1
|
Zhang J, Chang J, Chen V, Beg MA, Huang W, Vick L, Wang Y, Zhang H, Yttre E, Gupta A, Castleberry M, Zhang Z, Dai W, Zhu J, Song S, Yang M, Brown AK, Xu Z, Ma YQ, Smith BC, Zielonka J, Traylor JG, Ben Dhaou C, Orr AW, Cui W, Chen Y. Oxidized LDL stimulates PKM2-mediated mtROS production and phagocytosis. J Lipid Res 2025:100809. [PMID: 40250804 DOI: 10.1016/j.jlr.2025.100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/21/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025] Open
Abstract
Oxidized low-density lipoprotein (oxLDL) promotes proatherogenic phenotypes in macrophages, accelerating the progression of atherosclerosis. Our previous studies demonstrated that oxLDL binds to its receptor CD36, stimulating mitochondrial reactive oxygen species (mtROS), which are critical in atherosclerosis development. However, the mechanisms underlying mtROS induction and their effects on macrophage cellular functions remain poorly understood. Macrophages rely on phagocytosis to clear pathogens, apoptotic cells, or other particles, a process critical for tissue homeostasis. Dysregulated or excessive particle ingestion, a key step in phagocytosis, can lead to lipid overloading and foam cell formation, a hallmark of atherosclerosis. In this study, we showed that macrophages pre-treated with oxLDL exhibit increased particle ingestion, a phagocytic response significantly attenuated in Cd36-null macrophages. Further investigations revealed that oxLDL-induced phagocytosis depends on mtROS, as their suppression inhibited the process. In vivo, atherosclerosis-prone Apoe-null mice on a high-fat diet exhibited increased mtROS levels and enhanced phagocytic activity in aortic foamy macrophages compared to those from chow diet-fed mice, supporting a role of mtROS in promoting lesional macrophage phagocytosis. Mechanistically, we identified a novel signaling pathway whereby oxLDL/CD36 interaction induces the translocation of the cytosolic enzyme pyruvate kinase muscle 2 (PKM2) to mitochondria. Disruption of PKM2 mitochondrial translocation using siRNA knockdown or a specific chemical inhibitor reduced mtROS production and attenuated oxLDL-induced phagocytosis. In conclusion, our findings reveal a novel oxLDL-CD36-PKM2 signaling axis that drives mtROS production and phagocytosis in atherogenic macrophages.
Collapse
Affiliation(s)
- Jue Zhang
- Versiti Blood Research Institute, Milwaukee, WI, USA.
| | - Jackie Chang
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Vaya Chen
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | | | - Wenxin Huang
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Lance Vick
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yaxin Wang
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Heng Zhang
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Erin Yttre
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Ankan Gupta
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mark Castleberry
- Versiti Blood Research Institute, Milwaukee, WI, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ziyu Zhang
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Wen Dai
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Jieqing Zhu
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Shan Song
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, Hebei, China
| | - Moua Yang
- Bloodworks Northwest Research Institute, Seattle, WA, USA; Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Ashley Kaye Brown
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Zhen Xu
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Yan-Qing Ma
- Versiti Blood Research Institute, Milwaukee, WI, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James G Traylor
- Department of Pathology and Translational Pathology, LSU Health Shreveport, LA, USA
| | - Cyrine Ben Dhaou
- Department of Pathology and Translational Pathology, LSU Health Shreveport, LA, USA
| | - A Wayne Orr
- Department of Pathology and Translational Pathology, LSU Health Shreveport, LA, USA
| | - Weiguo Cui
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Yiliang Chen
- Versiti Blood Research Institute, Milwaukee, WI, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Medical College of Wisconsin, Cardiovascular Center, Milwaukee, WI, USA.
| |
Collapse
|
2
|
Liberale L, Tual-Chalot S, Sedej S, Ministrini S, Georgiopoulos G, Grunewald M, Bäck M, Bochaton-Piallat ML, Boon RA, Ramos GC, de Winther MPJ, Drosatos K, Evans PC, Ferguson JF, Forslund-Startceva SK, Goettsch C, Giacca M, Haendeler J, Kallikourdis M, Ketelhuth DFJ, Koenen RR, Lacolley P, Lutgens E, Maffia P, Miwa S, Monaco C, Montecucco F, Norata GD, Osto E, Richardson GD, Riksen NP, Soehnlein O, Spyridopoulos I, Van Linthout S, Vilahur G, Wentzel JJ, Andrés V, Badimon L, Benetos A, Binder CJ, Brandes RP, Crea F, Furman D, Gorbunova V, Guzik TJ, Hill JA, Lüscher TF, Mittelbrunn M, Nencioni A, Netea MG, Passos JF, Stamatelopoulos KS, Tavernarakis N, Ungvari Z, Wu JC, Kirkland JL, Camici GG, Dimmeler S, Kroemer G, Abdellatif M, Stellos K. Roadmap for alleviating the manifestations of ageing in the cardiovascular system. Nat Rev Cardiol 2025:10.1038/s41569-025-01130-5. [PMID: 39972009 DOI: 10.1038/s41569-025-01130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2025] [Indexed: 02/21/2025]
Abstract
Ageing of the cardiovascular system is associated with frailty and various life-threatening diseases. As global populations grow older, age-related conditions increasingly determine healthspan and lifespan. The circulatory system not only supplies nutrients and oxygen to all tissues of the human body and removes by-products but also builds the largest interorgan communication network, thereby serving as a gatekeeper for healthy ageing. Therefore, elucidating organ-specific and cell-specific ageing mechanisms that compromise circulatory system functions could have the potential to prevent or ameliorate age-related cardiovascular diseases. In support of this concept, emerging evidence suggests that targeting the circulatory system might restore organ function. In this Roadmap, we delve into the organ-specific and cell-specific mechanisms that underlie ageing-related changes in the cardiovascular system. We raise unanswered questions regarding the optimal design of clinical trials, in which markers of biological ageing in humans could be assessed. We provide guidance for the development of gerotherapeutics, which will rely on the technological progress of the diagnostic toolbox to measure residual risk in elderly individuals. A major challenge in the quest to discover interventions that delay age-related conditions in humans is to identify molecular switches that can delay the onset of ageing changes. To overcome this roadblock, future clinical trials need to provide evidence that gerotherapeutics directly affect one or several hallmarks of ageing in such a manner as to delay, prevent, alleviate or treat age-associated dysfunction and diseases.
Collapse
Affiliation(s)
- Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Myriam Grunewald
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Magnus Bäck
- Translational Cardiology, Centre for Molecular Medicine, Department of Medicine Solna, and Department of Cardiology, Heart and Vascular Centre, Karolinska Institutet, Stockholm, Sweden
- Inserm, DCAC, Université de Lorraine, Nancy, France
| | | | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location VUmc, Amsterdam, Netherlands
| | - Gustavo Campos Ramos
- Department of Internal Medicine I/Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences: Atherosclerosis and Ischaemic Syndromes; Amsterdam Infection and Immunity: Inflammatory Diseases, Amsterdam UMC location AMC, Amsterdam, Netherlands
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Cardiovascular Center, Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul C Evans
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jane F Ferguson
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Goettsch
- Department of Internal Medicine I, Division of Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Mauro Giacca
- British Heart foundation Centre of Reseach Excellence, King's College London, London, UK
| | - Judith Haendeler
- Cardiovascular Degeneration, Medical Faculty, University Hospital and Heinrich-Heine University, Düsseldorf, Germany
| | - Marinos Kallikourdis
- Adaptive Immunity Lab, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Daniel F J Ketelhuth
- Cardiovascular and Renal Research Unit, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rory R Koenen
- CARIM-School for Cardiovascular Diseases, Department of Biochemistry, Maastricht University, Maastricht, Netherlands
| | | | - Esther Lutgens
- Department of Cardiovascular Medicine & Immunology, Mayo Clinic, Rochester, MN, USA
| | - Pasquale Maffia
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Satomi Miwa
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Claudia Monaco
- Kennedy Institute, NDORMS, University of Oxford, Oxford, UK
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Osto
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Gavin D Richardson
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Oliver Soehnlein
- Institute of Experimental Pathology, University of Münster, Münster, Germany
| | - Ioakim Spyridopoulos
- Translational and Clinical Research Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Sophie Van Linthout
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätmedizin Berlin, Berlin, Germany
| | - Gemma Vilahur
- Research Institute, Hospital de la Santa Creu y Sant Pau l, IIB-Sant Pau, Barcelona, Spain
| | - Jolanda J Wentzel
- Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), CIBERCV, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Health and Innovation Research Foundation (FICSI) and Cardiovascular Health and Network Medicine Department, University of Vic (UVIC-UCC), Barcelona, Spain
| | - Athanase Benetos
- Department of Geriatrics, University Hospital of Nancy and Inserm DCAC, Université de Lorraine, Nancy, France
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Filippo Crea
- Centre of Excellence of Cardiovascular Sciences, Ospedale Isola Tiberina - Gemelli Isola, Roma, Italy
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Joseph A Hill
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas F Lüscher
- Heart Division, Royal Brompton and Harefield Hospital and National Heart and Lung Institute, Imperial College, London, UK
| | - María Mittelbrunn
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Alessio Nencioni
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
- Dipartimento di Medicina Interna e Specialità Mediche-DIMI, Università degli Studi di Genova, Genova, Italy
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Kimon S Stamatelopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nektarios Tavernarakis
- Medical School, University of Crete, and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Zoltan Ungvari
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - James L Kirkland
- Center for Advanced Gerotherapeutics, Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm, Institut Universitaire de France, Paris, France
| | | | - Konstantinos Stellos
- Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
3
|
Saki N, Haybar H, Maniati M, Davari N, Javan M, Moghimian-Boroujeni B. Modification macrophage to foam cells in atherosclerosis disease: some factors stimulate or inhibit this process. J Diabetes Metab Disord 2024; 23:1687-1697. [PMID: 39610485 PMCID: PMC11599683 DOI: 10.1007/s40200-024-01482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 11/30/2024]
Abstract
Background Atherosclerosis is an arterial blood vessel disease that begins and progresses by turning macrophages into foam cells. Uptake of oxidized low-density lipoprotein (ox-LDL), cholesterol esterification and cholesterol efflux are the most important factors in the formation of foam cells and play an important role in atherosclerosis. Methods The present study is based on the data obtained from the PubMed database (1961-2024) using the MeSH search terms "Atherosclerosis", "Macrophages" and "Foam cells". Reviews for writing the main text and non-English-language articles were excluded. Result The interaction between ox-LDL and macrophages plays an important role in plaque initiation and promotion processes. Macrophages abnormally digest ox-LDL, resulting in the accumulation of lipids and formation of foam cells. This is an important step in the development of atherosclerosis. Also, several other factors such as inflammatory factors, growth factors, hormones, etc. can play an important role in the development of atherosclerotic lesions or counteract it by affecting the formation of foam cells. Conclusion Several factors can affect the progression of atherosclerosis by affecting macrophage activity or its conversion to foam cells. Also, some of these factors play a protective role against the development and atherosclerosis progression. In this paper, we reviewed some of these factors and their effect on atherosclerosis.
Collapse
Affiliation(s)
- Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Habib Haybar
- Cardiology Department, Medical College, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmood Maniati
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Davari
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Javan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Bahareh Moghimian-Boroujeni
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Theeke LA, Liu Y, Wang S, Luo X, Navia RO, Xiao D, Xu C, Wang K. Plasma Proteomic Biomarkers in Alzheimer's Disease and Cardiovascular Disease: A Longitudinal Study. Int J Mol Sci 2024; 25:10751. [PMID: 39409080 PMCID: PMC11477191 DOI: 10.3390/ijms251910751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The co-occurrence of Alzheimer's disease (AD) and cardiovascular diseases (CVDs) in older adults highlights the necessity for the exploration of potential shared risk factors. A total of 566 adults were selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, including 111 individuals with AD, 383 with mild cognitive impairment (MCI), and 410 with CVD. The multivariable linear mixed model (LMM) was used to investigate the associations of AD and CVD with longitudinal changes in 146 plasma proteomic biomarkers (measured at baseline and the 12-month follow-up). The LMM showed that 48 biomarkers were linked to AD and 46 to CVD (p < 0.05). Both AD and CVD were associated with longitudinal changes in 14 biomarkers (α1Micro, ApoH, β2M, BNP, complement C3, cystatin C, KIM1, NGAL, PPP, TIM1, THP, TFF3, TM, and VEGF), and both MCI and CVD were associated with 12 biomarkers (ApoD, AXL, BNP, Calcitonin, CD40, C-peptide, pM, PPP, THP, TNFR2, TTR, and VEGF), suggesting intricate connections between cognitive decline and cardiovascular health. Among these, the Tamm Horsfall Protein (THP) was associated with AD, MCI, CVD, and APOE-ε4. This study provides valuable insights into shared and distinct biological markers and mechanisms underlying AD and CVD.
Collapse
Affiliation(s)
- Laurie A. Theeke
- Department of Community of Acute and Chronic Care, School of Nursing, The George Washington University, Ashburn, VA 20147, USA;
| | - Ying Liu
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA;
| | - Silas Wang
- Department of Statistics & Data Science, Dietrich College of Humanities and Social Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06516, USA;
| | - R. Osvaldo Navia
- Department of Medicine and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA;
| | - Danqing Xiao
- Department of STEM, School of Arts and Sciences, Regis College, Weston, MA 02493, USA;
| | - Chun Xu
- Department of Health and Biomedical Sciences, College of Health Affairs, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Kesheng Wang
- Department of Biobehavioral Health & Nursing Science, College of Nursing, University of South Carolina, Columbia, 1601 Greene Street, Columbia, SC 29208, USA
| | | |
Collapse
|
5
|
Liu B, Li F, Wang Y, Gao X, Li Y, Wang Y, Zhou H. APP-CD74 axis mediates endothelial cell-macrophage communication to promote kidney injury and fibrosis. Front Pharmacol 2024; 15:1437113. [PMID: 39351084 PMCID: PMC11439715 DOI: 10.3389/fphar.2024.1437113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/26/2024] [Indexed: 10/04/2024] Open
Abstract
Background Kidney injuries often carry a grim prognosis, marked by fibrosis development, renal function loss, and macrophage involvement. Despite extensive research on macrophage polarization and its effects on other cells, like fibroblasts, limited attention has been paid to the influence of non-immune cells on macrophages. This study aims to address this gap by shedding light on the intricate dynamics and diversity of macrophages during renal injury and repair. Methods During the initial research phase, the complexity of intercellular communication in the context of kidney injury was revealed using a publicly available single-cell RNA sequencing library of the unilateral ureteral obstruction (UUO) model. Subsequently, we confirmed our findings using an independent dataset from a renal ischemia-reperfusion injury (IRI) model. We treated two different types of endothelial cells with TGF-β and co-cultured their supernatants with macrophages, establishing an endothelial cell and macrophage co-culture system. We also established a UUO and an IRI mouse model. Western blot analysis, flow cytometry, immunohistochemistry and immunofluorescence staining were used to validate our results at multiple levels. Results Our analysis revealed significant changes in the heterogeneity of macrophage subsets during both injury processes. Amyloid β precursor protein (APP)-CD74 axis mediated endothelial-macrophage intercellular communication plays a dominant role. In the in vitro co-culture system, TGF-β triggers endothelial APP expression, which subsequently enhances CD74 expression in macrophages. Flow cytometry corroborated these findings. Additionally, APP and CD74 expression were significantly increased in the UUO and IRI mouse models. Immunofluorescence techniques demonstrated the co-localization of F4/80 and CD74 in vivo. Conclusion Our study unravels a compelling molecular mechanism, elucidating how endothelium-mediated regulation shapes macrophage function during renal repair. The identified APP-CD74 signaling axis emerges as a promising target for optimizing renal recovery post-injury and preventing the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Faping Li
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuxiong Wang
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Gao
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yunkuo Li
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Zhao D, Guallar E, Qiao Y, Knopman DS, Palatino M, Gottesman RF, Mosley TH, Wasserman BA. Intracranial Atherosclerotic Disease and Incident Dementia: The ARIC Study (Atherosclerosis Risk in Communities). Circulation 2024; 150:838-847. [PMID: 39087353 PMCID: PMC11513165 DOI: 10.1161/circulationaha.123.067003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Studies of the neurovascular contribution to dementia have largely focused on cerebral small vessel disease (CSVD), but the role of intracranial atherosclerotic disease (ICAD) remains unknown in the general population. The objective of this study was to determine the risk of incident dementia from ICAD after adjusting for CSVD and cardiovascular risk factors in a US community-based cohort. METHODS We acquired brain magnetic resonance imaging examinations from 2011 through 2013 in 1980 Black and White participants in the ARIC study (Atherosclerosis Risk in Communities), a prospective cohort conducted in 4 US communities. Magnetic resonance imaging examinations included high-resolution vessel wall magnetic resonance imaging and magnetic resonance angiography to identify ICAD. Of these participants, 1590 without dementia, without missing covariates, and with adequate magnetic resonance image quality were followed through 2019 for incident dementia. Associations between ICAD and incident dementia were assessed using Cox proportional hazard ratios adjusted for CSVD (characterized by white matter hyperintensities, lacunar infarctions, and microhemorrhages), APOE4 genotype (apolipoprotein E gene ε4), and cardiovascular risk factors. RESULTS The mean age (SD) of study participants was 77.4 (5.2) years. ICAD was detected in 34.6% of participants. After a median follow-up of 5.6 years, 286 participants developed dementia. Compared with participants without ICAD, the fully adjusted hazard ratios (95% CIs) for incident dementia in participants with any ICAD, with ICAD only causing stenosis ≤50%, and with ICAD causing stenosis >50% in ≥1 vessel were 1.57 (1.17-2.11), 1.41 (1.02-1.95), and 1.94 (1.32-2.84), respectively. ICAD was associated with dementia even among participants with low white matter hyperintensities burden, a marker of CSVD. CONCLUSIONS ICAD was associated with an increased risk of incident dementia, independent of CSVD, APOE4 genotype, and cardiovascular risk factors. The increased risk of dementia was evident even among participants with low CSVD burden, a group less likely to be affected by vascular dementia, and in participants with ICAD causing only low-grade stenosis. Our results suggest that ICAD may partially mediate the effect that cardiovascular risk factors have on the brain leading to dementia. Both ICAD and CSVD must be considered to understand the vascular contributions to cognitive decline.
Collapse
Affiliation(s)
- Di Zhao
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Eliseo Guallar
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Ye Qiao
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Maylin Palatino
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Rebecca F. Gottesman
- Stroke Branch, Intramural Research Program, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Thomas H. Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Bruce A. Wasserman
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
7
|
Zhou B, Feng C, Sun S, Chen X, Zhuansun D, Wang D, Yu X, Meng X, Xiao J, Wu L, Wang J, Wang J, Chen K, Li Z, You J, Mao H, Yang S, Zhang J, Jiao C, Li Z, Yu D, Wu X, Zhu T, Yang J, Xiang L, Liu J, Chai T, Shen J, Mao CX, Hu J, Hao X, Xiong B, Zheng S, Liu Z, Feng J. Identification of signaling pathways that specify a subset of migrating enteric neural crest cells at the wavefront in mouse embryos. Dev Cell 2024; 59:1689-1706.e8. [PMID: 38636517 DOI: 10.1016/j.devcel.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/17/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
During enteric nervous system (ENS) development, pioneering wavefront enteric neural crest cells (ENCCs) initiate gut colonization. However, the molecular mechanisms guiding their specification and niche interaction are not fully understood. We used single-cell RNA sequencing and spatial transcriptomics to map the spatiotemporal dynamics and molecular landscape of wavefront ENCCs in mouse embryos. Our analysis shows a progressive decline in wavefront ENCC potency during migration and identifies transcription factors governing their specification and differentiation. We further delineate key signaling pathways (ephrin-Eph, Wnt-Frizzled, and Sema3a-Nrp1) utilized by wavefront ENCCs to interact with their surrounding cells. Disruptions in these pathways are observed in human Hirschsprung's disease gut tissue, linking them to ENS malformations. Additionally, we observed region-specific and cell-type-specific transcriptional changes in surrounding gut tissues upon wavefront ENCC arrival, suggesting their role in shaping the gut microenvironment. This work offers a roadmap of ENS development, with implications for understanding ENS disorders.
Collapse
Affiliation(s)
- Bingyan Zhou
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Chenzhao Feng
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Song Sun
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Ministry of Health, Shanghai 201102, China
| | - Xuyong Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Didi Zhuansun
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Di Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Xiaosi Yu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Luyao Wu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Ke Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Zejian Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jingyi You
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Handan Mao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Shimin Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jiaxin Zhang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Chunlei Jiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Zhi Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Donghai Yu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Xiaojuan Wu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Tianqi Zhu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jixin Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Lei Xiang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jiazhe Liu
- BGI-Shenzhen, Shenzhen, Guangdong 518081, China
| | | | - Juan Shen
- BGI-Shenzhen, Shenzhen, Guangdong 518081, China
| | - Chuan-Xi Mao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Juncheng Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Xingjie Hao
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shan Zheng
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Ministry of Health, Shanghai 201102, China
| | - Zhihua Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China.
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China.
| |
Collapse
|
8
|
Li N. Platelets as an inter-player between hyperlipidaemia and atherosclerosis. J Intern Med 2024; 296:39-52. [PMID: 38704820 DOI: 10.1111/joim.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Platelet hyperreactivity and hyperlipidaemia contribute significantly to atherosclerosis. Thus, it is desirable to review the platelet-hyperlipidaemia interplay and its impact on atherogenesis. Native low-density lipoprotein (nLDL) and oxidized LDL (oxLDL) are the key proatherosclerotic components of hyperlipidaemia. nLDL binds to the platelet-specific LDL receptor (LDLR) ApoE-R2', whereas oxLDL binds to the platelet-expressed scavenger receptor CD36, lectin-type oxidized LDLR 1 and scavenger receptor class A 1. Ligation of nLDL/oxLDL induces mild platelet activation and may prime platelets for other platelet agonists. Platelets, in turn, can modulate lipoprotein metabolisms. Platelets contribute to LDL oxidation by enhancing the production of reactive oxygen species and LDLR degradation via proprotein convertase subtilisin/kexin type 9 release. Platelet-released platelet factor 4 and transforming growth factor β modulate LDL uptake and foam cell formation. Thus, platelet dysfunction and hyperlipidaemia work in concert to aggravate atherogenesis. Hypolipidemic drugs modulate platelet function, whereas antiplatelet drugs influence lipid metabolism. The research prospects of the platelet-hyperlipidaemia interplay in atherosclerosis are also discussed.
Collapse
Affiliation(s)
- Nailin Li
- Karolinska Institutet, Department of Medicine-Solna, Division of Cardiovascular Medicine, Stockholm, Sweden
| |
Collapse
|
9
|
Delialis D, Georgiopoulos G, Tual-Chalot S, Angelidakis L, Aivalioti E, Mavraganis G, Sopova K, Argyris A, Kostakou P, Konstantaki C, Papaioannou M, Tsilimigras D, Chatoupis K, Zacharoulis AA, Galyfos G, Sigala F, Stellos K, Stamatelopoulos K. Amyloid beta is associated with carotid wall echolucency and atherosclerotic plaque composition. Sci Rep 2024; 14:14944. [PMID: 38942831 PMCID: PMC11213915 DOI: 10.1038/s41598-024-64906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/14/2024] [Indexed: 06/30/2024] Open
Abstract
Circulating amyloid-beta 1-40 (Αb40) has pro-atherogenic properties and could serve as a biomarker in atherosclerotic cardiovascular disease (ASCVD). However, the association of Ab40 levels with morphological characteristics reflecting atherosclerotic plaque echolucency and composition is not available. Carotid atherosclerosis was assessed in consecutively recruited individuals without ASCVD (n = 342) by ultrasonography. The primary endpoint was grey scale median (GSM) of intima-media complex (IMC) and plaques, analysed using dedicated software. Vascular markers were assessed at two time-points (median follow-up 35.5 months). In n = 56 patients undergoing carotid endarterectomy, histological plaque features were analysed. Plasma Αb40 levels were measured at baseline. Ab40 was associated with lower IMC GSM and plaque GSM and higher plaque area at baseline after multivariable adjustment. Increased Ab40 levels were also longitudinally associated with decreasing or persistently low IMC and plaque GSM after multivariable adjustment (p < 0.05). In the histological analysis, Ab40 levels were associated with lower incidence of calcified plaques and plaques without high-risk features. Ab40 levels are associated with ultrasonographic and histological markers of carotid wall composition both in the non-stenotic arterial wall and in severely stenotic plaques. These findings support experimental evidence linking Ab40 with plaque vulnerability, possibly mediating its established association with major adverse cardiovascular events.
Collapse
Affiliation(s)
- Dimitrios Delialis
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Lasthenis Angelidakis
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Evmorfia Aivalioti
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Georgios Mavraganis
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Kateryna Sopova
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Ludolf-Krehl-Straße 13-17, D-68167, Mannheim, Germany
- Department of Cardiology, University Hospital Mannheim, Mannheim, Germany
| | - Antonios Argyris
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Peggy Kostakou
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Christina Konstantaki
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Maria Papaioannou
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Diamantis Tsilimigras
- First Department of Propaedeutic Surgery, Hippocrateion Hospital, Medical School, University of Athens, Athens, Greece
| | - Konstantinos Chatoupis
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | | | - George Galyfos
- First Department of Propaedeutic Surgery, Hippocrateion Hospital, Medical School, University of Athens, Athens, Greece
| | - Fragiska Sigala
- First Department of Propaedeutic Surgery, Hippocrateion Hospital, Medical School, University of Athens, Athens, Greece
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Ludolf-Krehl-Straße 13-17, D-68167, Mannheim, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany.
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece.
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
10
|
Chen C, Anqi W, Ling G, Shan W, Liangjun D, Suhang S, Kang H, Fan G, Jingyi W, Qiumin Q, Jin W. Atherosclerosis is associated with plasma Aβ levels in non-hypertension patients. BMC Neurol 2024; 24:218. [PMID: 38918722 PMCID: PMC11197226 DOI: 10.1186/s12883-024-03722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Growing evidence indicated that to develop of atherosclerosis observed more often by people with Alzheimer's disease (AD), but the underlying mechanism is not fully clarified. Considering that amyloid-β (Aβ) deposition in the brain is the key pathophysiology of AD and plasma Aβ is closely relate to Aβ deposition in the brain, in the present study, we investigated the relationships between atherosclerosis and plasma Aβ levels. METHODS This was a population based cross-sectional study. Patients with high risk of atherosclerosis from Qubao Village, Xi'an were underwent carotid ultrasound for assessment of atherosclerosis. Venous blood was collected on empty stomach in the morning and plasma Aβ1-40 and Aβ1-42 levels were measured using ELISA. Multivariate logistic regression analysis was performed to investigate the relationships between carotid atherosclerosis (CAS) and plasma Aβ levels. RESULTS Among 344 patients with high risk of atherosclerosis, 251(73.0%) had CAS. In the univariate analysis, the plasma Aβ levels had no significant differences between CAS group and non-CAS group (Aβ1-40: 53.07 ± 9.24 pg/ml vs. 51.67 ± 9.11pg/ml, p = 0.211; Aβ1-42: 40.10 ± 5.57 pg/ml vs. 40.70 pg/ml ± 6.37pg/ml, p = 0.285). Multivariate logistic analysis showed that plasma Aβ levels were not associated with CAS (Aβ1-40: OR = 1.019, 95%CI: 0.985-1.054, p = 0.270;Aβ1-42: OR = 1.028, 95%CI: 0.980-1.079, p = 0.256) in the total study population. After stratified by hypertension, CAS was associated with plasma Aβ1-40 positively (OR = 1.063, 95%CI: 1.007-1.122, p = 0.028) in the non-hypertension group, but not in hypertensive group. When the plasma Aβ concentrations were classified into four groups according to its quartile, the highest level of plasma Aβ1-40 group was associated with CAS significantly (OR = 4.465, 95%CI: 1.024-19.474, p = 0.046). CONCLUSION Among patients with high risk of atherosclerosis, CAS was associated with higher plasma Aβ1-40 level in non-hypertension group, but not in hypertension group. These indicated that atherosclerosis is associated with plasma Aβ level, but the relationship may be confounded by hypertension.
Collapse
Affiliation(s)
- Chen Chen
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Wang Anqi
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Gao Ling
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Wei Shan
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Dang Liangjun
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Shang Suhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Huo Kang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Gao Fan
- Clinical research center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wang Jingyi
- Huyi Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Qu Qiumin
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China.
| | - Wang Jin
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China.
| |
Collapse
|
11
|
Abyadeh M, Gupta V, Paulo JA, Mahmoudabad AG, Shadfar S, Mirshahvaladi S, Gupta V, Nguyen CT, Finkelstein DI, You Y, Haynes PA, Salekdeh GH, Graham SL, Mirzaei M. Amyloid-beta and tau protein beyond Alzheimer's disease. Neural Regen Res 2024; 19:1262-1276. [PMID: 37905874 PMCID: PMC11467936 DOI: 10.4103/1673-5374.386406] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT The aggregation of amyloid-beta peptide and tau protein dysregulation are implicated to play key roles in Alzheimer's disease pathogenesis and are considered the main pathological hallmarks of this devastating disease. Physiologically, these two proteins are produced and expressed within the normal human body. However, under pathological conditions, abnormal expression, post-translational modifications, conformational changes, and truncation can make these proteins prone to aggregation, triggering specific disease-related cascades. Recent studies have indicated associations between aberrant behavior of amyloid-beta and tau proteins and various neurological diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as retinal neurodegenerative diseases like Glaucoma and age-related macular degeneration. Additionally, these proteins have been linked to cardiovascular disease, cancer, traumatic brain injury, and diabetes, which are all leading causes of morbidity and mortality. In this comprehensive review, we provide an overview of the connections between amyloid-beta and tau proteins and a spectrum of disorders.
Collapse
Affiliation(s)
| | - Vivek Gupta
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Sina Shadfar
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Shahab Mirshahvaladi
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Christine T.O. Nguyen
- Department of Optometry and Vision Sciences, School of Health Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Yuyi You
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Paul A. Haynes
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Ghasem H. Salekdeh
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Stuart L. Graham
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| |
Collapse
|
12
|
De Meyer GRY, Zurek M, Puylaert P, Martinet W. Programmed death of macrophages in atherosclerosis: mechanisms and therapeutic targets. Nat Rev Cardiol 2024; 21:312-325. [PMID: 38163815 DOI: 10.1038/s41569-023-00957-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
Atherosclerosis is a progressive inflammatory disorder of the arterial vessel wall characterized by substantial infiltration of macrophages, which exert both favourable and detrimental functions. Early in atherogenesis, macrophages can clear cytotoxic lipoproteins and dead cells, preventing cytotoxicity. Efferocytosis - the efficient clearance of dead cells by macrophages - is crucial for preventing secondary necrosis and stimulating the release of anti-inflammatory cytokines. In addition, macrophages can promote tissue repair and proliferation of vascular smooth muscle cells, thereby increasing plaque stability. However, advanced atherosclerotic plaques contain large numbers of pro-inflammatory macrophages that secrete matrix-degrading enzymes, induce death in surrounding cells and contribute to plaque destabilization and rupture. Importantly, macrophages in the plaque can undergo apoptosis and several forms of regulated necrosis, including necroptosis, pyroptosis and ferroptosis. Regulated necrosis has an important role in the formation and expansion of the necrotic core during plaque progression, and several triggers for necrosis are present within atherosclerotic plaques. This Review focuses on the various forms of programmed macrophage death in atherosclerosis and the pharmacological interventions that target them as a potential means of stabilizing vulnerable plaques and improving the efficacy of currently available anti-atherosclerotic therapies.
Collapse
Affiliation(s)
- Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Michelle Zurek
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pauline Puylaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
13
|
Del Moral LE, Lerma C, González-Pacheco H, Chávez-Lázaro AC, Massó F, Rodriguez E. Correlation of Plasmatic Amyloid Beta Peptides (Aβ-40, Aβ-42) with Myocardial Injury and Inflammatory Biomarkers in Acute Coronary Syndrome. J Clin Med 2024; 13:1117. [PMID: 38398429 PMCID: PMC10889335 DOI: 10.3390/jcm13041117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Background/Objective: Amyloid beta (β) -40 levels increase with age and inflammation states and appear to be associated with clinical manifestations of acute coronary syndrome (ACS). We investigated the correlation of Aβ peptides with myocardial injury and inflammation biomarkers in patients with or without ST elevation myocardial infarction (STEMI, NSTEMI). Methods: This singe-center, cross-sectional, observational, and correlation study included 65 patients with ACS (n = 34 STEMI, 29 males, age = 58 ± 12 years; n = 31 NSTEMI, 22 males, age = 60 ± 12 years) who were enrolled in the coronary care unit within 12 h after symptom onset from February 2022 to May 2023. Aβ peptide levels and biochemical parameters were assessed. Results: NSTEMI patients had a higher prevalence of hypertension (p = 0.039), diabetes (p = 0.043), smoking (p = 0.003), and prior myocardial infarction (p = 0.010) compared to STEMI patients. We observed a higher level of Aβ-42 in NSTEMI (p = 0.001) but no difference in Aβ-40 levels. We also found a correlation between age and NT-proBNP with both Aβ peptides (Aβ-40, Aβ-42) (p = 0.001, p = 0.002 respectively). Conclusions: Our results show that patients with NSTEMI had a higher prevalence of cardiovascular risk factors (hypertension, diabetes, smoking, and prior myocardial infarction). Considering these results, we propose that Aβ-42 can add value to risk stratification in NSTEMI patients.
Collapse
Affiliation(s)
- Luis Eduardo Del Moral
- Translacional Research Unit, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.E.D.M.); (A.C.C.-L.); (F.M.)
| | - Claudia Lerma
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Héctor González-Pacheco
- Coronary Care Unit, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Alan Cristhian Chávez-Lázaro
- Translacional Research Unit, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.E.D.M.); (A.C.C.-L.); (F.M.)
| | - Felipe Massó
- Translacional Research Unit, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.E.D.M.); (A.C.C.-L.); (F.M.)
| | - Emma Rodriguez
- Translacional Research Unit, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.E.D.M.); (A.C.C.-L.); (F.M.)
| |
Collapse
|
14
|
Puylaert P, Roth L, Van Praet M, Pintelon I, Dumitrascu C, van Nuijs A, Klejborowska G, Guns PJ, Berghe TV, Augustyns K, De Meyer GRY, Martinet W. Effect of erythrophagocytosis-induced ferroptosis during angiogenesis in atherosclerotic plaques. Angiogenesis 2023; 26:505-522. [PMID: 37120604 PMCID: PMC10542744 DOI: 10.1007/s10456-023-09877-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/16/2023] [Indexed: 05/01/2023]
Abstract
Intraplaque (IP) angiogenesis is a key feature of advanced atherosclerotic plaques. Because IP vessels are fragile and leaky, erythrocytes are released and phagocytosed by macrophages (erythrophagocytosis), which leads to high intracellular iron content, lipid peroxidation and cell death. In vitro experiments showed that erythrophagocytosis by macrophages induced non-canonical ferroptosis, an emerging type of regulated necrosis that may contribute to plaque destabilization. Erythrophagocytosis-induced ferroptosis was accompanied by increased expression of heme-oxygenase 1 and ferritin, and could be blocked by co-treatment with third generation ferroptosis inhibitor UAMC-3203. Both heme-oxygenase 1 and ferritin were also expressed in erythrocyte-rich regions of carotid plaques from ApoE-/- Fbn1C1039G+/- mice, a model of advanced atherosclerosis with IP angiogenesis. The effect of UAMC-3203 (12.35 mg/kg/day) on atherosclerosis was evaluated in ApoE-/- Fbn1C1039G+/- mice fed a western-type diet (WD) for 12 weeks (n = 13 mice/group) or 20 weeks (n = 16-21 mice/group) to distinguish between plaques without and with established IP angiogenesis, respectively. A significant decrease in carotid plaque thickness was observed after 20 weeks WD (87 ± 19 μm vs. 166 ± 20 μm, p = 0.006), particularly in plaques with confirmed IP angiogenesis or hemorrhage (108 ± 35 μm vs. 322 ± 40 μm, p = 0.004). This effect was accompanied by decreased IP heme-oxygenase 1 and ferritin expression. UAMC-3203 did not affect carotid plaques after 12 weeks WD or plaques in the aorta, which typically do not develop IP angiogenesis. Altogether, erythrophagocytosis-induced ferroptosis during IP angiogenesis leads to larger atherosclerotic plaques, an effect that can be prevented by ferroptosis inhibitor UAMC-3203.
Collapse
Affiliation(s)
- Pauline Puylaert
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
- Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
- Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Melissa Van Praet
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
- Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | | | | | - Greta Klejborowska
- Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
- Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Tom Vanden Berghe
- Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Koen Augustyns
- Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
- Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.
- Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
15
|
Xie T, Wu Q, Lu H, Hu Z, Luo Y, Chu Z, Luo F. Functional Perspective of Leeks: Active Components, Health Benefits and Action Mechanisms. Foods 2023; 12:3225. [PMID: 37685158 PMCID: PMC10486880 DOI: 10.3390/foods12173225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Leek (Allium fistulosum L.), a common and widely used food ingredient, is a traditional medicine used in Asia to treat a variety of diseases. Leeks contain a variety of bioactive substances, including sulfur compounds, dietary fiber, steroid compounds and flavonoid compounds. Many studies have shown that these active ingredients produce the following effects: promotion of blood circulation, lowering of cholesterol, relief of fatigue, anti-inflammation, anti-bacteria, regulation of cell metabolism, anti-cancer, anti-oxidation, and the lowering of fat and blood sugar levels. In this paper, the main bioactive components and biological functions of leeks were systemically reviewed, and the action mechanisms of bioactive components were discussed. As a common food, the health benefits of leeks are not well known, and there is no systematic summary of leek investigations. In light of this, it is valuable to review the recent progress and provide reference to investigators in the field, which will promote future applications and investigations of leeks.
Collapse
Affiliation(s)
- Tiantian Xie
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qi Wu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
| | - Han Lu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
| | - Yi Luo
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Zhongxing Chu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
| | - Feijun Luo
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
16
|
Puylaert P, Zurek M, Rayner KJ, De Meyer GRY, Martinet W. Regulated Necrosis in Atherosclerosis. Arterioscler Thromb Vasc Biol 2022; 42:1283-1306. [PMID: 36134566 DOI: 10.1161/atvbaha.122.318177] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During atherosclerosis, lipid-rich plaques are formed in large- and medium-sized arteries, which can reduce blood flow to tissues. This situation becomes particularly precarious when a plaque develops an unstable phenotype and becomes prone to rupture. Despite advances in identifying and treating vulnerable plaques, the mortality rate and disability caused by such lesions remains the number one health threat in developed countries. Vulnerable, unstable plaques are characterized by a large necrotic core, implying a prominent role for necrotic cell death in atherosclerosis and plaque destabilization. Necrosis can occur accidentally or can be induced by tightly regulated pathways. Over the past decades, different forms of regulated necrosis, including necroptosis, ferroptosis, pyroptosis, and secondary necrosis, have been identified, and these may play an important role during atherogenesis. In this review, we describe several forms of necrosis that may occur in atherosclerosis and how pharmacological modulation of these pathways can stabilize vulnerable plaques. Moreover, some challenges of targeting necrosis in atherosclerosis such as the presence of multiple death-inducing stimuli in plaques and extensive cross-talk between necrosis pathways are discussed. A better understanding of the role of (regulated) necrosis in atherosclerosis and the mechanisms contributing to plaque destabilization may open doors to novel pharmacological strategies and will enable clinicians to tackle the residual cardiovascular risk that remains in many atherosclerosis patients.
Collapse
Affiliation(s)
- Pauline Puylaert
- Laboratory of Physiopharmacology and Infla-Med Centre of Excellence, University of Antwerp, Belgium (P.P., M.Z., G.R.Y.D.M., W.M.)
| | - Michelle Zurek
- Laboratory of Physiopharmacology and Infla-Med Centre of Excellence, University of Antwerp, Belgium (P.P., M.Z., G.R.Y.D.M., W.M.)
| | - Katey J Rayner
- Department of Biochemistry, Microbiology and Immunology and Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, ON, Canada (K.J.R.).,University of Ottawa Heart Institute, ON, Canada (K.J.R.)
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology and Infla-Med Centre of Excellence, University of Antwerp, Belgium (P.P., M.Z., G.R.Y.D.M., W.M.)
| | - Wim Martinet
- Laboratory of Physiopharmacology and Infla-Med Centre of Excellence, University of Antwerp, Belgium (P.P., M.Z., G.R.Y.D.M., W.M.)
| |
Collapse
|
17
|
Plasma amyloid-β40 in relation to subclinical atherosclerosis and cardiovascular disease: A population-based study. Atherosclerosis 2022; 348:44-50. [DOI: 10.1016/j.atherosclerosis.2022.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022]
|
18
|
Song F, Li JZ, Wu Y, Wu WY, Wang Y, Li G. Ubiquitinated ligation protein NEDD4L participates in MiR-30a-5p attenuated atherosclerosis by regulating macrophage polarization and lipid metabolism. MOLECULAR THERAPY - NUCLEIC ACIDS 2021; 26:1303-1317. [PMID: 34853729 PMCID: PMC8609110 DOI: 10.1016/j.omtn.2021.10.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/22/2021] [Accepted: 10/28/2021] [Indexed: 11/04/2022]
Abstract
MiR-30a-5p plays an important role in various cardiovascular diseases, but its effect in atherosclerosis has not been reported. Apolipoprotein E-deficient (Apo E−/−) mice were used to investigate the role of miR-30a-5p in atherosclerosis, and the underlying mechanism was investigated in vivo and in vitro. The fluorescence in situ hybridization test revealed that miR-30a-5p was expressed in Apo E−/− mice lesions. Nevertheless, in RAW264.7 macrophages, the expression of miR-30a-5p was reduced by lipopolysaccharide (LPS) or oxidized low-density lipoprotein. MiR-30a-5p-ago-treated Apo E−/− mice significantly reduced lesion areas in the aorta and aortic root, reduced levels of lipoprotein and pro-inflammatory cytokines, and increased levels of anti-inflammatory cytokines. The ratio of M1/M2 macrophages was decreased in miR-30a-5p-ago-treated Apo E−/− mice and LPS-treated RAW264.7 macrophages by the regulation of Smad-1/2 phosphorylation. MiR-30a-5p reduced lipid uptake in oxidized low-density lipoprotein-treated macrophages by regulating the expression of PPAR-γ, ABCA1, ABCG1, LDLR, and PCSK9. Ubiquitinated ligase NEDD4L was identified as a target of miR-30a-5p. Interestingly, knockdown of NEDD4L decreased the M1/M2 ratio and oxidized low-density lipoprotein uptake in macrophages by inhibiting the ubiquitination of PPAR-γ and phosphorylation of Smad-1/2 and regulating ABCA1, ABCG1, LDLR, and PCSK9. We demonstrated a novel effect and mechanism of miR-30a-5p in atherosclerosis.
Collapse
|
19
|
Carbone MG, Pagni G, Tagliarini C, Imbimbo BP, Pomara N. Can platelet activation result in increased plasma Aβ levels and contribute to the pathogenesis of Alzheimer's disease? Ageing Res Rev 2021; 71:101420. [PMID: 34371202 DOI: 10.1016/j.arr.2021.101420] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
One of the central lesions in the brain of subjects with Alzheimer's disease (AD) is represented by aggregates of β-amyloid (Aβ), a peptide of 40-42 amino acids derived from the amyloid precursor protein (APP). The reasons why Aβ accumulates in the brain of individuals with sporadic forms of AD are unknown. Platelets are the primary source of circulating APP and, upon activation, can secrete significant amounts of Aβ into the blood which can be actively transported to the brain across the blood-brain barrier and promote amyloid deposition. Increased platelet activity can stimulate platelet adhesion to endothelial cells, trigger the recruitment of leukocytes into the vascular wall and cause perivascular inflammation, which can spread inflammation in the brain. Neuroinflammation is fueled by activated microglial cells and reactive astrocytes that release neurotoxic cytokines and chemokines. Platelet activation is also associated with the progression of carotid artery disease resulting in an increased risk of cerebral hypoperfusion which may also contribute to the AD neurodegenerative process. Platelet activation may thus be a pathophysiological mechanism of AD and for the strong link between AD and cerebrovascular diseases. Interfering with platelet activation may represent a promising potential adjunct therapeutic approach for AD.
Collapse
Affiliation(s)
- Manuel Glauco Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Viale Luigi Borri 57, 21100, Varese, Italy; Pisa-School of Experimental and Clinical Psychiatry, University of Pisa, Via Roma 57, 56100, Pisa, Italy.
| | - Giovanni Pagni
- Pisa-School of Experimental and Clinical Psychiatry, University of Pisa, Via Roma 57, 56100, Pisa, Italy.
| | - Claudia Tagliarini
- Pisa-School of Experimental and Clinical Psychiatry, University of Pisa, Via Roma 57, 56100, Pisa, Italy.
| | | | - Nunzio Pomara
- Geriatric Psychiatry Department, Nathan Kline Institute, and Departments of Psychiatry and Pathology, NYU Grossman School of Medicine, 140 Old Orangeburg Road Orangeburg, New York, 10962, United States.
| |
Collapse
|
20
|
Chebbo M, Duez C, Alessi MC, Chanez P, Gras D. Platelets: a potential role in chronic respiratory diseases? Eur Respir Rev 2021; 30:30/161/210062. [PMID: 34526315 PMCID: PMC9488457 DOI: 10.1183/16000617.0062-2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022] Open
Abstract
Platelets are small anucleate cells known for their role in haemostasis and thrombosis. In recent years, an increasing number of observations have suggested that platelets are also immune cells and key modulators of immunity. They express different receptors and molecules that allow them to respond to pathogens, and to interact with other immune cells. Platelets were linked to the pathogenesis of some inflammatory disorders including respiratory diseases such as asthma and idiopathic pulmonary fibrosis. Here, we discuss the involvement of platelets in different immune responses, and we focus on their potential role in various chronic lung diseases. In addition to their essential role in haemostasis and thrombosis, platelets are strong modulators of different immune responses, and could be involved in the physiopathology of several chronic airway diseaseshttps://bit.ly/3cB6Xnj
Collapse
Affiliation(s)
| | | | - Marie C Alessi
- Aix-Marseille Univ, INSERM, INRAE, Marseille, France.,APHM, CHU de la Timone, Laboratoire d'hématologie, Marseille, France
| | - Pascal Chanez
- Aix-Marseille Univ, INSERM, INRAE, Marseille, France.,APHM, Hôpital NORD, Clinique des Bronches, Allergie et Sommeil, Marseille, France
| | - Delphine Gras
- Aix-Marseille Univ, INSERM, INRAE, Marseille, France
| |
Collapse
|
21
|
Wang W, Wu J, Liu P, Tang X, Pang H, Xie T, Xu F, Shao J, Chen Y, Liu B, Zheng Y. Urinary Proteomics Identifying Novel Biomarkers for the Diagnosis and Phenotyping of Carotid Artery Stenosis. Front Mol Biosci 2021; 8:714706. [PMID: 34447787 PMCID: PMC8383446 DOI: 10.3389/fmolb.2021.714706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/26/2021] [Indexed: 01/12/2023] Open
Abstract
Background: Carotid artery stenosis (CAS) is caused by the formation of atherosclerotic plaques inside the arterial wall and accounts for 20–30% of all strokes. The development of an early, noninvasive diagnostic method and the identification of high-risk patients for ischemic stroke is essential to the management of CAS in clinical practice. Methods: We used the data-independent acquisition (DIA) technique to conduct a urinary proteomic study in patients with CAS and healthy controls. We identified the potential diagnosis and risk stratification biomarkers of CAS. And Ingenuity pathway analysis was used for functional annotation of differentially expressed proteins (DEPs). Furthermore, receiver operating characteristic (ROC) analysis was performed to evaluate the diagnostic values of DEPs. Results: A total of 194 DEPs were identified between CAS patients and healthy controls by DIA quantification. The bioinformatics analysis showed that these DEPs were correlated with the pathogenesis of CAS. We further identified 32 DEPs in symptomatic CAS compared to asymptomatic CAS, and biological function analysis revealed that these proteins are mainly related to immune/inflammatory pathways. Finally, a biomarker panel of six proteins (ACP2, PLD3, HLA-C, GGH, CALML3, and IL2RB) exhibited potential diagnostic value in CAS and good discriminative power for differentiating symptomatic and asymptomatic CAS with high sensitivity and specificity. Conclusions: Our study identified novel potential urinary biomarkers for noninvasive early screening and risk stratification of CAS.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Liu
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyue Tang
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyu Pang
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Xie
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Xu
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Shao
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuexin Chen
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bao Liu
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Mussbacher M, Pirabe A, Brunnthaler L, Schrottmaier WC, Assinger A. Horizontal MicroRNA Transfer by Platelets - Evidence and Implications. Front Physiol 2021; 12:678362. [PMID: 34149456 PMCID: PMC8209332 DOI: 10.3389/fphys.2021.678362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/05/2021] [Indexed: 01/03/2023] Open
Abstract
For decades, platelets have been known for their central role in hemostasis and their ability to release bioactive molecules, allowing inter-platelet communication and crosstalk with the immune system and vascular cells. However, with the detection of microRNAs in platelets and platelet-derived microvesicles (MVs), a new level of inter-cellular regulation was revealed. By shedding MVs from their plasma membrane, platelets are able to release functional microRNA complexes that are protected from plasma RNases. Upon contact with macrophages, endothelial cells and smooth muscle cells platelet microRNAs are rapidly internalized and fine-tune the functionality of the recipient cell by post-transcriptional reprogramming. Moreover, microRNA transfer by platelet MVs allows infiltration into tissues with limited cellular access such as solid tumors, thereby they not only modulate tumor progression but also provide a potential route for drug delivery. Understanding the precise mechanisms of horizontal transfer of platelet microRNAs under physiological and pathological conditions allows to design side-specific therapeutic (micro)RNA delivery systems. This review summarizes the current knowledge and the scientific evidence of horizontal microRNA transfer by platelets and platelet-derived MVs into vascular and non-vascular cells and its physiological consequences.
Collapse
Affiliation(s)
- Marion Mussbacher
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
| | - Anita Pirabe
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Laura Brunnthaler
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Alice Assinger
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Diteepeng T, Del Monte F, Luciani M. The long and winding road to target protein misfolding in cardiovascular diseases. Eur J Clin Invest 2021; 51:e13504. [PMID: 33527342 DOI: 10.1111/eci.13504] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND In the last decades, cardiovascular diseases (CVD) have remained the first leading cause of mortality and morbidity in the world. Although several therapeutic approaches have been introduced in the past, the development of novel treatments remains an important research goal, which is hampered by the lack of understanding of key mechanisms and targets. Emerging evidences in recent years indicate the involvement of misfolded proteins aggregation and the derailment of protein quality control in the pathogenesis of cardiovascular diseases. Several potential interventions targeting protein quality control have been translated from the bench to the bedside to effectively employ the misfolded proteins as promising therapeutic targets for cardiac diseases, but with trivial results. DESIGN In this review, we describe the recent progresses in preclinical and clinical studies of protein misfolding and compromised protein quality control by selecting and reporting studies focusing on cardiovascular diseases including cardiomyopathies, cardiac amyloidosis, atherosclerosis, atrial fibrillation and thrombosis. RESULTS In preclinical models, modulators of several molecular targets (eg heat shock proteins, unfolded protein response, ubiquitin protein system, autophagy and histone deacetylases) have been tested in various conditions with promising results although lacking an adequate transition towards clinical setting. CONCLUSIONS At present, no therapeutic strategies have been reported to attenuate proteotoxicity in patients with CVD due to a lack of specific biomarkers for pinpointing upstream events in protein folding defects at a subclinical stage of the diseases requiring an intensive collaboration between basic scientists and clinicians.
Collapse
Affiliation(s)
- Thamonwan Diteepeng
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Federica Del Monte
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, USA.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna Alma Mater, Bologna, Italy
| | - Marco Luciani
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Internal Medicine, Cantonal Hospital of Baden, Baden, Switzerland
| |
Collapse
|
24
|
Fu G, Deng M, Neal MD, Billiar TR, Scott MJ. Platelet-Monocyte Aggregates: Understanding Mechanisms and Functions in Sepsis. Shock 2021; 55:156-166. [PMID: 32694394 PMCID: PMC8008955 DOI: 10.1097/shk.0000000000001619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTRACT Platelets have been shown to play an important immunomodulatory role in the pathogenesis of various diseases through their interactions with other immune and nonimmune cells. Sepsis is a major cause of death in the United States, and many of the mechanisms driving sepsis pathology are still unresolved. Monocytes have recently received increasing attention in sepsis pathogenesis, and multiple studies have associated increased levels of platelet-monocyte aggregates observed early in sepsis with clinical outcomes in sepsis patients. These findings suggest platelet-monocyte aggregates may be an important prognostic indicator. However, the mechanisms leading to platelet interaction and aggregation with monocytes, and the effects of aggregation during sepsis are still poorly defined. There are few studies that have really investigated functions of platelets and monocytes together, despite a large body of research showing separate functions of platelets and monocytes in inflammation and immune responses during sepsis. The goal of this review is to provide insights into what we do know about mechanisms and biological meanings of platelet-monocyte interactions, as well as some of the technical challenges and limitations involved in studying this important potential mechanism in sepsis pathogenesis. Improving our understanding of platelet and monocyte biology in sepsis may result in identification of novel targets that can be used to positively affect outcomes in sepsis.
Collapse
Affiliation(s)
- Guang Fu
- Department of General Surgery, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China (visiting scholar in Pittsburgh 2018-09/2020-09)
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Meihong Deng
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew D. Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Trauma Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Trauma Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Melanie J. Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Trauma Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
25
|
Stakos DA, Stamatelopoulos K, Bampatsias D, Sachse M, Zormpas E, Vlachogiannis NI, Tual-Chalot S, Stellos K. The Alzheimer's Disease Amyloid-Beta Hypothesis in Cardiovascular Aging and Disease: JACC Focus Seminar. J Am Coll Cardiol 2020; 75:952-967. [PMID: 32130931 PMCID: PMC7042886 DOI: 10.1016/j.jacc.2019.12.033] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Aging-related cellular and molecular processes including low-grade inflammation are major players in the pathogenesis of cardiovascular disease (CVD) and Alzheimer's disease (AD). Epidemiological studies report an independent interaction between the development of dementia and the incidence of CVD in several populations, suggesting the presence of overlapping molecular mechanisms. Accumulating experimental and clinical evidence suggests that amyloid-beta (Aβ) peptides may function as a link among aging, CVD, and AD. Aging-related vascular and cardiac deposition of Αβ induces tissue inflammation and organ dysfunction, both important components of the Alzheimer's disease amyloid hypothesis. In this review, the authors describe the determinants of Aβ metabolism, summarize the effects of Aβ on atherothrombosis and cardiac dysfunction, discuss the clinical value of Αβ1-40 in CVD prognosis and patient risk stratification, and present the therapeutic interventions that may alter Aβ metabolism in humans.
Collapse
Affiliation(s)
- Dimitrios A Stakos
- Cardiology Department, Democritus University of Thrace, Alexandroupolis, Greece
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Dimitrios Bampatsias
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Marco Sachse
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Medical School, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Eleftherios Zormpas
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nikolaos I Vlachogiannis
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simon Tual-Chalot
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Konstantinos Stellos
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Cardiology, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
26
|
Beyond Haemostasis and Thrombosis: Platelets in Depression and Its Co-Morbidities. Int J Mol Sci 2020; 21:ijms21228817. [PMID: 33233416 PMCID: PMC7700239 DOI: 10.3390/ijms21228817] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Alongside their function in primary haemostasis and thrombo-inflammation, platelets are increasingly considered a bridge between mental, immunological and coagulation-related disorders. This review focuses on the link between platelets and the pathophysiology of major depressive disorder (MDD) and its most frequent comorbidities. Platelet- and neuron-shared proteins involved in MDD are functionally described. Platelet-related studies performed in the context of MDD, cardiovascular disease, and major neurodegenerative, neuropsychiatric and neurodevelopmental disorders are transversally presented from an epidemiological, genetic and functional point of view. To provide a complete scenario, we report the analysis of original data on the epidemiological link between platelets and depression symptoms suggesting moderating and interactive effects of sex on this association. Epidemiological and genetic studies discussed suggest that blood platelets might also be relevant biomarkers of MDD prediction and occurrence in the context of MDD comorbidities. Finally, this review has the ambition to formulate some directives and perspectives for future research on this topic.
Collapse
|
27
|
Lambrinoudaki I, Delialis D, Georgiopoulos G, Tual-Chalot S, Vlachogiannis NI, Patras R, Aivalioti E, Armeni E, Augoulea A, Tsoltos N, Soureti A, Stellos K, Stamatelopoulos K. Circulating Amyloid Beta 1-40 Is Associated with Increased Rate of Progression of Atherosclerosis in Menopause: A Prospective Cohort Study. Thromb Haemost 2020; 121:650-658. [PMID: 33202443 DOI: 10.1055/s-0040-1721144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Accumulating evidence suggests that circulating amyloidβ 1-40 (Αβ1-40), a proatherogenic aging peptide, may serve as a novel biomarker in cardiovascular disease (CVD). We aimed to explore the role of plasma Αβ1-40 and its patterns of change over time in atherosclerosis progression in postmenopausal women, a population with substantial unrecognized CVD risk beyond traditional risk factors (TRFs). METHODS In this prospective study, Αβ1-40 was measured in plasma by enzyme-linked immunosorbent assay and atherosclerosis was assessed using carotid high-resolution ultrasonography at baseline and after a median follow-up of 28.2 months in 152 postmenopausal women without history or symptoms of CVD. RESULTS At baseline, high Αβ1-40 was independently associated with higher carotid bulb intima-media thickness (cbIMT) and the sum of maximal wall thickness in all carotid sites (sumWT) (p < 0.05). Αβ1-40 levels increased over time and were associated with decreasing renal function (p < 0.05 for both). Women with a pattern of increasing or persistently high Αβ1-40 levels presented accelerated progression of cbIMT and maximum carotid wall thickness and sumWT (p < 0.05 for all) after adjustment for baseline Αβ1-40 levels, TRFs, and renal function. CONCLUSION In postmenopausal women, a pattern of increasing or persistently high Αβ1-40 was associated with the rate of progression of subclinical atherosclerosis irrespective of its baseline levels. These findings provide novel insights into a link between Αβ1-40 and atherosclerosis progression in menopause and warrant further research to clarify the clinical value of monitoring its circulating levels as an atherosclerosis biomarker in women without clinically overt CVD.
Collapse
Affiliation(s)
- Irene Lambrinoudaki
- Menopause Clinic, 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Delialis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.,School of Biomedical Engineering & Imaging Sciences, Rayne Institute, St. Thomas' Hospital, London, United Kingdom
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nikolaos I Vlachogiannis
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Raphael Patras
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Evmorfia Aivalioti
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Eleni Armeni
- Menopause Clinic, 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Areti Augoulea
- Menopause Clinic, 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Tsoltos
- Menopause Clinic, 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Soureti
- Menopause Clinic, 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Cardiology, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Kimon Stamatelopoulos
- Menopause Clinic, 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
28
|
Inyushin M, Zayas-Santiago A, Rojas L, Kucheryavykh L. On the Role of Platelet-Generated Amyloid Beta Peptides in Certain Amyloidosis Health Complications. Front Immunol 2020; 11:571083. [PMID: 33123145 PMCID: PMC7567018 DOI: 10.3389/fimmu.2020.571083] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
As do many other immunity-related blood cells, platelets release antimicrobial peptides that kill bacteria, fungi, and even certain viruses. Here we review the literature suggesting that there is a similarity between the antimicrobials released by other blood cells and the amyloid-related Aβ peptide released by platelets. Analyzing the literature, we also propose that platelet-generated Aβ amyloidosis may be more common than currently recognized. This systemic Aβ from a platelet source may participate in various forms of amyloidosis in pathologies ranging from brain cancer, glaucoma, skin Aβ accumulation, and preeclampsia to Alzheimer’s disease and late-stage Parkinson’s disease. We also discuss the advantages and disadvantages of specific animal models for studying platelet-related Aβ. This field is undergoing rapid change, as it evaluates competing ideas in the light of new experimental observations. We summarized both in order to clarify the role of platelet-generated Aβ peptides in amyloidosis-related health disorders, which may be helpful to researchers interested in this growing area of investigation.
Collapse
Affiliation(s)
- Mikhail Inyushin
- Department of Physiology, Universidad Central del Caribe, Bayamon, Puerto Rico
| | - Astrid Zayas-Santiago
- Department of Pathology & Laboratory Medicine, Universidad Central del Caribe, Bayamon, Puerto Rico
| | - Legier Rojas
- Department of Physiology, Universidad Central del Caribe, Bayamon, Puerto Rico
| | - Lilia Kucheryavykh
- Department of Biochemistry, Universidad Central del Caribe, Bayamon, Puerto Rico
| |
Collapse
|
29
|
Integrative Multi-Omics Analysis in Calcific Aortic Valve Disease Reveals a Link to the Formation of Amyloid-Like Deposits. Cells 2020; 9:cells9102164. [PMID: 32987857 PMCID: PMC7600313 DOI: 10.3390/cells9102164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Calcific aortic valve disease (CAVD) is the most prevalent valvular heart disease in the developed world, yet no pharmacological therapy exists. Here, we hypothesize that the integration of multiple omic data represents an approach towards unveiling novel molecular networks in CAVD. Databases were searched for CAVD omic studies. Differentially expressed molecules from calcified and control samples were retrieved, identifying 32 micro RNAs (miRNA), 596 mRNAs and 80 proteins. Over-representation pathway analysis revealed platelet degranulation and complement/coagulation cascade as dysregulated pathways. Multi-omics integration of overlapping proteome/transcriptome molecules, with the miRNAs, identified a CAVD protein–protein interaction network containing seven seed genes (apolipoprotein A1 (APOA1), hemoglobin subunit β (HBB), transferrin (TF), α-2-macroglobulin (A2M), transforming growth factor β-induced protein (TGFBI), serpin family A member 1 (SERPINA1), lipopolysaccharide binding protein (LBP), inter-α-trypsin inhibitor heavy chain 3 (ITIH3) and immunoglobulin κ constant (IGKC)), four input miRNAs (miR-335-5p, miR-3663-3p, miR-21-5p, miR-93-5p) and two connector genes (amyloid beta precursor protein (APP) and transthyretin (TTR)). In a metabolite–gene–disease network, Alzheimer’s disease exhibited the highest degree of betweenness. To further strengthen the associations based on the multi-omics approach, we validated the presence of APP and TTR in calcified valves from CAVD patients by immunohistochemistry. Our study suggests a novel molecular CAVD network potentially linked to the formation of amyloid-like structures. Further investigations on the associated mechanisms and therapeutic potential of targeting amyloid-like deposits in CAVD may offer significant health benefits.
Collapse
|
30
|
Akerman SC, Hossain S, Shobo A, Zhong Y, Jourdain R, Hancock MA, George K, Breton L, Multhaup G. Neurodegenerative Disease-Related Proteins within the Epidermal Layer of the Human Skin. J Alzheimers Dis 2020; 69:463-478. [PMID: 31006686 DOI: 10.3233/jad-181191] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is increasing evidence suggesting that amyloidogenic proteins might form deposits in non-neuronal tissues in neurodegenerative disorders such as Alzheimer's or Parkinson's diseases. However, the detection of these aggregation-prone proteins within the human skin has been controversial. Using immunohistochemistry (IHC) and mass spectrometry tissue imaging (MALDI-MSI), fresh frozen human skin samples were analyzed for the expression and localization of neurodegenerative disease-related proteins. While α-synuclein was detected throughout the epidermal layer of the auricular samples (IHC and MALDI-MSI), tau and Aβ34 were also localized to the epidermal layer (IHC). In addition to Aβ peptides of varying length (e.g., Aβ40, Aβ42, Aβ34), we also were able to detect inflammatory markers within the same sample sets (e.g., thymosin β-4, psoriasin). While previous literature has described α-synuclein in the nucleus of neurons (e.g., Parkinson's disease), our current detection of α-synuclein in the nucleus of skin cells is novel. Imaging of α-synuclein or tau revealed that their presence was similar between the young and old samples in our present study. Future work may reveal differences relevant for diagnosis between these proteins at the molecular level (e.g., age-dependent post-translational modifications). Our novel detection of Aβ34 in human skin suggests that, just like in the brain, it may represent a stable intermediate of the Aβ40 and Aβ42 degradation pathway.
Collapse
Affiliation(s)
- S Can Akerman
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | - Shireen Hossain
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | - Adeola Shobo
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | - Yifei Zhong
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | | | - Mark A Hancock
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | - Kelly George
- L'Oréal Research and Innovation, Clark, New Jersey, USA
| | - Lionel Breton
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France.,L'Oréal Research and Innovation, Clark, New Jersey, USA
| | - Gerhard Multhaup
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
31
|
Ristori E, Donnini S, Ziche M. New Insights Into Blood-Brain Barrier Maintenance: The Homeostatic Role of β-Amyloid Precursor Protein in Cerebral Vasculature. Front Physiol 2020; 11:1056. [PMID: 32973564 PMCID: PMC7481479 DOI: 10.3389/fphys.2020.01056] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Cerebrovascular homeostasis is maintained by the blood-brain barrier (BBB), a highly selective structure that separates the peripheral blood circulation from the brain and protects the central nervous system (CNS). Dysregulation of BBB function is the precursor of several neurodegenerative diseases including Alzheimer’s disease (AD) and cerebral amyloid angiopathy (CAA), both related to β-amyloid (Aβ) accumulation and deposition. The origin of BBB dysfunction before and/or during CAA and AD onset is not known. Several studies raise the possibility that vascular dysfunction could be an early step in these diseases and could even precede significant Aβ deposition. Though accumulation of neuron-derived Aβ peptides is considered the primary influence driving AD and CAA pathogenesis, recent studies highlighted the importance of the physiological role of the β-amyloid precursor protein (APP) in endothelial cell homeostasis, suggesting a potential role of this protein in maintaining vascular stability. In this review, we will discuss the physiological function of APP and its cleavage products in the vascular endothelium. We further suggest how loss of APP homeostatic regulation in the brain vasculature could lead toward pathological outcomes in neurodegenerative disorders.
Collapse
Affiliation(s)
- Emma Ristori
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Marina Ziche
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
32
|
Sikora M, Baranowska-Bosiacka I, Goschorska M, Chlubek D. In vitro effect of three-dimensional (3D) titanium mini-plate systems used for surgical treatment of condylar fractures on interleukin 1 (IL-1) and interleukin 6 (IL-6) concentration in THP-1 macrophages. Tissue Cell 2020; 67:101404. [PMID: 32835937 DOI: 10.1016/j.tice.2020.101404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 01/03/2023]
Abstract
About 20 %-35 % of mandibular fractures occur in the condylar process, a complication frequently associated with craniofacial traumas. Compared to other craniofacial fractures, some controversy remains around the effectiveness of the various treatment methods. It has been suggested that condylar osteosynthesis using mini-plates - a technique widely used by maxillofacial surgeons - may activate a pro-inflammatory response which is mediated by interleukins, later involved in bone remodelling and tissue regeneration. This study aimed at examining the influence of three-dimensional (3D) titanium mini-plate systems and the dedicated screws used in the surgical treatment of condylar fractions on the concentrations of interleukin 1(IL-1) and interleukin 6 (IL-6) in macrophages obtained from THP-1 monocytes. The cells were cultured for 24 h and 48 h with the 3D titanium condylar plates and dedicated screws (Synthes, Martin, Medartis manufacturer). The concentrations of IL-1 and IL-6 were measured using the ELISA method. Incubation of macrophages with plates did not cause a significant increase in IL-1 (for: Synthes 0.89-0.86 pg/mg protein; Martin 1.10-0.80 pg/mg protein; Medartis 1.20-0.84 pg/mg protein) and IL-6 (for Synthes 16.00-14.00 pg/mg protein, Martin 13.0-10.0 pg/mg protein; Medartis 9.0-12.0 pg/mg protein) expression for any of the plates used, compared to THP-1 macrophages incubated for 48 h under control conditions. Neither three-dimensional titanium mini-plates nor dedicated screws caused any changes in IL-1 and IL-6 expression in THP-1 macrophages, which is an important observation for clinicians treating condylar fractures. It confirms that titanium plates can be a safe/neutral material for humans, especially considering their significant influence on the osteoclast functions and bone remodelling processes after implantation.
Collapse
Affiliation(s)
- Maciej Sikora
- Department of Maxillofacial Surgery, Hospital of the Ministry of Interior, Kielce, Wojska Polskiego 51, 25-375, Kielce, Poland; Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111, Szczecin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111, Szczecin, Poland.
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111, Szczecin, Poland.
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111, Szczecin, Poland.
| |
Collapse
|
33
|
Gómez-Martin JM, Aracil E, Insenser M, de la Peña G, Lasunción MA, Galindo J, Escobar-Morreale HF, Balsa JA, Botella-Carretero JI. Changes in Soluble TWEAK Concentrations, but Not Those in Amyloid-β(1-40), Are Associated with a Decrease in Carotid Intima-Media Thickness after Bariatric Surgery in Obese Women. Obes Facts 2020; 13:321-330. [PMID: 32388504 PMCID: PMC7445568 DOI: 10.1159/000507087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/09/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIM Soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) and amyloid-β(1-40) (Aβ40) emerged as markers of cardiovascular risk because of their actions in the endothelium and their role in atherosclerotic progression. The aim of this study was to analyze the association of these two factors with the decrease in carotid intima-media thickness (cIMT) after bariatric surgery in obese women. METHODS We studied 60 severely obese women, of whom 20 were submitted to laparoscopic Roux-en-Y gastric bypass (RYGB), 20 to sleeve gastrectomy (SG), and 20 to lifestyle modification therapy. Circulating sTWEAK, Aβ40, high-sensitivity C-reactive protein, plasminogen activator inhibitor type 1, insulin resistance (HOMA-IR), and cIMT were measured at baseline and after 1 year of follow-up. RESULTS sTWEAK increased similarly after both surgical procedures, whereas the increase observed after lifestyle intervention did not reach statistical significance. Aβ40 showed no differences between groups of women, nor did it change during follow-up. The decrease in cIMT at 12 months correlated with the decrease in body mass index (BMI) (r = 0.45; p < 0.001) and fasting insulin (r = 0.30; p = 0.038), and also with the increase in sTWEAK (r = -0.43; p = 0.002). Multivariate linear regression showed that only the changes in BMI (β = 0.389; p = 0.005) and sTWEAK (β = -0.358; p = 0.009) were associated with the decrease in cIMT (R2 = 0.313; F = 9.348; p < 0.001). CONCLUSIONS One year after bariatric surgery, RYGB and SG induced a similar increase in circulating sTWEAK that occurred in parallel to the decrease observed in cIMT.
Collapse
Affiliation(s)
- Jesús M Gómez-Martin
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal and Universidad de Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Enrique Aracil
- Department of Vascular Surgery, Hospital Universitario Ramón y Cajal and Universidad de Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María Insenser
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal and Universidad de Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Gema de la Peña
- Department of Biochemistry Research, Hospital Universitario Ramón y Cajal and Universidad de Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Miguel A Lasunción
- Department of Biochemistry Research, Hospital Universitario Ramón y Cajal and Universidad de Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Julio Galindo
- Department of General and Gastrointestinal Surgery, Hospital Universitario Ramón y Cajal and Universidad de Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Héctor F Escobar-Morreale
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal and Universidad de Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - José A Balsa
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal and Universidad de Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - José I Botella-Carretero
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal and Universidad de Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain,
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain,
| |
Collapse
|
34
|
Lordan R, Tsoupras A, Zabetakis I. Platelet activation and prothrombotic mediators at the nexus of inflammation and atherosclerosis: Potential role of antiplatelet agents. Blood Rev 2020; 45:100694. [PMID: 32340775 DOI: 10.1016/j.blre.2020.100694] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 03/22/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022]
Abstract
Platelets are central to inflammation-related manifestations of cardiovascular diseases (CVD) such as atherosclerosis. Platelet-activating factor (PAF), thrombin, thromboxane A2 (TxA2), and adenosine diphosphate (ADP) are some of the key agonists of platelet activation that are at the intersection between a plethora of inflammatory pathways that modulate pro-inflammatory and coagulation processes. The aim of this article is to review the role of platelets and the relationship between their structure, function, and the interactions of their constituents in systemic inflammation and atherosclerosis. Antiplatelet therapies are discussed with a view to primary prevention of CVD by the clinical reduction of platelet reactivity and inflammation. Current antiplatelet therapies are effective in reducing cardiovascular risk but increase bleeding risk. Novel therapeutic antiplatelet approaches beyond current pharmacological modalities that do not increase the risk of bleeding require further investigation. There is potential for specifically designed nutraceuticals that may become safer alternatives to pharmacological antiplatelet agents for the primary prevention of CVD but there is serious concern over their efficacy and regulation, which requires considerably more research.
Collapse
Affiliation(s)
- Ronan Lordan
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA.
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| |
Collapse
|
35
|
Hortle E, Oehlers SH. Host-directed therapies targeting the tuberculosis granuloma stroma. Pathog Dis 2020; 78:5800987. [DOI: 10.1093/femspd/ftaa015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT
Mycobacteria have co-evolved with their hosts resulting in pathogens adept at intracellular survival. Pathogenic mycobacteria actively manipulate infected macrophages to drive granuloma formation while subverting host cell processes to create a permissive niche. Granuloma residency confers phenotypic antimicrobial resistance by physically excluding or neutralising antibiotics. Host-directed therapies (HDTs) combat infection by restoring protective immunity and reducing immunopathology independent of pathogen antimicrobial resistance status. This review covers innovative research that has discovered ‘secondary’ symptoms of infection in the granuloma stroma are actually primary drivers of infection and that relieving these stromal pathologies with HDTs benefits the host. Advances in our understanding of the relationship between tuberculosis and the host vasculature, haemostatic system and extracellular matrix reorganisation are discussed. Preclinical and clinical use of HDTs against these stromal targets are summarised.
Collapse
Affiliation(s)
- Elinor Hortle
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- The University of Sydney, Faculty of Medicine and Health & Marie Bashir Institute, Camperdown, NSW 2050, Australia
| | - Stefan H Oehlers
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- The University of Sydney, Faculty of Medicine and Health & Marie Bashir Institute, Camperdown, NSW 2050, Australia
| |
Collapse
|
36
|
Inyushin M, Zayas-Santiago A, Rojas L, Kucheryavykh Y, Kucheryavykh L. Platelet-generated amyloid beta peptides in Alzheimer's disease and glaucoma. Histol Histopathol 2019; 34:843-856. [PMID: 30945258 PMCID: PMC6667289 DOI: 10.14670/hh-18-111] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyloid beta (Aβ) peptides have been implicated in both Alzheimer's disease (AD) and glaucoma and have been shown to be the key etiological factor in these dangerous health complications. On the other hand, it is well known that Aβ peptide can be generated from its precursor protein and massively released from the blood to nearby tissue upon the activation of platelets due to their involvement in innate immunity and inflammation processes. Here we review evidence about the development of AD and glaucoma neuronal damage showing their dependence on platelet count and activation. The correlation between the effect on platelet count and the effectiveness of anti-AD and anti-glaucoma therapies suggest that platelets may be an important player in these diseases.
Collapse
Affiliation(s)
- Mikhail Inyushin
- School of Medicine, Universidad Central del Caribe (UCC), PR, USA.
| | | | - Legier Rojas
- School of Medicine, Universidad Central del Caribe (UCC), PR, USA
| | | | | |
Collapse
|
37
|
Hellberg S, Silvola JMU, Liljenbäck H, Kiugel M, Eskola O, Hakovirta H, Hörkkö S, Morisson-Iveson V, Hirani E, Saukko P, Ylä-Herttuala S, Knuuti J, Saraste A, Roivainen A. Amyloid-Targeting PET Tracer [ 18F]Flutemetamol Accumulates in Atherosclerotic Plaques. Molecules 2019; 24:molecules24061072. [PMID: 30893771 PMCID: PMC6471324 DOI: 10.3390/molecules24061072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/09/2019] [Accepted: 03/14/2019] [Indexed: 12/30/2022] Open
Abstract
Atherosclerosis is characterized by the accumulation of oxidized lipids in the artery wall, which triggers an inflammatory response. Oxidized low-density lipoprotein (ox-LDL) presents amyloid-like structural properties, and different amyloid species have recently been recognized in atherosclerotic plaques. Therefore, we studied the uptake of the amyloid imaging agent [18F]Flutemetamol in atherosclerotic plaques. The binding of [18F]Flutemetamol to human carotid artery plaque was studied in vitro. In vivo uptake of the tracer was studied in hypercholesterolemic IGF-II/LDLR−/−ApoB100/100 mice and C57BL/6N controls. Tracer biodistribution was studied in vivo with PET/CT, and ex vivo by gamma counter and digital ex vivo autoradiography. The presence of amyloid, ox-LDL, and macrophages in the plaques was examined by immunohistochemistry. [18F]Flutemetamol showed specific accumulation in human carotid plaque, especially in areas positive for amyloid beta. The aortas of IGF-II/LDLR−/−ApoB100/100 mice showed large thioflavin-S-positive atherosclerotic plaques containing ox-LDL and macrophages. Autoradiography revealed 1.7-fold higher uptake in the plaques than in a lesion-free vessel wall, but no difference in aortic tissue uptake between mouse strains were observed in the in vivo PET/CT. In conclusion, [18F]Flutemetamol binds to amyloid-positive areas in human atherosclerotic plaques. Further studies are warranted to clarify the uptake mechanisms, and the potential of the tracer for in vivo imaging of atherosclerosis in patients.
Collapse
Affiliation(s)
- Sanna Hellberg
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
| | | | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
- Turku Center for Disease Modeling, University of Turku, FI-20520 Turku, Finland.
| | - Max Kiugel
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
| | - Olli Eskola
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
| | - Harri Hakovirta
- Department of Vascular Surgery, Turku University Hospital, FI-20520 Turku, Finland.
| | - Sohvi Hörkkö
- Medical Research Center and Nordlab Oulu, University Hospital and Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, FI-90014 Oulu, Finland.
| | | | - Ella Hirani
- GE Healthcare Ltd., Chalfont St Giles HP8 4SP, UK.
| | - Pekka Saukko
- Department of Pathology and Forensic Medicine, University of Turku, FI-20520 Turku, Finland.
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70210 Kuopio, Finland.
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
| | - Antti Saraste
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
- Turku PET Centre, Turku University Hospital, FI-20520 Turku, Finland.
- Heart Center, Turku University Hospital, FI-20520 Turku, Finland.
- Department of Clinical Medicine, University of Turku, FI-20520 Turku, Finland.
| | - Anne Roivainen
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
- Turku Center for Disease Modeling, University of Turku, FI-20520 Turku, Finland.
| |
Collapse
|
38
|
Stamatelopoulos K, Mueller-Hennessen M, Georgiopoulos G, Sachse M, Boeddinghaus J, Sopova K, Gatsiou A, Amrhein C, Biener M, Vafaie M, Athanasouli F, Stakos D, Pateras K, Twerenbold R, Badertscher P, Nestelberger T, Dimmeler S, Katus HA, Zeiher AM, Mueller C, Giannitsis E, Stellos K. Amyloid-β (1-40) and Mortality in Patients With Non-ST-Segment Elevation Acute Coronary Syndrome: A Cohort Study. Ann Intern Med 2018; 168:855-865. [PMID: 29799975 DOI: 10.7326/m17-1540] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Amyloid-β (1-40) (Aβ40) is implicated in mechanisms related to plaque destabilization and correlates with adverse outcomes in stable coronary artery disease. OBJECTIVE To determine the prognostic and reclassification value of baseline circulating levels of Aβ40 after adjustment for the Global Registry of Acute Coronary Events (GRACE) score, which is widely recommended for risk stratification in non-ST-segment elevation acute coronary syndrome (NSTE-ACS). DESIGN Retrospective cohort study using data from 2 independent prospective cohorts, the Heidelberg study (n = 1145) and the validation multicenter international APACE (Advantageous Predictors of Acute Coronary Syndrome Evaluation) study (n = 734). SETTING Academic hospitals in 7 European countries. PARTICIPANTS Patients with adjudicated NSTE-ACS followed for a median of 21.9 and 24.9 months in the Heidelberg and APACE studies, respectively. MEASUREMENTS All-cause mortality was the primary end point. RESULTS Amyloid-β (1-40) was associated with mortality after multivariate adjustment for age, sex, diabetes mellitus, high-sensitivity cardiac troponin T and C-reactive protein, revascularization, and ACS type (Heidelberg cohort hazard ratio [HR] for 80th vs. 20th percentiles, 1.66 [95% CI, 1.06 to 2.61; P = 0.026]; APACE cohort HR, 1.50 [CI, 1.15 to 1.96; P = 0.003]). It was also associated with mortality after adjustment for the GRACE score (Heidelberg cohort HR for 80th vs. 20th percentiles, 1.11 [CI, 1.04 to 1.18; P = 0.001]; APACE cohort HR, 1.39 [CI, 1.02 to 1.88; P = 0.036]). Amyloid-β (1-40) correctly reclassified risk for death over the GRACE score (net reclassification index, 33.4% and 47.1% for the Heidelberg and APACE cohorts, respectively) (P < 0.05). LIMITATION At low concentrations of Aβ40, dose-response associations with mortality differed between cohorts, possibly because of varying blood preparations used to measure Aβ40. CONCLUSION Circulating Aβ40 is a predictor of mortality and improves risk stratification of patients with NSTE-ACS over the GRACE score recommended by clinical guidelines. The clinical application of Aβ40 as a novel biomarker in NSTE-ACS should be further explored and validated. PRIMARY FUNDING SOURCE German Cardiac Society.
Collapse
Affiliation(s)
- Kimon Stamatelopoulos
- Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece (K.S., G.G., F.A.)
| | - Matthias Mueller-Hennessen
- University Hospital Heidelberg and German Center for Cardiovascular Research, Heidelberg, Germany (M.M., M.B., M.V., H.A.K., E.G.)
| | - Georgios Georgiopoulos
- Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece (K.S., G.G., F.A.)
| | - Marco Sachse
- Institute of Cardiovascular Regeneration at Goethe University Frankfurt and German Center for Cardiovascular Research, Frankfurt, Germany (M.S., A.G., S.D.)
| | - Jasper Boeddinghaus
- Cardiovascular Research Institute Basel and University Hospital of Basel, Basel, Switzerland (J.B., P.B., T.N., C.M.)
| | - Kateryna Sopova
- German Center for Cardiovascular Research and Goethe University Frankfurt, Frankfurt, Germany (K.S., A.M.Z.)
| | - Aikaterini Gatsiou
- Institute of Cardiovascular Regeneration at Goethe University Frankfurt and German Center for Cardiovascular Research, Frankfurt, Germany (M.S., A.G., S.D.)
| | - Carolin Amrhein
- Institute of Cardiovascular Regeneration at Goethe University Frankfurt, Frankfurt, Germany (C.A.)
| | - Moritz Biener
- University Hospital Heidelberg and German Center for Cardiovascular Research, Heidelberg, Germany (M.M., M.B., M.V., H.A.K., E.G.)
| | - Mehrshad Vafaie
- University Hospital Heidelberg and German Center for Cardiovascular Research, Heidelberg, Germany (M.M., M.B., M.V., H.A.K., E.G.)
| | - Fani Athanasouli
- Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece (K.S., G.G., F.A.)
| | | | - Konstantinos Pateras
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands (K.P.)
| | - Raphael Twerenbold
- Cardiovascular Research Institute Basel and University Hospital of Basel, Basel, Switzerland, and University Heart Center Hamburg, Hamburg, Germany (R.T.)
| | - Patrick Badertscher
- Cardiovascular Research Institute Basel and University Hospital of Basel, Basel, Switzerland (J.B., P.B., T.N., C.M.)
| | - Thomas Nestelberger
- Cardiovascular Research Institute Basel and University Hospital of Basel, Basel, Switzerland (J.B., P.B., T.N., C.M.)
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration at Goethe University Frankfurt and German Center for Cardiovascular Research, Frankfurt, Germany (M.S., A.G., S.D.)
| | - Hugo A Katus
- University Hospital Heidelberg and German Center for Cardiovascular Research, Heidelberg, Germany (M.M., M.B., M.V., H.A.K., E.G.)
| | - Andreas M Zeiher
- German Center for Cardiovascular Research and Goethe University Frankfurt, Frankfurt, Germany (K.S., A.M.Z.)
| | - Christian Mueller
- Cardiovascular Research Institute Basel and University Hospital of Basel, Basel, Switzerland (J.B., P.B., T.N., C.M.)
| | - Evangelos Giannitsis
- University Hospital Heidelberg and German Center for Cardiovascular Research, Heidelberg, Germany (M.M., M.B., M.V., H.A.K., E.G.)
| | - Konstantinos Stellos
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University and Cardiothoracic Centre, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, United Kingdom (K.S.)
| |
Collapse
|
39
|
Santilli F, Marchisio M, Lanuti P, Boccatonda A, Miscia S, Davì G. Microparticles as new markers of cardiovascular risk in diabetes and beyond. Thromb Haemost 2018; 116:220-34. [DOI: 10.1160/th16-03-0176] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/19/2016] [Indexed: 12/25/2022]
Abstract
SummaryThe term microparticle (MP) identifies a heterogeneous population of vesicles playing a relevant role in the pathogenesis of vascular diseases, cancer and metabolic diseases such as diabetes mellitus. MPs are released by virtually all cell types by shedding during cell growth, proliferation, activation, apoptosis or senescence processes. MPs, in particular platelet- and endothelial-derived MPs (PMPs and EMPs), are increased in a wide range of thrombotic disorders, with an interesting relationship between their levels and disease pathophysiology, activity or progression. EMP plasma levels have been associated with several cardiovascular diseases and risk factors. PMPs are also shown to be involved in the progressive formation of atherosclerotic plaque and development of arterial thrombosis, especially in diabetic patients. Indeed, diabetes is characterised by an increased procoagulant state and by a hyperreactive platelet phenotype, with enhanced adhesion, aggregation, and activation. Elevated MP levels, such as TF+ MPs, have been shown to be one of the procoagulant determinants in patients with type 2 diabetes mellitus. Atherosclerotic plaque constitutes an opulent source of sequestered MPs, called “plaque” MPs. Otherwise, circulating MPs represent a TF reservoir, named “blood-borne” TF, challenging the dogma that TF is a constitutive protein expressed in minute amounts. “Blood-borne” TF is mainly harboured by PMPs, and it can be trapped within the developing thrombus. MP detection and enumeration by polychromatic flow cytometry (PFC) have opened interesting perspectives in clinical settings, particularly for the evaluation of MP numbers and phenotypes as independent marker of cardiovascular risk, disease and outcome in diabetic patients.
Collapse
|
40
|
Jung YY, Kim KC, Park MH, Seo Y, Park H, Park MH, Chang J, Hwang DY, Han SB, Kim S, Son DJ, Hong JT. Atherosclerosis is exacerbated by chitinase-3-like-1 in amyloid precursor protein transgenic mice. Am J Cancer Res 2018; 8:749-766. [PMID: 29344304 PMCID: PMC5771091 DOI: 10.7150/thno.20183] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023] Open
Abstract
Although the important role of amyloid precursor protein (APP) in vascular diseases associated with Alzheimer's disease (AD) has been demonstrated, the underlying molecular mechanisms and physiological consequences are unclear. We aimed to evaluate vascular inflammation and atherosclerosis in Swedish mutant of human APP transgenic (APPsw-Tg) and ApoE-/-/APPsw-Tg mice. We also aimed to explore the mechanisms underlying any changes observed in these mice compared with non-Tg controls. Methods: The transgenic and non-Tg mouse strains were subjected to partial ligation of the left carotid artery to induce atherosclerotic changes, which were measured using histological approaches, immunohistochemistry, quantitative polymerase chain reaction, and gene expression microarrays. Results: Our results showed increased vascular inflammation, arterial wall thickness, and atherosclerosis in APPsw-Tg and ApoE-/-/APPsw-Tg mice. We further found that the expression of chitinase-3-like-1 (Chi3l1) is increased in the APPsw-Tg mouse artery and Chi3l1 mediates endothelial cell (EC) inflammation and vascular smooth muscle cell (VSMC) activation, which in turn exacerbates atherosclerosis. In addition, using two publicly available microarray datasets from the dorsolateral prefrontal cortex of people with AD and unaffected controls as well as inflamed human umbilical vein endothelial cells, we found that Chi3l1 and associated inflammatory gene were significantly associated with AD, evaluated by co-expression network analysis and functional annotation. Knockdown of Chi3l1 in the arterial endothelium in vivo suppressed the development of atherosclerosis. We also show that microRNA 342-3p (miR-342-3p) inhibits EC inflammation and VSMC activation through directly targeting Chi3l1, and that APPsw increased Chi3l1 expression by reducing miR-342-3p expression in the arterial endothelium, promoting atherosclerosis. Conclusion: Our findings suggest that targeting Chi3l1 might provide new diagnostic and therapeutic strategies for vascular diseases in patients with AD.
Collapse
|
41
|
Van der Veken B, De Meyer GR, Martinet W. Axitinib attenuates intraplaque angiogenesis, haemorrhages and plaque destabilization in mice. Vascul Pharmacol 2018; 100:34-40. [DOI: 10.1016/j.vph.2017.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/04/2017] [Accepted: 10/19/2017] [Indexed: 12/14/2022]
|
42
|
In Vitro Effect of 3D Plates Used for Surgical Treatment of Condylar Fractures on Prostaglandin E₂ (PGE₂) and Thromboxane B₂ (TXB₂) Concentration in THP-1 Macrophages. Int J Mol Sci 2017; 18:ijms18122638. [PMID: 29292766 PMCID: PMC5751241 DOI: 10.3390/ijms18122638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/29/2017] [Accepted: 12/02/2017] [Indexed: 12/14/2022] Open
Abstract
Recent studies have shown promising results concerning the effectiveness of 3D plates in terms of stabilization of condylar fractures. Despite the use of new techniques and new materials, we can still observe certain side effects, including the immune reaction of the body, which may lead to the excessive inflammation. The aim of this paper was to determine how the production of prostaglandin E₂ (PGE₂) and thromboxane B₂ (TXB₂) in THP-1 monocytes/macrophages is influenced by the titanium 3D plates and dedicated screws. The experiments were conducted on THP-1 monocytic cell line and macrophages derived from a THP-1cells. The concentrations of PGE₂ and TXB₂ released were measured by using immunoassay kit. Verification of plate-induced activation of THP-1 monocytes and macrophages and initiation of inflammatory reaction was conducted by flow cytometry. Despite some differences in the content of the implant devices our results showed that these plates did not statistically significantly increase the production of these prostanoids. Osteosynthesis of condylar fractures using 3D titanium mini-plates seems to be a good alternative to traditional plates due to their lack of stimulating the cyclooxygenase-dependent production of prostanoids; limiting the development of inflammatory reactions.
Collapse
|
43
|
Shnerb Ganor R, Harats D, Schiby G, Rosenblatt K, Lubitz I, Shaish A, Salomon O. Elderly apolipoprotein E‑/‑ mice with advanced atherosclerotic lesions in the aorta do not develop Alzheimer's disease-like pathologies. Mol Med Rep 2017; 17:2488-2492. [PMID: 29207114 DOI: 10.3892/mmr.2017.8127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/28/2017] [Indexed: 11/06/2022] Open
Abstract
Atherosclerosis and Alzheimer's disease (AD) are a major cause of morbidity and mortality in Western societies. These diseases share common risk factors, which are exhibited in old age, including hypertension, diabetes, hypercholesterolemia and apolipoprotein (Apo) ε4 allele. We previously demonstrated that factor XI (FXI) deficiency in mice reduced the atherosclerotic plaque area in coronary sinuses and the aortic arch. This led us to investigate whether FXI deficiency in elderly ApoE knockout (KO) mice would decrease pathological alterations compatible with atherosclerosis and AD. The present study used ApoE/factor XI double KO (ApoE/FXI DKO) mice aged 64 weeks and age‑matched ApoE KO mice to serve as a control group. The ApoE KO mice developed an advanced atherosclerotic lesion area in the aortic arch, which was reduced by 33% in the DKO mice. However, neither atherosclerosis nor AD‑associated pathological alterations in the elderly mice brains were observed in either the DKO mice or the ApoE KO mice. The results advocate a dichotomy between the brain and peripheral blood vessels. Therefore, the ApoE KO and DKO mice cannot serve as mouse models for studying AD or pathological brain changes compatible with atherosclerosis. The mechanism by which ApoE KO protects against brain pathology should be further studied as it may prove helpful for future treatment of senile dementia.
Collapse
Affiliation(s)
- Reut Shnerb Ganor
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel‑Hashomer 5265601, Israel
| | - Dror Harats
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel‑Hashomer 5265601, Israel
| | - Ginette Schiby
- Sackler Faculty of Medicine, Tel‑Aviv University, Tel‑Aviv 6997801, Israel
| | | | - Irit Lubitz
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel‑Hashomer 5265601, Israel
| | - Aviv Shaish
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel‑Hashomer 5265601, Israel
| | - Ophira Salomon
- Thrombosis Unit, Sheba Medical Center, Tel‑Hashomer 5265601, Israel
| |
Collapse
|
44
|
DeBerge M, Zhang S, Glinton K, Grigoryeva L, Hussein I, Vorovich E, Ho K, Luo X, Thorp EB. Efferocytosis and Outside-In Signaling by Cardiac Phagocytes. Links to Repair, Cellular Programming, and Intercellular Crosstalk in Heart. Front Immunol 2017; 8:1428. [PMID: 29163503 PMCID: PMC5671945 DOI: 10.3389/fimmu.2017.01428] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/13/2017] [Indexed: 12/24/2022] Open
Abstract
Phagocytic sensing and engulfment of dying cells and extracellular bodies initiate an intracellular signaling cascade within the phagocyte that can polarize cellular function and promote communication with neighboring non-phagocytes. Accumulating evidence links phagocytic signaling in the heart to cardiac development, adult myocardial homeostasis, and the resolution of cardiac inflammation of infectious, ischemic, and aging-associated etiology. Phagocytic clearance in the heart may be carried out by professional phagocytes, such as macrophages, and non-professional cells, including myofibrolasts and potentially epithelial cells. During cardiac development, phagocytosis initiates growth cues for early cardiac morphogenesis. In diseases of aging, including myocardial infarction, heightened levels of cell death require efficient phagocytic debridement to salvage further loss of terminally differentiated adult cardiomyocytes. Additional risk factors, including insulin resistance and other systemic risk factors, contribute to inefficient phagocytosis, altered phagocytic signaling, and delayed cardiac inflammation resolution. Under such conditions, inflammatory presentation of myocardial antigen may lead to autoimmunity and even possible rejection of transplanted heart allografts. Increased understanding of these basic mechanisms offers therapeutic opportunities.
Collapse
Affiliation(s)
- Matthew DeBerge
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Shuang Zhang
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kristofor Glinton
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Luba Grigoryeva
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Islam Hussein
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Esther Vorovich
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Karen Ho
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Xunrong Luo
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Edward B Thorp
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
45
|
Stamatelopoulos K, Stellos K. El amiloide beta (1-40) circulante predice eventos en pacientes con insuficiencia cardiaca. Rev Esp Cardiol (Engl Ed) 2017. [DOI: 10.1016/j.recesp.2017.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
d'Uscio LV, He T, Katusic ZS. Expression and Processing of Amyloid Precursor Protein in Vascular Endothelium. Physiology (Bethesda) 2017; 32:20-32. [PMID: 27927802 DOI: 10.1152/physiol.00021.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyloid precursor protein (APP) is evolutionary conserved protein expressed in endothelial cells of cerebral and peripheral arteries. In this review, we discuss mechanisms responsible for expression and proteolytic cleavage of APP in endothelial cells. We focus on physiological and pathological implications of APP expression in vascular endothelium.
Collapse
Affiliation(s)
- Livius V d'Uscio
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Tongrong He
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
47
|
Simino J, Wang Z, Bressler J, Chouraki V, Yang Q, Younkin SG, Seshadri S, Fornage M, Boerwinkle E, Mosley TH. Whole exome sequence-based association analyses of plasma amyloid-β in African and European Americans; the Atherosclerosis Risk in Communities-Neurocognitive Study. PLoS One 2017; 12:e0180046. [PMID: 28704393 PMCID: PMC5509141 DOI: 10.1371/journal.pone.0180046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022] Open
Abstract
Objective We performed single-variant and gene-based association analyses of plasma amyloid-β (aβ) concentrations using whole exome sequence from 1,414 African and European Americans. Our goal was to identify genes that influence plasma aβ42 concentrations and aβ42:aβ40 ratios in late middle age (mean = 59 years), old age (mean = 77 years), or change over time (mean = 18 years). Methods Plasma aβ measures were linearly regressed onto age, gender, APOE ε4 carrier status, and time elapsed between visits (fold-changes only) separately by race. Following inverse normal transformation of the residuals, seqMeta was used to conduct race-specific single-variant and gene-based association tests while adjusting for population structure. Linear regression models were fit on autosomal variants with minor allele frequencies (MAF)≥1%. T5 burden and Sequence Kernel Association (SKAT) gene-based tests assessed functional variants with MAF≤5%. Cross-race fixed effects meta-analyses were Bonferroni-corrected for the number of variants or genes tested. Results Seven genes were associated with aβ in late middle age or change over time; no associations were identified in old age. Single variants in KLKB1 (rs3733402; p = 4.33x10-10) and F12 (rs1801020; p = 3.89x10-8) were significantly associated with midlife aβ42 levels through cross-race meta-analysis; the KLKB1 variant replicated internally using 1,014 additional participants with exome chip. ITPRIP, PLIN2, and TSPAN18 were associated with the midlife aβ42:aβ40 ratio via the T5 test; TSPAN18 was significant via the cross-race meta-analysis, whereas ITPRIP and PLIN2 were European American-specific. NCOA1 and NT5C3B were associated with the midlife aβ42:aβ40 ratio and the fold-change in aβ42, respectively, via SKAT in African Americans. No associations replicated externally (N = 725). Conclusion We discovered age-dependent genetic effects, established associations between vascular-related genes (KLKB1, F12, PLIN2) and midlife plasma aβ levels, and identified a plausible Alzheimer’s Disease candidate gene (ITPRIP) influencing cell death. Plasma aβ concentrations may have dynamic biological determinants across the lifespan; plasma aβ study designs or analyses must consider age.
Collapse
Affiliation(s)
- Jeannette Simino
- Gertrude C. Ford MIND Center, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Department of Data Science, John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- * E-mail:
| | - Zhiying Wang
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Jan Bressler
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Vincent Chouraki
- Lille University, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases; Lille, France
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, United States of America
| | - Steven G. Younkin
- Department of Neuroscience, Mayo Clinic College of Medicine, Mayo Clinic Jacksonville, Jacksonville, Florida, United States of America
| | - Sudha Seshadri
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, United States of America
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, University of Texas Health Science Center, Houston, Texas, United States of America
- The Brown Foundation Institute of Molecular Medicine, Research Center for Human Genetics, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, University of Texas Health Science Center, Houston, Texas, United States of America
- The Brown Foundation Institute of Molecular Medicine, Research Center for Human Genetics, The University of Texas Health Science Center, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Thomas H. Mosley
- Gertrude C. Ford MIND Center, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Department of Medicine, University of Mississippi Medical Center, Jackson, Massachusetts, United States of America
| |
Collapse
|
48
|
Stamatelopoulos K, Stellos K. Circulating Amyloid-Beta (1-40) Predicts Clinical Outcomes in Patients With Heart Failure. ACTA ACUST UNITED AC 2017. [PMID: 28645835 DOI: 10.1016/j.rec.2017.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kimon Stamatelopoulos
- Department of Clinical Therapeutics. Alexandra Hospital, University of Athens, Athens, Greece
| | - Konstantinos Stellos
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany; Department of Cardiology, Center of Internal Medicine, Goethe University Frankfurt, Frankfurt, Germany; German Center of Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung, DZHK), Rhein-Main Partner Site, Frankfurt, Germany.
| |
Collapse
|
49
|
Bucerius J, Barthel H, Tiepolt S, Werner P, Sluimer JC, Wildberger JE, Patt M, Hesse S, Gertz HJ, Biessen EAL, Mottaghy FM, Sabri O. Feasibility of in vivo 18F-florbetaben PET/MR imaging of human carotid amyloid-β. Eur J Nucl Med Mol Imaging 2017; 44:1119-1128. [PMID: 28321471 PMCID: PMC5434137 DOI: 10.1007/s00259-017-3651-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 02/08/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE Amyloid-beta (Aβ) peptides are involved in the inflammatory pathology of atherosclerosis. 18F-Florbetaben is a PET tracer for clinical imaging of cerebral Aβ plaques in Alzheimer's disease (AD). We sought to determine whether specific uptake of 18F-florbetaben in the carotid arteries can be identified using a fully integrated hybrid PET/MRI system and whether this uptake is associated with clinical cardiovascular disease (CVD) risk factors. METHODS Carotid 18F-florbetaben uptake was quantified as the mean of the maximum target-to-background ratio (meanTBRmax) in 40 cognitively impaired subjects (age 68.2 ± 9.5 years) undergoing 18F-florbetaben PET/MRI to diagnose AD. Associations between carotid 18F-florbetaben uptake and several CVD risk factors were assessed by univariate analysis followed by a multivariate linear regression analysis. Furthermore, carotid 18F-florbetaben uptake was compared between patients with and without a positive cerebral Aβ PET scan. RESULTS 18F-Florbetaben uptake was clearly visualized in the carotid arteries. Values of meanTBRmax corrected for the blood pool activity of the tracer showed specific 18F-florbetaben uptake in the carotid wall. Male gender was associated with carotid 18F-florbetaben uptake in the univariate analysis, and was found to be an independent predictor of 18F-florbetaben uptake in the multivariate regression analysis (standardized regression coefficient β = 0.407, p = 0.009). Carotid 18F-florbetaben meanTBRmax in patients with a positive cerebral Aβ scan did not differ from that in patients without cerebral Aβ deposits. CONCLUSION Specific 18F-florbetaben uptake in human carotid arteries was detected. Male gender was identified as an independent clinical risk factor. Therefore, 18F-florbetaben PET/MRI might provide new insights into the pathophysiological process in atherosclerosis.
Collapse
Affiliation(s)
- Jan Bucerius
- Department of Radiology/Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany.
- Department of Nuclear Medicine/Radiology and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.
| | - Henryk Barthel
- Department of Nuclear Medicine, Leipzig University Medical Centre, Leipzig, Germany
| | - Solveig Tiepolt
- Department of Nuclear Medicine, Leipzig University Medical Centre, Leipzig, Germany
| | - Peter Werner
- Department of Nuclear Medicine, Leipzig University Medical Centre, Leipzig, Germany
| | - Judith C Sluimer
- Department of Pathology, Experimental Vascular Pathology, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Joachim E Wildberger
- Department of Radiology/Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Marianne Patt
- Department of Nuclear Medicine, Leipzig University Medical Centre, Leipzig, Germany
| | - Swen Hesse
- Department of Nuclear Medicine, Leipzig University Medical Centre, Leipzig, Germany
- Integrated Treatment and Research Centre (IFB) Adiposity Diseases, Leipzig University Medical Centre, Leipzig, Germany
| | - Hermann-Josef Gertz
- Department of Psychiatry, Leipzig University Medical Centre, Leipzig, Germany
| | - Erik A L Biessen
- Department of Pathology, Experimental Vascular Pathology, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Felix M Mottaghy
- Department of Radiology/Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, Leipzig University Medical Centre, Leipzig, Germany
| |
Collapse
|
50
|
Roeben B, Maetzler W, Vanmechelen E, Schulte C, Heinzel S, Stellos K, Godau J, Huber H, Brockmann K, Wurster I, Gaenslen A, Grüner E, Niebler R, Eschweiler GW, Berg D. Association of Plasma Aβ40 Peptides, But Not Aβ42, with Coronary Artery Disease and Diabetes Mellitus. J Alzheimers Dis 2017; 52:161-9. [PMID: 27003209 DOI: 10.3233/jad-150575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND/OBJECTIVE Plasma levels of amyloid-beta (Aβ) 1-40 peptide have been proposed to be associated with cardiovascular mortality in patients with coronary artery disease (CAD). Therefore, we aimed to investigate the association of plasma Aβ levels with CAD, cardiovascular risk factors (CVRF), and APOE genotype in non-demented elderly individuals. METHODS Plasma Aβ1 - 40 and Aβ1 - 42 levels of 526 individuals (mean age of 63.0±7.3 years) were quantified with the INNO-BIA plasma Aβ forms assay based on multiplextrademark technique. APOE genotype was determined with an established protocol. Presence of CAD and CVRFs were ascertained using a questionnaire and/or medical records. RESULTS Plasma Aβ1 - 40 levels were significantly higher in individuals with CAD (p = 0.043) and, independently, in individuals with diabetes mellitus (DM) type 2 (p = 0.001) while accounting for age- and gender-effects. Plasma Aβ1 - 42 levels were higher in APOEɛ4 carriers (p = 0.004), but were neither relevantly associated with CAD nor with any CVRF. Plasma Aβ1 - 40 showed no association with APOE genotype. DISCUSSION Our findings argue for an association of circulating plasma Aβ1 - 40 peptides with incident CAD and DM. Further investigations are needed to entangle the role of Aβ1 - 40 role in the pathophysiology of cardiovascular disease independent of its known role in Alzheimer's disease.
Collapse
Affiliation(s)
- Benjamin Roeben
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Walter Maetzler
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Geriatric Center, University of Tübingen, Tübingen, Germany
| | - Eugeen Vanmechelen
- Key4AD, Eke, Belgium.,Innogenetics N.V. (now Fujirebio Europe N.V.), Ghent, Belgium
| | - Claudia Schulte
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Sebastian Heinzel
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Konstantinos Stellos
- Institute of Cardiovascular Regeneration, Centre of Molecular Medicine, J.W. Goethe University Frankfurt, Frankfurt am Main, Germany.,Department of Cardiology, J.W. Goethe University Frankfurt, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Frankfurt, Germany
| | - Jana Godau
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
| | - Heiko Huber
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Kathrin Brockmann
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Isabel Wurster
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Alexandra Gaenslen
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Eva Grüner
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
| | - Raphael Niebler
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Geriatric Center, University of Tübingen, Tübingen, Germany
| | - Gerhard W Eschweiler
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Geriatric Center, University of Tübingen, Tübingen, Germany
| | - Daniela Berg
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | |
Collapse
|