1
|
Ramírez-Melo LM, Estrada-Luna D, Rubio-Ruiz ME, Castañeda-Ovando A, Fernández-Martínez E, Jiménez-Osorio AS, Pérez-Méndez Ó, Carreón-Torres E. Relevance of Lipoprotein Composition in Endothelial Dysfunction and the Development of Hypertension. Int J Mol Sci 2025; 26:1125. [PMID: 39940892 PMCID: PMC11817739 DOI: 10.3390/ijms26031125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Endothelial dysfunction and chronic inflammation are determining factors in the development and progression of chronic degenerative diseases, such as hypertension and atherosclerosis. Among the shared pathophysiological characteristics of these two diseases is a metabolic disorder of lipids and lipoproteins. Therefore, the contents and quality of the lipids and proteins of lipoproteins become the targets of therapeutic objective. One of the stages of lipoprotein formation occurs through the incorporation of dietary lipids by enterocytes into the chylomicrons. Consequently, the composition, structure, and especially the properties of lipoproteins could be modified through the intake of bioactive compounds. The objective of this review is to describe the roles of the different lipid and protein components of lipoproteins and their receptors in endothelial dysfunction and the development of hypertension. In addition, we review the use of some non-pharmacological treatments that could improve endothelial function and/or prevent endothelial damage. The reviewed information contributes to the understanding of lipoproteins as vehicles of regulatory factors involved in the modulation of inflammatory and hemostatic processes, the attenuation of oxidative stress, and the neutralization of toxins, rather than only cholesterol and phospholipid transporters. For this review, a bibliographic search was carried out in different online metabases.
Collapse
Affiliation(s)
- Lisette Monsibaez Ramírez-Melo
- Nutrition Academic Area Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico;
| | - Diego Estrada-Luna
- Nursing Academic Area, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (D.E.-L.); (A.S.J.-O.)
| | - María Esther Rubio-Ruiz
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Tlalpan, Mexico City 14080, Mexico;
| | - Araceli Castañeda-Ovando
- Chemistry Academic Area, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Pachuca 42039, Hidalgo, Mexico;
| | - Eduardo Fernández-Martínez
- Medicine Academic Area, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca 42039, Hidalgo, Mexico;
| | - Angélica Saraí Jiménez-Osorio
- Nursing Academic Area, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (D.E.-L.); (A.S.J.-O.)
| | - Óscar Pérez-Méndez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Mexico City 14080, Mexico;
- Tecnológico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico
| | - Elizabeth Carreón-Torres
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Mexico City 14080, Mexico;
| |
Collapse
|
2
|
Chait A, Eckel RH, Vrablik M, Zambon A. Lipid-lowering in diabetes: An update. Atherosclerosis 2024; 394:117313. [PMID: 37945448 DOI: 10.1016/j.atherosclerosis.2023.117313] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is accelerated in people with diabetes. Dyslipidemia, hyperglycemia, oxidative stress, and inflammation play a role via a variety of mechanisms operative in the artery wall. In addition, some unique features predispose people with type 1 diabetes to accelerated atherosclerosis. Various organizations have created guidelines that provide advice regarding screening, risk assessment, and roadmaps for treatment to prevent ASCVD in diabetes. Management of dyslipidemia, especially with statins, has proven to be of immense benefit in the prevention of clinical CVD. However, since many patients fail to attain the low levels of low-density lipoproteins (LDL) recommended in these guidelines, supplemental therapy, such as the addition of ezetimibe, bempedoic acid or PCSK9 inhibitors, is often required to reach LDL goals. As a result, the upfront use of combination therapies, particularly a statin plus ezetimibe, is a rational initial approach. The addition to statins of drugs that specifically lower triglyceride levels has not proven beneficial, although the addition of icosapent-ethyl has been shown to be of value, likely by mechanisms independent of triglyceride lowering. Newer treatments in development, including apoC-III and ANGPTL3 inhibitors, seem promising in further reducing apoB-containing lipoproteins.
Collapse
Affiliation(s)
- Alan Chait
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, WA, USA
| | - Robert H Eckel
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Michal Vrablik
- 3rd Department of Internal Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alberto Zambon
- Department of Medicine - DIMED, University of Padova, and IRCCS Multimedica Milan, Italy.
| |
Collapse
|
3
|
Erickson MA, Mahankali AP. Interactions of Serum Amyloid A Proteins with the Blood-Brain Barrier: Implications for Central Nervous System Disease. Int J Mol Sci 2024; 25:6607. [PMID: 38928312 PMCID: PMC11204325 DOI: 10.3390/ijms25126607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Serum amyloid A (SAA) proteins are highly conserved lipoproteins that are notoriously involved in the acute phase response and systemic amyloidosis, but their biological functions are incompletely understood. Recent work has shown that SAA proteins can enter the brain by crossing the intact blood-brain barrier (BBB), and that they can impair BBB functions. Once in the central nervous system (CNS), SAA proteins can have both protective and harmful effects, which have important implications for CNS disease. In this review of the thematic series on SAA, we discuss the existing literature that relates SAA to neuroinflammation and CNS disease, and the possible roles of the BBB in these relations.
Collapse
Affiliation(s)
- Michelle A. Erickson
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA;
| | - Anvitha P. Mahankali
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA;
| |
Collapse
|
4
|
Jayaraman S, Pérez A, Miñambres I, Sánchez-Quesada JL, Gursky O. LDL binding to cell receptors and extracellular matrix is proatherogenic in obesity but improves after bariatric surgery. J Lipid Res 2023; 64:100451. [PMID: 37777014 PMCID: PMC10665669 DOI: 10.1016/j.jlr.2023.100451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
Obesity is a major global public health issue involving dyslipidemia, oxidative stress, inflammation, and increased risk of CVD. Weight loss reduces this risk, but the biochemical underpinnings are unclear. We explored how obesity and weight loss after bariatric surgery influence LDL interactions that trigger proatherogenic versus antiatherogenic processes. LDL was isolated from plasma of six patients with severe obesity before (basal) and 6-12 months after bariatric surgery (basal BMI = 42.7 kg/m2; 6-months and 12-months postoperative BMI = 34.1 and 30 kg/m2). Control LDL were from six healthy subjects (BMI = 22.6 kg/m2). LDL binding was quantified by ELISA; LDL size and charge were assessed by chromatography; LDL biochemical composition was determined. Compared to controls, basal LDL showed decreased nonatherogenic binding to LDL receptor, which improved postoperatively. Conversely, basal LDL showed increased binding to scavenger receptors LOX1 and CD36 and to glycosaminoglycans, fibronectin and collagen, which is proatherogenic. One year postoperatively, this binding decreased but remained elevated, consistent with elevated lipid peroxidation. Serum amyloid A and nonesterified fatty acids were elevated in basal and postoperative LDL, indicating obesity-associated inflammation. Aggregated and electronegative LDL remained elevated, suggesting proatherogenic processes. These results suggest that obesity-induced inflammation contributes to harmful LDL alterations that probably increase the risk of CVD. We conclude that in obesity, LDL interactions with cell receptors and extracellular matrix shift in a proatherogenic manner but are partially reversed upon postoperative weight loss. These results help explain why the risk of CVD increases in obesity but decreases upon weight loss.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Pharmacology, Physiology & Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA.
| | - Antonio Pérez
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Barcelona, Spain
| | - Inka Miñambres
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jose Luis Sánchez-Quesada
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Barcelona, Spain; Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau, CIBERDEM, Barcelona, Spain.
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| |
Collapse
|
5
|
den Hartigh LJ, May KS, Zhang XS, Chait A, Blaser MJ. Serum amyloid A and metabolic disease: evidence for a critical role in chronic inflammatory conditions. Front Cardiovasc Med 2023; 10:1197432. [PMID: 37396595 PMCID: PMC10311072 DOI: 10.3389/fcvm.2023.1197432] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Serum amyloid A (SAA) subtypes 1-3 are well-described acute phase reactants that are elevated in acute inflammatory conditions such as infection, tissue injury, and trauma, while SAA4 is constitutively expressed. SAA subtypes also have been implicated as playing roles in chronic metabolic diseases including obesity, diabetes, and cardiovascular disease, and possibly in autoimmune diseases such as systemic lupus erythematosis, rheumatoid arthritis, and inflammatory bowel disease. Distinctions between the expression kinetics of SAA in acute inflammatory responses and chronic disease states suggest the potential for differentiating SAA functions. Although circulating SAA levels can rise up to 1,000-fold during an acute inflammatory event, elevations are more modest (∼5-fold) in chronic metabolic conditions. The majority of acute-phase SAA derives from the liver, while in chronic inflammatory conditions SAA also derives from adipose tissue, the intestine, and elsewhere. In this review, roles for SAA subtypes in chronic metabolic disease states are contrasted to current knowledge about acute phase SAA. Investigations show distinct differences between SAA expression and function in human and animal models of metabolic disease, as well as sexual dimorphism of SAA subtype responses.
Collapse
Affiliation(s)
- Laura J. den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Karolline S. May
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| | - Alan Chait
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
6
|
Human Serum Amyloid a Impaired Structural Stability of High-Density Lipoproteins (HDL) and Apolipoprotein (Apo) A-I and Exacerbated Glycation Susceptibility of ApoA-I and HDL. Molecules 2022; 27:molecules27134255. [PMID: 35807498 PMCID: PMC9268363 DOI: 10.3390/molecules27134255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Human serum amyloid A (SAA) is an exchangeable apolipoprotein (apo) in high-density lipoprotein (HDL) that influences HDL quality and functionality, particularly in the acute phase of inflammation. On the other hand, the structural and functional correlations of HDL containing SAA and apoA-I have not been reported. The current study was designed to compare the change in HDL quality with increasing SAA content in the lipid-free and lipid-bound states in reconstituted HDL (rHDL). The expressed recombinant human SAA1 (13 kDa) was purified to at least 98% and characterized in the lipid-free and lipid-bound states with apoA-I. The dimyristoyl phosphatidylcholine (DMPC) binding ability of apoA-I was impaired severely by the addition of SAA, while SAA alone could not bind with DMPC. The recombinant human SAA1 was incorporated into the rHDL (molar ratio 95:5:1, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC): cholesterol: apoA-I) with various apoA-I:SAA molar ratios from 1:0 to 1:0.5, 1:1 and 1:2. With increasing SAA1 content, the rHDL particle size was reduced from 98 Å to 93 Å, and the α-helicity of apoA-I:SAA was decreased from 73% to 40% for (1:0) and (1:2), respectively. The wavelength maximum fluorescence (WMF) of tryptophan in rHDL was red-shifted from 339 nm to 345 nm for (1:0) and (1:2) of apoA-I:SAA, respectively, indicating that the addition of SAA to rHDL destabilized the secondary structure of apoA-I. Upon denaturation by urea treatment from 0 M to 8 M, SAA showed only a 3 nm red-shift in WMF, while apoA-I showed a 16 nm red-shift in WMF, indicating that SAA is resistant to denaturation and apoA-I had higher conformational flexibility than SAA. The glycation reaction of apoA-I in the presence of fructose was accelerated up to 1.8-fold by adding SAA in a dose-dependent manner than that of apoA-I alone. In conclusion, the incorporation of SAA in rHDL impaired the structural stability of apoA-I and exacerbated glycation of HDL and apoA-I.
Collapse
|
7
|
Appunni S, Rubens M, Ramamoorthy V, Anand V, Khandelwal M, Sharma A. Biglycan: an emerging small leucine-rich proteoglycan (SLRP) marker and its clinicopathological significance. Mol Cell Biochem 2021; 476:3935-3950. [PMID: 34181183 DOI: 10.1007/s11010-021-04216-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022]
Abstract
Extracellular matrix (ECM) plays an important role in the structural organization of tissue and delivery of external cues to the cell. Biglycan, a class I small leucine-rich proteoglycans (SLRP), is a key component of the ECM that participates in scaffolding the collagen fibrils and mediates cell signaling. Dysregulation of biglycan expression can result in wide range of clinical conditions such as metabolic disorder, inflammatory disorder, musculoskeletal defects and malignancies. In this review, we aim to update our current understanding regarding the link between altered expression of biglycan and different clinicopathological states. Biglycan interacts with toll like receptors (TLR)-2 and TLR-4 on the immune cells which initiates inflammation and aggravates inflammatory disorders. ECM unbound soluble biglycan acts as a DAMP (danger associated molecular pattern) resulting in sterile inflammation. Dysregulation of biglycan expression is also observed in inflammatory metabolic conditions such as atherosclerosis and obesity. In cancer, high-biglycan expression facilitates tumor growth, invasion and metastasis which is associated with poor clinical outcome. As a pivotal structural component of the ECM, biglycan strengthens the musculoskeletal system and its absence is associated with musculoskeletal defects. Thus, SLRP biglycan is a potential marker which is significantly altered in different clinicopathological states.
Collapse
Affiliation(s)
- Sandeep Appunni
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110 029, India
- Government Medical College, Kozhikode, Kerala, India
| | | | | | | | - Madhuram Khandelwal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110 029, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110 029, India.
| |
Collapse
|
8
|
Abouelasrar Salama S, Gouwy M, Van Damme J, Struyf S. The turning away of serum amyloid A biological activities and receptor usage. Immunology 2021; 163:115-127. [PMID: 33315264 PMCID: PMC8114209 DOI: 10.1111/imm.13295] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022] Open
Abstract
Serum amyloid A (SAA) is an acute-phase protein (APP) to which multiple immunological functions have been attributed. Regardless, the true biological role of SAA remains poorly understood. SAA is remarkably conserved in mammalian evolution, thereby suggesting an important biological function. Since its discovery in the 1970s, the majority of researchers have investigated SAA using recombinant forms made available through bacterial expression. Nevertheless, recent studies indicate that these recombinant forms of SAA are unreliable. Indeed, commercial SAA variants have been shown to be contaminated with bacterial products including lipopolysaccharides and lipoproteins. As such, biological activities and receptor usage (TLR2, TLR4) revealed through the use of commercial SAA variants may not reflect the inherent nature of this APP. Within this review, we discuss the biological effects of SAA that have been demonstrated through more solid experimental approaches. SAA takes part in the innate immune response via the recruitment of leucocytes and executes, through pathogen recognition, antimicrobial activity. Knockout animal models implicate SAA in a range of functions, such as regulation of T-cell-mediated responses and monopoiesis. Moreover, through its structural motifs, not only does SAA function as an extracellular matrix protein, but it also binds extracellular matrix proteins. Finally, we here also provide an overview of definite SAA receptor-mediated functions and highlight those that are yet to be validated. The role of FPR2 in SAA-mediated leucocyte recruitment has been confirmed; nevertheless, SAA has been linked to a range of other receptors including CD36, SR-BI/II, RAGE and P2RX7.
Collapse
Affiliation(s)
- Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Han CY, Kang I, Omer M, Wang S, Wietecha T, Wight TN, Chait A. Serum amyloid A-containing HDL binds adipocyte-derived versican and macrophage-derived biglycan, reducing its antiinflammatory properties. JCI Insight 2020; 5:142635. [PMID: 32970631 PMCID: PMC7605543 DOI: 10.1172/jci.insight.142635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022] Open
Abstract
The ability of HDL to inhibit inflammation in adipocytes and adipose tissue is reduced when HDL contains serum amyloid A (SAA) that is trapped by proteoglycans at the adipocyte surface. Because we recently found that the major extracellular matrix proteoglycan produced by hypertrophic adipocytes is versican, whereas activated adipose tissue macrophages produce mainly biglycan, we further investigated the role of proteoglycans in determining the antiinflammatory properties of HDL. The distributions of versican, biglycan, apolipoprotein A1 (the major apolipoprotein of HDL), and SAA were similar in adipose tissue from obese mice and obese human subjects. Colocalization of SAA-enriched HDL with versican and biglycan at the cell surface of adipocyte and peritoneal macrophages, respectively, was blocked by silencing these proteoglycans, which also restored the antiinflammatory property of SAA-enriched HDL despite the presence of SAA. Similar to adipocytes, normal HDL exerted its antiinflammatory function in macrophages by reducing lipid rafts, reactive oxygen species generation, and translocation of Toll-like receptor 4 and NADPH oxidase 2 into lipid rafts, effects that were not observed with SAA-enriched HDL. These findings imply that SAA present in HDL can be trapped by adipocyte-derived versican and macrophage-derived biglycan, thereby blunting HDL’s antiinflammatory properties. Versican in adiopcytes and biglycan in macrophages trap serum amyloid A-containing HDL, thereby blocking HDL’s anti-inflammatory properties.
Collapse
Affiliation(s)
- Chang Yeop Han
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Mohamed Omer
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Shari Wang
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Tomasz Wietecha
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Alan Chait
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
10
|
Current Understanding of the Relationship of HDL Composition, Structure and Function to Their Cardioprotective Properties in Chronic Kidney Disease. Biomolecules 2020; 10:biom10091348. [PMID: 32967334 PMCID: PMC7564231 DOI: 10.3390/biom10091348] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022] Open
Abstract
In the general population, the ability of high-density lipoproteins (HDLs) to promote cholesterol efflux is a predictor of cardiovascular events, independently of HDL cholesterol levels. Although patients with chronic kidney disease (CKD) have a high burden of cardiovascular morbidity and mortality, neither serum levels of HDL cholesterol, nor cholesterol efflux capacity associate with cardiovascular events. Important for the following discussion on the role of HDL in CKD is the notion that traditional atherosclerotic cardiovascular risk factors only partially account for this increased incidence of cardiovascular disease in CKD. As a potential explanation, across the spectrum of cardiovascular disease, the relative contribution of atherosclerotic cardiovascular disease becomes less important with advanced CKD. Impaired renal function directly affects the metabolism, composition and functionality of HDL particles. HDLs themselves are a heterogeneous population of particles with distinct sizes and protein composition, all of them affecting the functionality of HDL. Therefore, a more specific approach investigating the functional and compositional features of HDL subclasses might be a valuable strategy to decipher the potential link between HDL, cardiovascular disease and CKD. This review summarizes the current understanding of the relationship of HDL composition, metabolism and function to their cardio-protective properties in CKD, with a focus on CKD-induced changes in the HDL proteome and reverse cholesterol transport capacity. We also will highlight the gaps in the current knowledge regarding important aspects of HDL biology.
Collapse
|
11
|
High-Density Lipoprotein (HDL) Inhibits Serum Amyloid A (SAA)-Induced Vascular and Renal Dysfunctions in Apolipoprotein E-Deficient Mice. Int J Mol Sci 2020; 21:ijms21041316. [PMID: 32075280 PMCID: PMC7072968 DOI: 10.3390/ijms21041316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 01/09/2023] Open
Abstract
Serum amyloid A (SAA) promotes endothelial inflammation and dysfunction that is associated with cardiovascular disease and renal pathologies. SAA is an apoprotein for high-density lipoprotein (HDL) and its sequestration to HDL diminishes SAA bioactivity. Herein we investigated the effect of co-supplementing HDL on SAA-mediated changes to vascular and renal function in apolipoprotein E-deficient (ApoE-/-) mice in the absence of a high-fat diet. Male ApoE-/- mice received recombinant human SAA or vehicle (control) by intraperitoneal (i.p.) injection every three days for two weeks with or without freshly isolated human HDL supplemented by intravenous (i.v.) injection in the two weeks preceding SAA stimulation. Aorta and kidney were harvested 4 or 18 weeks after commencement of treatment. At 4 weeks after commencement of treatment, SAA increased aortic vascular cell adhesion molecule (VCAM)-1 expression and F2-isoprostane level and decreased cyclic guanosine monophosphate (cGMP), consistent with SAA stimulating endothelial dysfunction and promoting atherosclerosis. SAA also stimulated renal injury and inflammation that manifested as increased urinary protein, kidney injury molecule (KIM)-1, and renal tissue cytokine/chemokine levels as well as increased protein tyrosine chlorination and P38 MAPkinase activation and decreased in Bowman's space, confirming that SAA elicited a pro-inflammatory phenotype in the kidney. At 18 weeks, vascular lesions increased significantly in the cohort of ApoE-/- mice treated with SAA alone. By contrast, pretreatment of mice with HDL decreased SAA pro-inflammatory activity, inhibited SAA enhancement of aortic lesion size and renal function, and prevented changes to glomerular Bowman's space. Taken together, these data indicate that supplemented HDL reduces SAA-mediated endothelial and renal dysfunction in an atherosclerosis-prone mouse model.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Acute phase serum amyloid A (SAA) is persistently elevated in chronic inflammatory conditions, and elevated levels predict cardiovascular risk in humans. More recently, murine studies have demonstrated that over-expression of SAA increases and deficiency/suppression of SAA attenuates atherosclerosis. Thus, beyond being a biomarker, SAA appears to play a causal role in atherogenesis. The purpose of this review is to summarize the data supporting SAA as a key player in atherosclerosis development. RECENT FINDINGS A number of pro-inflammatory and pro-atherogenic activities have been ascribed to SAA. However, the literature is conflicted, as recombinant SAA, and/or lipid-free SAA, used in many of the earlier studies, do not reflect the activity of native human or murine SAA, which exists largely lipid-associated. Recent literatures demonstrate that SAA activates the NLRP3 inflammasome, alters vascular function, affects HDL function, and increases thrombosis. Importantly, SAA activity appears to be regulated by its lipid association, and HDL may serve to sequester and limit SAA activity. SUMMARY SAA has many pro-inflammatory and pro-atherogenic activities, is clearly demonstrated to affect atherosclerosis development, and may be a candidate target for clinical trials in cardiovascular diseases.
Collapse
Affiliation(s)
- Preetha Shridas
- Department of Internal Medicine
- Saha Cardiovascular Research Center
- Barnstable Brown Diabetes Center and University of Kentucky
| | - Lisa R Tannock
- Department of Internal Medicine
- Saha Cardiovascular Research Center
- Barnstable Brown Diabetes Center and University of Kentucky
- Veterans Affairs Lexington, Lexington, Kentucky, USA
| |
Collapse
|
13
|
Getz GS, Reardon CA. Apoproteins E, A-I, and SAA in Macrophage Pathobiology Related to Atherogenesis. Front Pharmacol 2019; 10:536. [PMID: 31231209 PMCID: PMC6558525 DOI: 10.3389/fphar.2019.00536] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/29/2019] [Indexed: 01/10/2023] Open
Abstract
Macrophages are core cellular elements of both early and advanced atherosclerosis. They take up modified lipoproteins and become lipid-loaded foam cells and secrete factors that influence other cell types in the artery wall involved in atherogenesis. Apoproteins E, AI, and SAA are all found on HDL which can enter the artery wall. In addition, apoE is synthesized by macrophages. These three apoproteins can promote cholesterol efflux from lipid-loaded macrophages and have other functions that modulate macrophage biology. Mimetic peptides based on the sequence or structure of these apoproteins replicate some of these properties and are potential therapeutic agents for the treatment of atherosclerosis to reduce cardiovascular diseases.
Collapse
Affiliation(s)
- Godfrey S Getz
- Department of Pathology, The University of Chicago, Chicago, IL, United States
| | - Catherine A Reardon
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
14
|
Ossoli A, Pavanello C, Giorgio E, Calabresi L, Gomaraschi M. Dysfunctional HDL as a Therapeutic Target for Atherosclerosis Prevention. Curr Med Chem 2019; 26:1610-1630. [DOI: 10.2174/0929867325666180316115726] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/24/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022]
Abstract
Hypercholesterolemia is one of the main risk factors for the development of atherosclerosis. Among the various lipoprotein classes, however, high density lipoproteins (HDL) are inversely associated with the incidence of atherosclerosis, since they are able to exert a series of atheroprotective functions. The central role of HDL within the reverse cholesterol transport, their antioxidant and anti-inflammatory properties and their ability to preserve endothelial homeostasis are likely responsible for HDL-mediated atheroprotection. However, drugs that effectively raise HDL-C failed to result in a decreased incidence of cardiovascular event, suggesting that plasma levels of HDL-C and HDL function are not always related. Several evidences are showing that different pathologic conditions, especially those associated with an inflammatory response, can cause dramatic alterations of HDL protein and lipid cargo resulting in HDL dysfunction. Established and investigational drugs designed to affect lipid metabolism and to increase HDL-C are only partly effective in correcting HDL dysfunction.
Collapse
Affiliation(s)
- Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Chiara Pavanello
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Eleonora Giorgio
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Monica Gomaraschi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
15
|
Abstract
High-density lipoprotein cholesterol (HDL-c) has long been referred to as 'good cholesterol' due to its apparent inverse relationship with future CVD risk. More recent research has questioned a causal role for HDL-c in this relationship, however, as both genetic studies and numerous large-scale randomised controlled trials have found no evidence of a cardiovascular protective effect when HDL-c levels are raised. Instead, focus has switched to the functional properties of the HDL particle. Evidence suggests that both the composition and function of HDL may be significantly altered in the context of an inflammatory milieu, transforming the particle from a vasoprotective anti-atherogenic particle to a noxious pro-atherogenic equivalent. This review will summarise evidence relating HDL to CVD risk, explore recent evidence characterising changes in the composition and function of HDL that may occur in chronic inflammatory diseases, and discuss the potential for future HDL-modifying therapeutic interventions.
Collapse
Affiliation(s)
- Scott T Chiesa
- Vascular Physiology Unit, UCL Institute of Cardiovascular Science, 1 St. Martin's Le Grand, London, EC1A 4NP, UK.
| | - Marietta Charakida
- Vascular Physiology Unit, UCL Institute of Cardiovascular Science, 1 St. Martin's Le Grand, London, EC1A 4NP, UK
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
16
|
Vallejo A, Chami B, Dennis JM, Simone M, Ahmad G, Abdo AI, Sharma A, Shihata WA, Martin N, Chin-Dusting JPF, de Haan JB, Witting PK. NFκB Inhibition Mitigates Serum Amyloid A-Induced Pro-Atherogenic Responses in Endothelial Cells and Leukocyte Adhesion and Adverse Changes to Endothelium Function in Isolated Aorta. Int J Mol Sci 2018; 20:ijms20010105. [PMID: 30597899 PMCID: PMC6337750 DOI: 10.3390/ijms20010105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 01/19/2023] Open
Abstract
The acute phase protein serum amyloid A (SAA) is associated with endothelial dysfunction and early-stage atherogenesis. Stimulation of vascular cells with SAA increases gene expression of pro-inflammation cytokines and tissue factor (TF). Activation of the transcription factor, nuclear factor kappa-B (NFκB), may be central to SAA-mediated endothelial cell inflammation, dysfunction and pro-thrombotic responses, while targeting NFκB with a pharmacologic inhibitor, BAY11-7082, may mitigate SAA activity. Human carotid artery endothelial cells (HCtAEC) were pre-incubated (1.5 h) with 10 μM BAY11-7082 or vehicle (control) followed by SAA (10 μg/mL; 4.5 h). Under these conditions gene expression for TF and Tumor Necrosis Factor (TNF) increased in SAA-treated HCtAEC and pre-treatment with BAY11-7082 significantly (TNF) and marginally (TF) reduced mRNA expression. Intracellular TNF and interleukin 6 (IL-6) protein also increased in HCtAEC supplemented with SAA and this expression was inhibited by BAY11-7082. Supplemented BAY11-7082 also significantly decreased SAA-mediated leukocyte adhesion to apolipoprotein E-deficient mouse aorta in exvivo vascular flow studies. In vascular function studies, isolated aortic rings pre-treated with BAY11-7082 prior to incubation with SAA showed improved endothelium-dependent vasorelaxation and increased vascular cyclic guanosine monophosphate (cGMP) content. Together these data suggest that inhibition of NFκB activation may protect endothelial function by inhibiting the pro-inflammatory and pro-thrombotic activities of SAA.
Collapse
Affiliation(s)
- Abigail Vallejo
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Belal Chami
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Joanne M Dennis
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Martin Simone
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Gulfam Ahmad
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Adrian I Abdo
- Heart Research Institute, Newton, NSW 2053, Australia.
| | - Arpeeta Sharma
- Baker Heart and Diabetes Institute, Victoria 3004, Australia.
| | - Waled A Shihata
- Baker Heart and Diabetes Institute, Victoria 3004, Australia.
- Department of Medicine, Monash University, Victoria 3500, Australia.
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University £Department of Pharmacology, Monash University, Victoria 3800, Australia.
| | - Nathan Martin
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Jaye P F Chin-Dusting
- Baker Heart and Diabetes Institute, Victoria 3004, Australia.
- Department of Medicine, Monash University, Victoria 3500, Australia.
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University £Department of Pharmacology, Monash University, Victoria 3800, Australia.
| | - Judy B de Haan
- Baker Heart and Diabetes Institute, Victoria 3004, Australia.
- Department of Immunology, Monash University, Victoria 3004, Australia.
- Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC 3083, Australia.
| | - Paul K Witting
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
17
|
Abstract
Serum amyloid A (SAA) proteins were isolated and named over 50 years ago. They are small (104 amino acids) and have a striking relationship to the acute phase response with serum levels rising as much as 1000-fold in 24 hours. SAA proteins are encoded in a family of closely-related genes and have been remarkably conserved throughout vertebrate evolution. Amino-terminal fragments of SAA can form highly organized, insoluble fibrils that accumulate in “secondary” amyloid disease. Despite their evolutionary preservation and dynamic synthesis pattern SAA proteins have lacked well-defined physiologic roles. However, considering an array of many, often unrelated, reports now permits a more coordinated perspective. Protein studies have elucidated basic SAA structure and fibril formation. Appreciating SAA’s lipophilicity helps relate it to lipid transport and metabolism as well as atherosclerosis. SAA’s function as a cytokine-like protein has become recognized in cell-cell communication as well as feedback in inflammatory, immunologic, neoplastic and protective pathways. SAA likely has a critical role in control and possibly propagation of the primordial acute phase response. Appreciating the many cellular and molecular interactions for SAA suggests possibilities for improved understanding of pathophysiology as well as treatment and disease prevention.
Collapse
Affiliation(s)
- George H Sack
- Departments of Biological Chemistry and Medicine, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Physiology 615, Baltimore, MD, 21205, USA.
| |
Collapse
|
18
|
Wilson PG, Thompson JC, Shridas P, McNamara PJ, de Beer MC, de Beer FC, Webb NR, Tannock LR. Serum Amyloid A Is an Exchangeable Apolipoprotein. Arterioscler Thromb Vasc Biol 2018; 38:1890-1900. [PMID: 29976766 PMCID: PMC6202200 DOI: 10.1161/atvbaha.118.310979] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Objective- SAA (serum amyloid A) is a family of acute-phase reactants that have proinflammatory and proatherogenic activities. SAA is more lipophilic than apoA-I (apolipoprotein A-I), and during an acute-phase response, <10% of plasma SAA is found lipid-free. In most reports, SAA is found exclusively associated with high-density lipoprotein; however, we and others have reported SAA on apoB (apolipoprotein B)-containing lipoproteins in both mice and humans. The goal of this study was to determine whether SAA is an exchangeable apolipoprotein. Approach and Results- Delipidated human SAA was incubated with SAA-free human lipoproteins; then, samples were reisolated by fast protein liquid chromatography, and SAA analyzed by ELISA and immunoblot. Both in vitro and in vivo, we show that SAA associates with any lipoprotein and does not remain in a lipid-free form. Although SAA is preferentially found on high-density lipoprotein, it can exchange between lipoproteins. In the presence of CETP (cholesterol ester transfer protein), there is greater exchange of SAA between lipoproteins. Subjects with diabetes mellitus, but not those with metabolic syndrome, showed altered SAA lipoprotein distribution postprandially. Proteoglycan-mediated lipoprotein retention is thought to be an underlying mechanism for atherosclerosis development. SAA has a proteoglycan-binding domain. Lipoproteins containing SAA had increased proteoglycan binding compared with SAA-free lipoproteins. Conclusions- Thus, SAA is an exchangeable apolipoprotein and increases apoB-containing lipoproteins' proteoglycan binding. We and others have previously reported the presence of SAA on low-density lipoprotein in individuals with obesity, diabetes mellitus, and metabolic syndrome. We propose that the presence of SAA on apoB-containing lipoproteins may contribute to cardiovascular disease development in these populations.
Collapse
Affiliation(s)
- Patricia G Wilson
- Department of Veterans Affairs, Lexington, KY
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky
- Barnstable Brown Diabetes Center, College of Medicine, University of Kentucky
| | - Joel C Thompson
- Department of Veterans Affairs, Lexington, KY
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky
- Barnstable Brown Diabetes Center, College of Medicine, University of Kentucky
| | - Preetha Shridas
- Department of Internal Medicine, College of Medicine, University of Kentucky
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky
- Barnstable Brown Diabetes Center, College of Medicine, University of Kentucky
| | - Patrick J McNamara
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky
| | - Maria C de Beer
- Department of Physiology, College of Medicine, University of Kentucky
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky
- Barnstable Brown Diabetes Center, College of Medicine, University of Kentucky
| | - Frederick C de Beer
- Department of Internal Medicine, College of Medicine, University of Kentucky
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky
- Barnstable Brown Diabetes Center, College of Medicine, University of Kentucky
| | - Nancy R Webb
- Department of Veterans Affairs, Lexington, KY
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky
- Barnstable Brown Diabetes Center, College of Medicine, University of Kentucky
| | - Lisa R Tannock
- Department of Veterans Affairs, Lexington, KY
- Department of Internal Medicine, College of Medicine, University of Kentucky
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky
- Barnstable Brown Diabetes Center, College of Medicine, University of Kentucky
| |
Collapse
|
19
|
Erickson MA, Jude J, Zhao H, Rhea EM, Salameh TS, Jester W, Pu S, Harrowitz J, Nguyen N, Banks WA, Panettieri RA, Jordan-Sciutto KL. Serum amyloid A: an ozone-induced circulating factor with potentially important functions in the lung-brain axis. FASEB J 2017; 31:3950-3965. [PMID: 28533327 DOI: 10.1096/fj.201600857rrr] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 05/01/2017] [Indexed: 01/24/2023]
Abstract
Accumulating evidence suggests that O3 exposure may contribute to CNS dysfunction. Here, we posit that inflammatory and acute-phase proteins in the circulation increase after O3 exposure and systemically convey signals of O3 exposure to the CNS. To model acute O3 exposure, female Balb/c mice were exposed to 3 ppm O3 or forced air for 2 h and were studied after 6 or 24 h. Of 23 cytokines and chemokines, only KC/CXCL1 was increased in blood 6 h after O3 exposure. The acute-phase protein serum amyloid A (A-SAA) was significantly increased by 24 h, whereas C-reactive protein was unchanged. A-SAA in blood correlated with total leukocytes, macrophages, and neutrophils in bronchoalveolar lavage from O3-exposed mice. A-SAA mRNA and protein were increased in the liver. We found that both isoforms of A-SAA completely crossed the intact blood-brain barrier, although the rate of SAA2.1 influx was approximately 5 times faster than that of SAA1.1. Finally, A-SAA protein, but not mRNA, was increased in the CNS 24 h post-O3 exposure. Our findings suggest that A-SAA is functionally linked to pulmonary inflammation in our O3 exposure model and that A-SAA could be an important systemic signal of O3 exposure to the CNS.-Erickson, M. A., Jude, J., Zhao, H., Rhea, E. M., Salameh, T. S., Jester, W., Pu, S., Harrowitz, J., Nguyen, N., Banks, W. A., Panettieri, R. A., Jr., Jordan-Sciutto, K. L. Serum amyloid A: an ozone-induced circulating factor with potentially important functions in the lung-brain axis.
Collapse
Affiliation(s)
- Michelle A Erickson
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; .,Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Joseph Jude
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey, USA.,Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hengjiang Zhao
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth M Rhea
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Therese S Salameh
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - William Jester
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey, USA.,Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shelley Pu
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jenna Harrowitz
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ngan Nguyen
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William A Banks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Reynold A Panettieri
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.,Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kelly L Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
HDL Glycoprotein Composition and Site-Specific Glycosylation Differentiates Between Clinical Groups and Affects IL-6 Secretion in Lipopolysaccharide-Stimulated Monocytes. Sci Rep 2017; 7:43728. [PMID: 28287093 PMCID: PMC5347119 DOI: 10.1038/srep43728] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/27/2017] [Indexed: 12/27/2022] Open
Abstract
The goal of this pilot study was to determine whether HDL glycoprotein composition affects HDL’s immunomodulatory function. HDL were purified from healthy controls (n = 13), subjects with metabolic syndrome (MetS) (n = 13), and diabetic hemodialysis (HD) patients (n = 24). Concentrations of HDL-bound serum amyloid A (SAA), lipopolysaccharide binding protein (LBP), apolipoprotein A-I (ApoA-I), apolipoprotein C-III (ApoC-III), α-1-antitrypsin (A1AT), and α-2-HS-glycoprotein (A2HSG); and the site-specific glycovariations of ApoC-III, A1AT, and A2HSG were measured. Secretion of interleukin 6 (IL-6) in lipopolysaccharide-stimulated monocytes was used as a prototypical assay of HDL’s immunomodulatory capacity. HDL from HD patients were enriched in SAA, LBP, ApoC-III, di-sialylated ApoC-III (ApoC-III2) and desialylated A2HSG. HDL that increased IL-6 secretion were enriched in ApoC-III, di-sialylated glycans at multiple A1AT glycosylation sites and desialylated A2HSG, and depleted in mono-sialylated ApoC-III (ApoC-III1). Subgroup analysis on HD patients who experienced an infectious hospitalization event within 60 days (HD+) (n = 12), vs. those with no event (HD−) (n = 12) showed that HDL from HD+ patients were enriched in SAA but had lower levels of sialylation across glycoproteins. Our results demonstrate that HDL glycoprotein composition, including the site-specific glycosylation, differentiate between clinical groups, correlate with HDL’s immunomodulatory capacity, and may be predictive of HDL’s ability to protect from infection.
Collapse
|
21
|
Griffiths K, Pazderska A, Ahmed M, McGowan A, Maxwell AP, McEneny J, Gibney J, McKay GJ. Type 2 Diabetes in Young Females Results in Increased Serum Amyloid A and Changes to Features of High Density Lipoproteins in Both HDL 2 and HDL 3. J Diabetes Res 2017; 2017:1314864. [PMID: 28596970 PMCID: PMC5450179 DOI: 10.1155/2017/1314864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/27/2017] [Accepted: 03/09/2017] [Indexed: 01/20/2023] Open
Abstract
Persons with type 2 diabetes mellitus (T2DM) have an elevated risk of atherosclerosis. High-density lipoproteins (HDL) normally protect against cardiovascular disease (CVD), but this may be attenuated by serum amyloid A (SAA). In a case-control study of young females, blood samples were compared between subjects with T2DM (n = 42) and individuals without T2DM (n = 42). SAA and apolipoprotein AI (apoAI) concentrations, paraoxonase-1 (PON-1), cholesteryl ester transfer protein (CETP), and lecithin-cholesterol acyltransferase (LCAT) activities were measured in the serum and/or HDL2 and HDL3 subfractions. SAA concentrations were higher in T2DM compared to controls: serum (30 mg/L (17, 68) versus 15 mg/L (7, 36); p = 0.002), HDL2 (1.0 mg/L (0.6, 2.2) versus 0.4 mg/L (0.2, 0.7); p < 0.001), and HDL3, (13 mg/L (8, 29) versus 6 mg/L (3, 13); p < 0.001). Serum-PON-1 activity was lower in T2DM compared to that in controls (38,245 U/L (7025) versus 41,109 U/L (5690); p = 0.043). CETP activity was higher in T2DM versus controls in HDL2 (232.6 μmol/L (14.1) versus 217.1 μmol/L (25.1); p = 0.001) and HDL3 (279.5 μmol/L (17.7) versus 245.2 μmol/L (41.2); p < 0.001). These results suggest that individuals with T2DM have increased SAA-related inflammation and dysfunctional HDL features. SAA may prove to be a useful biomarker in T2DM given its association with elevated CVD risk.
Collapse
Affiliation(s)
| | | | - Mohammed Ahmed
- Department of Endocrinology, Tallaght Hospital, Dublin 24, Ireland
| | - Anne McGowan
- Department of Endocrinology, Tallaght Hospital, Dublin 24, Ireland
| | | | - Jane McEneny
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - James Gibney
- Department of Endocrinology, Tallaght Hospital, Dublin 24, Ireland
| | - Gareth J. McKay
- Centre for Public Health, Queen's University Belfast, Belfast, UK
- *Gareth J. McKay:
| |
Collapse
|
22
|
High-density Lipoprotein and Inflammation and Its Significance to Atherosclerosis. Am J Med Sci 2016; 352:408-415. [DOI: 10.1016/j.amjms.2016.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 06/06/2016] [Accepted: 06/24/2016] [Indexed: 01/09/2023]
|
23
|
Borén J, Williams KJ. The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: a triumph of simplicity. Curr Opin Lipidol 2016; 27:473-83. [PMID: 27472409 DOI: 10.1097/mol.0000000000000330] [Citation(s) in RCA: 338] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Today, it is no longer a hypothesis, but an established fact, that increased plasma concentrations of cholesterol-rich apolipoprotein-B (apoB)-containing lipoproteins are causatively linked to atherosclerotic cardiovascular disease (ASCVD) and that lowering plasma LDL concentrations reduces cardiovascular events in humans. Here, we review evidence behind this assertion, with an emphasis on recent studies supporting the 'response-to-retention' model - namely, that the key initiating event in atherogenesis is the retention, or trapping, of cholesterol-rich apoB-containing lipoproteins within the arterial wall. RECENT FINDINGS New clinical trials have shown that ezetimibe and anti-PCSK9 antibodies - both nonstatins - lower ASCVD events, and they do so to the same extent as would be expected from comparable plasma LDL lowering by a statin. These studies demonstrate beyond any doubt the causal role of apoB-containing lipoproteins in atherogenesis. In addition, recent laboratory experimentation and human Mendelian randomization studies have revealed novel information about the critical role of apoB-containing lipoproteins in atherogenesis. New information has also emerged on mechanisms for the accumulation in plasma of harmful cholesterol-rich and triglyceride-rich apoB-containing remnant lipoproteins in states of overnutrition. Like LDL, these harmful cholesterol-rich and triglyceride-rich apoB-containing remnant lipoprotein remnants become retained and modified within the arterial wall, causing atherosclerosis. SUMMARY LDL and other cholesterol-rich, apoB-containing lipoproteins, once they become retained and modified within the arterial wall, cause atherosclerosis. This simple, robust pathophysiologic understanding may finally allow us to eradicate ASCVD, the leading killer in the world.
Collapse
Affiliation(s)
- Jan Borén
- aDepartment of Molecular and Clinical Medicine, University of Gothenburg bSahlgrenska University Hospital, Gothenburg, Sweden cSection of Endocrinology, Diabetes, & Metabolism, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Atherosclerosis is a chronic inflammation associated with increased expression of the acute phase isoforms of serum amyloid A (SAA) and in humans is a plasma biomarker for future cardiovascular events. However, whether SAA is only a biomarker or participates in the development of cardiovascular disease is not well characterized. The purpose of this review is to summarize putative functions of SAA relevant to atherogenesis and in-vivo murine studies that directly examine the effect of SAA on atherosclerosis. RECENT FINDINGS Modulation of the expression of SAA1 and/or SAA2 in murine models of atherosclerosis suggests that SAA promotes early atherogenesis. SAA secreted from bone-marrow-derived cells contributes to this antiatherogenic phenotype. SAA also promotes angiotensin-induced abdominal aneurysm in atherogenic mouse models. The reduction in atherosclerosis may be due, at least in part, to remodeling of the acute phase HDL to reduce its capacity to promote cholesterol efflux and reduce its anti-inflammatory ability. SUMMARY SAA is more than a marker of cardiovascular disease and is a participant in the early atherogenic process.
Collapse
Affiliation(s)
- Godfrey S Getz
- aDepartment of Pathology bDepartment of Medicine cBen May Institute for Cancer Biology, University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
25
|
Annema W, von Eckardstein A. Dysfunctional high-density lipoproteins in coronary heart disease: implications for diagnostics and therapy. Transl Res 2016; 173:30-57. [PMID: 26972566 DOI: 10.1016/j.trsl.2016.02.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 12/18/2022]
Abstract
Low plasma levels of high-density lipoprotein (HDL) cholesterol are associated with increased risks of coronary heart disease. HDL mediates cholesterol efflux from macrophages for reverse transport to the liver and elicits many anti-inflammatory and anti-oxidative activities which are potentially anti-atherogenic. Nevertheless, HDL has not been successfully targeted by drugs for prevention or treatment of cardiovascular diseases. One potential reason is the targeting of HDL cholesterol which does not capture the structural and functional complexity of HDL particles. Hundreds of lipid species and dozens of proteins as well as several microRNAs have been identified in HDL. This physiological heterogeneity is further increased in pathologic conditions due to additional quantitative and qualitative molecular changes of HDL components which have been associated with both loss of physiological function and gain of pathologic dysfunction. This structural and functional complexity of HDL has prevented clear assignments of molecules to the functions of normal HDL and dysfunctions of pathologic HDL. Systematic analyses of structure-function relationships of HDL-associated molecules and their modifications are needed to test the different components and functions of HDL for their relative contribution in the pathogenesis of atherosclerosis. The derived biomarkers and targets may eventually help to exploit HDL for treatment and diagnostics of cardiovascular diseases.
Collapse
Affiliation(s)
- Wijtske Annema
- Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
26
|
Hepatic expression of serum amyloid A1 is induced by traumatic brain injury and modulated by telmisartan. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 185:2641-52. [PMID: 26435412 DOI: 10.1016/j.ajpath.2015.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/16/2015] [Accepted: 06/01/2015] [Indexed: 12/27/2022]
Abstract
Traumatic brain injury affects the whole body in addition to the direct impact on the brain. The systemic response to trauma is associated with the hepatic acute-phase response. To further characterize this response, we performed controlled cortical impact injury on male mice and determined the expression of serum amyloid A1 (SAA1), an apolipoprotein, induced at the early stages of the acute-phase response in liver and plasma. After cortical impact injury, induction of SAA1 was detectable in plasma at 6 hours post-injury and in liver at 1 day post-injury, followed by gradual diminution over time. In the liver, cortical impact injury increased neutrophil and macrophage infiltration, apoptosis, and expression of mRNA encoding the chemokines CXCL1 and CXCL10. An increase in angiotensin II AT1 receptor mRNA at 3 days post-injury was also observed. Administration of the AT1 receptor antagonist telmisartan 1 hour post-injury significantly decreased liver SAA1 levels and CXCL10 mRNA expression, but did not affect CXCL1 expression or the number of apoptotic cells or infiltrating leukocytes. To our knowledge, this is the first study to demonstrate that SAA1 is induced in the liver after traumatic brain injury and that telmisartan prevents this response. Elucidating the molecular pathogenesis of the liver after brain injury will assist in understanding the efficacy of therapeutic approaches to brain injury.
Collapse
|
27
|
Chang CT, Tsai TY, Liao HY, Chang CM, Jheng JS, Huang WH, Chou CY, Chen CJ. Double Filtration Plasma Apheresis Shortens Hospital Admission Duration of Patients With Severe Hypertriglyceridemia-Associated Acute Pancreatitis. Pancreas 2016; 45:606-12. [PMID: 26491906 DOI: 10.1097/mpa.0000000000000507] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The treatment effectiveness of double filtration plasma apheresis (DFPP) on severe hypertriglyceridemia-associated acute pancreatitis (STAP) has been questioned because the currently defined serum triglyceride level--1000 mg/dL--is too low for STAP. Given this, we aimed to investigate DFPP effectiveness when we elevated STAP definition to 5000 mg/dL serum triglyceride. METHODS We performed nested case-control studies for STAP patients and divided them into groups "with" or "without" DFPP. We further recruited outpatient asymptomatic hypertriglyceridemia patients with STAP history, then divided them into groups "with" or "without" prophylactic DFPP once every 3 to 6 months for 2 years. We observed hospitalization duration and STAP recurrence between patients with and patients without DFPP. RESULTS Twelve STAP patients receiving DFPP had a median hospitalization of 5 days, whereas 24 patients without DFPP had 10 days (P = 0.009). Six outpatient referrals with STAP history receiving prophylactic DFPP showed no STAP recurrences whereas 6 without DFPP showed 3 recurrences (P = 0.046). For the 25 patients whose serum triglyceride exceeded 5000 mg/dL, 11 receiving DFPP had median hospitalization of 5 days while 14 without DFPP had 11 days (P = 0.012). CONCLUSIONS When applied to serum triglyceride in excess of 5000 mg/dL, DFPP removes oxidized and inflammatory lipoproteins, shortens hospitalization duration, and minimizes STAP recurrence.
Collapse
Affiliation(s)
- Chiz-Tzung Chang
- From the *College of Medicine, China Medical University; †Division of Nephrology, ‡L5 Research Center, §Division of Gastroenterology, ∥Proteomic Core Laboratory, China Medical University Hospital; and ¶Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Krueger LA, Reinhardt TA, Beitz DC, Stuart RL, Stabel JR. Effects of fractionated colostrum replacer and vitamins A, D, and E on haptoglobin and clinical health in neonatal Holstein calves challenged with Mycobacterium avium ssp. paratuberculosis. J Dairy Sci 2016; 99:2884-2895. [PMID: 26805975 PMCID: PMC7094477 DOI: 10.3168/jds.2015-10395] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/06/2015] [Indexed: 11/19/2022]
Abstract
Thirty Holstein calves were obtained from 2 dairy farms in central Iowa at birth and randomly assigned to 1 of 6 treatment groups: (1) colostrum deprived (CD), no vitamins; (2) colostrum replacer (CR), no vitamins; (3) CR, vitamin A; (4) CR, vitamin D3; (5) CR, vitamin E; and (6) CR, vitamins A, D3, E, with 5 calves per treatment in a 14-d study. Calves were fed pasteurized whole milk (CD) or fractionated colostrum replacer (CR) at birth (d 0) and injected with vitamins according to treatment group. From d 1 through d 14 of the study, all calves were fed pasteurized whole milk (PWM) supplemented with vitamins as assigned. All calves were inoculated with Mycobacterium avium ssp. paratuberculosis on d 1 and 3 of age. Calves fed CR acquired IgG1 and haptoglobin in serum within 24 h of birth, whereas CD calves did not. The CR-fed calves were 2.5 times less likely to develop scours, and CR calves supplemented with vitamins D3 and E also demonstrated a decreased incidence of scours. Serum vitamin levels of A, D, and E increased within treatment group by d 7 and 14 of the study. Interestingly, synergistic effects of supplemental vitamins A, D3, and E on serum 25-(OH)-vitamin D were observed at d 7, resulting in higher levels than in calves administered vitamin D only. Further, vitamin D3 deficiency was observed in CD and CR calves fed a basal diet of pasteurized whole milk and no supplemental vitamins. Colonization of tissues with Mycobacterium avium ssp. paratuberculosis was negligible and was not affected by colostrum feeding or vitamin supplementation. Results demonstrated passive transfer of haptoglobin to neonatal calves, and potential health benefits of supplemental vitamins D3 and E to calves fed pasteurized whole milk.
Collapse
Affiliation(s)
- L A Krueger
- Department of Animal Science, Iowa State University, Ames 50011; USDA-Agricultural Research Service, National Animal Disease Center, Ames, IA 50010
| | - T A Reinhardt
- USDA-Agricultural Research Service, National Animal Disease Center, Ames, IA 50010
| | - D C Beitz
- Department of Animal Science, Iowa State University, Ames 50011
| | | | - J R Stabel
- USDA-Agricultural Research Service, National Animal Disease Center, Ames, IA 50010.
| |
Collapse
|
29
|
Han CY, Tang C, Guevara ME, Wei H, Wietecha T, Shao B, Subramanian S, Omer M, Wang S, O'Brien KD, Marcovina SM, Wight TN, Vaisar T, de Beer MC, de Beer FC, Osborne WR, Elkon KB, Chait A. Serum amyloid A impairs the antiinflammatory properties of HDL. J Clin Invest 2015; 126:266-81. [PMID: 26642365 DOI: 10.1172/jci83475] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/29/2015] [Indexed: 01/25/2023] Open
Abstract
HDL from healthy humans and lean mice inhibits palmitate-induced adipocyte inflammation; however, the effect of the inflammatory state on the functional properties of HDL on adipocytes is unknown. Here, we found that HDL from mice injected with AgNO3 fails to inhibit palmitate-induced inflammation and reduces cholesterol efflux from 3T3-L1 adipocytes. Moreover, HDL isolated from obese mice with moderate inflammation and humans with systemic lupus erythematosus had similar effects. Since serum amyloid A (SAA) concentrations in HDL increase with inflammation, we investigated whether elevated SAA is a causal factor in HDL dysfunction. HDL from AgNO3-injected mice lacking Saa1.1 and Saa2.1 exhibited a partial restoration of antiinflammatory and cholesterol efflux properties in adipocytes. Conversely, incorporation of SAA into HDL preparations reduced antiinflammatory properties but not to the same extent as HDL from AgNO3-injected mice. SAA-enriched HDL colocalized with cell surface-associated extracellular matrix (ECM) of adipocytes, suggesting impaired access to the plasma membrane. Enzymatic digestion of proteoglycans in the ECM restored the ability of SAA-containing HDL to inhibit palmitate-induced inflammation and cholesterol efflux. Collectively, these findings indicate that inflammation results in a loss of the antiinflammatory properties of HDL on adipocytes, which appears to partially result from the SAA component of HDL binding to cell-surface proteoglycans, thereby preventing access of HDL to the plasma membrane.
Collapse
|
30
|
Rosal-Vela A, García-Rodríguez S, Postigo J, Iglesias M, Longobardo V, Lario A, Merino J, Merino R, Zubiaur M, Sancho J. Distinct serum proteome profiles associated with collagen-induced arthritis and complete Freund's adjuvant-induced inflammation in CD38−/−
mice: The discriminative power of protein species or proteoforms. Proteomics 2015; 15:3382-93. [DOI: 10.1002/pmic.201400536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 04/25/2015] [Accepted: 07/10/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Antonio Rosal-Vela
- Departamento de Biología Celular e Inmunología; Instituto de Parasitología y Biomedicina López Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), PTS Granada; Granada Spain
| | - Sonia García-Rodríguez
- Departamento de Biología Celular e Inmunología; Instituto de Parasitología y Biomedicina López Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), PTS Granada; Granada Spain
| | - Jorge Postigo
- Departamento de Biología Molecular; Instituto de Formación e Investigación Marqués de Valdecilla, Universidad de Cantabria; Cantabria Spain
| | - Marcos Iglesias
- Departamento de Biología Molecular; Instituto de Formación e Investigación Marqués de Valdecilla, Universidad de Cantabria; Cantabria Spain
| | - Victoria Longobardo
- Unidad de Proteómica; Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), PTS Granada; Granada Spain
| | - Antonio Lario
- Unidad de Proteómica; Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), PTS Granada; Granada Spain
| | - Jesús Merino
- Departamento de Biología Molecular; Instituto de Formación e Investigación Marqués de Valdecilla, Universidad de Cantabria; Cantabria Spain
| | - Ramón Merino
- Instituto de Biomedicina y Biotecnología de Cantabria/CSIC-Universidad de Cantabria-SODERCAN; Cantabria Spain
| | - Mercedes Zubiaur
- Departamento de Biología Celular e Inmunología; Instituto de Parasitología y Biomedicina López Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), PTS Granada; Granada Spain
| | - Jaime Sancho
- Departamento de Biología Celular e Inmunología; Instituto de Parasitología y Biomedicina López Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), PTS Granada; Granada Spain
| |
Collapse
|
31
|
Serum amyloid A receptor blockade and incorporation into high-density lipoprotein modulates its pro-inflammatory and pro-thrombotic activities on vascular endothelial cells. Int J Mol Sci 2015; 16:11101-24. [PMID: 25988387 PMCID: PMC4463692 DOI: 10.3390/ijms160511101] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/25/2015] [Accepted: 04/27/2015] [Indexed: 02/07/2023] Open
Abstract
The acute phase protein serum amyloid A (SAA), a marker of inflammation, induces expression of pro-inflammatory and pro-thrombotic mediators including ICAM-1, VCAM-1, IL-6, IL-8, MCP-1 and tissue factor (TF) in both monocytes/macrophages and endothelial cells, and induces endothelial dysfunction—a precursor to atherosclerosis. In this study, we determined the effect of pharmacological inhibition of known SAA receptors on pro-inflammatory and pro-thrombotic activities of SAA in human carotid artery endothelial cells (HCtAEC). HCtAEC were pre-treated with inhibitors of formyl peptide receptor-like-1 (FPRL-1), WRW4; receptor for advanced glycation-endproducts (RAGE), (endogenous secretory RAGE; esRAGE) and toll-like receptors-2/4 (TLR2/4) (OxPapC), before stimulation by added SAA. Inhibitor activity was also compared to high-density lipoprotein (HDL), a known inhibitor of SAA-induced effects on endothelial cells. SAA significantly increased gene expression of TF, NFκB and TNF and protein levels of TF and VEGF in HCtAEC. These effects were inhibited to variable extents by WRW4, esRAGE and OxPapC either alone or in combination, suggesting involvement of endothelial cell SAA receptors in pro-atherogenic gene expression. In contrast, HDL consistently showed the greatest inhibitory action, and often abrogated SAA-mediated responses. Increasing HDL levels relative to circulating free SAA may prevent SAA-mediated endothelial dysfunction and ameliorate atherogenesis.
Collapse
|
32
|
de Seny D, Cobraiville G, Charlier E, Neuville S, Lutteri L, Le Goff C, Malaise D, Malaise O, Chapelle JP, Relic B, Malaise MG. Apolipoprotein-A1 as a damage-associated molecular patterns protein in osteoarthritis: ex vivo and in vitro pro-inflammatory properties. PLoS One 2015; 10:e0122904. [PMID: 25849372 PMCID: PMC4388661 DOI: 10.1371/journal.pone.0122904] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/24/2015] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) is associated with a local inflammatory process. Dyslipidemia is known to be an underlying cause for the development of OA. Therefore, lipid and inflammatory levels were quantified ex vivo in blood and synovial fluid of OA patients (n=29) and compared to those of rheumatoid arthritis (RA) patients (n=27) or healthy volunteers (HV) (n=35). The role of apolipoprotein A-I (ApoA1) was investigated in vitro on inflammatory parameters using human joint cells isolated from cartilage and synovial membrane obtained from OA patients after joint replacement. Cells were stimulated with ApoA1 in the presence or not of serum amyloid A (SAA) protein and/or lipoproteins (LDL and HDL) at physiological concentration observed in OA synovial fluid. In our ex vivo study, ApoA1, LDL-C and total cholesterol levels were strongly correlated to each other inside the OA joint cavity whereas same levels were not or weakly correlated to their corresponding serum levels. In OA synovial fluid, ApoA1 was not as strongly correlated to HDL as observed in OA serum or in RA synovial fluid, suggesting a dissociative level between ApoA1 and HDL in OA synovial fluid. In vitro, ApoA1 induced IL-6, MMP-1 and MMP-3 expression by primary chondrocytes and fibroblast-like synoviocytes through TLR4 receptor. HDL and LDL attenuated joint inflammatory response induced by ApoA1 and SAA in a ratio dependent manner. In conclusion, a dysregulated lipidic profile in the synovial fluid of OA patients was observed and was correlated with inflammatory parameters in the OA joint cavity. Pro-inflammatory properties of ApoA1 were confirmed in vitro.
Collapse
Affiliation(s)
- Dominique de Seny
- Laboratory of Rheumatology, GIGA Research, University of Liege and CHU Hospital of Liege, 4000 Liège, Belgium
| | - Gaël Cobraiville
- Laboratory of Rheumatology, GIGA Research, University of Liege and CHU Hospital of Liege, 4000 Liège, Belgium
| | - Edith Charlier
- Laboratory of Rheumatology, GIGA Research, University of Liege and CHU Hospital of Liege, 4000 Liège, Belgium
| | - Sophie Neuville
- Laboratory of Rheumatology, GIGA Research, University of Liege and CHU Hospital of Liege, 4000 Liège, Belgium
| | - Laurence Lutteri
- Laboratory of Clinical Chemistry, CHU Hospital of Liege, 4000 Liège, Belgium
| | - Caroline Le Goff
- Laboratory of Clinical Chemistry, CHU Hospital of Liege, 4000 Liège, Belgium
| | - Denis Malaise
- Laboratory of Rheumatology, GIGA Research, University of Liege and CHU Hospital of Liege, 4000 Liège, Belgium
| | - Olivier Malaise
- Laboratory of Rheumatology, GIGA Research, University of Liege and CHU Hospital of Liege, 4000 Liège, Belgium
| | - Jean-Paul Chapelle
- Laboratory of Clinical Chemistry, CHU Hospital of Liege, 4000 Liège, Belgium
| | - Biserka Relic
- Laboratory of Rheumatology, GIGA Research, University of Liege and CHU Hospital of Liege, 4000 Liège, Belgium
| | - Michel G. Malaise
- Laboratory of Rheumatology, GIGA Research, University of Liege and CHU Hospital of Liege, 4000 Liège, Belgium
| |
Collapse
|
33
|
Kulkarni M, Flašker A, Lokar M, Mrak-Poljšak K, Mazare A, Artenjak A, Čučnik S, Kralj S, Velikonja A, Schmuki P, Kralj-Iglič V, Sodin-Semrl S, Iglič A. Binding of plasma proteins to titanium dioxide nanotubes with different diameters. Int J Nanomedicine 2015; 10:1359-73. [PMID: 25733829 PMCID: PMC4340467 DOI: 10.2147/ijn.s77492] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Titanium and titanium alloys are considered to be one of the most applicable materials in medical devices because of their suitable properties, most importantly high corrosion resistance and the specific combination of strength with biocompatibility. In order to improve the biocompatibility of titanium surfaces, the current report initially focuses on specifying the topography of titanium dioxide (TiO2) nanotubes (NTs) by electrochemical anodization. The zeta potential (ζ-potential) of NTs showed a negative value and confirmed the agreement between the measured and theoretically predicted dependence of ζ-potential on salt concentration, whereby the absolute value of ζ-potential diminished with increasing salt concentrations. We investigated binding of various plasma proteins with different sizes and charges using the bicinchoninic acid assay and immunofluorescence microscopy. Results showed effective and comparatively higher protein binding to NTs with 100 nm diameters (compared to 50 or 15 nm). We also showed a dose-dependent effect of serum amyloid A protein binding to NTs. These results and theoretical calculations of total available surface area for binding of proteins indicate that the largest surface area (also considering the NT lengths) is available for 100 nm NTs, with decreasing surface area for 50 and 15 nm NTs. These current investigations will have an impact on increasing the binding ability of biomedical devices in the body leading to increased durability of biomedical devices.
Collapse
Affiliation(s)
- Mukta Kulkarni
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Ajda Flašker
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Maruša Lokar
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Katjuša Mrak-Poljšak
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Anca Mazare
- Department of Materials Science and Engineering, University of Erlangen Nuremberg, Erlangen, Germany
| | - Andrej Artenjak
- Sandoz Biopharmaceuticals Mengeš, Lek Pharmaceuticals dd, Menges, Slovenia
| | - Saša Čučnik
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Slavko Kralj
- Department for Materials Synthesis, Institute Jožef Stefan (IJS), Ljubljana, Slovenia
| | - Aljaž Velikonja
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Patrik Schmuki
- Department of Materials Science and Engineering, University of Erlangen Nuremberg, Erlangen, Germany
| | | | - Snezna Sodin-Semrl
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Science and Information Technology, University of Primorska, Koper, Slovenia
| | - Aleš Iglič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
34
|
Kontush A, Lindahl M, Lhomme M, Calabresi L, Chapman MJ, Davidson WS. Structure of HDL: particle subclasses and molecular components. Handb Exp Pharmacol 2015; 224:3-51. [PMID: 25522985 DOI: 10.1007/978-3-319-09665-0_1] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A molecular understanding of high-density lipoprotein (HDL) will allow a more complete grasp of its interactions with key plasma remodelling factors and with cell-surface proteins that mediate HDL assembly and clearance. However, these particles are notoriously heterogeneous in terms of almost every physical, chemical and biological property. Furthermore, HDL particles have not lent themselves to high-resolution structural study through mainstream techniques like nuclear magnetic resonance and X-ray crystallography; investigators have therefore had to use a series of lower resolution methods to derive a general structural understanding of these enigmatic particles. This chapter reviews current knowledge of the composition, structure and heterogeneity of human plasma HDL. The multifaceted composition of the HDL proteome, the multiple major protein isoforms involving translational and posttranslational modifications, the rapidly expanding knowledge of the HDL lipidome, the highly complex world of HDL subclasses and putative models of HDL particle structure are extensively discussed. A brief history of structural studies of both plasma-derived and recombinant forms of HDL is presented with a focus on detailed structural models that have been derived from a range of techniques spanning mass spectrometry to molecular dynamics.
Collapse
Affiliation(s)
- Anatol Kontush
- National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Paris, France,
| | | | | | | | | | | |
Collapse
|
35
|
McEneny J, Daniels JA, McGowan A, Gunness A, Moore K, Stevenson M, Young IS, Gibney J. A Cross-Sectional Study Demonstrating Increased Serum Amyloid A Related Inflammation in High-Density Lipoproteins from Subjects with Type 1 Diabetes Mellitus and How this Association Was Augmented by Poor Glycaemic Control. J Diabetes Res 2015; 2015:351601. [PMID: 26557720 PMCID: PMC4628656 DOI: 10.1155/2015/351601] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/08/2014] [Indexed: 11/24/2022] Open
Abstract
Inflammatory atherosclerosis is increased in subjects with type 1 diabetes mellitus (T1DM). Normally high-density lipoproteins (HDL) protect against atherosclerosis; however, in the presence of serum amyloid-A- (SAA-) related inflammation this property may be reduced. Fasting blood was obtained from fifty subjects with T1DM, together with fifty age, gender and BMI matched control subjects. HDL was subfractionated into HDL2 and HDL3 by rapid ultracentrifugation. Serum-hsCRP and serum-, HDL2-, and HDL3-SAA were measured by ELISAs. Compared to control subjects, SAA was increased in T1DM subjects, nonsignificantly in serum (P = 0.088), and significantly in HDL2(P = 0.003) and HDL3(P = 0.005). When the T1DM group were separated according to mean HbA1c (8.34%), serum-SAA and HDL3-SAA levels were higher in the T1DM subjects with HbA1c ≥ 8.34%, compared to when HbA1c was <8.34% (P < 0.05). Furthermore, regression analysis illustrated, that for every 1%-unit increase in HbA1c, SAA increased by 20% and 23% in HDL2 and HDL3, respectively, independent of BMI. HsCRP did not differ between groups (P > 0.05). This cross-sectional study demonstrated increased SAA-related inflammation in subjects with T1DM that was augmented by poor glycaemic control. We suggest that SAA is a useful inflammatory biomarker in T1DM, which may contribute to their increased atherosclerosis risk.
Collapse
Affiliation(s)
- Jane McEneny
- Centre for Public Health, Queen's University Belfast, Institute of Pathology, Grosvenor Road, Belfast BT12 6BJ, UK
- *Jane McEneny:
| | - Jane-Ann Daniels
- Centre for Public Health, Queen's University Belfast, Institute of Pathology, Grosvenor Road, Belfast BT12 6BJ, UK
| | - Anne McGowan
- Department of Endocrinology, Tallaght Hospital, Dublin 24, Ireland
| | - Anjuli Gunness
- Department of Endocrinology, Tallaght Hospital, Dublin 24, Ireland
| | - Kevin Moore
- Department of Endocrinology, Tallaght Hospital, Dublin 24, Ireland
| | - Michael Stevenson
- Centre for Public Health, Queen's University Belfast, Institute of Pathology, Grosvenor Road, Belfast BT12 6BJ, UK
| | - Ian S. Young
- Centre for Public Health, Queen's University Belfast, Institute of Pathology, Grosvenor Road, Belfast BT12 6BJ, UK
| | - James Gibney
- Department of Endocrinology, Tallaght Hospital, Dublin 24, Ireland
| |
Collapse
|
36
|
Karlsson H, Kontush A, James RW. Functionality of HDL: antioxidation and detoxifying effects. Handb Exp Pharmacol 2015; 224:207-228. [PMID: 25522989 DOI: 10.1007/978-3-319-09665-0_5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High-density lipoproteins (HDL) are complexes of multiple talents, some of which have only recently been recognised but all of which are under active investigation. Clinical interest initially arose from their amply demonstrated role in atherosclerotic disease with their consequent designation as a major cardiovascular disease (CVD) risk factor. However, interest is no longer confined to vascular tissues, with the reports of impacts of the lipoprotein on pancreatic, renal and nervous tissues, amongst other possible targets. The ever-widening scope of HDL talents also encompasses environmental hazards, including infectious agents and environmental toxins. In almost all cases, HDL would appear to have a beneficial impact on health. It raises the intriguing question of whether these various talents emanate from a basic ancestral function to protect the cell.The following chapter will illustrate and review our current understanding of some of the functions attributed to HDL. The first section will look at the antioxidative functions of HDL and possible mechanisms that are involved. The second section will focus specifically on paraoxonase-1 (PON1), which appears to bridge the divide between the two HDL functions discussed herein. This will lead into the final section dealing with HDL as a detoxifying agent protecting against exposure to environmental pathogens and other toxins.
Collapse
Affiliation(s)
- Helen Karlsson
- Occupational and Environmental Medicine, Heart Medical Centre, County Council of Ostergotland, Linkoping University, SE-58185, Linkoping, Sweden,
| | | | | |
Collapse
|
37
|
Thompson JC, Jayne C, Thompson J, Wilson PG, Yoder MH, Webb N, Tannock LR. A brief elevation of serum amyloid A is sufficient to increase atherosclerosis. J Lipid Res 2014; 56:286-93. [PMID: 25429103 DOI: 10.1194/jlr.m054015] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Serum amyloid A (SAA) has a number of proatherogenic effects including induction of vascular proteoglycans. Chronically elevated SAA was recently shown to increase atherosclerosis in mice. The purpose of this study was to determine whether a brief increase in SAA similarly increased atherosclerosis in a murine model. The recombination activating gene 1-deficient (rag1(-/-)) × apolipoprotein E-deficient (apoe(-/-)) and apoe(-/-) male mice were injected, multiple times or just once respectively, with an adenoviral vector encoding human SAA1 (ad-SAA); the injected mice and controls were maintained on chow for 12-16 weeks. Mice receiving multiple injections of ad-SAA, in which SAA elevation was sustained, had increased atherosclerosis compared with controls. Strikingly, mice receiving only a single injection of ad-SAA, in which SAA was only briefly elevated, also had increased atherosclerosis compared with controls. Using in vitro studies, we demonstrate that SAA treatment leads to increased LDL retention, and that prevention of transforming growth factor beta (TGF-β) signaling prevents SAA-induced increases in LDL retention and SAA-induced increases in vascular biglycan content. We propose that SAA increases atherosclerosis development via induction of TGF-β, increased vascular biglycan content, and increased LDL retention. These data suggest that even short-term inflammation with concomitant increase in SAA may increase the risk of developing CVD.
Collapse
Affiliation(s)
- Joel C Thompson
- Department of Internal Medicine, Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY Department of Pharmacology and Nutritional Sciences, Division of Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Colton Jayne
- Department of Internal Medicine, Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY
| | - Jennifer Thompson
- Department of Internal Medicine, Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY
| | - Patricia G Wilson
- Department of Internal Medicine, Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY
| | - Meghan H Yoder
- Department of Internal Medicine, Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY
| | - Nancy Webb
- Department of Pharmacology and Nutritional Sciences, Division of Nutritional Sciences, University of Kentucky, Lexington, KY Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, KY
| | - Lisa R Tannock
- Department of Internal Medicine, Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, KY Department of Veterans Affairs, Lexington, KY
| |
Collapse
|
38
|
Birner-Gruenberger R, Schittmayer M, Holzer M, Marsche G. Understanding high-density lipoprotein function in disease: recent advances in proteomics unravel the complexity of its composition and biology. Prog Lipid Res 2014; 56:36-46. [PMID: 25107698 DOI: 10.1016/j.plipres.2014.07.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
Abstract
Although the epidemiology of high-density lipoprotein (HDL) cholesterol and cardiovascular risk has been consistent, pharmacologic interventions to increase HDL-cholesterol by delaying HDL catabolism did not translate into reduction in cardiovascular risk. HDL particles are small, protein-rich when compared to other plasma lipoprotein classes. Latest progresses in proteomics technology have dramatically increased our understanding of proteins carried by HDL. In addition to proteins with well-established functions in lipid transport, iron transport proteins, members of the complement pathway, and proteins involved in immune function and acute phase response were repeatedly identified on HDL particles. With the unraveling of the complexity of the HDL proteome, different laboratories have started to monitor its changes in various disease states. In addition, dynamic aspects of HDL subgroups are being discovered. These recent studies clearly illustrate the promise of HDL proteomics for deriving new biomarkers for disease diagnosis and to measure the effectiveness of current and future treatment regimens. This review summarizes recent advances in proteomics and lipidomics helping to understand HDL function in health and disease.
Collapse
Affiliation(s)
- Ruth Birner-Gruenberger
- Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed, Graz, Austria.
| | - Matthias Schittmayer
- Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed, Graz, Austria
| | - Michael Holzer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
39
|
Takase H, Furuchi H, Tanaka M, Yamada T, Matoba K, Iwasaki K, Kawakami T, Mukai T. Characterization of reconstituted high-density lipoprotein particles formed by lipid interactions with human serum amyloid A. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1842:1467-74. [PMID: 25063355 DOI: 10.1016/j.bbalip.2014.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 12/21/2022]
Abstract
The acute-phase human protein serum amyloid A (SAA) is enriched in high-density lipoprotein (HDL) in patients with inflammatory diseases. Compared with normal HDL containing apolipoprotein A-I, which is the principal protein component, characteristics of acute-phase HDL containing SAA remain largely undefined. In the present study, we examined the physicochemical properties of reconstituted HDL (rHDL) particles formed by lipid interactions with SAA. Fluorescence and circular dichroism measurements revealed that although SAA was unstructured at physiological temperature, α-helix formation was induced upon binding to phospholipid vesicles. SAA also formed rHDL particles by solubilizing phospholipid vesicles through mechanisms that are common to other exchangeable apolipoproteins. Dynamic light scattering and nondenaturing gradient gel electrophoresis analyses of rHDL after gel filtration revealed particle sizes of approximately 10nm, and a discoidal shape was verified by transmission electron microscopy. Thermal denaturation experiments indicated that SAA molecules in rHDL retained α-helical conformations at 37°C, but were almost completely denatured around 60°C. Furthermore, trypsin digestion experiments showed that lipid binding rendered SAA molecules resistant to protein degradation. In humans, three major SAA1 isoforms (SAA1.1, 1.3, and 1.5) are known. Although these isoforms have different amino acids at residues 52 and 57, no major differences in physicochemical properties between rHDL particles resulting from lipid interactions with SAA isoforms have been found. The present data provide useful insights into the effects of SAA enrichment on the physicochemical properties of HDL.
Collapse
Affiliation(s)
- Hiroka Takase
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Hiroki Furuchi
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Masafumi Tanaka
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan.
| | - Toshiyuki Yamada
- Department of Clinical and Laboratory Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Kyoko Matoba
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Kenji Iwasaki
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Toru Kawakami
- Laboratory of Protein Organic Chemistry, Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Takahiro Mukai
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| |
Collapse
|
40
|
Ahlin S, Olsson M, Wilhelmson AS, Skålén K, Borén J, Carlsson LMS, Svensson PA, Sjöholm K. Adipose tissue-derived human serum amyloid a does not affect atherosclerotic lesion area in hSAA1+/-/ApoE-/- mice. PLoS One 2014; 9:e95468. [PMID: 24751653 PMCID: PMC3994058 DOI: 10.1371/journal.pone.0095468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/27/2014] [Indexed: 11/18/2022] Open
Abstract
Chronically elevated serum levels of serum amyloid A (SAA) are linked to increased risk of cardiovascular disease. However, whether SAA is directly involved in atherosclerosis development is still not known. The aim of this study was to investigate the effects of adipose tissue-derived human SAA on atherosclerosis in mice. hSAA1+/- transgenic mice (hSAA1 mice) with a specific expression of human SAA1 in adipose tissue were bred with ApoE-deficient mice. The hSAA1 mice and their wild type (wt) littermates were fed normal chow for 35 weeks. At the end of the experiment, the mice were euthanized and blood, gonadal adipose tissue and aortas were collected. Plasma levels of SAA, cholesterol and triglycerides were measured. Atherosclerotic lesion areas were analyzed in the aortic arch, the thoracic aorta and the abdominal aorta in en face preparations of aorta stained with Sudan IV. The human SAA protein was present in plasma from hSAA1 mice but undetectable in wt mice. Similar plasma levels of cholesterol and triglycerides were observed in hSAA1 mice and their wt controls. There were no differences in atherosclerotic lesion areas in any sections of the aorta in hSAA1 mice compared to wt mice. In conclusion, our data suggest that adipose tissue-derived human SAA does not influence atherosclerosis development in mice.
Collapse
Affiliation(s)
- Sofie Ahlin
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Maja Olsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anna S. Wilhelmson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Kristina Skålén
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lena M. S. Carlsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Per-Arne Svensson
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Kajsa Sjöholm
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
41
|
Kondo S, Kamei A, Xiao JZ, Iwatsuki K, Abe K. Bifidobacterium breve B-3 exerts metabolic syndrome-suppressing effects in the liver of diet-induced obese mice: a DNA microarray analysis. Benef Microbes 2014; 4:247-51. [PMID: 23666099 DOI: 10.3920/bm2012.0019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We previously reported that supplementation with Bifidobacterium breve B-3 reduced body weight gain and accumulation of visceral fat in a dose-dependent manner, and improved serum levels of total cholesterol, glucose and insulin in a mouse model of diet-induced obesity. In this study, we investigated the expression of genes in the liver using DNA microarray analysis and q-PCR to reveal the mechanism of these anti-obesity effects in this mouse model. Administration of B. breve B-3 led to regulated gene expression of pathways involved in lipid metabolism and response to stress. The results indicate that these regulations in the liver are related to the anti-metabolic syndrome effects of B. breve B-3.
Collapse
Affiliation(s)
- S Kondo
- Food Science and Technology Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, 252-8583 Kanagawa, Japan
| | | | | | | | | |
Collapse
|
42
|
Lakota K, Mrak-Poljsak K, Bozic B, Tomsic M, Sodin-Semrl S. Serum amyloid A activation of human coronary artery endothelial cells exhibits a neutrophil promoting molecular profile. Microvasc Res 2013; 90:55-63. [PMID: 23938271 DOI: 10.1016/j.mvr.2013.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Serum amyloid A (SAA) has been shown to be an active participant in atherosclerosis and cardiovascular diseases. SAA-stimulated human coronary artery endothelial cells (HCAEC) were reported to release pro-inflammatory cytokines, chemokines and adhesion molecules; however it remains unclear which putative SAA receptors are present in these cells and how they act. We investigated the effects of inflammatory stimuli on the expression of SAA receptors, signaling pathways and molecular profiles in HCAEC. METHODOLOGY/PRINCIPLE FINDINGS HCAEC were cultured in vitro and stimulated with SAA (1000nM) or IL-1β (1000pg/ml). Expression of mRNA was determined by qPCR, and expression and quantification of proteins were assessed by dot array blots and ELISA, respectively. Protein phosphorylation was determined by dot blot arrays and Western blots. We report that all potential SAA receptors tested (FPR2/ALX, RAGE, TANIS, TLR2, TLR4 and CLA-1/hSR-B1) are expressed in HCAEC. Importantly, IL-1β or SAA significantly increased solely the expression of the innate immune receptor TLR2. SAA upregulated the phosphorylation of ERK1/2, NF-κB (p65, p105) and JNK, as well as expression/release of IL-6, IL-8, G-CSF, GM-CSF, ICAM-1 and VCAM-1, all potent molecules involved in neutrophil-related activities. A TLR2-dependent positive feedback mechanism of SAA expression was found. CONCLUSION/SIGNIFICANCE SAA stimulated responses in HCAEC target neutrophil rather than monocyte/macrophage activation.
Collapse
Affiliation(s)
- Katja Lakota
- University Medical Centre, Department of Rheumatology, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
43
|
Yassine H, Borges CR, Schaab MR, Billheimer D, Stump C, Reaven P, Lau SS, Nelson R. Mass spectrometric immunoassay and MRM as targeted MS-based quantitative approaches in biomarker development: potential applications to cardiovascular disease and diabetes. Proteomics Clin Appl 2013; 7:528-40. [PMID: 23696124 DOI: 10.1002/prca.201200028] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 02/04/2013] [Accepted: 03/30/2013] [Indexed: 12/29/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is an important risk factor for cardiovascular disease (CVD)--the leading cause of death in the United States. Yet not all subjects with T2DM are at equal risk for CVD complications; the challenge lies in identifying those at greatest risk. Therapies directed toward treating conventional risk factors have failed to significantly reduce this residual risk in T2DM patients. Thus newer targets and markers are needed for the development and testing of novel therapies. Herein we review two complementary MS-based approaches--mass spectrometric immunoassay (MSIA) and MS/MS as MRM--for the analysis of plasma proteins and PTMs of relevance to T2DM and CVD. Together, these complementary approaches allow for high-throughput monitoring of many PTMs and the absolute quantification of proteins near the low picomolar range. In this review article, we discuss the clinical relevance of the high density lipoprotein (HDL) proteome and Apolipoprotein A-I PTMs to T2DM and CVD as well as provide illustrative MSIA and MRM data on HDL proteins from T2DM patients to provide examples of how these MS approaches can be applied to gain new insight regarding cardiovascular risk factors. Also discussed are the reproducibility, interpretation, and limitations of each technique with an emphasis on their capacities to facilitate the translation of new biomarkers into clinical practice.
Collapse
Affiliation(s)
- Hussein Yassine
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Jahangiri A, Wilson PG, Hou T, Brown A, King VL, Tannock LR. Serum amyloid A is found on ApoB-containing lipoproteins in obese humans with diabetes. Obesity (Silver Spring) 2013; 21:993-6. [PMID: 23784902 PMCID: PMC3695410 DOI: 10.1002/oby.20126] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 09/06/2012] [Indexed: 11/20/2022]
Abstract
OBJECTIVE In murine models of obesity/diabetes, there is an increase in plasma serum amyloid A (SAA) levels along with redistribution of SAA from high-density lipoprotein (HDL) to apolipoprotein B (apoB)-containing lipoprotein particles, namely, low-density lipoprotein and very low-density lipoprotein. The goal of this study was to determine if obesity is associated with similar SAA lipoprotein redistribution in humans. DESIGN AND METHODS Three groups of obese individuals were recruited from a weight loss clinic: healthy obese (n = 14), metabolic syndrome (MetS) obese (n = 8), and obese with type 2 diabetes (n = 6). Plasma was separated into lipoprotein fractions by fast protein liquid chromatography, and SAA was measured in lipid fractions using enzyme-linked immunosorbent assay and Western blotting. RESULTS Only the obese diabetic group had SAA detectable in apoB-containing lipoproteins, and SAA reverted back to HDL with active weight loss. CONCLUSIONS In human subjects, SAA is found in apoB-containing lipoprotein particles only in obese subjects with type 2 diabetes, but not in healthy obese or obese subjects with MetS.
Collapse
Affiliation(s)
- Anisa Jahangiri
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY, USA
| | - Patricia G Wilson
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY, USA
| | - Tianfei Hou
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Aparna Brown
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY, USA
| | - Victoria L. King
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Lisa R. Tannock
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY, USA
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
- Department of Veterans Affairs, Lexington, KY, USA
| |
Collapse
|
45
|
Eberini I, Wait R, Calabresi L, Sensi C, Miller I, Gianazza E. A proteomic portrait of atherosclerosis. J Proteomics 2013; 82:92-112. [DOI: 10.1016/j.jprot.2013.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 01/11/2023]
|
46
|
Raterman HG, Levels H, Voskuyl AE, Lems WF, Dijkmans BA, Nurmohamed MT. HDL protein composition alters from proatherogenic into less atherogenic and proinflammatory in rheumatoid arthritis patients responding to rituximab. Ann Rheum Dis 2013; 72:560-5. [PMID: 22589377 DOI: 10.1136/annrheumdis-2011-201228] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE An atherogenic lipid profile is an established risk factor for cardiovascular (CV) diseases. Interestingly, high inflammatory states as present in rheumatoid arthritis (RA) are associated with unfavourable lipid profile. Data about effects of novel immunomodulating agents as rituximab (RTX) on lipid profile are limited. Therefore, changes in lipids in RTX treated RA patients were evaluated. METHODS In 49 consecutive RTX treated RA patients, serum and EDTA plasma samples were collected at baseline, 1, 3 and 6 months. In these samples, lipid and levels were assessed to determine changes in time. Surface-enhanced laser desorption/ionisation time-of-flight (SELDI-TOF) MS analysis was performed in six good and six non-responding RA patients to study functional high density lipoprotein (HDL) protein composition changes in time. RESULTS In the total group (n=49), the atherogenic index decreased from 4.3 to 3.9 (∼9%) after 6 months. Testing for effect modification revealed a difference in the effect on lipid levels between responders and non-responders upon RTX (p<0.001). ApoB to ApoA-I ratios decreased significantly (∼9%) in good responding (n=32) patients. SELDI-TOF MS analysis revealed a significant decrease in density of mass charge (m/z) marker 11743, representing a decrease in serum amyloid A, in good responding patients. CONCLUSION This study indicates beneficial effects on cholesterol profile upon RTX treatment along with improvement of disease activity. Proteomic analysis of the HDL particle reveals composition changes from proatherogenic to a less proatherogenic composition during 6 months RTX treatment. Whether these HDL particle alterations during immunotherapies result in a lower CV event rate remains to be established.
Collapse
MESH Headings
- Adult
- Aged
- Antibodies, Monoclonal, Murine-Derived/therapeutic use
- Antirheumatic Agents/therapeutic use
- Apolipoproteins A/analysis
- Apolipoproteins A/blood
- Apolipoproteins B/analysis
- Apolipoproteins B/blood
- Arthritis, Rheumatoid/blood
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/epidemiology
- Atherosclerosis/blood
- Atherosclerosis/epidemiology
- Atherosclerosis/prevention & control
- Cholesterol, HDL/analysis
- Cholesterol, HDL/blood
- Cholesterol, LDL/analysis
- Cholesterol, LDL/blood
- Female
- Humans
- Immunomodulation/drug effects
- Immunomodulation/immunology
- Male
- Middle Aged
- Proteomics
- Risk Factors
- Rituximab
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Treatment Outcome
- Triglycerides/analysis
- Triglycerides/blood
Collapse
Affiliation(s)
- Hennie G Raterman
- Department of Rheumatology and Internal Medicine, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Godfrey S Getz
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
48
|
SAA does not induce cytokine production in physiological conditions. Cytokine 2012; 61:506-12. [PMID: 23165195 DOI: 10.1016/j.cyto.2012.10.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/05/2012] [Accepted: 10/19/2012] [Indexed: 02/02/2023]
Abstract
SAA has been shown to have potential proinflammatory properties in inflammatory diseases such as atherosclerosis. These include induction of tumor necrosis factor α, interleukin-6, and monocyte chemoattractant protein 1 in vitro. However, concern has been raised that these effects might be due to use of recombinant SAA with low level of endotoxin contaminants or its non-native forms. Therefore, physiological relevance has not been fully elucidated. In this study, we investigated the role of SAA in the production of inflammatory cytokines. Stimulation of mouse monocyte J774 cells with lipid-poor recombinant human SAA and purified SAA derived from cardiac surgery patients, but not ApoA-I and ApoA-II, elicited pro-inflammatory cytokines like granulocyte colony stimulating factor (G-CSF). However, HDL-associated SAA failed to stimulate production of these cytokines. Using neutralizing antibodies against toll like receptor (TLR) 2 and 4, we could evaluate that TLR 2 is responsible for G-CSF production by lipid-poor SAA. To confirm these data in vivo, we expressed mouse SAA in SAA deficient C57BL/6 mice using an adenoviral vector. G-CSF was identically expressed in SAA-Adenoviral infected mice as well as in control null-Adenoviral mice at the early time points (4-8h) and could not be detected in plasma 24h after infection when plasma SAA levels were maximally elevated, indicating that adenoviral vector rather than SAA affected G-CSF levels. Taken together, our findings suggest that lipid-poor SAA, but not HDL-associated SAA, stimulates G-CSF production and this stimulation is mediated through TLR 2 in J774 cells. However, its physiological role in vivo remains ambiguous.
Collapse
|
49
|
Umaerus M, Rosengren B, Fagerberg B, Hurt-Camejo E, Camejo G. HDL2 interferes with LDL association with arterial proteoglycans: A possible athero-protective effect. Atherosclerosis 2012; 225:115-20. [DOI: 10.1016/j.atherosclerosis.2012.08.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 08/06/2012] [Accepted: 08/31/2012] [Indexed: 02/06/2023]
|
50
|
Williams KJ. What does HDL do? A new mechanism to slow atherogenesis – But a new problem in type 2 diabetes mellitus. Atherosclerosis 2012; 225:36-8. [DOI: 10.1016/j.atherosclerosis.2012.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 06/14/2012] [Indexed: 01/31/2023]
|