Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Lina Sun
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Zheng Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
2
|
Mastoor Y, Murphy E, Roman B. Mechanisms of postischemic cardiac death and protection following myocardial injury. J Clin Invest 2025; 135:e184134. [PMID: 39744953 DOI: 10.1172/jci184134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Acute myocardial infarction (MI) is a leading cause of death worldwide. Although with current treatment, acute mortality from MI is low, the damage and remodeling associated with MI are responsible for subsequent heart failure. Reducing cell death associated with acute MI would decrease the mortality associated with heart failure. Despite considerable study, the precise mechanism by which ischemia and reperfusion (I/R) trigger cell death is still not fully understood. In this Review, we summarize the changes that occur during I/R injury, with emphasis on those that might initiate cell death, such as calcium overload and oxidative stress. We review cell-death pathways and pathway crosstalk and discuss cardioprotective approaches in order to provide insight into mechanisms that could be targeted with therapeutic interventions. Finally, we review cardioprotective clinical trials, with a focus on possible reasons why they were not successful. Cardioprotection has largely focused on inhibiting a single cell-death pathway or one death-trigger mechanism (calcium or ROS). In treatment of other diseases, such as cancer, the benefit of targeting multiple pathways with a "drug cocktail" approach has been demonstrated. Given the crosstalk between cell-death pathways, targeting multiple cardiac death mechanisms should be considered.
Collapse
|
3
|
Kamenshchikov NO, Duong N, Berra L. Nitric Oxide in Cardiac Surgery: A Review Article. Biomedicines 2023; 11:1085. [PMID: 37189703 PMCID: PMC10135597 DOI: 10.3390/biomedicines11041085] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Perioperative organ injury remains a medical, social and economic problem in cardiac surgery. Patients with postoperative organ dysfunction have increases in morbidity, length of stay, long-term mortality, treatment costs and rehabilitation time. Currently, there are no pharmaceutical technologies or non-pharmacological interventions that can mitigate the continuum of multiple organ dysfunction and improve the outcomes of cardiac surgery. It is essential to identify agents that trigger or mediate an organ-protective phenotype during cardiac surgery. The authors highlight nitric oxide (NO) ability to act as an agent for perioperative protection of organs and tissues, especially in the heart-kidney axis. NO has been delivered in clinical practice at an acceptable cost, and the side effects of its use are known, predictable, reversible and relatively rare. This review presents basic data, physiological research and literature on the clinical application of NO in cardiac surgery. Results support the use of NO as a safe and promising approach in perioperative patient management. Further clinical research is required to define the role of NO as an adjunct therapy that can improve outcomes in cardiac surgery. Clinicians also have to identify cohorts of responders for perioperative NO therapy and the optimal modes for this technology.
Collapse
Affiliation(s)
- Nikolay O. Kamenshchikov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Nicolette Duong
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
- Respiratory Care Service, Patient Care Services, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lorenzo Berra
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
- Respiratory Care Service, Patient Care Services, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
4
|
Ranjbar K. Improved Cardiac Function Following Ischemia Reperfusion Injury Using Exercise Preconditioning and L-Arginine Supplementation via Oxidative Stress Mitigation and Angiogenesis Amelioration. Cardiovasc Toxicol 2022; 22:736-745. [DOI: 10.1007/s12012-022-09752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/06/2022] [Indexed: 11/30/2022]
|
5
|
Gąsecka A, Szwed P, Jasińska K, Fidali O, Kłębukowska A, Eyileten C, Postula M, Szarpak Ł, Mazurek T, Opolski G, Filipiak KJ, Ufnal M. Symmetric Dimethylarginine is Altered in Patients After Myocardial Infarction and Predicts Adverse Outcomes. J Inflamm Res 2021; 14:3797-3808. [PMID: 34408463 PMCID: PMC8364360 DOI: 10.2147/jir.s316078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Acute myocardial infarction (AMI) is the leading cause of morbidity and mortality worldwide. Damage to the endothelium is the earliest event in atherothrombosis, including AMI. Nitric oxide (NO), an endothelium-derived compound, protects the vasculature from damage. This study evaluated whether an association exists between plasma concentration of endogenous NO-related pathway metabolites linked to AMI and major adverse cardiovascular events (MACE) after AMI. METHODS We compared plasma concentrations of NO-related pathway metabolites in patients after AMI (n=60) and healthy controls (n=27) and investigated the prognostic value of these metabolites for post-AMI MACE development over a median of 3.5-years. In search of biomarkers, we compared plasma concentrations of dimethylarginines (ADMA, SDMA), citrulline, arginine and ornithine using ultra performance liquid chromatograph coupled with a mass spectrometer. RESULTS Patients after AMI had higher concentrations of dimethylarginines, compared to controls (p=0.0068, p<0.0001, respectively). Conversely, the concentration of citrulline was lower in the AMI group (p=0.0006). The concentration of SDMA was higher in patients who developed MACE than in those who did not (p=0.015). SDMA was the only independent predictor of MACE in multivariate analysis (p=0.023). There was an intermediate, negative correlation between plasma SDMA level and platelet reactivity (r=-0.33, p=0.02). CONCLUSION Plasma concentration of dimethylarginines differs between patients with AMI and healthy volunteers. The study's novel finding is that SDMA is an independent predictor of MACE during a 3.5 year follow-up period after AMI.
Collapse
Affiliation(s)
- Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Piotr Szwed
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Karolina Jasińska
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Oliwia Fidali
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Aleksandra Kłębukowska
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Łukasz Szarpak
- Bialystok Oncology Center, Bialystok, 15-027, Poland
- Maria Sklodowska-Curie Medical Academy in Warsaw, Warsaw, 03-411, Poland
| | - Tomasz Mazurek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Grzegorz Opolski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Krzysztof J Filipiak
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, 02-106, Poland
| |
Collapse
|
6
|
Gambardella J, Khondkar W, Morelli MB, Wang X, Santulli G, Trimarco V. Arginine and Endothelial Function. Biomedicines 2020; 8:277. [PMID: 32781796 PMCID: PMC7460461 DOI: 10.3390/biomedicines8080277] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Arginine (L-arginine), is an amino acid involved in a number of biological processes, including the biosynthesis of proteins, host immune response, urea cycle, and nitric oxide production. In this systematic review, we focus on the functional role of arginine in the regulation of endothelial function and vascular tone. Both clinical and preclinical studies are examined, analyzing the effects of arginine supplementation in hypertension, ischemic heart disease, aging, peripheral artery disease, and diabetes mellitus.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY 10461, USA
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
- International Translational Research and Medical Education (ITME), 80100 Naples, Italy
| | - Wafiq Khondkar
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
| | - Marco Bruno Morelli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY 10461, USA
| | - Xujun Wang
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
| | - Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY 10461, USA
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
- International Translational Research and Medical Education (ITME), 80100 Naples, Italy
| | - Valentina Trimarco
- Department of Neuroscience, “Federico II” University, 80131 Naples, Italy;
| |
Collapse
|
7
|
Barzyc A, Łysik W, Słyk J, Kuszewski M, Zarębiński M, Wojciechowska M, Cudnoch-Jędrzejewska A. Reperfusion injury as a target for diminishing infarct size. Med Hypotheses 2020; 137:109558. [PMID: 31958650 DOI: 10.1016/j.mehy.2020.109558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/15/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022]
Abstract
Therapies for preventing reperfusion injury (RI) have been widely studied. However, the attempts to transfer cardioprotective therapies for reducing RI from experiments into clinical practice have been so far unsuccessful. Pathophysiological mechanisms of RI are complicated and compose of many pathways e.g. hypercontracture-mediated sarcolemma rupture, mitochondrial permeability transition pore persistent opening, reactive oxygen species formation, inflammation and no-reflow phenomenon. Based on research, it cannot be determined which mechanism dominates, probably they cooperate with a domination of one or another in different clinical circumstances. Our hypothesis is, that only intervention that at the same time interferes with different (all?) pathways of RI may turn out to be effective in decreasing the final area of infarction.
Collapse
Affiliation(s)
- A Barzyc
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - W Łysik
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - J Słyk
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - M Kuszewski
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - M Zarębiński
- Independent Public Specialist Western Hospital John Paul II in Grodzisk Mazowiecki, Poland
| | - M Wojciechowska
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland; Independent Public Specialist Western Hospital John Paul II in Grodzisk Mazowiecki, Poland.
| | - A Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Toral M, Jimenez R, Montoro-Molina S, Romero M, Wangensteen R, Duarte J, Vargas F. Thyroid hormones stimulate L-arginine transport in human endothelial cells. J Endocrinol 2018; 239:49–62. [PMID: 30307153 DOI: 10.1530/joe-18-0229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thyroid hormone activity is associated with L-arginine metabolism and nitric oxide (NO) production, which participate in the cardiovascular manifestations of thyroid disorders. L-arginine transporters play an important role in activating L-arginine uptake and NO production. However, the effects of thyroid hormones on L-arginine transporters in endothelial cells have not yet been evaluated. The following methods were used. We measured L-arginine uptake, mRNA expression of L-arginine transporters, endothelial nitric oxide synthase (eNOS) mRNA and NO generation after the administration of T3, T4 and the T3 analog, 3,3′,5-triiodothyroacetic acid TRIAC in human umbilical vein endothelial cells (HUVECs). We also analyzed the role of αvβ3 integrin and of phosphatidyl-inositol-3 kinase (PI3K), mitogen-activated protein kinases (MAPKs: ERK1/2, p38 and SAPK-JNK) and intracellular calcium signaling pathways as underlying mechanisms. To this end, αvβ3 integrin was pharmacologically inhibited by tetraiodothyroacetic acid (TETRAC) or genetically blocked by silencing αv mRNA and PI3K, MAPKs and intracellular calcium by selective inhibitors. The following results were obtained. Thyroid hormones and the T3 analog TRIAC increased L-arginine uptake in HUVECs, the sodium-independent y+/CAT isoforms, except CAT2b, sodium-dependent y+L system and sodium-independent system b0,+L-arginine transporters, eNOS mRNA and NO production. These effects were suppressed by αvβ3 integrin inhibition with TETRAC or αv integrin downregulation or by PI3K, MAPK or intracellular Ca2+ signaling inhibitors. In conclusion, we report for the first time that activation of L-arginine uptake by thyroid hormones is related to an upregulation of L-arginine transporters. This effect seems to be mediated by activation of αvβ3 integrin receptor and subsequent PI3K, MAPK and intracellular Ca2+ signaling pathways.
Collapse
Affiliation(s)
- Marta Toral
- Departamento de Farmacología, Facultad de Farmacia, Granada, Spain
| | - Rosario Jimenez
- Departamento de Farmacología, Facultad de Farmacia, Granada, Spain
- Instituto de Investigación Biosanitaria GRANADA, Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain
| | | | - Miguel Romero
- Departamento de Farmacología, Facultad de Farmacia, Granada, Spain
- Instituto de Investigación Biosanitaria GRANADA, Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain
| | | | - Juan Duarte
- Departamento de Farmacología, Facultad de Farmacia, Granada, Spain
- Instituto de Investigación Biosanitaria GRANADA, Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain
| | - Félix Vargas
- Instituto de Investigación Biosanitaria GRANADA, Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Granada, Spain
| |
Collapse
|
9
|
Mallet RT, Manukhina EB, Ruelas SS, Caffrey JL, Downey HF. Cardioprotection by intermittent hypoxia conditioning: evidence, mechanisms, and therapeutic potential. Am J Physiol Heart Circ Physiol 2018; 315:H216-H232. [PMID: 29652543 DOI: 10.1152/ajpheart.00060.2018] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The calibrated application of limited-duration, cyclic, moderately intense hypoxia-reoxygenation increases cardiac resistance to ischemia-reperfusion stress. These intermittent hypoxic conditioning (IHC) programs consistently produce striking reductions in myocardial infarction and ventricular tachyarrhythmias after coronary artery occlusion and reperfusion and, in many cases, improve contractile function and coronary blood flow. These IHC protocols are fundamentally different from those used to simulate sleep apnea, a recognized cardiovascular risk factor. In clinical studies, IHC improved exercise capacity and decreased arrhythmias in patients with coronary artery or pulmonary disease and produced robust, persistent, antihypertensive effects in patients with essential hypertension. The protection afforded by IHC develops gradually and depends on β-adrenergic, δ-opioidergic, and reactive oxygen-nitrogen signaling pathways that use protein kinases and adaptive transcription factors. In summary, adaptation to intermittent hypoxia offers a practical, largely unrecognized means of protecting myocardium from impending ischemia. The myocardial and perhaps broader systemic protection provided by IHC clearly merits further evaluation as a discrete intervention and as a potential complement to conventional pharmaceutical and surgical interventions.
Collapse
Affiliation(s)
- Robert T Mallet
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - Eugenia B Manukhina
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas.,Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences , Moscow , Russian Federation.,School of Medical Biology South Ural State University , Chelyabinsk , Russian Federation
| | - Steven Shea Ruelas
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - James L Caffrey
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - H Fred Downey
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas.,School of Medical Biology South Ural State University , Chelyabinsk , Russian Federation
| |
Collapse
|
10
|
Li H, Wang C, Sun J, Liu C, Li N, Chen J. Pravastatin Decreases Infarct Size Induced by Coronary Artery Ischemia/Reperfusion with Elevated eNOS Expression in Rats. Int Heart J 2018; 59:154-160. [PMID: 29375110 DOI: 10.1536/ihj.16-607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Our previous study showed that pravastatin prevents ischemia and reperfusion-induced lethal ventricular fibrillation in rats. This study explored whether pravastatin decreases myocardial infarct size and this effect is associated with endothelial nitric oxide synthase (eNOS) expression in myocardium. Rats were treated with ischemia (30 minutes) and reperfusion (60 minutes) after chronic oral administration of pravastatin, fluvastatin, or vehicle once daily for 22 days. Electrocardiograms and blood pressure were continuously recorded, myocardial infarct size was measured by TTC-staining, and eNOS expression was measured by western blot. The results showed that pravastatin and fluvastatin significantly reduced myocardial infarct size. No statistical differences were found in the areas at risk among all groups. However, a significant reduction in infarct size was observed in three pravastatin groups and one fluvastatin group compared to control. Both pravastatin and fluvastatin significantly increased eNOS protein expression in ischemic and non-ischemic tissues compared to control. Our results suggest that pravastatin decreases cardiovascular mortality beyond its cholesterol-lowering effect. Pravastatin is more potent than fluvastatin in reducing infarct size. These effects may be associated with elevation of eNOS expression.
Collapse
Affiliation(s)
- He Li
- Department of Pharmacology, Pharmaceutical College, Beihua University
| | - Chunmei Wang
- Department of Pharmacology, Pharmaceutical College, Beihua University
| | - Jinghui Sun
- Department of Pharmacology, Pharmaceutical College, Beihua University
| | - Cong Liu
- Department of Pharmacology, Pharmaceutical College, Beihua University
| | - Ning Li
- Department of Pharmacology, Pharmaceutical College, Beihua University
| | - Jianguang Chen
- Department of Pharmacology, Pharmaceutical College, Beihua University
| |
Collapse
|
11
|
Manukhina EB, Downey HF, Mallet RT. Role of Nitric Oxide in Cardiovascular Adaptation to Intermittent Hypoxia. Exp Biol Med (Maywood) 2016; 231:343-65. [PMID: 16565431 DOI: 10.1177/153537020623100401] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hypoxia is one of the most frequently encountered stresses in health and disease. The duration, frequency, and severity of hypoxic episodes are critical factors determining whether hypoxia is beneficial or harmful. Adaptation to intermittent hypoxia has been demonstrated to confer cardiovascular protection against more severe and sustained hypoxia, and, moreover, to protect against other stresses, including ischemia. Thus, the direct and cross protective effects of adaptation to intermittent hypoxia have been used for treatment and prevention of a variety of diseases and to increase efficiency of exercise training. Evidence is mounting that nitric oxide (NO) plays a central role in these adaptive mechanisms. NO-dependent protective mechanisms activated by intermittent hypoxia include stimulation of NO synthesis as well as restriction of NO overproduction. In addition, alternative, nonenzymic sources of NO and negative feedback of NO synthesis are important factors in optimizing NO concentrations. The adaptive enhancement of NO synthesis and/or availability activates or increases expression of other protective factors, including heat shock proteins, antioxidants and prostaglandins, making the protection more robust and sustained. Understanding the role of NO in mechanisms of adaptation to hypoxia will support development of therapies to prevent and treat hypoxic or ischemic damage to organs and cells and to increase adaptive capabilities of the organism.
Collapse
|
12
|
Gupta A, Kumar S, Kashyap S, Kumar D, Kapoor A. Nuclear Magnetic Resonance-Based Metabolomics of Human Filtered Serum: A Great White Hope in Appraisal of Chronic Stable Angina and Myocardial Infarction. J Appl Lab Med 2016; 1:280-293. [PMID: 33626845 DOI: 10.1373/jalm.2016.020776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/17/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND Biochemical detection of chronic stable angina (CSA) and myocardial infarction (MI) are challenging. To address the shortcomings of the conventional biochemical approach for detection of MI, we applied serum lacking proteins and lipoprotein-based metabolomics in an approach using proton nuclear magnetic resonance (1H NMR) spectroscopy for screening of coronary artery disease (CAD) and especially MI. Our aim was to discover differential biomarkers among subjects with normal coronary (NC), CSA, and MI. METHODS The study comprised serum samples from nondiabetic angiographically proven CAD [CSA (n = 88), MI (n = 90)] and NC (n = 55). 1H NMR spectroscopy was used to acquire metabolomics data. Clinical variables such as troponin I (TI), lactate dehydrogenase (LD), creatine kinase (CK, CK-MB, CK-MM), serum creatinine, and lipid profiles were also measured in all subjects. Metabolomic data and clinical measures were appraised separately using a chemometric approach and ROC analysis. RESULTS The screening outcomes revealed that the pattern of methylguanidine, lactate, creatinine, threonine, aspartate, and trimethylamine (TMA), and TI, LD, CK, and serum creatinine were changed in CAD compared to NC. Statistical analysis demonstrated high precision (93.6% by NMR and 67.4% by clinical measures) to distinguish CAD from NC. Further analysis indicated that methylguanidine, arginine, and threonine, and TI, LD, and serum creatinine were significantly changed in CSA compared to MI. Statistical analysis demonstrated high accuracy (88.2% by NMR and 92.1% by clinical measures) to discriminate CSA from MI. CONCLUSIONS In contrast to other laboratory methods, 1H NMR-based metabolomics of filtered sera appears to be a robust, rapid, and minimally invasive approach to probe CSA and MI.
Collapse
Affiliation(s)
| | - Sudeep Kumar
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Shiridhar Kashyap
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | | | - Aditya Kapoor
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
13
|
Lee J, Bae EH, Ma SK, Kim SW. Altered Nitric Oxide System in Cardiovascular and Renal Diseases. Chonnam Med J 2016; 52:81-90. [PMID: 27231671 PMCID: PMC4880583 DOI: 10.4068/cmj.2016.52.2.81] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 01/02/2023] Open
Abstract
Nitric oxide (NO) is synthesized by a family of NO synthases (NOS), including neuronal, inducible, and endothelial NOS (n/i/eNOS). NO-mediated effects can be beneficial or harmful depending on the specific risk factors affecting the disease. In hypertension, the vascular relaxation response to acetylcholine is blunted, and that to direct NO donors is maintained. A reduction in the activity of eNOS is mainly responsible for the elevation of blood pressure, and an abnormal expression of iNOS is likely to be related to the progression of vascular dysfunction. While eNOS/nNOS-derived NO is protective against the development of atherosclerosis, iNOS-derived NO may be proatherogenic. eNOS-derived NO may prevent the progression of myocardial infarction. Myocardial ischemia/reperfusion injury is significantly enhanced in eNOS-deficient animals. An important component of heart failure is the loss of coronary vascular eNOS activity. A pressure-overload may cause severer left ventricular hypertrophy and dysfunction in eNOS null mice than in wild-type mice. iNOS-derived NO has detrimental effects on the myocardium. NO plays an important role in regulating the angiogenesis and slowing the interstitial fibrosis of the obstructed kidney. In unilateral ureteral obstruction, the expression of eNOS was decreased in the affected kidney. In triply n/i/eNOS null mice, nephrogenic diabetes insipidus developed along with reduced aquaporin-2 abundance. In chronic kidney disease model of subtotal-nephrectomized rats, treatment with NOS inhibitors decreased systemic NO production and induced left ventricular systolic dysfunction (renocardiac syndrome).
Collapse
Affiliation(s)
- JongUn Lee
- Department of Physiology, Chonnam National University Medical School, Gwangju, Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
14
|
Cardio-protective effects of combined l-arginine and insulin: Mechanism and therapeutic actions in myocardial ischemia-reperfusion injury. Eur J Pharmacol 2015; 769:64-70. [DOI: 10.1016/j.ejphar.2015.10.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/13/2015] [Accepted: 10/27/2015] [Indexed: 12/13/2022]
|
15
|
Kruzliak P, Pechanova O, Kara T. New perspectives of nitric oxide donors in cardiac arrest and cardiopulmonary resuscitation treatment. Heart Fail Rev 2015; 19:383-90. [PMID: 23712508 PMCID: PMC3976759 DOI: 10.1007/s10741-013-9397-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO) is often used to treat heart failure accompanied with pulmonary edema. According to present knowledge, however, NO donors are contraindicated when systolic blood pressure is less than 90 mmHg. Based on recent findings and our own clinical experience, we formulated a hypothesis about the new breakthrough complex lifesaving effects of NO donors in patients with cardiac arrest and cardiopulmonary resuscitation therapy. It includes a direct hemodynamic effect of NO donors mediated through vasodilation of coronary arteries in cooperation with improvement of cardiac function and cardiac output through reversible inhibition of mitochondrial complex I and mitochondrial NO synthase, followed by reduction in reactive oxygen species and correction of myocardial stunning. Simultaneously, an increase in vascular sensitivity to sympathetic stimulation could lead to an increase in diastolic blood pressure. Confirmation of this hypothesis in clinical practice would mean a milestone in the treatment for cardiac arrest and cardiopulmonary resuscitation.
Collapse
Affiliation(s)
- Peter Kruzliak
- Institute of Normal and Pathological Physiology and Centre of Excellence for Regulatory Role of Nitric Oxide in Civilization Diseases, Slovak Academy of Sciences, Bratislava, Slovak Republic,
| | | | | |
Collapse
|
16
|
Zhang W, Han Y, Meng G, Bai W, Xie L, Lu H, Shao Y, Wei L, Pan S, Zhou S, Chen Q, Ferro A, Ji Y. Direct renin inhibition with aliskiren protects against myocardial ischemia/reperfusion injury by activating nitric oxide synthase signaling in spontaneously hypertensive rats. J Am Heart Assoc 2014; 3:e000606. [PMID: 24473199 PMCID: PMC3959716 DOI: 10.1161/jaha.113.000606] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND We tested the hypothesis that direct renin inhibition with aliskiren protects against myocardial ischemia/reperfusion (I/R) injury in spontaneously hypertensive rats (SHR), and examined the mechanism by which this occurs. METHODS AND RESULTS Male SHR were treated (orally, 4 weeks) with saline or aliskiren (30 or 60 mg kg(-1) day(-1)) and subjected to 30 minutes of left anterior descending coronary artery occlusion followed by 6 or 24 hours of reperfusion. Only the higher dose significantly lowered systolic blood pressure, the lower dose causing a smaller apparent lowering that was nonsignificant. Despite this difference in blood pressure-lowering effect, both doses increased the ejection fraction and fractional shortening and reduced myocardial infarct size equally. I/R decreased cardiac expression of phosphatidylinositol 3-kinase (PI3K), phospho-Akt and phospho-endothelial nitric oxide synthase (phospho-eNOS), but increased expression of inducible nitric oxide synthase (iNOS); these changes were all abrogated by aliskiren. Moreover, aliskiren decreased superoxide anion generation and increased cyclic guanosine-3',5'-monophosphate, an index of bioactive nitric oxide, in myocardium. It also decreased the expression of myocardial matrix metalloproteinase-2, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinases-1 (TIMP-1) following I/R. In a Langendorff heart preparation, the detrimental cardiac effects of I/R were abrogated by aliskiren, and these protective effects were abolished by NOS or PI3K inhibition. In a parallel study, although specific iNOS inhibition reduced plasma malondialdehyde and myocardial superoxide anion generation, it did not affect the deleterious effects of I/R on myocardial structure and function. CONCLUSIONS Direct renin inhibition protects against myocardial I/R injury through activation of the PI3K-Akt-eNOS pathway.
Collapse
Affiliation(s)
- Wen Zhang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, State Key Laboratory of Reproductive Medicine, Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Huang ZM, Gao E, Fonseca FV, Hayashi H, Shang X, Hoffman NE, Chuprun JK, Tian X, Tilley DG, Madesh M, Lefer DJ, Stamler JS, Koch WJ. Convergence of G protein-coupled receptor and S-nitrosylation signaling determines the outcome to cardiac ischemic injury. Sci Signal 2013; 6:ra95. [PMID: 24170934 DOI: 10.1126/scisignal.2004225] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Heart failure caused by ischemic heart disease is a leading cause of death in the developed world. Treatment is currently centered on regimens involving G protein-coupled receptors (GPCRs) or nitric oxide (NO). These regimens are thought to target distinct molecular pathways. We showed that these pathways were interdependent and converged on the effector GRK2 (GPCR kinase 2) to regulate myocyte survival and function. Ischemic injury coupled to GPCR activation, including GPCR desensitization and myocyte loss, required GRK2 activation, and we found that cardioprotection mediated by inhibition of GRK2 depended on endothelial nitric oxide synthase (eNOS) and was associated with S-nitrosylation of GRK2. Conversely, the cardioprotective effects of NO bioactivity were absent in a knock-in mouse with a form of GRK2 that cannot be S-nitrosylated. Because GRK2 and eNOS inhibit each other, the balance of the activities of these enzymes in the myocardium determined the outcome to ischemic injury. Our findings suggest new insights into the mechanism of action of classic drugs used to treat heart failure and new therapeutic approaches to ischemic heart disease.
Collapse
Affiliation(s)
- Z Maggie Huang
- 1Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tratsiakovich Y, Gonon AT, Kiss A, Yang J, Böhm F, Tornvall P, Settergren M, Channon KM, Sjöquist PO, Pernow J. Myocardial protection by co-administration of L-arginine and tetrahydrobiopterin during ischemia and reperfusion. Int J Cardiol 2013; 169:83-8. [PMID: 24067598 DOI: 10.1016/j.ijcard.2013.08.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 07/31/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Reduced bioavailability of nitric oxide (NO) is a key factor contributing to myocardial ischemia and reperfusion injury. The mechanism behind the reduction of NO is related to deficiency of the NO synthase (NOS) substrate L-arginine and cofactor tetrahydrobiopterin (BH4) resulting in NOS uncoupling. The aim of the study was to investigate if the combination of L-arginine and BH4 given iv or intracoronary before reperfusion protects from reperfusion injury. METHODS Sprague-Dawley rats and pigs were subjected to myocardial ischemia and reperfusion. Rats received vehicle, L-arginine, BH4, L-arginine+BH4 with or without the NOS-inhibitor L-NMMA iv 5 min before reperfusion. Pigs received infusion of vehicle, L-arginine, BH4 or L-arginine+BH4 into the left main coronary artery for 30 min starting 10 min before reperfusion. RESULTS Infarct size was significantly smaller in the rats (50 ± 2%) and pigs (54 ± 5%) given L-arginine+BH4 in comparison with the vehicle groups (rats 65 ± 3% and pigs 86 ± 5%, P<0.05). Neither L-arginine nor BH4 alone significantly reduced infarct size. Administration of L-NMMA abrogated the cardioprotective effect of L-arginine+BH4. Myocardial BH4 levels were 3.5- to 5-fold higher in pigs given L-arginine+BH4 and BH4 alone. The generation of superoxide in the ischemic-reperfused myocardium was reduced in pigs treated with intracoronary L-arginine+BH4 versus the vehicle group (P<0.05). CONCLUSION Administration of L-arginine+BH4 before reperfusion protects the heart from ischemia-reperfusion injury. The cardioprotective effect is mediated via NOS-dependent pathway resulting in diminished superoxide generation.
Collapse
Affiliation(s)
- Yahor Tratsiakovich
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Landim MBP, Dourado PMM, Casella-Filho A, Chagas ACP, da-Luz PL. High plasma concentrations of asymmetric dimethylarginine inhibit ischemic cardioprotection in hypercholesterolemic rats. Braz J Med Biol Res 2013; 46:454-9. [PMID: 23681289 PMCID: PMC3854396 DOI: 10.1590/1414-431x20132595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 01/29/2013] [Indexed: 11/22/2022] Open
Abstract
A low concentration of nitric oxide associated with a high concentration of
asymmetric dimethylarginine (ADMA) can explain the lack of ischemic
cardioprotection observed in the presence of hypercholesterolemia. The objective
of the present study was to evaluate the effect of hypercholesterolemia on
ischemic pre- and postconditioning and its correlation with plasma
concentrations of ADMA. Male Wistar rats (6-8 weeks old) fed a 2%
cholesterol diet (n = 21) for 8 weeks were compared to controls (n
= 25) and were subjected to experimental myocardial infarction and
reperfusion, with ischemic pre- and postconditioning. Total cholesterol and ADMA
were measured in plasma before the experimental infarct and the infarct area was
quantified. Weight, total cholesterol and plasma ADMA (means ± SE; 1.20
± 0.06, 1.27 ± 0.08 and 1.20 ± 0.08 vs
0.97 ± 0.04, 0.93 ± 0.05 and 0.97 ± 0.04 µM)
were higher in animals on the hypercholesterolemic diet than in controls,
respectively. Cardioprotection did not reduce infarct size in the
hypercholesterolemic animals (pre: 13.55% and post: 8% compared to
7.95% observed in the group subjected only to ischemia and reperfusion),
whereas infarct size was reduced in the animals on a normocholesterolemic diet
(pre: 8.25% and post: 6.10% compared to 12.31%).
Hypercholesterolemia elevated ADMA and eliminated the cardioprotective effects
of ischemic pre- and postconditioning in rats.
Collapse
Affiliation(s)
- M B P Landim
- Unidade de Aterosclerose, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil.
| | | | | | | | | |
Collapse
|
20
|
Local arginase inhibition during early reperfusion mediates cardioprotection via increased nitric oxide production. PLoS One 2012; 7:e42038. [PMID: 22860052 PMCID: PMC3409239 DOI: 10.1371/journal.pone.0042038] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 07/02/2012] [Indexed: 11/19/2022] Open
Abstract
Consumption of L-arginine contributes to reduced bioavailability of nitric oxide (NO) that is critical for the development of ischemia-reperfusion injury. The aim of the study was to determine myocardial arginase expression and activity in ischemic-reperfusion myocardium and whether local inhibition of arginase within the ischemic myocardium results in increased NO production and protection against myocardial ischemia-reperfusion. Anesthetized pigs were subjected to coronary artery occlusion for 40 min followed by 4 h reperfusion. The pigs were randomized to intracoronary infusion of vehicle (n = 7), the arginase inhibitor N-hydroxy-nor-L-arginine (nor-NOHA, 2 mg/min, n = 7), the combination of nor-NOHA and the NO synthase inhibitor NG-monomethyl-L-arginine (L-NMMA, 0.35 mg/min, n = 6) into the jeopardized myocardial area or systemic intravenous infusion of nor-NOHA (2 mg/min, n = 5) at the end of ischemia and start of reperfusion. The infarct size of the vehicle group was 80±4% of the area at risk. Intracoronary nor-NOHA reduced infarct size to 46±5% (P<0.01). Co-administration of L-NMMA abrogated the cardioprotective effect mediated by nor-NOHA (infarct size 72±6%). Intravenous nor-NOHA did not reduce infarct size. Arginase I and II were expressed in cardiomyocytes, endothelial, smooth muscle and poylmorphonuclear cells. There was no difference in cytosolic arginase I or mitochondrial arginase II expression between ischemic-reperfused and non-ischemic myocardium. Arginase activity increased 2-fold in the ischemic-reperfused myocardium in comparison with non-ischemic myocardium. In conclusion, ischemia-reperfusion increases arginase activity without affecting cytosolic arginase I or mitochondrial arginase II expression. Local arginase inhibition during early reperfusion reduces infarct size via a mechanism that is dependent on increased bioavailability of NO.
Collapse
|
21
|
Okorie MI, Bhavsar DD, Ridout D, Charakida M, Deanfield JE, Loukogeorgakis SP, MacAllister RJ. Postconditioning protects against human endothelial ischaemia-reperfusion injury via subtype-specific KATP channel activation and is mimicked by inhibition of the mitochondrial permeability transition pore. Eur Heart J 2011; 32:1266-74. [PMID: 21362704 DOI: 10.1093/eurheartj/ehr041] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS Intermittent early reperfusion (ischaemic postconditioning; PostC) reduces ischaemia-reperfusion (IR) injury. Using an in vivo model of endothelial IR injury in humans, we sought to determine the role of K(ATP) channels in PostC and whether inhibition of the mitochondrial permeability transition pore (mPTP) at the onset of reperfusion protected against endothelial IR injury. METHODS AND RESULTS Endothelial function (EF) in healthy volunteers was assessed using vascular ultrasound to measure the percentage increase in the diameter of the brachial artery in response to reactive hyperaemia [flow-mediated dilatation (FMD)]. In resistance vessels, venous occlusion plethysmography was used to measure the dilator response to acetylcholine (ACh) [area under ACh dose-response curve (ACh AUC)]. Measurements were made before and after IR injury. Ischaemic postconditioning consisted of three 10 s cycles of alternating ischaemia and reperfusion in the first minute of reperfusion. Oral glibenclamide and glimepiride were used to determine the role of K(ATP) channel subtypes in PostC. Intra-arterial cyclosporine was used to determine the role of mPTP in endothelial IR injury. Ischaemia-reperfusion reduced EF in the brachial artery (FMD 7.1 ± 0.9% pre-IR, 2.8 ± 0.4% post-IR; P < 0.001) and resistance vessels [ACh AUC (×10(4)) 2.1 ± 0.4 pre-IR, 1.5 ± 0.2 post-IR; P < 0.05]. Ischaemic postconditioning preserved EF in the brachial artery [FMD 6.8 ± 0.9% (P < 0.001 vs. post-IR)] and resistance vessels [ACh AUC (×10(4)) 1.9 ± 0.2 (P < 0.001 vs. post-IR)]. Protection by PostC was abolished by glibenclamide in the brachial artery [FMD 3.3 ± 0.2% (P < 0.001 vs. post-IR + PostC)] and in resistance vessels [ACh AUC (×10(4)) 1.1 ± 0.2 (P < 0.001 vs. post-IR + PostC)], whereas glimepiride had no effect. Cyclosporine preserved EF after IR injury in the resistance vessels [ACh AUC (×10(4)) 1.4 ± 0.2 post-IR vs. 2.2 ± 0.3 post-IR + cyclosporine; P < 0.05]. CONCLUSION Protection by PostC against endothelial IR injury in humans depends on K(ATP) channel activation and is mimicked by inhibition of the mPTP at reperfusion.
Collapse
Affiliation(s)
- Michael I Okorie
- Centre for Clinical Pharmacology, University College London, The Rayne Institute, 5 University Street, London, UK.
| | | | | | | | | | | | | |
Collapse
|
22
|
Gonon AT, Jung C, Yang J, Sjöquist PO, Pernow J. The combination of L-arginine and ischaemic post-conditioning at the onset of reperfusion limits myocardial injury in the pig. Acta Physiol (Oxf) 2011; 201:219-26. [PMID: 21241456 DOI: 10.1111/j.1748-1716.2010.02168.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To investigate whether ischaemic post-conditioning (IPoC) combined with i.v. infusion of the nitric oxide (NO) substrate L-arginine at the onset of reperfusion exerts cardioprotective effect that is superior to either treatment given separately. METHODS Twenty-six anesthetized pigs were subjected to coronary artery (left anterior descending artery, LAD) ligation for 40 min followed by 4 h reperfusion. The pigs were randomized into five different groups receiving either i.v. vehicle, i.v. L-arginine, IPoC 4 × 60 s together with i.v. vehicle or IPoC together with i.v. L-arginine and a group with IPoC 8 × 30 s. All infusions were started 10 min before reperfusion. RESULTS The infarct size of the vehicle group was 82 ± 4% of the area at risk. L-Arginine alone (79 ± 8%), IPoC 4 × 60 s vehicle (86 ± 3%) or IPoC 8 × 30 s vehicle (94 ± 7%) did not affect infarct size. l-Arginine together with IPoC significantly reduced infarct size to 59 ± 4% (P < 0.01). Except for higher LAD flow during early reperfusion in the IPoC L-arginine group, haemodynamic parameters did not differ between the four main groups. Heart rate and rate pressure product were lower during ischaemia and reperfusion in the IPoC 8 × 30 s vehicle group. In comparison with the vehicle group, there were no changes in the expression of Akt, phosphorylated Akt Ser(473) , inducible NO synthase, endothelial NO synthase (eNOS) or phosphorylated eNOS Ser(1177) in the ischaemic/reperfused myocardium. CONCLUSION L-Arginine given systemically at the onset of reperfusion protects the pig heart against ischaemia and reperfusion injury only when combined with IPoC. These results indicate that the combination of the two treatment strategies exerts cardioprotection.
Collapse
Affiliation(s)
- A T Gonon
- Division of Clinical Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
23
|
Saleh AI, Abdel Maksoud SM, El-Maraghy SA, Gad MZ. Protective effect of L-arginine in experimentally induced myocardial ischemia: comparison with aspirin. J Cardiovasc Pharmacol Ther 2010; 16:53-62. [PMID: 20938038 DOI: 10.1177/1074248410378506] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Coronary artery diseases including myocardial ischemia (MI) remain one of the leading causes of death worldwide. This study was designed to compare the protective effect of L-arginine versus aspirin from the biochemical changes associated with MI injury. EXPERIMENTAL DESIGN Four groups of male New Zealand white rabbits were investigated. Normal group (n = 8) rabbits were fed standard chow pellets, untreated MI group (n = 16), where hypercholesterolemia was induced by feeding the animals with a diet containing 2% cholesterol for 28 days, L-arginine group (n = 12) rabbits were fed a 2% cholesterol-enriched diet in conjunction with L-arginine (2.25 g %) in drinking water for 28 days, and aspirin group (n = 12) rabbits were fed 2% cholesterol-enriched diet in conjunction with aspirin administered orally (0.7 mg/kg per d) for 28 days. After 28 days, MI was induced in all groups, except the normal group, by a single subcutaneous (sc) injection of isoproterenol hydrochloride (0.2 mg/kg body weight [bw]). Animals were sacrificed 6 hours later. RESULTS Our results showed that L-arginine was more effective than aspirin in reducing platelet aggregation, reducing low-density lipoprotein (LDL) oxidizability, preventing aortic intimal thickening, and maintaining histological architecture of the myocardium. Both drugs, however, had similar positive effects on plasma fibrinogen levels and on the prevention of myocardial release of cardiac troponin I and creatine kinase-MB. The effect on hypercholesterolemia was insignificant for both drugs. Aspirin was more effective than L-arginine in prolonging prothrombin time. CONCLUSION L-arginine supplementation represents a potentially novel nutritional strategy for preventing and treating coronary artery diseases especially in cases of aspirin resistance and/or hypersensitivity.
Collapse
Affiliation(s)
- Alaaeldin I Saleh
- Biochemistry Department, Faculty of Pharmacy, German University in Cairo, New Cairo, Egypt
| | | | | | | |
Collapse
|
24
|
Singhal AK, Symons JD, Boudina S, Jaishy B, Shiu YT. Role of Endothelial Cells in Myocardial Ischemia-Reperfusion Injury. ACTA ACUST UNITED AC 2010; 7:1-14. [PMID: 25558187 PMCID: PMC4280830 DOI: 10.2174/1874120701007010001] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Minimizing myocardial ischemia-reperfusion injury has broad clinical implications and is a critical mediator of cardiac surgical outcomes. “Ischemic injury” results from a restriction in blood supply leading to a mismatch between oxygen supply and demand of a sufficient intensity and/or duration that leads to cell necrosis, whereas ischemia-reperfusion injury occurs when blood supply is restored after a period of ischemia and is usually associated with apoptosis (i.e. programmed cell death). Compared to vascular endothelial cells, cardiac myocytes are more sensitive to ischemic injury and have received the most attention in preventing myocardial ischemia-reperfusion injury. Many comprehensive reviews exist on various aspects of myocardial ischemia-reperfusion injury. The purpose of this review is to examine the role of vascular endothelial cells in myocardial ischemia-reperfusion injury, and to stimulate further research in this exciting and clinically relevant area. Two specific areas that are addressed include: 1) data suggesting that coronary endothelial cells are critical mediators of myocardial dysfunction after ischemia-reperfusion injury; and 2) the involvement of the mitochondrial permeability transition pore in endothelial cell death as a result of an ischemia-reperfusion insult. Elucidating the cellular signaling pathway(s) that leads to endothelial cell injury and/or death in response to ischemia-reperfusion is a key component to developing clinically applicable strategies that might minimize myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Arun K Singhal
- Cardiothoracic Division, Edward J. Hines Veterans Administration Hospital, and Loyola University, Chicago, IL, USA
| | - J David Symons
- College of Health and Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Sihem Boudina
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bharat Jaishy
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Yan-Ting Shiu
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
25
|
Cardioprotective effects of long-term treatment with raloxifene, a selective estrogen receptor modulator, on myocardial ischemia/reperfusion injury in ovariectomized rats. Menopause 2010; 17:127-34. [PMID: 19745773 DOI: 10.1097/gme.0b013e3181b4c4ac] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the beneficial effect of long-term treatment with raloxifene (RAL), a selective estrogen receptor modulator, on myocardial ischemia/reperfusion (MI/R) injury in ovariectomized (Ovx) rats. METHODS Ovariectomy was performed in female Sprague-Dawley rats 8 weeks old. Ovx rats were treated with RAL 1 or 5 mg/kg (gavage, once daily) or 17beta-estradiol (E2; 50 microg/kg SC, three times a week) for 8 weeks. The cardioprotective effect of RAL was evaluated in an open-chest anesthetized rat model of MI/R, which was induced by 40-minute left coronary artery occlusion and 100-minute reperfusion. RESULTS Long-term treatment with RAL 1 mg/kg significantly suppressed the duration of ventricular tachycardia elicited by MI. After MI/R, the levels of plasma creatine kinase-MB fraction and lactate dehydrogenase in Ovx rats were significantly higher than those in the sham group, which were significantly reduced by long-term treatment with RAL 1 mg/kg or E2. Neutrophil myeloperoxidase activity in ischemic myocardium markedly increased in the Ovx group, whereas long-term treatment with RAL 1 or 5 mg/kg or E2 significantly suppressed the elevation of myeloperoxidase activity. After MI/R, the protein expression of phosphorylated inhibitory kappaBalpha and caspase-3 in ischemic myocardium pronouncedly increased in the Ovx group and was attenuated by long-term treatment with RAL 1 mg/kg or E2. CONCLUSIONS Long-term treatment with RAL can reduce the severity of MI-induced arrhythmias and attenuate MI/R-induced damages and apoptosis in Ovx rats. This cardioprotective effect of RAL may be associated with inhibition of neutrophil infiltration and suppression of nuclear factor-kappaB activation.
Collapse
|
26
|
Li Calzi S, Neu MB, Shaw LC, Grant MB. Endothelial progenitor dysfunction in the pathogenesis of diabetic retinopathy: treatment concept to correct diabetes-associated deficits. EPMA J 2010; 1:88-100. [PMID: 21494317 PMCID: PMC3008583 DOI: 10.1007/s13167-010-0011-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Progressive obliteration of the retinal microvessels is a characteristic of diabetic retinopathy and the resultant retinal ischemia can lead to sight-threatening macular edema, macular ischemia and ultimately preretinal neovascularization. Bone marrow derived endothelial progenitor cells (EPCs) play a critical role in vascular maintenance and repair. There is still great debate about the most appropriate markers that define an EPC. EPCs can be isolated using cell sorting by surface phenotype selection or in vitro cell culture. For freshly isolated cells, EPC cell sorting is heavily dependent on the surface markers used; EPCs can also be isolated by in vitro propagation of heterogeneous mixtures of cells in culture using adhesion to specific substrates and cell growth characteristics. in vitro isolation enables consistent reproducibility and using this approach at least two distinct types of EPCs with different angiogenic properties have been identified from adult peripheral and umbilical cord blood; early EPCs (eEPCs) and late outgrowth endothelial progenitor cells (OECs). Emerging studies demonstrate the potential of these cells in revascularization of ischemic/injured retina in animal models of retinal disease. Since ischemic retinopathies are leading causes of blindness, they are a potential disease target for EPC-based therapy. In this chapter, we summarize the current knowledge about EPCs and discuss the possibility of cellular therapy for treatment of diabetic macular ischemia and the vasodegenerative phase of diabetic retinopathy. We also report current pharmacological options that can be utilized to correct diabetes associated defects in EPCs so as to enhance the therapeutic utility of these cells.
Collapse
Affiliation(s)
- Sergio Li Calzi
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
27
|
Zhang C, Wu J, Xu X, Potter BJ, Gao X. Direct relationship between levels of TNF-alpha expression and endothelial dysfunction in reperfusion injury. Basic Res Cardiol 2010; 105:453-64. [PMID: 20091314 DOI: 10.1007/s00395-010-0083-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 12/29/2009] [Accepted: 12/30/2009] [Indexed: 12/12/2022]
Abstract
We previously found that myocardial ischemia/reperfusion (I/R) initiates expression of tumor necrosis factor-alpha (TNF) leading to coronary endothelial dysfunction. However, it is not clear whether there is a direct relationship between levels of TNF expression and endothelial dysfunction in reperfusion injury. We studied levels of TNF expression by using different transgenic animals expressing varying amounts of TNF in I/R. We crossed TNF overexpression (TNF(++/++)) with TNF knockout (TNF(-/-)) mice; thus we have a heterozygote population of mice with the expression of TNF "in between" the TNF(-/-) and TNF(++/++) mice. Mouse hearts were subjected to 30 min of global ischemia followed by 90 min of reperfusion and their vasoactivity before and after I/R was examined in wild type (WT), TNF(-/-), TNF(++/++) and TNF heterozygote (TNF(-/++), cross between TNF(-/-) and TNF(++/++)) mice. In heterozygote TNF(-/++) mice with intermediate cardiac-specific expression of TNF, acetylcholine-induced or flow-induced endothelial-dependent vasodilation following I/R was between TNF(++/++) and TNF(-/-) following I/R. Neutralizing antibodies to TNF administered immediately before the onset of reperfusion-preserved endothelial-dependent dilation following I/R in WT, TNF(-/++) and TNF(++/++) mice. In WT, TNF(-/++) and TNF(++/++) mice, I/R-induced endothelial dysfunction was progressively lessened by administration of free-radical scavenger TEMPOL immediately before initiating reperfusion. During I/R, production of superoxide (O(2) (.-)) was greatest in TNF(++/++) mice as compared to WT, TNF(-/++) and TNF(-/-) mice. Following I/R, arginase mRNA expression was elevated in the WT, substantially elevated in the TNF(-/++) and TNF(++/++) mice and not affected in the TNF(-/-) mice. These results suggest that the level of TNF expression determines arginase expression in endothelial cells during myocardial I/R, which is one of the mechanisms by which TNF compromises coronary endothelial function in reperfusion injury.
Collapse
Affiliation(s)
- Cuihua Zhang
- Department of Internal Medicine, Medical Pharmacology and Physiology and Nutritional Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | |
Collapse
|
28
|
Atakisi O, Atakisi E, Kart A. Effects of dietary zinc and L-arginine supplementation on total antioxidants capacity, lipid peroxidation, nitric oxide, egg weight, and blood biochemical values in Japanese quails. Biol Trace Elem Res 2009; 132:136-43. [PMID: 19396404 DOI: 10.1007/s12011-009-8378-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 04/06/2009] [Indexed: 12/19/2022]
Abstract
The aim of this study was to evaluate effects of dietary zinc and L-arginine supplementation on blood total antioxidant capacity (TAC), malondialdehyde (MDA), nitric oxide (NO), some blood chemistry parameters, and egg weights of laying quails. Three groups of Japanese quails were fed with a diet containing L-arginine (5 mg/kg), zinc (60 mg/kg), and normal basal diet (control) for 30 days. TAC, lipid peroxidation, and biochemical analysis were performed in the blood of animals. L-Arginine and zinc supplementation improved TAC and reduced MDA concentrations compared to the control (P<0.05). In comparison to the control, blood NO concentrations were increased by Larginine (P<0.01) and zinc treatment (P<0.05). Both zinc (P<0.001) and L-arginine (P< 0.01) supplementation significantly increased egg weight in laying quails. Some of the blood chemistry parameters were also altered by the treatment of L-arginine and zinc supplementation. No difference was found in blood albumin and creatinine levels among the groups. Blood glucose (P=0.833) and total protein (P=0.264) levels in control and Larginine-treated groups were found to be similar. Glucose and total protein levels were decreased in zinc-supplemented animals compared to the control and L-arginine groups (P< 0.05). No difference was found in triglyceride levels between control and zinc-applied groups (P=0.197). However, L-arginine treatment reduced the blood triglyceride levels compared to the control (P<0.05). In conclusion, L-arginine and zinc supplementation could be beneficial and effective for decreasing oxidative stress, boosting antioxidant capacity, and improving egg weight in the blood of the animals.
Collapse
Affiliation(s)
- Onur Atakisi
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Kafkas, Kars, Turkey.
| | | | | |
Collapse
|
29
|
Vascular dysfunction in retinopathy-an emerging role for arginase. Brain Res Bull 2009; 81:303-9. [PMID: 19737603 DOI: 10.1016/j.brainresbull.2009.08.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 07/23/2009] [Accepted: 08/30/2009] [Indexed: 12/29/2022]
Abstract
Retinal neovascularization is a leading cause of visual disability. Retinal diseases involving neovascularization all follow the same progression, beginning with vascular inflammatory reactions and injury of the vascular endothelium and ending with neovascularization, fibrosis and retinal detachment. Understanding the mechanisms underlying this process is critical for its prevention and treatment. Research using retinopathy models has revealed that the NOX2 NADPH oxidase has a key role in inducing production of reactive oxygen species and angiogenic cytokines and causing vascular inflammatory reactions and neovascularization. This prospective review addresses the potential role of the urea/ornithine pathway enzyme arginase in this process. Studies of peripheral vessels isolated from diabetic animals have shown that increased arginase activity causes vascular endothelial cell dysfunction by decreasing availability of l-arginine to endothelial cell nitric oxide synthase which decreases nitric oxide bioavailability and increases oxidative stress. Increasing arginase activity also increases formation of polyamines and proline, which can induce cell growth and fibrosis. Studies in models of retinopathy show that increases in oxidative stress and signs of vascular inflammation are correlated with increases in arginase activity and arginase 1 expression and that decreasing arginase expression or inhibiting its activity blocks these effects. Furthermore, the induction of arginase during retinopathy is blocked by knocking out NOX2 or inhibiting NADPH oxidase activity. These observations suggest that NADPH oxidase-induced activation of the arginase pathway has a key role in causing retinal vascular dysfunction during retinopathy. Limiting the actions of arginase could provide a new strategy for treating this potentially blinding condition.
Collapse
|
30
|
Venardos KM, Zatta AJ, Marshall T, Ritchie R, Kaye DM. Reduced L-arginine transport contributes to the pathogenesis of myocardial ischemia-reperfusion injury. J Cell Biochem 2009; 108:156-68. [DOI: 10.1002/jcb.22235] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Miller MJS, Munshi UK, Zhang XJ, Sadowska-Krowicka H, Savage P, Kakkis JL, Eloby-Childress S, Clark DA, Bustamante SA, Jeng AY. Chronic Administration of the Nitric Oxide Synthase Inhibitor, L-NAME, Increases Circulating Endothelin Levels in Guinea Pigs. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10623329509024659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
|
33
|
Settergren M, Böhm F, Malmström RE, Channon KM, Pernow J. L-arginine and tetrahydrobiopterin protects against ischemia/reperfusion-induced endothelial dysfunction in patients with type 2 diabetes mellitus and coronary artery disease. Atherosclerosis 2009; 204:73-8. [PMID: 18849028 DOI: 10.1016/j.atherosclerosis.2008.08.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Revised: 08/29/2008] [Accepted: 08/29/2008] [Indexed: 11/20/2022]
Abstract
Diminished levels of L-arginine and endothelial nitric oxide synthase (eNOS) uncoupling through deficiency of tetrahydrobiopterin (BH(4)) may contribute to endothelial dysfunction. We investigated the effect of L-arginine and BH(4) administration on ischemia-reperfusion (I/R)-induced endothelial dysfunction in patients with type 2 diabetes and coronary artery disease (CAD). Forearm blood flow was measured by venous occlusion plethysmography in 12 patients with type 2 diabetes or impaired glucose tolerance and CAD. Forearm ischemia was induced for 20 min, followed by 60 min of reperfusion. The patients received a 15 min intra-brachial infusion of L-arginine (20 mg/min) and BH(4) (500 microg/min) or 0.9% saline starting at 15 min of ischemia on two separate study occasions. Compared with pre-ischemia the endothelium-dependent vasodilatation (EDV) induced by acetylcholine was significantly reduced at 15 and 30 min of reperfusion when saline was infused (P<0.001), but not following L-arginine and BH(4) infusion. EDV was also significantly less reduced at 15 and 30 min of reperfusion following L-arginine and BH(4) infusion, compared to saline infusion (P<0.02). Endothelium-independent vasodilatation (EIDV) induced by nitroprusside was unaffected by I/R. Venous total biopterin levels in the infused arm increased from 37+/-7 at baseline to 6644+/-1240 nmol/l during infusion of L-arginine and BH(4) (P<0.0001), whereas there was no difference in biopterin levels during saline infusion. In conclusion L-arginine and BH(4) supplementation reduces I/R-induced endothelial dysfunction, a finding which may represent a novel treatment strategy to limit I/R injury in patients with type 2 diabetes and CAD.
Collapse
Affiliation(s)
- M Settergren
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
34
|
Khan M, Mohan IK, Kutala VK, Kotha SR, Parinandi NL, Hamlin RL, Kuppusamy P. Sulfaphenazole protects heart against ischemia-reperfusion injury and cardiac dysfunction by overexpression of iNOS, leading to enhancement of nitric oxide bioavailability and tissue oxygenation. Antioxid Redox Signal 2009; 11:725-38. [PMID: 18855521 PMCID: PMC2850300 DOI: 10.1089/ars.2008.2155] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The objective of this study was to establish the cardioprotective effect of sulfaphenazole (SPZ), a selective inhibitor of cytochrome P450 2C9 enzyme, in an in vivo rat model of acute myocardial infarction (MI). MI was induced by 30 min ligation of left anterior descending coronary artery, followed by 24 h reperfusion (I/R). The study used 6 groups: I/R (control); SPZ; L-NAME; L-NAME + SPZ; 1400W (an inhibitor of iNOS); 1400W + SPZ. The agents were administered orally through drinking water for 3 days prior to induction of I/R. Myocardial oxygenation (pO(2)) at the I/R site was measured using EPR oximetry. The preischemic pO(2) value was 18 +/- 2 mm Hg in all groups. At 1 h of reperfusion, the SPZ group showed a significantly higher hyperoxygenation when compared to control (45 +/- 1 vs. 34 +/- 2 mm Hg). The SPZ group showed a significant improvement in the contractile functions and reduction in infarct size. Histochemical staining of SPZ-treated hearts exhibited significantly lower levels of superoxide and peroxynitrite, and markedly increased levels of iNOS activity and nitric oxide. Western blot analysis indicated upregulation of Akt and attenuation of p38MAPK activities in the reperfused myocardium. The study established that SPZ attenuated myocardial I/R injury through overexpression of iNOS, leading to enhancement of nitric oxide bioavailability and tissue oxygenation.
Collapse
Affiliation(s)
- Mahmood Khan
- Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Yogaratnam JZ, Laden G, Guvendik L, Cowen M, Cale A, Griffin S. Pharmacological Preconditioning With Hyperbaric Oxygen: Can This Therapy Attenuate Myocardial Ischemic Reperfusion Injury and Induce Myocardial Protection via Nitric Oxide? J Surg Res 2008; 149:155-64. [DOI: 10.1016/j.jss.2007.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 08/27/2007] [Accepted: 09/04/2007] [Indexed: 11/29/2022]
|
36
|
The Effects of Sildenafil Citrate on Ischemic Colonic Anastomotic Healing in Rats: Its Relationship Between Nitric Oxide and Oxidative Stress. World J Surg 2008; 32:2107-13. [DOI: 10.1007/s00268-008-9661-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Ryou MG, Sun J, Oguayo KN, Manukhina EB, Downey HF, Mallet RT. Hypoxic conditioning suppresses nitric oxide production upon myocardial reperfusion. Exp Biol Med (Maywood) 2008; 233:766-74. [PMID: 18408142 PMCID: PMC4462123 DOI: 10.3181/0710-rm-282] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Physiologically modulated concentrations of nitric oxide (NO) are generally beneficial, but excessive NO can injure myocardium by producing cytotoxic peroxynitrite. Recently we reported that intermittent, normobaric hypoxia conditioning (IHC) produced robust cardioprotection against infarction and lethal arrhythmias in a canine model of coronary occlusion-reperfusion. This study tested the hypothesis that IHC suppresses myocardial nitric oxide synthase (NOS) activity and thereby dampens explosive, excessive NO formation upon reperfusion of occluded coronary arteries. Mongrel dogs were conditioned by a 20 d program of IHC (FIO(2) 9.5-10%; 5-10 min hypoxia/cycle, 5-8 cycles/d with intervening 4 min normoxia). One day later, ventricular myocardium was sampled for NOS activity assays, and immunoblot detection of the endothelial NOS isoform (eNOS). In separate experiments, myocardial nitrite (NO(2)(-)) release, an index of NO formation, was measured at baseline and during reperfusion following 1 h occlusion of the left anterior descending coronary artery (LAD). Values in IHC dogs were compared with respective values in non-conditioned, control dogs. IHC lowered left and right ventricular NOS activities by 60%, from 100-115 to 40-45 mU/g protein (P < 0.01), and decreased eNOS content by 30% (P < 0.05). IHC dampened cumulative NO(2)(-) release during the first 5 min reperfusion from 32 +/- 7 to 14 +/- 2 mumol/g (P < 0.05), but did not alter hyperemic LAD flow (15 +/- 2 vs. 13 +/- 2 ml/g). Thus, IHC suppressed myocardial NOS activity, eNOS content, and excessive NO formation upon reperfusion without compromising reactive hyperemia. Attenuation of the NOS/NO system may contribute to IHC-induced protection of myocardium from ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Myoung-Gwi Ryou
- Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, Texas
| | - Jie Sun
- Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, Texas
| | - Kevin N. Oguayo
- Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, Texas
| | | | - H. Fred Downey
- Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, Texas
| | - Robert T. Mallet
- Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
38
|
The effect of Nomega-nitro-L-arginine methyl ester and L-arginine on lung injury induced by abdominal aortic occlusion-reperfusion. Surg Today 2007; 38:30-7. [PMID: 18085359 DOI: 10.1007/s00595-007-3575-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 05/01/2007] [Indexed: 10/22/2022]
Abstract
PURPOSE The aim of this study was to examine the effects of Nomega-nitro-L-arginine methyl ester (L-NAME) and L-arginine on lung injury after aortic ischemia-reperfusion (IR). METHODS Twenty-four Wistar-Albino rats were randomized into four groups (n = 6) as follows: Control (sham laparotomy), Aortic IR (30 min ischemia and 120 min reperfusion), L-Arginine (intraperitoneal 100 mg kg(-1) live weight)+aortic IR, and L: -NAME (intraperitoneal 10 mg kg(-1) live weight)+aortic IR. In the lung specimens, the tissue levels of malondialdehyde (MDA), vascular endothelial growth factor (VEGF), and nitric oxide (NO) were measured and a histological examination was done. RESULTS Aortic IR increased MDA, VEGF, and NO. L-Arginine further significantly increased MDA and NO, and decreased VEGF (P < 0.05 vs aortic IR). L-NAME significantly decreased MDA and NO (P < 0.05 vs L-arginine+aortic IR) and increased VEGF (P < 0.05 vs other groups). A histological examination showed the aortic IR to significantly increase (P < 0.05 vs control) while L-arginine also further increased (P > 0.05 vs aortic IR), whereas L-NAME caused a significant decrease in pulmonary leukocyte infiltration (P < 0.05 vs aortic IR). CONCLUSIONS Our results indicate that L-arginine aggravates the lung injury induced by aortic IR, while L-NAME attenuates it.
Collapse
|
39
|
Tschoeke SK, Ertel W. Immunoparalysis after multiple trauma. Injury 2007; 38:1346-57. [PMID: 18048039 DOI: 10.1016/j.injury.2007.08.041] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 07/20/2007] [Accepted: 08/15/2007] [Indexed: 02/02/2023]
Abstract
The immunological sequelae following multiple trauma constitute an ongoing challenge in critical care management. The overall immune response to multiple trauma is a multilevel complex interdependently involving neurohormonal, cellular and haemodynamic factors. Immunoparalysis is characterised by a reduced capacity to present antigens via downregulated HLA-DR and an unbalanced monocyte-T cell interaction. Trauma-induced death of functionally conducive immune cells in the early recovery phase is significant in the emergence of posttraumatic multiple organ dysfunction or failure. Novel findings may contribute to more appropriate immunomonitoring and improved treatment. We must consider the preservation and support of immune function as the ultimate therapeutic goal, which may override the current strategy of simply antagonising excessive pro- or anti-inflammatory immune responses of the severely injured person. This review focuses on the injury-induced conduct of key immune effector cells and associated effects promoting immunoparalysis after multiple trauma.
Collapse
Affiliation(s)
- Sven K Tschoeke
- Department of Trauma and Reconstructive Surgery, Charité-University Hospitals Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany.
| | | |
Collapse
|
40
|
Affiliation(s)
- Derek M Yellon
- Hatter Cardiovascular Institute, University College London Hospital and Medical School, London, United Kingdom.
| | | |
Collapse
|
41
|
Abstract
Myocardial function is dependent on a constant supply of oxygen from the coronary circulation. A reduction of oxygen supply due to coronary obstruction results in myocardial ischemia, which leads to cardiac dysfunction. Reperfusion of the ischemic myocardium is required for tissue survival. Thrombolytic therapy, coronary artery bypass surgery and coronary angioplasty are some of the treatments available for the restoration of blood flow to the ischemic myocardium. However, the restoration of blood flow may also lead to reperfusion injury, resulting in myocyte death. Thus, any imbalance between oxygen supply and metabolic demand leads to functional, metabolic, morphologic, and electrophysiologic alterations, causing cell death. Myocardial ischemia reperfusion (IR) injury is a multifactorial process that is mediated by oxygen free radicals, neutrophil activation and infiltration, calcium overload, and apoptosis. Controlled reperfusion of the ischemic myocardium has been advocated to prevent the IR injury. Studies have shown that reperfusion injury and postischemic cardiac function are related to the quantity and delivery of oxygen during reperfusion. Substantial evidence suggests that controlled reoxygenation may ameliorate postischemic organ dysfunction. In this review, we discuss the role of oxygenation during reperfusion and subsequent biochemical and pathologic alterations in reperfused myocardium and recovery of heart function.
Collapse
Affiliation(s)
- Vijay Kumar Kutala
- Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
42
|
Prasan AM, McCarron HCK, Zhang Y, Jeremy RW. Myocardial release of nitric oxide during ischaemia and reperfusion: effects of L-arginine and hypercholesterolaemia. Heart Lung Circ 2007; 16:274-81. [PMID: 17420156 DOI: 10.1016/j.hlc.2007.02.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 02/13/2007] [Accepted: 02/14/2007] [Indexed: 11/29/2022]
Abstract
AIMS Nitric oxide (NO) may modulate myocardial ischaemia/reperfusion (I/R) injury, but effects of hypercholesterolaemia on myocardial NO release during I/R are unknown. METHODS A NO-specific carbon fibre electrode continuously measured coronary sinus [NO] during 60 min low-flow ischaemia (1 ml/min) and 60 min free reperfusion (I/R) in isolated rabbit hearts. Experimental groups (n=7 per group) were control, L-arginine supplement (200 microM), N-nitro-L-arginine methyl ester (L-NAME) treatment (8 microM) and hypercholesterolaemic. RESULTS During early I, NO release decreased markedly in control (-1356+/-286 pmol/min/g) and L-arginine (-1972+/-172) groups, but less in L-NAME (-441+/-89) and hypercholesterolaemic (-602+/-164) groups (both p<0.01 vs. controls). No increase in NO release during I was seen in any group. After R, NO release increased above baseline in control (+2333+/-591 pmol/min/g) and L-arginine (+1048+/-278) groups and hypercholesterolaemic (+1100+/-478) (p<0.05 vs. pre-ischaemia each group). There was little increase in NO release in the L-NAME group (+436+/-247 pmol/min/g, p<0.05 vs. controls). In each group, myocardial NO release declined towards pre-ischaemic levels during 60 min R. Hearts treated with L-arginine had similar NO release but better functional recovery than controls (p<0.01). Treatment with L-NAME was also associated with better functional recovery than in controls or hypercholesterolaemic hearts. CONCLUSION Myocardial NO release declines rapidly during ischaemia, but increases above baseline during early reperfusion. Improved function after L-arginine treatment appears to be independent of effects upon NO release. Hypercholesterolaemia is associated with reduced myocardial NO release, under both baseline conditions and during ischaemia and reperfusion.
Collapse
Affiliation(s)
- Ananth M Prasan
- Department of Medicine, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
43
|
Vinten-Johansen J, Jiang R, Reeves JG, Mykytenko J, Deneve J, Jobe LJ. Inflammation, proinflammatory mediators and myocardial ischemia-reperfusion Injury. Hematol Oncol Clin North Am 2007; 21:123-45. [PMID: 17258123 DOI: 10.1016/j.hoc.2006.11.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ischemic myocardium must be reperfused to terminate the ischemic event; otherwise the entire myocardium involved in the area at risk will not survive. However, there is a cost to reperfusion that may offset the intended clinical benefits of minimizing infarct size, postischemic endothelial and microvascular damage, blood flow defects, and contractile dysfunction. There are many contributors to this reperfusion injury. Targeting only one factor in the complex web of reperfusion injury is not effective because the untargeted mechanisms induce injury. An integrated strategy of reducing reperfusion injury in the catheterization laboratory involves controlling both the conditions and the composition of the reperfusate. Mechanical interventions such as gradually restoring blood flow or applying postconditioning may be used independently in or conjunction with various cardioprotective pharmaceuticals in an integrated strategy of reperfusion therapeutics to reduce postischemic injury.
Collapse
Affiliation(s)
- Jakob Vinten-Johansen
- Department of Surgery (Cardiothoracic), Cardiothoracic Research Laboratory, Carlyle Fraser Heart Center of Emory Crawford Long Hospital, Emory University, 550 Peachtree Street NE, Atlanta, GA 30308-2225, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Romero MJ, Platt DH, Caldwell RB, Caldwell RW. Therapeutic use of citrulline in cardiovascular disease. ACTA ACUST UNITED AC 2007; 24:275-90. [PMID: 17214603 DOI: 10.1111/j.1527-3466.2006.00275.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
L-citrulline is the natural precursor of L-arginine, substrate for nitric oxide synthase (NOS) in the production of NO. Supplemental administration L-arginine has been shown to be effective in improving NO production and cardiovascular function in cardiovascular diseases associated with endothelial dysfunction, such as hypertension, heart failure, atherosclerosis, diabetic vascular disease and ischemia-reperfusion injury, but the beneficial actions do not endure with chronic therapy. Substantial intestinal and hepatic metabolism of L-arginine to ornithine and urea by arginase makes oral delivery very ineffective. Additionally, all of these disease states as well as supplemental L-arginine enhance arginase expression and activity, thus reducing the effectiveness of L-arginine therapy. In contrast, L-citrulline is not metabolized in the intestine or liver and does not induce tissue arginase, but rather inhibits its activity. L-citrulline entering the kidney, vascular endothelium and other tissues can be readily converted to L-arginine, thus raising plasma and tissue levels of L-arginine and enhancing NO production. Supplemental L-citrulline has promise as a therapeutic adjunct in disease states associated with L-arginine deficiencies.
Collapse
Affiliation(s)
- Maritza J Romero
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta GA, USA
| | | | | | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Vascular endothelial cells control vascular smooth muscle tone via the release of nitric oxide. Following adverse circulatory conditions, namely trauma and hemorrhage, endothelial cell dysfunction occurs, leading to a decrease in the release of endothelium-derived nitric oxide, which contributes to further alterations in tissue perfusion and organ function. RECENT FINDINGS Early administration of L-arginine (the precursor of nitric oxide) and the substrate for nitric oxide synthase in vascular endothelial cells has been found to restore the depressed organ blood flow and to reduce tissue injury following shock. This improvement in cardiovascular function was associated with restoration of the depressed cell-mediated immune responses and attenuation of the massive inflammatory response encountered under such conditions. Furthermore, the excessive infiltration of the liver with neutrophils following trauma-hemorrhage was decreased by L-arginine administration, thereby reducing hepatic injury. In addition, L-arginine treatment decreased the inflammatory response at the site of trauma and the improved wound-healing process following blood loss. SUMMARY Despite those promising results in animal models at present, none of the published clinical trials has demonstrated efficacy of L-arginine at doses above standard dietary practices on the outcome in critically ill surgical patients, besides the reduction in infectious complications.
Collapse
Affiliation(s)
- Florian Loehe
- Department of Surgery, Klinikum Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | | | | | | |
Collapse
|
46
|
Trimetazidine improves post-ischemic recovery by preserving endothelial nitric oxide synthase expression in isolated working rat hearts. Nitric Oxide 2006; 16:228-36. [PMID: 17049285 DOI: 10.1016/j.niox.2006.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 07/20/2006] [Accepted: 09/02/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Previous investigations have consistently shown that the piperazine derivative trimetazidine (TMZ, 1-[2,3,4-trimethoxybenzil] piperazine, dihydrocloride) has cardioprotective effects in the experimental ischemia-reperfusion model. We tested the hypothesis that cardioprotective effect of TMZ is partly mediated by preservation of the endothelial barrier of the coronary microcirculation. METHODS Isolated Wistar rat (250-300 g) hearts were subjected to a 15 min period of global ischemia and 180 min reperfusion in the presence or absence of 1 microM TMZ. Hemodynamic parameters, heart weight, creatinekinase (CK) release and microvascular permeability (FITC-albumin extravasation) were evaluated. In addition, eNOS gene expression was estimated by rt-PCR, and eNOS protein levels were assessed by Western analysis. In order to confirm the involvement of NO in mediating the cardioprotective effects of TMZ, 30 microM N(omega)-nitro-l-arginine methylester (L-NAME), a specific inhibitor of nitric oxide synthase, was used. RESULTS After ischemia and reperfusion, TMZ produced a significant improvement of mechanical function associated with a reduction of CK release and FITC-albumin diffusion (P<0.001); the agent also resulted in improvement in coronary flow (at 45 min+27% vs control). The eNOS mRNA and protein levels were significantly higher in TMZ-treated hearts compared to controls. The addition of L-NAME significantly reduced the beneficial effects of TMZ on contractile function, CK release and FITC-albumin diffusion. CONCLUSIONS in the isolated rat heart, TMZ exerts a relevant, NO-dependent, cardioprotection against ischemia-reperfusion injury and preserves the endothelial barrier of the coronary circulation. This could contribute to explain the cardioprotective action of TMZ following ischemia and reperfusion.
Collapse
|
47
|
Kutala VK, Khan M, Mandal R, Potaraju V, Colantuono G, Kumbala D, Kuppusamy P. Prevention of Postischemic Myocardial Reperfusion Injury by the Combined Treatment of NCX-4016 and Tempol. J Cardiovasc Pharmacol 2006; 48:79-87. [PMID: 17031260 DOI: 10.1097/01.fjc.0000242050.16790.65] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO) plays a protective role in myocardial ischemia-reperfusion (I/R) injury. However, the concomitant production of superoxide and other reactive oxygen species (ROS) during I/R may diminish the bioavailability of NO and hence compromise the beneficial effects. The objective of this study was to investigate the protective effect of the coadministration of NCX-4016 [2-(acetyloxy)benzoic acid 3-(nitrooxymethyl)phenyl ester] (an NO donor) with antioxidants Tempol, superoxide dismutase (SOD), or urate on I/R injury. Isolated rat hearts, perfused with Krebs-Henseleit buffer, were subjected to 30 minutes of global ischemia, followed by 45 minutes of reperfusion. Before the induction of ischemia, the hearts were infused for 1 minute with NCX-4016 (100 microM) either alone or in combination with Tempol (100 microM), SOD (200 U/mL), or urate (100 microM). Hearts pretreated with NCX-4016 showed a significantly enhanced recovery of function and decreased infarct size and LDH/CK release compared with the controls. However, treatment of hearts with NCX-4016 + Tempol, SOD, or urate showed a significantly enhanced recovery of heart function compared with NCX-4016 alone. The treatment of hearts with NCX-4016 + Tempol showed significantly enhanced NO generation and decreased ROS and dityrosine (a marker of peroxynitrite) formation. In conclusion, NCX-4016 in combination with Tempol demonstrated significant cardioprotection and, thus, may offer a novel therapeutic strategy to prevent I/R-mediated myocardial injury.
Collapse
Affiliation(s)
- Vijay Kumar Kutala
- Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, and Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Fukunaga K, Han F, Shioda N, Moriguchi S, Kasahara J, Shirasaki Y. DY-9760e, a Novel Calmodulin Inhibitor, Exhibits Cardioprotective Effects in the Ischemic Heart. ACTA ACUST UNITED AC 2006; 24:88-100. [PMID: 16961723 DOI: 10.1111/j.1527-3466.2006.00088.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DY-9760e (3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride-3.5 hydrate) inhibits Ca(2+)/CaM-dependent nitric oxide synthase (NOS), thereby inhibiting nitric oxide (NO) production. In cardiomyocytes from ischemic rat heart NO and superoxide levels are increased causing protein tyrosine nitration. In hearts subjected to ischemia/reperfusion DY-9760e totally abolishes protein tyrosine nitration. Notably, DY-9760e also inhibits calpain and cas-pase-3 activation that occurs prior to apoptosis in cardiomyocytes. In ischemic hearts fodrin is the substrate for calpain. DY-9760e inhibits fodrin breakdown in the peri-infarct area rather than in the infarct core. In the ischemic rat brain DY-9760e inhibits caspase-3-induced proteolysis of calpastatin, an endogenous calpain inhibitor, suggesting that crosstalk between calpain and caspase-3 is mediated by calpastatin breakdown. Thus, DY-9760e rescues neurons and cardiomyocytes from ischemic injury by inhibiting crosstalk between calpain and caspase-3 as well as protein tyrosine nitration.
Collapse
Affiliation(s)
- Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Li DY, Tao L, Liu H, Christopher TA, Lopez BL, Ma XL. Role of ERK1/2 in the anti-apoptotic and cardioprotective effects of nitric oxide after myocardial ischemia and reperfusion. Apoptosis 2006; 11:923-30. [PMID: 16547595 DOI: 10.1007/s10495-006-6305-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Experimental results from cultured cells suggest that there is cross-talk between nitric oxide (NO) and extracellular signal-regulated kinase (ERK) in their anti-apoptotic effect. However, the cross-talk between these two molecules in either direction has not been confirmed in the whole organ or whole animal level. The aim of the present study was to determine whether ERK may play a role in the anti-apoptotic and cardioprotective effects of NO in myocardial ischemia/reperfusion (MI/R). METHODS Isolated perfused mouse hearts were subjected to 20 min of global ischemia and 120 min of reperfusion and treated with vehicle or an NO donor (SNAP, 10 muM) during reperfusion. To determine the role of ERK1/2 in the anti-apoptotic and cardioprotective effects of NO, hearts were pre-treated (10 min before ischemia) with U0126, a selective MEK1/2 inhibitor (1 muM). RESULTS Treatment with SNAP exerted significant cardioprotective effects as evidenced by reduced cardiac apoptosis (TUNEL and caspase 3 activity, p < 0.01), and improved cardiac functional recovery (p < 0.01). In addition, treatment with SNAP resulted in a 2.5-fold increase in ERK activation when compared with heart receiving vehicle. Pre-treatment with U0126 slightly increased post-ischemic myocardial apoptosis but had no significant effect on cardiac functional recovery in this isolated perfused heart model. However, treatment with U0126 completely blocked SNAP-induced ERK activation and markedly, although not completely, inhibited the cardioprotection exerted by SNAP. CONCLUSION These results demonstrate that nitric oxide exerts its anti-apoptotic and cardioprotective effects, at least in part, by activation of ERK in ischemic/reperfused heart.
Collapse
Affiliation(s)
- D-Y Li
- Department of Emergency Medicine, Thomas Jefferson University, 1020 Sansom Street, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
50
|
Ramzy D, Rao V, Mallidi H, Tumiati LC, Xu N, Miriuka S, Feindel CM. Cardiac Allograft Preservation Using Donor-Shed Blood Supplemented With L-Arginine. J Heart Lung Transplant 2005; 24:1665-72. [PMID: 16210145 DOI: 10.1016/j.healun.2004.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 10/21/2004] [Accepted: 11/12/2004] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Despite improved preservation techniques, myocardial and endothelial dysfunction persists after cardiac transplantation. L-arginine has been shown to decrease endothelial injury in several models of ischemia and reperfusion. We assessed the effects of L-arginine on allograft preservation in a porcine model of cardiac transplantation. METHODS Orthotopic cardiac transplants were performed in Yorkshire pigs. Hearts were randomly arrested with high potassium cardioplegia with or without L-arginine at a dose of 2.5 mmol/liter (LARGlow) and 5.0 mmol/liter. Donor-shed blood was collected at the time of organ harvest and intermittently perfused throughout the storage period. Coronary endothelial function was assessed at baseline and after reperfusion by measuring the change in coronary blood flow after exposure to acetylcholine or nitroglycerin. Pressure-volume relationships before and after transplant were evaluated with conductance catheter measurements. Myocardial biopsy specimens were assessed for inflammatory markers of cellular injury. RESULTS High-dose L-arginine uniformly resulted in ischemic contracture in all hearts, and there was no return of function in any hearts after storage. The low-dose L-arginine group had a greater ability to wean off cardiopulmonary bypass and displayed improved recovery of left ventricular function. Control animals had a 26% reduction in coronary flow compared with 13% for LARGlow. LARGlow resulted in decreased release of inflammatory cytokines compared with control. CONCLUSIONS Low-dose L-arginine preserves myocardial and endothelial function and decreases endothelial injury when it is used as a supplement to intermittent donor blood perfusion. In contrast, high-dose L-arginine resulted in severe endothelial injury and an inability to recover ventricular function after 5 hours of global ischemia.
Collapse
Affiliation(s)
- Danny Ramzy
- Division of Cardiac Surgery, University of Toronto, Toronto General Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|