1
|
Jalil A, Pilot T, Bourgeois T, Laubriet A, Li X, Diedisheim M, Deckert V, Magnani C, Le Guern N, Pais de Barros JP, Nguyen M, Pallot G, Vouilloz A, Proukhnitzky L, Hermetet F, Aires V, Lesniewska E, Lagrost L, Auwerx J, Le Goff W, Venteclef N, Steinmetz E, Thomas C, Masson D. Plasmalogen remodeling modulates macrophage response to cytotoxic oxysterols and atherosclerotic plaque vulnerability. Cell Rep Med 2025:102131. [PMID: 40345182 DOI: 10.1016/j.xcrm.2025.102131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/18/2024] [Accepted: 04/16/2025] [Indexed: 05/11/2025]
Abstract
Essential fatty acid metabolism in myeloid cells plays a critical but underexplored role in immune function. Here, we demonstrate that simultaneous inactivation of two key enzymes involved in macrophage polyunsaturated fatty acid (PUFA) metabolism-ELOVL5, which elongates long-chain PUFAs, and LPCAT3, which incorporates them into phospholipids-disrupts membrane organization by promoting the formation of cholesterol-enriched domains. This increases macrophage sensitivity to cytotoxic oxysterols and leads to more vulnerable atherosclerotic plaques with enlarged necrotic cores in a mouse model of atherosclerosis. In humans, analysis of 187 carotid plaques reveals a positive correlation between LPCAT3/ELOVL5-generated phospholipids-including arachidonate (C20:4 n-6)-containing ether lipids-and more stable plaque profiles. Additionally, Mendelian randomization analysis supports a causal relationship between LPCAT3 expression and reduced risk of ischemic stroke. Our findings uncover a regulatory circuit essential for PUFA-containing phospholipid generation in macrophages, positioning PUFA-containing ether lipids as promising biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Antoine Jalil
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Thomas Pilot
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Thibaut Bourgeois
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Aline Laubriet
- CHRU Dijon Bourgogne, Department of Cardiovascular Surgery, Dijon University Medical Center, 21000 Dijon, France
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Marc Diedisheim
- Centre - Clinique Saint Gatien Alliance (NCT+), 37214 Saint-Cyr-sur-Loire, France; Institut Necker-Enfants Malades, INSERM UMR-S1151, Université Paris Cité, 75015 Paris, France
| | - Valérie Deckert
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Charlène Magnani
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Naig Le Guern
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Jean-Paul Pais de Barros
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France; Lipidomic Analytic Platform, UBFC, 21000 Dijon, France
| | - Maxime Nguyen
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France; CHRU Dijon Bourgogne, Department of Anesthesiology and Critical Care Medicine, Dijon University Medical Center, 21000 Dijon, France
| | - Gaëtan Pallot
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Adrien Vouilloz
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Lil Proukhnitzky
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - François Hermetet
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Virginie Aires
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Eric Lesniewska
- Université Bourgogne, UMR1231, 21000 Dijon, France; Laboratory of Physics, National Center for Scientific Research, URA 5027, UFR Sciences et techniques, 21000 Dijon, France
| | - Laurent Lagrost
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Wilfried Le Goff
- Sorbonne Université, Inserm, ICAN Institut, UMR_S1166, Hôpital de la Pitié, 75013 Paris, France
| | - Nicolas Venteclef
- Institut Necker-Enfants Malades, INSERM UMR-S1151, Université Paris Cité, 75015 Paris, France
| | - Eric Steinmetz
- CHRU Dijon Bourgogne, Department of Cardiovascular Surgery, Dijon University Medical Center, 21000 Dijon, France
| | - Charles Thomas
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - David Masson
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France; CHRU Dijon Bourgogne, Laboratory of Clinical Chemistry, 21000 Dijon, France.
| |
Collapse
|
2
|
Drzymała-Czyż S, Walkowiak J, Colombo C, Alicandro G, Storrösten OT, Kolsgaard M, Bakkeheim E, Strandvik B. Fatty acid abnormalities in cystic fibrosis-the missing link for a cure? iScience 2024; 27:111153. [PMID: 39620135 PMCID: PMC11607544 DOI: 10.1016/j.isci.2024.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
The care for cystic fibrosis (CF) has dramatically changed with the development of modulators, correctors, and potentiators of the CFTR molecule, which lead to improved clinical status of most people with CF (pwCF). The modulators influence phospholipids and ceramides, but not linoleic acid (LA) deficiency, associated with more severe phenotypes of CF. The LA deficiency is associated with upregulation of its transfer to arachidonic acid (AA). The AA release from membranes is increased and associated with increase of pro-inflammatory prostanoids and the characteristic inflammation is present before birth and bacterial infections. Docosahexaenoic acid is often decreased, especially in associated liver disease Some endogenously synthesized fatty acids are increased. Cholesterol and ceramide metabolisms are disturbed. The lipid abnormalities are present at birth, and before feeding in transgenic pigs and ferrets. This review focus on the lipid abnormalities and their associations to clinical symptoms in CF, based on clinical studies and experimental research.
Collapse
Affiliation(s)
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Institute of Pediatrics, Poznan University of Medical Sciences, Poznan, Poland
| | - Carla Colombo
- Cystic Fibrosis Centre, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, and Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gianfranco Alicandro
- Cystic Fibrosis Centre, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, and Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Olav Trond Storrösten
- National Resource Centre for Cystic Fibrosis, Oslo University Hospital, Oslo, Norway
| | - Magnhild Kolsgaard
- National Resource Centre for Cystic Fibrosis, Oslo University Hospital, Oslo, Norway
| | - Egil Bakkeheim
- National Resource Centre for Cystic Fibrosis, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
3
|
Bousquet D, Nader E, Connes P, Guillot N. Liver X receptor agonist upregulates LPCAT3 in human aortic endothelial cells. Front Physiol 2024; 15:1388404. [PMID: 38694208 PMCID: PMC11061552 DOI: 10.3389/fphys.2024.1388404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
Objective Endothelial cells (ECs) play an important role in tissue homeostasis. Recently, EC lipid metabolism has emerged as a regulator of EC function. The liver X receptors (LXRs) are involved in the transcriptional regulation of genes involved in lipid metabolism and have been identified as a potential target in cardiovascular disease. We aimed to decipher the role of LXRs in the regulation of lipid metabolism in human aortic endothelial cells. Approach and Results Lipid composition analysis of endothelial cells treated with the LXR agonist T0901317 revealed that LXR activation increased the proportion of polyunsaturated fatty acids (PUFAs) and decreased the proportion of saturated fatty acids. The LXR agonist decreased the uptake of fatty acids (FAs) by ECs. This effect was abolished by LXRα silencing. LXR activation increased the activity and the expression of lysophosphatidylcholine acyltransferase, LPCAT3, which is involved in the turnover of FAs at the sn-2 position of phospholipids. Transcriptomic analysis also revealed that LXRs increased the expression of key genes involved in the synthesis of PUFAs, including FA desaturase one and 2, FA elongase 5 and fatty acid synthase. Subsequently, the LXR agonist increased PUFA synthesis and enhanced arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid content in the EC phospholipids. Modification of the FA composition of ECs by LXRs led to a decrease of arachidonate and linoleate derived prostaglandins synthesis and release. No change on markers of inflammation induced by plasma from sickle cell patient were observed in presence of LXR agonist. Conclusion These results identify LXR as a key regulator of lipid metabolism in human aortic endothelial cells and a direct effect of LXR agonist on lysophosphatidylacyl transferase (LPCAT3).
Collapse
Affiliation(s)
- Delphine Bousquet
- University Lyon, LIBM EA7424, Vascular Biology and Red Blood Cell Team, Universite Lyon 1, Villeurbanne, France
- Labex GR-Ex, PRES Sorbonne, Paris, France
| | - Elie Nader
- University Lyon, LIBM EA7424, Vascular Biology and Red Blood Cell Team, Universite Lyon 1, Villeurbanne, France
- Labex GR-Ex, PRES Sorbonne, Paris, France
| | - Philippe Connes
- University Lyon, LIBM EA7424, Vascular Biology and Red Blood Cell Team, Universite Lyon 1, Villeurbanne, France
- Labex GR-Ex, PRES Sorbonne, Paris, France
| | - Nicolas Guillot
- University Lyon, LIBM EA7424, Vascular Biology and Red Blood Cell Team, Universite Lyon 1, Villeurbanne, France
- Labex GR-Ex, PRES Sorbonne, Paris, France
- INSA Lyon, Villeurbanne, France
| |
Collapse
|
4
|
He M, Li Z, Tung VSK, Pan M, Han X, Evgrafov O, Jiang XC. Inhibiting Phosphatidylcholine Remodeling in Adipose Tissue Increases Insulin Sensitivity. Diabetes 2023; 72:1547-1559. [PMID: 37625119 PMCID: PMC10588299 DOI: 10.2337/db23-0317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Cell membrane phosphatidylcholine (PC) composition is regulated by lysophosphatidylcholine acyltransferase (LPCAT); changes in membrane PC saturation are implicated in metabolic disorders. Here, we identified LPCAT3 as the major isoform of LPCAT in adipose tissue and created adipocyte-specific Lpcat3-knockout mice to study adipose tissue lipid metabolism. Transcriptome sequencing and plasma adipokine profiling were used to investigate how LPCAT3 regulates adipose tissue insulin signaling. LPCAT3 deficiency reduced polyunsaturated PCs in adipocyte plasma membranes, increasing insulin sensitivity. LPCAT3 deficiency influenced membrane lipid rafts, which activated insulin receptors and AKT in adipose tissue, and attenuated diet-induced insulin resistance. Conversely, higher LPCAT3 activity in adipose tissue from ob/ob, db/db, and high-fat diet-fed mice reduced insulin signaling. Adding polyunsaturated PCs to mature human or mouse adipocytes in vitro worsened insulin signaling. We suggest that targeting LPCAT3 in adipose tissue to manipulate membrane phospholipid saturation is a new strategy to treat insulin resistance. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Mulin He
- Department of Cell Biology, The State University of New York Downstate Health Sciences University, Brooklyn, NY
| | - Zhiqiang Li
- Department of Cell Biology, The State University of New York Downstate Health Sciences University, Brooklyn, NY
| | - Victoria Sook Keng Tung
- Department of Cell Biology, The State University of New York Downstate Health Sciences University, Brooklyn, NY
| | - Meixia Pan
- Lipidomics Core, The University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Xianlin Han
- Lipidomics Core, The University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Oleg Evgrafov
- Department of Cell Biology, The State University of New York Downstate Health Sciences University, Brooklyn, NY
| | - Xian-Cheng Jiang
- Department of Cell Biology, The State University of New York Downstate Health Sciences University, Brooklyn, NY
- Molecular and Cellular Cardiology Program, Veterans Affairs New York Harbor Healthcare System, New York, NY
| |
Collapse
|
5
|
Wang Y, Li K, Zhao W, Liu Y, Li T, Yang HQ, Tong Z, Song N. Integrated multi-omics analyses reveal the altered transcriptomic characteristics of pulmonary macrophages in immunocompromised hosts with Pneumocystis pneumonia. Front Immunol 2023; 14:1179094. [PMID: 37359523 PMCID: PMC10289015 DOI: 10.3389/fimmu.2023.1179094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction With the extensive use of immunosuppressants, immunosuppression-associated pneumonitis including Pneumocystis jirovecii pneumonia (PCP) has received increasing attention. Though aberrant adaptive immunity has been considered as a key reason for opportunistic infections, the characteristics of innate immunity in these immunocompromised hosts remain unclear. Methods In this study, wild type C57BL/6 mice or dexamethasone-treated mice were injected with or without Pneumocystis. Bronchoalveolar lavage fluids (BALFs) were harvested for the multiplex cytokine and metabolomics analysis. The single-cell RNA sequencing (scRNA-seq) of indicated lung tissues or BALFs was performed to decipher the macrophages heterogeneity. Mice lung tissues were further analyzed via quantitative polymerase chain reaction (qPCR) or immunohistochemical staining. Results We found that the secretion of both pro-inflammatory cytokines and metabolites in the Pneumocystis-infected mice are impaired by glucocorticoids. By scRNA-seq, we identified seven subpopulations of macrophages in mice lung tissues. Among them, a group of Mmp12+ macrophages is enriched in the immunocompetent mice with Pneumocystis infection. Pseudotime trajectory showed that these Mmp12+ macrophages are differentiated from Ly6c+ classical monocytes, and highly express pro-inflammatory cytokines elevated in BALFs of Pneumocystis-infected mice. In vitro, we confirmed that dexamethasone impairs the expression of Lif, Il1b, Il6 and Tnf, as well as the fungal killing capacity of alveolar macrophage (AM)-like cells. Moreover, in patients with PCP, we found a group of macrophages resembled the aforementioned Mmp12+ macrophages, and these macrophages are inhibited in the patient receiving glucocorticoid treatment. Additionally, dexamethasone simultaneously impaired the functional integrity of resident AMs and downregulated the level of lysophosphatidylcholine, leading to the suppressed antifungal capacities. Conclusion We reported a group of Mmp12+ macrophages conferring protection during Pneumocystis infection, which can be dampened by glucocorticoids. This study provides multiple resources for understanding the heterogeneity and metabolic changes of innate immunity in immunocompromised hosts, and also suggests that the loss of Mmp12+ macrophages population contributes to the pathogenesis of immunosuppression-associated pneumonitis.
Collapse
Affiliation(s)
- Yawen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Kang Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Weichao Zhao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Respiratory Medicine, Strategic Support Force Medical Center, Beijing, China
| | - Yalan Liu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ting Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hu-Qin Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Nan Song
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
The Patatin-Like Phospholipase Domain Containing Protein 7 Regulates Macrophage Classical Activation through SIRT1/NF-κB and p38 MAPK Pathways. Int J Mol Sci 2022; 23:ijms232314983. [PMID: 36499308 PMCID: PMC9739533 DOI: 10.3390/ijms232314983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Lysophosphatidylcholine (LPC) is a bioactive lipid that modulates macrophage polarization during immune responses, inflammation, and tissue remodeling. Patatin-like phospholipase domain containing protein 7 (PNPLA7) is a lysophospholipase with a preference for LPC. However, the role of PNPLA7 in macrophage polarization as an LPC hydrolase has not been explored. In the current study, we found that PNPLA7 is highly expressed in naïve macrophages and downregulated upon lipopolysaccharide (LPS)-induced polarization towards the classically activated (M1) phenotype. Consistently, overexpression of PNPLA7 suppressed the expression of proinflammatory M1 marker genes, including interleukin 1β (IL-1β), IL-6, inducible nitric oxide synthase (iNOS), and tumor necrosis factor α (TNF-α), whereas knockdown of PNPLA7 augmented the inflammatory gene expression in LPS-challenged macrophages. PNPLA7 overexpression and knockdown increased and decreased Sirtuin1 (SIRT1) mRNA and protein levels, respectively, and affected the acetylation of the nuclear factor-kappa B (NF-κB) p65 subunit, a key transcription factor in M1 polarization. In addition, the levels of phosphorylated p38 mitogen-activated protein kinase (MAPK) were suppressed and enhanced by PNPLA7 overexpression and knockdown, respectively. Taken together, these findings suggest that PNPLA7 suppresses M1 polarization of LPS-challenged macrophages by modulating SIRT1/NF-κB- and p38 MAPK-dependent pathways.
Collapse
|
7
|
Lpcat3 deficiency promotes palmitic acid-induced 3T3-L1 mature adipocyte inflammation through enhanced ROS generation. Acta Biochim Biophys Sin (Shanghai) 2022; 55:117-130. [PMID: 36331295 PMCID: PMC10157521 DOI: 10.3724/abbs.2022161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylcholines (PCs) are major phospholipids in the mammalian cell membrane. Structural remodeling of PCs is associated with many biological processes. Lysophosphatidylcholine acyltransferase 3 (Lpcat3), which catalyzes the incorporation of polyunsaturated fatty acyl chains into the sn-2 site of PCs, plays an important role in maintaining plasma membrane fluidity. Adipose tissue is one of the main distribution organs of Lpcat3, while the relationship between Lpcat3 and adipose tissue dysfunction during overexpansion remains unknown. In this study, we reveal that both polyunsaturated PC content and Lpcat3 expression are increased in abdominal adipose tissues of high-fat diet-fed mice when compared with chow-diet-fed mice, indicating that Lpcat3 is involved in adipose tissue overexpansion and dysfunction. Our experiments in 3T3-L1 adipocytes show that inhibition of Lpcat3 does not change triglyceride accumulation but increases palmitic acid-induced inflammation and lipolysis. Conversely, Lpcat3 overexpression exhibits anti-inflammatory and anti-lipolytic effects. Furthermore, mechanistic studies demonstrate that Lpcat3 deficiency promotes reactive oxygen species (ROS) generation by increasing NOX enzyme activity by facilitating the translocation of NOX4 to lipid rafts, thereby aggregating 3T3-L1 adipocyte inflammation induced by palmitic acid. Moreover, overexpression of Lpcat3 exhibits the opposite effects. These findings suggest that Lpcat3 protects adipocytes from inflammation during adipose tissue overexpansion by reducing ROS generation. In conclusion, our study demonstrates that Lpcat3 deficiency promotes palmitic acid-induced inflammation in 3T3-L1 adipocytes by enhancing ROS generation.
Collapse
|
8
|
Ding Y, Cui K, Han S, Hao T, Liu Y, Lai W, Xu X, Mai K, Ai Q. Lysophosphatidylcholine acyltransferase 3 (LPCAT3) mediates palmitate-induced inflammation in macrophages of large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2022; 126:12-20. [PMID: 35526799 DOI: 10.1016/j.fsi.2022.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
LPCAT3, a subtype of lysophosphatidylcholine acyltransferases, is a key enzyme in phosphatidylcholine remodeling pathway and plays a significant role in mediating inflammatory response in mammals. However, its inflammatory function in fish has yet to be discovered. Herein, this study aimed to investigate its role in inflammation in Larimichthys crocea. We analyzed the coding sequence of Larimichthys crocea LPCAT3 (Lc-LPCAT3) and explored the effect of Lc-LPCAT3 on palmitate (PA)-induced inflammation. We found that in macrophage cell line of Larimichthys crocea, the mRNA expression of Lc-lpcat3 was upregulated by PA with the elevated pro-inflammatory genes expression, including il1β, il6, il8, tnfα and ifnγ. Next, the role of Lc-LPCAT3 in inflammation induced by PA was further investigated. Results showed that knockdown of Lc-LPCAT3 mitigated PA-induced pro-inflammatory genes mRNA expression, including il1β, il8, tnfα and ifnγ, in which JNK signaling pathway was involved. In contrast, overexpression of Lc-LPCAT3 induced pro-inflammatory genes expression including il1β, tnfα and ifnγ. Furthermore, several transcription factors with negative regulation of Lc-LPCAT3 promoter activity were discovered including LXRα, RXRα, PPARα, PPARγ, CEBPα, CEBPβ, CEBPδ, SREBP1 and SREBP2, and SREBP1 had the strongest regulatory effect. In conclusion, we first discovered that fish LPCAT3 participated in PA-induced inflammation, and targeting SREBP1 might be an effective coping strategy.
Collapse
Affiliation(s)
- Yi Ding
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Shangzhe Han
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Tingting Hao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Yongtao Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Wencong Lai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Xiang Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266003, Qingdao, Shandong, PR China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266003, Qingdao, Shandong, PR China.
| |
Collapse
|
9
|
Lagrost L, Masson D. The expanding role of lyso-phosphatidylcholine acyltransferase-3 (LPCAT3), a phospholipid remodeling enzyme, in health and disease. Curr Opin Lipidol 2022; 33:193-198. [PMID: 35165232 DOI: 10.1097/mol.0000000000000820] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The turnover of fatty acids (FAs) at the sn-2 position of phospholipids is mediated by the reciprocal actions of phospholipases A2 and lyso-PL acyltransferases (LPLAT). LPCAT3, a major LPLAT isoform, exhibits a strong specificity for polyunsaturated FAs s (PUFAs). Although the enzyme was originally studied in the context of cardiometabolism, recent investigations have shed light on the role of LPCAT3 in other tissues such as skeletal muscle and in unexpected biological processes such as cell death and oncogenesis. RECENT FINDINGS The three-dimensional structure of LPCAT3 has been elucidated allowing further understanding of the mechanism of the acylation reaction as well as the substrate specificity of the enzyme. In skeletal muscle, LPCAT3-mediated phospholipid remodeling modulates membrane domain clustering and insulin signalingLPCAT3 plays an important role in the process of ferroptosis by modulating the PUFA content of phospholipids and possibly of plasmalogens.In tumor-associated macrophages, LPCAT3 can prevent ER stress induced by the tumor microenvironment and may equally modulate antitumor immunity. SUMMARY LPCAT3 is an attractive therapeutic target in the cardiometabolic disorders. Nevertheless, the involvement of LPCAT3 in processes such as cell death and oncogenesis demands caution with respect to the potential deleterious effects of enzyme modulation.
Collapse
Affiliation(s)
- Laurent Lagrost
- Université Bourgogne Franche-Comté
- INSERM, LNC UMR1231
- FCS Bourgogne-Franche Comté, LipSTIC LabEx
| | - David Masson
- Université Bourgogne Franche-Comté
- INSERM, LNC UMR1231
- FCS Bourgogne-Franche Comté, LipSTIC LabEx
- CHU Dijon, Dijon, France
| |
Collapse
|
10
|
Findeisen HM, Voges VC, Braun LC, Sonnenberg J, Schwarz D, Körner H, Reinecke H, Sohrabi Y. LXRα Regulates oxLDL-Induced Trained Immunity in Macrophages. Int J Mol Sci 2022; 23:ijms23116166. [PMID: 35682840 PMCID: PMC9181299 DOI: 10.3390/ijms23116166] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/19/2022] Open
Abstract
Reprogramming of metabolic pathways in monocytes and macrophages can induce a proatherosclerotic inflammatory memory called trained innate immunity. Here, we have analyzed the role of the Liver X receptor (LXR), a crucial regulator of metabolism and inflammation, in oxidized low-density lipoprotein (oxLDL)-induced trained innate immunity. Human monocytes were incubated with LXR agonists, antagonists, and oxLDL for 24 h. After five days of resting time, cells were restimulated with the TLR-2 agonist Pam3cys. OxLDL priming induced the expression of LXRα but not LXRβ. Pharmacologic LXR activation was enhanced, while LXR inhibition prevented the oxLDL-induced inflammatory response. Furthermore, LXR inhibition blocked the metabolic changes necessary for epigenetic reprogramming associated with trained immunity. In fact, enrichment of activating histone marks at the IL-6 and TNFα promotor was reduced following LXR inhibition. Based on the differential expression of the LXR isoforms, we inhibited LXRα and LXRβ genes using siRNA in THP1 cells. As expected, siRNA-mediated knock-down of LXRα blocked the oxLDL-induced inflammatory response, while knock-down of LXRβ had no effect. We demonstrate a specific and novel role of the LXRα isoform in the regulation of oxLDL-induced trained immunity. Our data reveal important aspects of LXR signaling in innate immunity with relevance to atherosclerosis formation.
Collapse
|
11
|
Xu M, Legradi J, Leonards P. Using comprehensive lipid profiling to study effects of PFHxS during different stages of early zebrafish development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151739. [PMID: 34848268 DOI: 10.1016/j.scitotenv.2021.151739] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 05/26/2023]
Abstract
PFHxS (Perfluorohexane sulfonic acid) is one of the short-chain perfluoroalkyl substances (PFASs) which are widely used in many industrial and consumer applications. However, limited information is available on the molecular mechanism of PFHxS toxicity (e.g. lipid metabolism). This study provides in-depth information on the lipid regulation of zebrafish embryos with and without PFHxS exposure. Lipid changes throughout zebrafish development (4 to 120 h post fertilization (hpf)) were closely associated with lipid species and lipid composition (fatty acyl chains). A comprehensive lipid analysis of four different PFHxS exposures (0, 0.3, 1, 3, and 10 μM) at different zebrafish developmental stages (24, 48, 72, and 120 hpf) was performed. Data on exposure concentration, lipids, and developmental stage showed that all PFHxS concentrations dysregulated the lipid metabolism and these were developmental-dependent. The pattern of significantly changed lipids revealed that PFHxS caused effects related to oxidative stress, inflammation, and impaired fatty acid β-oxidation. Oxidative stress and inflammation caused the remodeling of glycerophospholipid (phosphatidylcholine (PC) and phosphatidylethanolamine (PE)), with increased incorporation of omega-3 PUFA and a decreased incorporation of omega-6 PUFA.
Collapse
Affiliation(s)
- Mengmeng Xu
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands.
| | - Jessica Legradi
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Pim Leonards
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
12
|
Lin T, Zhang E, Lin Z, Peng L. Comprehensive Analysis of LPCATs Highlights the Prognostic and Immunological Values of LPCAT1/4 in Hepatocellular Carcinoma. Int J Gen Med 2021; 14:9117-9130. [PMID: 34876845 PMCID: PMC8643204 DOI: 10.2147/ijgm.s344723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Background The prognosis of patients with advanced hepatocellular carcinoma (HCC) remains poor. Lipid remodeling modulators are considered promising therapeutic targets of cancers, owing to their functions of facilitating cancer cells’ adaption to the limited environment. Lysophosphatidylcholine acyltransferases (LPCATs) are enzymes regulating bio-membrane remodeling, whose roles in HCC have not been fully illuminated. Methods Multiple bioinformatic tools were applied to comprehensively evaluate the expression, genetic alterations, clinical relevance, prognostic values, DNA methylation, biological functions, and correlations with immune infiltration of LPCATs in HCC. Results We found LPCAT1 was significantly overexpressed and the most frequently altered in HCC. The high-expression of LPCAT1/4 indicated clinicopathological advancements and poor prognoses of HCC patients. Even though the global DNA methylation of LPCATs in HCC showed no significant difference with that in normal liver, the hypermethylation of numerous CpG sites of them implied worse survivals of HCC patients. Thirty LPCATs’ interactive genes were identified, which were generally membrane components and partook in phospholipid metabolism pathways. Finally, we found the expression of LPCATs was extensively positively correlated with the infiltration of various stimulatory and suppressive tumor-infiltrating immune cells (TIICs) in the tumor microenvironment. Conclusion This study addressed LPCAT1/4 were potential prognostic and immunotherapeutic biomarkers of HCC targeting bio-membrane lipid remodeling.
Collapse
Affiliation(s)
- Tong Lin
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, People's Republic of China
| | - E Zhang
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, People's Republic of China
| | - Zhimei Lin
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, People's Republic of China
| | - Lisheng Peng
- Department of Science and Education, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, People's Republic of China
| |
Collapse
|
13
|
The structural basis for the phospholipid remodeling by lysophosphatidylcholine acyltransferase 3. Nat Commun 2021; 12:6869. [PMID: 34824256 PMCID: PMC8617236 DOI: 10.1038/s41467-021-27244-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
As the major component of cell membranes, phosphatidylcholine (PC) is synthesized de novo in the Kennedy pathway and then undergoes extensive deacylation-reacylation remodeling via Lands' cycle. The re-acylation is catalyzed by lysophosphatidylcholine acyltransferase (LPCAT) and among the four LPCAT members in human, the LPCAT3 preferentially introduces polyunsaturated acyl onto the sn-2 position of lysophosphatidylcholine, thereby modulating the membrane fluidity and membrane protein functions therein. Combining the x-ray crystallography and the cryo-electron microscopy, we determined the structures of LPCAT3 in apo-, acyl donor-bound, and acyl receptor-bound states. A reaction chamber was revealed in the LPCAT3 structure where the lysophosphatidylcholine and arachidonoyl-CoA were positioned in two tunnels connected near to the catalytic center. A side pocket was found expanding the tunnel for the arachidonoyl CoA and holding the main body of arachidonoyl. The structural and functional analysis provides the basis for the re-acylation of lysophosphatidylcholine and the substrate preference during the reactions.
Collapse
|
14
|
Huang H, Ye G, Lai SQ, Zou HX, Yuan B, Wu QC, Wan L, Wang Q, Zhou XL, Wang WJ, Cao YP, Huang JF, Chen SL, Yang BC, Liu JC. Plasma Lipidomics Identifies Unique Lipid Signatures and Potential Biomarkers for Patients With Aortic Dissection. Front Cardiovasc Med 2021; 8:757022. [PMID: 34778409 PMCID: PMC8581228 DOI: 10.3389/fcvm.2021.757022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 01/19/2023] Open
Abstract
Aortic dissection (AD) is a catastrophic cardiovascular emergency with a poor prognosis, and little preceding symptoms. Abnormal lipid metabolism is closely related to the pathogenesis of AD. However, comprehensive lipid alterations related to AD pathogenesis remain unclear. Moreover, there is an urgent need for new or better biomarkers for improved risk assessment and surveillance of AD. Therefore, an untargeted lipidomic approach based on ultra-high-performance liquid chromatograph-mass spectrometry was employed to unveil plasma lipidomic alterations and potential biomarkers for AD patients in this study. We found that 278 of 439 identified lipid species were significantly altered in AD patients (n = 35) compared to normal controls (n = 32). Notably, most lipid species, including fatty acids, acylcarnitines, cholesteryl ester, ceramides, hexosylceramides, sphingomyelins, lysophosphatidylcholines, lysophosphatidylethanolamines, phosphatidylcholines, phosphatidylinositols, diacylglycerols, and triacylglycerols with total acyl chain carbon number ≥54 and/or total double bond number ≥4 were decreased, whereas phosphatidylethanolamines and triacylglycerols with total double bond number <4 accumulated in AD patients. Besides, the length and unsaturation of acyl chains in triacylglycerols and unsaturation of 1-acyl chain in phosphatidylethanolamines were decreased in AD patients. Moreover, lysophosphatidylcholines were the lipids with the largest alterations, at the center of correlation networks of lipid alterations, and had excellent performances in identifying AD patients. The area under the curve of 1.0 and accuracy rate of 100% could be easily obtained by lysophosphatidylcholine (20:0/0:0) or its combination with lysophosphatidylcholine (17:0/0:0) or lysophosphatidylcholine (20:1/0:0). This study provides novel and comprehensive plasma lipidomic signatures of AD patients, identifies lysophosphatidylcholines as excellent potential biomarkers, and would be beneficial to the pathogenetic study, risk assessment and timely diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Huang Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guozhu Ye
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Song-Qing Lai
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hua-Xi Zou
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Yuan
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qi-Cai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li Wan
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qun Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xue-Liang Zhou
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wen-Jun Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuan-Ping Cao
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian-Feng Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shi-Li Chen
- Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bi-Cheng Yang
- Jiangxi Provincial Key Laboratory of Birth Defect for Prevention and Control, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Ji-Chun Liu
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Mai CT, Zheng DC, Li XZ, Zhou H, Xie Y. Liver X receptors conserve the therapeutic target potential for the treatment of rheumatoid arthritis. Pharmacol Res 2021; 170:105747. [PMID: 34186192 DOI: 10.1016/j.phrs.2021.105747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 01/03/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic multi-system autoimmune disease with extremely complex pathogenesis. Significantly altered lipid paradox related to the inflammatory burden is reported in RA patients, inducing 50% higher cardiovascular risks. Recent studies have also demonstrated that lipid metabolism can regulate many functions of immune cells in which metabolic pathways have altered. The nuclear liver X receptors (LXRs), including LXRα and LXRβ, play a central role in regulating lipid homeostasis and inflammatory responses. Undoubtedly, LXRs have been considered as an attractive therapeutic target for the treatment of RA. However, there are some contradictory effects of LXRs agonists observed in previous animal studies where both pro-inflammatory role and anti-inflammatory role were revealed for LXRs activation in RA. Therefore, in addition to updating the knowledge of LXRs as the prominent regulators of lipid homeostasis, the purpose of this review is to summarize the effects of LXRs agonists in RA-associated immune cells, to explore the underlying reasons for the contradictory therapeutic effects of LXRs agonists observed in RA animal models, and to discuss future strategy for the treatment of RA with LXRs modulators.
Collapse
Affiliation(s)
- Chu-Tian Mai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - De-Chong Zheng
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Xin-Zhi Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau.
| |
Collapse
|
16
|
LXR directly regulates glycosphingolipid synthesis and affects human CD4+ T cell function. Proc Natl Acad Sci U S A 2021; 118:2017394118. [PMID: 34006637 DOI: 10.1073/pnas.2017394118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The liver X receptor (LXR) is a key transcriptional regulator of cholesterol, fatty acid, and phospholipid metabolism. Dynamic remodeling of immunometabolic pathways, including lipid metabolism, is a crucial step in T cell activation. Here, we explored the role of LXR-regulated metabolic processes in primary human CD4+ T cells and their role in controlling plasma membrane lipids (glycosphingolipids and cholesterol), which strongly influence T cell immune signaling and function. Crucially, we identified the glycosphingolipid biosynthesis enzyme glucosylceramide synthase as a direct transcriptional LXR target. LXR activation by agonist GW3965 or endogenous oxysterol ligands significantly altered the glycosphingolipid:cholesterol balance in the plasma membrane by increasing glycosphingolipid levels and reducing cholesterol. Consequently, LXR activation lowered plasma membrane lipid order (stability), and an LXR antagonist could block this effect. LXR stimulation also reduced lipid order at the immune synapse and accelerated activation of proximal T cell signaling molecules. Ultimately, LXR activation dampened proinflammatory T cell function. Finally, compared with responder T cells, regulatory T cells had a distinct pattern of LXR target gene expression corresponding to reduced lipid order. This suggests LXR-driven lipid metabolism could contribute to functional specialization of these T cell subsets. Overall, we report a mode of action for LXR in T cells involving the regulation of glycosphingolipid and cholesterol metabolism and demonstrate its relevance in modulating T cell function.
Collapse
|
17
|
Li WJ, Zhao Y, Gao Y, Dong LL, Wu YF, Chen ZH, Shen HH. Lipid metabolism in asthma: Immune regulation and potential therapeutic target. Cell Immunol 2021; 364:104341. [PMID: 33798909 DOI: 10.1016/j.cellimm.2021.104341] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Asthma is a chronic inflammatory disease of the lungs that poses a considerable health and socioeconomic burden. Several risk factors work synergistically to affect the progression of asthma. Lipid metabolism, especially in distinct cells such as T cells, macrophages, granulocytes, and non-immune cells, plays an essential role in the pathogenesis of asthma, as lipids are potent signaling molecules that regulate a multitude of cellular response. In this review, we focused on the metabolic pathways of lipid molecules, especially fatty acids and their derivatives, and summarized their roles in various cells during the pathogenesis of asthma along with the current pharmacological agents targeting lipid metabolism.
Collapse
Affiliation(s)
- Wei-Jie Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Zhao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Gao
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Ling-Ling Dong
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yin-Fang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Hua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hua-Hao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; State Key Lab of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China.
| |
Collapse
|
18
|
Ye G, Yang BC, Gao H, Wu Z, Chen J, Ai XY, Huang Q. Metabolomics Insights into Oleate-Induced Disorders of Phospholipid Metabolism in Macrophages. J Nutr 2021; 151:503-512. [PMID: 33571370 DOI: 10.1093/jn/nxaa411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diet-induced disordered phospholipid metabolism and disturbed macrophage metabolism contribute to the pathogenesis of metabolic diseases. However, the effects of oleate, a main dietary fatty acid, on macrophage phospholipid metabolism are unclear. OBJECTIVES We aimed to discover oleate-induced disorders of macrophage phospholipid metabolism and potential therapeutic targets for treating diet-related metabolic diseases. METHODS RAW 264.7 cells were exposed to 65 μg oleate/mL, within the blood concentration range of humans and mice, to trigger disorders of phospholipid metabolism. Meanwhile, WY-14643 and pioglitazone, 2 drugs widely used for treating metabolic diseases, were employed to prevent oleate-induced disorders of macrophage phospholipid metabolism. Subsequently, an untargeted metabolomics approach based on liquid chromatography-mass spectrometry was used to discover relevant metabolic disorders and potential therapeutic targets. RESULTS We showed that 196 metabolites involved in phospholipid metabolism were altered upon oleate treatment and interventions of WY-14643 and pioglitazone (P < 0.05, 2-tailed Mann-Whitney U test). Notably, most lysophospholipids were decreased, whereas most phospholipids were increased in oleate-treated macrophages. Phosphatidylethanolamines accumulated most among phospholipids, and their acyl chain polyunsaturation increased in oleate-treated macrophages. Additionally, saturated fatty acids were decreased, whereas polyunsaturated fatty acids were increased in oleate-treated macrophages. Furthermore, changes in phosphatidylglycerols, phosphatidylinositols, cardiolipins, phosphatidates, lysophosphatidylglycerols, and acylcarnitines in oleate-treated macrophages could be attenuated or even abolished by WY-14643 and/or pioglitazone treatment. CONCLUSIONS Oleate induced accumulation of various phospholipids, increased acyl chain polyunsaturation of phosphatidylethanolamines, and decreased lysophospholipids in RAW 264.7 macrophages. This study suggests macrophage phospholipid and fatty acid metabolism as potential therapeutic targets for intervening diet-related metabolic diseases.
Collapse
Affiliation(s)
- Guozhu Ye
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Bi-Cheng Yang
- Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Han Gao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zeming Wu
- iPhenome Biotechnology (Dalian), Inc., Dalian, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Xiao-Yan Ai
- iPhenome Biotechnology (Dalian), Inc., Dalian, China
| | - Qiansheng Huang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
19
|
Russo-Savage L, Schulman IG. Liver X receptors and liver physiology. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166121. [PMID: 33713792 DOI: 10.1016/j.bbadis.2021.166121] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/29/2022]
Abstract
The liver x receptors LXRα (NR1H3) and LXRβ (NR1H2) are members of the nuclear hormone receptor superfamily of ligand dependent transcription factors that regulate transcription in response to the direct binding of cholesterol derivatives. Studies using genetic knockouts and synthetic ligands have defined the LXRs as important modulators of lipid homeostasis throughout the body. This review focuses on the control of cholesterol and fatty acid metabolism by LXRs in the liver and how modifying LXR activity can influence the pathology of liver diseases.
Collapse
Affiliation(s)
- Lillian Russo-Savage
- Department of Pharmacology, University of Virginia, School of Medicine, United States of America
| | - Ira G Schulman
- Department of Pharmacology, University of Virginia, School of Medicine, United States of America.
| |
Collapse
|
20
|
Pineda-Torra I, Siddique S, Waddington KE, Farrell R, Jury EC. Disrupted Lipid Metabolism in Multiple Sclerosis: A Role for Liver X Receptors? Front Endocrinol (Lausanne) 2021; 12:639757. [PMID: 33927692 PMCID: PMC8076792 DOI: 10.3389/fendo.2021.639757] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic neurological disease driven by autoimmune, inflammatory and neurodegenerative processes leading to neuronal demyelination and subsequent degeneration. Systemic lipid metabolism is disturbed in people with MS, and lipid metabolic pathways are crucial to the protective process of remyelination. The lipid-activated transcription factors liver X receptors (LXRs) are important integrators of lipid metabolism and immunity. Consequently, there is a strong interest in targeting these receptors in a number of metabolic and inflammatory diseases, including MS. We have reviewed the evidence for involvement of LXR-driven lipid metabolism in the dysfunction of peripheral and brain-resident immune cells in MS, focusing on human studies, both the relapsing remitting and progressive phases of the disease are discussed. Finally, we discuss the therapeutic potential of modulating the activity of these receptors with existing pharmacological agents and highlight important areas of future research.
Collapse
Affiliation(s)
- Inés Pineda-Torra
- Centre for Cardiometabolic and Vascular Medicine, Department of Medicine, University College London, London, United Kingdom
- *Correspondence: Elizabeth C. Jury, ; Inés Pineda-Torra,
| | - Sherrice Siddique
- Centre for Rheumatology, Department of Medicine, University College London, London, United Kingdom
| | - Kirsty E. Waddington
- Centre for Cardiometabolic and Vascular Medicine, Department of Medicine, University College London, London, United Kingdom
- Centre for Rheumatology, Department of Medicine, University College London, London, United Kingdom
| | - Rachel Farrell
- Department of Neuroinflammation, Institute of Neurology and National Hospital of Neurology and Neurosurgery, University College London, London, United Kingdom
| | - Elizabeth C. Jury
- Centre for Rheumatology, Department of Medicine, University College London, London, United Kingdom
- *Correspondence: Elizabeth C. Jury, ; Inés Pineda-Torra,
| |
Collapse
|
21
|
Bourgeois T, Jalil A, Thomas C, Magnani C, Le Guern N, Gautier T, Pais de Barros JP, Bergas V, Choubley H, Mazzeo L, Menegaut L, Josiane Lebrun L, Van Dongen K, Xolin M, Jourdan T, Buch C, Labbé J, Saas P, Lagrost L, Masson D, Grober J. Deletion of lysophosphatidylcholine acyltransferase 3 in myeloid cells worsens hepatic steatosis after a high-fat diet. J Lipid Res 2020; 62:100013. [PMID: 33518513 PMCID: PMC7859853 DOI: 10.1194/jlr.ra120000737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/25/2020] [Accepted: 12/11/2020] [Indexed: 12/28/2022] Open
Abstract
Recent studies have highlighted an important role for lysophosphatidylcholine acyltransferase 3 (LPCAT3) in controlling the PUFA composition of cell membranes in the liver and intestine. In these organs, LPCAT3 critically supports cell-membrane-associated processes such as lipid absorption or lipoprotein secretion. However, the role of LPCAT3 in macrophages remains controversial. Here, we investigated LPCAT3's role in macrophages both in vitro and in vivo in mice with atherosclerosis and obesity. To accomplish this, we used the LysMCre strategy to develop a mouse model with conditional Lpcat3 deficiency in myeloid cells (Lpcat3KOMac). We observed that partial Lpcat3 deficiency (approximately 75% reduction) in macrophages alters the PUFA composition of all phospholipid (PL) subclasses, including phosphatidylinositols and phosphatidylserines. A reduced incorporation of C20 PUFAs (mainly arachidonic acid [AA]) into PLs was associated with a redistribution of these FAs toward other cellular lipids such as cholesteryl esters. Lpcat3 deficiency had no obvious impact on macrophage inflammatory response or endoplasmic reticulum (ER) stress; however, Lpcat3KOMac macrophages exhibited a reduction in cholesterol efflux in vitro. In vivo, myeloid Lpcat3 deficiency did not affect atherosclerosis development in LDL receptor deficient mouse (Ldlr-/-) mice. Lpcat3KOMac mice on a high-fat diet displayed a mild increase in hepatic steatosis associated with alterations in several liver metabolic pathways and in liver eicosanoid composition. We conclude that alterations in AA metabolism along with myeloid Lpcat3 deficiency may secondarily affect AA homeostasis in the whole liver, leading to metabolic disorders and triglyceride accumulation.
Collapse
Affiliation(s)
- Thibaut Bourgeois
- Univ. Bourgogne Franche-Comté, LNC UMR12131, Dijon, France; INSERM, LNC UMR 1231, Dijon, France; FCS Bourgogne Franche-Comté, LipSTIC LabEx, Dijon, France
| | - Antoine Jalil
- Univ. Bourgogne Franche-Comté, LNC UMR12131, Dijon, France; INSERM, LNC UMR 1231, Dijon, France; FCS Bourgogne Franche-Comté, LipSTIC LabEx, Dijon, France
| | - Charles Thomas
- Univ. Bourgogne Franche-Comté, LNC UMR12131, Dijon, France; INSERM, LNC UMR 1231, Dijon, France; FCS Bourgogne Franche-Comté, LipSTIC LabEx, Dijon, France
| | - Charlène Magnani
- Univ. Bourgogne Franche-Comté, LNC UMR12131, Dijon, France; INSERM, LNC UMR 1231, Dijon, France; FCS Bourgogne Franche-Comté, LipSTIC LabEx, Dijon, France
| | - Naig Le Guern
- Univ. Bourgogne Franche-Comté, LNC UMR12131, Dijon, France; INSERM, LNC UMR 1231, Dijon, France; FCS Bourgogne Franche-Comté, LipSTIC LabEx, Dijon, France
| | - Thomas Gautier
- Univ. Bourgogne Franche-Comté, LNC UMR12131, Dijon, France; INSERM, LNC UMR 1231, Dijon, France; FCS Bourgogne Franche-Comté, LipSTIC LabEx, Dijon, France
| | - Jean-Paul Pais de Barros
- Univ. Bourgogne Franche-Comté, LNC UMR12131, Dijon, France; INSERM, LNC UMR 1231, Dijon, France; FCS Bourgogne Franche-Comté, LipSTIC LabEx, Dijon, France; Lipidomic analytic plate-forme, Univ. Bourgogne Franche-Comté, Batiment B3, Bvd Maréchal de Lattre de Tassigny, Dijon, France
| | - Victoria Bergas
- Univ. Bourgogne Franche-Comté, LNC UMR12131, Dijon, France; INSERM, LNC UMR 1231, Dijon, France; FCS Bourgogne Franche-Comté, LipSTIC LabEx, Dijon, France; Lipidomic analytic plate-forme, Univ. Bourgogne Franche-Comté, Batiment B3, Bvd Maréchal de Lattre de Tassigny, Dijon, France
| | - Hélène Choubley
- Univ. Bourgogne Franche-Comté, LNC UMR12131, Dijon, France; INSERM, LNC UMR 1231, Dijon, France; FCS Bourgogne Franche-Comté, LipSTIC LabEx, Dijon, France; Lipidomic analytic plate-forme, Univ. Bourgogne Franche-Comté, Batiment B3, Bvd Maréchal de Lattre de Tassigny, Dijon, France
| | - Loïc Mazzeo
- Univ. Bourgogne Franche-Comté, LNC UMR12131, Dijon, France; INSERM, LNC UMR 1231, Dijon, France; FCS Bourgogne Franche-Comté, LipSTIC LabEx, Dijon, France
| | - Louise Menegaut
- Univ. Bourgogne Franche-Comté, LNC UMR12131, Dijon, France; INSERM, LNC UMR 1231, Dijon, France; FCS Bourgogne Franche-Comté, LipSTIC LabEx, Dijon, France
| | - Lorène Josiane Lebrun
- Univ. Bourgogne Franche-Comté, LNC UMR12131, Dijon, France; INSERM, LNC UMR 1231, Dijon, France; FCS Bourgogne Franche-Comté, LipSTIC LabEx, Dijon, France; AgroSup Dijon, Dijon, France
| | - Kévin Van Dongen
- Univ. Bourgogne Franche-Comté, LNC UMR12131, Dijon, France; INSERM, LNC UMR 1231, Dijon, France; FCS Bourgogne Franche-Comté, LipSTIC LabEx, Dijon, France
| | - Marion Xolin
- Univ. Bourgogne Franche-Comté, LNC UMR12131, Dijon, France; INSERM, LNC UMR 1231, Dijon, France; FCS Bourgogne Franche-Comté, LipSTIC LabEx, Dijon, France
| | - Tony Jourdan
- Univ. Bourgogne Franche-Comté, LNC UMR12131, Dijon, France; INSERM, LNC UMR 1231, Dijon, France; FCS Bourgogne Franche-Comté, LipSTIC LabEx, Dijon, France
| | - Chloé Buch
- Univ. Bourgogne Franche-Comté, LNC UMR12131, Dijon, France; INSERM, LNC UMR 1231, Dijon, France; FCS Bourgogne Franche-Comté, LipSTIC LabEx, Dijon, France
| | - Jérome Labbé
- Univ. Bourgogne Franche-Comté, LNC UMR12131, Dijon, France; INSERM, LNC UMR 1231, Dijon, France; FCS Bourgogne Franche-Comté, LipSTIC LabEx, Dijon, France
| | - Philippe Saas
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Laurent Lagrost
- Univ. Bourgogne Franche-Comté, LNC UMR12131, Dijon, France; INSERM, LNC UMR 1231, Dijon, France; FCS Bourgogne Franche-Comté, LipSTIC LabEx, Dijon, France; CHU Dijon, laboratoire de Biochimie, Dijon, France
| | - David Masson
- Univ. Bourgogne Franche-Comté, LNC UMR12131, Dijon, France; INSERM, LNC UMR 1231, Dijon, France; FCS Bourgogne Franche-Comté, LipSTIC LabEx, Dijon, France; CHU Dijon, laboratoire de Biochimie, Dijon, France
| | - Jacques Grober
- Univ. Bourgogne Franche-Comté, LNC UMR12131, Dijon, France; INSERM, LNC UMR 1231, Dijon, France; FCS Bourgogne Franche-Comté, LipSTIC LabEx, Dijon, France; AgroSup Dijon, Dijon, France.
| |
Collapse
|
22
|
Snodgrass RG, Benatzy Y, Schmid T, Namgaladze D, Mainka M, Schebb NH, Lütjohann D, Brüne B. Efferocytosis potentiates the expression of arachidonate 15-lipoxygenase (ALOX15) in alternatively activated human macrophages through LXR activation. Cell Death Differ 2020; 28:1301-1316. [PMID: 33177619 PMCID: PMC8027700 DOI: 10.1038/s41418-020-00652-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022] Open
Abstract
Macrophages acquire anti-inflammatory and proresolving functions to facilitate resolution of inflammation and promote tissue repair. While alternatively activated macrophages (AAMs), also referred to as M2 macrophages, polarized by type 2 (Th2) cytokines IL-4 or IL-13 contribute to the suppression of inflammatory responses and play a pivotal role in wound healing, contemporaneous exposure to apoptotic cells (ACs) potentiates the expression of anti-inflammatory and tissue repair genes. Given that liver X receptors (LXRs), which coordinate sterol metabolism and immune cell function, play an essential role in the clearance of ACs, we investigated whether LXR activation following engulfment of ACs selectively potentiates the expression of Th2 cytokine-dependent genes in primary human AAMs. We show that AC uptake simultaneously upregulates LXR-dependent, but suppresses SREBP-2-dependent gene expression in macrophages, which are both prevented by inhibiting Niemann–Pick C1 (NPC1)-mediated sterol transport from lysosomes. Concurrently, macrophages accumulate sterol biosynthetic intermediates desmosterol, lathosterol, lanosterol, and dihydrolanosterol but not cholesterol-derived oxysterols. Using global transcriptome analysis, we identify anti-inflammatory and proresolving genes including interleukin-1 receptor antagonist (IL1RN) and arachidonate 15-lipoxygenase (ALOX15) whose expression are selectively potentiated in macrophages upon concomitant exposure to ACs or LXR agonist T0901317 (T09) and Th2 cytokines. We show priming macrophages via LXR activation enhances the cellular capacity to synthesize inflammation-suppressing specialized proresolving mediator (SPM) precursors 15-HETE and 17-HDHA as well as resolvin D5. Silencing LXRα and LXRβ in macrophages attenuates the potentiation of ALOX15 expression by concomitant stimulation of ACs or T09 and IL-13. Collectively, we identify a previously unrecognized mechanism of regulation whereby LXR integrates AC uptake to selectively shape Th2-dependent gene expression in AAMs.
Collapse
Affiliation(s)
- Ryan G Snodgrass
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Yvonne Benatzy
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Tobias Schmid
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Dmitry Namgaladze
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Malwina Mainka
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
23
|
Inflammation Triggers Liver X Receptor-Dependent Lipogenesis. Mol Cell Biol 2020; 40:MCB.00364-19. [PMID: 31658997 DOI: 10.1128/mcb.00364-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/21/2019] [Indexed: 12/29/2022] Open
Abstract
Immune cell function can be modulated by changes in lipid metabolism. Our studies indicate that cholesterol and fatty acid synthesis increases in macrophages between 12 and 18 h after the activation of Toll-like receptors with proinflammatory stimuli and that the upregulation of lipogenesis may contribute to the resolution of inflammation. The inflammation-dependent increase in lipogenesis requires the induction of the liver X receptors, members of the nuclear receptor superfamily of transcription factors, by type I interferons in response to inflammatory signals. Instead of the well-established role for liver X receptors in stimulating cholesterol efflux, we demonstrate that liver X receptors are necessary for the proper resumption of cholesterol synthesis in response to inflammatory signals. Thus, liver X receptors function as bidirectional regulators of cholesterol homeostasis, driving efflux when cholesterol levels are high and facilitating synthesis in response to inflammatory signals. Liver X receptor activity is also required for the proper shutdown of a subset of type I interferon-stimulated genes as inflammation subsides, placing the receptors in a negative-feedback loop that may contribute to the resolution of the inflammatory response.
Collapse
|
24
|
Valentine WJ, Hashidate-Yoshida T, Yamamoto S, Shindou H. Biosynthetic Enzymes of Membrane Glycerophospholipid Diversity as Therapeutic Targets for Drug Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:5-27. [PMID: 32894505 DOI: 10.1007/978-3-030-50621-6_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biophysical properties of membranes are dependent on their glycerophospholipid compositions. Lysophospholipid acyltransferases (LPLATs) selectively incorporate fatty chains into lysophospholipids to affect the fatty acid composition of membrane glycerophospholipids. Lysophosphatidic acid acyltransferases (LPAATs) of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family incorporate fatty chains into phosphatidic acid during the de novo glycerophospholipid synthesis in the Kennedy pathway. Other LPLATs of both the AGPAT and the membrane bound O-acyltransferase (MBOAT) families further modify the fatty chain compositions of membrane glycerophospholipids in the remodeling pathway known as the Lands' cycle. The LPLATs functioning in these pathways possess unique characteristics in terms of their biochemical activities, regulation of expressions, and functions in various biological contexts. Essential physiological functions for LPLATs have been revealed in studies using gene-deficient mice, and important roles for several enzymes are also indicated in human diseases where their mutation or dysregulation causes or contributes to the pathological condition. Now several LPLATs are emerging as attractive therapeutic targets, and further understanding of the mechanisms underlying their physiological and pathological roles will aid in the development of novel therapies to treat several diseases that involve altered glycerophospholipid metabolism.
Collapse
Affiliation(s)
- William J Valentine
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan. .,Department of Molecular Therapy, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | | | - Shota Yamamoto
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan. .,Department of Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
25
|
Liver X Receptors and Male (In)fertility. Int J Mol Sci 2019; 20:ijms20215379. [PMID: 31671745 PMCID: PMC6862486 DOI: 10.3390/ijms20215379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Liver X receptors (LXRs) are ligand-dependent transcription factors acting as ‘cholesterol sensors’ to regulate lipid homeostasis in cells. The two isoforms, LXRα (NR1H3) and LXRβ (NR1H2), are differentially expressed, with the former expressed predominantly in metabolically active tissues and the latter more ubiquitously. Both are activated by oxidised cholesterol metabolites, endogenously produced oxysterols. LXRs have important roles in lipid metabolism and inflammation, plus a number of newly emerging roles. They are implicated in regulating lipid balance in normal male reproductive function and may provide a link between male infertility and lipid disorders and/or obesity. Studies from Lxr knockout mouse models provide compelling evidence to support this. More recently published data suggest distinct and overlapping roles of the LXR isoforms in the testis and recent evidence of a role for LXRs in human male fertility. This review summarises the current literature and explores the likely link between LXR, lipid metabolism and male fertility as part of a special issue on Liver X receptors in International Journal of Molecular Sciences.
Collapse
|
26
|
Ménégaut L, Jalil A, Thomas C, Masson D. Macrophage fatty acid metabolism and atherosclerosis: The rise of PUFAs. Atherosclerosis 2019; 291:52-61. [PMID: 31693943 DOI: 10.1016/j.atherosclerosis.2019.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/26/2019] [Accepted: 10/09/2019] [Indexed: 01/24/2023]
Abstract
Among the pathways involved in the regulation of macrophage functions, the metabolism of unsaturated fatty acids is central. Indeed, unsaturated fatty acids act as precursors of bioactive molecules such as prostaglandins, leukotrienes, resolvins and related compounds. As components of phospholipids, they have a pivotal role in cell biology by regulating membrane fluidity and membrane-associated cellular processes. Finally, polyunsaturated fatty acids (PUFAs) are also endowed with ligand properties for numerous membrane or nuclear receptors. Although myeloid cells are dependent on the metabolic context for the uptake of essential FAs, recent studies showed that these cells autonomously handle the synthesis of n-3 and n-6 long chain PUFAs such as arachidonic acid and eicosapentaenoic acid. Moreover, targeting PUFA metabolism in macrophages influences pathological processes, including atherosclerosis, by modulating macrophage functions. Omics evidence also supports a role for macrophage PUFA metabolism in the development of cardiometabolic diseases in humans. Currently, there is a renewed interest in the role of n-3/n-6 PUFAs and their oxygenated derivatives in the onset of atherosclerosis and plaque rupture. Purified n-3 FA supplementation appears as a potential strategy in the treatment and prevention of cardiovascular diseases. In this context, the ability of immune cells to handle and to synthesize very long chain PUFA must absolutely be integrated and better understood.
Collapse
Affiliation(s)
- Louise Ménégaut
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Antoine Jalil
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Charles Thomas
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - David Masson
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France.
| |
Collapse
|
27
|
Du X, Hu J, Zhang Q, Liu Q, Xiang X, Dong J, Lou B, He S, Gu X, Cao Y, Li Y, Ding T. A novel assay for measuring recombinant human lysophosphatidylcholine acyltransferase 3 activity. FEBS Open Bio 2019; 9:1734-1743. [PMID: 31376210 PMCID: PMC6768109 DOI: 10.1002/2211-5463.12712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/02/2019] [Accepted: 08/02/2019] [Indexed: 11/28/2022] Open
Abstract
Lysophosphatidylcholine acyltransferase 3 (LPCAT3) is an important enzyme in phospholipid remodeling, a process that influences the biophysical properties of cell membranes and thus cell function. Multiple lines of evidence suggest that LPCAT3 is involved in several diseases, including atherosclerosis, non‐alcoholic steatohepatitis, and carcinoma. Thus, LPCAT3 may have potential as a therapeutic target for these diseases. In the present study, we devised an assay based on reversed‐phase HPLC to measure LPCAT3 activity, which may facilitate the identification of LPCAT3 inhibitors and activators. We found that optimal pH and temperature of recombinant human LPCAT3 are 6.0 and 30 °C, respectively. The enzyme Km values for substrates NBD‐labelled lysophosphatidylcholine and arachidonoyl CoA were 266.84 ± 3.65 and 11.03 ± 0.51 μmol·L−1, respectively, and the Vmax was 39.76 ± 1.86 pmol·min−1·U−1. Moreover, we used our new method to determine the IC50 of a known LPCAT inhibitor, TSI‐10. In conclusion, this novel assay can be used to measure the effects of compounds on LPCAT3 activity.
Collapse
Affiliation(s)
- Xinming Du
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiachun Hu
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Qing Zhang
- Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qi Liu
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Xinxin Xiang
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Jibin Dong
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Bin Lou
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Shuhua He
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiang Gu
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Yu Cao
- Institute of Precision Medicine, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yingxia Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Tingbo Ding
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Jalil A, Bourgeois T, Ménégaut L, Lagrost L, Thomas C, Masson D. Revisiting the Role of LXRs in PUFA Metabolism and Phospholipid Homeostasis. Int J Mol Sci 2019; 20:ijms20153787. [PMID: 31382500 PMCID: PMC6696407 DOI: 10.3390/ijms20153787] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/19/2023] Open
Abstract
Liver X receptors (LXRs) play a pivotal role in fatty acid (FA) metabolism. So far, the lipogenic consequences of in vivo LXR activation, as characterized by a major hepatic steatosis, has constituted a limitation to the clinical development of pharmacological LXR agonists. However, recent studies provided a different perspective. Beyond the quantitative accumulation of FA, it appears that LXRs induce qualitative changes in the FA profile and in the distribution of FAs among cellular lipid species. Thus, LXRs activate the production of polyunsaturated fatty acids (PUFAs) and their distribution into phospholipids via the control of FA desaturases, FA elongases, lysophosphatidylcholine acyltransferase (LPCAT3), and phospholipid transfer protein (PLTP). Therefore, LXRs control, in a dynamic manner, the PUFA composition and the physicochemical properties of cell membranes as well as the release of PUFA-derived lipid mediators. Recent studies suggest that modulation of PUFA and phospholipid metabolism by LXRs are involved in the control of lipogenesis and lipoprotein secretion by the liver. In myeloid cells, the interplay between LXR and PUFA metabolism affects the inflammatory response. Revisiting the complex role of LXRs in FA metabolism may open new opportunities for the development of LXR modulators in the field of cardiometabolic diseases.
Collapse
Affiliation(s)
- Antoine Jalil
- Université Bourgogne Franche-Comté, LNC UMR1231, F-21000 Dijon, France
- INSERM, LNC UMR 1231, F-21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000 Dijon, France
| | - Thibaut Bourgeois
- Université Bourgogne Franche-Comté, LNC UMR1231, F-21000 Dijon, France
- INSERM, LNC UMR 1231, F-21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000 Dijon, France
| | - Louise Ménégaut
- Université Bourgogne Franche-Comté, LNC UMR1231, F-21000 Dijon, France
- INSERM, LNC UMR 1231, F-21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000 Dijon, France
| | - Laurent Lagrost
- Université Bourgogne Franche-Comté, LNC UMR1231, F-21000 Dijon, France
- INSERM, LNC UMR 1231, F-21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000 Dijon, France
| | - Charles Thomas
- Université Bourgogne Franche-Comté, LNC UMR1231, F-21000 Dijon, France
- INSERM, LNC UMR 1231, F-21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000 Dijon, France
| | - David Masson
- Université Bourgogne Franche-Comté, LNC UMR1231, F-21000 Dijon, France.
- INSERM, LNC UMR 1231, F-21000 Dijon, France.
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000 Dijon, France.
| |
Collapse
|
29
|
Jiang H, Li Z, Huan C, Jiang XC. Macrophage Lysophosphatidylcholine Acyltransferase 3 Deficiency-Mediated Inflammation Is Not Sufficient to Induce Atherosclerosis in a Mouse Model. Front Cardiovasc Med 2019; 5:192. [PMID: 30705887 PMCID: PMC6344406 DOI: 10.3389/fcvm.2018.00192] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022] Open
Abstract
Mammalian cell membrane phosphatidylcholines (PCs), the major phospholipids, exhibit diversity which is controlled by Lands' cycle or PC remodeling pathway. Lysophosphatidylcholine acyltransferase (LPCAT) is one of the major players in the pathway and plays an important role in maintaining cell membrane structure and function. LPCAT3 is highly expressed in macrophages, however, its role in mediating inflammation is still not understood, since contradictory results were reported previously. The order of LPCAT mRNA levels in mouse macrophages is as follows: LPCAT3 > LPCAT1 > LPCAT2 >> LPCAT4. In order to investigate the role of LPCAT3 in macrophages, we prepared myeloid cell-specific Lpcat3 knockout (KO) mice and found that the deficiency significantly reduced certain polyunsaturated phosphatidylcholines, such as 16:0/20:4, 18:1/18:2, 18:0/20:4, and 18:1/20:4 in macrophage plasma membrane. Lpcat3 deficiency significantly increased toll like receptor 4 protein and phosphorylated c-Src in membrane lipid rafts, and increased LPS-induced IL-6 and TNFα releasing through activation of MAP kinases and NFκB. Moreover, the ablation of LPCAT3 in macrophages significantly increase of M1 macrophages. However, macrophage deletion of Lpcat3 in (LDL receptor) Ldlr KO mice, both male and female, on a Western type diet, did not have a significant impact on atherogenesis. In conclusion, LPCAT3 is one of LPCATs in macrophages, involved in PC remodeling. LPCAT3 deficiency has no effect on cholesterol efflux. However, the deficiency promotes macrophage inflammatory response, but such an effect has a marginal influence on the development of atherosclerosis.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
| | - Zhiqiang Li
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
| | - Chongmin Huan
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Surgery, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| | - Xian-Cheng Jiang
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
| |
Collapse
|
30
|
Abstract
Phospholipids are major constituents of biological membranes. The fatty acyl chain composition of phospholipids determines the biophysical properties of membranes and thereby affects their impact on biological processes. The composition of fatty acyl chains is also actively regulated through a deacylation and reacylation pathway called Lands' cycle. Recent studies of mouse genetic models have demonstrated that lysophosphatidylcholine acyltransferases (LPCATs), which catalyze the incorporation of fatty acyl chains into the sn-2 site of phosphatidylcholine, play important roles in pathophysiology. Two LPCAT family members, LPCAT1 and LPCAT3, have been particularly well studied. LPCAT1 is crucial for proper lung function due to its role in pulmonary surfactant biosynthesis. LPCAT3 maintains systemic lipid homeostasis by regulating lipid absorption in intestine, lipoprotein secretion, and de novo lipogenesis in liver. Mounting evidence also suggests that changes in LPCAT activity may be potentially involved in pathological conditions, including nonalcoholic fatty liver disease, atherosclerosis, viral infections, and cancer. Pharmacological manipulation of LPCAT activity and membrane phospholipid composition may provide new therapeutic options for these conditions.
Collapse
Affiliation(s)
- Bo Wang
- Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90272, USA;
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90272, USA;
| |
Collapse
|
31
|
Abstract
Liver X receptors α and β (LXRα and LXRβ) are nuclear receptors with pivotal roles in the transcriptional control of lipid metabolism. Transcriptional activity of LXRs is induced in response to elevated cellular levels of cholesterol. LXRs bind to and regulate the expression of genes that encode proteins involved in cholesterol absorption, transport, efflux, excretion and conversion to bile acids. The coordinated, tissue-specific actions of the LXR pathway maintain systemic cholesterol homeostasis and regulate immune and inflammatory responses. LXRs also regulate fatty acid metabolism by controlling the lipogenic transcription factor sterol regulatory element-binding protein 1c and regulate genes that encode proteins involved in fatty acid elongation and desaturation. LXRs exert important effects on the metabolism of phospholipids, which, along with cholesterol, are major constituents of cellular membranes. LXR activation preferentially drives the incorporation of polyunsaturated fatty acids into phospholipids by inducing transcription of the remodelling enzyme lysophosphatidylcholine acyltransferase 3. The ability of the LXR pathway to couple cellular sterol levels with the saturation of fatty acids in membrane phospholipids has implications for several physiological processes, including lipoprotein production, dietary lipid absorption and intestinal stem cell proliferation. Understanding how LXRs regulate membrane composition and function might provide new therapeutic insight into diseases associated with dysregulated lipid metabolism, including atherosclerosis, diabetes mellitus and cancer.
Collapse
Affiliation(s)
- Bo Wang
- Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Thomas C, Jalil A, Magnani C, Ishibashi M, Queré R, Bourgeois T, Bergas V, Ménégaut L, Patoli D, Le Guern N, Labbé J, Gautier T, de Barros JPP, Lagrost L, Masson D. LPCAT3 deficiency in hematopoietic cells alters cholesterol and phospholipid homeostasis and promotes atherosclerosis. Atherosclerosis 2018; 275:409-418. [PMID: 29866392 DOI: 10.1016/j.atherosclerosis.2018.05.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/04/2018] [Accepted: 05/16/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS LPCAT3 plays a major role in phospholipid metabolism in the liver and intestine. However, the impact of LPCAT3 on hematopoietic cell and macrophage functions has yet to be described. Our aim was to understand the functions of LPCAT3 in macrophages and to investigate whether LPCAT3 deficiency in hematopoietic cells may affect atherosclerosis development. METHODS Mice with constitutive Lpcat3 deficiency (Lpcat3-/-) were generated. We used fetal hematopoietic liver cells to generate WT and Lpcat3-/- macrophages in vitro and to perform hematopoietic cell transplantation in recipient Ldlr-/- mice. RESULTS Lpcat3-deficient macrophages displayed major reductions in the arachidonate content of phosphatidylcholines, phosphatidylethanolamines and, unexpectedly, plasmalogens. These changes were associated with altered cholesterol homeostasis, including an increase in the ratio of free to esterified cholesterol and a reduction in cholesterol efflux in Lpcat3-/- macrophages. This correlated with the inhibition of some LXR-regulated pathways, related to altered cellular availability of the arachidonic acid. Indeed, LPCAT3 deficiency was associated with decreased Abca1, Abcg1 and ApoE mRNA levels in fetal liver cells derived macrophages. In vivo, these changes translated into a significant increase in atherosclerotic lesions in Ldlr-/- mice with hematopoietic LPCAT3 deficiency. CONCLUSIONS This study identifies LPCAT3 as a key factor in the control of phospholipid homeostasis and arachidonate availability in myeloid cells and underlines a new role for LPCAT3 in plasmalogen metabolism. Moreover, our work strengthens the link between phospholipid and sterol metabolism in hematopoietic cells, with significant consequences on nuclear receptor-regulated pathways and atherosclerosis development.
Collapse
Affiliation(s)
- Charles Thomas
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Antoine Jalil
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Charlène Magnani
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Minako Ishibashi
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Ronan Queré
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Thibaut Bourgeois
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Victoria Bergas
- Lipidomic analytic plate-forme, UBFC, Batiment B3, Bvd Maréchal de Lattre de Tassigny, 21000, Dijon, France
| | - Louise Ménégaut
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France; CHU Dijon, laboratoire de Biochimie, F-21000, Dijon, France
| | - Danish Patoli
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Naig Le Guern
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Jérôme Labbé
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Thomas Gautier
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Jean Paul Pais de Barros
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France; Lipidomic analytic plate-forme, UBFC, Batiment B3, Bvd Maréchal de Lattre de Tassigny, 21000, Dijon, France
| | - Laurent Lagrost
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France; CHU Dijon, laboratoire de Biochimie, F-21000, Dijon, France
| | - David Masson
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France; CHU Dijon, laboratoire de Biochimie, F-21000, Dijon, France.
| |
Collapse
|
33
|
Lysophosphatidylcholine acyltransferase 3 deficiency impairs 3T3L1 cell adipogenesis through activating Wnt/β-catenin pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:834-843. [PMID: 29673706 DOI: 10.1016/j.bbalip.2018.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 04/07/2018] [Accepted: 04/15/2018] [Indexed: 11/21/2022]
Abstract
Levels of polyunsaturated phosphatidylcholine (PC) influence plasma membrane structure and function. Phosphatidylcholine (PC) is synthesized de novo in the Kennedy pathway and then undergoes extensive deacylation/reacylation remodeling via Lands' cycle (non-Kennedy pathway). The reacylation is catalyzed by lysophosphatidylcholine acyltransferase (LPCAT), which adds a polyunsaturated fatty acid at the sn-2 position. Four LPCAT isoforms have been described to date, among which we found LPCAT3 to be the major isoform in adipose tissue, but its exact role in adipogenesis is unclear. In this study, we aimed to investigate whether LPCAT3 activity affects 3T3L1 cell adipogenic differentiation potential and its underline mechanism. Lentivirus-mediated LPCAT3 shRNA expression stably knocked down LPCAT3 in 3T3L1 preadipocytes and LPCAT3 deficiency dramatically reduced the levels of cellular polyunsaturated PCs. Importantly, we found that this deficiency activated the β-catenin dependent Wnt signaling pathway, which suppressed the expression of adipogenesis-related genes, thereby inhibiting 3T3L1 preadipocyte differentiation and lipid accumulation. Moreover, three different Wnt/β-catenin pathway inhibitors reversed the effect of LPCAP3 deficiency, suggesting that Wnt/β-catenin pathway activation is one of the causes for the observed phenotypes. To the best of our knowledge, we show here for the first time that PC remodeling is an important regulator of adipocyte differentiation.
Collapse
|
34
|
Hu Y, Semova I, Sun X, Kang H, Chahar S, Hollenberg AN, Masson D, Hirschey MD, Miao J, Biddinger SB. Fructose and glucose can regulate mammalian target of rapamycin complex 1 and lipogenic gene expression via distinct pathways. J Biol Chem 2017; 293:2006-2014. [PMID: 29222328 DOI: 10.1074/jbc.m117.782557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 11/20/2017] [Indexed: 12/19/2022] Open
Abstract
Although calorically equivalent to glucose, fructose appears to be more lipogenic, promoting dyslipidemia, fatty liver disease, cardiovascular disease, and diabetes. To better understand how fructose induces lipogenesis, we compared the effects of fructose and glucose on mammalian target of rapamycin complex 1 (mTORC1), which appeared to have both positive and negative effects on lipogenic gene expression. We found that fructose acutely and transiently suppressed mTORC1 signaling in vitro and in vivo The constitutive activation of mTORC1 reduced hepatic lipogenic gene expression and produced hypotriglyceridemia after 1 week of fructose feeding. In contrast, glucose did not suppress mTORC1, and the constitutive activation of mTORC1 failed to suppress plasma triglycerides after 1 week of glucose feeding. Thus, these data reveal fundamental differences in the signaling pathways used by fructose and glucose to regulate lipid metabolism.
Collapse
Affiliation(s)
- Yue Hu
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Ivana Semova
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Xiaowei Sun
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Hong Kang
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Satyapal Chahar
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Anthony N Hollenberg
- Division of Endocrinology, Metabolism and Diabetes, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215
| | - David Masson
- INSERM Lipid Nutrition Cancer UMR 1231, 21000 Dijon, France, and
| | - Matthew D Hirschey
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina 27710
| | - Ji Miao
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115,
| | - Sudha B Biddinger
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115,
| |
Collapse
|
35
|
Gil-de-Gómez L, Astudillo AM, Lebrero P, Balboa MA, Balsinde J. Essential Role for Ethanolamine Plasmalogen Hydrolysis in Bacterial Lipopolysaccharide Priming of Macrophages for Enhanced Arachidonic Acid Release. Front Immunol 2017; 8:1251. [PMID: 29033952 PMCID: PMC5626835 DOI: 10.3389/fimmu.2017.01251] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/20/2017] [Indexed: 12/16/2022] Open
Abstract
Due to their high content in esterified arachidonic acid (AA), macrophages provide large amounts of eicosanoids during innate immune reactions. Bacterial lipopolysaccharide (LPS) is a poor trigger of AA mobilization in macrophages but does have the capacity to prime these cells for greatly increased AA release upon subsequent stimulation. In this work, we have studied molecular mechanisms underlying this phenomenon. By using mass spectrometry-based lipidomic analyses, we show in this work that LPS-primed zymosan-stimulated macrophages exhibit an elevated consumption of a particular phospholipid species, i.e., the ethanolamine plasmalogens, which results from reduced remodeling of phospholipids via coenzyme A-independent transacylation reactions. Importantly however, LPS-primed macrophages show no changes in their capacity to directly incorporate AA into phospholipids via CoA-dependent acylation reactions. The essential role for ethanolamine plasmalogen hydrolysis in LPS priming is further demonstrated by the use of plasmalogen-deficient cells. These cells, while responding normally to zymosan by releasing quantities of AA similar to those released by cells expressing normal plasmalogen levels under the same conditions, fail to show an LPS-primed response to the same stimulus, thus unambiguously demonstrating a cause–effect relationship between LPS priming and plasmalogen hydrolysis. Collectively, these results suggest a hitherto unrecognized role for ethanolamine plasmalogen hydrolysis and CoA-independent transacylation reactions in modulating the eicosanoid biosynthetic response.
Collapse
Affiliation(s)
- Luis Gil-de-Gómez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain
| | - Alma M Astudillo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Patricia Lebrero
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
36
|
Fessler MB. The challenges and promise of targeting the Liver X Receptors for treatment of inflammatory disease. Pharmacol Ther 2017; 181:1-12. [PMID: 28720427 DOI: 10.1016/j.pharmthera.2017.07.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Liver X Receptors (LXRs) are oxysterol-activated transcription factors that upregulate a suite of genes that together promote coordinated mobilization of excess cholesterol from cells and from the body. The LXRs, like other nuclear receptors, are anti-inflammatory, inhibiting signal-dependent induction of pro-inflammatory genes by nuclear factor-κB, activating protein-1, and other transcription factors. Synthetic LXR agonists have been shown to ameliorate atherosclerosis and a wide range of inflammatory disorders in preclinical animal models. Although this has suggested potential for application to human disease, systemic LXR activation is complicated by hepatic steatosis and hypertriglyceridemia, consequences of lipogenic gene induction in the liver by LXRα. The past several years have seen the development of multiple advanced LXR therapeutics aiming to avoid hepatic lipogenesis, including LXRβ-selective agonists, tissue-selective agonists, and transrepression-selective agonists. Although several synthetic LXR agonists have made it to phase I clinical trials, none have progressed due to unforeseen adverse reactions or undisclosed reasons. Nonetheless, several sophisticated pharmacologic strategies, including structure-guided drug design, cell-specific drug targeting, as well as non-systemic drug routes have been initiated and remain to be comprehensively explored. In addition, recent studies have identified potential utility for targeting the LXRs during therapy with other agents, such as glucocorticoids and rexinoids. Despite the pitfalls encountered to date in translation of LXR agonists to human disease, it appears likely that this accelerating field will ultimately yield effective and safe applications for LXR targeting in humans.
Collapse
Affiliation(s)
- Michael B Fessler
- National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
37
|
Tanaka H, Zaima N, Sasaki T, Yamamoto N, Inuzuka K, Yata T, Iwaki T, Umemura K, Sano H, Suzuki Y, Urano T, Setou M, Unno N. Lysophosphatidylcholine Acyltransferase-3 Expression Is Associated with Atherosclerosis Progression. J Vasc Res 2017; 54:200-208. [PMID: 28683445 DOI: 10.1159/000473879] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/22/2017] [Indexed: 01/30/2023] Open
Abstract
Free arachidonic acid (AA) is an important precursor of lipid mediators such as leukotrienes and prostaglandins that induces inflammation and is associated with atherosclerosis progression. Recent studies have shown that lysophosphatidylcholine acyltransferase-3 (LPCAT3) converts lysophosphatidylcholine (LPC) and free AA into phosphatidylcholine (PC)-containing AA (arachidonyl-PC) and thereby can regulate intracellular free-AA levels. However, the association between LPCAT3 and atherosclerosis remains to be established. In this study, we analyzed human and mouse atherosclerotic tissues to gain insight into the arachidonyl-PC metabolism involving LPCAT3 using imaging mass spectrometry. The data revealed a complementary distribution of arachidonyl-PC and LPC in human atherosclerotic tissues with arachidonyl-PC decreasing and LPC increasing as atherosclerosis progressed. Furthermore, we found a homologous distribution of LPCAT3 expression and arachidonyl-PC based on atherosclerotic progression. In contrast, in ApoE-deficient mice, atherosclerosis increased both arachidonyl-PC accumulation and LPCAT3 expression. Taken together, these findings suggest that the regulation of LPCAT3 expression might be associated with atherosclerotic progression in humans.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ouedraogo ZG, Fouache A, Trousson A, Baron S, Lobaccaro JMA. Role of the liver X receptors in skin physiology: Putative pharmacological targets in human diseases. Chem Phys Lipids 2017; 207:59-68. [PMID: 28259649 DOI: 10.1016/j.chemphyslip.2017.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 02/07/2023]
Abstract
Liver X receptors (LXRs) are members of the nuclear receptor superfamily that have been shown to regulate various physiological functions such as lipid metabolism and cholesterol homeostasis. Concordant reports have elicited the possibility to target them to cure many human diseases including arteriosclerosis, cancer, arthritis, and diabetes. The high relevance of modulating LXR activities to treat numerous skin diseases, mainly those with exacerbated inflammation processes, contrasts with the lack of approved therapeutic use. This review makes an assessment to sum up the findings regarding the physiological roles of LXRs in skin and help progress towards the therapeutic and safe management of their activities. It focuses on the possible pharmacological targeting of LXRs to cure or prevent selected skin diseases.
Collapse
Affiliation(s)
- Zangbéwendé Guy Ouedraogo
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France
| | - Allan Fouache
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France
| | - Amalia Trousson
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France
| | - Silvère Baron
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| | - Jean-Marc A Lobaccaro
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| |
Collapse
|
39
|
Ménégaut L, Thomas C, Lagrost L, Masson D. Fatty acid metabolism in macrophages: a target in cardio-metabolic diseases. Curr Opin Lipidol 2017; 28:19-26. [PMID: 27870652 DOI: 10.1097/mol.0000000000000370] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Recent studies have highlighted that macrophages dynamically and autonomously handle all the facets of fatty acid (FA) metabolism including FA oxidation and FA synthesis as well as the synthesis of monounsaturated FAs and long chain n-3 and n-6 polyunsaturated FAs. RECENT FINDINGS Macrophage M2 polarization is associated with an increase of FA oxidation. However, whether increased FA oxidation simply correlates with or is required for M2 polarization needs to be further evaluated. Macrophage M1 polarization is associated with the activation of FA synthesis, which directly contributes to the inflammatory response and affects cholesterol homeostasis and neutral lipid accumulation. Finally, recent evidences suggest that macrophages are able to autonomously produce signaling monounsaturated FAs, such as palmitoleic acid (C16 : 1 n-7), and long chain n-3 and n-6 polyunsaturated FAs, such as arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid. This pathway is regulated by liver X receptors and has significant consequences on inflammation and on the FA composition of atheroma plaques. SUMMARY These studies shed new light on the tight relationship between FA metabolism, macrophage polarization, and M1/M2 macrophage functions. These processes may have major consequences for atherosclerosis pathogenesis as well as other metabolic disorders.
Collapse
Affiliation(s)
- Louise Ménégaut
- aUniversity Bourgogne Franche-Comté, LNC UMR866 bINSERM, LNC UMR866 cFCS Bourgogne-Franche Comté dCHU Dijon, laboratoire de Biochimie, Dijon, France
| | | | | | | |
Collapse
|
40
|
Singh AB, Liu J. Identification of Hepatic Lysophosphatidylcholine Acyltransferase 3 as a Novel Target Gene Regulated by Peroxisome Proliferator-activated Receptor δ. J Biol Chem 2016; 292:884-897. [PMID: 27913621 DOI: 10.1074/jbc.m116.743575] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/29/2016] [Indexed: 12/31/2022] Open
Abstract
Peroxisome proliferator-activated receptor δ (PPARδ) regulates many genes involved in lipid metabolism. Hepatic lysophosphatidylcholine acyltransferase 3 (LPCAT3) has critical functions in triglycerides transport and endoplasmic reticulum stress response due to its unique ability to catalyze the incorporation of polyunsaturated fatty acids into phospholipids. Previous studies identified liver X receptor as the transcription factor controlling LPCAT3 expression in mouse liver tissue. Here we show that the hepatic LPCAT3 gene is transcriptionally regulated by PPARδ. Adenovirus-mediated knockdown of PPARδ in cultured hepatic cells and liver tissue reduced LPCAT3 mRNA levels, and exogenous overexpression of PPARδ increased LPCAT3 mRNA expression. Activation of PPARδ in HepG2, Huh7, and Hepa 1-6 cells with its specific agonists increased LPCAT3 mRNA levels in all three hepatic cell lines. Through conducting sequence analysis, LPCAT3 promoter assays, and direct DNA binding assays, we have mapped the functional PPAR-responsive element to a proximal region from -135 to -123 of the LPCAT3 promoter that plays an essential role in mediating PPARδ-induced transactivation of the LPCAT3 gene. Finally, we have provided in vivo evidence showing that activation of PPARδ by agonist L165041 in mice increased hepatic LPCAT3 mRNA abundance and LPCAT enzymatic activity, which is associated with increased incorporations of arachidonate into liver phosphatidylcholine and phosphatidylethanolamine. Furthermore, transient liver-specific knockdown of LPCAT3 in mice affected PPARδ-mediated activation of several hepatic genes involving in FA metabolism. Altogether, our new findings identify LPCAT3 as a direct PPARδ target gene and suggest a novel function of PPARδ in regulation of phospholipid metabolism through LPCAT3.
Collapse
Affiliation(s)
- Amar Bahadur Singh
- From the Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| | - Jingwen Liu
- From the Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| |
Collapse
|
41
|
Fessler MB. The Intracellular Cholesterol Landscape: Dynamic Integrator of the Immune Response. Trends Immunol 2016; 37:819-830. [PMID: 27692616 DOI: 10.1016/j.it.2016.09.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 12/11/2022]
Abstract
Cholesterol has typically been considered an exogenous, disease-related factor in immunity; however, recent literature suggests that a paradigm shift is in order. Sterols are now recognized to ligate several immune receptors. Altered flux through the mevalonic acid synthesis pathway also appears to be a required event in the antiviral interferon (IFN) response of macrophages and in the activation, proliferation, and differentiation of T cells. In this review, evidence is discussed that suggests an intrinsic, 'professional' role for sterols and oxysterols in macrophage and T-cell immunity. Host defense may have been the original selection pressure behind the development of mechanisms for intracellular cholesterol homeostasis. Functional coupling between sterol metabolism and immunity has fundamental implications for health and disease.
Collapse
Affiliation(s)
- Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01 Research Triangle Park, NC 27709, USA.
| |
Collapse
|
42
|
Smet M, Van Hoecke L, De Beuckelaer A, Vander Beken S, Naessens T, Vergote K, Willart M, Lambrecht BN, Gustafsson JÅ, Steffensen KR, Grooten J. Cholesterol-sensing liver X receptors stimulate Th2-driven allergic eosinophilic asthma in mice. IMMUNITY INFLAMMATION AND DISEASE 2016; 4:350-61. [PMID: 27621817 PMCID: PMC5004289 DOI: 10.1002/iid3.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/02/2016] [Accepted: 06/29/2016] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Liver X receptors (LXRs) are nuclear receptors that function as cholesterol sensors and regulate cholesterol homeostasis. High cholesterol has been recognized as a risk factor in asthma; however, the mechanism of this linkage is not known. METHODS To explore the importance of cholesterol homeostasis for asthma, we investigated the contribution of LXR activity in an ovalbumin- and a house dust mite-driven eosinophilic asthma mouse model. RESULTS In both models, airway inflammation, airway hyper-reactivity, and goblet cell hyperplasia were reduced in mice deficient for both LXRα and LXRβ isoforms (LXRα(-/-)β(-/-)) as compared to wild-type mice. Inversely, treatment with the LXR agonist GW3965 showed increased eosinophilic airway inflammation. LXR activity contributed to airway inflammation through promotion of type 2 cytokine production as LXRα(-/-)β(-/-) mice showed strongly reduced protein levels of IL-5 and IL-13 in the lungs as well as reduced expression of these cytokines by CD4(+) lung cells and lung-draining lymph node cells. In line herewith, LXR activation resulted in increased type 2 cytokine production by the lung-draining lymph node cells. CONCLUSIONS In conclusion, our study demonstrates that the cholesterol regulator LXR acts as a positive regulator of eosinophilic asthma in mice, contributing to airway inflammation through regulation of type 2 cytokine production.
Collapse
Affiliation(s)
- Muriel Smet
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
| | - Lien Van Hoecke
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium; Medical Biotechnology CenterFlanders Institute for BiotechnologyGhentBelgium
| | - Ans De Beuckelaer
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
| | - Seppe Vander Beken
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
| | - Thomas Naessens
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
| | - Karl Vergote
- Department of Respiratory MedicineGhent University HospitalGhentBelgium; Inflammation Research CenterFlanders Institute for BiotechnologyGhentBelgium
| | - Monique Willart
- Department of Respiratory MedicineGhent University HospitalGhentBelgium; Inflammation Research CenterFlanders Institute for BiotechnologyGhentBelgium
| | - Bart N Lambrecht
- Department of Respiratory MedicineGhent University HospitalGhentBelgium; Inflammation Research CenterFlanders Institute for BiotechnologyGhentBelgium
| | - Jan-Åke Gustafsson
- Department of Biosciences and Nutrition at NovumKarolinska InstitutetStockholmSweden; Department of Biology and BiochemistryUniversity of HoustonHoustonTexas
| | - Knut R Steffensen
- Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden
| | - Johan Grooten
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
| |
Collapse
|
43
|
Tabe S, Hikiji H, Ariyoshi W, Hashidate‐Yoshida T, Shindou H, Okinaga T, Shimizu T, Tominaga K, Nishihara T. Lysophosphatidylethanolamine acyltransferase 1/membrane‐bound
O
‐acyltransferase 1 regulates morphology and function of P19C6 cell‐derived neurons. FASEB J 2016; 30:2591-601. [DOI: 10.1096/fj.201500097r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/28/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Shirou Tabe
- Division of Infections and Molecular BiologyDepartment of Health PromotionKyushu Dental UniversityKitakyushuJapan
- Division of Oral and Maxillofacial SurgeryDepartment of Science of Physical FunctionsKyushu Dental UniversityKitakyushuJapan
| | - Hisako Hikiji
- Department of Oral Functional ManagementKyushu Dental UniversityKitakyushuJapan
| | - Wataru Ariyoshi
- Division of Infections and Molecular BiologyDepartment of Health PromotionKyushu Dental UniversityKitakyushuJapan
| | - Tomomi Hashidate‐Yoshida
- Department of Lipid SignalingResearch InstituteNational Center for Global Health and MedicineTokyoJapan
| | - Hideo Shindou
- Department of Lipid SignalingResearch InstituteNational Center for Global Health and MedicineTokyoJapan
- Agency for Medical Research and Development‐Core Research for Evolutionary Science and Technology (AMED‐CREST)TokyoJapan
| | - Toshinori Okinaga
- Division of Infections and Molecular BiologyDepartment of Health PromotionKyushu Dental UniversityKitakyushuJapan
| | - Takao Shimizu
- Department of Lipid SignalingResearch InstituteNational Center for Global Health and MedicineTokyoJapan
- Department of LipidomicsGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Kazuhiro Tominaga
- Division of Oral and Maxillofacial SurgeryDepartment of Science of Physical FunctionsKyushu Dental UniversityKitakyushuJapan
| | - Tatsuji Nishihara
- Division of Infections and Molecular BiologyDepartment of Health PromotionKyushu Dental UniversityKitakyushuJapan
| |
Collapse
|
44
|
Li Z, Jiang H, Ding T, Lou C, Bui HH, Kuo MS, Jiang XC. Deficiency in lysophosphatidylcholine acyltransferase 3 reduces plasma levels of lipids by reducing lipid absorption in mice. Gastroenterology 2015; 149:1519-29. [PMID: 26226572 PMCID: PMC4628552 DOI: 10.1053/j.gastro.2015.07.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/15/2015] [Accepted: 07/21/2015] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Phosphatidylcholines (PCs) are structural and functional constituents of cell membranes. The activity of acyltransferase (lysophosphatidylcholine acyltransferase [LPCAT]) is required for addition of polyunsaturated fatty acids to the sn-2 position of PCs and is therefore required to maintain cell membrane structure and function. LPCAT3 is the most abundant isoform of LPCAT in the small intestine and liver, which are important sites of plasma lipoprotein metabolism. We investigated the effects of Lpcat3 disruption on lipid metabolism in mice. METHODS We disrupted the gene Lpcat3 in C57BL/6J mice to create LPCAT3 knockout (KO) mice. Livers and small intestinal tissues were collected from LPCAT3 KO and C57BL/6J parental strain (controls), and levels of LPCAT messenger RNAs and protein were measured. Levels of lipids and lipoproteins were measured in plasma samples. We isolated enterocytes from mice and measured levels of RNAs and proteins involved in lipid uptake by real-time polymerase chain reaction and immunoblot assays, respectively. We assessed lipid absorption and PC subspecies in the enterocyte plasma membrane using liquid chromatography with tandem mass spectometry. RESULTS LPCAT3 KO mice survived only 3 weeks after birth. Oil Red O staining showed that the control but not LPCAT3 KO mice accumulated lipids in the small intestine; levels of Niemann-Pick C1-like 1 (NPC1L1) and fatty acid transporter protein 4 (FATP4), which regulate lipid uptake, were greatly reduced in the small intestines of LPCAT3 KO mice. Oral administration of PC and olive oil allowed the LPCAT3 KO mice to survive with the same body weights as controls, but the KO mice had shorter and wider small-intestinal villi and longer and bigger small intestines. Plasma membranes of enterocytes from LPCAT3 KO mice also had significant reductions in the composition of polyunsaturated PCs and reduced levels of NPC1L1, CD36, and FATP4 proteins. These reductions were associated with reduced intestinal uptake of lipid by the small intestine and reduced plasma levels of cholesterol, phospholipid, and triglyceride. CONCLUSIONS LPCAT3 KO mice have longer and larger small intestines than control mice, with shorter wide villi, reduced lipid absorption, and lower levels NPC1L1, CD36, and FATP4 proteins. Inhibition of LPCAT3 in the small intestine could be developed as an approach to treat hyperlipidemia.
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn, New York; Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, Brooklyn, New York
| | - Hui Jiang
- Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Tingbo Ding
- Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn, New York; School of Pharmacy, Fudan University, China
| | - Caixia Lou
- Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn, New York; Guangdong Medical Laboratory Animal Center, Foshan, China
| | - Hai H Bui
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana
| | - Ming-Shang Kuo
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana
| | - Xian-Cheng Jiang
- Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn, New York; Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, Brooklyn, New York; School of Pharmacy, Fudan University, China.
| |
Collapse
|
45
|
Sun X, Haas ME, Miao J, Mehta A, Graham MJ, Crooke RM, Pais de Barros JP, Wang JG, Aikawa M, Masson D, Biddinger SB. Insulin Dissociates the Effects of Liver X Receptor on Lipogenesis, Endoplasmic Reticulum Stress, and Inflammation. J Biol Chem 2015; 291:1115-22. [PMID: 26511317 DOI: 10.1074/jbc.m115.668269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 12/24/2022] Open
Abstract
Diabetes is characterized by increased lipogenesis as well as increased endoplasmic reticulum (ER) stress and inflammation. The nuclear hormone receptor liver X receptor (LXR) is induced by insulin and is a key regulator of lipid metabolism. It promotes lipogenesis and cholesterol efflux, but suppresses endoplasmic reticulum stress and inflammation. The goal of these studies was to dissect the effects of insulin on LXR action. We used antisense oligonucleotides to knock down Lxrα in mice with hepatocyte-specific deletion of the insulin receptor and their controls. We found, surprisingly, that knock-out of the insulin receptor and knockdown of Lxrα produced equivalent, non-additive effects on the lipogenic genes. Thus, insulin was unable to induce the lipogenic genes in the absence of Lxrα, and LXRα was unable to induce the lipogenic genes in the absence of insulin. However, insulin was not required for LXRα to modulate the phospholipid profile, or to suppress genes in the ER stress or inflammation pathways. These data show that insulin is required specifically for the lipogenic effects of LXRα and that manipulation of the insulin signaling pathway could dissociate the beneficial effects of LXR on cholesterol efflux, inflammation, and ER stress from the negative effects on lipogenesis.
Collapse
Affiliation(s)
- Xiaowei Sun
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Mary E Haas
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Ji Miao
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Abhiruchi Mehta
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | - Jian-Guo Wang
- the Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Masanori Aikawa
- the Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - David Masson
- the Centre de Recherche INSERM-UMR866, Université de Bourgogne, 21000 Dijon, France, and
| | - Sudha B Biddinger
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115,
| |
Collapse
|
46
|
Taniguchi K, Hikiji H, Okinaga T, Hashidate-Yoshida T, Shindou H, Ariyoshi W, Shimizu T, Tominaga K, Nishihara T. Essential Role of Lysophosphatidylcholine Acyltransferase 3 in the Induction of Macrophage Polarization in PMA-Treated U937 Cells. J Cell Biochem 2015; 116:2840-8. [DOI: 10.1002/jcb.25230] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/13/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Kosuke Taniguchi
- Division of Infections and Molecular Biology; Department of Health Promotion; Kyushu Dental University; Kitakyushu Fukuoka 803-8580 Japan
- Division of Oral and Maxillofacial Surgery; Department of Science of Physical Function; Kyushu Dental University; Kitakyushu Fukuoka 803-8580 Japan
| | - Hisako Hikiji
- Department of Oral Functional Management; Kyushu Dental University; Kitakyushu Fukuoka 803-8580 Japan
| | - Toshinori Okinaga
- Division of Infections and Molecular Biology; Department of Health Promotion; Kyushu Dental University; Kitakyushu Fukuoka 803-8580 Japan
| | - Tomomi Hashidate-Yoshida
- Department of Lipid Signaling; Research Institute; National Center for Global Health and Medicine; Tokyo 162-8655 Japan
| | - Hideo Shindou
- Department of Lipid Signaling; Research Institute; National Center for Global Health and Medicine; Tokyo 162-8655 Japan
- CREST; Japan Science and Technology Agency; Kawaguchi Saitama 332-0012 Japan
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology; Department of Health Promotion; Kyushu Dental University; Kitakyushu Fukuoka 803-8580 Japan
| | - Takao Shimizu
- Department of Lipid Signaling; Research Institute; National Center for Global Health and Medicine; Tokyo 162-8655 Japan
- Department of Biochemistry and Molecular Biology (Lipidomics); Faculty of Medicine; University of Tokyo; 113-0033 Japan
| | - Kazuhiro Tominaga
- Division of Oral and Maxillofacial Surgery; Department of Science of Physical Function; Kyushu Dental University; Kitakyushu Fukuoka 803-8580 Japan
| | - Tatsuji Nishihara
- Division of Infections and Molecular Biology; Department of Health Promotion; Kyushu Dental University; Kitakyushu Fukuoka 803-8580 Japan
| |
Collapse
|
47
|
Lee SD, Tontonoz P. Liver X receptors at the intersection of lipid metabolism and atherogenesis. Atherosclerosis 2015; 242:29-36. [PMID: 26164157 PMCID: PMC4546914 DOI: 10.1016/j.atherosclerosis.2015.06.042] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Stephen D Lee
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
48
|
Abstract
The liver X receptors (LXRs), LXRα and LXRβ, are transcription factors with well-established roles in the regulation of lipid metabolism and cholesterol homeostasis. In addition, LXRs influence innate and adaptive immunity, including responses to inflammatory stimuli, proliferation and differentiation, migration, apoptosis and survival. However, the majority of work describing the role of LXRs in immune cells has been carried out in mouse models, and there are a number of known species-specific differences concerning LXR function. Here we review what is known about the role of LXRs in human immune cells, demonstrating the importance of these receptors in the integration of lipid metabolism and immune function, but also highlighting the need for a better understanding of the species, isoform, and cell-type specific effects of LXR activation.
Collapse
|
49
|
Affiliation(s)
- Ziad Mallat
- From the Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom; and Institut National de la Santé et de la Recherche Médicale, U970, Paris, France.
| |
Collapse
|
50
|
Varin A, Thomas C, Ishibashi M, Ménégaut L, Gautier T, Trousson A, Bergas V, de Barros JPP, Narce M, Lobaccaro JMA, Lagrost L, Masson D. Liver X receptor activation promotes polyunsaturated fatty acid synthesis in macrophages: relevance in the context of atherosclerosis. Arterioscler Thromb Vasc Biol 2015; 35:1357-65. [PMID: 25838428 DOI: 10.1161/atvbaha.115.305539] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/18/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Liver X receptors (LXRs) modulate cholesterol and fatty acid homeostasis as well as inflammation. This study aims to decipher the role of LXRs in the regulation of polyunsaturated fatty acid (PUFA) synthesis in macrophages in the context of atherosclerosis. APPROACH AND RESULTS Transcriptomic analysis in human monocytes and macrophages was used to identify putative LXR target genes among enzymes involved in PUFA biosynthesis. In parallel, the consequences of LXR activation or LXR invalidation on PUFA synthesis and distribution were determined. Finally, we investigated the impact of LXR activation on PUFA metabolism in vivo in apolipoprotein E-deficient mice. mRNA levels of acyl-CoA synthase long-chain family member 3, fatty acid desaturases 1 and 2, and fatty acid elongase 5 were significantly increased in human macrophages after LXR agonist treatment, involving both direct and sterol responsive element binding protein-1-dependent mechanisms. Subsequently, pharmacological LXR agonist increased long chain PUFA synthesis and enhanced arachidonic acid content in the phospholipids of human macrophages. Increased fatty acid desaturases 1 and 2 and acyl-CoA synthase long-chain family member 3 mRNA levels as well as increased arachidonic acid to linoleic acid and docosahexaenoic acid to eicosapentaenoic acid ratios were also found in atheroma plaque and peritoneal foam cells from LXR agonist-treated mice. By contrast, murine LXR-deficient macrophages displayed reduced expression of fatty acid elongase 5, acyl-CoA synthase long-chain family member 3 and fatty acid desaturases 1, as well as decreased cellular levels of docosahexaenoic acid and arachidonic acid. CONCLUSIONS Our results indicate that LXR activation triggers PUFA synthesis in macrophages, which results in significant alterations in the macrophage lipid composition. Moreover, we demonstrate here that LXR agonist treatment modulates PUFA metabolism in atherosclerotic arteries.
Collapse
Affiliation(s)
- Alexis Varin
- From the Centre de Recherche INSERM-UMR866, Université de Bourgogne, Dijon, France (A.V., C.T., M.I., L.M., T.G., V.B., J.P.P.d.B., M.N., L.L., D.M.); Centre Hospitalier Universitaire Dijon, Dijon, France (L.M., L.L., D.M.); Clermont Université, Université Blaise Pascal (A.T., J.M.A.L.) and Inserm, UMR 1103 (A.T., J.M.A.L.), GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France (A.T., J.M.A.L.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 6293, Aubière, France (A.T., J.M.A.L.)
| | - Charles Thomas
- From the Centre de Recherche INSERM-UMR866, Université de Bourgogne, Dijon, France (A.V., C.T., M.I., L.M., T.G., V.B., J.P.P.d.B., M.N., L.L., D.M.); Centre Hospitalier Universitaire Dijon, Dijon, France (L.M., L.L., D.M.); Clermont Université, Université Blaise Pascal (A.T., J.M.A.L.) and Inserm, UMR 1103 (A.T., J.M.A.L.), GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France (A.T., J.M.A.L.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 6293, Aubière, France (A.T., J.M.A.L.)
| | - Minako Ishibashi
- From the Centre de Recherche INSERM-UMR866, Université de Bourgogne, Dijon, France (A.V., C.T., M.I., L.M., T.G., V.B., J.P.P.d.B., M.N., L.L., D.M.); Centre Hospitalier Universitaire Dijon, Dijon, France (L.M., L.L., D.M.); Clermont Université, Université Blaise Pascal (A.T., J.M.A.L.) and Inserm, UMR 1103 (A.T., J.M.A.L.), GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France (A.T., J.M.A.L.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 6293, Aubière, France (A.T., J.M.A.L.)
| | - Louise Ménégaut
- From the Centre de Recherche INSERM-UMR866, Université de Bourgogne, Dijon, France (A.V., C.T., M.I., L.M., T.G., V.B., J.P.P.d.B., M.N., L.L., D.M.); Centre Hospitalier Universitaire Dijon, Dijon, France (L.M., L.L., D.M.); Clermont Université, Université Blaise Pascal (A.T., J.M.A.L.) and Inserm, UMR 1103 (A.T., J.M.A.L.), GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France (A.T., J.M.A.L.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 6293, Aubière, France (A.T., J.M.A.L.)
| | - Thomas Gautier
- From the Centre de Recherche INSERM-UMR866, Université de Bourgogne, Dijon, France (A.V., C.T., M.I., L.M., T.G., V.B., J.P.P.d.B., M.N., L.L., D.M.); Centre Hospitalier Universitaire Dijon, Dijon, France (L.M., L.L., D.M.); Clermont Université, Université Blaise Pascal (A.T., J.M.A.L.) and Inserm, UMR 1103 (A.T., J.M.A.L.), GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France (A.T., J.M.A.L.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 6293, Aubière, France (A.T., J.M.A.L.)
| | - Amalia Trousson
- From the Centre de Recherche INSERM-UMR866, Université de Bourgogne, Dijon, France (A.V., C.T., M.I., L.M., T.G., V.B., J.P.P.d.B., M.N., L.L., D.M.); Centre Hospitalier Universitaire Dijon, Dijon, France (L.M., L.L., D.M.); Clermont Université, Université Blaise Pascal (A.T., J.M.A.L.) and Inserm, UMR 1103 (A.T., J.M.A.L.), GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France (A.T., J.M.A.L.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 6293, Aubière, France (A.T., J.M.A.L.)
| | - Victoria Bergas
- From the Centre de Recherche INSERM-UMR866, Université de Bourgogne, Dijon, France (A.V., C.T., M.I., L.M., T.G., V.B., J.P.P.d.B., M.N., L.L., D.M.); Centre Hospitalier Universitaire Dijon, Dijon, France (L.M., L.L., D.M.); Clermont Université, Université Blaise Pascal (A.T., J.M.A.L.) and Inserm, UMR 1103 (A.T., J.M.A.L.), GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France (A.T., J.M.A.L.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 6293, Aubière, France (A.T., J.M.A.L.)
| | - Jean Paul Pais de Barros
- From the Centre de Recherche INSERM-UMR866, Université de Bourgogne, Dijon, France (A.V., C.T., M.I., L.M., T.G., V.B., J.P.P.d.B., M.N., L.L., D.M.); Centre Hospitalier Universitaire Dijon, Dijon, France (L.M., L.L., D.M.); Clermont Université, Université Blaise Pascal (A.T., J.M.A.L.) and Inserm, UMR 1103 (A.T., J.M.A.L.), GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France (A.T., J.M.A.L.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 6293, Aubière, France (A.T., J.M.A.L.)
| | - Michel Narce
- From the Centre de Recherche INSERM-UMR866, Université de Bourgogne, Dijon, France (A.V., C.T., M.I., L.M., T.G., V.B., J.P.P.d.B., M.N., L.L., D.M.); Centre Hospitalier Universitaire Dijon, Dijon, France (L.M., L.L., D.M.); Clermont Université, Université Blaise Pascal (A.T., J.M.A.L.) and Inserm, UMR 1103 (A.T., J.M.A.L.), GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France (A.T., J.M.A.L.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 6293, Aubière, France (A.T., J.M.A.L.)
| | - Jean Marc A Lobaccaro
- From the Centre de Recherche INSERM-UMR866, Université de Bourgogne, Dijon, France (A.V., C.T., M.I., L.M., T.G., V.B., J.P.P.d.B., M.N., L.L., D.M.); Centre Hospitalier Universitaire Dijon, Dijon, France (L.M., L.L., D.M.); Clermont Université, Université Blaise Pascal (A.T., J.M.A.L.) and Inserm, UMR 1103 (A.T., J.M.A.L.), GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France (A.T., J.M.A.L.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 6293, Aubière, France (A.T., J.M.A.L.)
| | - Laurent Lagrost
- From the Centre de Recherche INSERM-UMR866, Université de Bourgogne, Dijon, France (A.V., C.T., M.I., L.M., T.G., V.B., J.P.P.d.B., M.N., L.L., D.M.); Centre Hospitalier Universitaire Dijon, Dijon, France (L.M., L.L., D.M.); Clermont Université, Université Blaise Pascal (A.T., J.M.A.L.) and Inserm, UMR 1103 (A.T., J.M.A.L.), GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France (A.T., J.M.A.L.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 6293, Aubière, France (A.T., J.M.A.L.)
| | - David Masson
- From the Centre de Recherche INSERM-UMR866, Université de Bourgogne, Dijon, France (A.V., C.T., M.I., L.M., T.G., V.B., J.P.P.d.B., M.N., L.L., D.M.); Centre Hospitalier Universitaire Dijon, Dijon, France (L.M., L.L., D.M.); Clermont Université, Université Blaise Pascal (A.T., J.M.A.L.) and Inserm, UMR 1103 (A.T., J.M.A.L.), GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France (A.T., J.M.A.L.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 6293, Aubière, France (A.T., J.M.A.L.).
| |
Collapse
|