1
|
Cherry AD. Mitochondrial Dysfunction in Cardiac Surgery. Anesthesiol Clin 2025; 43:357-375. [PMID: 40348547 DOI: 10.1016/j.anclin.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Mitochondria are key to the cellular response to energetic demands, but are also vital to reactive oxygen species signaling, calcium hemostasis, and regulation of cell death. Cardiac surgical patients with diabetes, heart failure, advanced age, or cardiomyopathies may have underlying mitochondrial dysfunction or be more sensitive to perioperative mitochondrial injury. Mitochondrial dysfunction, due to ischemia/reperfusion injury and an increased systemic inflammatory response due to exposure to cardiopulmonary bypass and surgical tissue trauma, impacts myocardial contractility and predisposes to arrhythmias. Strategies for perioperative mitochondrial protection and recovery include both well-established cardio-protective protocols and targeted therapies that remain under investigation.
Collapse
Affiliation(s)
- Anne D Cherry
- Department of Anesthesiology, Duke University School of Medicine, Duke University Medical Center, Box 3094, Durham, NC 27710, USA.
| |
Collapse
|
2
|
Thirunavukarasu S, Ansari F, Kotha S, Giannoudi M, Procter H, Cash L, Chowdhary A, Jex N, Shiwani H, Forbes K, Valkovič L, Kellman P, Plein S, Greenwood JP, Everett T, Scott EM, Levelt E. Cardiac structural, functional, and energetic assessments during and after pregnancy in women with gestational diabetes mellitus, preeclampsia, and healthy pregnancy. Am J Obstet Gynecol 2025; 232:565.e1-565.e16. [PMID: 39581289 DOI: 10.1016/j.ajog.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/09/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) and preeclampsia are common complications of pregnancy, for which overweight/obesity is a common risk factor. Both conditions are associated with a two-to-four-fold increase in future incident heart failure, which may be linked to early maladaptive myocardial changes. OBJECTIVE To determine maternal myocardial structural, functional, and energetic responses to pregnancies complicated by GDM or preeclampsia compared to healthy pregnancies (HP) at third-trimester of pregnancy and 12-months postpartum. STUDY DESIGN Thirty-eight women with HP, 30 GDM, 20 preeclampsia, 10 nonpregnant controls with overweight (Overweight-NC), and 10 with normal-weight were recruited. Cardiovascular magnetic resonance spectroscopy and imaging were used to define myocardial energetics (phosphocreatine: ATP ratio [PCr/ATP]), left ventricular (LV) volumes, mass, and ejection fraction and global longitudinal shortening (GLS). Pregnancy groups underwent repeat scans 12-months postpartum, nulliparous-controls were assessed once. RESULTS During third-trimester, compared to HP, women with either GDM or preeclampsia displayed higher BMI, higher LV-mass (HP: 90 [85, 94] g, GDM: 103 [96, 112], Preeclampsia: 118 [111, 125] g; P=.001) and lower PCr/ATP (HP: 2.2 [2.1, 2.4], GDM: 1.9 [1.7, 2], Preeclampsia: 1.9 [1.8, 2.1]; P=.0004) and GLS (HP: 20 [18, 21]%, GDM: 18 [17, 19]%, Preeclampsia: 16 [14, 17]%; P=.01). Post-pregnancy, no group saw significant changes in LV-mass, PCr/ATP, or GLS. There were no significant differences in LV-mass, PCr/ATP or GLS between the GDM and preeclampsia groups during or post-pregnancy. Moreover, the Overweight-NC showed no significant differences in LV-mass (53 [43, 63])g, PCr/ATP (2.0 [1.8, 2.2]), or GLS (-19 [17, 21]%) compared to GDM or preeclampsia groups during or post-pregnancy. CONCLUSION Women with GDM or preeclampsia exhibit similar myocardial phenotypes during pregnancy with persistent subclinical alterations in LV mass, energetics, and GLS 12-months postpartum. These myocardial alterations are similar to those detected in Overweight-NC, potentially suggesting the myocardial changes may predominantly be driven by overweight/obesity.
Collapse
Affiliation(s)
- Sharmaine Thirunavukarasu
- University of Leeds, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, United Kingdom
| | - Faiza Ansari
- Department of Fetal Medicine, Leeds General Infirmary, The Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Sindhoora Kotha
- University of Leeds, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, United Kingdom
| | - Marilena Giannoudi
- University of Leeds, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, United Kingdom
| | - Henry Procter
- University of Leeds, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, United Kingdom
| | - Lizette Cash
- University of Leeds, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, United Kingdom
| | - Amrit Chowdhary
- University of Leeds, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, United Kingdom
| | - Nicholas Jex
- University of Leeds, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, United Kingdom
| | - Hunain Shiwani
- Cardiac Imaging Department, Barts Heart Centre St Bartholomew's Hospital, London, United Kingdom
| | - Karen Forbes
- University of Leeds, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, United Kingdom
| | - Ladislav Valkovič
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), RDM Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institutes of Health, DHHS, Bethesda, MD
| | - Sven Plein
- University of Leeds, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, United Kingdom
| | - John P Greenwood
- University of Leeds, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, United Kingdom; Baker Heart and Diabetes Institute, Melbourne, Australia; Monash University, Melbourne, Australia; University of Melbourne, Melbourne, Australia
| | - Thomas Everett
- Department of Fetal Medicine, Leeds General Infirmary, The Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Eleanor M Scott
- University of Leeds, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, United Kingdom
| | - Eylem Levelt
- University of Leeds, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, United Kingdom.
| |
Collapse
|
3
|
Koay YC, McIntosh B, Ng YH, Cao Y, Wang XS, Han Y, Tomita S, Bai AY, Hunter B, Misra A, Loughrey CM, Bannon PG, Lal S, Lusis AJ, Kaye DM, Larance M, O’Sullivan JF. The Heart Has Intrinsic Ketogenic Capacity that Mediates NAD + Therapy in HFpEF. Circ Res 2025; 136:1113-1130. [PMID: 40211954 PMCID: PMC12063684 DOI: 10.1161/circresaha.124.325550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) has overtaken heart failure with reduced ejection fraction as the leading type of heart failure globally and is marked by high morbidity and mortality rates, yet with only a single approved pharmacotherapy: SGLT2i (sodium-glucose co-transporter 2 inhibitor). A prevailing theory for the mechanism underlying SGLT2i is nutrient deprivation signaling, of which ketogenesis is a hallmark. However, it is unclear whether the canonical ketogenic enzyme, HMGCS2 (3-hydroxy-3-methylglutaryl-coenzyme A synthase 2), plays any cardiac role in HFpEF pathogenesis or therapeutic response. METHODS We used human myocardium, human HFpEF and heart failure with reduced ejection fraction transcardiac blood sampling, an established murine model of HFpEF, ex vivo Langendorff perfusion, stable isotope tracing in isolated cardiomyocytes, targeted metabolomics, proteomics, lipidomics, and a novel cardiomyocyte-specific conditional HMGCS2-deficient model that we generated. RESULTS We demonstrate, for the first time, the intrinsic capacity of the human heart to produce ketones via HMGCS2. We found that increased acetylation of HMGCS2 led to a decrease in the enzyme's specific activity. However, this was overcome by an increase in the steady-state levels of protein. Oxidized form of nicotinamide adenine dinucleotide repletion restored HMGCS2 function via deacetylation, increased fatty acid oxidation, and rescued cardiac function in HFpEF. Critically, using a conditional, cardiomyocyte-specific HMGCS2 knockdown murine model, we revealed that the oxidized form of nicotinamide adenine dinucleotide is unable to rescue HFpEF in the absence of cardiomyocyte HMGCS2. CONCLUSIONS The canonical ketogenic enzyme, HMGCS2, mediates the therapeutic effects of the oxidized form of nicotinamide adenine dinucleotide repletion in HFpEF by restoring normal lipid metabolism and mitochondrial function.
Collapse
Affiliation(s)
- Yen Chin Koay
- Faculty of Medicine and Health, School of Medical Sciences (Y.C.K., B.M., Y.H.N., X.W., Y.H., S.T., A.Y.B., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Cardiometabolic Medicine (Y.C.K., B.M., Y.H.N., X.W., Y.H., P.G.B., S.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Charles Perkins Centre (Y.C.K., B.M., Y.H.N., X.W., Y.H., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
| | - Bailey McIntosh
- Faculty of Medicine and Health, School of Medical Sciences (Y.C.K., B.M., Y.H.N., X.W., Y.H., S.T., A.Y.B., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Cardiometabolic Medicine (Y.C.K., B.M., Y.H.N., X.W., Y.H., P.G.B., S.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Charles Perkins Centre (Y.C.K., B.M., Y.H.N., X.W., Y.H., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
| | - Yann Huey Ng
- Faculty of Medicine and Health, School of Medical Sciences (Y.C.K., B.M., Y.H.N., X.W., Y.H., S.T., A.Y.B., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Cardiometabolic Medicine (Y.C.K., B.M., Y.H.N., X.W., Y.H., P.G.B., S.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Charles Perkins Centre (Y.C.K., B.M., Y.H.N., X.W., Y.H., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
| | - Yang Cao
- Division of Life Sciences and Medicine, Department of Cardiology, The First Affiliated Hospital of USTC (Y.C.), University of Science and Technology of China (USTC), Hefei
- Division of Life Sciences and Medicine, School of Basic Medical Sciences (Y.C.), University of Science and Technology of China (USTC), Hefei
| | - Xiao Suo Wang
- Faculty of Medicine and Health, School of Medical Sciences (Y.C.K., B.M., Y.H.N., X.W., Y.H., S.T., A.Y.B., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Cardiometabolic Medicine (Y.C.K., B.M., Y.H.N., X.W., Y.H., P.G.B., S.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Charles Perkins Centre (Y.C.K., B.M., Y.H.N., X.W., Y.H., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
| | - Yanchuang Han
- Faculty of Medicine and Health, School of Medical Sciences (Y.C.K., B.M., Y.H.N., X.W., Y.H., S.T., A.Y.B., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Cardiometabolic Medicine (Y.C.K., B.M., Y.H.N., X.W., Y.H., P.G.B., S.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Charles Perkins Centre (Y.C.K., B.M., Y.H.N., X.W., Y.H., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
| | - Saki Tomita
- Faculty of Medicine and Health, School of Medical Sciences (Y.C.K., B.M., Y.H.N., X.W., Y.H., S.T., A.Y.B., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
| | - Angela Yu Bai
- Faculty of Medicine and Health, School of Medical Sciences (Y.C.K., B.M., Y.H.N., X.W., Y.H., S.T., A.Y.B., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
| | - Benjamin Hunter
- Faculty of Medicine and Health, School of Medical Sciences (Y.C.K., B.M., Y.H.N., X.W., Y.H., S.T., A.Y.B., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Charles Perkins Centre (Y.C.K., B.M., Y.H.N., X.W., Y.H., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Precision Cardiovascular Laboratory (B.H., S.L.), The University of Sydney, New South Wales, Australia
| | - Ashish Misra
- Heart Research Institute (A.M.), The University of Sydney, New South Wales, Australia
| | - Christopher M. Loughrey
- School of Cardiovascular and Metabolic Health and School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom (C.M.L.)
| | - Paul G. Bannon
- Faculty of Medicine and Health, School of Medical Sciences (Y.C.K., B.M., Y.H.N., X.W., Y.H., S.T., A.Y.B., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Cardiometabolic Medicine (Y.C.K., B.M., Y.H.N., X.W., Y.H., P.G.B., S.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Charles Perkins Centre (Y.C.K., B.M., Y.H.N., X.W., Y.H., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Department of Cardiothoracic Surgery (P.G.B., J.F.O.), Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- The Baird Institute for Applied Heart and Lung Surgical Research, Sydney, New South Wales, Australia (P.G.B., S.L., J.F.O.)
| | - Sean Lal
- Faculty of Medicine and Health, School of Medical Sciences (Y.C.K., B.M., Y.H.N., X.W., Y.H., S.T., A.Y.B., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Cardiometabolic Medicine (Y.C.K., B.M., Y.H.N., X.W., Y.H., P.G.B., S.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Charles Perkins Centre (Y.C.K., B.M., Y.H.N., X.W., Y.H., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Precision Cardiovascular Laboratory (B.H., S.L.), The University of Sydney, New South Wales, Australia
- Department of Cardiology (S.L., J.F.O.), Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- The Baird Institute for Applied Heart and Lung Surgical Research, Sydney, New South Wales, Australia (P.G.B., S.L., J.F.O.)
| | - Aldons J. Lusis
- Department of Medicine, Microbiology and Human Genetics, University of California, Los Angeles (A.J.L.)
| | - David M. Kaye
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (D.M.K.)
- Heart Failure Group, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.M.K.)
- Faculty of Medicine, Nursing, and Health Sciences, Central Clinical School, Monash University, Melbourne, Victoria, Australia (D.M.K.)
| | - Mark Larance
- Faculty of Medicine and Health, School of Medical Sciences (Y.C.K., B.M., Y.H.N., X.W., Y.H., S.T., A.Y.B., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Charles Perkins Centre (Y.C.K., B.M., Y.H.N., X.W., Y.H., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
| | - John F. O’Sullivan
- Faculty of Medicine and Health, School of Medical Sciences (Y.C.K., B.M., Y.H.N., X.W., Y.H., S.T., A.Y.B., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Cardiometabolic Medicine (Y.C.K., B.M., Y.H.N., X.W., Y.H., P.G.B., S.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Charles Perkins Centre (Y.C.K., B.M., Y.H.N., X.W., Y.H., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Department of Cardiothoracic Surgery (P.G.B., J.F.O.), Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Department of Cardiology (S.L., J.F.O.), Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- The Baird Institute for Applied Heart and Lung Surgical Research, Sydney, New South Wales, Australia (P.G.B., S.L., J.F.O.)
- Faculty of Medicine, Technische Universität Dresden, Germany (J.F.O.)
| |
Collapse
|
4
|
Fountoulakis PN, Theofilis P, Vlachakis PK, Karakasis P, Pamporis K, Sagris M, Dimitroglou Y, Tsioufis P, Oikonomou E, Tsioufis K, Tousoulis D. Gut Microbiota in Heart Failure-The Role of Inflammation. Biomedicines 2025; 13:911. [PMID: 40299538 PMCID: PMC12024997 DOI: 10.3390/biomedicines13040911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Heart failure (HF) has become an immense health concern affecting almost 1-2% of the population globally. It is a complex syndrome characterized by activation of the sympathetic nervous system and the Renin-Angiotensin-Aldosterone (RAAS) axis as well as endothelial dysfunction, oxidative stress, and inflammation. The recent literature points towards the interaction between the intestinal flora and the heart, also called the gut-heart axis. The human gastrointestinal tract is naturally inhabited by various microbes, which are distinct for each patient, regulating the functions of many organs. Alterations of the gut microbiome, a process called dysbiosis, may result in systemic diseases and have been associated with heart failure through inflammatory and autoimmune mechanisms. The disorder of intestinal permeability favors the translocation of microbes and many metabolites capable of inducing inflammation, thus further contributing to the deterioration of normal cardiac function. Besides diet modifications and exercise training, many studies have revealed possible gut microbiota targeted treatments for managing heart failure. The aim of this review is to demonstrate the impact of the inflammatory environment induced by the gut microbiome and its metabolites on heart failure and the elucidation of these novel therapeutic approaches.
Collapse
Affiliation(s)
- Petros N. Fountoulakis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Panagiotis Theofilis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Panayotis K. Vlachakis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Paschalis Karakasis
- 2nd Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Konstantinos Pamporis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Marios Sagris
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Yannis Dimitroglou
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Panagiotis Tsioufis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| |
Collapse
|
5
|
Li Q, Homilius M, Achilles E, Massey LK, Convey V, Ohlsson Å, Ljungvall I, Häggström J, Boler BV, Steiner P, Day S, MacRae CA, Oyama MA. Metabolic abnormalities and reprogramming in cats with naturally occurring hypertrophic cardiomyopathy. ESC Heart Fail 2025; 12:1256-1270. [PMID: 39499136 PMCID: PMC11911622 DOI: 10.1002/ehf2.15135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/15/2024] [Accepted: 10/05/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND AND AIMS The heart is a metabolic organ rich in mitochondria. The failing heart reprograms to utilize different energy substrates, which increase its oxygen consumption. These adaptive changes contribute to increased oxidative stress. Hypertrophic cardiomyopathy (HCM) is a common heart condition, affecting approximately 15% of the general cat population. Feline HCM shares phenotypical and genotypical similarities with human HCM, but the disease mechanisms for both species are incompletely understood. Our goal was to characterize global changes in metabolome between healthy control cats and cats with different stages of HCM. METHODS Serum samples from 83 cats, the majority (70/83) of which were domestic shorthair and included 23 healthy control cats, 31 and 12 preclinical cats with American College of Veterinary Internal Medicine (ACVIM) stages B1 and B2, respectively, and 17 cats with history of clinical heart failure or arterial thromboembolism (ACVIM stage C), were collected for untargeted metabolomic analysis. Multiple linear regression adjusted for age, sex and body weight was applied to compare between control and across HCM groups. RESULTS Our study identified 1253 metabolites, of which 983 metabolites had known identities. Statistical analysis identified 167 metabolites that were significantly different among groups (adjusted P < 0.1). About half of the differentially identified metabolites were lipids, including glycerophospholipids, sphingolipids and cholesterol. Serum concentrations of free fatty acids, 3-hydroxy fatty acids and acylcarnitines were increased in HCM groups compared with control group. The levels of creatine phosphate and multiple Krebs cycle intermediates, including succinate, aconitate and α-ketoglutarate, also accumulated in the circulation of HCM cats. In addition, serum levels of nicotinamide and tryptophan, precursors for de novo NAD+ biosynthesis, were reduced in HCM groups versus control group. Glutathione metabolism was altered. Serum levels of cystine, the oxidized form of cysteine and cysteine-glutathione disulfide, were elevated in the HCM groups, indicative of heightened oxidative stress. Further, the level of ophthalmate, an endogenous glutathione analog and competitive inhibitor, was increased by more than twofold in HCM groups versus control group. Finally, several uremic toxins, including guanidino compounds and protein bound putrescine, accumulated in the circulation of HCM cats. CONCLUSIONS Our study provided evidence of deranged energy metabolism, altered glutathione homeostasis and impaired renal uremic toxin excretion. Altered lipid metabolism suggested perturbed structure and function of cardiac sarcolemma membrane and lipid signalling.
Collapse
Affiliation(s)
| | - Max Homilius
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Erin Achilles
- Department of Clinical Sciences and Advanced MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Laura K. Massey
- Department of Clinical Sciences and Advanced MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Victoria Convey
- Department of Clinical Sciences and Advanced MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Åsa Ohlsson
- Department of Animal BiosciencesSwedish University of Agricultural SciencesUppsalaSweden
| | - Ingrid Ljungvall
- Department of Clinical SciencesSwedish University of Agricultural SciencesUppsalaSweden
| | - Jens Häggström
- Department of Clinical SciencesSwedish University of Agricultural SciencesUppsalaSweden
| | | | | | - Sharlene Day
- Division of Cardiovascular Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Calum A. MacRae
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Mark A. Oyama
- Department of Clinical Sciences and Advanced MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
6
|
Karkouri J, Watson W, Forner R, Weir-McCall JR, Horn T, Hill M, Hoole S, Klomp D, Rodgers CT. Regionally resolved cardiac metabolism using a dipole-loop array coil for 7 T 31P-MRSI. Magn Reson Med 2025. [PMID: 40123193 DOI: 10.1002/mrm.30492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/25/2025]
Abstract
PURPOSE We introduce a novel commercial phosphorus-31 (31P) dipole-loop array coil, describing the coil hardware and testing its performance on phantoms. We used this coil to assess cardiac metabolism per region in healthy volunteers. METHODS B1 + field maps were simulated and compared to maps measured with a set of CSI sequences with varying voltages. Seventeen volunteers were scanned with 7 T phosphorus-31 magnetic resonance spectroscopic imaging (31P-MRSI). Reproducibility was assessed in nine of these volunteers. Strain was measured for six of these volunteers at 3 T. RESULTS Blood- and saturation-corrected Phosphocreatine/γ-adenosine triphosphate (PCr/ATP) ratios were measured for four regions of the left ventricle: 1.86 in septum, 2.25 in anterior wall, 1.41 in inferior wall, and 1.53 in lateral wall, respectively. These are in the expected range compared to previous studies. B1 + maps show good signal uniformity around the position of the heart (0.13 ± 0.06 μT/sqrt(W)). Intrasession and intersession coefficients of reproducibility were 0.22-0.88 and 0.29-0.79, respectively. Linear modeling shows that regional PCr/γATP correlates with circumferential strain but not radial strain. This requires corroboration by a larger study including patients with impaired function and energetics. CONCLUSION Dipole-loop array coils present a promising new approach for human cardiac 31P-MRSI at 7 T. Their favorable B1 + uniformity at depth and specific absorption rate over loop arrays and improved SNR when combined with loops for reception could be beneficial for further clinical studies measuring energetics by 31P-MRSI at 7 T. The new capability to assess PCr/γATP ratios across the whole left ventricle could enable clinical studies to investigate regional changes in cardiac energetics for the first time.
Collapse
Affiliation(s)
- Jabrane Karkouri
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Will Watson
- Department of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | | | - Jonathan R Weir-McCall
- Department of Radiology, University of Cambridge, Cambridge, UK
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| | - Tracy Horn
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Marion Hill
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Stephen Hoole
- Department of Radiology, University of Cambridge, Cambridge, UK
- Royal Papworth Hospital, Cambridge, UK
| | | | | |
Collapse
|
7
|
de Wit‐Verheggen VHW, Wefers J, Remie CME, Schrauwen P, Schrauwen‐Hinderling VB, van de Weijer T. Cardiac energy metabolism is decreased in male volunteers with prediabetes and does not normalize during the day. Physiol Rep 2025; 13:e70242. [PMID: 40013525 PMCID: PMC11866045 DOI: 10.14814/phy2.70242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/28/2025] Open
Abstract
Type 2 diabetes mellitus is characterized by a low cardiac energy status (PCr/ATP ratio), but it is unknown whether this also applies to prediabetes. Since PCr/ATP is correlated with elevated free fatty acids (FFA), a potentially lower PCr/ATP might be secondary to elevated FFA. To investigate this, we determined PCr/ATP and FFA levels in volunteers with prediabetes at two time-points during the day. Eight male volunteers with prediabetes underwent a MRI/MRS scan to determine left ventricular ejection fraction (LVEF) and PCr/ATP ratio at 7 am and at 5 pm. For reference, these results were compared to eight non-insulin resistant overweight or obese volunteers. Myocardial energy status was lower in the volunteers with prediabetes (PCr/ATP 1.03 ± 0.08) compared to non-insulin resistant overweight or obese volunteers (PCr/ATP 1.22 ± 0.04, p < 0.05), but FFA were not significantly different between groups. LVEF was similar in the volunteers with prediabetes compared to healthy overweight and obese volunteers (p = 0.23). Volunteers with prediabetes have a lower myocardial energy status in the morning compared to healthy overweight and obese volunteers, while cardiac function remained normal. In addition, no differences between morning and evening measurements of cardiac energy status and function were found.
Collapse
Affiliation(s)
- Vera H. W. de Wit‐Verheggen
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Jakob Wefers
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Carlijn M. E. Remie
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Patrick Schrauwen
- Institute for Clinical Diabetology, German Diabetes CenterLeibniz Institute for Diabetes Research at Heinrich Heine University DüsseldorfDüsseldorfGermany
- Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Vera B. Schrauwen‐Hinderling
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
- Institute for Clinical Diabetology, German Diabetes CenterLeibniz Institute for Diabetes Research at Heinrich Heine University DüsseldorfDüsseldorfGermany
- Department of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Tineke van de Weijer
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
- Department of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
| |
Collapse
|
8
|
Liu S, Deshmukh V, Meng F, Wang Y, Morikawa Y, Steimle JD, Li RG, Wang J, Martin JF. Microtubules Sequester Acetylated YAP in the Cytoplasm and Inhibit Heart Regeneration. Circulation 2025; 151:59-75. [PMID: 39185559 PMCID: PMC11671299 DOI: 10.1161/circulationaha.123.067646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND The Hippo pathway effector YAP (Yes-associated protein) plays an essential role in cardiomyocyte proliferation and heart regeneration. In response to physiological changes, YAP moves in and out of the nucleus. The pathophysiological mechanisms regulating YAP subcellular localization after myocardial infarction remain poorly defined. METHODS We identified YAP acetylation at site K265 by in vitro acetylation followed by mass spectrometry analysis. We used adeno-associated virus to express YAP-containing mutations that either abolished acetylation (YAP-K265R) or mimicked acetylation (YAP-K265Q) and studied how acetylation regulates YAP subcellular localization in mouse hearts. We generated a cell line with YAP-K265R mutation and investigated the protein-protein interactors by YAP immunoprecipitation followed by mass spectrometry, then validated the YAP interaction in neonatal rat ventricular myocytes. We examined colocalization of YAP and TUBA4A (tubulin α 4A) by superresolution imaging. Furthermore, we developed YAP-K265R and αMHC-MerCreMer (MCM); Yap-loxP/K265R mutant mice to examine the pathophysiological role of YAP acetylation in cardiomyocytes during cardiac regeneration. RESULTS We found that YAP is acetylated at K265 by CBP (CREB-binding protein)/P300 (E1A-binding protein P300) and is deacetylated by nicotinamide phosphoribosyltransferase/nicotinamide adenine dinucleotide/sirtuins axis in cardiomyocytes. After myocardial infarction, YAP acetylation is increased, which promotes YAP cytoplasmic localization. Compared with controls, mice that were genetically engineered to express a K265R mutation that prevents YAP K265 acetylation showed improved cardiac regenerative ability and increased YAP nuclear localization. Mechanistically, YAP acetylation facilitates its interaction with TUBA4A, a component of the microtubule network that sequesters acetylated YAP in the cytoplasm. After myocardial infarction, the microtubule network increased in cardiomyocytes, resulting in the accumulation of YAP in the cytoplasm. CONCLUSIONS After myocardial infarction, decreased sirtuin activity enriches YAP acetylation at K265. The growing TUBA4A network sequesters acetylated YAP within the cytoplasm, which is detrimental to cardiac regeneration.
Collapse
Affiliation(s)
- Shijie Liu
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, (S.L., Y.M., R.G.L., J.W., J.F.M.)
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (S.L.)
| | - Vaibhav Deshmukh
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX (V.D., F.M., J.D.S., J.F.M.)
- Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, MO (V.D.)
| | - Fansen Meng
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX (V.D., F.M., J.D.S., J.F.M.)
| | | | - Yuka Morikawa
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, (S.L., Y.M., R.G.L., J.W., J.F.M.)
| | - Jeffrey D Steimle
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX (V.D., F.M., J.D.S., J.F.M.)
| | - Rich Gang Li
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, (S.L., Y.M., R.G.L., J.W., J.F.M.)
| | - Jun Wang
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, (S.L., Y.M., R.G.L., J.W., J.F.M.)
| | - James F Martin
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, (S.L., Y.M., R.G.L., J.W., J.F.M.)
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX (V.D., F.M., J.D.S., J.F.M.)
| |
Collapse
|
9
|
Sun Q, Karwi QG, Wong N, Lopaschuk GD. Advances in myocardial energy metabolism: metabolic remodelling in heart failure and beyond. Cardiovasc Res 2024; 120:1996-2016. [PMID: 39453987 PMCID: PMC11646102 DOI: 10.1093/cvr/cvae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 07/03/2024] [Indexed: 10/27/2024] Open
Abstract
The very high energy demand of the heart is primarily met by adenosine triphosphate (ATP) production from mitochondrial oxidative phosphorylation, with glycolysis providing a smaller amount of ATP production. This ATP production is markedly altered in heart failure, primarily due to a decrease in mitochondrial oxidative metabolism. Although an increase in glycolytic ATP production partly compensates for the decrease in mitochondrial ATP production, the failing heart faces an energy deficit that contributes to the severity of contractile dysfunction. The relative contribution of the different fuels for mitochondrial ATP production dramatically changes in the failing heart, which depends to a large extent on the type of heart failure. A common metabolic defect in all forms of heart failure [including heart failure with reduced ejection fraction (HFrEF), heart failure with preserved EF (HFpEF), and diabetic cardiomyopathies] is a decrease in mitochondrial oxidation of pyruvate originating from glucose (i.e. glucose oxidation). This decrease in glucose oxidation occurs regardless of whether glycolysis is increased, resulting in an uncoupling of glycolysis from glucose oxidation that can decrease cardiac efficiency. The mitochondrial oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in HFpEF and diabetic cardiomyopathies myocardial fatty acid oxidation increases, while in HFrEF myocardial fatty acid oxidation either decreases or remains unchanged. The oxidation of ketones (which provides the failing heart with an important energy source) also differs depending on the type of heart failure, being increased in HFrEF, and decreased in HFpEF and diabetic cardiomyopathies. The alterations in mitochondrial oxidative metabolism and glycolysis in the failing heart are due to transcriptional changes in key enzymes involved in the metabolic pathways, as well as alterations in redox state, metabolic signalling and post-translational epigenetic changes in energy metabolic enzymes. Of importance, targeting the mitochondrial energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac function and cardiac efficiency in the failing heart.
Collapse
Affiliation(s)
- Qiuyu Sun
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John’s, NL A1B 3V6, Canada
| | - Nathan Wong
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
10
|
Watson WD, Arvidsson PM, Miller JJJ, Lewis AJ, Rider OJ. A Mitochondrial Basis for Heart Failure Progression. Cardiovasc Drugs Ther 2024; 38:1161-1171. [PMID: 38878138 PMCID: PMC11680631 DOI: 10.1007/s10557-024-07582-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 12/29/2024]
Abstract
In health, the human heart is able to match ATP supply and demand perfectly. It requires 6 kg of ATP per day to satisfy demands of external work (mechanical force generation) and internal work (ion movements and basal metabolism). The heart is able to link supply with demand via direct responses to ADP and AMP concentrations but calcium concentrations within myocytes play a key role, signalling both inotropy, chronotropy and matched increases in ATP production. Calcium/calmodulin-dependent protein kinase (CaMKII) is a key adapter to increased workload, facilitating a greater and more rapid calcium concentration change. In the failing heart, this is dysfunctional and ATP supply is impaired. This review aims to examine the mechanisms and pathologies that link increased energy demand to this disrupted situation. We examine the roles of calcium loading, oxidative stress, mitochondrial structural abnormalities and damage-associated molecular patterns.
Collapse
Affiliation(s)
- William D Watson
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK.
- Oxford Centre for Magnetic Resonance Research, University of Oxford, Oxford, UK.
| | - Per M Arvidsson
- Oxford Centre for Magnetic Resonance Research, University of Oxford, Oxford, UK
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Clinical Physiology, Skåne University Hospital, Lund, Sweden
| | - Jack J J Miller
- Oxford Centre for Magnetic Resonance Research, University of Oxford, Oxford, UK
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Andrew J Lewis
- Oxford Centre for Magnetic Resonance Research, University of Oxford, Oxford, UK
| | - Oliver J Rider
- Oxford Centre for Magnetic Resonance Research, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Chiang SK, Sin MY, Lin JW, Siregar M, Valdez G, Chen YH, Chung TK, Walzem RL, Chang LC, Chen SE. 25-Hydroxycholecalciferol Improves Cardiac Metabolic Adaption, Mitochondrial Biogenetics, and Redox Status to Ameliorate Pathological Remodeling and Functional Failure in Obese Chickens. Antioxidants (Basel) 2024; 13:1426. [PMID: 39594567 PMCID: PMC11590958 DOI: 10.3390/antiox13111426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Broiler breeder hens allowed ad libitum (Ad) feed intake developed obesity and cardiac pathogenesis and thereby were susceptible to sudden death. A supplement of 69 µg 25-hydroxycholecalciferol (25-OH-D3)/kg feed rescued the livability of feed-restricted (R) and Ad-hens (mortality; 6.7% vs. 8.9% and 31.1% vs. 48.9%). Necropsy with the surviving counterparts along the time course confirmed alleviation of myocardial remodeling and functional failure by 25-OH-D3, as shown by BNP and MHC-β expressions, pathological hypertrophy, and cardiorespiratory responses (p < 0.05). 25-OH-D3 mitigated cardiac deficient bioenergetics in Ad-hens by rescuing PGC-1α activation, mitochondrial biogenesis, dynamics, and electron transport chain complex activities, and metabolic adaptions in glucose oxidation, pyruvate/lactate interconversion, TCA cycle, and β-oxidation, as well as in TG and ceramide accumulation to limit lipotoxic development (p < 0.05). Supplemental 25-OH-D3 also sustained Nrf2 activation and relieved MDA accumulation, protein carbonylation, and GSH depletion to potentiate cell survival in the failing heart (p < 0.05). Parts of the redox amendments were mediated via lessened blood hematocrit and heme metabolism, and improved iron status and related gene regulations (p < 0.05). In conclusion, 25-OH-D3 ameliorates cardiac pathological remodeling and functional compromise to rescue the livability of obese hens through metabolic flexibility and mitochondrial bioenergetics, and by operating at antioxidant defense, and heme and iron metabolism, to maintain redox homeostasis and sustain cell viability.
Collapse
Affiliation(s)
- Shih-Kai Chiang
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (S.-K.C.); (J.-W.L.); (M.S.); (G.V.); (Y.-H.C.)
| | - Mei-Ying Sin
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40447, Taiwan;
| | - Jun-Wen Lin
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (S.-K.C.); (J.-W.L.); (M.S.); (G.V.); (Y.-H.C.)
| | - Maraddin Siregar
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (S.-K.C.); (J.-W.L.); (M.S.); (G.V.); (Y.-H.C.)
| | - Gilmour Valdez
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (S.-K.C.); (J.-W.L.); (M.S.); (G.V.); (Y.-H.C.)
| | - Yu-Hui Chen
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (S.-K.C.); (J.-W.L.); (M.S.); (G.V.); (Y.-H.C.)
| | - Thau Kiong Chung
- DSM Nutritional Products Asia Pacific, Mapletree Business City, Singapore 117440, Singapore;
| | - Rosemary L. Walzem
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA;
| | - Lin-Chu Chang
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40447, Taiwan;
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung 41354, Taiwan
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (S.-K.C.); (J.-W.L.); (M.S.); (G.V.); (Y.-H.C.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
- i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
12
|
Gissler MC, Antiochos P, Ge Y, Heydari B, Gräni C, Kwong RY. Cardiac Magnetic Resonance Evaluation of LV Remodeling Post-Myocardial Infarction: Prognosis, Monitoring and Trial Endpoints. JACC Cardiovasc Imaging 2024; 17:1366-1380. [PMID: 38819335 DOI: 10.1016/j.jcmg.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 06/01/2024]
Abstract
Adverse left ventricular remodeling (ALVR) and subsequent heart failure after myocardial infarction (MI) remain a major cause of patient morbidity and mortality worldwide. Overt inflammation has been identified as the common pathway underlying myocardial fibrosis and development of ALVR post-MI. With its ability to simultaneously provide information about cardiac structure, function, perfusion, and tissue characteristics, cardiac magnetic resonance (CMR) is well poised to inform prognosis and guide early surveillance and therapeutics in high-risk cohorts. Further, established and evolving CMR-derived biomarkers may serve as clinical endpoints in prospective trials evaluating the efficacy of novel anti-inflammatory and antifibrotic therapies. This review provides an overview of post-MI ALVR and illustrates how CMR may help clinical adoption of novel therapies via mechanistic or prognostic imaging markers.
Collapse
Affiliation(s)
- Mark Colin Gissler
- Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Panagiotis Antiochos
- Cardiology and Cardiac MR Centre, University Hospital Lausanne, Lausanne, Switzerland
| | - Yin Ge
- Division of Cardiology, St Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Bobak Heydari
- Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Raymond Y Kwong
- Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
13
|
Ipek R, Holland J, Cramer M, Rider O. CMR to characterize myocardial structure and function in heart failure with preserved left ventricular ejection fraction. Eur Heart J Cardiovasc Imaging 2024; 25:1491-1504. [PMID: 39205602 PMCID: PMC11522877 DOI: 10.1093/ehjci/jeae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Despite remarkable progress in therapeutic drugs, morbidity, and mortality for heart failure (HF) remains high in developed countries. HF with preserved ejection fraction (HFpEF) now accounts for around half of all HF cases. It is a heterogeneous disease, with multiple aetiologies, and as such poses a significant diagnostic challenge. Cardiac magnetic resonance (CMR) has become a valuable non-invasive modality to assess cardiac morphology and function, but beyond that, the multi-parametric nature of CMR allows novel approaches to characterize haemodynamics and with magnetic resonance spectroscopy (MRS), the study of metabolism. Furthermore, exercise CMR, when combined with lung water imaging provides an in-depth understanding of the underlying pathophysiological and mechanistic processes in HFpEF. Thus, CMR provides a comprehensive phenotyping tool for HFpEF, which points towards a targeted and personalized therapy with improved diagnostics and prevention.
Collapse
Affiliation(s)
- Rojda Ipek
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Level 0, University of Oxford, Oxford, OX3 9DU, UK
- Divison of Cardiology, Pulmonary Disease and Vascular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jennifer Holland
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Level 0, University of Oxford, Oxford, OX3 9DU, UK
| | - Mareike Cramer
- Divison of Cardiology, Pulmonary Disease and Vascular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Oliver Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Level 0, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
14
|
Yoshii A, McMillen TS, Wang Y, Zhou B, Chen H, Banerjee D, Herrero M, Wang P, Muraoka N, Wang W, Murry CE, Tian R. Blunted Cardiac Mitophagy in Response to Metabolic Stress Contributes to HFpEF. Circ Res 2024; 135:1004-1017. [PMID: 39328167 PMCID: PMC11502249 DOI: 10.1161/circresaha.123.324103] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Metabolic remodeling and mitochondrial dysfunction are hallmarks of heart failure with reduced ejection fraction. However, their role in the pathogenesis of HF with preserved ejection fraction (HFpEF) is poorly understood. METHODS In a mouse model of HFpEF, induced by high-fat diet and Nω-nitrol-arginine methyl ester, cardiac energetics was measured by 31P nuclear magnetic resonance (NMR) spectroscopy and substrate oxidation profile was assessed by 13C-isotopmer analysis. Mitochondrial functions were assessed in the heart tissue and human induced pluripotent stem cell-derived cardiomyocytes. RESULTS HFpEF hearts presented a lower phosphocreatine content and a reduced phosphocreatine/ATP ratio, similar to that in heart failure with reduced ejection fraction. Decreased respiratory function and increased reactive oxygen species production were observed in mitochondria isolated from HFpEF hearts suggesting mitochondrial dysfunction. Cardiac substrate oxidation profile showed a high dependency on fatty acid oxidation in HFpEF hearts, which is the opposite of heart failure with reduced ejection fraction but similar to that in high-fat diet hearts. However, phosphocreatine/ATP ratio and mitochondrial function were sustained in the high-fat diet hearts. We found that mitophagy was activated in the high-fat diet heart but not in HFpEF hearts despite similar extent of obesity suggesting that mitochondrial quality control response was impaired in HFpEF hearts. Using a human induced pluripotent stem cell-derived cardiomyocyte mitophagy reporter, we found that fatty acid loading stimulated mitophagy, which was obliterated by inhibiting fatty acid oxidation. Enhancing fatty acid oxidation by deleting ACC2 (acetyl-CoA carboxylase 2) in the heart stimulated mitophagy and improved HFpEF phenotypes. CONCLUSIONS Maladaptation to metabolic stress in HFpEF hearts impairs mitochondrial quality control and contributed to the pathogenesis, which can be improved by stimulating fatty acid oxidation.
Collapse
Affiliation(s)
- Akira Yoshii
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Timothy S. McMillen
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Yajun Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Bo Zhou
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Hongye Chen
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Durba Banerjee
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Melisa Herrero
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Pei Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Naoto Muraoka
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Charles E. Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Geiser A, Currie S, Al-Hasani H, Chadt A, McConnell G, Gould GW. A novel 3D imaging approach for quantification of GLUT4 levels across the intact myocardium. J Cell Sci 2024; 137:jcs262146. [PMID: 38958032 DOI: 10.1242/jcs.262146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Cellular heterogeneity is a well-accepted feature of tissues, and both transcriptional and metabolic diversity have been revealed by numerous approaches, including optical imaging. However, the high magnification objective lenses needed for high-resolution imaging provides information from only small layers of tissue, which can result in poor cell statistics. There is therefore an unmet need for an imaging modality that can provide detailed molecular and cellular insight within intact tissue samples in 3D. Using GFP-tagged GLUT4 as proof of concept, we present here a novel optical mesoscopy approach that allows precise measurement of the spatial location of GLUT4 within specific anatomical structures across the myocardium in ultrathick sections (5 mm×5 mm×3 mm) of intact mouse heart. We reveal distinct GLUT4 distribution patterns across cardiac walls and highlight specific changes in GLUT4 expression levels in response to high fat diet-feeding, and we identify sex-dependent differences in expression patterns. This method is applicable to any target that can be labelled for light microscopy, and to other complex tissues when organ structure needs to be considered simultaneously with cellular detail.
Collapse
Affiliation(s)
- Angéline Geiser
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Susan Currie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Medical faculty, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Medical faculty, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Gail McConnell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Gwyn W Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
16
|
Foster MW, Riley JM, Kaki PC, Al Soueidy A, Aligholiazadeh E, Rame JE. Metabolic Adaptation in Heart Failure and the Role of Ketone Bodies as Biomarkers. Curr Heart Fail Rep 2024; 21:498-503. [PMID: 39242479 DOI: 10.1007/s11897-024-00678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 09/09/2024]
Abstract
PURPOSE OF REVIEW The development and progression of heart failure is characterized by metabolic and physiologic adaptations allowing patients to cope with cardiac insufficiency. This review explores the changes in metabolism in heart failure and the potential role of biomarkers, particularly ketone bodies, in staging and prognosticating heart failure progression. RECENT FINDINGS Recent insights into myocardial metabolism shed light on the heart's response to stress, highlighting the shift towards reliance on ketone bodies as an alternative fuel source. Elevated blood ketone levels have been shown to correlate with the severity of cardiac dysfunction, emphasizing their potential as prognostic indicators. Furthermore, studies exploring therapeutic interventions targeting specific metabolic pathways offer promise for improving outcomes in heart failure. Ketones have prognostic utility in heart failure, and potentially, an avenue for therapeutic intervention. Challenges remain in deciphering the optimal balance between metabolic support and exacerbating cardiac remodeling. Future research endeavors must address these complexities to advance personalized approaches in managing heart failure.
Collapse
Affiliation(s)
- Michael W Foster
- Department of Medicine, Division of Cardiology, Thomas Jefferson University Hospital, 833 Chestnut Street, Suite 600, Philadelphia, PA, 19107, USA
| | - Joshua M Riley
- Department of Medicine, Division of Cardiology, Thomas Jefferson University Hospital, 833 Chestnut Street, Suite 600, Philadelphia, PA, 19107, USA
| | - Praneet C Kaki
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Amine Al Soueidy
- Department of Medicine, Copper University Hospital, Camden, NJ, USA
| | | | - J Eduardo Rame
- Department of Medicine, Division of Cardiology, Thomas Jefferson University Hospital, 833 Chestnut Street, Suite 600, Philadelphia, PA, 19107, USA.
| |
Collapse
|
17
|
Ho KL, Karwi QG, Wang F, Wagg C, Zhang L, Panidarapu S, Chen B, Pherwani S, Greenwell AA, Oudit GY, Ussher JR, Lopaschuk GD. The ketogenic diet does not improve cardiac function and blunts glucose oxidation in ischaemic heart failure. Cardiovasc Res 2024; 120:1126-1137. [PMID: 38691671 PMCID: PMC11368127 DOI: 10.1093/cvr/cvae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 05/03/2024] Open
Abstract
AIMS Cardiac energy metabolism is perturbed in ischaemic heart failure and is characterized by a shift from mitochondrial oxidative metabolism to glycolysis. Notably, the failing heart relies more on ketones for energy than a healthy heart, an adaptive mechanism that improves the energy-starved status of the failing heart. However, whether this can be implemented therapeutically remains unknown. Therefore, our aim was to determine if increasing ketone delivery to the heart via a ketogenic diet can improve the outcomes of heart failure. METHODS AND RESULTS C57BL/6J male mice underwent either a sham surgery or permanent left anterior descending coronary artery ligation surgery to induce heart failure. After 2 weeks, mice were then treated with either a control diet or a ketogenic diet for 3 weeks. Transthoracic echocardiography was then carried out to assess in vivo cardiac function and structure. Finally, isolated working hearts from these mice were perfused with appropriately 3H or 14C labelled glucose (5 mM), palmitate (0.8 mM), and β-hydroxybutyrate (β-OHB) (0.6 mM) to assess mitochondrial oxidative metabolism and glycolysis. Mice with heart failure exhibited a 56% drop in ejection fraction, which was not improved with a ketogenic diet feeding. Interestingly, mice fed a ketogenic diet had marked decreases in cardiac glucose oxidation rates. Despite increasing blood ketone levels, cardiac ketone oxidation rates did not increase, probably due to a decreased expression of key ketone oxidation enzymes. Furthermore, in mice on the ketogenic diet, no increase in overall cardiac energy production was observed, and instead, there was a shift to an increased reliance on fatty acid oxidation as a source of cardiac energy production. This resulted in a decrease in cardiac efficiency in heart failure mice fed a ketogenic diet. CONCLUSION We conclude that the ketogenic diet does not improve heart function in failing hearts, due to ketogenic diet-induced excessive fatty acid oxidation in the ischaemic heart and a decrease in insulin-stimulated glucose oxidation.
Collapse
Affiliation(s)
- Kim L Ho
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Qutuba G Karwi
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Faqi Wang
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Cory Wagg
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Liyan Zhang
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sai Panidarapu
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Brandon Chen
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Pherwani
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda A Greenwell
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Bornstein MR, Tian R, Arany Z. Human cardiac metabolism. Cell Metab 2024; 36:1456-1481. [PMID: 38959861 PMCID: PMC11290709 DOI: 10.1016/j.cmet.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/12/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024]
Abstract
The heart is the most metabolically active organ in the human body, and cardiac metabolism has been studied for decades. However, the bulk of studies have focused on animal models. The objective of this review is to summarize specifically what is known about cardiac metabolism in humans. Techniques available to study human cardiac metabolism are first discussed, followed by a review of human cardiac metabolism in health and in heart failure. Mechanistic insights, where available, are reviewed, and the evidence for the contribution of metabolic insufficiency to heart failure, as well as past and current attempts at metabolism-based therapies, is also discussed.
Collapse
Affiliation(s)
- Marc R Bornstein
- Cardiovascular Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, USA
| | - Zoltan Arany
- Cardiovascular Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Studneva IM, Veselova OM, Dobrokhotov IV, Serebryakova LI, Palkeeva ME, Avdeev DV, Molokoedov AS, Sidorova MV, Pisarenko OI. The structural analogue of apelin-12 prevents energy disorders in the heart in experimental type 1 diabetes mellitus. BIOMEDITSINSKAIA KHIMIIA 2024; 70:135-144. [PMID: 38940202 DOI: 10.18097/pbmc20247003135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is the most severe form of diabetes, which is characterized by absolute insulin deficiency induced by the destruction of pancreatic beta cells. The aim of this study was to evaluate the effect of a structural analogue of apelin-12 ((NαMe)Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Nle-Pro-Phe-OH, metilin) on hyperglycemia, mitochondrial (MCh) respiration in permeabilized cardiac left ventricular (LV) fibers, the myocardial energy state, and cardiomyocyte membranes damage in a model of streptozotocin (STZ) diabetes in rats. Metilin was prepared by solid-phase synthesis using the Fmoc strategy and purified using HPLC. Four groups of animals were used: initial state (IS); control (C), diabetic control (D) and diabetic animals additionally treated with metilin (DM). The following parameters have been studied: blood glucose, MCh respiration in LV fibers, the content of cardiac ATP, ADP, AMP, phosphocreatine (PCr) and creatine (Cr), the activity of creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH) in blood plasma. Administration of metilin to STZ-treated rats decreased blood glucose, increased state 3 oxygen consumption, the respiratory control ratio in MCh of permeabilized LV fibers, and increased the functional coupling of mitochondrial CK (mt-CK) to oxidative phosphorylation compared with these parameters in group D. In STZ-treated animals metilin administration caused an increase in the PCr content and prevention of the loss of total creatine (ΣCr=PCr+Cr) in the diabetic hearts, as well as restoration of the PCr/ATP ratio in the myocardium and a decrease in the activity of CK-MB and LDH in plasma to initial values. Thus, metilin prevented energy disorders disturbances in cardiomyocytes of animals with experimental T1DM.
Collapse
Affiliation(s)
- I M Studneva
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| | - O M Veselova
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| | - I V Dobrokhotov
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| | - L I Serebryakova
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| | - M E Palkeeva
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| | - D V Avdeev
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| | - A S Molokoedov
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| | - M V Sidorova
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| | - O I Pisarenko
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| |
Collapse
|
20
|
Chung YJ, Hoare Z, Baark F, Yu CS, Guo J, Fuller W, Southworth R, Katschinski DM, Murphy MP, Eykyn TR, Shattock MJ. Elevated Na is a dynamic and reversible modulator of mitochondrial metabolism in the heart. Nat Commun 2024; 15:4277. [PMID: 38769288 PMCID: PMC11106256 DOI: 10.1038/s41467-024-48474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Elevated intracellular sodium Nai adversely affects mitochondrial metabolism and is a common feature of heart failure. The reversibility of acute Na induced metabolic changes is evaluated in Langendorff perfused rat hearts using the Na/K ATPase inhibitor ouabain and the myosin-uncoupler para-aminoblebbistatin to maintain constant energetic demand. Elevated Nai decreases Gibb's free energy of ATP hydrolysis, increases the TCA cycle intermediates succinate and fumarate, decreases ETC activity at Complexes I, II and III, and causes a redox shift of CoQ to CoQH2, which are all reversed on lowering Nai to baseline levels. Pseudo hypoxia and stabilization of HIF-1α is observed despite normal tissue oxygenation. Inhibition of mitochondrial Na/Ca-exchange with CGP-37517 or treatment with the mitochondrial ROS scavenger MitoQ prevents the metabolic alterations during Nai elevation. Elevated Nai plays a reversible role in the metabolic and functional changes and is a novel therapeutic target to correct metabolic dysfunction in heart failure.
Collapse
Affiliation(s)
- Yu Jin Chung
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College, London, UK
| | - Zoe Hoare
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College, London, UK
| | - Friedrich Baark
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Chak Shun Yu
- MRC Mitochondrial Biology Unit and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jia Guo
- Institute of Cardiovascular Physiology, University Medical Centre, Göttingen, Germany
| | - William Fuller
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Richard Southworth
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Doerthe M Katschinski
- Institute of Cardiovascular Physiology, University Medical Centre, Göttingen, Germany
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Thomas R Eykyn
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| | - Michael J Shattock
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College, London, UK.
| |
Collapse
|
21
|
Li W, Hou Z, Li Y, Zhang X, Bao X, Hou X, Zhang H, Zhang S. Amelioration of metabolic disorders in H9C2 cardiomyocytes induced by PM 2.5 treated with vitamin C. Drug Chem Toxicol 2024; 47:347-355. [PMID: 36815321 DOI: 10.1080/01480545.2023.2181971] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
OBJECTIVE Particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5) is a public health risk. We investigate PM2.5 on metabolites in cardiomyocytes and the influence of vitamin C on PM2.5 toxicity. MATERIALS AND METHODS For 24 hours, H9C2 were exposed to various concentrations of PM2.5 (0, 100, 200, 400, 800 μg/ml), after which the levels of reactive oxygen species (ROS) and cell viability were measured using the cell counting kit-8 (CCK-8) and 2',7'-dichlorofluoresceindiacetate (DCFH2-DA), respectively. H9C2 were treated with PM2.5 (200 μg/ml) in the presence or absence of vitamin C (40 μmol/L). mRNA levels of interleukin 6(IL-6), caspase-3, fatty acid-binding protein 3 (FABP3), and hemeoxygenase-1 (HO-1) were investigated by quantitative reverse-transcription polymerase chain reaction. Non-targeted metabolomics by LC-MS/MS was applied to evaluate the metabolic profile in the cell. RESULTS Results revealed a concentration-dependent reduction in cell viability, death, ROS, and increased expression of caspase-3, FABP3, and IL-6. In total, 15 metabolites exhibited significant differential expression (FC > 2, p < 0.05) between the control and PM2.5 group. In the PM2.5 group, lysophosphatidylcholines (LysoPC,3/3) were upregulated, whereas amino acids (5/5), amino acid analogues (3/3), and other acids and derivatives (4/4) were downregulated. PM2.5 toxicity was lessened by vitamin C. It reduced PM2.5-induced elevation of LysoPC (16:0), LysoPC (16:1), and LysoPC (18:1). DISCUSSION AND CONCLUSIONS PM2.5 induces metabolic disorders in H9C2 cardiomyocytes that can be ameliorated by treatment with vitamin C.
Collapse
Affiliation(s)
- Wenjie Li
- Department of Clinical Laboratory, Anyang Center for Disease Control and Prevention, Anyang, Henan, P.R. China
| | - Ziyuan Hou
- Department of Clinical Laboratory, Anyang Center for Disease Control and Prevention, Anyang, Henan, P.R. China
| | - Yang Li
- Department of Clinical Laboratory, Anyang Center for Disease Control and Prevention, Anyang, Henan, P.R. China
- The State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, P.R. China
| | - Xiangping Zhang
- Department of Clinical Laboratory, Anyang Center for Disease Control and Prevention, Anyang, Henan, P.R. China
| | - Xiaobing Bao
- Department of Clinical Laboratory, Anyang Center for Disease Control and Prevention, Anyang, Henan, P.R. China
| | - Xiaoyan Hou
- Department of Clinical Laboratory, Anyang Center for Disease Control and Prevention, Anyang, Henan, P.R. China
| | - Hongjin Zhang
- Department of Clinical Laboratory, Anyang Center for Disease Control and Prevention, Anyang, Henan, P.R. China
| | - Shuanhu Zhang
- Department of Clinical Laboratory, Anyang Center for Disease Control and Prevention, Anyang, Henan, P.R. China
| |
Collapse
|
22
|
Zhang L, Xie F, Zhang F, Lu B. The potential roles of exosomes in pathological cardiomyocyte hypertrophy mechanisms and therapy: A review. Medicine (Baltimore) 2024; 103:e37994. [PMID: 38669371 PMCID: PMC11049793 DOI: 10.1097/md.0000000000037994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Pathological cardiac hypertrophy, characterized by the enlargement of cardiac muscle cells, leads to serious cardiac conditions and stands as a major global health issue. Exosomes, comprising small lipid bilayer vesicles, are produced by various cell types and found in numerous bodily fluids. They play a pivotal role in intercellular communication by transferring bioactive cargos to recipient cells or activating signaling pathways in target cells. Exosomes from cardiomyocytes, endothelial cells, fibroblasts, and stem cells are key in regulating processes like cardiac hypertrophy, cardiomyocyte survival, apoptosis, fibrosis, and angiogenesis within the context of cardiovascular diseases. This review delves into exosomes' roles in pathological cardiac hypertrophy, first elucidating their impact on cell communication and signaling pathways. It then advances to discuss how exosomes affect key hypertrophic processes, including metabolism, fibrosis, oxidative stress, and angiogenesis. The review culminates by evaluating the potential of exosomes as biomarkers and their significance in targeted therapeutic strategies, thus emphasizing their critical role in the pathophysiology and management of cardiac hypertrophy.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Xie
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fengmei Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Beiyao Lu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Lygate CA. Maintaining energy provision in the heart: the creatine kinase system in ischaemia-reperfusion injury and chronic heart failure. Clin Sci (Lond) 2024; 138:491-514. [PMID: 38639724 DOI: 10.1042/cs20230616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
The non-stop provision of chemical energy is of critical importance to normal cardiac function, requiring the rapid turnover of ATP to power both relaxation and contraction. Central to this is the creatine kinase (CK) phosphagen system, which buffers local ATP levels to optimise the energy available from ATP hydrolysis, to stimulate energy production via the mitochondria and to smooth out mismatches between energy supply and demand. In this review, we discuss the changes that occur in high-energy phosphate metabolism (i.e., in ATP and phosphocreatine) during ischaemia and reperfusion, which represents an acute crisis of energy provision. Evidence is presented from preclinical models that augmentation of the CK system can reduce ischaemia-reperfusion injury and improve functional recovery. Energetic impairment is also a hallmark of chronic heart failure, in particular, down-regulation of the CK system and loss of adenine nucleotides, which may contribute to pathophysiology by limiting ATP supply. Herein, we discuss the evidence for this hypothesis based on preclinical studies and in patients using magnetic resonance spectroscopy. We conclude that the correlative evidence linking impaired energetics to cardiac dysfunction is compelling; however, causal evidence from loss-of-function models remains equivocal. Nevertheless, proof-of-principle studies suggest that augmentation of CK activity is a therapeutic target to improve cardiac function and remodelling in the failing heart. Further work is necessary to translate these findings to the clinic, in particular, a better understanding of the mechanisms by which the CK system is regulated in disease.
Collapse
Affiliation(s)
- Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| |
Collapse
|
24
|
Pal N, Acharjee A, Ament Z, Dent T, Yavari A, Mahmod M, Ariga R, West J, Steeples V, Cassar M, Howell NJ, Lockstone H, Elliott K, Yavari P, Briggs W, Frenneaux M, Prendergast B, Dwight JS, Kharbanda R, Watkins H, Ashrafian H, Griffin JL. Metabolic profiling of aortic stenosis and hypertrophic cardiomyopathy identifies mechanistic contrasts in substrate utilization. FASEB J 2024; 38:e23505. [PMID: 38507255 DOI: 10.1096/fj.202301710rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/24/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024]
Abstract
Aortic stenosis (AS) and hypertrophic cardiomyopathy (HCM) are distinct disorders leading to left ventricular hypertrophy (LVH), but whether cardiac metabolism substantially differs between these in humans remains to be elucidated. We undertook an invasive (aortic root, coronary sinus) metabolic profiling in patients with severe AS and HCM in comparison with non-LVH controls to investigate cardiac fuel selection and metabolic remodeling. These patients were assessed under different physiological states (at rest, during stress induced by pacing). The identified changes in the metabolome were further validated by metabolomic and orthogonal transcriptomic analysis, in separately recruited patient cohorts. We identified a highly discriminant metabolomic signature in severe AS in all samples, regardless of sampling site, characterized by striking accumulation of long-chain acylcarnitines, intermediates of fatty acid transport across the inner mitochondrial membrane, and validated this in a separate cohort. Mechanistically, we identify a downregulation in the PPAR-α transcriptional network, including expression of genes regulating fatty acid oxidation (FAO). In silico modeling of β-oxidation demonstrated that flux could be inhibited by both the accumulation of fatty acids as a substrate for mitochondria and the accumulation of medium-chain carnitines which induce competitive inhibition of the acyl-CoA dehydrogenases. We present a comprehensive analysis of changes in the metabolic pathways (transcriptome to metabolome) in severe AS, and its comparison to HCM. Our results demonstrate a progressive impairment of β-oxidation from HCM to AS, particularly for FAO of long-chain fatty acids, and that the PPAR-α signaling network may be a specific metabolic therapeutic target in AS.
Collapse
Affiliation(s)
- Nikhil Pal
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department of Experimental Therapeutics, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Animesh Acharjee
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- MRC-Human Nutrition Research Unit, University of Cambridge, Cambridge, UK
- Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham, UK
| | - Zsuzsanna Ament
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- MRC-Human Nutrition Research Unit, University of Cambridge, Cambridge, UK
| | - Tim Dent
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Arash Yavari
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department of Experimental Therapeutics, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Masliza Mahmod
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rina Ariga
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - James West
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- MRC-Human Nutrition Research Unit, University of Cambridge, Cambridge, UK
| | - Violetta Steeples
- Wellcome Trust Centre for Human Genetics (WTCHG), University of Oxford, Oxford, UK
| | - Mark Cassar
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Neil J Howell
- Department of Cardiothoracic Surgery, University Hospital Birmingham, Birmingham, UK
| | - Helen Lockstone
- Wellcome Trust Centre for Human Genetics (WTCHG), University of Oxford, Oxford, UK
| | - Kate Elliott
- Wellcome Trust Centre for Human Genetics (WTCHG), University of Oxford, Oxford, UK
| | - Parisa Yavari
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - William Briggs
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Michael Frenneaux
- Norwich Medical School, University of East Anglia, Bob Champion Research and Educational Building, Norwich, UK
| | - Bernard Prendergast
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jeremy S Dwight
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rajesh Kharbanda
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Houman Ashrafian
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department of Experimental Therapeutics, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Julian L Griffin
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- MRC-Human Nutrition Research Unit, University of Cambridge, Cambridge, UK
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
25
|
Sun Q, Güven B, Wagg CS, Almeida de Oliveira A, Silver H, Zhang L, Chen B, Wei K, Ketema EB, Karwi QG, Persad KL, Vu J, Wang F, Dyck JRB, Oudit GY, Lopaschuk GD. Mitochondrial fatty acid oxidation is the major source of cardiac adenosine triphosphate production in heart failure with preserved ejection fraction. Cardiovasc Res 2024; 120:360-371. [PMID: 38193548 DOI: 10.1093/cvr/cvae006] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 01/10/2024] Open
Abstract
AIMS Heart failure with preserved ejection fraction (HFpEF) is a prevalent disease worldwide. While it is well established that alterations of cardiac energy metabolism contribute to cardiovascular pathology, the precise source of fuel used by the heart in HFpEF remains unclear. The objective of this study was to define the energy metabolic profile of the heart in HFpEF. METHODS AND RESULTS Eight-week-old C57BL/6 male mice were subjected to a '2-Hit' HFpEF protocol [60% high-fat diet (HFD) + 0.5 g/L of Nω-nitro-L-arginine methyl ester]. Echocardiography and pressure-volume loop analysis were used for assessing cardiac function and cardiac haemodynamics, respectively. Isolated working hearts were perfused with radiolabelled energy substrates to directly measure rates of fatty acid oxidation, glucose oxidation, ketone oxidation, and glycolysis. HFpEF mice exhibited increased body weight, glucose intolerance, elevated blood pressure, diastolic dysfunction, and cardiac hypertrophy. In HFpEF hearts, insulin stimulation of glucose oxidation was significantly suppressed. This was paralleled by an increase in fatty acid oxidation rates, while cardiac ketone oxidation and glycolysis rates were comparable with healthy control hearts. The balance between glucose and fatty acid oxidation contributing to overall adenosine triphosphate (ATP) production was disrupted, where HFpEF hearts were more reliant on fatty acid as the major source of fuel for ATP production, compensating for the decrease of ATP originating from glucose oxidation. Additionally, phosphorylated pyruvate dehydrogenase levels decreased in both HFpEF mice and human patient's heart samples. CONCLUSION In HFpEF, fatty acid oxidation dominates as the major source of cardiac ATP production at the expense of insulin-stimulated glucose oxidation.
Collapse
Affiliation(s)
- Qiuyu Sun
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Berna Güven
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey
| | - Cory S Wagg
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Amanda Almeida de Oliveira
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Heidi Silver
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Liyan Zhang
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Brandon Chen
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Kaleigh Wei
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Ezra B Ketema
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, Canada
| | - Kaya L Persad
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Jennie Vu
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Faqi Wang
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Gavin Y Oudit
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
26
|
Adeniran I, Wadee H, Degens H. An In Silico Cardiomyocyte Reveals the Impact of Changes in CaMKII Signalling on Cardiomyocyte Contraction Kinetics in Hypertrophic Cardiomyopathy. BIOMED RESEARCH INTERNATIONAL 2024; 2024:6160554. [PMID: 38567164 PMCID: PMC10985279 DOI: 10.1155/2024/6160554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/27/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterised by asymmetric left ventricular hypertrophy, ventricular arrhythmias, and cardiomyocyte dysfunction that may cause sudden death. HCM is associated with mutations in sarcomeric proteins and is usually transmitted as an autosomal-dominant trait. The aim of this in silico study was to assess the mechanisms that underlie the altered electrophysiological activity, contractility, regulation of energy metabolism, and crossbridge cycling in HCM at the single-cell level. To investigate this, we developed a human ventricular cardiomyocyte model that incorporates electrophysiology, metabolism, and force generation. The model was validated by its ability to reproduce the experimentally observed kinetic properties of human HCM induced by (a) remodelling of several ion channels and Ca2+-handling proteins arising from altered Ca2+/calmodulin kinase II signalling pathways and (b) increased Ca2+ sensitivity of the myofilament proteins. Our simulation showed a decreased phosphocreatine-to-ATP ratio (-9%) suggesting a negative mismatch between energy expenditure and supply. Using a spatial myofilament half-sarcomere model, we also compared the fraction of detached, weakly bound, and strongly bound crossbridges in the control and HCM conditions. Our simulations showed that HCM has more crossbridges in force-producing states than in the control condition. In conclusion, our model reveals that impaired crossbridge kinetics is accompanied by a negative mismatch between the ATP supply and demand ratio. This suggests that improving this ratio may reduce the incidence of sudden death in HCM.
Collapse
Affiliation(s)
- Ismail Adeniran
- Centre for Advanced Computational Science, Manchester Metropolitan University, Manchester M15 6BH, UK
| | - Hafsa Wadee
- Centre for Advanced Computational Science, Manchester Metropolitan University, Manchester M15 6BH, UK
| | - Hans Degens
- Department of Life Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK
- Lithuanian Sports University, Sporto 6, LT-44221 Kaunas, Lithuania
| |
Collapse
|
27
|
Henry JA, Couch LS, Rider OJ. Myocardial Metabolism in Heart Failure with Preserved Ejection Fraction. J Clin Med 2024; 13:1195. [PMID: 38592048 PMCID: PMC10931709 DOI: 10.3390/jcm13051195] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 04/10/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is increasingly prevalent and now accounts for half of all heart failure cases. This rise is largely attributed to growing rates of obesity, hypertension, and diabetes. Despite its prevalence, the pathophysiological mechanisms of HFpEF are not fully understood. The heart, being the most energy-demanding organ, appears to have a compromised bioenergetic capacity in heart failure, affecting all phenotypes and aetiologies. While metabolic disturbances in heart failure with reduced ejection fraction (HFrEF) have been extensively studied, similar insights into HFpEF are limited. This review collates evidence from both animal and human studies, highlighting metabolic dysregulations associated with HFpEF and its risk factors, such as obesity, hypertension, and diabetes. We discuss how changes in substrate utilisation, oxidative phosphorylation, and energy transport contribute to HFpEF. By delving into these pathological shifts in myocardial energy production, we aim to reveal novel therapeutic opportunities. Potential strategies include modulating energy substrates, improving metabolic efficiency, and enhancing critical metabolic pathways. Understanding these aspects could be key to developing more effective treatments for HFpEF.
Collapse
Affiliation(s)
- John Aaron Henry
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK (O.J.R.)
- Department of Cardiology, Jersey General Hospital, Gloucester Street, St. Helier JE1 3QS, Jersey, UK
| | - Liam S. Couch
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK (O.J.R.)
| | - Oliver J. Rider
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK (O.J.R.)
| |
Collapse
|
28
|
Sun Q, Wagg CS, Güven B, Wei K, de Oliveira AA, Silver H, Zhang L, Vergara A, Chen B, Wong N, Wang F, Dyck JRB, Oudit GY, Lopaschuk GD. Stimulating cardiac glucose oxidation lessens the severity of heart failure in aged female mice. Basic Res Cardiol 2024; 119:133-150. [PMID: 38148348 DOI: 10.1007/s00395-023-01020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 12/28/2023]
Abstract
Heart failure is a prevalent disease worldwide. While it is well accepted that heart failure involves changes in myocardial energetics, what alterations that occur in fatty acid oxidation and glucose oxidation in the failing heart remains controversial. The goal of the study are to define the energy metabolic profile in heart failure induced by obesity and hypertension in aged female mice, and to attempt to lessen the severity of heart failure by stimulating myocardial glucose oxidation. 13-Month-old C57BL/6 female mice were subjected to 10 weeks of a 60% high-fat diet (HFD) with 0.5 g/L of Nω-nitro-L-arginine methyl ester (L-NAME) administered via drinking water to induce obesity and hypertension. Isolated working hearts were perfused with radiolabeled energy substrates to directly measure rates of myocardial glucose oxidation and fatty acid oxidation. Additionally, a series of mice subjected to the obesity and hypertension protocol were treated with a pyruvate dehydrogenase kinase inhibitor (PDKi) to stimulate cardiac glucose oxidation. Aged female mice subjected to the obesity and hypertension protocol had increased body weight, glucose intolerance, elevated blood pressure, cardiac hypertrophy, systolic dysfunction, and decreased survival. While fatty acid oxidation rates were not altered in the failing hearts, insulin-stimulated glucose oxidation rates were markedly impaired. PDKi treatment increased cardiac glucose oxidation in heart failure mice, which was accompanied with improved systolic function and decreased cardiac hypertrophy. The primary energy metabolic change in heart failure induced by obesity and hypertension in aged female mice is a dramatic decrease in glucose oxidation. Stimulating glucose oxidation can lessen the severity of heart failure and exert overall functional benefits.
Collapse
Affiliation(s)
- Qiuyu Sun
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Cory S Wagg
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Berna Güven
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Kaleigh Wei
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Amanda A de Oliveira
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Heidi Silver
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Liyan Zhang
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Ander Vergara
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Brandon Chen
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Nathan Wong
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Faqi Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada.
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada.
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
29
|
Ritterhoff J, Tian R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat Rev Cardiol 2023; 20:812-829. [PMID: 37237146 DOI: 10.1038/s41569-023-00887-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Cardiac metabolism is vital for heart function. Given that cardiac contraction requires a continuous supply of ATP in large quantities, the role of fuel metabolism in the heart has been mostly considered from the perspective of energy production. However, the consequence of metabolic remodelling in the failing heart is not limited to a compromised energy supply. The rewired metabolic network generates metabolites that can directly regulate signalling cascades, protein function, gene transcription and epigenetic modifications, thereby affecting the overall stress response of the heart. In addition, metabolic changes in both cardiomyocytes and non-cardiomyocytes contribute to the development of cardiac pathologies. In this Review, we first summarize how energy metabolism is altered in cardiac hypertrophy and heart failure of different aetiologies, followed by a discussion of emerging concepts in cardiac metabolic remodelling, that is, the non-energy-generating function of metabolism. We highlight challenges and open questions in these areas and finish with a brief perspective on how mechanistic research can be translated into therapies for heart failure.
Collapse
Affiliation(s)
- Julia Ritterhoff
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany.
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
30
|
Javed S, Halliday BP. Precision therapy in dilated cardiomyopathy: Pipedream or paradigm shift? CAMBRIDGE PRISMS. PRECISION MEDICINE 2023; 1:e34. [PMID: 38550947 PMCID: PMC10953759 DOI: 10.1017/pcm.2023.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 02/06/2025]
Abstract
Precision medicine for cardiomyopathies holds great promise to improve patient outcomes costs by shifting the focus to patient-specific treatment decisions, maximising the use of therapies most likely to lead to benefit and minimising unnecessary intervention. Dilated cardiomyopathy (DCM), characterised by left ventricular dilatation and impairment, is a major cause of heart failure globally. Advances in genomic medicine have increased our understanding of the genetic architecture of DCM. Understanding the functional implications of genetic variation to reveal genotype-specific disease mechanisms is the subject of intense investigation, with advanced cardiac imaging and mutliomics approaches playing important roles. This may lead to increasing use of novel, targeted therapy. Individualised treatment and risk stratification is however made more complex by the modifying effects of common genetic variation and acquired environmental factors that help explain the variable expressivity of rare genetic variants and gene elusive disease. The next frontier must be expanding work into early disease to understand the mechanisms that drive disease expression, so that the focus can be placed on disease prevention rather than management of later symptomatic disease. Overcoming these challenges holds the key to enabling a paradigm shift in care from the management of symptomatic heart failure to prevention of disease.
Collapse
Affiliation(s)
- Saad Javed
- National Heart and Lung Institute, Imperial College London, UK
- Cardiovascular Research Centre, Cardiovascular Magnetic Resonance Unit & Inherited Cardiac Conditions Care Group, Royal Brompton and Harefield Hospitals, Part of Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Brian P. Halliday
- National Heart and Lung Institute, Imperial College London, UK
- Cardiovascular Research Centre, Cardiovascular Magnetic Resonance Unit & Inherited Cardiac Conditions Care Group, Royal Brompton and Harefield Hospitals, Part of Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| |
Collapse
|
31
|
Issa J, Lodewyckx P, Blasco H, Benz‐de‐Bretagne I, Labarthe F, Lefort B. Increased acylcarnitines in infant heart failure indicate fatty acid oxidation inhibition: towards therapeutic options? ESC Heart Fail 2023; 10:3114-3122. [PMID: 37614055 PMCID: PMC10567663 DOI: 10.1002/ehf2.14449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 08/25/2023] Open
Abstract
AIMS Heart failure in adults is characterized by reduction of long-chain fatty acid oxidation in favour of carbohydrate metabolism. This adaptive phenomenon becomes maladaptive because energy conversion decreases and lipid toxic derivatives known to impair cardiac function are accumulating. No data are available concerning metabolic modification in heart failure in children. METHODS AND RESULTS In order to evaluate the fatty acid oxidation in children suffering from heart failure, acylcarnitine profiles on dried blood spots were obtained from children under 16 years old with dilated cardiomyopathy and clinical heart failure (DCM-HF) and control children. Nine children were included in the DCM-HF group and eight in the control group. Acylcarnitine profiles revealed a significant 3.1-fold increase of total acylcarnitines (sum of C3 to C18 acylcarnitine species) in DCM-HF children compared with controls. This result persisted considering the sum of long-chain acylcarnitines (sum of C14 to C18 species), medium-chain acylcarnitines (sum of C8 to C12 species), and short-chain acylcarnitines (sum of C3 to C6 species), respectively, 2.0-, 2.6-, and 1.9-fold increase compared with the control group. A significant linear correlation was found between left ventricular dilatation or ejection fraction and acylcarnitines accumulation. Finally, acylcarnitine ratio C16OH/C16 and C18OH/C18 enhanced in the DCM-HF group, suggesting a diminution of the long-chain hydroxyl acyl-CoA dehydrogenase activity. CONCLUSIONS Our results suggest down-regulation of fatty acid oxidation in children with heart failure. Such lipidomic alteration could worsen heart function and may suggest considering a metabolic treatment of heart failure in children.
Collapse
Affiliation(s)
- Jean Issa
- Institut des Cardiopathies Congénitales de Tours, Hôpital Gatien de ClochevilleCHU Tours49 Boulevard BérangerTours37000France
- Université François RabelaisToursFrance
| | - Pierre Lodewyckx
- Institut des Cardiopathies Congénitales de Tours, Hôpital Gatien de ClochevilleCHU Tours49 Boulevard BérangerTours37000France
- Université François RabelaisToursFrance
| | - Hélène Blasco
- Université François RabelaisToursFrance
- Service de Biochimie et Biologie MoléculaireCHU ToursToursFrance
| | | | - François Labarthe
- Université François RabelaisToursFrance
- Département de PédiatrieCHU de ToursToursFrance
- INSERM UMR 1069ToursFrance
| | - Bruno Lefort
- Institut des Cardiopathies Congénitales de Tours, Hôpital Gatien de ClochevilleCHU Tours49 Boulevard BérangerTours37000France
- Université François RabelaisToursFrance
- INSERM UMR 1069ToursFrance
- FHU PreciCareToursFrance
| |
Collapse
|
32
|
Kasa G, Bayes-Genis A, Delgado V. Latest Updates in Heart Failure Imaging. Heart Fail Clin 2023; 19:407-418. [PMID: 37714583 DOI: 10.1016/j.hfc.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Heart failure (HF), a challenging and heterogeneous syndrome, still remains a major health problem worldwide, despite all the advances in prevention, diagnosis, and treatment of cardiovascular disease. Cardiac imaging plays a pivotal role in the classification of HF, accurate diagnosis of underlying etiology and decision-making. Integration of other imaging techniques such as cardiac magnetic resonance, nuclear imaging, and exercise imaging testing is important to characterize HF accurately. This article reviews the role of multimodality imaging to diagnose patients with HF.
Collapse
Affiliation(s)
- Gizem Kasa
- Cardiovascular Imaging Section, Department of Cardiology, Heart Institute, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Antoni Bayes-Genis
- Cardiovascular Imaging Section, Department of Cardiology, Heart Institute, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Victoria Delgado
- Cardiovascular Imaging Section, Department of Cardiology, Heart Institute, University Hospital Germans Trias i Pujol, Badalona, Spain.
| |
Collapse
|
33
|
Guerrero-Orriach JL, Carmona-Luque MD, Raigón-Ponferrada A. Beneficial Effects of Halogenated Anesthetics in Cardiomyocytes: The Role of Mitochondria. Antioxidants (Basel) 2023; 12:1819. [PMID: 37891898 PMCID: PMC10604121 DOI: 10.3390/antiox12101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
In the last few years, the use of anesthetic drugs has been related to effects other than those initially related to their fundamental effect, hypnosis. Halogenated anesthetics, mainly sevoflurane, have been used as a therapeutic tool in patients undergoing cardiac surgery, thanks to the beneficial effect of the cardiac protection they generate. This effect has been described in several research studies. The mechanism by which they produce this effect has been associated with the effects generated by anesthetic preconditioning and postconditioning. The mechanisms by which these effects are induced are directly related to the modulation of oxidative stress and the cellular damage generated by the ischemia/reperfusion procedure through the overexpression of different enzymes, most of them included in the Reperfusion Injury Salvage Kinase (RISK) and the Survivor Activating Factor Enhancement (SAFE) pathways. Mitochondria is the final target of the different routes of pre- and post-anesthetic conditioning, and it is preserved from the damage generated in moments of lack of oxygen and after the recovery of the normal oxygen concentration. The final consequence of this effect has been related to better cardiac function in this type of patient, with less myocardial damage, less need for inotropic drugs to achieve normal myocardial function, and a shorter hospital stay in intensive care units. The mechanisms through which mitochondrial homeostasis is maintained and its relationship with the clinical effect are the basis of our review. From a translational perspective, we provide information regarding mitochondrial physiology and physiopathology in cardiac failure and the role of halogenated anesthetics in modulating oxidative stress and inducing myocardial conditioning.
Collapse
Affiliation(s)
- José Luis Guerrero-Orriach
- Institute of Biomedical Research in Malaga, 29010 Malaga, Spain
- Department of Anesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
| | - María Dolores Carmona-Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Córdoba, 14004 Cordoba, Spain;
- Cellular Therapy Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
- Cell Therapy Group, University of Cordoba, 14004 Cordoba, Spain
| | - Aida Raigón-Ponferrada
- Institute of Biomedical Research in Malaga, 29010 Malaga, Spain
- Department of Anesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
| |
Collapse
|
34
|
Pan J, Ng SM, Neubauer S, Rider OJ. Phenotyping heart failure by cardiac magnetic resonance imaging of cardiac macro- and microscopic structure: state of the art review. Eur Heart J Cardiovasc Imaging 2023; 24:1302-1317. [PMID: 37267310 PMCID: PMC10531211 DOI: 10.1093/ehjci/jead124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
Heart failure demographics have evolved in past decades with the development of improved diagnostics, therapies, and prevention. Cardiac magnetic resonance (CMR) has developed in a similar timeframe to become the gold-standard non-invasive imaging modality for characterizing diseases causing heart failure. CMR techniques to assess cardiac morphology and function have progressed since their first use in the 1980s. Increasingly efficient acquisition protocols generate high spatial and temporal resolution images in less time. This has enabled new methods of characterizing cardiac systolic and diastolic function such as strain analysis, exercise real-time cine imaging and four-dimensional flow. A key strength of CMR is its ability to non-invasively interrogate the myocardial tissue composition. Gadolinium contrast agents revolutionized non-invasive cardiac imaging with the late gadolinium enhancement technique. Further advances enabled quantitative parametric mapping to increase sensitivity at detecting diffuse pathology. Novel methods such as diffusion tensor imaging and artificial intelligence-enhanced image generation are on the horizon. Magnetic resonance spectroscopy (MRS) provides a window into the molecular environment of the myocardium. Phosphorus (31P) spectroscopy can inform the status of cardiac energetics in health and disease. Proton (1H) spectroscopy complements this by measuring creatine and intramyocardial lipids. Hyperpolarized carbon (13C) spectroscopy is a novel method that could further our understanding of dynamic cardiac metabolism. CMR of other organs such as the lungs may add further depth into phenotypes of heart failure. The vast capabilities of CMR should be deployed and interpreted in context of current heart failure challenges.
Collapse
Affiliation(s)
- Jiliu Pan
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 0, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Sher May Ng
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 0, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Stefan Neubauer
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 0, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Oliver J Rider
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 0, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
35
|
Hernandez VK, Parks Melville BT, Siwaju K. How Does It Work? Unraveling the Mysteries by Which Empagliflozin Helps Diabetic and Non-diabetic Patients With Heart Failure. Cureus 2023; 15:e45290. [PMID: 37846252 PMCID: PMC10576871 DOI: 10.7759/cureus.45290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/18/2023] Open
Abstract
In patients with heart failure, empagliflozin offers significant cardiovascular benefits. However, its exact mode of action is unknown. Understanding the way by which empagliflozin works in heart failure may uncover additional therapeutic targets or identify other classes of drugs that may be useful to clinicians and patients. This literature review aims to unravel the mysteries by which empagliflozin reduces cardiovascular death, cardiovascular events, and heart failure hospitalization in diabetic and non-diabetic patients. Three researchers conducted the data collection. We incorporated research that used human models, animal models, patients with diabetes, and patients without diabetes. Pathology, pathophysiology, metabolism, physiology, empagliflozin, heart failure, and cardiovascular were the search terms used to probe the mesh database on PubMed. This study showed that the mechanisms by which empagliflozin could lead to positive clinical outcomes in heart failure (HF) are as follows: down-regulation of the mammalian target of rapamycin complex 1 signaling (mTORC), decreasing sarcoplasmic reticulum calcium loss, increasing cytosolic calcium loss, inducing electrolyte-free osmotic diuresis, improving fuel efficiency, and protecting the endothelial glycocalyx. These findings were inconsistent, with no generally accepted hypotheses within the scientific community. Hence we conclude that further research is required to determine the function of Empagliflozin in heart failure and the degree to which the aforementioned mechanisms of action contribute to cardiac protection.
Collapse
Affiliation(s)
- Vernicia K Hernandez
- Internal Medicine, University of Miami Miller School of Medicine, Jackson Memorial Hospital, Miami, USA
| | | | - Khadijah Siwaju
- Internal Medicine, University of the West Indies Cave Hill Barbados, Cave Hill, BRB
| |
Collapse
|
36
|
Spoladore R, Pinto G, Daus F, Pezzini S, Kolios D, Fragasso G. Metabolic Approaches for the Treatment of Dilated Cardiomyopathy. J Cardiovasc Dev Dis 2023; 10:287. [PMID: 37504543 PMCID: PMC10380730 DOI: 10.3390/jcdd10070287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
In dilated cardiomyopathy (DCM), where the heart muscle becomes stretched and thin, heart failure (HF) occurs, and the cardiomyocytes suffer from an energetic inefficiency caused by an abnormal cardiac metabolism. Although underappreciated as a potential therapeutic target, the optimal metabolic milieu of a failing heart is still largely unknown and subject to debate. Because glucose naturally has a lower P/O ratio (the ATP yield per oxygen atom), the previous studies using this strategy to increase glucose oxidation have produced some intriguing findings. In reality, the vast majority of small-scale pilot trials using trimetazidine, ranolazine, perhexiline, and etomoxir have demonstrated enhanced left ventricular (LV) function and, in some circumstances, myocardial energetics in chronic ischemic and non-ischemic HF with a reduced ejection fraction (EF). However, for unidentified reasons, none of these drugs has ever been tested in a clinical trial of sufficient size. Other pilot studies came to the conclusion that because the heart in severe dilated cardiomyopathy appears to be metabolically flexible and not limited by oxygen, the current rationale for increasing glucose oxidation as a therapeutic target is contradicted and increasing fatty acid oxidation is supported. As a result, treating metabolic dysfunction in HF may benefit from raising ketone body levels. Interestingly, treatment with sodium-glucose cotransporter-2 inhibitors (SGLT2i) improves cardiac function and outcomes in HF patients with or without type 2 diabetes mellitus (T2DM) through a variety of pleiotropic effects, such as elevated ketone body levels. The improvement in overall cardiac function seen in patients receiving SGLT2i could be explained by this increase, which appears to be a reflection of an adaptive process that optimizes cardiac energy metabolism. This review aims to identify the best metabolic therapeutic approach for DCM patients, to examine the drugs that directly affect cardiac metabolism, and to outline all the potential ancillary metabolic effects of the guideline-directed medical therapy. In addition, a special focus is placed on SGLT2i, which were first studied and prescribed to diabetic patients before being successfully incorporated into the pharmacological arsenal for HF patients.
Collapse
Affiliation(s)
- Roberto Spoladore
- Department of Cardiology, Heart Failure Clinic, Alessandro Manzoni Hospital, ASST Lecco, 23900 Lecco, Italy
| | - Giuseppe Pinto
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Francesca Daus
- Post-Graduate School of Cardiovascular Medicine, Milan-Bicocca University, 20126 Milan, Italy
| | - Sara Pezzini
- Post-Graduate School of Cardiovascular Medicine, Milan-Bicocca University, 20126 Milan, Italy
| | - Damianos Kolios
- Department of Clinical Cardiology, Heart Failure Clinic, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy (G.F.)
| | - Gabriele Fragasso
- Department of Clinical Cardiology, Heart Failure Clinic, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy (G.F.)
| |
Collapse
|
37
|
de Wit-Verheggen VHW, Schrauwen-Hinderling VB, Brouwers K, Jörgensen JA, Schaart G, Gemmink A, Nascimento EBM, Hesselink MKC, Wildberger JE, Segers P, Montaigne D, Staels B, Schrauwen P, Lindeboom L, Hoeks J, van de Weijer T. PCr/ATP ratios and mitochondrial function in the heart. A comparative study in humans. Sci Rep 2023; 13:8346. [PMID: 37221197 DOI: 10.1038/s41598-023-35041-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Cardiac energy status, measured as phosphocreatine (PCr)/adenosine triphosphate (ATP) ratio with 31P-Magnetic Resonance Spectroscopy (31P-MRS) in vivo, is a prognostic factor in heart failure and is lowered in cardiometabolic disease. It has been suggested that, as oxidative phosphorylation is the major contributor to ATP synthesis, PCr/ATP ratio might be a reflection of cardiac mitochondrial function. The objective of the study was to investigate whether PCr/ATP ratios can be used as in vivo marker for cardiac mitochondrial function. We enrolled thirty-eight patients scheduled for open-heart surgery in this study. Cardiac 31P-MRS was performed before surgery. Tissue from the right atrial appendage was obtained during surgery for high-resolution respirometry for the assessment of mitochondrial function. There was no correlation between the PCr/ATP ratio and ADP-stimulated respiration rates (octanoylcarnitine R2 < 0.005, p = 0.74; pyruvate R2 < 0.025, p = 0.41) nor with maximally uncoupled respiration (octanoylcarnitine R2 = 0.005, p = 0.71; pyruvate R2 = 0.040, p = 0.26). PCr/ATP ratio did correlate with indexed LV end systolic mass. As no direct correlation between cardiac energy status (PCr/ATP) and mitochondrial function in the heart was found, the study suggests that mitochondrial function might not the only determinant of cardiac energy status. Interpretation should be done in the right context in cardiac metabolic studies.
Collapse
Affiliation(s)
- Vera H W de Wit-Verheggen
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6200 MD, Maastricht, The Netherlands
| | - Kim Brouwers
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6200 MD, Maastricht, The Netherlands
| | - Johanna A Jörgensen
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Gert Schaart
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Anne Gemmink
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Emmani B M Nascimento
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Joachim E Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6200 MD, Maastricht, The Netherlands
| | - Patrique Segers
- Department of Cardiothoracic Surgery, Maastricht University Medical Center, 6200 MD, Maastricht, The Netherlands
| | - David Montaigne
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France
| | - Bart Staels
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Lucas Lindeboom
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6200 MD, Maastricht, The Netherlands
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Tineke van de Weijer
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
38
|
Murphy E, Liu JC. Mitochondrial calcium and reactive oxygen species in cardiovascular disease. Cardiovasc Res 2023; 119:1105-1116. [PMID: 35986915 PMCID: PMC10411964 DOI: 10.1093/cvr/cvac134] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 08/11/2023] Open
Abstract
Cardiomyocytes are one of the most mitochondria-rich cell types in the body, with ∼30-40% of the cell volume being composed of mitochondria. Mitochondria are well established as the primary site of adenosine triphosphate (ATP) generation in a beating cardiomyocyte, generating up to 90% of its ATP. Mitochondria have many functions in the cell, which could contribute to susceptibility to and development of cardiovascular disease (CVD). Mitochondria are key players in cell metabolism, ATP production, reactive oxygen species (ROS) production, and cell death. Mitochondrial calcium (Ca2+) plays a critical role in many of these pathways, and thus the dynamics of mitochondrial Ca2+ are important in regulating mitochondrial processes. Alterations in these varied and in many cases interrelated functions play an important role in CVD. This review will focus on the interrelationship of mitochondrial energetics, Ca2+, and ROS and their roles in CVD. Recent insights into the regulation and dysregulation of these pathways have led to some novel therapeutic approaches.
Collapse
Affiliation(s)
- Elizabeth Murphy
- NHLBI, NIH, Bethesda, MD and Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA
| | - Julia C Liu
- NHLBI, NIH, Bethesda, MD and Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
39
|
Schenkl C, Heyne E, Doenst T, Schulze PC, Nguyen TD. Targeting Mitochondrial Metabolism to Save the Failing Heart. Life (Basel) 2023; 13:life13041027. [PMID: 37109556 PMCID: PMC10143865 DOI: 10.3390/life13041027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Despite considerable progress in treating cardiac disorders, the prevalence of heart failure (HF) keeps growing, making it a global medical and economic burden. HF is characterized by profound metabolic remodeling, which mostly occurs in the mitochondria. Although it is well established that the failing heart is energy-deficient, the role of mitochondria in the pathophysiology of HF extends beyond the energetic aspects. Changes in substrate oxidation, tricarboxylic acid cycle and the respiratory chain have emerged as key players in regulating myocardial energy homeostasis, Ca2+ handling, oxidative stress and inflammation. This work aims to highlight metabolic alterations in the mitochondria and their far-reaching effects on the pathophysiology of HF. Based on this knowledge, we will also discuss potential metabolic approaches to improve cardiac function.
Collapse
Affiliation(s)
- Christina Schenkl
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Estelle Heyne
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Torsten Doenst
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Paul Christian Schulze
- Department of Medicine I (Cardiology, Angiology, Critical Care Medicine), Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Tien Dung Nguyen
- Department of Medicine I (Cardiology, Angiology, Critical Care Medicine), Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
40
|
Abstract
Chronic kidney disease is associated with an increased risk for the development and progression of cardiovascular disorders including hypertension, dyslipidemia, and coronary artery disease. Chronic kidney disease may also affect the myocardium through complex systemic changes, resulting in structural remodeling such as hypertrophy and fibrosis, as well as impairments in both diastolic and systolic function. These cardiac changes in the setting of chronic kidney disease define a specific cardiomyopathic phenotype known as uremic cardiomyopathy. Cardiac function is tightly linked to its metabolism, and research over the past 3 decades has revealed significant metabolic remodeling in the myocardium during the development of heart failure. Because the concept of uremic cardiomyopathy has only been recognized in recent years, there are limited data on metabolism in the uremic heart. Nonetheless, recent findings suggest overlapping mechanisms with heart failure. This work reviews key features of metabolic remodeling in the failing heart in the general population and extends this to patients with chronic kidney disease. The knowledge of similarities and differences in cardiac metabolism between heart failure and uremic cardiomyopathy may help identify new targets for mechanistic and therapeutic research on uremic cardiomyopathy.
Collapse
Affiliation(s)
- T Dung Nguyen
- Department of Internal Medicine I, University Hospital Jena, Jena, Germany
| | | |
Collapse
|
41
|
Burrage MK, Lewis AJ, Miller JJJ. Functional and Metabolic Imaging in Heart Failure with Preserved Ejection Fraction: Promises, Challenges, and Clinical Utility. Cardiovasc Drugs Ther 2023; 37:379-399. [PMID: 35881280 PMCID: PMC10014679 DOI: 10.1007/s10557-022-07355-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is recognised as an increasingly prevalent, morbid and burdensome condition with a poor outlook. Recent advances in both the understanding of HFpEF and the technological ability to image cardiac function and metabolism in humans have simultaneously shone a light on the molecular basis of this complex condition of diastolic dysfunction, and the inflammatory and metabolic changes that are associated with it, typically in the context of a complex patient. This review both makes the case for an integrated assessment of the condition, and highlights that metabolic alteration may be a measurable outcome for novel targeted forms of medical therapy. It furthermore highlights how recent technological advancements and advanced medical imaging techniques have enabled the characterisation of the metabolism and function of HFpEF within patients, at rest and during exercise.
Collapse
Affiliation(s)
- Matthew K Burrage
- Oxford Centre for Clinical Cardiovascular Magnetic Resonance Research (OCMR); Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Andrew J Lewis
- Oxford Centre for Clinical Cardiovascular Magnetic Resonance Research (OCMR); Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK
| | - Jack J J. Miller
- Oxford Centre for Clinical Cardiovascular Magnetic Resonance Research (OCMR); Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK
- The PET Research Centre and The MR Research Centre, Aarhus University, Aarhus, Denmark
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, UK
| |
Collapse
|
42
|
Cannizzaro MT, Inserra MC, Passaniti G, Celona A, D'Angelo T, Romeo P, Basile A. Role of advanced cardiovascular imaging in chemotherapy-induced cardiotoxicity. Heliyon 2023; 9:e15226. [PMID: 37095987 PMCID: PMC10121465 DOI: 10.1016/j.heliyon.2023.e15226] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
The development of cardiotoxicity induced by cancer treatments has emerged as a significant clinical problem, both in the short run, as it may influence drug administration in chemotherapeutic protocols, and in the long run, because it may determine adverse cardiovascular outcomes in survivors of various malignant diseases. Therefore, early detection of anticancer drug-related cardiotoxicity is an important clinical target to improve prevention of adverse effects and patient care. Today, echocardiography is the first-line cardiac imaging techniques used for identifying cardiotoxicity. Cardiac dysfunction, clinical and subclinical, is generally diagnosed by the reduction of left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS). However, myocardial injury detected by echocardiography is preceded by other alterations, such as myocardial perfusion and mitochondrial and metabolic dysfunction, that can only be recognized by second-level imaging techniques, like cardiac magnetic resonance (CMR) and nuclear imaging, which, using targeted radiotracers, may help to provide information on the specific mechanisms of cardiotoxicity. In this review, we focus on the current and emerging role of CMR, as a critical diagnostic tool of cardiotoxicity in the very early phase, due to its availability and because it allows the contemporary detection of functional alterations, tissue alterations (mainly performed using T1, T2 mapping with the evaluation of extracellular volume-ECV) and perfusional alteration (evaluated with rest-stress perfusion) and, in the next future, even metabolic changes. Moreover, in the subsequent future, the use of Artificial Intelligence and big data on imaging parameters (CT, CMR) and oncoming molecular imaging datasets, including differences for gender and countries, may help predict cardiovascular toxicity at its earliest stages, avoiding its progression, with precise tailoring of patients' diagnostic and therapeutic pathways.
Collapse
Affiliation(s)
| | | | | | | | - Tommaso D'Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Ospital “Policlinico G. Martino”, Messina, Italy
| | - Placido Romeo
- Radiology Department of AO “San Marco”, A.U.O. Policlinico “G.Rodolico-San Marco”, Catania, Italy
| | - Antonio Basile
- University of Catania, Department of Surgical and Medical Sciences and Advanced Technologies ‘G.F. Ingrassia’, Italy
| |
Collapse
|
43
|
Rodolico D, Schiattarella GG, Taegtmeyer H. The Lure of Cardiac Metabolism in the Diagnosis, Prevention, and Treatment of Heart Failure. JACC. HEART FAILURE 2023:S2213-1779(23)00091-4. [PMID: 37086246 DOI: 10.1016/j.jchf.2023.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 04/23/2023]
Abstract
Energy substrate metabolism and contractile function are tightly coupled in the heart. Within this framework, heart failure may be viewed as a state of impaired energy transfer. The metabolic changes in the failing heart are linked to functional and structural changes. A worthwhile goal is to measure metabolic flux and its regulation quantitatively, and to do this in a manner that leads to targeted interventions. For several good reasons, this goal has been elusive until now. The development of new analytical and imaging techniques offers the potential of exploring the landscape of metabolic changes across the different stages of heart failure. In this Review Topic of the Month, we focus on concepts and brevity to provide a strategic overview of cardiac metabolism in the diagnosis, prevention, and treatment of nonischemic heart failure.
Collapse
Affiliation(s)
- Daniele Rodolico
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Gabriele G Schiattarella
- Center for Cardiovascular Research, Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
44
|
Gupta A. Cardiac 31P MR spectroscopy: development of the past five decades and future vision-will it be of diagnostic use in clinics? Heart Fail Rev 2023; 28:485-532. [PMID: 36427161 DOI: 10.1007/s10741-022-10287-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
In the past five decades, the use of the magnetic resonance (MR) technique for cardiovascular diseases has engendered much attention and raised the opportunity that the technique could be useful for clinical applications. MR has two arrows in its quiver: One is magnetic resonance imaging (MRI), and the other is magnetic resonance spectroscopy (MRS). Non-invasively, highly advanced MRI provides unique and profound information about the anatomical changes of the heart. Excellently developed MRS provides irreplaceable and insightful evidence of the real-time biochemistry of cardiac metabolism of underpinning diseases. Compared to MRI, which has already been successfully applied in routine clinical practice, MRS still has a long way to travel to be incorporated into routine diagnostics. Considering the exceptional potential of 31P MRS to measure the real-time metabolic changes of energetic molecules qualitatively and quantitatively, how far its powerful technique should be waited before a successful transition from "bench-to-bedside" is enticing. The present review highlights the seminal studies on the chronological development of cardiac 31P MRS in the past five decades and the future vision and challenges to incorporating it for routine diagnostics of cardiovascular disease.
Collapse
Affiliation(s)
- Ashish Gupta
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India.
| |
Collapse
|
45
|
Maguire ML, McAndrew DJ, Lake HA, Ostrowski PJ, Zervou S, Neubauer S, Lygate CA, Schneider JE. Synergistic effect on cardiac energetics by targeting the creatine kinase system: in vivo application of high-resolution 31P-CMRS in the mouse. J Cardiovasc Magn Reson 2023; 25:6. [PMID: 36740688 PMCID: PMC9900916 DOI: 10.1186/s12968-023-00911-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/05/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Phosphorus cardiovascular magnetic resonance spectroscopy (31P-CMRS) has emerged as an important tool for the preclinical assessment of myocardial energetics in vivo. However, the high rate and diminutive size of the mouse heart is a challenge, resulting in low resolution and poor signal-to-noise. Here we describe a refined high-resolution 31P-CMRS technique and apply it to a novel double transgenic mouse (dTg) with elevated myocardial creatine and creatine kinase (CK) activity. We hypothesised a synergistic effect to augment energetic status, evidenced by an increase in the ratio of phosphocreatine-to-adenosine-triphosphate (PCr/ATP). METHODS AND RESULTS Single transgenic Creatine Transporter overexpressing (CrT-OE, n = 7) and dTg mice (CrT-OE and CK, n = 6) mice were anaesthetised with isoflurane to acquire 31P-CMRS measurements of the left ventricle (LV) utilising a two-dimensional (2D), threefold under-sampled density-weighted chemical shift imaging (2D-CSI) sequence, which provided high-resolution data with nominal voxel size of 8.5 µl within 70 min. (1H-) cine-CMR data for cardiac function assessment were obtained in the same imaging session. Under a separate examination, mice received invasive haemodynamic assessment, after which tissue was collected for biochemical analysis. Myocardial creatine levels were elevated in all mouse hearts, but only dTg exhibited significantly elevated CK activity, resulting in a 51% higher PCr/ATP ratio in heart (3.01 ± 0.96 vs. 2.04 ± 0.57-mean ± SD; dTg vs. CrT-OE), that was absent from adjacent skeletal muscle. No significant differences were observed for any parameters of LV structure and function, confirming that augmentation of CK activity does not have unforeseen consequences for the heart. CONCLUSIONS We have developed an improved 31P-CMRS methodology for the in vivo assessment of energetics in the murine heart which enabled high-resolution imaging within acceptable scan times. Mice over-expressing both creatine and CK in the heart exhibited a synergistic elevation in PCr/ATP that can now be tested for therapeutic potential in models of chronic heart failure.
Collapse
Affiliation(s)
- Mahon L Maguire
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Debra J McAndrew
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hannah A Lake
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Philip J Ostrowski
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sevasti Zervou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, UK
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, UK.
| | - Jurgen E Schneider
- Experimental and Preclinical Imaging Centre (ePIC), Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.
| |
Collapse
|
46
|
Targeting mitochondrial impairment for the treatment of cardiovascular diseases: From hypertension to ischemia-reperfusion injury, searching for new pharmacological targets. Biochem Pharmacol 2023; 208:115405. [PMID: 36603686 DOI: 10.1016/j.bcp.2022.115405] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Mitochondria and mitochondrial proteins represent a group of promising pharmacological target candidates in the search of new molecular targets and drugs to counteract the onset of hypertension and more in general cardiovascular diseases (CVDs). Indeed, several mitochondrial pathways result impaired in CVDs, showing ATP depletion and ROS production as common traits of cardiac tissue degeneration. Thus, targeting mitochondrial dysfunction in cardiomyocytes can represent a successful strategy to prevent heart failure. In this context, the identification of new pharmacological targets among mitochondrial proteins paves the way for the design of new selective drugs. Thanks to the advances in omics approaches, to a greater availability of mitochondrial crystallized protein structures and to the development of new computational approaches for protein 3D-modelling and drug design, it is now possible to investigate in detail impaired mitochondrial pathways in CVDs. Furthermore, it is possible to design new powerful drugs able to hit the selected pharmacological targets in a highly selective way to rescue mitochondrial dysfunction and prevent cardiac tissue degeneration. The role of mitochondrial dysfunction in the onset of CVDs appears increasingly evident, as reflected by the impairment of proteins involved in lipid peroxidation, mitochondrial dynamics, respiratory chain complexes, and membrane polarization maintenance in CVD patients. Conversely, little is known about proteins responsible for the cross-talk between mitochondria and cytoplasm in cardiomyocytes. Mitochondrial transporters of the SLC25A family, in particular, are responsible for the translocation of nucleotides (e.g., ATP), amino acids (e.g., aspartate, glutamate, ornithine), organic acids (e.g. malate and 2-oxoglutarate), and other cofactors (e.g., inorganic phosphate, NAD+, FAD, carnitine, CoA derivatives) between the mitochondrial and cytosolic compartments. Thus, mitochondrial transporters play a key role in the mitochondria-cytosol cross-talk by leading metabolic pathways such as the malate/aspartate shuttle, the carnitine shuttle, the ATP export from mitochondria, and the regulation of permeability transition pore opening. Since all these pathways are crucial for maintaining healthy cardiomyocytes, mitochondrial carriers emerge as an interesting class of new possible pharmacological targets for CVD treatments.
Collapse
|
47
|
Tsampasian V, Cameron D, Sobhan R, Bazoukis G, Vassiliou VS. Phosphorus Magnetic Resonance Spectroscopy ( 31P MRS) and Cardiovascular Disease: The Importance of Energy. Medicina (B Aires) 2023; 59:174. [PMID: 36676798 PMCID: PMC9866867 DOI: 10.3390/medicina59010174] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Background and Objectives : The heart is the organ with the highest metabolic demand in the body, and it relies on high ATP turnover and efficient energy substrate utilisation in order to function normally. The derangement of myocardial energetics may lead to abnormalities in cardiac metabolism, which herald the symptoms of heart failure (HF). In addition, phosphorus magnetic resonance spectroscopy (31P MRS) is the only available non-invasive method that allows clinicians and researchers to evaluate the myocardial metabolic state in vivo. This review summarises the importance of myocardial energetics and provides a systematic review of all the available research studies utilising 31P MRS to evaluate patients with a range of cardiac pathologies. Materials and Methods : We have performed a systematic review of all available studies that used 31P MRS for the investigation of myocardial energetics in cardiovascular disease. Results : A systematic search of the Medline database, the Cochrane library, and Web of Science yielded 1092 results, out of which 62 studies were included in the systematic review. The 31P MRS has been used in numerous studies and has demonstrated that impaired myocardial energetics is often the beginning of pathological processes in several cardiac pathologies. Conclusions : The 31P MRS has become a valuable tool in the understanding of myocardial metabolic changes and their impact on the diagnosis, risk stratification, and prognosis of patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Vasiliki Tsampasian
- Norwich Medical School, University of East Anglia, Bob Champion Research & Education Building, Research Park, Rosalind Franklin Rd, Norwich NR4 7UQ, UK
| | - Donnie Cameron
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Rashed Sobhan
- Norwich Medical School, University of East Anglia, Bob Champion Research & Education Building, Research Park, Rosalind Franklin Rd, Norwich NR4 7UQ, UK
| | - George Bazoukis
- Department of Cardiology, Larnaca General Hospital, Larnaca 6301, Cyprus
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia 2417, Cyprus
| | - Vassilios S. Vassiliou
- Norwich Medical School, University of East Anglia, Bob Champion Research & Education Building, Research Park, Rosalind Franklin Rd, Norwich NR4 7UQ, UK
| |
Collapse
|
48
|
Dhar A, Venkadakrishnan J, Roy U, Vedam S, Lalwani N, Ramos KS, Pandita TK, Bhat A. A comprehensive review of the novel therapeutic targets for the treatment of diabetic cardiomyopathy. Ther Adv Cardiovasc Dis 2023; 17:17539447231210170. [PMID: 38069578 PMCID: PMC10710750 DOI: 10.1177/17539447231210170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/09/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is characterized by structural and functional abnormalities in the myocardium affecting people with diabetes. Treatment of DCM focuses on glucose control, blood pressure management, lipid-lowering, and lifestyle changes. Due to limited therapeutic options, DCM remains a significant cause of morbidity and mortality in patients with diabetes, thus emphasizing the need to develop new therapeutic strategies. Ongoing research is aimed at understanding the underlying molecular mechanism(s) involved in the development and progression of DCM, including oxidative stress, inflammation, and metabolic dysregulation. The goal is to develope innovative pharmaceutical therapeutics, offering significant improvements in the clinical management of DCM. Some of these approaches include the effective targeting of impaired insulin signaling, cardiac stiffness, glucotoxicity, lipotoxicity, inflammation, oxidative stress, cardiac hypertrophy, and fibrosis. This review focuses on the latest developments in understanding the underlying causes of DCM and the therapeutic landscape of DCM treatment.
Collapse
Affiliation(s)
- Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | | | - Utsa Roy
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | - Sahithi Vedam
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | - Nikita Lalwani
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | - Kenneth S. Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT) 184311, India
| |
Collapse
|
49
|
Monga S, Valkovič L, Tyler D, Lygate CA, Rider O, Myerson SG, Neubauer S, Mahmod M. Insights Into the Metabolic Aspects of Aortic Stenosis With the Use of Magnetic Resonance Imaging. JACC Cardiovasc Imaging 2022; 15:2112-2126. [PMID: 36481080 PMCID: PMC9722407 DOI: 10.1016/j.jcmg.2022.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/25/2022] [Accepted: 04/29/2022] [Indexed: 01/13/2023]
Abstract
Pressure overload in aortic stenosis (AS) encompasses both structural and metabolic remodeling and increases the risk of decompensation into heart failure. A major component of metabolic derangement in AS is abnormal cardiac substrate use, with down-regulation of fatty acid oxidation, increased reliance on glucose metabolism, and subsequent myocardial lipid accumulation. These changes are associated with energetic and functional cardiac impairment in AS and can be assessed with the use of cardiac magnetic resonance spectroscopy (MRS). Proton MRS allows the assessment of myocardial triglyceride content and creatine concentration. Phosphorous MRS allows noninvasive in vivo quantification of the phosphocreatine-to-adenosine triphosphate ratio, a measure of cardiac energy status that is reduced in patients with severe AS. This review summarizes the changes to cardiac substrate and high-energy phosphorous metabolism and how they affect cardiac function in AS. The authors focus on the role of MRS to assess these metabolic changes, and potentially guide future (cellular) metabolic therapy in AS.
Collapse
Affiliation(s)
- Shveta Monga
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ladislav Valkovič
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Damian Tyler
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Wellcome Centre for Human Genetics, Oxford, United Kingdom
| | - Oliver Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Saul G Myerson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Masliza Mahmod
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
50
|
Schwitter J. Getting Deeper Insight by Hyperpolarization: The Multilevel Assessment of Myocardial Infarction by Adding Hyperpolarized 13C-Carbon-CMR. JACC Cardiovasc Imaging 2022; 15:2065-2068. [PMID: 36481074 DOI: 10.1016/j.jcmg.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Juerg Schwitter
- Division of Cardiology, Cardiovascular Department, University Hospital Lausanne, Lausanne, Switzerland, and the Faculty of Biology and Medicine, University of Lausanne, UniL, Switzerland.
| |
Collapse
|