1
|
Yang M, Hancco Zirena I, Kennedy QP, Patel A, Merrill-Skoloff G, Sack KD, Fulcidor E, Scartelli C, Guo S, Bekendam RH, Owegie OC, Xie H, Ghiran IC, Levy O, Lin L, Flaumenhaft R. Galloylated polyphenols represent a new class of antithrombotic agents with broad activity against thiol isomerases. J Thromb Haemost 2025; 23:1850-1863. [PMID: 39952360 DOI: 10.1016/j.jtha.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Both protein disulfide isomerase (PDI) and SARS-CoV-2 main protease (Mpro) are reliant on active-site cysteines stabilized by adjacent amino acids. We reasoned that redox-active compounds might interfere with both enzymes by acting in the vicinity of these reactive sites thus interfering with viral replication and thrombus formation. Our previous screen of 1019 flavonoids identified several compounds that inhibit SARS-CoV-2 Mpro. OBJECTIVES Our goal was to identify phytochemical inhibitors of SARS-CoV-2 Mpro that block thiol isomerases and are antithrombotic. METHODS PDI, ERp57, ERp5, ERp46, isolated domains of PDI, and PDI mutants were used to evaluate the effects of galloylated polyphenols and their analogs on thiol isomerase reductase activity. Laser-injury and ferric chloride models of thrombus formation and a tail snip assay were used to assess the effects on thrombosis and hemostasis. RESULTS Pinocembrin 7-O-(3''-galloyl-4'',6''-(S)-hexahydroxydiphenoyl)-β-D-glucose (PGHG) inhibited both PDI and SARS-CoV-2 Mpro. Evaluation of isolated PDI fragments and active-site cysteine mutants showed that PGHG acts at the catalytic domains. Structure-function studies showed that PGHG interacts with histidines within the Cys53-Gly54-His55-Cys56 motifs of PDI. PGHG was equally active against other thiol isomerases, including ERp57, ERp5, ERp72, and ERp46. Screening numerous galloylated polyphenols demonstrated a class effect on thiol isomerase inhibition. Structure-activity relationships indicated that the galloyl moieties within large galloylated polyphenols were important for their inhibitory activity. PGHG and punicalagin were antithrombotic in murine models of thrombus formation. CONCLUSIONS Galloylated polyphenols represent a large class of antithrombotic compounds with broad activity against thiol isomerases. Many of these compounds also inhibit SARS-CoV-2 Mpro and viral replication.
Collapse
Affiliation(s)
- Moua Yang
- Bloodworks Northwest Research Institute, Seattle, Washington, USA; Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA; Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
| | - Ivan Hancco Zirena
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Quinn P Kennedy
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Anika Patel
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Glenn Merrill-Skoloff
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Kelsey D Sack
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Emmy Fulcidor
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Christina Scartelli
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Shihui Guo
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Roelof H Bekendam
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Osamede C Owegie
- Bloodworks Northwest Research Institute, Seattle, Washington, USA
| | - Huanzhang Xie
- College of Materials and Chemical Engineering, Minjiang University, Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Fuzhou, China
| | - Ionita C Ghiran
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Oren Levy
- Department of Anesthesia, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lin Lin
- College of Materials and Chemical Engineering, Minjiang University, Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Fuzhou, China
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
2
|
Shehwar D, Barki S, Aliotta A, Calderara DB, Veuthey L, Portela CP, Alberio L, Alam MR. Platelets and mitochondria: the calcium connection. Mol Biol Rep 2025; 52:276. [PMID: 40029418 DOI: 10.1007/s11033-025-10389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
Calcium signaling has a fundamental importance in maintaining various platelet functions, such as those involved in hemostasis and thrombosis. Agonist-induced mobilization of calcium (Ca2+) from intracellular stores coupled with activation of store-operated calcium entry (SOCE) and non-SOCE or receptor-operated calcium entry (ROCE) regulates platelet degranulation, integrin activation, shape change, generation of thromboxane A2, and aggregation or procoagulant function. Platelet mitochondria also take up a small amount of cytosolic Ca2+ that contributes to bioenergetics, cytosolic Ca2+ buffering, cell signaling and death. Voltage-dependent anion channels (VDAC) in the outer mitochondrial membrane and mitochondrial Ca2+ uniporter complex (MCUC) in the inner mitochondrial membrane (IMM) are pivotal for transporting Ca2+ into the mitochondrial matrix. On the other hand, matrix Ca2+ efflux is dependent on the IMM localized sodium/calcium exchanger (NCLX). Despite the well-established role of cytosolic Ca2+, the participation of mitochondrial Ca2+ homeostasis in platelet physiology remains unknown. This mini-review summarizes the recent developments in the field of mitochondrial Ca2+ transport in platelet physiology.
Collapse
Affiliation(s)
- Durre Shehwar
- Department of Biochemistry Quaid-i-Azam University, Islamabad, Pakistan
| | - Saima Barki
- Department of Biochemistry Quaid-i-Azam University, Islamabad, Pakistan
| | - Alessandro Aliotta
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, CH‑1010, Switzerland
| | - Debora Bertaggia Calderara
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, CH‑1010, Switzerland
| | - Lucas Veuthey
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, CH‑1010, Switzerland
| | - Cindy Pereira Portela
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, CH‑1010, Switzerland
| | - Lorenzo Alberio
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, CH‑1010, Switzerland
| | | |
Collapse
|
3
|
Nock SH, Hutchinson JL, Blanco-Lopez M, Naseem K, Jones S, Mundell SJ, Unsworth AJ. Constitutive surface expression of the thromboxane A2 receptor is Pim kinase-dependent. J Thromb Haemost 2025; 23:293-305. [PMID: 39798965 DOI: 10.1016/j.jtha.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND The thromboxane A2 receptor (TPαR) plays an important role in the amplification of platelet responses during thrombosis. Receptor activity is regulated by internalization and receptor desensitization. The mechanism by which constitutive surface expression of the TPαR is regulated is unknown. Recently, it has been demonstrated that proviral insertion in murine lymphoma (Pim) kinase inhibitors reduce platelet functional responses in a TPαR-dependent manner. OBJECTIVES To investigate whether Pim kinases regulate constitutive TPαR surface expression. METHODS TPαR surface expression was measured in platelets, and human embryonic kidney 293T (HEK293T) cells transfected with tagged TPαRs in the presence and absence of Pim kinase inhibitors using flow cytometry and confocal microscopy. TPαR-dependent calcium flux was assessed using Fluo-4 AM. Site prediction modeling and site-directed mutagenesis were used to identify the TPαR PIM kinase phosphorylation site. RESULTS Surface expression of TPαR and calcium responses to U46619 were reduced in platelets and HEK293T cells following Pim kinase inhibition. Overexpression of kinase-dead Pim-1 also reduced TPαR surface expression on HEK293T cells. Reduced surface expression of the TPαR was found to be mediated by increased receptor internalization in a dynamin and β-arrestin-dependent manner. Four putative Pim kinase phosphorylation sites in the TPαR were mutated, and serine 57 in the first intracellular loop of TPαR was identified to be a novel regulatory site important for maintaining TPαR surface expression and thromboxane A2-dependent functional responses. CONCLUSION Pim kinase inhibition may offer a novel therapeutic approach to limit cellular responses to thromboxane A2, independent of cyclooxygenase inhibition and direct antagonism of the receptor.
Collapse
Affiliation(s)
- Sophie H Nock
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - James L Hutchinson
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Maria Blanco-Lopez
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Khalid Naseem
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Sarah Jones
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Stuart J Mundell
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Amanda J Unsworth
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom; Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
4
|
Grichine A, Jacob S, Eckly A, Villaret J, Joubert C, Appaix F, Pezet M, Ribba AS, Denarier E, Mazzega J, Rinckel JY, Lafanechère L, Elena-Herrmann B, Rowley JW, Sadoul K. The fate of mitochondria during platelet activation. Blood Adv 2023; 7:6290-6302. [PMID: 37624769 PMCID: PMC10589785 DOI: 10.1182/bloodadvances.2023010423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Blood platelets undergo several successive motor-driven reorganizations of the cytoskeleton when they are recruited to an injured part of a vessel. These reorganizations take place during the platelet activation phase, the spreading process on the injured vessel or between fibrin fibers of the forming clot, and during clot retraction. All these steps require a lot of energy, especially the retraction of the clot when platelets develop strong forces similar to those of muscle cells. Platelets can produce energy through glycolysis and mitochondrial respiration. However, although resting platelets have only 5 to 8 individual mitochondria, they produce adenosine triphosphate predominantly via oxidative phosphorylation. Activated, spread platelets show an increase in size compared with resting platelets, and the question arises as to where the few mitochondria are located in these larger platelets. Using expansion microscopy, we show that the number of mitochondria per platelet is increased in spread platelets. Live imaging and focused ion beam-scanning electron microscopy suggest that a mitochondrial fission event takes place during platelet activation. Fission is Drp1 dependent because Drp1-deficient platelets have fused mitochondria. In nucleated cells, mitochondrial fission is associated with a shift to a glycolytic phenotype, and using clot retraction assays, we show that platelets have a more glycolytic energy production during clot retraction and that Drp1-deficient platelets show a defect in clot retraction.
Collapse
Affiliation(s)
- Alexei Grichine
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Shancy Jacob
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Anita Eckly
- INSERM, EFS Grand Est, Biologie et Pharmacologie des Plaquettes Sanguines Unité Mixed de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, Strasbourg, France
| | - Joran Villaret
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Clotilde Joubert
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Florence Appaix
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Mylène Pezet
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Anne-Sophie Ribba
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Eric Denarier
- INSERM U1216, Commissariat à l'Energie Atomique, Grenoble Institute of Neuroscience, University Grenoble Alpes, Grenoble, France
| | - Jacques Mazzega
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Jean-Yves Rinckel
- INSERM, EFS Grand Est, Biologie et Pharmacologie des Plaquettes Sanguines Unité Mixed de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, Strasbourg, France
| | - Laurence Lafanechère
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Bénédicte Elena-Herrmann
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Jesse W. Rowley
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Karin Sadoul
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| |
Collapse
|
5
|
Yang M, Chiu J, Scartelli C, Ponzar N, Patel S, Patel A, Ferreira RB, Keyes RF, Carroll KS, Pozzi N, Hogg PJ, Smith BC, Flaumenhaft R. Sulfenylation links oxidative stress to protein disulfide isomerase oxidase activity and thrombus formation. J Thromb Haemost 2023; 21:2137-2150. [PMID: 37037379 PMCID: PMC10657653 DOI: 10.1016/j.jtha.2023.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Oxidative stress contributes to thrombosis in atherosclerosis, inflammation, infection, aging, and malignancy. Oxidant-induced cysteine modifications, including sulfenylation, can act as a redox-sensitive switch that controls protein function. Protein disulfide isomerase (PDI) is a prothrombotic enzyme with exquisitely redox-sensitive active-site cysteines. OBJECTIVES We hypothesized that PDI is sulfenylated during oxidative stress, contributing to the prothrombotic potential of PDI. METHODS Biochemical and enzymatic assays using purified proteins, platelet and endothelial cell assays, and in vivo murine thrombosis studies were used to evaluate the role of oxidative stress in PDI sulfenylation and prothrombotic activity. RESULTS PDI exposure to oxidants resulted in the loss of PDI reductase activity and simultaneously promoted sulfenylated PDI generation. Following exposure to oxidants, sulfenylated PDI spontaneously converted to disulfided PDI. PDI oxidized in this manner was able to transfer disulfides to protein substrates. Inhibition of sulfenylation impaired disulfide formation by oxidants, indicating that sulfenylation is an intermediate during PDI oxidation. Agonist-induced activation of platelets and endothelium resulted in the release of sulfenylated PDI. PDI was also sulfenylated by oxidized low-density lipoprotein (oxLDL). In an in vivo model of thrombus formation, oxLDL markedly promoted platelet accumulation following an arteriolar injury. PDI oxidoreductase inhibition blocked oxLDL-mediated augmentation of thrombosis. CONCLUSION PDI sulfenylation is a critical posttranslational modification that is an intermediate during disulfide PDI formation in the setting of oxidative stress. Oxidants generated by vascular cells during activation promote PDI sulfenylation, and interference with PDI during oxidative stress impairs thrombus formation.
Collapse
Affiliation(s)
- Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
| | - Joyce Chiu
- The Centenary Institute and University of Sydney, Sydney, New South Wales, Australia
| | - Christina Scartelli
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Nathan Ponzar
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Sachin Patel
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Anika Patel
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Renan B Ferreira
- Department of Chemistry, UF Scripps Biomedical Research, Jupiter, Florida, USA
| | - Robert F Keyes
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kate S Carroll
- Department of Chemistry, UF Scripps Biomedical Research, Jupiter, Florida, USA
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Philip J Hogg
- The Centenary Institute and University of Sydney, Sydney, New South Wales, Australia
| | - Brian C Smith
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
6
|
Is autologous platelet activation the key step in ovarian therapy for fertility recovery and menopause reversal? Biomedicine (Taipei) 2023; 12:1-8. [PMID: 36816178 PMCID: PMC9910228 DOI: 10.37796/2211-8039.1380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022] Open
Abstract
Platelets are a uniquely mammalian physiologic feature. As the only non-marine vertebrates to experience menopause, humans have a substantial post-reproductive lifespan and are believed to have a limited, non-renewable oocyte supply. Ovarian reserve typically declines after about age 35yrs, marking losses which cannot be recovered by available fertility medications. When in vitro fertilization fails due to low or absent ovarian response, gonadotropin adjustments are often ineffectual and if additional oocytes are occasionally harvested, egg quality is usually poor. This problem was confronted by Greek researchers who developed a new surgical method to insert autologous platelet-rich plasma (PRP) into ovaries; the first ovarian PRP success to improve reproductive outcomes was published from Athens in 2016. This innovation influenced later research with condensed platelet-derived growth factors, leading to correction of oocyte ploidy error, normal blastocyst development, and additional term livebirths. Yet women's health was among the last clinical domains to explore PRP, and its role in 'ovarian rejuvenation' remains unsettled. One critical aspect in this procedure is platelet activation, a commonly overlooked step in the cytokine release cascade considered essential for successful transition of undifferentiated ovarian stem cells to an oocyte lineage. Poor activation of platelets thus becomes an unforced error, potentially diminishing or even negating post-treatment ovarian follicular response. To answer this query, relevant theory, current disagreements, and new data on platelet activation are presented, along with clinical challenges for regenerative fertility practice.
Collapse
|
7
|
Nunn AVW, Guy GW, Brysch W, Bell JD. Understanding Long COVID; Mitochondrial Health and Adaptation-Old Pathways, New Problems. Biomedicines 2022; 10:3113. [PMID: 36551869 PMCID: PMC9775339 DOI: 10.3390/biomedicines10123113] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Many people infected with the SARS-CoV-2 suffer long-term symptoms, such as "brain fog", fatigue and clotting problems. Explanations for "long COVID" include immune imbalance, incomplete viral clearance and potentially, mitochondrial dysfunction. As conditions with sub-optimal mitochondrial function are associated with initial severity of the disease, their prior health could be key in resistance to long COVID and recovery. The SARs virus redirects host metabolism towards replication; in response, the host can metabolically react to control the virus. Resolution is normally achieved after viral clearance as the initial stress activates a hormetic negative feedback mechanism. It is therefore possible that, in some individuals with prior sub-optimal mitochondrial function, the virus can "tip" the host into a chronic inflammatory cycle. This might explain the main symptoms, including platelet dysfunction. Long COVID could thus be described as a virally induced chronic and self-perpetuating metabolically imbalanced non-resolving state characterised by mitochondrial dysfunction, where reactive oxygen species continually drive inflammation and a shift towards glycolysis. This would suggest that a sufferer's metabolism needs to be "tipped" back using a stimulus, such as physical activity, calorie restriction, or chemical compounds that mimic these by enhancing mitochondrial function, perhaps in combination with inhibitors that quell the inflammatory response.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK
| | - Geoffrey W. Guy
- The Guy Foundation, Chedington Court, Beaminster, Dorset DT8 3HY, UK
| | | | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
8
|
Liu Z, Avila C, Malone LE, Gnatenko DV, Sheriff J, Zhu W, Bahou WF. Age-restricted functional and developmental differences of neonatal platelets. J Thromb Haemost 2022; 20:2632-2645. [PMID: 35962592 PMCID: PMC10953828 DOI: 10.1111/jth.15847] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Developmental ontogeny of neonatal thrombopoiesis retains characteristics that are distinct from adults although molecular mechanisms remain unestablished. METHODS We applied multiparameter quantitative platelet responses with integrated ribosome profiling/transcriptomic studies to better define gene/pathway perturbations regulating the neonatal-to-adult transition. A bioinformatics pipeline was developed to identify stable, neonatal-restricted platelet biomarkers for clinical application. RESULTS Cord blood (CB) platelets retained the capacity for linear agonist-receptor coupling linked to phosphatidylserine (PS) exposure and α-granule release, although a restricted block in cross-agonist activation pathways was evident. Functional immaturity of synergistic signaling pathways was due to younger ontogenetic age and singular underdevelopment of the protein secretory gene network, with reciprocal expansion of developmental pathways (E2F, G2M checkpoint, c-Myc) important for megakaryocytopoiesis. Genetic perturbations regulating vesicle transport and fusion (TOM1L1, VAMP3, SNAP23, and DNM1L) and PS exposure and procoagulant activity (CLCN3) were the most significant, providing a molecular explanation for globally attenuated responses. Integrated transcriptomic and ribosomal footprints identified highly abundant (ribosome-protected) DEFA3 (encoding human defensin neutrophil peptide 3) and HBG1 as stable biomarkers of neonatal thrombopoiesis. Studies comparing CB- or adult-derived megakaryocytopoiesis confirmed inducible and abundant DEFA3 antigenic expression in CB megakaryocytes, ~3.5-fold greater than in leukocytes (the most abundant source in humans). An initial feasibility cohort of at-risk pregnancies manifested by maternal/fetal hemorrhage (chimerism) were applied for detection and validation of platelet HBG1 and DEFA3 as neonatal thrombopoiesis markers, most consistent for HBG1, which displayed gestational age-dependent expression. CONCLUSIONS These studies establish an ontogenetically divergent stage of neonatal thrombopoiesis, and provide initial feasibility studies to track disordered fetal-to-adult megakaryocytopoiesis in vivo.
Collapse
Affiliation(s)
- Zhaoyan Liu
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
| | - Cecilia Avila
- Department of Obstetrics and Gynecology, Stony Brook University, Stony Brook, New York, USA
| | - Lisa E. Malone
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Dmitri V. Gnatenko
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Center for Scientific Review, National Institutes of Health, Bethesda, Maryland, USA
| | - Jawaad Sheriff
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Wei Zhu
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
| | - Wadie F. Bahou
- Department of Obstetrics and Gynecology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
9
|
McCarty G, Dunaway LE, Denison JD, Sombers LA. Neurotransmitter Readily Escapes Detection at the Opposing Microelectrode Surface in Typical Amperometric Measurements of Exocytosis at Single Cells. Anal Chem 2022; 94:9548-9556. [PMID: 35750055 PMCID: PMC9281607 DOI: 10.1021/acs.analchem.2c00060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For decades, carbon-fiber microelectrodes have been used in amperometric measurements of neurotransmitter release at a wide variety of cell types, providing a tremendous amount of valuable information on the mechanisms involved in dense-core vesicle fusion. The electroactive molecules that are released can be detected at the opposing microelectrode surface, allowing for precise quantification as well as detailed kinetic information on the stages of neurotransmitter release. However, it remains unclear how much of the catecholamine that is released into the artificial synapse escapes detection. This work examines two separate mechanisms by which released neurotransmitter goes undetected in a typical amperometric measurement. First, diffusional loss is assessed by monitoring exocytosis at single bovine chromaffin cells using carbon-fiber microelectrodes fabricated in a recessed (cavity) geometry. This creates a microsampling vial that minimizes diffusional loss of analyte prior to detection. More molecules were detected per exocytotic release event when using a recessed cavity sensor as compared to the conventional configuration. In addition, pharmacological inhibition of the norepinephrine transporter (NET), which serves to remove catecholamine from the extracellular space, increased both the size and the time course of individual amperometric events. Overall, this study characterizes distinct physical and biological mechanisms by which released neurotransmitter escapes detection at the opposing microelectrode surface, while also revealing an important role for the NET in "presynaptic" modulation of neurotransmitter release.
Collapse
Affiliation(s)
- Gregory
S. McCarty
- Department
of Chemistry and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Lars E. Dunaway
- Department
of Chemistry and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - J. Dylan Denison
- Department
of Chemistry and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Leslie A. Sombers
- Department
of Chemistry and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
10
|
Kanikarla Marie P, Fowlkes NW, Afshar-Kharghan V, Martch SL, Sorokin A, Shen JP, Morris VK, Dasari A, You N, Sood AK, Overman MJ, Kopetz S, Menter DG. The Provocative Roles of Platelets in Liver Disease and Cancer. Front Oncol 2021; 11:643815. [PMID: 34367949 PMCID: PMC8335590 DOI: 10.3389/fonc.2021.643815] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Both platelets and the liver play important roles in the processes of coagulation and innate immunity. Platelet responses at the site of an injury are rapid; their immediate activation and structural changes minimize the loss of blood. The majority of coagulation proteins are produced by the liver—a multifunctional organ that also plays a critical role in many processes: removal of toxins and metabolism of fats, proteins, carbohydrates, and drugs. Chronic inflammation, trauma, or other causes of irreversible damage to the liver can dysregulate these pathways leading to organ and systemic abnormalities. In some cases, platelet-to-lymphocyte ratios can also be a predictor of disease outcome. An example is cirrhosis, which increases the risk of bleeding and prothrombotic events followed by activation of platelets. Along with a triggered coagulation cascade, the platelets increase the risk of pro-thrombotic events and contribute to cancer progression and metastasis. This progression and the resulting tissue destruction is physiologically comparable to a persistent, chronic wound. Various cancers, including colorectal cancer, have been associated with increased thrombocytosis, platelet activation, platelet-storage granule release, and thrombosis; anti-platelet agents can reduce cancer risk and progression. However, in cancer patients with pre-existing liver disease who are undergoing chemotherapy, the risk of thrombotic events becomes challenging to manage due to their inherent risk for bleeding. Chemotherapy, also known to induce damage to the liver, further increases the frequency of thrombotic events. Depending on individual patient risks, these factors acting together can disrupt the fragile balance between pro- and anti-coagulant processes, heightening liver thrombogenesis, and possibly providing a niche for circulating tumor cells to adhere to—thus promoting both liver metastasis and cancer-cell survival following treatment (that is, with minimal residual disease in the liver).
Collapse
Affiliation(s)
- Preeti Kanikarla Marie
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalie W Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephanie L Martch
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alexey Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Van K Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nancy You
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David George Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
11
|
Chelombitko MA, Chernyak BV, Fedorov AV, Zinovkin RA, Razin E, Paruchuru LB. The Role Played by Mitochondria in FcεRI-Dependent Mast Cell Activation. Front Immunol 2020; 11:584210. [PMID: 33178217 PMCID: PMC7596649 DOI: 10.3389/fimmu.2020.584210] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
Mast cells play a key role in the regulation of innate and adaptive immunity and are involved in pathogenesis of many inflammatory and allergic diseases. The most studied mechanism of mast cell activation is mediated by the interaction of antigens with immunoglobulin E (IgE) and a subsequent binding with the high-affinity receptor Fc epsilon RI (FcεRI). Increasing evidences indicated that mitochondria are actively involved in the FcεRI-dependent activation of this type of cells. Here, we discuss changes in energy metabolism and mitochondrial dynamics during IgE-antigen stimulation of mast cells. We reviewed the recent data with regards to the role played by mitochondrial membrane potential, mitochondrial calcium ions (Ca2+) influx and reactive oxygen species (ROS) in mast cell FcεRI-dependent activation. Additionally, in the present review we have discussed the crucial role played by the pyruvate dehydrogenase (PDH) complex, transcription factors signal transducer and activator of transcription 3 (STAT3) and microphthalmia-associated transcription factor (MITF) in the development and function of mast cells. These two transcription factors besides their nuclear localization were also found to translocate in to the mitochondria and functions as direct modulators of mitochondrial activity. Studying the role played by mast cell mitochondria following their activation is essential for expanding our basic knowledge about mast cell physiological functions and would help to design mitochondria-targeted anti-allergic and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Maria A. Chelombitko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Artem V. Fedorov
- Department of Cell Biology and Histology, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Roman A. Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ehud Razin
- Department of Biochemistry and Molecular Biology, School of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lakhsmi Bhargavi Paruchuru
- Department of Biochemistry and Molecular Biology, School of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
12
|
Abstract
A confluence of technological advances in genetic manipulation and molecular-based fluorescence imaging has led to the widespread adoption of laser injury models to study hemostasis and thrombosis in mice. In all animal models of hemostasis and thrombosis, detailing the nature of experimentally induced vascular injury is paramount in enabling appropriate interpretation of experimental results. A careful appraisal of the literature shows that direct laser-induced injury can result in variable degrees of vascular damage. This review will compare and contrast models of laser injury utilized in the field, with an emphasis on the mechanism and extent of injury, the use of laser injury in different vascular beds and the molecular mechanisms regulating the response to injury. All of these topics will be discussed in the context of how distinct applications of laser injury models may be viewed as representing thrombosis and/or hemostasis.
Collapse
Affiliation(s)
- Timothy J Stalker
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA, USA
| |
Collapse
|
13
|
Alterations in platelet secretion differentially affect thrombosis and hemostasis. Blood Adv 2019; 2:2187-2198. [PMID: 30185436 DOI: 10.1182/bloodadvances.2018019166] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/12/2018] [Indexed: 11/20/2022] Open
Abstract
We genetically manipulated the major platelet vesicle-associated membrane proteins (VAMP2, VAMP3, and VAMP8) to create mice with varying degrees of disrupted platelet secretion. As previously shown, loss of VAMP8 reduced granule secretion, and this defect was exacerbated by further deletion of VAMP2 and VAMP3. VAMP2Δ3Δ8-/- platelets also had reduced VAMP7. Loss of VAMP2 and VAMP3 (VAMP2Δ3Δ) had a minimal impact on secretion when VAMP7 and VAMP8 were present. Integrin αIIbβ3 activation and aggregation were not affected, although spreading was reduced in VAMP2Δ3Δ8-/- platelets. Using these mice as tools, we asked how much secretion is needed for proper thrombosis and hemostasis in vivo. VAMP2Δ3Δ mice showed no deficiency, whereas VAMP8-/- mice had attenuated formation of occlusive thrombi upon FeCl3-induced arterial injury but no excessive bleeding upon tail transection. VAMP2Δ3Δ8-/- mice bled profusely and failed to form occlusive thrombi. Plasma-coagulation factors were normal in all of the strains, but phosphatidylserine exposure was reduced in VAMP2Δ3Δ and VAMP2Δ3Δ8-/- platelets. From our data, an ∼40% to 50% reduction in platelet secretion in vitro (dense and α granule) correlated with reduced occlusive thrombosis but no compromise in hemostasis. At a >50% reduction, thrombosis and hemostasis were defective in vivo. Our studies are the first systematic manipulation of platelet exocytic machinery to demonstrate a quantitative linkage between in vitro platelet secretion and hemostasis and thrombosis in vivo. The animals described will be invaluable tools for future investigations into how platelet secretion affects other vascular processes.
Collapse
|
14
|
Eaton N, Drew C, Wieser J, Munday AD, Falet H. Dynamin 2 is required for GPVI signaling and platelet hemostatic function in mice. Haematologica 2019; 105:1414-1423. [PMID: 31296575 PMCID: PMC7193499 DOI: 10.3324/haematol.2019.218644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/09/2019] [Indexed: 01/06/2023] Open
Abstract
Receptor-mediated endocytosis, which contributes to a wide range of cellular functions, including receptor signaling, cell adhesion, and migration, requires endocytic vesicle release by the large GTPase dynamin 2. Here, the role of dynamin 2 was investigated in platelet hemostatic function using both pharmacological and genetic approaches. Dnm2fl/fl Pf4-Cre (Dnm2Plt−/−) mice specifically lacking dynamin 2 within the platelet lineage developed severe thrombocytopenia and bleeding diathesis and Dnm2Plt−/− platelets adhered poorly to collagen under arterial shear rates. Signaling via the collagen receptor GPVI was impaired in platelets treated with the dynamin GTPase inhibitor dynasore, as evidenced by poor protein tyrosine phosphorylation, including that of the proximal tyrosine kinase Lyn on its activating tyrosine 396 residue. Platelet stimulation via GPVI resulted in a slight decrease in GPVI, which was maintained by dynasore treatment. Dynasore-treated platelets had attenuated function when stimulated via GPVI, as evidenced by reduced GPIbα downregulation, α-granule release, integrin αIIbβ3 activation, and spreading onto immobilized fibrinogen. By contrast, responses to the G-protein coupled receptor agonist thrombin were minimally affected by dynasore treatment. GPVI expression was severely reduced in Dnm2Plt−/− platelets, which were dysfunctional in response to stimulation via GPVI, and to a lesser extent to thrombin. Dnm2Plt−/− platelets lacked fibrinogen in their α-granules, but retained von Willebrand factor. Taken together, the data show that dynamin 2 plays a proximal role in signaling via the collagen receptor GPVI and is required for fibrinogen uptake and normal platelet hemostatic function.
Collapse
Affiliation(s)
- Nathan Eaton
- Blood Research Institute, Versiti, Milwaukee, WI.,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Caleb Drew
- Blood Research Institute, Versiti, Milwaukee, WI
| | - Jon Wieser
- Blood Research Institute, Versiti, Milwaukee, WI
| | - Adam D Munday
- Bloodworks Northwest Research Institute, Seattle, WA.,Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Hervé Falet
- Blood Research Institute, Versiti, Milwaukee, WI .,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
15
|
|
16
|
|
17
|
Abstract
Our understanding of fundamental biological processes within platelets is continually evolving. A critical feature of platelet biology relates to the intricate uptake, packaging and release of bioactive cargo from storage vesicles, essential in mediating a range of classical (haemostasis/thrombosis) and non-classical (regeneration/inflammation/metastasis) roles platelets assume. Pivotal to the molecular control of these vesicle trafficking events are the small GTPases of the Ras superfamily, which function as spatially distinct, molecular switches controlling essential cellular processes. Herein, we specifically focus on members of the Rab, Arf and Ras subfamilies, which comprise over 130 members and platelet proteomic datasets suggest that more than half of these are expressed in human platelets. We provide an update of current literature relating to trafficking roles for these GTPases in platelets, particularly regarding endocytic and exocytic events, but also vesicle biogenesis and provide speculative argument for roles that other related GTPases and regulatory proteins may adopt in platelets. Advances in our understanding of small GTPase function in the anucleate platelet has been hampered by the lack of specific molecular tools, but it is anticipated that this will be greatly accelerated in the years ahead and will be crucial to the identification of novel therapeutic targets controlling different platelet processes.
Collapse
Affiliation(s)
- Tony G Walsh
- a From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building , University of Bristol , Bristol , UK
| | - Yong Li
- a From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building , University of Bristol , Bristol , UK
| | - Andreas Wersäll
- a From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building , University of Bristol , Bristol , UK
| | - Alastair W Poole
- a From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building , University of Bristol , Bristol , UK
| |
Collapse
|
18
|
De Paoli SH, Tegegn TZ, Elhelu OK, Strader MB, Patel M, Diduch LL, Tarandovskiy ID, Wu Y, Zheng J, Ovanesov MV, Alayash A, Simak J. Dissecting the biochemical architecture and morphological release pathways of the human platelet extracellular vesiculome. Cell Mol Life Sci 2018; 75:3781-3801. [PMID: 29427073 PMCID: PMC11105464 DOI: 10.1007/s00018-018-2771-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/11/2018] [Accepted: 02/01/2018] [Indexed: 01/08/2023]
Abstract
Platelet extracellular vesicles (PEVs) have emerged as potential mediators in intercellular communication. PEVs exhibit several activities with pathophysiological importance and may serve as diagnostic biomarkers. Here, imaging and analytical techniques were employed to unveil morphological pathways of the release, structure, composition, and surface properties of PEVs derived from human platelets (PLTs) activated with the thrombin receptor activating peptide (TRAP). Based on extensive electron microscopy analysis, we propose four morphological pathways for PEVs release from TRAP-activated PLTs: (1) plasma membrane budding, (2) extrusion of multivesicular α-granules and cytoplasmic vacuoles, (3) plasma membrane blistering and (4) "pearling" of PLT pseudopodia. The PLT extracellular vesiculome encompasses ectosomes, exosomes, free mitochondria, mitochondria-containing vesicles, "podiasomes" and PLT "ghosts". Interestingly, a flow cytometry showed a population of TOM20+LC3+ PEVs, likely products of platelet mitophagy. We found that lipidomic and proteomic profiles were different between the small PEV (S-PEVs; mean diameter 103 nm) and the large vesicle (L-PEVs; mean diameter 350 nm) fractions separated by differential centrifugation. In addition, the majority of PEVs released by activated PLTs was composed of S-PEVs which have markedly higher thrombin generation activity per unit of PEV surface area compared to L-PEVs, and contribute approximately 60% of the PLT vesiculome procoagulant potency.
Collapse
Affiliation(s)
- Silvia H De Paoli
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, WO Bldg. 52/72, Room 4210, Silver Spring, MD, USA
| | - Tseday Z Tegegn
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, WO Bldg. 52/72, Room 4210, Silver Spring, MD, USA
| | - Oumsalama K Elhelu
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, WO Bldg. 52/72, Room 4210, Silver Spring, MD, USA
| | - Michael B Strader
- Laboratory of Biochemistry and Vascular Biology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, WO Bldg. 52/72, Silver Spring, MD, 20993-0002, USA
| | - Mehulkumar Patel
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, WO Bldg. 52/72, Room 4210, Silver Spring, MD, USA
| | - Lukas L Diduch
- Dakota Consulting, Inc., 1110 Bonifant St., Silver Spring, MD, USA
| | - Ivan D Tarandovskiy
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, WO Bldg. 52/72, Room 4210, Silver Spring, MD, USA
| | - Yong Wu
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Jiwen Zheng
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Mikhail V Ovanesov
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, USA
| | - Abdu Alayash
- Laboratory of Biochemistry and Vascular Biology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, WO Bldg. 52/72, Silver Spring, MD, 20993-0002, USA
| | - Jan Simak
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, WO Bldg. 52/72, Room 4210, Silver Spring, MD, USA.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Although platelet endocytosis has been recognized in granule cargo loading and the trafficking of several platelet surface receptors, its acute physiological relevance is poorly understood as is its mechanism. The present review discusses the current understanding of platelet endocytosis and its implications for platelet function. RECENT FINDINGS Recent studies are beginning to identify and define the proteins that mediate platelet endocytosis. These studies have shown that platelets contain different endosomal compartments and may use multiple endocytic routes to take in circulating molecules and surface proteins. The studies have also shown that platelet endocytosis is involved in several aspects of platelet function such as signaling, spreading, and granule cargo loading. SUMMARY Mechanistic studies of platelet endocytosis have shown it to be not only involved in granule cargo loading but also in various other platelet functions important for hemostasis and beyond.
Collapse
|
20
|
Cellubrevin/vesicle-associated membrane protein-3-mediated endocytosis and trafficking regulate platelet functions. Blood 2017; 130:2872-2883. [PMID: 28931526 DOI: 10.1182/blood-2017-02-768176] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/14/2017] [Indexed: 01/01/2023] Open
Abstract
Endocytosis is key to fibrinogen (Fg) uptake, trafficking of integrins (αIIbβ3, αvβ3), and purinergic receptors (P2Y1, P2Y12), and thus normal platelet function. However, the molecular machinery required and possible trafficking routes are still ill-defined. To further identify elements of the platelet endocytic machinery, we examined the role of a vesicle-residing, soluble N-ethylmaleimide factor attachment protein receptor (v-SNARE) called cellubrevin/vesicle-associated membrane protein-3 (VAMP-3) in platelet function. Although not required for normal platelet exocytosis or hemostasis, VAMP-3-/- mice had less platelet-associated Fg, indicating a defect in Fg uptake/storage. Other granule markers were unaffected. Direct experiments, both in vitro and in vivo, showed that loss of VAMP-3 led to a robust defect in uptake/storage of Fg in platelets and cultured megakaryocytes. Uptake of the fluid-phase marker, dextran, was only modestly affected. Time-dependent uptake and endocytic trafficking of Fg and dextran were followed using 3-dimensional-structured illumination microscopy. Dextran uptake was rapid compared with Fg, but both cargoes progressed through Rab4+, Rab11+, and von Willebrand factor (VWF)+ compartments in wild-type platelets in a time-dependent manner. In VAMP-3-/- platelets, the 2 cargoes showed limited colocalization with Rab4, Rab11, or VWF. Loss of VAMP-3 also affected some acute platelet functions, causing enhanced spreading on Fg and fibronectin and faster clot retraction compared with wild-type. In addition, the rate of Janus kinase 2 phosphorylation, initiated through the thrombopoietin receptor (TPOR/Mpl) activation, was affected in VAMP-3-/- platelets. Collectively, our studies show that platelets are capable of a range of endocytosis steps, with VAMP-3 being pivotal in these processes.
Collapse
|
21
|
Affiliation(s)
- Sidney W Whiteheart
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY.
| |
Collapse
|
22
|
Rogers MA, Maldonado N, Hutcheson JD, Goettsch C, Goto S, Yamada I, Faits T, Sesaki H, Aikawa M, Aikawa E. Dynamin-Related Protein 1 Inhibition Attenuates Cardiovascular Calcification in the Presence of Oxidative Stress. Circ Res 2017; 121:220-233. [PMID: 28607103 DOI: 10.1161/circresaha.116.310293] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 06/02/2017] [Accepted: 06/09/2017] [Indexed: 12/23/2022]
Abstract
RATIONALE Mitochondrial changes occur during cell differentiation and cardiovascular disease. DRP1 (dynamin-related protein 1) is a key regulator of mitochondrial fission. We hypothesized that DRP1 plays a role in cardiovascular calcification, a process involving cell differentiation and a major clinical problem with high unmet needs. OBJECTIVE To examine the effects of osteogenic promoting conditions on DRP1 and whether DRP1 inhibition alters the development of cardiovascular calcification. METHODS AND RESULTS DRP1 was enriched in calcified regions of human carotid arteries, examined by immunohistochemistry. Osteogenic differentiation of primary human vascular smooth muscle cells increased DRP1 expression. DRP1 inhibition in human smooth muscle cells undergoing osteogenic differentiation attenuated matrix mineralization, cytoskeletal rearrangement, mitochondrial dysfunction, and reduced type 1 collagen secretion and alkaline phosphatase activity. DRP1 protein was observed in calcified human aortic valves, and DRP1 RNA interference reduced primary human valve interstitial cell calcification. Mice heterozygous for Drp1 deletion did not exhibit altered vascular pathology in a proprotein convertase subtilisin/kexin type 9 gain-of-function atherosclerosis model. However, when mineralization was induced via oxidative stress, DRP1 inhibition attenuated mouse and human smooth muscle cell calcification. Femur bone density was unchanged in mice heterozygous for Drp1 deletion, and DRP1 inhibition attenuated oxidative stress-mediated dysfunction in human bone osteoblasts. CONCLUSIONS We demonstrate a new function of DRP1 in regulating collagen secretion and cardiovascular calcification, a novel area of exploration for the potential development of new therapies to modify cellular fibrocalcific response in cardiovascular diseases. Our data also support a role of mitochondrial dynamics in regulating oxidative stress-mediated arterial calcium accrual and bone loss.
Collapse
Affiliation(s)
- Maximillian A Rogers
- From the Center for Interdisciplinary Cardiovascular Sciences (M.A.R., N.M., J.D.H., C.G., S.G., I.Y., T.F., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD (H.S.)
| | - Natalia Maldonado
- From the Center for Interdisciplinary Cardiovascular Sciences (M.A.R., N.M., J.D.H., C.G., S.G., I.Y., T.F., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD (H.S.)
| | - Joshua D Hutcheson
- From the Center for Interdisciplinary Cardiovascular Sciences (M.A.R., N.M., J.D.H., C.G., S.G., I.Y., T.F., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD (H.S.)
| | - Claudia Goettsch
- From the Center for Interdisciplinary Cardiovascular Sciences (M.A.R., N.M., J.D.H., C.G., S.G., I.Y., T.F., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD (H.S.)
| | - Shinji Goto
- From the Center for Interdisciplinary Cardiovascular Sciences (M.A.R., N.M., J.D.H., C.G., S.G., I.Y., T.F., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD (H.S.)
| | - Iwao Yamada
- From the Center for Interdisciplinary Cardiovascular Sciences (M.A.R., N.M., J.D.H., C.G., S.G., I.Y., T.F., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD (H.S.)
| | - Tyler Faits
- From the Center for Interdisciplinary Cardiovascular Sciences (M.A.R., N.M., J.D.H., C.G., S.G., I.Y., T.F., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD (H.S.)
| | - Hiromi Sesaki
- From the Center for Interdisciplinary Cardiovascular Sciences (M.A.R., N.M., J.D.H., C.G., S.G., I.Y., T.F., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD (H.S.)
| | - Masanori Aikawa
- From the Center for Interdisciplinary Cardiovascular Sciences (M.A.R., N.M., J.D.H., C.G., S.G., I.Y., T.F., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD (H.S.)
| | - Elena Aikawa
- From the Center for Interdisciplinary Cardiovascular Sciences (M.A.R., N.M., J.D.H., C.G., S.G., I.Y., T.F., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD (H.S.).
| |
Collapse
|
23
|
Yadav S, Storrie B. The cellular basis of platelet secretion: Emerging structure/function relationships. Platelets 2017; 28:108-118. [PMID: 28010140 PMCID: PMC5627609 DOI: 10.1080/09537104.2016.1257786] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/12/2016] [Accepted: 10/27/2016] [Indexed: 12/27/2022]
Abstract
Platelet activation has long been known to be accompanied by secretion from at least three types of compartments. These include dense granules, the major source of small molecules; α-granules, the major protein storage organelle; and lysosomes, the site of acid hydrolase storage. Despite ~60 years of research, there are still many unanswered questions about the cell biology of platelet secretion: for example, how are these secretory organelles organized to support cargo release and what are the key routes of cargo release, granule to plasma membrane or granule to canalicular system. Moreover, in recent years, increasing evidence points to the platelet being organized for secretion of the contents from other organelles, namely the dense tubular system (endoplasmic reticulum) and the Golgi apparatus. Conceivably, protein secretion is a widespread property of the platelet and its organelles. In this review, we concentrate on the cell biology of the α-granule and its structure/function relationships. We both review the literature and discuss the wide array of 3-dimensional, high-resolution structural approaches that have emerged in the last few years. These have begun to reveal new and unanticipated outcomes and some of these are discussed. We are hopeful that the next several years will bring rapid advances to this field that will resolve past controversies and be clinically relevant.
Collapse
Affiliation(s)
- Shilpi Yadav
- a Department of Physiology and Biophysics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Brian Storrie
- a Department of Physiology and Biophysics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| |
Collapse
|
24
|
Ganesana M, Lee ST, Wang Y, Venton BJ. Analytical Techniques in Neuroscience: Recent Advances in Imaging, Separation, and Electrochemical Methods. Anal Chem 2017; 89:314-341. [PMID: 28105819 PMCID: PMC5260807 DOI: 10.1021/acs.analchem.6b04278] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - B. Jill Venton
- Department of Chemistry, PO Box 400319, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
25
|
Abstract
Secretion is essential to many of the roles that platelets play in the vasculature, e.g., thrombosis, angiogenesis, and inflammation, enabling platelets to modulate the microenvironment at sites of vascular lesions with a myriad of bioactive molecules stored in their granules. Past studies demonstrate that granule cargo release is mediated by Soluble NSF Attachment Protein Receptor (SNARE) proteins, which are required for granule-plasma membrane fusion. Several SNARE regulators, which control when, where, and how the SNAREs interact, have been identified in platelets. Additionally, platelet SNAREs are controlled by post-translational modifications, e.g., phosphorylation and acylation. Although there have been many recent insights into the mechanisms of platelet secretion, many questions remain: have we identified all the important regulators, does calcium directly control the process, and is platelet secretion polarized. In this review, we focus on the mechanics of platelet secretion and discuss how the secretory machinery functions in the pathway leading to membrane fusion and cargo release.
Collapse
Affiliation(s)
- Smita Joshi
- a Department of Molecular and Cellular Biochemistry , University of Kentucky , Lexington , KY , USA
| | - Sidney W Whiteheart
- a Department of Molecular and Cellular Biochemistry , University of Kentucky , Lexington , KY , USA
| |
Collapse
|
26
|
Respective contributions of single and compound granule fusion to secretion by activated platelets. Blood 2016; 128:2538-2549. [PMID: 27625359 DOI: 10.1182/blood-2016-03-705681] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/09/2016] [Indexed: 12/25/2022] Open
Abstract
Although granule secretion is pivotal in many platelet responses, the fusion routes of α and δ granule release remain uncertain. We used a 3D reconstruction approach based on electron microscopy to visualize the spatial organization of granules in unstimulated and activated platelets. Two modes of exocytosis were identified: a single mode that leads to release of the contents of individual granules and a compound mode that leads to the formation of granule-to-granule fusion, resulting in the formation of large multigranular compartments. Both modes occur during the course of platelet secretion. Single fusion events are more visible at lower levels of stimulation and early time points, whereas large multigranular compartments are present at higher levels of agonist and at later time points. Although α granules released their contents through both modes of exocytosis, δ granules underwent only single exocytosis. To define the underlying molecular mechanisms, we examined platelets from vesicle-associated membrane protein 8 (VAMP8) null mice. After weak stimulation, compound exocytosis was abolished and single exocytosis decreased in VAMP8 null platelets. Higher concentrations of thrombin bypassed the VAMP8 requirement, indicating that this isoform is a key but not a required factor for single and/or compound exocytosis. Concerning the biological relevance of our findings, compound exocytosis was observed in thrombi formed after severe laser injury of the vessel wall with thrombin generation. After superficial injury without thrombin generation, no multigranular compartments were detected. Our studies suggest that platelets use both modes of membrane fusion to control the extent of agonist-induced exocytosis.
Collapse
|
27
|
Pokrovskaya ID, Aronova MA, Kamykowski JA, Prince AA, Hoyne JD, Calco GN, Kuo BC, He Q, Leapman RD, Storrie B. STEM tomography reveals that the canalicular system and α-granules remain separate compartments during early secretion stages in blood platelets. J Thromb Haemost 2016; 14:572-84. [PMID: 26663480 PMCID: PMC4829117 DOI: 10.1111/jth.13225] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/30/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED ESSENTIALS: How platelets organize their α-granule cargo and use their canalicular system remains controversial. Past structural studies were limited due to small sampling volumes or decreased resolution. Our analyses revealed homogeneous granules and a closed canalicular system that opened on activation. Understanding how platelets alter their membranes during activation and secretion elucidates hemostasis. SUMMARY BACKGROUND Platelets survey the vasculature for damage and, in response, activate and release a wide range of proteins from their α-granules. Alpha-granules may be biochemically and structurally heterogeneous; however, other studies suggest that they may be more homogeneous with the observed variation reflecting granule dynamics rather than fundamental differences. OBJECTIVES Our aim was to address how the structural organization of α-granules supports their dynamics. METHODS To preserve the native state, we prepared platelets by high-pressure freezing and freeze-substitution; and to image nearly entire cells, we recorded tomographic data in the scanning transmission electron microscope (STEM). RESULTS AND CONCLUSIONS In resting platelets, we observed a morphologically homogeneous α-granule population that displayed little variation in overall matrix electron density in freeze-substituted preparations (i.e., macro-homogeneity). In resting platelets, the incidence of tubular granule extensions was low, ~4%, but this increased by > 10-fold during early steps in platelet secretion. Using STEM, we observed that the initially decondensing α-granules and the canalicular system remained as separate membrane domains. Decondensing α-granules were found to fuse heterotypically with the plasma membrane via long, tubular connections or homotypically with each other. The frequency of canalicular system fusion with the plasma membrane also increased by about three-fold. Our results validate the utility of freeze-substitution and STEM tomography for characterizing platelet granule secretion and suggest a model in which fusion of platelet α-granules with the plasma membrane occurs via long tubular connections that may provide a spatially limited access route for the timed release of α-granule proteins.
Collapse
Affiliation(s)
| | - Maria A. Aronova
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | | | - Andrew A. Prince
- University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Jake D. Hoyne
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Gina N. Calco
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Bryan C. Kuo
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Qianping He
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Richard D. Leapman
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Brian Storrie
- University of Arkansas for Medical Sciences, Little Rock, AR 72205
| |
Collapse
|
28
|
Westrick R, Fredman G. Platelets: Context-Dependent Vascular Protectors or Mediators of Disease. Arterioscler Thromb Vasc Biol 2015; 35:e25-9. [PMID: 26109740 DOI: 10.1161/atvbaha.115.305898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Randal Westrick
- From the Department of Biological Sciences, Oakland University, Rochester, MI (R.W.); and Department of Medicine, Columbia University, New York, NY (G.F.)
| | - Gabrielle Fredman
- From the Department of Biological Sciences, Oakland University, Rochester, MI (R.W.); and Department of Medicine, Columbia University, New York, NY (G.F.).
| | | |
Collapse
|
29
|
Randriamboavonjy V, Mann WA, Elgheznawy A, Popp R, Rogowski P, Dornauf I, Dröse S, Fleming I. Metformin reduces hyper-reactivity of platelets from patients with polycystic ovary syndrome by improving mitochondrial integrity. Thromb Haemost 2015; 114:569-78. [PMID: 25993908 DOI: 10.1160/th14-09-0797] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 04/11/2015] [Indexed: 12/22/2022]
Abstract
Polycystic ovary syndrome (PCOS) is associated with decreased fertility, insulin resistance and an increased risk of developing cardiovascular disease. Treating PCOS patients with metformin improves fertility and decreases cardiovascular complications. Given that platelet activation contributes to both infertility and cardiovascular disease development, we assessed platelet reactivity in PCOS patients and the consequences of metformin treatment. Compared to washed platelets from healthy donors, platelets from PCOS patients demonstrated enhanced reactivity and impaired activation of the AMP-activated kinase (AMPK). PCOS platelets also demonstrated enhanced expression of mitochondrial proteins such as the cytochrome c reductase, ATP synthase and the voltage-dependent anion channel-1. However, mitochondrial function was impaired as demonstrated by a decreased respiration rate. In parallel, the phosphorylation of dynamin-related protein-1 (Drp-1) on Ser616 was increased while that on Ser637 decreased. The latter changes were accompanied by decreased mitochondrial size. In insulin-resistant PCOS patients (HOMA-IR> 2) metformin treatment (1.7 g per day for 4 weeks to 6 months) improved insulin sensitivity, restored mitochondrial integrity and function and normalised platelet aggregation. Treatment was without effect in PCOS patients with HOMA-IR< 2. Moreover, treatment of megakaryocytes with metformin enhanced mitochondrial content and in the same cells metformin enhanced the phosphorylation of the Drp-1 on Ser637 via an AMPKα1-dependent mechanism. In conclusion, the improvement of mitochondrial integrity and platelet reactivity may contribute to the beneficial effects of metformin on cardiovascular disease.
Collapse
Affiliation(s)
- Voahanginirina Randriamboavonjy
- Voahanginirina Randriamboavonjy PhD, Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Theodor-Stern-Kai 7, D-60596 Frankfurt am Main, Germany, Tel.: +49 69 6301 6973, Fax: +49 69 6301 86880,
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Finkenstaedt-Quinn SA, Ge S, Haynes CL. Cytoskeleton dynamics in drug-treated platelets. Anal Bioanal Chem 2015; 407:2803-9. [PMID: 25701419 DOI: 10.1007/s00216-015-8523-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/25/2015] [Accepted: 01/27/2015] [Indexed: 12/15/2022]
Abstract
Platelet activation is a key process in blood clot formation. During activation, platelets go through both chemical and physical changes, including secretion of chemical messengers and cellular shape change. Platelet shape change is mediated by the two major cytoskeletal elements in platelets, the actin matrix and microtubule ring. Most studies to date have evaluated these structures qualitatively, whereas this paper aims to provide a quantitative method of examining changes in these structures by fluorescently labeling the element of interest and performing single cell image analysis. The method described herein tracks the diameter of the microtubule ring and the circumference of the actin matrix as they change over time. Platelets were incubated with a series of drugs that interact with tubulin or actin, and the platelets were observed for variation in shape change dynamics throughout the activation process. Differences in shape change mechanics due to drug incubation were observable in each case.
Collapse
|
31
|
Kulkarni A, Alpadi K, Sirupangi T, Peters C. A dynamin homolog promotes the transition from hemifusion to content mixing in intracellular membrane fusion. Traffic 2014; 15:558-71. [PMID: 24471450 DOI: 10.1111/tra.12156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/24/2014] [Accepted: 01/28/2014] [Indexed: 01/02/2023]
Abstract
The convergence of the antagonistic reactions of membrane fusion and fission at the hemifusion/hemifission intermediate has generated a captivating enigma of whether Soluble N-ethylmaleimide sensitive factor Attachment Protein Receptor (SNAREs) and dynamin have unusual counter-functions in fission and fusion, respectively. SNARE-mediated fusion and dynamin-driven fission are fundamental membrane flux reactions known to occur during ubiquitous cellular communication events such as exocytosis, endocytosis and vesicle transport. Here we demonstrate the influence of the dynamin homolog Vps1 (Vacuolar protein sorting 1) on lipid mixing and content mixing properties of yeast vacuoles, and on the incorporation of SNAREs into fusogenic complexes. We propose a novel concept that Vps1, through its oligomerization and SNARE domain binding, promotes the hemifusion-content mixing transition in yeast vacuole fusion by increasing the number of trans-SNAREs.
Collapse
Affiliation(s)
- Aditya Kulkarni
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | | | | |
Collapse
|
32
|
Golebiewska EM, Poole AW. Secrets of platelet exocytosis - what do we really know about platelet secretion mechanisms? Br J Haematol 2013; 165:204-216. [PMID: 24588354 PMCID: PMC4155865 DOI: 10.1111/bjh.12682] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Upon activation by extracellular matrix components or soluble agonists, platelets release in excess of 300 active molecules from intracellular granules. Those factors can both activate further platelets and mediate a range of responses in other cells. The complex microenvironment of a growing thrombus, as well as platelets' roles in both physiological and pathological processes, require platelet secretion to be highly spatially and temporally regulated to ensure appropriate responses to a range of stimuli. However, how this regulation is achieved remains incompletely understood. In this review we outline the importance of regulated secretion in thrombosis as well as in 'novel' scenarios beyond haemostasis and give a detailed summary of what is known about the molecular mechanisms of platelet exocytosis. We also discuss a number of theories of how different cargoes could be released in a tightly orchestrated manner, allowing complex interactions between platelets and their environment.
Collapse
Affiliation(s)
- Ewelina M Golebiewska
- School of Physiology and Pharmacology, Bristol Heart Institute, University of Bristol, Bristol, UK
| | | |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW This review will provide an overview of several recent advances in the field of platelet granule biology. RECENT FINDINGS The past few years have witnessed a substantial evolution in our knowledge of platelet granules based on a number of discoveries and new experimental approaches. This article will cover recent studies in five areas. First, the vesicle trafficking pathways responsible for α-granule formation are beginning to be assembled as a result of the characterization of patients with α-granule deficiencies. Second, a revision of our understanding of which SNARE isoforms mediate platelet granule exocytosis has occurred following evaluation of patients with defects in platelet granule exocytosis and the generation of mice lacking specific SNAREs. Third, investigators have begun to establish how cargos are segregated among α-granules and determine whether or not different α-granule subpopulations exist in platelets. Fourth, an unanticipated role for α-granules in platelet spreading has been identified. Fifth, single-cell amperometry has revealed secretion kinetics with submillisecond temporal resolution enabling evaluation of the molecular control of the platelet fusion pore. SUMMARY These new observations reveal a previously unappreciated complexity to platelet granule formation and exocytosis and challenge our earlier notions of how these granules are organized within platelets and contribute to the multitude of physiological activities in which platelets function.
Collapse
Affiliation(s)
- Secil Koseoglu
- Division of Hemostasis and Thrombosis, Department of Medicine, BIDMC, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
34
|
Fitch-Tewfik JL, Flaumenhaft R. Platelet granule exocytosis: a comparison with chromaffin cells. Front Endocrinol (Lausanne) 2013; 4:77. [PMID: 23805129 PMCID: PMC3693082 DOI: 10.3389/fendo.2013.00077] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/11/2013] [Indexed: 11/13/2022] Open
Abstract
The rapid secretion of bioactive amines from chromaffin cells constitutes an important component of the fight or flight response of mammals to stress. Platelets respond to stresses within the vasculature by rapidly secreting cargo at sites of injury, inflammation, or infection. Although chromaffin cells derive from the neural crest and platelets from bone marrow megakaryocytes, both have evolved a heterogeneous assemblage of granule types and a mechanism for efficient release. This article will provide an overview of granule formation and exocytosis in platelets with an emphasis on areas in which the study of chromaffin cells has influenced that of platelets and on similarities between the two secretory systems. Commonalities include the use of transporters to concentrate bioactive amines and other cargos into granules, the role of cytoskeletal remodeling in granule exocytosis, and the use of granules to provide membrane for cytoplasmic projections. The SNAREs and SNARE accessory proteins used by each cell type will also be considered. Finally, we will discuss the newly appreciated role of dynamin family proteins in regulated fusion pore formation. This evaluation of the comparative cell biology of regulated exocytosis in platelets and chromaffin cells demonstrates a convergence of mechanisms between two disparate cell types both tasked with responding rapidly to physiological stimuli.
Collapse
Affiliation(s)
- Jennifer L. Fitch-Tewfik
- Division of Hemostasis and Thrombosis, Department of Medicine, BIDMC, Harvard Medical School, Boston, MA, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, BIDMC, Harvard Medical School, Boston, MA, USA
- *Correspondence: Robert Flaumenhaft, Center for Life Science, Beth Israel Deaconess Medical Center, Room 939, 3 Blackfan Circle, Boston, MA 02215, USA e-mail:
| |
Collapse
|