1
|
Suchanecka M, Grzelak J, Farzaneh M, Azizidoost S, Dari MAG, Józkowiak M, Data K, Domagała D, Niebora J, Kotrych K, Czerny B, Kamiński A, Torlińska-Walkowiak N, Bieniek A, Szepietowski J, Piotrowska-Kempisty H, Dzięgiel P, Mozdziak P, Kempisty B. Adipose derived stem cells - Sources, differentiation capacity and a new target for reconstructive and regenerative medicine. Biomed Pharmacother 2025; 186:118036. [PMID: 40194335 DOI: 10.1016/j.biopha.2025.118036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025] Open
Abstract
Adipose-derived stem cells (ADSCs) are mesenchymal stem cells (MSCs) derived from adipose tissue with mesenchymal lineage differentiation potential and remarkable potential in regenerative medicine. ADSCs are easily sourced from adipose tissue, share regenerative characteristics akin to other MSCs. Their convenient adherence to plastic culture flasks, coupled with their capacity for in vitro expansion and multi-lineage differentiation, underscores their promise as a robust tool for tissue repair and enhancement. The accessibility of human adipose tissue and the development of minimally invasive isolation protocols have further propelled the autologous use of ADSCs, fueling excitement in both organ repair and regenerative medicine. Consequently, research in ADSCsis experiencing rapid growth. A detailed overview of the current landscape of ADSCs isolation and differentiation capacity including the latest advancements in ADSCs usage, encompassing ongoing clinical investigations are important considerations to understand their potential to shape the landscape of regenerative medicine.
Collapse
Affiliation(s)
- Małgorzata Suchanecka
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Joanna Grzelak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Małgorzata Józkowiak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland; Department of Toxicology, Poznan University of Medical Sciences, Poznań 61-631, Poland
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Julia Niebora
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Katarzyna Kotrych
- Department of General and Dental Radiology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, Szczecin 70-111, Poland
| | - Bogusław Czerny
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, Żołnierska 48, Szczecin 71-230, Poland; Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, Kolejowa 2, Plewiska 62-064, Poland
| | - Adam Kamiński
- Department of Pediatric Orthopedics and Musculosceletal Oncology, Pomeranian Medical University
| | | | - Andrzej Bieniek
- University Center for General and Oncological Dermatology, Wroclaw Medical University, Wroclaw 50-367, Poland
| | - Jacek Szepietowski
- Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland; Department of Dermato-Venereology, 4th Military Hospital, Wroclaw, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Poznań 61-631, Poland; Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland; Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno 625 00, Czech Republic; Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland; North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC 27695, USA.
| |
Collapse
|
2
|
Bader AS, Haramati LB. Letter to the Editor: "Silent myocardial infarction fatty scars detected by coronary calcium score CT scan in diabetic patients without a history of coronary heart disease". Eur Radiol 2025; 35:215-217. [PMID: 38995379 DOI: 10.1007/s00330-024-10912-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/07/2024] [Accepted: 04/29/2024] [Indexed: 07/13/2024]
Affiliation(s)
- Anna S Bader
- Department of Radiology & Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., PO Box 208042, New Haven, CT, 06520, USA.
| | - Linda B Haramati
- Department of Radiology & Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., PO Box 208042, New Haven, CT, 06520, USA
| |
Collapse
|
3
|
Yahyazadeh R, Baradaran Rahimi V, Askari VR. Stem cell and exosome therapies for regenerating damaged myocardium in heart failure. Life Sci 2024; 351:122858. [PMID: 38909681 DOI: 10.1016/j.lfs.2024.122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Finding novel treatments for cardiovascular diseases (CVDs) is a hot topic in medicine; cell-based therapies have reported promising news for controlling dangerous complications of heart disease such as myocardial infarction (MI) and heart failure (HF). Various progenitor/stem cells were tested in various in-vivo, in-vitro, and clinical studies for regeneration or repairing the injured tissue in the myocardial to accelerate the healing. Fetal, adult, embryonic, and induced pluripotent stem cells (iPSC) have revealed the proper potency for cardiac tissue repair. As an essential communicator among cells, exosomes with specific contacts (proteins, lncRNAs, and miRNAs) greatly promote cardiac rehabilitation. Interestingly, stem cell-derived exosomes have more efficiency than stem cell transplantation. Therefore, stem cells induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), cardiac stem cells (CDC), and skeletal myoblasts) and their-derived exosomes will probably be considered an alternative therapy for CVDs remedy. In addition, stem cell-derived exosomes have been used in the diagnosis/prognosis of heart diseases. In this review, we explained the advances of stem cells/exosome-based treatment, their beneficial effects, and underlying mechanisms, which will present new insights in the clinical field in the future.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Shahin H, Belcastro L, Das J, Perdiki Grigoriadi M, Saager RB, Steinvall I, Sjöberg F, Olofsson P, Elmasry M, El-Serafi AT. MicroRNA-155 mediates multiple gene regulations pertinent to the role of human adipose-derived mesenchymal stem cells in skin regeneration. Front Bioeng Biotechnol 2024; 12:1328504. [PMID: 38562669 PMCID: PMC10982420 DOI: 10.3389/fbioe.2024.1328504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: The role of Adipose-derived mesenchymal stem cells (AD-MSCs) in skin wound healing remains to be fully characterized. This study aims to evaluate the regenerative potential of autologous AD-MSCs in a non-healing porcine wound model, in addition to elucidate key miRNA-mediated epigenetic regulations that underlie the regenerative potential of AD-MSCs in wounds. Methods: The regenerative potential of autologous AD-MSCs was evaluated in porcine model using histopathology and spatial frequency domain imaging. Then, the correlations between miRNAs and proteins of AD-MSCs were evaluated using an integration analysis in primary human AD-MSCs in comparison to primary human keratinocytes. Transfection study of AD-MSCs was conducted to validate the bioinformatics data. Results: Autologous porcine AD-MSCs improved wound epithelialization and skin properties in comparison to control wounds. We identified 26 proteins upregulated in human AD-MSCs, including growth and angiogenic factors, chemokines and inflammatory cytokines. Pathway enrichment analysis highlighted cell signalling-associated pathways and immunomodulatory pathways. miRNA-target modelling revealed regulations related to genes encoding for 16 upregulated proteins. miR-155-5p was predicted to regulate Fibroblast growth factor 2 and 7, C-C motif chemokine ligand 2 and Vascular cell adhesion molecule 1. Transfecting human AD-MSCs cell line with anti-miR-155 showed transient gene silencing of the four proteins at 24 h post-transfection. Discussion: This study proposes a positive miR-155-mediated gene regulation of key factors involved in wound healing. The study represents a promising approach for miRNA-based and cell-free regenerative treatment for difficult-to-heal wounds. The therapeutic potential of miR-155 and its identified targets should be further explored in-vivo.
Collapse
Affiliation(s)
- Hady Shahin
- Department of Hand Surgery, Plastic Surgery, and Burns, Linkoping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linkoping University, Linköping, Sweden
- Faculty of Biotechnology, Modern Sciences and Arts University, October City, Cairo, Egypt
| | - Luigi Belcastro
- Department of Biomedical Engineering, Linkoping University, Linköping, Sweden
| | - Jyotirmoy Das
- Bioinformatics Unit, Core Facility (KEF), Faculty of Medicine and Health Sciences (BKV), Linköping University, Linköping, Sweden
- Clinical Genomics Linköping, SciLife Laboratory, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Rolf B. Saager
- Department of Biomedical Engineering, Linkoping University, Linköping, Sweden
| | - Ingrid Steinvall
- Department of Hand Surgery, Plastic Surgery, and Burns, Linkoping University Hospital, Linköping, Sweden
| | - Folke Sjöberg
- Department of Biomedical and Clinical Sciences, Linkoping University, Linköping, Sweden
| | - Pia Olofsson
- Department of Hand Surgery, Plastic Surgery, and Burns, Linkoping University Hospital, Linköping, Sweden
| | - Moustafa Elmasry
- Department of Hand Surgery, Plastic Surgery, and Burns, Linkoping University Hospital, Linköping, Sweden
| | - Ahmed T. El-Serafi
- Department of Hand Surgery, Plastic Surgery, and Burns, Linkoping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linkoping University, Linköping, Sweden
| |
Collapse
|
5
|
Mikłosz A, Chabowski A. Efficacy of adipose-derived mesenchymal stem cell therapy in the treatment of chronic micro- and macrovascular complications of diabetes. Diabetes Obes Metab 2024; 26:793-808. [PMID: 38073423 DOI: 10.1111/dom.15375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 02/06/2024]
Abstract
Diabetes mellitus is a highly prevalent disease characterized by hyperglycaemia that damages the vascular system, leading to micro- (retinopathy, neuropathy, nephropathy) and macrovascular diseases (cardiovascular disease). There are also secondary complications of diabetes (cardiomyopathy, erectile dysfunction or diabetic foot ulcers). Stem cell-based therapies have become a promising tool targeting diabetes symptoms and its chronic complications. Among all stem cells, adipose-derived mesenchymal stem cells (ADMSCs) are of great importance because of their abundance, non-invasive isolation and no ethical limitations. Characteristics that make ADMSCs good candidates for cell-based therapy are their wide immunomodulatory properties and paracrine activities through the secretion of an array of growth factors, chemokines, cytokines, angiogenic factors and anti-apoptotic molecules. Besides, after transplantation, ADMSCs show great ex vivo expansion capacity and differentiation to other cell types, including insulin-producing cells, cardiomyocytes, chondrocytes, hepatocyte-like cells, neurons, endothelial cells, photoreceptor-like cells, or astrocytes. Preclinical studies have shown that ADMSC-based therapy effectively improved visual acuity, ameliorated polyneuropathy and foot ulceration, arrested the development and progression of diabetic kidney disease, or alleviated the diabetes-induced cardiomyocyte hypertrophy. However, despite the positive results obtained in animal models, there are still several challenges that need to be overcome before the results of preclinical studies can be translated into clinical applications. To date, there are several clinical trials or ongoing trials using ADMSCs in the treatment of diabetic complications, most of them in the treatment of diabetic foot ulcers. This narrative review summarizes the most recent outcomes on the usage of ADMSCs in the treatment of long-term complications of diabetes in both animal models and clinical trials.
Collapse
Affiliation(s)
- Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
6
|
Biniazan F, Stoian A, Haykal S. Adipose-Derived Stem Cells: Angiogenetic Potential and Utility in Tissue Engineering. Int J Mol Sci 2024; 25:2356. [PMID: 38397032 PMCID: PMC10889096 DOI: 10.3390/ijms25042356] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Adipose tissue (AT) is a large and important energy storage organ as well as an endocrine organ with a critical role in many processes. Additionally, AT is an enormous and easily accessible source of multipotent cell types used in our day for all types of tissue regeneration. The ability of adipose-derived stem cells (ADSCs) to differentiate into other types of cells, such as endothelial cells (ECs), vascular smooth muscle cells, or cardiomyocytes, is used in tissue engineering in order to promote/stimulate the process of angiogenesis. Being a key for future successful clinical applications, functional vascular networks in engineered tissue are targeted by numerous in vivo and ex vivo studies. The article reviews the angiogenic potential of ADSCs and explores their capacity in the field of tissue engineering (TE).
Collapse
Affiliation(s)
- Felor Biniazan
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street Suite 8N-869, Toronto, ON M5G2C4, Canada; (F.B.); (A.S.)
| | - Alina Stoian
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street Suite 8N-869, Toronto, ON M5G2C4, Canada; (F.B.); (A.S.)
| | - Siba Haykal
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street Suite 8N-869, Toronto, ON M5G2C4, Canada; (F.B.); (A.S.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Toronto, 200 Elizabeth Street Suite 8N-869, Toronto, ON M5G2C4, Canada
| |
Collapse
|
7
|
Arderiu G, Civit-Urgell A, Badimon L. Adipose-Derived Stem Cells to Treat Ischemic Diseases: The Case of Peripheral Artery Disease. Int J Mol Sci 2023; 24:16752. [PMID: 38069074 PMCID: PMC10706341 DOI: 10.3390/ijms242316752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Critical limb ischemia incidence and prevalence have increased over the years. However, there are no successful treatments to improve quality of life and to reduce the risk of cardiovascular and limb events in these patients. Advanced regenerative therapies have focused their interest on the generation of new blood vessels to repair tissue damage through the use of stem cells. One of the most promising sources of stem cells with high potential in cell-based therapy is adipose-derived stem cells (ASCs). ASCs are adult mesenchymal stem cells that are relatively abundant and ubiquitous and are characterized by a multilineage capacity and low immunogenicity. The proangiogenic benefits of ASCs may be ascribed to: (a) paracrine secretion of proangiogenic molecules that may stimulate angiogenesis; (b) secretion of microvesicles/exosomes that are also considered as a novel therapeutic prospect for treating ischemic diseases; and (c) their differentiation capability toward endothelial cells (ECs). Although we know the proangiogenic effects of ASCs, the therapeutic efficacy of ASCs after transplantation in peripheral artery diseases patients is still relatively low. In this review, we evidence the potential therapeutic use of ASCs in ischemic regenerative medicine. We also highlight the main challenges in the differentiation of these cells into functional ECs. However, significant efforts are still needed to ascertain relevant transcription factors, intracellular signaling and interlinking pathways in endothelial differentiation.
Collapse
Affiliation(s)
- Gemma Arderiu
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau Barcelona, 08041 Barcelona, Spain; (A.C.-U.); (L.B.)
- Ciber CV, Instituto Carlos III, 28029 Madrid, Spain
| | - Anna Civit-Urgell
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau Barcelona, 08041 Barcelona, Spain; (A.C.-U.); (L.B.)
- Facultat de Medicina i Ciències de la Salut—Campus Clínic, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Lina Badimon
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau Barcelona, 08041 Barcelona, Spain; (A.C.-U.); (L.B.)
- Ciber CV, Instituto Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Ariano A, Posa F, Storlino G, Mori G. Molecules Inducing Dental Stem Cells Differentiation and Bone Regeneration: State of the Art. Int J Mol Sci 2023; 24:9897. [PMID: 37373044 DOI: 10.3390/ijms24129897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Teeth include mesenchymal stem cells (MSCs), which are multipotent cells that promote tooth growth and repair. Dental tissues, specifically the dental pulp and the dental bud, constitute a relevant source of multipotent stem cells, known as dental-derived stem cells (d-DSCs): dental pulp stem cells (DPSCs) and dental bud stem cells (DBSCs). Cell treatment with bone-associated factors and stimulation with small molecule compounds are, among the available methods, the ones who show excellent advantages promoting stem cell differentiation and osteogenesis. Recently, attention has been paid to studies on natural and non-natural compounds. Many fruits, vegetables, and some drugs contain molecules that can enhance MSC osteogenic differentiation and therefore bone formation. The purpose of this review is to examine research work over the past 10 years that has investigated two different types of MSCs from dental tissues that are attractive targets for bone tissue engineering: DPSCs and DBSCs. The reconstruction of bone defects, in fact, is still a challenge and therefore more research is needed; the articles reviewed are meant to identify compounds useful to stimulate d-DSC proliferation and osteogenic differentiation. We only consider the results of the research which is encouraging, assuming that the mentioned compounds are of some importance for bone regeneration.
Collapse
Affiliation(s)
- Anastasia Ariano
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| | - Francesca Posa
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| | - Giuseppina Storlino
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| |
Collapse
|
9
|
El Hage R, Knippschild U, Arnold T, Hinterseher I. Stem Cell-Based Therapy: A Promising Treatment for Diabetic Foot Ulcer. Biomedicines 2022; 10:1507. [PMID: 35884812 PMCID: PMC9312797 DOI: 10.3390/biomedicines10071507] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic foot ulcer (DFU) is a severe complication of diabetes and a challenging medical condition. Conventional treatments for DFU have not been effective enough to reduce the amputation rates, which urges the need for additional treatment. Stem cell-based therapy for DFU has been investigated over the past years. Its therapeutic effect is through promoting angiogenesis, secreting paracrine factors, stimulating vascular differentiation, suppressing inflammation, improving collagen deposition, and immunomodulation. It is controversial which type and origin of stem cells, and which administration route would be the most optimal for therapy. We reviewed the different types and origins of stem cells and routes of administration used for the treatment of DFU in clinical and preclinical studies. Diabetes leads to the impairment of the stem cells in the diseased patients, which makes it less ideal to use autologous stem cells, and requires looking for a matching donor. Moreover, angioplasty could be complementary to stem cell therapy, and scaffolds have a positive impact on the healing process of DFU by stem cell-based therapy. In short, stem cell-based therapy is promising in the field of regenerative medicine, but more studies are still needed to determine the ideal type of stem cells required in therapy, their safety, proper dosing, and optimal administration route.
Collapse
Affiliation(s)
- Racha El Hage
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Branderburg Theodor Fontane, Fehrbelliner Str. 38, 16816 Neuruppin, Germany;
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (U.K.); (T.A.)
| | - Tobias Arnold
- Department of General and Visceral Surgery, Surgery Center, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (U.K.); (T.A.)
| | - Irene Hinterseher
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Branderburg Theodor Fontane, Fehrbelliner Str. 38, 16816 Neuruppin, Germany;
- Berlin Institute of Health, Vascular Surgery Clinic, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Fakultät für Gesundheitswissenschaften Brandenburg, Gemeinsame Fakultät der Universität Potsdam, der Medizinischen Hochschule Brandenburg Theodor Fontane und der Brandenburgischen Technischen Universität Cottbus—Senftenberg, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
10
|
Mikłosz A, Nikitiuk BE, Chabowski A. Using adipose-derived mesenchymal stem cells to fight the metabolic complications of obesity: Where do we stand? Obes Rev 2022; 23:e13413. [PMID: 34985174 PMCID: PMC9285813 DOI: 10.1111/obr.13413] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
Obesity is a critical risk factor for the development of metabolic diseases, and its prevalence is increasing worldwide. Stem cell-based therapies have become a promising tool for therapeutic intervention. Among them are adipose-derived mesenchymal stem cells (ADMSCs), secreting numerous bioactive molecules, like growth factors, cytokines, and chemokines. Their unique features, including immunosuppressive and immunomodulatory properties, make them an ideal candidates for clinical applications. Numerous experimental studies have shown that ADMSCs can improve pancreatic islet cell viability and function, ameliorate hyperglycemia, improve insulin sensitivity, restore liver function, counteract dyslipidemia, lower pro-inflammatory cytokines, and reduce oxidative stress in the animal models. These results prompted scientists to use ADMSCs clinically. However, up to date, there have been few clinical studies or ongoing trails using ADMSCs to treat metabolic disorders such as type 2 diabetes mellitus (T2DM) or liver cirrhosis. Most human studies have implemented autologous ADMSCs with minimal risk of cellular rejection. Because the functionality of ADMSCs is significantly reduced in subjects with obesity and/or metabolic syndrome, their efficacy is questioned. ADMSCs transplantation may offer a potential therapeutic approach for the treatment of metabolic complications of obesity, but randomized controlled trials are required to establish their safety and efficacy in humans prior to routine clinical use.
Collapse
Affiliation(s)
- Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | | | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
11
|
Exosomes from adipose-derived stem cells alleviate myocardial infarction via microRNA-31/FIH1/HIF-1α pathway. J Mol Cell Cardiol 2021; 162:10-19. [PMID: 34474073 DOI: 10.1016/j.yjmcc.2021.08.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Our previous study has revealed that exosomes from adipose-derived stem cells (ASCs) promote angiogenesis in subcutaneously transplanted gels by delivery of microRNA-31 (miR-31) which targets factor inhibiting hypoxia-inducible factor-1 (FIH1) in recipient cells. Here we hypothesized that ASC exosomes alleviate ischemic diseases through miR-31/FIH1/hypoxia-inducible factor-1α (HIF-1α) signaling pathway. Exosomes from ASCs were characterized with nanoparticle tracking analysis, transmission electron microscopy, and immunoblotting analysis for exosomal markers. Results from immunoblotting and laser imaging of ischemic mouse hindlimb revealed that miR-31 enriched ASC exosomes inhibited FIH1 expression and enhanced the blood perfusion, respectively. These effects were impaired when using miR-31-depleted exosomes. Immunohistochemistry analysis showed that administration of exosomes resulted in a higher arteriole density and larger CD31+ area in ischemic hindlimb than miR-31-delpleted exosomes. Similarly, knockdown of miR-31 in exosomes reduced the effects of the exosomes on increasing ventricular fraction shortening and CD31+ area, and on decreasing infarct size. Exosomes promoted endothelial cell migration and tube formation. These changes were attenuated when miR-31 was depleted in the exosomes or when FIH1 was overexpressed in the endothelial cells. Furthermore, the results from immunocytochemistry, co-immunoprecipitation, and luciferase reporter assay demonstrated that the effects of exosomes on nuclear translocation, binding with co-activator p300, and activation of HIF-1α were decreased when miR-31 was depleted in the exosomes or FIH1 was overexpressed. Our findings provide evidence that exosomes from ASCs promote angiogenesis in both mouse ischemic hindlimb and heart through transport of miR-31 which targets FIH1 and therefore triggers HIF-1α transcriptional activation.
Collapse
|
12
|
Madonna R, Guarnieri S, Kovácsházi C, Görbe A, Giricz Z, Geng YJ, Mariggiò MA, Ferdinandy P, De Caterina R. Telomerase/myocardin expressing mesenchymal cells induce survival and cardiovascular markers in cardiac stromal cells undergoing ischaemia/reperfusion. J Cell Mol Med 2021; 25:5381-5390. [PMID: 33949765 PMCID: PMC8184669 DOI: 10.1111/jcmm.16549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022] Open
Abstract
Cardiac stromal cells (CSCs) contain a pool of cells with supportive and paracrine functions. Various types of mesenchymal stromal cells (MSCs) can influence CSCs in the cardiac niche through their paracrine activity. Ischaemia/reperfusion (I/R) leads to cell death and reduction of the paracrine activity of CSCs. The forced co‐expression of telomerase reverse transcriptase (TERT) and myocardin (MYOCD), known to potentiate anti‐apoptotic, pro‐survival and pro‐angiogenic activities of MSCs isolated from the adipose tissue (AT‐MSCs), may increase CSC survival, favouring their paracrine activities. We aimed at investigating the hypothesis that CSCs feature improved resistance to simulated I/R (SI/R) and increased commitment towards the cardiovascular lineage when preconditioned with conditioned media (CM) or extracellular vesicles (EV) released from AT‐MSCs overexpressing TERT and MYOCD (T/M AT‐MSCs). Murine CSCs were isolated with the cardiosphere (CSps) isolation technique. T/M AT‐MSCs and their secretome improved spontaneous intracellular calcium changes and ryanodine receptor expression in aged CSps. The cytoprotective effect of AT‐MSCs was tested in CSCs subjected to SI/R. SI/R induced cell death as compared to normoxia (28 ± 4 vs 10 ± 3%, P = .02). Pre‐treatment with CM (15 ± 2, P = .02) or with the EV‐enriched fraction (10 ± 1%, P = .02) obtained from mock‐transduced AT‐MSCs in normoxia reduced cell death after SI/R. The effect was more pronounced with CM (7 ± 1%, P = .01) or the EV‐enriched fraction (2 ± 1%, P = .01) obtained from T/M AT‐MSCs subjected to SI/R. In parallel, we observed lower expression of the apoptosis marker cleaved caspase‐3 and higher expression of cardiac and vascular markers eNOS, sarcomeric α‐actinin and cardiac actin. The T/M AT‐MSCs secretome exerts a cytoprotective effect and promotes development of CSCs undergoing SI/R towards a cardiovascular phenotype.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Department of Internal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Pathology, Cardiology Division, University of Pisa, Pisa, Italy
| | - Simone Guarnieri
- Center for Advanced Studies and Technology -CAST, Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, Chieti-Pescara and StemTeCh Group, "G. d'Annunzio" University, Chieti, Italy
| | - Csenger Kovácsházi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Aniko Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Yong-Jian Geng
- Department of Internal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Maria Addolorata Mariggiò
- Center for Advanced Studies and Technology -CAST, Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, Chieti-Pescara and StemTeCh Group, "G. d'Annunzio" University, Chieti, Italy
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | | |
Collapse
|
13
|
Posa F, Colaianni G, Di Cosola M, Dicarlo M, Gaccione F, Colucci S, Grano M, Mori G. The Myokine Irisin Promotes Osteogenic Differentiation of Dental Bud-Derived MSCs. BIOLOGY 2021; 10:biology10040295. [PMID: 33916859 PMCID: PMC8065887 DOI: 10.3390/biology10040295] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Irisin is a recently discovered protein, mainly produced in the muscle tissue, whose action is proving effective in many other tissues. The crosstalk between muscle and bone has been long since demonstrated, and physical activity has shown to have an impressive positive effect in both tissues. Irisin production increases with exercising and drops with sedentariness and aging, indicating that the molecule is involved in sarcopenia and in bone mass reduction. Although skeleton is target of irisin, its mechanism of action on bone cells has not yet been completely elucidated. The aim of this work is to analyze the effect of irisin on osteoblast differentiation; to this purpose, we used a stem cell model reproducing the osteoblastogenesis and the bone-forming processes. We performed an in vitro study exploring the main osteoblast markers in the presence of irisin. We found that irisin has an impressive effect on the most peculiar osteoblast feature: the bone mineral matrix secretion process. Moreover, irisin demonstrated an inductive effect on osteoblast osteocalcin production. Both results suggest a stimulating effect of irisin in bone formation. The association we observed between irisin addition and osteoblast osteocalcin production should be further investigated. Abstract The myokine irisin, well known for its anabolic effect on bone tissue, has been demonstrated to positively act on osteoblastic differentiation processes in vitro. Mesenchymal stem cells (MSCs) have captured great attention in precision medicine and translational research for several decades due to their differentiation capacity, potent immunomodulatory properties, and their ability to be easily cultured and manipulated. Dental bud stem cells (DBSCs) are MSCs, isolated from dental tissues, that can effectively undergo osteoblastic differentiation. In this study, we analyzed, for the first time, the effects of irisin on DBSC osteogenic differentiation in vitro. Our results indicated that DBSCs were responsive to irisin, showed an enhanced expression of osteocalcin (OCN), a late marker of osteoblast differentiation, and displayed a greater mineral matrix deposition. These findings lead to deepening the mechanism of action of this promising molecule, as part of osteoblastogenesis process. Considering the in vivo studies of the effects of irisin on skeleton, irisin could improve bone tissue metabolism in MSC regenerative procedures.
Collapse
Affiliation(s)
- Francesca Posa
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy; (F.P.); (M.D.C.)
| | - Graziana Colaianni
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (G.C.); (M.D.); (F.G.); (M.G.)
| | - Michele Di Cosola
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy; (F.P.); (M.D.C.)
| | - Manuela Dicarlo
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (G.C.); (M.D.); (F.G.); (M.G.)
| | - Francesco Gaccione
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (G.C.); (M.D.); (F.G.); (M.G.)
| | - Silvia Colucci
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University of Bari, 70124 Bari, Italy;
| | - Maria Grano
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (G.C.); (M.D.); (F.G.); (M.G.)
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy; (F.P.); (M.D.C.)
- Correspondence:
| |
Collapse
|
14
|
Stromal-vascular fraction of adipose tissue as an alternative source of cellular material for regenerative medicine. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.01.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Adipose tissue is the most convenient source of cellular material for regenerative medicine as it can be obtained in significant quantities via cosmetic liposuction, lipoaspiration of subcutaneous fat or by excision of fat deposits. Adipose tissue consists of adipocytes and cells, which are the part of the stromal-vascular fraction (SVF). Different cell populations can be isolated from SVF, among which the population of adipose tissue stem cells (adipose-derived stem cells, ADSC) is especially important for regenerative medicine. SVF can be obtained relatively easily from adipose tissue (adipose tissue is an alternative to bone marrow in terms of being a source of stem cells) and used to treat various pathologies. Recent studies show that SVF not only has a therapeutic effect similar to that of ADSC, but in some cases is even more effective. The article provides the analysis of the main methods of SVF obtainment, characteristics of SVF cellular composition, its potential for use in clinical medicine and its main advantages over other sources of cellular material, including ADSC cultured in vitro, for regenerative medicine. Keywords: adipocytes, adipose-derived stem cells, regenerative medicine, stromal-vascular fraction
Collapse
|
15
|
Fan X, Li K, Zhu L, Deng X, Feng Z, Xu C, Liu S, Wu J. Prolonged therapeutic effects of photoactivated adipose-derived stem cells following ischaemic injury. Acta Physiol (Oxf) 2020; 230:e13475. [PMID: 32306486 DOI: 10.1111/apha.13475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
AIM Adipose-derived stem cells (ASCs) therapies are emerging as a promising approach to therapeutic angiogenesis. Therapeutic persistence and reduced primitive stem cell function following cell delivery remains a critical hurdle for the clinical translation of stem cells in current approaches. METHODS Cultured ASCs were derived from subcutaneous white adipose tissue isolated from mice fed a normal diet (ND). Unilateral hindlimb ischaemia model was induced in high-fat diet (HFD)-fed mice by femoral artery interruption, after which photoactivated and non-light-treated ASCs were injected into the tail vein of mice. Laser Doppler imaging was conducted to measure the blood flow reperfusion. Capillary density was measured in the ischaemic gastrocnemius muscle. mRNA levels of angiogenic factors were determined by reverse-transcription polymerase chain reaction. Flow cytometry was used to determine the characterization of ASCs and endothelial progenitor cell (EPC). Human ASCs secretomes were analysed by liquid chromatography tandem mass spectrometry. RESULTS Our study demonstrated that photoactivated ND-ASCs prolonged functional blood flow perfusion and increased ASCs-derived EPC and neovascularization 38 days after ligation, when compared with saline-treated controls. Profiling analysis in ischaemic muscles showed upregulation of genes associated with pro-angiogenic factors after injection of photoactivated ND-ASCs when compared with the non-light-treated ASCs or saline treated HFD mice. Mass spectrometry revealed that light-treated ASCs conditioned medium retained a more complete pro-angiogenic activity with significant upregulation of angiogenesis related proteins. CONCLUSION Our data demonstrates that photoactivated ND-ASCs improve blood flow recovery and their injection may prove to be a useful strategy for the prevention and treatment of diabetic peripheral arterial disease.
Collapse
Affiliation(s)
- Xin Fan
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Kai Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Luochen Zhu
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Xin Deng
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Ziqian Feng
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Chunrong Xu
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Sijing Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| |
Collapse
|
16
|
Zhu D, Johnson TK, Wang Y, Thomas M, Huynh K, Yang Q, Bond VC, Chen YE, Liu D. Macrophage M2 polarization induced by exosomes from adipose-derived stem cells contributes to the exosomal proangiogenic effect on mouse ischemic hindlimb. Stem Cell Res Ther 2020; 11:162. [PMID: 32321589 PMCID: PMC7178595 DOI: 10.1186/s13287-020-01669-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/10/2020] [Accepted: 04/01/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND M2 macrophages and exosomes from adipose-derived stem cells (ASCs) are both reported to promote angiogenesis. However, the possible synergistic effects between exogenous exosomes and endogenous M2 macrophages are poorly understood. METHODS Exosomes were isolated from conditioned medium of normoxic and hypoxic ASCs using the combined techniques of ultrafiltration and size-exclusion chromatography and were identified with nanoparticle tracking analysis and immunoblotting for exosomal markers. Macrophages were collected from the mouse peritoneal cavity. M1 and M2 macrophages were detected by immunoblotting for the intracellular markers inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-1) and by flow cytometry for the surface markers F4/80, CD86, and CD206. Murine models of Matrigel plug and hindlimb ischemia were employed as in vivo angiogenic assays. RESULTS When M1 macrophages were treated with exosomes from normoxic ASCs (Nor/Exo), and particularly from hypoxic ASCs (Hyp/Exo), the expression of the M1 marker iNOS decreased, and the M2 marker Arg-1 increased in a time- and dose-dependent manner. Additionally, a decrease in the M1 surface marker CD86 and an increase in the M2 surface marker CD206 were observed, which suggested that M1 macrophages were polarized to an M2-like phenotype. Conditioned medium from these M2-like macrophages presented lower levels of proinflammatory cytokines and higher levels of proangiogenic factors and promoted endothelial cell proliferation, migration, and tube formation. Furthermore, M2 polarization and angiogenesis were induced upon the administration of exosomes in mouse Matrigel plug and hindlimb ischemia (HLI) models. Interestingly, these exosomal effects were attenuated by using a colony stimulating factor 1 receptor (CSF-1R) inhibitor, BLZ945, in vitro and in vivo. Downregulation of microRNA-21 (miR-21) in hypoxic ASCs reduced the exosomal effects on M2 polarization, Akt phosphorylation, and CSF-1 secretion. A similar reduction in exosomal activity was also observed when exosomes were administered along with BLZ945. CONCLUSION Our findings provide evidence that exosomes from ASCs polarize macrophages toward an M2-like phenotype, which further enhances the exosomal proangiogenic effects. Exosomal delivery of miR-21 and positive feedback of secreted CSF-1 may be involved in macrophage polarization.
Collapse
Affiliation(s)
- Dihan Zhu
- Cardiovascular Research Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Takerra K Johnson
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, MD, USA
| | - Yang Wang
- Cardiovascular Research Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Miracle Thomas
- Cardiovascular Research Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Ky Huynh
- Cardiovascular Research Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Qinglin Yang
- Department of Pharmacology, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Vincent C Bond
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Y Eugene Chen
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Dong Liu
- Cardiovascular Research Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA. .,Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
17
|
Ceccarelli S, Pontecorvi P, Anastasiadou E, Napoli C, Marchese C. Immunomodulatory Effect of Adipose-Derived Stem Cells: The Cutting Edge of Clinical Application. Front Cell Dev Biol 2020; 8:236. [PMID: 32363193 PMCID: PMC7180192 DOI: 10.3389/fcell.2020.00236] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose-derived stem cells (ASCs) represent a promising tool for soft tissue engineering as well as for clinical treatment of inflammatory and autoimmune pathologies. The well-characterized multi-differentiation potential and self-renewal properties of ASCs are coupled with their immunomodulatory ability in providing therapeutic efficacy. Yet, their impact in immune or inflammatory disorders might rely both on cell contact-dependent mechanisms and paracrine effects, resulting in the release of various soluble factors that regulate immune cells functions. Despite the widespread use of ASCs in clinical trials addressing several pathologies, the pathophysiological mechanisms at the basis of their clinical use have been not yet fully investigated. In particular, a thorough analysis of ASC immunomodulatory potential is mandatory. Here we explore such molecular mechanisms involved in ASC immunomodulatory properties, emphasizing the relevance of the milieu composition. We review the potential clinical use of ASC secretome as a mediator for immunomodulation, with a focus on in vitro and in vivo environmental conditions affecting clinical outcome. We describe some potential strategies for optimization of ASCs immunomodulatory capacity in clinical settings, which act either on adult stem cells gene expression and local microenvironment. Finally, we discuss the limitations of both allogeneic and autologous ASC use, highlighting the issues to be fixed in order to significantly improve the efficacy of ASC-based cell therapy.
Collapse
Affiliation(s)
- Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Paola Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Eleni Anastasiadou
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, Università della Campania “Luigi Vanvitelli”, Naples, Italy
- IRCCS SDN, Naples, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Petrenko Y, Vackova I, Kekulova K, Chudickova M, Koci Z, Turnovcova K, Kupcova Skalnikova H, Vodicka P, Kubinova S. A Comparative Analysis of Multipotent Mesenchymal Stromal Cells derived from Different Sources, with a Focus on Neuroregenerative Potential. Sci Rep 2020; 10:4290. [PMID: 32152403 PMCID: PMC7062771 DOI: 10.1038/s41598-020-61167-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) can be considered an accessible therapeutic tool for regenerative medicine. Here, we compared the growth kinetics, immunophenotypic and immunomodulatory properties, gene expression and secretome profile of MSCs derived from human adult bone marrow (BM-MSCs), adipose tissue (AT-MSCs) and Wharton’s jelly (WJ-MSCs) cultured in clinically-relevant conditions, with the focus on the neuroregenerative potential. All the cell types were positive for CD10/CD29/CD44/CD73/CD90/CD105/HLA-ABC and negative for CD14/CD45/CD235a/CD271/HLA-DR/VEGFR2 markers, but they differed in the expression of CD34/CD133/CD146/SSEA-4/MSCA-1/CD271/HLA-DR markers. BM-MSCs displayed the highest immunomodulatory activity compared to AT- and WJ-MSCs. On the other hand, BM-MSCs secreted the lower content and had the lower gene expression of neurotrophic growth factors compared to other cell lines, which may be caused by the higher sensitivity of BM-MSCs to nutrient limitations. Despite the differences in growth factor secretion, the MSC secretome derived from all cell sources had a pronounced neurotrophic potential to stimulate the neurite outgrowth of DRG-neurons and reduce the cell death of neural stem/progenitor cells after H2O2 treatment. Overall, our study provides important information for the transfer of basic MSC research towards clinical-grade manufacturing and therapeutic applications.
Collapse
Affiliation(s)
- Yuriy Petrenko
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic.
| | - Irena Vackova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Kristyna Kekulova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic.,2nd Medical Faculty, Charles University, V Uvalu 84, 15006, Prague, Czech Republic
| | - Milada Chudickova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Zuzana Koci
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Karolina Turnovcova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Helena Kupcova Skalnikova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Petr Vodicka
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Sarka Kubinova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic.
| |
Collapse
|
19
|
Onoi Y, Hiranaka T, Nishida R, Takase K, Fujita M, Hida Y, Fujishiro T, Okamoto K. Second-look arthroscopic findings of cartilage and meniscus repair after injection of adipose-derived regenerative cells in knee osteoarthrits: Report of two cases. Regen Ther 2019; 11:212-216. [PMID: 31489345 PMCID: PMC6715888 DOI: 10.1016/j.reth.2019.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 07/21/2019] [Accepted: 07/26/2019] [Indexed: 01/05/2023] Open
Abstract
Background The purpose of this study was to use second-look arthroscopic findings and clinical assessment to determine outcome in two cases of knee osteoarthritis treated by intra-articular knee injection of adipose-derived regenerative cells (ADRCs). Case presentation This study involved two patients who received ADRC therapy for knee osteoarthritis and completed the six-month post-treatment follow-up period. For each treatment, 130 mL of subcutaneous adipose tissue was harvested using tumescent liposuction technique and manual aspiration of tissue from the thigh using a suction cannula under local anesthesia in the operating room. The adipose tissue harvested was processed using the Celution® Centrifuge in a dedicated cell processing room. The ADRCs were injected into the articular cavity of both knees for one patient and into a single affected knee in the second patient (three joints). Pain and knee function were assessed using a Visual Analogue Scale (VAS) and the Knee Outcome in Osteoarthritis Score (KOOS) respectively. The cartilage defect was assessed by direct visualization (arthroscopy). No serious adverse events were reported throughout follow-up. Pain and knee function were significantly improved from baseline in all treated knees at one, three and six months after ADRCs. At six-months after ADRCs treatment, the second-look arthroscopy showed that almost all the cartilage defect areas were covered by regenerated cartilage, some cartilage fibrillation area was reduced, and meniscus tear areas were repaired. Conclusions Cartilage and meniscus repair were observed six-months after ADRCs therapy under second-look arthroscopy. It was shown that a single administration of ADRCs might be effective as a treatment for knee osteoarthritis.
Collapse
Affiliation(s)
- Yuma Onoi
- Department of Orthopaedic Surgery and Joint Surgery Centre, Takatsuki General Hospital, 1-3-13, Kosobe-Cho, Takatsuki City, Osaka 561-1115, Japan
| | - Takafumi Hiranaka
- Department of Orthopaedic Surgery and Joint Surgery Centre, Takatsuki General Hospital, 1-3-13, Kosobe-Cho, Takatsuki City, Osaka 561-1115, Japan
| | - Ryota Nishida
- Department of Orthopaedic Surgery and Joint Surgery Centre, Takatsuki General Hospital, 1-3-13, Kosobe-Cho, Takatsuki City, Osaka 561-1115, Japan
| | - Kyohei Takase
- Department of Orthopaedic Surgery and Joint Surgery Centre, Takatsuki General Hospital, 1-3-13, Kosobe-Cho, Takatsuki City, Osaka 561-1115, Japan
| | - Masahiro Fujita
- Department of Orthopaedic Surgery and Joint Surgery Centre, Takatsuki General Hospital, 1-3-13, Kosobe-Cho, Takatsuki City, Osaka 561-1115, Japan
| | - Yuichi Hida
- Department of Orthopaedic Surgery and Joint Surgery Centre, Takatsuki General Hospital, 1-3-13, Kosobe-Cho, Takatsuki City, Osaka 561-1115, Japan
| | - Takaaki Fujishiro
- Department of Orthopaedic Surgery and Joint Surgery Centre, Takatsuki General Hospital, 1-3-13, Kosobe-Cho, Takatsuki City, Osaka 561-1115, Japan
| | - Koji Okamoto
- Department of Orthopaedic Surgery and Joint Surgery Centre, Takatsuki General Hospital, 1-3-13, Kosobe-Cho, Takatsuki City, Osaka 561-1115, Japan
| |
Collapse
|
20
|
Li X, Ma T, Sun J, Shen M, Xue X, Chen Y, Zhang Z. Harnessing the secretome of adipose-derived stem cells in the treatment of ischemic heart diseases. Stem Cell Res Ther 2019; 10:196. [PMID: 31248452 PMCID: PMC6598280 DOI: 10.1186/s13287-019-1289-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adipose-derived stem cells (ASCs) are promising therapeutic cells for ischemic heart diseases, due to the ease and efficiency of acquisition, the potential of myocardial lineage differentiation, and the paracrine effects. Recently, many researchers have claimed that the ASC-based myocardial repair is mainly attributed to its paracrine effects, including the anti-apoptosis, pro-angiogenesis, anti-inflammation effects, and the inhibition of fibrosis, rather than the direct differentiation into cardiovascular lineage cells. However, the usage of ASCs comes with the problems of low cardiac retention and survival after transplantation, like other stem cells, which compromises the effectiveness of the therapy. To overcome these drawbacks, researchers have proposed various strategies for improving survival rate and ensuring sustained paracrine secretion. They also investigated the safety and efficacy of phase I and II clinical trials of ASC-based therapy for cardiovascular diseases. In this review, we will discuss the characterization and paracrine effects of ASCs on myocardial repair, followed by the strategies for stimulating the paracrine secretion of ASCs, and finally their clinical usage.
Collapse
Affiliation(s)
- Xiaoting Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China
| | - Teng Ma
- Department of Cardiovascular Surgery, The First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Jiacheng Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Mingjing Shen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China
| | - Xiang Xue
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China
| | - Yongbing Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China.
| | - Zhiwei Zhang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China.
| |
Collapse
|
21
|
Shang T, Li S, Zhang Y, Lu L, Cui L, Guo FF. Hypoxia promotes differentiation of adipose-derived stem cells into endothelial cells through demethylation of ephrinB2. Stem Cell Res Ther 2019; 10:133. [PMID: 31109374 PMCID: PMC6528245 DOI: 10.1186/s13287-019-1233-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/06/2019] [Accepted: 04/10/2019] [Indexed: 01/22/2023] Open
Abstract
Background Delivery of endothelial cells into the ischemic tissue is emerging as an alternative approach in revascularization of injured tissues by means of angiogenesis to restore organ function. Adipose-derived stem cells (ASCs) are a readily accessible source of the mesenchymal stem cell with rapid expansion and multidifferentiation potential. The view has emerged that endothelial cells (ECs) differentiated from ASCs is a step forward for adult vascular repair in regenerative medicine and construction of the blood vessel by tissue engineering approach. Methods In this study, differentiation of human ASCs (hASCs) into vascular EC lineage was induced by combined treatment of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-4 (BMP4) under hypoxia condition. The expression of CD31, VEGF-R2, and VE-cadherin was determined by immunofluorescent staining, real-time PCR, and western blot analysis. These differentiated cells acquired functional characteristics of mature ECs as determined by their tube formation ability, DiI-ac-LDL uptake, and nitric oxide secretion in vitro. The methylation status in the proximal promoter CpGs was determined by bisulfite sequencing. Results hASCs expressed endothelial cell markers including CD31, VEGF-R2, and VE-cadherin by combined treatment of VEGF and BMP4 under hypoxia condition. These differentiated cells exhibited the angiogenesis potential in vitro, and injection of these differentiated cells enhanced angiogenesis in the ischemic hindlimb of diabetic mice. Furthermore, it was found that hypoxia increased significantly EphrinB2 expression EC differentiation, which is greatly downregulated with EphrinB2 blockage. The methylation status in the proximal promoter CpG results showed that methylation of EphrinB2 promoter decreased in hASCs with exposure to hypoxia. Conclusion Our data demonstrate that hASCs can be efficiently induced to differentiate into vascular EC lineages which are mediated by demethylation of ephrinB2 under hypoxia condition.
Collapse
Affiliation(s)
- Ting Shang
- Department of Plastic Surgery, Beijing Shijitan Hospital affiliated to Capital Medical University, 10 Tieyi Road, Beijing, China
| | - Shuaijun Li
- Department of Plastic Surgery, Beijing Shijitan Hospital affiliated to Capital Medical University, 10 Tieyi Road, Beijing, China
| | - Yun Zhang
- Department of Plastic Surgery, Beijing Shijitan Hospital affiliated to Capital Medical University, 10 Tieyi Road, Beijing, China
| | - Laiya Lu
- Department of Orthopedics, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, China
| | - Lei Cui
- Department of Plastic Surgery, Beijing Shijitan Hospital affiliated to Capital Medical University, 10 Tieyi Road, Beijing, China. .,Department of Orthopedics, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, China.
| | - Fang Fang Guo
- Department of Plastic and Reconstructive surgery, Zhongda Hospital, Southeast University, 87 Dingjiaqiao street, Nanjing, Jiangsu Province, China.
| |
Collapse
|
22
|
Chen L, Zhang Y, Chen H, Zhang X, Liu X, He Z, Cong P, Chen Y, Mo D. Comparative Transcriptome Analysis Reveals a More Complicated Adipogenic Process in Intramuscular Stem Cells than That of Subcutaneous Vascular Stem Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4700-4708. [PMID: 30929441 DOI: 10.1021/acs.jafc.9b00856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fat-related traits have great influences on pork quality. As different fat tissues have different biochemical profiles depending on their location, intramuscular fat contributes to gustatory qualities, while subcutaneous fat is considered as a negative factor associated with growth performance. In this study, both primary intramuscular and subcutaneous vascular stem cells (IVSCs and SVSCs) could be differentiated into mature adipocytes, though the IVSC differentiation efficiency was lower. By comparative analysis of transcriptomes, 2524 differentially expressed genes (DEGs) were found between two VSCs before differentiation, while only 551 DEGs were found and enriched in two pathways including biosynthesis of unsaturated fatty acids after differentiation. This result indicated that differentiated VSCs were more similar. During differentiation, more DEGs existed in IVSCs than that in SVSCs, suggesting that adipogenesis of IVSCs might be more complex. Additionally, the expression level of DEGs involved in the adipogenic process helps to explain the difference of differentiation efficiency between IVSCs and SVSCs.
Collapse
Affiliation(s)
- Luxi Chen
- State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , P.R. China
| | - Yue Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , P.R. China
| | - Hu Chen
- State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , P.R. China
| | - Xumeng Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , P.R. China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , P.R. China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , P.R. China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , P.R. China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , P.R. China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , P.R. China
| |
Collapse
|
23
|
Gentile P, Casella D, Palma E, Calabrese C. Engineered Fat Graft Enhanced with Adipose-Derived Stromal Vascular Fraction Cells for Regenerative Medicine: Clinical, Histological and Instrumental Evaluation in Breast Reconstruction. J Clin Med 2019; 8:504. [PMID: 31013744 PMCID: PMC6518258 DOI: 10.3390/jcm8040504] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 03/31/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
The areas in which Stromal Vascular Fraction cells (SVFs) have been used include radiotherapy based tissue damage after mastectomy, breast augmentation, calvarial defects, Crohn's fistulas, and damaged skeletal muscle. Currently, the authors present their experience using regenerative cell therapy in breast reconstruction. The goal of this study was to evaluate the safety and efficacy of the use of Engineered Fat Graft Enhanced with Adipose-derived Stromal Vascular Fraction cells (EF-e-A) in breast reconstruction. 121 patients that were affected by the outcomes of breast oncoplastic surgery were treated with EF-e-A, comparing the results with the control group (n = 50) treated with not enhanced fat graft (EF-ne-A). The preoperative evaluation included a complete clinical examination, a photographic assessment, biopsy, magnetic resonance (MRI) of the soft tissue, and ultrasound (US). Postoperative follow-up took place at two, seven, 15, 21, 36 weeks, and then annually. In 72.8% (n = 88) of breast reconstruction treated with EF-e-A, we observed a restoration of the breast contour and an increase of 12.8 mm in the three-dimensional volume after 12 weeks, which was only observed in 27.3% (n = 33) of patients in the control group that was treated with EF-ne-A. Transplanted fat tissue reabsorption was analyzed with instrumental MRI and US. Volumetric persistence in the study group was higher (70.8%) than that in the control group (41.4%) (p < 0.0001 vs. control group). The use of EF-e-A was safe and effective in this series of treated cases.
Collapse
Affiliation(s)
- Pietro Gentile
- Department of Surgical Science, Plastic and Reconstructive Surgery Unit, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Donato Casella
- The Oncologic and Reconstructive Surgery Breast Unit, Oncology Department, Careggi University Hospital, 50134 Florence, Italy.
- Department of Oncologic and Reconstructive Breast Surgery, "Breast Unit Integrata di Livorno, Cecina, Piombino, Elba, Azienda USL Toscana nord ovest", 50132 Livorno, Italy.
| | - Enza Palma
- The Oncologic and Reconstructive Surgery Breast Unit, Oncology Department, Careggi University Hospital, 50134 Florence, Italy.
- Breast Surgical Oncology Unit, General Hospital, 41125 Modena, Italy.
| | - Claudio Calabrese
- The Oncologic and Reconstructive Surgery Breast Unit, Oncology Department, Careggi University Hospital, 50134 Florence, Italy.
- San Rossore Breast Unit, 56122 Pisa, Italy.
| |
Collapse
|
24
|
Gentile P, Piccinno MS, Calabrese C. Characteristics and Potentiality of Human Adipose-Derived Stem Cells (hASCs) Obtained from Enzymatic Digestion of Fat Graft. Cells 2019; 8:282. [PMID: 30934588 PMCID: PMC6469026 DOI: 10.3390/cells8030282] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/08/2019] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
Human adipose-derived stem cells localize in the stromal-vascular portion, and can be ex vivo isolated using a combination of washing steps and enzymatic digestion. For this study, we undertook a histological evaluation of traditional fat graft compared with fat graft enriched with stromal vascular fraction cells isolated by the Celution™ system to assess the interactions between cells and adipose tissue before the breast injection. In addition, we reported on histological analyses of biopsies derived from fat grafted (traditional or enriched with SVFs) in the breast in order to assess the quality of the adipose tissue, fibrosis and vessels. The hASCs derived from enzymatic digestion were systematically characterized for growth features, phenotype and multi-potent differentiation potential. They fulfill the definition of mesenchymal stem cells, albeit with a higher neural phenotype profile. These cells also express genes that constitute the core circuitry of self-renewal such as OCT4, SOX2, NANOG and neurogenic lineage genes such as NEUROD1, PAX6 and SOX3. Such findings support the hypothesis that hASCs may have a potential usefulness in neurodegenerative conditions. These data can be helpful for the development of new therapeutic approaches in personalized medicine to assess safety and efficacy of the breast reconstruction.
Collapse
Affiliation(s)
- Pietro Gentile
- Department of Surgical Science, University of Rome Tor Vergata, Rome 00133, Italy.
| | - Maria Serena Piccinno
- Scientific and Technological Park fo Medicine "Mario Veronesi", via 29 Maggio, 6, 41037 Mirandola, Italy.
| | - Claudio Calabrese
- The Oncologic and Reconstructive Surgery Breast Unit, Oncology Department, Careggi University Hospital, Firenze 50134, Italy.
- San Rossore Breast Unit, Pisa 56122, Italy.
| |
Collapse
|
25
|
Ying CC, Yang M, Wang Y, Guo YL, Hu WL, Zheng XM. Neural-like cells from adipose-derived stem cells for cavernous nerve injury in rats. Neural Regen Res 2019; 14:1085-1090. [PMID: 30762023 PMCID: PMC6404503 DOI: 10.4103/1673-5374.250630] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although the remaining nerve tissue can regenerate and partly restore erectile function when the cavernous nerve is compressed/severed and function lost, the limited regenerative ability of these nerve tissues often fails to meet clinical needs. Adipose-derived stem cells are easy to obtain and culture, and can differentiate into neural cells. Their proliferation rate is easy to control and they may be used to help restore injured cavernous nerve function. Sprague-Dawley male rats (n = 45) were equally randomized into three groups: fifteen rats as a sham-operated group, fifteen rats as a bilateral nerve crush (BINC) group (with no further intervention), fifteen rats as a BINC with intracavernous injection of one million neural-like cells from adipose-derived stem cells (NAS) (BINC + NAS) group. After 4 weeks, erectile function was assessed by stimulating the cavernous body. The number of myelinated axons in the dorsal cavernous nerve was determined by toluidine blue staining. The area of neuronal nitric oxide synthase-positive fibers in the dorsal penile nerve was measured by immunohistochemical staining. Masson staining was used to analyze the ratio of smooth muscle to collagen in penile tissue. The results demonstrate that maximal intracavernous pressure, the ratio of maximal intracavernous pressure to mean arterial pressure, the numbers of myelinated axons and neuronal nitric oxide synthase-positive fibers in the dorsal penile nerve, and the ratio of smooth muscle to collagen could be increased after cell transplantation. These findings indicate that neural-like cells from adipose-derived stem cells can effectively alleviate cavernous nerve injury and improve erectile function. All animal experiments were approved by the Animal Ethics Committee of Huazhong University of Science and Technology, China (approval No. 2017-1925) on September 15, 2017.
Collapse
Affiliation(s)
- Cheng-Cheng Ying
- Department of Urology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Mei Yang
- Department of Endocrinology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei Province, China
| | - Yong Wang
- Department of Urology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yong-Lian Guo
- Department of Urology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wan-Li Hu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xin-Min Zheng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
26
|
Vescovo G, Castellani C, Fedrigo M, Virzì GM, Vescovo GM, Tavano R, Pozzobon M, Angelini A. Stem cells transplantation positively modulates the heart-kidney cross talk in cardiorenal syndrome type II. Int J Cardiol 2018; 275:136-144. [PMID: 30509369 DOI: 10.1016/j.ijcard.2018.10.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 12/28/2022]
Abstract
INTRODUCTION We investigated the effects of human amniotic fluid stem cells (hAFS) and rat adipose tissue stromal vascular fraction GFP-positive cells (rSVC-GFP) in a model of cardio-renal syndrome type II (CRSII). METHODS AND RESULTS RHF was induced by monocrotaline (MCT) in 28 Sprague-Dawley rats. Three weeks later, four million hAFS or rSVC-GFP cells were injected via tail vein. BNP, sCreatinine, kidney and heart NGAL and MMP9, sCytokines, kidney and heart apoptosis and cells (Cs) engraftment were evaluated. Cell-treated rats showed a significant reduction of serum NGAL and Creatinine compared to CRSII. In both hAFS and rSVC-GFP group, kidney protein expression of NGAL was significantly lower than in CRSII (hAFS p = 0.036 and rSVC-GFP p < 0.0001) and similar to that of controls. In both hAFS and rSVC-GFP treated rats, we observed cell engraftment in the medulla and differentiation into tubular, endothelial and SMCs cells. Apoptosis was significantly decreased in cell-treated rats (hAFS 14.07 ± 1.38 and rSVC-GFP 12.67 ± 2.96 cells/mm2) and similar to controls (9.85 ± 2.1 cell/mm2). TUNEL-positive cells were mainly located in the kidney medulla. Pro-inflammatory cytokines were down regulated in cell-treated groups and similar to controls. In cell-treated rats, kidney and heart tissue NGAL was not complexed with MMP9 as in CRSII group, suggesting inhibition of MMPs activity. CONCLUSION Cell therapy produced improvement in kidney function in rats with CRSII. This was the result of interstitial, vessel and tubular cell engraftment leading to tubular and vessel regeneration, decreased tubular cells apoptosis and mitigated pro-inflammatory milieu. Reduction of NGLA-MMP9 complexes mainly due to decrease MMPs activity prevented further negative heart remodeling.
Collapse
Affiliation(s)
| | - Chiara Castellani
- Dept. Cardiac Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Marny Fedrigo
- Dept. Cardiac Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Grazia Maria Virzì
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, Vicenza, Italy; IRRIV-International Renal Resarch Institute Vicenza, San Bortolo Hospital, Vicenza, Italy
| | | | - Regina Tavano
- Dept. Biomedical Sciences, University of Padua, Italy
| | - Michela Pozzobon
- Dept. Women and Children Health, University of Padua, Italy; Insitute of Pediatric Research Città della Speranza, Padova, Italy
| | - Annalisa Angelini
- Dept. Cardiac Thoracic, Vascular Sciences and Public Health, University of Padua, Italy.
| |
Collapse
|
27
|
Lu T, Pei W, Wang K, Zhang S, Chen F, Wu Y, Guan W. In vitro culture and biological properties of broiler adipose-derived stem cells. Exp Ther Med 2018; 16:2399-2407. [PMID: 30210592 PMCID: PMC6122567 DOI: 10.3892/etm.2018.6445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 05/04/2018] [Indexed: 02/07/2023] Open
Abstract
In the past 10 years, adipose-derived stem cells (ADSCs) have been applied due to their pluripotency. Experimental tissues have been frequently obtained from mammals, including rabbits, mice and humans, but rarely from broilers, Gallus gallus domesticus. In the present study, ADSCs were obtained from 20-day-old broiler embryos. Primary ADSCs were sub-cultured to passage 37 in vitro. The surface markers of ADSCs, namely CD29, CD31, CD44, CD71 and CD73, were detected by reverse transcription polymerase chain reaction and immunofluorescence assays. The result indicated that CD29, CD44, CD71 and CD73 were expressed on the surface of cells at various passages, but not CD31. The growth curve of cells at the different passages had a typical sigmoidal shape. Furthermore, ADSCs were successfully induced to differentiate into osteoblasts, adipocytes and hepatocyte-like cells. The results denote that the ADSCs isolated from broilers have similar biological properties to those of ADSCs obtained from other animals. The present study provided a theoretical and experimental foundation for the use of poultry as a source of stem cells, and laid a foundation for adipose tissue engineering and strategies in regenerative medicine.
Collapse
Affiliation(s)
- Tengfei Lu
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100193, P.R. China
| | - Wenhua Pei
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100193, P.R. China
| | - Kunfu Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Shuang Zhang
- Scientific Experiment Research Center, Harbin Sport University, Harbin, Heilongjiang 150008, P.R. China
| | - Fenghao Chen
- College of Human Movement Science, Harbin Sport University, Harbin, Heilongjiang 150008, P.R. China
| | - Yangnan Wu
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100193, P.R. China
| | - Weijun Guan
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100193, P.R. China
| |
Collapse
|
28
|
Bader AS, Levsky JM, Zalta BA, Shmukler A, Gohari A, Jain VR, Chernyak V, Lovihayeem M, Bellin EY, Haramati LB. Ventricular Myocardial Fat: An Unexpected Biomarker for Long-term Survival? Eur Radiol 2018; 29:241-250. [DOI: 10.1007/s00330-018-5546-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/09/2018] [Accepted: 05/16/2018] [Indexed: 11/28/2022]
|
29
|
Madonna R, Pieragostino D, Balistreri CR, Rossi C, Geng YJ, Del Boccio P, De Caterina R. Diabetic macroangiopathy: Pathogenetic insights and novel therapeutic approaches with focus on high glucose-mediated vascular damage. Vascul Pharmacol 2018; 107:S1537-1891(17)30322-1. [PMID: 29425894 DOI: 10.1016/j.vph.2018.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/22/2017] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
Abstract
Diabetic macroangiopathy - a specific form of accelerated atherosclerosis - is characterized by intra-plaque new vessel formation due to excessive/abnormal neovasculogenesis and angiogenesis, increased vascular permeability of the capillary vessels, and tissue edema, resulting in frequent atherosclerotic plaque hemorrhage and plaque rupture. Mechanisms that may explain the premature and rapidly progressive nature of atherosclerosis in diabetes are multiple, and to a large extent still unclear. However, mechanisms related to hyperglycemia certainly play an important role. These include a dysregulated vascular regeneration. In addition, oxidative and hyperosmolar stresses, as well as the activation of inflammatory pathways triggered by a dysregulated activation of membrane channel proteins aquaporins, have been recognized as key events. Here, we review recent knowledge of cellular and molecular pathways of macrovascular disease related to hyperglycemia in diabetes. We also here highlight how new insights into pathogenic mechanisms of vascular damage in diabetes may indicate new targets for prevention and treatment.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Center of Aging Sciences and Translational Medicine - CESI-MeT, Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy; Center for Cardiovascular Biology and Atherosclerosis Research, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Damiana Pieragostino
- Analitical Biochemistry and Proteomics Unit Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy
| | - Carmela Rita Balistreri
- Department of Patho-biology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Claudia Rossi
- Analitical Biochemistry and Proteomics Unit Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy
| | - Yong-Jian Geng
- Center for Cardiovascular Biology and Atherosclerosis Research, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Piero Del Boccio
- Analitical Biochemistry and Proteomics Unit Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy
| | - Raffaele De Caterina
- Center of Aging Sciences and Translational Medicine - CESI-MeT, Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
30
|
Abstract
Adipose-derived stem/stromal cells (ASCs), together with adipocytes, vascular endothelial cells, and vascular smooth muscle cells, are contained in fat tissue. ASCs, like the human bone marrow stromal/stem cells (BMSCs), can differentiate into several lineages (adipose cells, fibroblast, chondrocytes, osteoblasts, neuronal cells, endothelial cells, myocytes, and cardiomyocytes). They have also been shown to be immunoprivileged, and genetically stable in long-term cultures. Nevertheless, unlike the BMSCs, ASCs can be easily harvested in large amounts with minimal invasive procedures. The combination of these properties suggests that these cells may be a useful tool in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Simone Ciuffi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Roberto Zonefrati
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| |
Collapse
|
31
|
Lin YH, Huang KW, Chen SY, Cheng NC, Yu J. Keratin/chitosan UV-crosslinked composites promote the osteogenic differentiation of human adipose derived stem cells. J Mater Chem B 2017; 5:4614-4622. [PMID: 32264304 DOI: 10.1039/c7tb00188f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Keratin has intrinsic biocompatibility and contains several peptide-binding motifs that support the attachment of a wide variety of cell types. We have previously shown that keratin extracted from human hair can promote cell adhesion and proliferation of 3T3 fibroblasts, MG63 osteoblasts, and human adipose stem cells (hASCs). Despite its bioactivity advantages, keratin possesses fragile mechanical properties that introduce challenges for tissue engineering. To remedy this, we examined the results of combining keratin with chitosan, a combination facilitated via induction of an azide functional group, which acted as a photocrosslinker, to improve mechanical strength. Analysis of the keratin/chitosan composite showed that films of this material demonstrated good adhesion and promoted the proliferation of human adipose stem cells. Most importantly, this biomaterial was shown to promote the osteogenic differentiation of hASCs, in terms of up-regulations in type I collagen, runt-related transcription factor 2, and alkaline phosphatase gene expression. We further demonstrated that lyophilizing the keratin/chitosan forms highly interconnected and porous scaffolds that might provide an ideal environment for tissue culture. We believe that keratin/chitosan composite biomaterials can be used in bioactive surface modification, and the crosslinkable properties can produce natural polymer 3D scaffolds for the application of tissue engineering research.
Collapse
Affiliation(s)
- Yung-Hao Lin
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | | | | | | | | |
Collapse
|
32
|
Zhao L, Johnson T, Liu D. Therapeutic angiogenesis of adipose-derived stem cells for ischemic diseases. Stem Cell Res Ther 2017; 8:125. [PMID: 28583178 PMCID: PMC5460534 DOI: 10.1186/s13287-017-0578-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ischemic diseases, the leading cause of disability and death, are caused by the stenosis or obstruction of arterioles/capillaries that is not compensated for by vessel dilatation or collateral circulation. Angiogenesis is a complex process leading to new blood vessel formation and is triggered by ischemic conditions. Adequate angiogenesis, as a compensatory mechanism in response to ischemia, may increase oxygen and nutrient supplies to tissues and protect their function. Therapeutic angiogenesis has been the most promising therapy for treating ischemic diseases. In recent years, stem cell transplantation has been recognized as a new technique with therapeutic angiogenic effects on ischemic diseases. Adipose-derived stem cells, characterized by their ease of acquisition, high yields, proliferative growth, and low immunogenicity, are an ideal cell source. In this review, the characterization of adipose-derived stem cells and the role of angiogenesis in ischemic attack are summarized. The angiogenic effects of adipose-derived stem cells are discussed from the perspectives of in-vitro, in-vivo, and clinical trial studies for the treatment of ischemic diseases, including ischemic cardiac, cerebral, and peripheral vascular diseases and wound healing. The microvesicles/exosomes released from adipose-derived stem cells are also presented as a novel therapeutic prospect for treating ischemic diseases.
Collapse
Affiliation(s)
- Lina Zhao
- Cardiovascular Research Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Takerra Johnson
- Cardiovascular Research Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Dong Liu
- Cardiovascular Research Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA.
| |
Collapse
|
33
|
Vilahur G, Oñate B, Cubedo J, Béjar MT, Arderiu G, Peña E, Casaní L, Gutiérrez M, Capdevila A, Pons-Lladó G, Carreras F, Hidalgo A, Badimon L. Allogenic adipose-derived stem cell therapy overcomes ischemia-induced microvessel rarefaction in the myocardium: systems biology study. Stem Cell Res Ther 2017; 8:52. [PMID: 28279225 PMCID: PMC5345145 DOI: 10.1186/s13287-017-0509-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022] Open
Abstract
Background Myocardial microvascular loss after myocardial infarction (MI) remains a therapeutic challenge. Autologous stem cell therapy was considered as an alternative; however, it has shown modest benefits due to the impairing effects of cardiovascular risk factors on stem cells. Allogenic adipose-derived stem cells (ASCs) may overcome such limitations, and because of their low immunogenicity and paracrine potential may be good candidates for cell therapy. In the present study we investigated the effects of allogenic ASCs and their released products on cardiac rarefaction post MI. Methods Pig subcutaneous adipose tissue ASCs were isolated, expanded and GFP-labeled. ASC angiogenic function was assessed by the in-vivo chick chorioallantoic membrane (CAM) model. Pigs underwent MI induction and 7 days after were randomized to receive: allogenic ASCs (intracoronary infusion); conditioned media (CM; intravenous infusion); ASCs + CM; or PBS/placebo (control). Cardiac damage and function were monitored by 3-T cardiac magnetic resonance imaging upon infusion (baseline CMR) and 1 and 3 weeks thereafter. We assessed in the myocardium: microvessel density; angiogenic markers (CD105, CD31, TF, VEGFR2, VEGFR1, vWF, eNOS, CD62); collagen deposition; and reparative fibrosis (TGFβ/TβRII/collagen). Differential proteomics of ASCs and CM was performed to characterize the ASC protein signature. Results CAM indicated a significant ASC proangiogenic capacity. In pigs after MI, only PBS/placebo animals displayed an impaired cardiac function 3 weeks after infusion (p < 0.05 vs baseline). Administration of ASCs + CM significantly enhanced neovessel formation and favored cardiac repair post MI (p < 0.05 vs the other groups). Molecular markers of angiogenesis were significantly upregulated both at transcriptional and protein levels (p < 0.05). The in-silico bioinformatics analysis of the ASC and CM proteome (interactome) indicated activation of a coordinated protein network involved in the formation of microvessels and the resolution of rarefaction. Conclusion Coadministration of allogenic ASCs and their CM synergistically contribute to the neovascularization of the infarcted myocardium through a coordinated upregulation of the proangiogenic protein interactome. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0509-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gemma Vilahur
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain.,CIBERCV, ISCIII, Madrid, Spain
| | - Blanca Oñate
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Judit Cubedo
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Maria Teresa Béjar
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Gemma Arderiu
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Esther Peña
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain.,CIBERCV, ISCIII, Madrid, Spain
| | - Laura Casaní
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain.,CIBERCV, ISCIII, Madrid, Spain
| | | | | | | | | | | | - Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain. .,CIBERCV, ISCIII, Madrid, Spain. .,Cardiovascular Research Chair, UAB (Autonomous University of Barcelona), Barcelona, Spain.
| |
Collapse
|
34
|
Joo HJ, Kim JH, Hong SJ. Adipose Tissue-Derived Stem Cells for Myocardial Regeneration. Korean Circ J 2017; 47:151-159. [PMID: 28382066 PMCID: PMC5378017 DOI: 10.4070/kcj.2016.0207] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/09/2016] [Accepted: 07/15/2016] [Indexed: 12/14/2022] Open
Abstract
Over the past decade, stem cell therapy has been extensively studied for clinical application for heart diseases. Among various stem cells, adipose tissue-derived stem cell (ADSC) is still an attractive stem cell resource due to its abundance and easy accessibility. In vitro studies showed the multipotent differentiation potentials of ADSC, even differentiation into cardiomyocytes. Many pre-clinical animal studies have also demonstrated promising therapeutic results of ADSC. Furthermore, there were several clinical trials showing the positive results in acute myocardial infarction using ADSC. The present article covers the brief introduction, the suggested therapeutic mechanisms, application methods including cell dose and delivery, and human clinical trials of ADSC for myocardial regeneration.
Collapse
Affiliation(s)
- Hyung Joon Joo
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Jong-Ho Kim
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Soon Jun Hong
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| |
Collapse
|
35
|
Kim JH, Joo HJ, Kim M, Choi SC, Lee JI, Hong SJ, Lim DS. Transplantation of Adipose-Derived Stem Cell Sheet Attenuates Adverse Cardiac Remodeling in Acute Myocardial Infarction. Tissue Eng Part A 2016; 23:1-11. [PMID: 27676105 DOI: 10.1089/ten.tea.2016.0023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Adipose-derived stem cell (ADSC) transplantation has been proposed to improve cardiac function and acute myocardial infarction (AMI). Recently, cell sheet technology has been investigated for its potential applicability in cardiac injury. However, a detailed comparison of the functional recovery in the injured myocardium between cell sheets and conventional cell injection has not been adequately examined. ADSCs were isolated from the inguinal fat tissue of ICR mice. Three groups of AMI induction only (sham), intramyocardial injection of ADSCs (imADSC), and ADSC sheet transplantation (shADSC) were compared by using rat AMI models. Engraftment of ADSCs was better sustained through 28 days in the shADSC group compared with the imADSC group. Ejection fraction was improved in both imADSC and shADSC groups compared with the sham group. Ventricular wall thickness in the infarct zone was higher in the shADSC group compared with both imADSC and sham groups. Growth factor and cytokine expression in the implanted heart tissue were higher in the shADSC group compared with both imADSC and sham groups. Furthermore, only the shADSC group showed donor-derived vessels at the peri-infarct zone. Taken together, these results indicate that, although shADSC resulted in a similar improvement in left ventricular systolic function, it significantly promoted cellular engraftment and upregulated growth factor and cytokine expression, and, ultimately, attenuated adverse cardiac remodeling in rat AMI models compared with imADSC.
Collapse
Affiliation(s)
- Jong-Ho Kim
- 1 Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University , Seoul, South Korea
| | - Hyung Joon Joo
- 1 Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University , Seoul, South Korea
| | - Mina Kim
- 1 Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University , Seoul, South Korea
| | - Seung-Cheol Choi
- 1 Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University , Seoul, South Korea
| | - Jeong Ik Lee
- 2 Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine and Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science & Technology (IBST), Konkuk University , Seoul, South Korea
| | - Soon Jun Hong
- 1 Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University , Seoul, South Korea
| | - Do-Sun Lim
- 1 Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University , Seoul, South Korea
| |
Collapse
|
36
|
ten Sande JN, Smit NW, Parvizi M, van Amersfoorth SC, Plantinga JA, van Dessel PF, de Bakker JM, Harmsen MC, Coronel R. Differential Mechanisms of Myocardial Conduction Slowing by Adipose Tissue-Derived Stromal Cells Derived from Different Species. Stem Cells Transl Med 2016; 6:22-30. [PMID: 28170198 PMCID: PMC5442737 DOI: 10.5966/sctm.2015-0415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/22/2016] [Indexed: 11/18/2022] Open
Abstract
Stem cell therapy is a promising therapeutic option to treat patients after myocardial infarction. However, the intramyocardial administration of large amounts of stem cells might generate a proarrhythmic substrate. Proarrhythmic effects can be explained by electrotonic and/or paracrine mechanisms. The narrow therapeutic time window for cell therapy and the presence of comorbidities limit the application of autologous cell therapy. The use of allogeneic or xenogeneic stem cells is a potential alternative to autologous cells, but differences in the proarrhythmic effects of adipose‐derived stromal cells (ADSCs) across species are unknown. Using microelectrode arrays and microelectrode recordings, we obtained local unipolar electrograms and action potentials from monolayers of neonatal rat ventricular myocytes (NRVMs) that were cocultured with rat, human, or pig ADSCs (rADSCs, hADSCs, pADSCs, respectively). Monolayers of NRVMs were cultured in the respective conditioned medium to investigate paracrine effects. We observed significant conduction slowing in all cardiomyocyte cultures containing ADSCs, independent of species used (p < .01). All cocultures were depolarized compared with controls (p < .01). Only conditioned medium taken from cocultures with pADSCs and applied to NRVM monolayers demonstrated similar electrophysiological changes as the corresponding cocultures. We have shown that independent of species used, ADSCs cause conduction slowing in monolayers of NRVMs. In addition, pADSCs exert conduction slowing mainly by a paracrine effect, whereas the influence on conduction by hADSCs and rADSCs is preferentially by electrotonic interaction. Stem Cells Translational Medicine2017;6:22–30
Collapse
Affiliation(s)
- Judith N. ten Sande
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Netherlands Heart Institute, Utrecht, The Netherlands
| | - Nicoline W. Smit
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Netherlands Heart Institute, Utrecht, The Netherlands
| | - Mojtaba Parvizi
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Shirley C.M. van Amersfoorth
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Josée A. Plantinga
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Pascal F.H.M. van Dessel
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jacques M.T. de Bakker
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Netherlands Heart Institute, Utrecht, The Netherlands
| | - Marco C. Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Ruben Coronel
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- L'Institut de Rythmologie et de Modélisation Cardiaque, Université Bordeaux, Segalen, Bordeaux, France
| |
Collapse
|
37
|
Iwanski J, Wong RK, Larson DF, Ferng AS, Runyan RB, Goldstein S, Khalpey Z. Remodeling an infarcted heart: novel hybrid treatment with transmyocardial revascularization and stem cell therapy. SPRINGERPLUS 2016; 5:738. [PMID: 27376006 PMCID: PMC4909685 DOI: 10.1186/s40064-016-2355-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/17/2016] [Indexed: 01/04/2023]
Abstract
Transmyocardial revascularization (TMR) has emerged as an additional therapeutic option for patients suffering from diffuse coronary artery disease (CAD), providing immediate angina relief. Recent studies indicate that the volume of surgical cases being performed with TMR have been steadily rising, utilizing TMR as an adjunctive therapy. Therefore the purpose of this review is to provide an up-to-date appreciation of the current state of TMR and its future developmental directions on CAD treatment. The current potential of this therapy focuses on the implementation of stem cells, in order to create a synergistic angiogenic effect while increasing myocardial repair and regeneration. Although TMR procedures provide increased vascularization within the myocardium, patients suffering from ischemic cardiomyopathy may not benefit from angiogenesis alone. Therefore, the goal of introducing stem cells is to restore the functional state of a failing heart by providing these cells with a favorable microenvironment that will enhance stem cell engraftment.
Collapse
Affiliation(s)
- Jessika Iwanski
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ USA ; Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona College of Medicine, P.O. Box 245071, 1501N. Campbell Avenue, Tucson, AZ 85724-5071 USA
| | - Raymond K Wong
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ USA
| | - Douglas F Larson
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona College of Medicine, P.O. Box 245071, 1501N. Campbell Avenue, Tucson, AZ 85724-5071 USA
| | - Alice S Ferng
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona College of Medicine, P.O. Box 245071, 1501N. Campbell Avenue, Tucson, AZ 85724-5071 USA ; Department of Physiological Sciences, University of Arizona College of Medicine, Tucson, AZ USA
| | - Raymond B Runyan
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ USA
| | | | - Zain Khalpey
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona College of Medicine, P.O. Box 245071, 1501N. Campbell Avenue, Tucson, AZ 85724-5071 USA ; Department of Physiological Sciences, University of Arizona College of Medicine, Tucson, AZ USA ; Banner University Medical Center, 1501N. Campbell Avenue, Room 4302A, Tucson, AZ 85724 USA ; Medical Research Building, 1656 E. Mabel St, Rm 120, Tucson, AZ USA
| |
Collapse
|
38
|
Tachida Y, Suda K, Nagase H, Shimada K, Isono F, Kobayashi H. Secreted factors from adipose tissue-derived mesenchymal stem cells suppress oxygen/glucose deprivation-induced cardiomyocyte cell death via furin/PCSK-like enzyme activity. Biochem Biophys Rep 2016; 7:266-272. [PMID: 28955916 PMCID: PMC5613516 DOI: 10.1016/j.bbrep.2016.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/09/2016] [Accepted: 07/01/2016] [Indexed: 11/05/2022] Open
Abstract
Clinical application of mesenchymal stem cells (MSCs) represents a potential novel therapy for currently intractable deteriorating diseases or traumatic injuries, including myocardial infarction. However, the molecular mechanisms of the therapeutic effects have not been precisely revealed. Herein, we report that conditioned media (CM) from rat adipose tissue-derived MSCs (ASCs) protected adult cardiomyocytes from oxygen/glucose deprivation (OGD)-induced cell death. We focused on furin/PCSK protease activity in ASC-CM because many therapeutic factors of MSCs and soluble cardioprotective factors include the PCSK cleavage site. We found that recombinant furin protected cardiomyocytes from OGD-induced cell death. The ASC-CM had potent furin/PCSK protease activity and the cardioprotective effect of the CM from ASCs in the OGD-assay was abolished by an inhibitor of the furin/PCSK-like enzyme. Microarray analysis and Western blot analysis showed PCSK5A, the secreted type of PCSK5, is the most abundantly secreted PCSK among 7 PCSK family members in ASC. Finally, knockdown of PCSK5A in ASCs decreased both the furin/PCSK protease activity and cardioprotective activity in the CM. These findings indicate an involvement of furin/PCSK-type protease(s) in the anti-ischemic activity of ASCs, and suggest a new mechanism of the therapeutic effect of MSCs. ASC-CM protects against OGD-induced cell death of adult cardiomyocytes. Furin/PCSK enzyme activity is protective against OGD-induced cell death. PCSK5A is the main component of cardioprotective activity of ASC-CM.
Collapse
Affiliation(s)
- Yuki Tachida
- Frontier Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Koji Suda
- Frontier Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Hiroyuki Nagase
- Frontier Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Kohei Shimada
- Frontier Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Fujio Isono
- Frontier Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Hideki Kobayashi
- Frontier Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
39
|
Autologous bone marrow concentrate enriched in progenitor cells — An adjuvant in the treatment of acute myocardial infarction. INTERNATIONAL JOURNAL OF THE CARDIOVASCULAR ACADEMY 2016. [DOI: 10.1016/j.ijcac.2016.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
40
|
Rubiano A, Qi Y, Guzzo D, Rathinasabapathy A, Rowe K, Pepine C, Simmons C. Stem cell therapy restores viscoelastic properties of myocardium in rat model of hypertension. J Mech Behav Biomed Mater 2016; 59:71-77. [PMID: 26748260 PMCID: PMC4860127 DOI: 10.1016/j.jmbbm.2015.11.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023]
Abstract
Extensive remodeling of the myocardium is seen in a variety of cardiovascular diseases, including systemic hypertension. Stem cell therapy has been proposed to improve the clinical outcomes of hypertension, and we hypothesized that changes in mechanical properties of the myocardium would accompany the progression of disease and the results of treatment conditions. Using spontaneously hypertensive rats (SHR) as a model of hypertension, we treated 13-week-old hypertensive rats with a single injection of adipose-derived stem cells (ADSC) isolated from a normotensive control. We indented the isolated ventricles of control, untreated sham-injected SHR, and ADSC-treated SHR hearts with a custom cantilever-based system and fit the resulting data to a standard linear solid model. SHR animals had higher blood pressure (198.4±25.9mmHg) and lower ejection fraction (69.9±4.2%) than age-matched control animals (109.0±1.6mmHg, 88.2±1.3%), and increased viscoelastic properties accompanied these clinical changes (right ventricle effective stiffness, SHR: 21.97±5.10kPa, Control: 13.14±3.48kPa). ADSC-treated animals saw improvement in clinical parameters compared to the untreated SHR group, which was also accompanied by a significant restoration of viscoelastic properties of the myocardium (ACSD-treated SHR: 9.77±6.96kPa).
Collapse
Affiliation(s)
- Andres Rubiano
- Department of Mechanical and Aerospace Engineering, College of Engineering, United States
| | - Yanfei Qi
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, United States
| | - Dominic Guzzo
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, United States
| | | | - Kyle Rowe
- Department of Mechanical and Aerospace Engineering, College of Engineering, United States
| | - Carl Pepine
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, United States
| | - Chelsey Simmons
- Department of Mechanical and Aerospace Engineering, College of Engineering, United States; Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, United States; Department of Biomedical Engineering, College of Engineering, United States.
| |
Collapse
|
41
|
Hou X, Shi C, Chen W, Chen B, Jia W, Guo Y, Ma C, Ye G, Kang J, Dai J. Transplantation of human adipose-derived mesenchymal stem cells on a bladder acellular matrix for bladder regeneration in a canine model. Biomed Mater 2016; 11:031001. [DOI: 10.1088/1748-6041/11/3/031001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
42
|
Kang T, Jones TM, Naddell C, Bacanamwo M, Calvert JW, Thompson WE, Bond VC, Chen YE, Liu D. Adipose-Derived Stem Cells Induce Angiogenesis via Microvesicle Transport of miRNA-31. Stem Cells Transl Med 2016; 5:440-50. [PMID: 26933040 PMCID: PMC4798737 DOI: 10.5966/sctm.2015-0177] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/19/2015] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Cell secretion is an important mechanism for stem cell-based therapeutic angiogenesis, along with cell differentiation to vascular endothelial cells or smooth muscle cells. Cell-released microvesicles (MVs) have been recently implicated to play an essential role in intercellular communication. The purpose of this study was to explore the potential effects of stem cell-released MVs in proangiogenic therapy. We observed for the first time that MVs were released from adipose-derived stem cells (ASCs) and were able to increase the migration and tube formation of human umbilical vein endothelial cells (HUVECs). Endothelial differentiation medium (EDM) preconditioning of ASCs upregulated the release of MVs and enhanced the angiogenic effect of the released MVs in vitro. RNA analysis revealed that microRNA was enriched in ASC-released MVs and that the level of microRNA-31 (miR-31) in MVs was notably elevated upon EDM-preconditioning of MV-donor ASCs. Further studies exhibited that miR-31 in MVs contributed to the migration and tube formation of HUVECs, microvessel outgrowth of mouse aortic rings, and vascular formation of mouse Matrigel plugs. Moreover, factor-inhibiting HIF-1, an antiangiogenic gene, was identified as the target of miR-31 in HUVECs. Our findings provide the first evidence that MVs from ASCs, particularly from EDM-preconditioned ASCs, promote angiogenesis and the delivery of miR-31 may contribute the proangiogenic effect. SIGNIFICANCE This study provides the evidence that microvesicles (MVs) from adipose-derived stem cells (ASCs), particularly from endothelial differentiation medium (EDM)-preconditioned ASCs, promote angiogenesis. An underlying mechanism of the proangiogenesis may be the delivery of microRNA-31 via MVs from ASCs to vascular endothelial cells in which factor-inhibiting HIF-1 is targeted and suppressed. The study findings reveal the role of MVs in mediating ASC-induced angiogenesis and suggest a potential MV-based angiogenic therapy for ischemic diseases.
Collapse
Affiliation(s)
- Ting Kang
- Division of Cardiology, The First Affiliated Hospital, Nanchang University, Nanchang, People's Republic of China Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Tia M Jones
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Clayton Naddell
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Methode Bacanamwo
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - John W Calvert
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Winston E Thompson
- Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Vincent C Bond
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Dong Liu
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, USA Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
43
|
Jiang L, Wang Y, Pan F, Zhao X, Zhang H, Lei M, Liu T, Lu JR. Synergistic effect of bioactive lipid and condition medium on cardiac differentiation of human mesenchymal stem cells from different tissues. Cell Biochem Funct 2016; 34:163-72. [PMID: 26990081 PMCID: PMC5031220 DOI: 10.1002/cbf.3175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/22/2016] [Accepted: 02/08/2016] [Indexed: 12/12/2022]
Abstract
Human umbilical cord mesenchymal stem cells (hUCMSCs) and human adipose tissue mesenchymal stem cells (hATMSCs) have the potential to differentiate into cardiomyocytes, making them promising therapeutic candidates for treating damaged cardiac tissues. Currently, however, the differentiated cells induced from hUCMSCs or hATMSCs can hardly display functional characteristics similar to cardiomyocytes. In this study, we have investigated the effects of bioactive lipid sphingosine-1-phosphate (S1P) on cardiac differentiations of hUCMSCs and hATMSCs in condition medium composed of cardiac myocytes culture medium or 5-azacytidine. Cardiac differentiations were identified through immunofluorescence staining, and the results were observed with fluorescence microscopy and confocal microscopy. Synergistic effects of S1P and condition medium on cell viability were evaluated by MTT assays. Functional characteristics similar to cardiomyocytes were evaluated through detecting calcium transient. The differentiated hUCMSCs or hATMSCs in each group into cardiomyocytes showed positive expressions of cardiac specific proteins, including α-actin, connexin-43 and myosin heavy chain-6 (MYH-6). MTT assays showed that suitable differentiation time was 14 days and that the optimal concentration of S1P was 0.5 μM. Moreover, incorporation of S1P and cardiac myocytes culture medium gave rise to calcium transients, an important marker for displaying in vivo electrophysiological properties. This feature was not observed in the S1P-5-azacytidine group, indicating the possible lack of cellular stimuli such as transforming growth factor-beta, TGF-β.
Collapse
Affiliation(s)
- Lili Jiang
- Dalian R&D Center for Stem Cell and Tissue Engineering, Faculty of Chemical Environmental and Biological Science and TechnologyDalian University of TechnologyDalianChina
| | - Yanwen Wang
- Cardiovascular and Genetic Medicine Research Groups, School of BiomedicineUniversity of ManchesterManchesterUK
| | - Fang Pan
- Biological Physics Group, School of Physics and AstronomyUniversity of ManchesterManchesterUK
| | - Xiubo Zhao
- Department of Chemical & Biological EngineeringUniversity of SheffieldMappin Street, Sheffield, S1 3JDUK
| | - Henggui Zhang
- Biological Physics Group, School of Physics and AstronomyUniversity of ManchesterManchesterUK
| | - Ming Lei
- Cardiovascular and Genetic Medicine Research Groups, School of BiomedicineUniversity of ManchesterManchesterUK
| | - Tianqing Liu
- Dalian R&D Center for Stem Cell and Tissue Engineering, Faculty of Chemical Environmental and Biological Science and TechnologyDalian University of TechnologyDalianChina
| | - Jian R. Lu
- Biological Physics Group, School of Physics and AstronomyUniversity of ManchesterManchesterUK
| |
Collapse
|
44
|
Fodor PB, Paulseth SG. Adipose Derived Stromal Cell (ADSC) Injections for Pain Management of Osteoarthritis in the Human Knee Joint. Aesthet Surg J 2016; 36:229-36. [PMID: 26238455 DOI: 10.1093/asj/sjv135] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND This safety and feasibility study used autologous adipose-derived stromal vascular cells (the stromal vascular fraction [SVF] of adipose tissue), to treat 8 osteoarthritic knees in 6 patients of grade I to III (K-L scale) with initial pain of 4 or greater on a 10-point Visual Analog Scale (VAS). OBJECTIVES The primary objective of the study was evaluation of the safety of intra-articular injection of SVF. The secondary objective was to assess initial feasibility for reduction of pain in osteoarthritic knees. METHODS Adipose-derived SVF cells were obtained through enzymatic disaggregation of lipoaspirate, resuspension in 3 mL of Lactated Ringer's Solution, and injection directly into the intra-articular space of the knee, with a mean of 14.1 million viable, nucleated SVF cells per knee. Metrics included monitoring of adverse events and preoperative to postoperative changes in the Western Ontario and McMaster Universities Arthritis Index (WOMAC), the VAS pain scale, range of motion (ROM), timed up-and-go (TUG), and MRI. RESULTS No infections, acute pain flares, or other adverse events were reported. At 3-months postoperative, there was a statistically significant improvement in WOMAC and VAS scores (P < .02 and P < .001, respectively), which was maintained at 1 year. Physical therapy measurements for ROM and TUG both improved from preoperative to 3-months postoperative. Standard MRI assessment from preoperative to 3-months postoperative showed no detectable structural differences. All patients attained full activity with decreased knee pain. CONCLUSIONS Autologous SVF was shown to be safe and to present a new potential therapy for reduction of pain for osteoarthritis of the knee. LEVEL OF EVIDENCE 4: Therapeutic.
Collapse
Affiliation(s)
- Peter B Fodor
- Dr Fodor is an Associate Clinical Professor of Plastic Surgery, UCLA Medical Center, Los Angeles, California. Dr Paulseth is an Adjunct Instructor of Clinical Physical Therapy, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| | - Stephen G Paulseth
- Dr Fodor is an Associate Clinical Professor of Plastic Surgery, UCLA Medical Center, Los Angeles, California. Dr Paulseth is an Adjunct Instructor of Clinical Physical Therapy, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| |
Collapse
|
45
|
Lee HW, Lee HC, Park JH, Kim BW, Ahn J, Kim JH, Park JS, Oh JH, Choi JH, Cha KS, Hong TJ, Park TS, Kim SP, Song S, Kim JY, Park MH, Jung JS. Effects of Intracoronary Administration of Autologous Adipose Tissue-Derived Stem Cells on Acute Myocardial Infarction in a Porcine Model. Yonsei Med J 2015; 56:1522-9. [PMID: 26446632 PMCID: PMC4630038 DOI: 10.3349/ymj.2015.56.6.1522] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/23/2014] [Accepted: 02/03/2015] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Adipose-derived stem cells (ADSCs) are known to be potentially effective in regeneration of damaged tissue. We aimed to assess the effectiveness of intracoronary administration of ADSCs in reducing the infarction area and improving function after acute transmural myocardial infarction (MI) in a porcine model. MATERIALS AND METHODS ADSCs were obtained from each pig's abdominal subcutaneous fat tissue by simple liposuction. After 3 passages of 14-days culture, 2 million ADSCs were injected into the coronary artery 30 min after acute transmural MI. At baseline and 4 weeks after the ADSC injection, 99mTc methoxyisobutylisonitrile-single photon emission computed tomography (MIBISPECT) was performed to evaluate the left ventricular volume, left ventricular ejection fraction (LVEF; %), and perfusion defects as well as the myocardial salvage (%) and salvage index. At 4 weeks, each pig was sacrificed, and the heart was extracted and dissected. Gross and microscopic analyses with specific immunohistochemistry staining were then performed. RESULTS Analysis showed improvement in the perfusion defect, but not in the LVEF in the ADSC group (n=14), compared with the control group (n=14) (perfusion defect, -13.0±10.0 vs. -2.6±12.0, p=0.019; LVEF, -8.0±15.4 vs. -15.9±14.8, p=0.181). There was a tendency of reducing left ventricular volume in ADSC group. The ADSCs identified by stromal cell-derived factor-1 (SDF-1) staining were well co-localized by von Willebrand factor and Troponin T staining. CONCLUSION Intracoronary injection of cultured ADSCs improved myocardial perfusion in this porcine acute transmural MI model.
Collapse
Affiliation(s)
- Hye Won Lee
- Division of Cardiology, Pusan National University Hospital, Busan, Korea
- Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Han Cheol Lee
- Medical Research Institute, Pusan National University Hospital, Busan, Korea
- Division of Cardiology, Pusan National University Hospital, Busan, Korea.
| | - Jong Ha Park
- Division of Cardiology, Pusan National University Hospital, Busan, Korea
- Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Bo Won Kim
- Division of Cardiology, Pusan National University Hospital, Busan, Korea
| | - Jinhee Ahn
- Division of Cardiology, Pusan National University Hospital, Busan, Korea
| | - Jin Hee Kim
- Division of Cardiology, Pusan National University Hospital, Busan, Korea
| | - Jin Sup Park
- Division of Cardiology, Pusan National University Hospital, Busan, Korea
- Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Jun-Hyok Oh
- Division of Cardiology, Pusan National University Hospital, Busan, Korea
- Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Jung Hyun Choi
- Division of Cardiology, Pusan National University Hospital, Busan, Korea
- Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Kwang Soo Cha
- Division of Cardiology, Pusan National University Hospital, Busan, Korea
- Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Taek Jong Hong
- Division of Cardiology, Pusan National University Hospital, Busan, Korea
- Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Tae Sik Park
- Division of Cardiology, Pusan National University Hospital, Busan, Korea
| | - Sang-Pil Kim
- Medical Research Institute, Pusan National University Hospital, Busan, Korea
- Division of Thoracic Surgery, Pusan National University Hospital, Busan, Korea
| | - Seunghwan Song
- Medical Research Institute, Pusan National University Hospital, Busan, Korea
- Division of Thoracic Surgery, Pusan National University Hospital, Busan, Korea
| | - Ji Yeon Kim
- Division of Pathology, Pusan National University Hospital, Busan, Korea
| | - Mi Hwa Park
- Medical Research Institute, Pusan National University Hospital, Busan, Korea
- Division of Pathology, Pusan National University Hospital, Busan, Korea
| | - Jin Sup Jung
- Medical Research Institute, Pusan National University Hospital, Busan, Korea
- Division of Physiology, Pusan National University Hospital, Busan, Korea
| |
Collapse
|
46
|
Wu YL, Lin CW, Cheng NC, Yang KC, Yu J. Modulation of keratin in adhesion, proliferation, adipogenic, and osteogenic differentiation of porcine adipose-derived stem cells. J Biomed Mater Res B Appl Biomater 2015; 105:180-192. [PMID: 26454254 DOI: 10.1002/jbm.b.33551] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 09/07/2015] [Accepted: 09/27/2015] [Indexed: 11/10/2022]
Abstract
Recently, keratin attracts tremendous interest because of its intrinsic ability to interact with different cells. It has the potential to serve as a controllable extracellular matrix protein that can be used to demonstrate cell mechanism and cell-matrix interaction. However, there have been relatively few studies on the effects of keratin on stem cells. In the present work, we study the effects of human keratin on porcine adipose-derived stem cells (pASCs) and a series of selective cell lines: 3T3 fibroblasts, Madin-Darby canine kidney (MDCK) cells, and MG63 osteoblasts. Relative to un-treated culture plate, our results showed that keratin coating substrates promote cell adhesion and proliferation to above cell lines. Keratin also improved pASCs adhesion, proliferation, and enhanced cell viability. Evaluation of genetic markers showed that adipogenic and osteogenic differentiations of pASCs can be successfully induced, thus demonstrating that keratin did not influence the stemness of pASCs. Furthermore, keratin improved adipogenic differentiations of pASCs in terms of up-regulations in lipoprotein lipase, peroxisome proliferator-activated receptor gamma, and CCAAT-enhancer-binding protein alpha. The osteogenic markers type I collagen, runt-related transcription factor 2, and vitamin D receptor were also upregulated when pASCs cultured on keratin substrates. Therefore, keratin can serve as a biological derived material for surface modification and scaffold fabrication for biomedical purpose. The combination of keratin with stem cells may be a potential candidate for tissue repair in the field of regenerative medicine. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 180-192, 2017.
Collapse
Affiliation(s)
- Yen-Lin Wu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Che-Wei Lin
- Institute of Biotechnology, National Taiwan University, Taipei, 10617, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital, Taipei, 10031, Taiwan
| | - Kai-Chiang Yang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan.,Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
47
|
D'souza N, Rossignoli F, Golinelli G, Grisendi G, Spano C, Candini O, Osturu S, Catani F, Paolucci P, Horwitz EM, Dominici M. Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Med 2015; 13:186. [PMID: 26265166 PMCID: PMC4534031 DOI: 10.1186/s12916-015-0426-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/17/2015] [Indexed: 02/07/2023] Open
Abstract
Regenerative medicine relying on cell and gene therapies is one of the most promising approaches to repair tissues. Multipotent mesenchymal stem/stromal cells (MSC), a population of progenitors committing into mesoderm lineages, are progressively demonstrating therapeutic capabilities far beyond their differentiation capacities. The mechanisms by which MSC exert these actions include the release of biomolecules with anti-inflammatory, immunomodulating, anti-fibrogenic, and trophic functions. While we expect the spectra of these molecules with a therapeutic profile to progressively expand, several human pathological conditions have begun to benefit from these biomolecule-delivering properties. In addition, MSC have also been proposed to vehicle genes capable of further empowering these functions. This review deals with the therapeutic properties of MSC, focusing on their ability to secrete naturally produced or gene-induced factors that can be used in the treatment of kidney, lung, heart, liver, pancreas, nervous system, and skeletal diseases. We specifically focus on the different modalities by which MSC can exert these functions. We aim to provide an updated understanding of these paracrine mechanisms as a prerequisite to broadening the therapeutic potential and clinical impact of MSC.
Collapse
Affiliation(s)
- Naomi D'souza
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Filippo Rossignoli
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Giulia Golinelli
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Giulia Grisendi
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Carlotta Spano
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Olivia Candini
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Satoru Osturu
- The Division of Hematology/Oncology/BMT, Nationwide Children's Hospital, Departments of Pediatrics and Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Fabio Catani
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Paolo Paolucci
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Edwin M Horwitz
- The Division of Hematology/Oncology/BMT, Nationwide Children's Hospital, Departments of Pediatrics and Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy.
| |
Collapse
|
48
|
Carelli S, Messaggio F, Canazza A, Hebda DM, Caremoli F, Latorre E, Grimoldi MG, Colli M, Bulfamante G, Tremolada C, Di Giulio AM, Gorio A. Characteristics and Properties of Mesenchymal Stem Cells Derived from Microfragmented Adipose Tissue. Cell Transplant 2015; 24:1233-52. [DOI: 10.3727/096368914x681603] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The subcutaneous adipose tissue provides a clear advantage over other mesenchymal stem cell sources due to the ease with which it can be accessed, as well as the ease of isolating the residing stem cells. Human adipose-derived stem cells (hADSCs), localized in the stromal–vascular portion, can be isolated ex vivo using a combination of washing steps and enzymatic digestion. In this study, we report that microfragmented human lipoaspirated adipose tissue is a better stem cell source compared to normal lipoaspirated tissue. The structural composition of microfragments is comparable to the original tissue. Differently, however, this procedure activates the expression of antigens, such as β-tubulin III. The hADSCs derived from microfragmented lipoaspirate tissue were systematically characterized for growth features, phenotype, and multipotent differentiation potential. They fulfill the definition of mesenchymal stem cells, although with a higher neural phenotype profile. These cells also express genes that constitute the core circuitry of self-renewal such as OCT4, SOX2, and NANOG, and neurogenic lineage genes such as NEUROD1, PAX6, and SOX3. Such findings suggest further studies by evaluating Microfrag-AT hADSC action in animal models of neurodegenerative conditions.
Collapse
Affiliation(s)
- Stephana Carelli
- Department of Health Sciences, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Fanuel Messaggio
- Department of Health Sciences, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Alessandra Canazza
- Cellular Biology Laboratory, Cerebrovascular Diseases Unit, IRCCS Foundation Neurological Institute “C. Besta,” Milan, Italy
| | - Danuta Maria Hebda
- Department of Health Sciences, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Filippo Caremoli
- Department of Health Sciences, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Elisa Latorre
- Department of Health Sciences, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | | | - Mattia Colli
- Department of Health Sciences, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Gaetano Bulfamante
- Department of Health Sciences, Pathology Unit, University of Milan, Milan, Italy
| | | | - Anna Maria Di Giulio
- Department of Health Sciences, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Alfredo Gorio
- Department of Health Sciences, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| |
Collapse
|
49
|
Ishida O, Hagino I, Nagaya N, Shimizu T, Okano T, Sawa Y, Mori H, Yagihara T. Adipose-derived stem cell sheet transplantation therapy in a porcine model of chronic heart failure. Transl Res 2015; 165:631-9. [PMID: 25613060 DOI: 10.1016/j.trsl.2014.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 11/30/2014] [Accepted: 12/20/2014] [Indexed: 01/22/2023]
Abstract
Adipose-derived stem cells (ASCs) are a promising resource for cell transplantation therapy for damaged heart tissue. Cell death in the graft early after transplantation represents the main cause of unsatisfactory therapeutic efficacy, but tissue-engineered cell sheets grown in temperature-responsive cell culture dishes may enable improved engraftment of transplanted cells. We investigated the therapeutic potential of this method in chronic myocardial ischemia in swine. We created a porcine model of chronic heart failure by implanting an ameroid constrictor around the main trunk of the left anterior descending artery, just distal to the circumflex branch. Simultaneously, ASCs were obtained from a piece of subcutaneous adipose tissue and expanded to form ASC sheets using temperature-responsive dishes. Four weeks after ameroid constrictor placement, triple-layered ASC sheets were transplanted onto the area of the ischemic myocardium (sheet group, n = 7). Controls (n = 7) received no sheet. Just before and 4 weeks after transplantation, left ventriculography (LVG) and coronary angiography (CAG) were performed. LVG revealed a significant improvement in the left ventricular ejection fraction of the sheet group compared with controls (47.6 ± 2.9% vs 41.4 ± 2.8%, P < 0.05). Furthermore, development of collateral vessels was only detected in the sheet group with right CAG. Histologic analysis demonstrated that engrafted ASC sheets grew to form a thickened layer that included newly formed vessels. ASC sheet transplantation therapy is an intriguing therapeutic method for ischemic heart failure.
Collapse
Affiliation(s)
- Osamu Ishida
- Department of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center Research Institute, Osaka, Japan; Department of Cardiovascular Surgery, Kawasaki Municipal Hospital, Kawasaki, Japan.
| | - Ikuo Hagino
- Department of Cardiovascular Surgery, Chiba Children Hospital, Chiba, Japan
| | - Noritoshi Nagaya
- Department of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center Research Institute, Osaka, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshiki Sawa
- Division of Cardiovascular Surgery, Department of Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidezo Mori
- Department of Physiology, Tokai University Graduate School of Medicine, Isehara, Japan
| | - Toshikatsu Yagihara
- Department of Cardiovascular Surgery, National Cardiovascular Center, Osaka, Japan
| |
Collapse
|
50
|
Roman S, Agil A, Peran M, Alvaro-Galue E, Ruiz-Ojeda FJ, Fernández-Vázquez G, Marchal JA. Brown adipose tissue and novel therapeutic approaches to treat metabolic disorders. Transl Res 2015; 165:464-79. [PMID: 25433289 DOI: 10.1016/j.trsl.2014.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/16/2014] [Accepted: 11/04/2014] [Indexed: 01/08/2023]
Abstract
In humans, 2 functionally different types of adipose tissue coexist: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT is involved in energy storage, whereas BAT is involved in energy expenditure. Increased amounts of WAT may contribute to the development of metabolic disorders, such as obesity-associated type 2 diabetes mellitus and cardiovascular diseases. In contrast, the thermogenic function of BAT allows high consumption of fatty acids because of the activity of uncoupling protein 1 in the internal mitochondrial membrane. Interestingly, obesity reduction and insulin sensitization have been achieved by BAT activation-regeneration in animal models. This review describes the origin, function, and differentiation mechanisms of BAT to identify new therapeutic strategies for the treatment of metabolic disorders related to obesity. On the basis of the animal studies, novel approaches for BAT regeneration combining stem cells from the adipose tissue with active components, such as melatonin, may have potential for the treatment of metabolic disorders in humans.
Collapse
Affiliation(s)
- Sabiniano Roman
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain; Tissue Engineering Group, Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - Ahmad Agil
- Department of Pharmacology and Neurosciences Institute, Faculty of Medicine, Biosanitary Institute of Granada (ibs.GRANADA), Hospitals Unversity/University of Granada, Granada, Spain
| | - Macarena Peran
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain; Department of Health Sciences, University of Jaén, Jaén, Spain
| | - Eduardo Alvaro-Galue
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain; Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine, Winston Salem, NC
| | - Francisco J Ruiz-Ojeda
- Institute of Nutrition and Food Technology, Centre for Biomedical Research, University of Granada, Granada, Spain
| | | | - Juan A Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain; Department of Human Anatomy and Embryology, Biosanitary Institute of Granada (ibs.GRANADA), Hospitals Unversity/University of Granada, Granada, Spain.
| |
Collapse
|