1
|
Li J, Wei W, Ma X, Ji J, Ling X, Xu Z, Guan Y, Zhou L, Wu Q, Huang W, Liu F, Zhao M. Antihypertensive effects of rice peptides involve intestinal microbiome alterations and intestinal inflammation alleviation in spontaneously hypertensive rats. Food Funct 2025; 16:1731-1759. [PMID: 39752320 DOI: 10.1039/d4fo04251d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Gut dysbiosis serves as an underlying risk factor for the development of hypertension. The resolution of this dysbiosis has emerged as a promising strategy in improving hypertension. Food-derived bioactive protein peptides have become increasingly more attractive in ameliorating hypertension, primarily due to their anti-inflammatory and anti-oxidant activities. However, the regulatory mechanisms linking rice peptides (RP), gut dysbiosis, and hypertension remain to be fully elucidated. In our study, male spontaneously hypertensive rats (SHR) were fed with chow diet and concomitantly treated with ddH2O (Ctrl) or varying doses of rice peptides (20, 100, or 500 mg (kg bw day)-1 designated as low-dose RP, LRP; medium-dose RP, MRP; high-dose RP, HAP) or captopril (Cap) by intragastric administration. Wistar-Kyoto (WKY) rats served as the normotensive control group and were orally administered with ddH2O. We observed beneficial effects of RP in lowering blood pressure and ameliorating cardiovascular risk profiles, as evidenced by improvements in glucolipid metabolic disorders, hepatic and renal damage, left ventricular hypertrophy and endothelial dysfunction in hypertensive rats. More importantly, we found that RP attenuated intestinal pathological damage, improved impaired intestinal barrier, and reduced intestinal inflammation by inhibiting the HMGB1-TLR4-NF-κB pathway. Notably, multi-omics integrative analyses have revealed that RP altered the composition and function of the gut microbiota. This is exemplified by the observed enrichment of beneficial bacterial constituents, such as g_Lactobacillus, g_Lactococcus, s_Lactobacillus_intestinalis, and Lactococcus lactis, and elevated production of microbiota-derived short-chain fatty acid metabolites. Collectively, these studies suggest that the hypotensive effects of RP may be associated with modulation of the gut microbiota and its short-chain fatty acids metabolites. This implicates the microbiota-gut-HMGB1-TLR4-NF-κB axis as a novel venue for the amelioration of hypertension and its complications.
Collapse
Affiliation(s)
- Juan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Wei Wei
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, 274108, China.
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaomin Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Center for Experimental Public Health and Preventive Medicine Education, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Jing Ji
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Xiaomeng Ling
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Zhuyan Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Yutong Guan
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Leyan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, 201203, China.
| | - Wenhua Huang
- AMWAY (China) R&D Center, Guangzhou, 510730, China.
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Min Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
2
|
An F, Jia X, Shi Y, Xiao X, Yang F, Su J, Peng X, Geng G, Yan C. The ultimate microbial composition for correcting Th17/Treg cell imbalance and lipid metabolism disorders in osteoporosis. Int Immunopharmacol 2025; 144:113613. [PMID: 39571271 DOI: 10.1016/j.intimp.2024.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 12/15/2024]
Abstract
Osteoporosis is a systemic bone disease characterised by decreased bone mass and a deteriorated bone microstructure, leading to increased bone fragility and fracture risk. Disorders of the intestinal microbiota may be key inducers of osteoporosis. Furthermore, such disorders may contribute to osteoporosis by influencing immune function and lipid metabolism. Therefore, in this review, we aimed to summarise the molecular mechanisms through which the intestinal microbiota affect the onset and development of osteoporosis by regulating Th17/Treg imbalance and lipid metabolism disorders. We also discussed the regulatory mechanisms underlying the effect of intestinal microbiota-related modulators on Th17/Treg imbalance and lipid metabolism disorders in osteoporosis, to explore new molecular targets for its treatment and provide a theoretical basis for clinical management.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China.
| | - Xueru Jia
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Yangyang Shi
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xiaolong Xiao
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Fan Yang
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Junchang Su
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xia Peng
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Guangqin Geng
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Chunlu Yan
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China.
| |
Collapse
|
3
|
Wang B, Han D, Hu X, Chen J, Liu Y, Wu J. Exploring the role of a novel postbiotic bile acid: Interplay with gut microbiota, modulation of the farnesoid X receptor, and prospects for clinical translation. Microbiol Res 2024; 287:127865. [PMID: 39121702 DOI: 10.1016/j.micres.2024.127865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
The gut microbiota, mainly resides in the colon, possesses a remarkable ability to metabolize different substrates to create bioactive substances, including short-chain fatty acids, indole-3-propionic acid, and secondary bile acids. In the liver, bile acids are synthesized from cholesterol and then undergo modification by the gut microbiota. Beyond those reclaimed by the enterohepatic circulation, small percentage of bile acids escaped reabsorption, entering the systemic circulation to bind to several receptors, such as farnesoid X receptor (FXR), thereby exert their biological effects. Gut microbiota interplays with bile acids by affecting their synthesis and determining the production of secondary bile acids. Reciprocally, bile acids shape out the structure of gut microbiota. The interplay of bile acids and FXR is involved in the development of multisystemic conditions, encompassing metabolic diseases, hepatobiliary diseases, immune associated disorders. In the review, we aim to provide a thorough review of the intricate crosstalk between the gut microbiota and bile acids, the physiological roles of bile acids and FXR in mammals' health and disease, and the clinical translational considerations of gut microbiota-bile acids-FXR in the treatment of the diseases.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Dong Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Xinyue Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Jing Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yuwei Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Jing Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
4
|
Jiang Y, Pang S, Liu X, Wang L, Liu Y. The Gut Microbiome Affects Atherosclerosis by Regulating Reverse Cholesterol Transport. J Cardiovasc Transl Res 2024; 17:624-637. [PMID: 38231373 DOI: 10.1007/s12265-024-10480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/07/2024] [Indexed: 01/18/2024]
Abstract
The human system's secret organ, the gut microbiome, has received considerable attention. Emerging research has yielded substantial scientific evidence indicating that changes in gut microbial composition and microbial metabolites may contribute to the development of atherosclerotic cardiovascular disease. The burden of cardiovascular disease on healthcare systems is exacerbated by atherosclerotic cardiovascular disease, which continues to be the leading cause of mortality globally. Reverse cholesterol transport is a powerful protective mechanism that effectively prevents excessive accumulation of cholesterol for atherosclerotic cardiovascular disease. It has been revealed how the gut microbiota modulates reverse cholesterol transport in patients with atherosclerotic risk. In this review, we highlight the complex interactions between microbes, their metabolites, and their potential impacts in reverse cholesterol transport. We also explore the feasibility of modulating gut microbes and metabolites to facilitate reverse cholesterol transport as a novel therapy for atherosclerosis.
Collapse
Affiliation(s)
- Yangyang Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuchao Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| | - Xiaoyu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lixin Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| |
Collapse
|
5
|
Yang Y, Karampoor S, Mirzaei R, Borozdkin L, Zhu P. The interplay between microbial metabolites and macrophages in cardiovascular diseases: A comprehensive review. Int Immunopharmacol 2023; 121:110546. [PMID: 37364331 DOI: 10.1016/j.intimp.2023.110546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/11/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
The gut microbiome has emerged as a crucial player in developing and progressing cardiovascular diseases (CVDs). Recent studies have highlighted the role of microbial metabolites in modulating immune cell function and their impact on CVD. Macrophages, which have a significant function in the pathogenesis of CVD, are very vulnerable to the effects of microbial metabolites. Microbial metabolites, such as short-chain fatty acids (SCFAs) and trimethylamine-N-oxide (TMAO), have been linked to atherosclerosis and the regulation of immune functions. Butyrate has been demonstrated to reduce monocyte migration and inhibit monocyte attachment to injured endothelial cells, potentially contributing to the attenuation of the inflammatory response and the progression of atherosclerosis. On the other hand, TMAO, another compound generated by gut bacteria, has been linked to atherosclerosis due to its impact on lipid metabolism and the accumulation of cholesterol in macrophages. Indole-3-propionic acid, a tryptophan metabolite produced solely by microbes, has been found to promote the development of atherosclerosis by stimulating macrophage reverse cholesterol transport (RCT) and raising the expression of ABCA1. This review comprehensively discusses how various microbiota-produced metabolites affect macrophage polarization, inflammation, and foam cell formation in CVD. We also highlight the mechanisms underlying these effects and the potential therapeutic applications of targeting microbial metabolites in treating CVD.
Collapse
Affiliation(s)
- Yongzheng Yang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Leonid Borozdkin
- Department of Maxillofacial Surgery, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510100, China.
| |
Collapse
|
6
|
Abstract
A large body of evidence has emerged in the past decade supporting a role for the gut microbiome in the regulation of blood pressure. The field has moved from association to causation in the last 5 years, with studies that have used germ-free animals, antibiotic treatments and direct supplementation with microbial metabolites. The gut microbiome can regulate blood pressure through several mechanisms, including through gut dysbiosis-induced changes in microbiome-associated gene pathways in the host. Microbiota-derived metabolites are either beneficial (for example, short-chain fatty acids and indole-3-lactic acid) or detrimental (for example, trimethylamine N-oxide), and can activate several downstream signalling pathways via G protein-coupled receptors or through direct immune cell activation. Moreover, dysbiosis-associated breakdown of the gut epithelial barrier can elicit systemic inflammation and disrupt intestinal mechanotransduction. These alterations activate mechanisms that are traditionally associated with blood pressure regulation, such as the renin-angiotensin-aldosterone system, the autonomic nervous system, and the immune system. Several methodological and technological challenges remain in gut microbiome research, and the solutions involve minimizing confounding factors, establishing causality and acting globally to improve sample diversity. New clinical trials, precision microbiome medicine and computational methods such as Mendelian randomization have the potential to enable leveraging of the microbiome for translational applications to lower blood pressure.
Collapse
|
7
|
Gut Microbiota-Derived TMAO: A Causal Factor Promoting Atherosclerotic Cardiovascular Disease? Int J Mol Sci 2023; 24:ijms24031940. [PMID: 36768264 PMCID: PMC9916030 DOI: 10.3390/ijms24031940] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Trimethylamine-N-oxide (TMAO) is the main diet-induced metabolite produced by the gut microbiota, and it is mainly eliminated through renal excretion. TMAO has been correlated with an increased risk of atherosclerotic cardiovascular disease (ASCVD) and related complications, such as cardiovascular mortality or major adverse cardiovascular events (MACE). Meta-analyses have postulated that high circulating TMAO levels are associated with an increased risk of cardiovascular events and all-cause mortality, but the link between TMAO and CVD remains not fully consistent. The results of prospective studies vary depending on the target population and the outcome studied, and the adjustment for renal function tends to decrease or reverse the significant association between TMAO and the outcome studied, strongly suggesting that the association is substantially mediated by renal function. Importantly, one Mendelian randomization study did not find a significant association between genetically predicted higher TMAO levels and cardiometabolic disease, but another found a positive causal relationship between TMAO levels and systolic blood pressure, which-at least in part-could explain the link with renal function. The mechanisms by which TMAO can increase this risk are not clearly elucidated, but current evidence indicates that TMAO induces cholesterol metabolism alterations, inflammation, endothelial dysfunction, and platelet activation. Overall, there is no fully conclusive evidence that TMAO is a causal factor of ASCVD, and, especially, whether TMAO induces or just is a marker of hypertension and renal dysfunction requires further study.
Collapse
|
8
|
Raev S, Amimo J, Saif L, Vlasova A. Intestinal mucin-type O-glycans: the major players in the host-bacteria-rotavirus interactions. Gut Microbes 2023; 15:2197833. [PMID: 37020288 PMCID: PMC10078158 DOI: 10.1080/19490976.2023.2197833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Rotavirus (RV) causes severe diarrhea in young children and animals worldwide. Several glycans terminating in sialic acids (SAs) and histo-blood group antigens (HBGAs) on intestinal epithelial cell (IEC) surface have been recognized to act as attachment sites for RV. IECs are protected by the double layer of mucus of which O-glycans (including HBGAs and SAs) are a major organic component. Luminal mucins, as well as bacterial glycans, can act as decoy molecules removing RV particles from the gut. The composition of the intestinal mucus is regulated by complex O-glycan-specific interactions among the gut microbiota, RV and the host. In this review, we highlight O-glycan-mediated interactions within the intestinal lumen prior to RV attachment to IECs. A better understanding of the role of mucus is essential for the development of alternative therapeutic tools including the use of pre- and probiotics to control RV infection.
Collapse
Affiliation(s)
- S.A. Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - J.O. Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - L.J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - A.N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
9
|
Das O, Kundu J, Ghosh A, Gautam A, Ghosh S, Chakraborty M, Masid A, Gauri SS, Mitra D, Dutta M, Mukherjee B, Sinha S, Bhaumik M. AUF-1 knockdown in mice undermines gut microbial butyrate-driven hypocholesterolemia through AUF-1-Dicer-1-mir-122 hierarchy. Front Cell Infect Microbiol 2022; 12:1011386. [PMID: 36601302 PMCID: PMC9806232 DOI: 10.3389/fcimb.2022.1011386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction and objective Cholesterol homeostasis is a culmination of cellular synthesis, efflux, and catabolism to important physiological entities where short chain fatty acid, butyrate embodied as a key player. This discourse probes the mechanistic molecular details of butyrate action in maintaining host-cholesterol balance. Methods Hepatic mir-122 being the most indispensable regulator of cholesterol metabolic enzymes, we studied upstream players of mir-122 biogenesis in the presence and absence of butyrate in Huh7 cells and mice model. We synthesized unique self-transfecting GMO (guanidinium-morpholino-oligo) linked PMO (Phosphorodiamidate-Morpholino Oligo)-based antisense cell-penetrating reagent to selectively knock down the key player in butyrate mediated cholesterol regulation. Results We showed that butyrate treatment caused upregulation of RNA-binding protein, AUF1 resulting in RNase-III nuclease, Dicer1 instability, and significant diminution of mir-122. We proved the importance of AUF1 and sequential downstream players in AUF1-knock-down mice. Injection of GMO-PMO of AUF1 in mouse caused near absence of AUF1 coupled with increased Dicer1 and mir-122, and reduced serum cholesterol regardless of butyrate treatment indicating that butyrate acts through AUF1. Conclusion The roster of intracellular players was as follows: AUF1-Dicer1-mir-122 for triggering butyrate driven hypocholesterolemia. To our knowledge this is the first report linking AUF-1 with cholesterol biogenesis.
Collapse
Affiliation(s)
- Oishika Das
- Department of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Jayanta Kundu
- School of Applied and Interdisciplinary Sciences, Indian Associations for Cultivation of Science, Kolkata, India
| | - Atanu Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Associations for Cultivation of Science, Kolkata, India
| | - Anupam Gautam
- Department of Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany,International Max Planck Research School “From Molecules to Organisms”, Max Planck Institute for Biology Tübingen, Tübingen, Germany,Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| | - Souradeepa Ghosh
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Mainak Chakraborty
- Department of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Aaheli Masid
- Department of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Samiran Sona Gauri
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Debmalya Mitra
- Department of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Moumita Dutta
- Department of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Budhaditya Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Associations for Cultivation of Science, Kolkata, India
| | - Moumita Bhaumik
- Department of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India,*Correspondence: Moumita Bhaumik,
| |
Collapse
|
10
|
Zarei I, Koistinen VM, Kokla M, Klåvus A, Babu AF, Lehtonen M, Auriola S, Hanhineva K. Tissue-wide metabolomics reveals wide impact of gut microbiota on mice metabolite composition. Sci Rep 2022; 12:15018. [PMID: 36056162 PMCID: PMC9440220 DOI: 10.1038/s41598-022-19327-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/29/2022] [Indexed: 12/13/2022] Open
Abstract
The essential role of gut microbiota in health and disease is well recognized, but the biochemical details that underlie the beneficial impact remain largely undefined. To maintain its stability, microbiota participates in an interactive host-microbiota metabolic signaling, impacting metabolic phenotypes of the host. Dysbiosis of microbiota results in alteration of certain microbial and host metabolites. Identifying these markers could enhance early detection of certain diseases. We report LC-MS based non-targeted metabolic profiling that demonstrates a large effect of gut microbiota on mammalian tissue metabolites. It was hypothesized that gut microbiota influences the overall biochemistry of host metabolome and this effect is tissue-specific. Thirteen different tissues from germ-free (GF) and conventionally-raised (MPF) C57BL/6NTac mice were selected and their metabolic differences were analyzed. Our study demonstrated a large effect of microbiota on mammalian biochemistry at different tissues and resulted in statistically-significant modulation of metabolites from multiple metabolic pathways (p ≤ 0.05). Hundreds of molecular features were detected exclusively in one mouse group, with the majority of these being unique to specific tissue. A vast metabolic response of host to metabolites generated by the microbiota was observed, suggesting gut microbiota has a direct impact on host metabolism.
Collapse
Affiliation(s)
- Iman Zarei
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Ville M Koistinen
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, Itäinen Pitkäkatu 4, 20014, Turku, Finland
| | - Marietta Kokla
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Anton Klåvus
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Ambrin Farizah Babu
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- LC-MS Metabolomics Center, Biocenter Kuopio, 70211, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- LC-MS Metabolomics Center, Biocenter Kuopio, 70211, Kuopio, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, Itäinen Pitkäkatu 4, 20014, Turku, Finland.
| |
Collapse
|
11
|
Xue H, Chen X, Yu C, Deng Y, Zhang Y, Chen S, Chen X, Chen K, Yang Y, Ling W. Gut Microbially Produced Indole-3-Propionic Acid Inhibits Atherosclerosis by Promoting Reverse Cholesterol Transport and Its Deficiency Is Causally Related to Atherosclerotic Cardiovascular Disease. Circ Res 2022; 131:404-420. [PMID: 35893593 DOI: 10.1161/circresaha.122.321253] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Accumulating evidence has shown that disorders in the gut microbiota and derived metabolites affect the development of atherosclerotic cardiovascular disease (ASCVD). However, which and how specific gut microbial metabolites contribute to the progression of atherosclerosis and the clinical relevance of their alterations remain unclear. METHODS We performed integrated microbiome-metabolome analysis of 30 patients with coronary artery disease (CAD) and 30 age- and sex-matched healthy controls to identify CAD-associated microbial metabolites, which were then assessed in an independent population of patients with ASCVD and controls (n=256). We further investigate the effect of CAD-associated microbial metabolites on atherosclerosis and the mechanisms of the action. RESULTS Indole-3-propionic acid (IPA), a solely microbially derived tryptophan metabolite, was the most downregulated metabolite in patients with CAD. Circulating IPA was then shown in an independent population to be associated with risk of prevalent ASCVD and correlated with the ASCVD severity. Dietary IPA supplementation alleviates atherosclerotic plaque development in ApoE-/- mice. In murine- and human-derived macrophages, administration of IPA promoted cholesterol efflux from macrophages to ApoA-I through an undescribed miR-142-5p/ABCA1 (ATP-binding cassette transporter A1) signaling pathway. Further in vivo studies demonstrated that IPA facilitates macrophage reverse cholesterol transport, correlating with the regulation of miR-142-5p/ABCA1 pathway, whereas reduced IPA production contributed to the aberrant overexpression of miR-142-5p in macrophages and accelerated the progression of atherosclerosis. Moreover, the miR-142-5p/ABCA1/reverse cholesterol transport axis in macrophages were dysregulated in patients with CAD, and correlated with the changes in circulating IPA levels. CONCLUSIONS Our study identify a previously unknown link between specific gut microbiota-derived tryptophan metabolite and ASCVD. The microbial metabolite IPA/miR-142-5p/ABCA1 pathway may represent a promising therapeutic target for ASCVD.
Collapse
Affiliation(s)
- Hongliang Xue
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, China (H.X., Y.Y., W.L.).,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China (H.X., X.C., S.C., Y.Y., W.L.)
| | - Xu Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China (H.X., X.C., S.C., Y.Y., W.L.).,Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder (Xu Chen)
| | - Chao Yu
- Center for Health Examination, the 3 Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (C.Y.)
| | - Yuqing Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, China (Y.D.)
| | - Yuan Zhang
- Department of Geriatrics, The Third Affiliated Hospital of Guangzhou Medical University, China (Y.Z.).,Department of Cardiology, General Hospital of Guangzhou Military Command of People's Liberation Army, China (Y.Z.)
| | - Shen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China (H.X., X.C., S.C., Y.Y., W.L.)
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany (Xuechen Chen)
| | - Ke Chen
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China (K.C.)
| | - Yan Yang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, China (H.X., Y.Y., W.L.).,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China (H.X., X.C., S.C., Y.Y., W.L.).,Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China (Y.Y.)
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, China (H.X., Y.Y., W.L.).,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China (H.X., X.C., S.C., Y.Y., W.L.)
| |
Collapse
|
12
|
Ishimwe JA, Dola T, Ertuglu LA, Kirabo A. Bile acids and salt-sensitive hypertension: a role of the gut-liver axis. Am J Physiol Heart Circ Physiol 2022; 322:H636-H646. [PMID: 35245132 PMCID: PMC8957326 DOI: 10.1152/ajpheart.00027.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/22/2022]
Abstract
Salt-sensitivity of blood pressure (SSBP) affects 50% of the hypertensive and 25% of the normotensive populations. Importantly, SSBP is associated with increased risk for mortality in both populations independent of blood pressure. Despite its deleterious effects, the pathogenesis of SSBP is not fully understood. Emerging evidence suggests a novel role of bile acids in salt-sensitive hypertension and that they may play a crucial role in regulating inflammation and fluid volume homeostasis. Mechanistic evidence implicates alterations in the gut microbiome, the epithelial sodium channel (ENaC), the farnesoid X receptor, and the G protein-coupled bile acid receptor TGR5 in bile acid-mediated effects on cardiovascular function. The mechanistic interplay between excess dietary sodium-induced alterations in the gut microbiome and immune cell activation, bile acid signaling, and whether such interplay may contribute to the etiology of SSBP is still yet to be defined. The main goal of this review is to discuss the potential role of bile acids in the pathogenesis of cardiovascular disease with a focus on salt-sensitive hypertension.
Collapse
Affiliation(s)
- Jeanne A Ishimwe
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Thanvi Dola
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Lale A Ertuglu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
13
|
Tu J, Wang Y, Jin L, Huang W. Bile acids, gut microbiota and metabolic surgery. Front Endocrinol (Lausanne) 2022; 13:929530. [PMID: 36072923 PMCID: PMC9441571 DOI: 10.3389/fendo.2022.929530] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic surgery, or bariatric surgery, is currently the most effective approach for treating obesity and its complications. Vertical sleeve gastrectomy (VSG) and Roux-en-Y gastric bypass (RYGB) are the top two types of commonly performed metabolic surgery now. The precise mechanisms of how the surgeries work are still unclear, therefore much research has been conducted in this area. Gut hormones such as GLP-1 and PYY have been studied extensively in the context of metabolic surgery because they both participate in satiety and glucose homeostasis. Bile acids, whose functions cover intestinal lipid absorption and various aspects of metabolic regulation via the action of FXR, TGR5, and other bile acid receptors, have also been actively investigated as potential mediators of metabolic surgery. Additionally, gut microbiota and their metabolites have also been studied because they can affect metabolic health. The current review summarizes and compares the recent scientific progress made on identifying the mechanisms of RYGB and VSG. One of the long-term goals of metabolic/bariatric surgery research is to develop new pharmacotherapeutic options for the treatment of obesity and diabetes. Because obesity is a growing health concern worldwide, there is a dire need in developing novel non-invasive treatment options.
Collapse
Affiliation(s)
- Jui Tu
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Irell & Manella Graduate School of Biomedical Science, City of Hope National Medical Center, Duarte, CA, United States
| | - Yangmeng Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Lihua Jin
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Irell & Manella Graduate School of Biomedical Science, City of Hope National Medical Center, Duarte, CA, United States
- *Correspondence: Wendong Huang,
| |
Collapse
|
14
|
Zhang S, Hong F, Ma C, Yang S. Hepatic Lipid Metabolism Disorder and Atherosclerosis. Endocr Metab Immune Disord Drug Targets 2021; 22:590-600. [PMID: 34931971 DOI: 10.2174/1871530322666211220110810] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
Lipid metabolism disorder plays a fundamental role in the pathogenesis of atherosclerosis. As the largest metabolic organ of the human body, liver has a key role in lipid metabolism by influencing fat production, fat decomposition, and the intake and secretion of serum lipoproteins. Numerous clinical and experimental studies have indicated that the dysfunction of hepatic lipid metabolism is closely tied to the onset of atherosclerosis. However, the identity and functional role of hepatic lipid metabolism responsible for these associations remain unknown. This review presented that cholesterol synthesis, cholesterol transport, and the metabolism of triglyceride, lipoproteins, and fatty acids are all associated with hepatic lipid metabolism and atherosclerosis. Moreover, we also discussed the roles of gut microbiota, inflammatory response, and oxidative stress in the pathological association between hepatic lipid metabolism and atherosclerosis. These significant evidences support strongly that hepatic lipid metabolism disorders may increase the risk of atherosclerosis.
Collapse
Affiliation(s)
- Sen Zhang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Fenfang Hong
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang, China
| | - Chen Ma
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Shulong Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Zhong J, Yang HC, Yermalitsky V, Shelton EL, Otsuka T, Wiese CB, May-Zhang LS, Banan B, Abumrad N, Huang J, Cavnar AB, Kirabo A, Yancey PG, Fogo AB, Vickers KC, Linton MF, Davies SS, Kon V. Kidney injury-mediated disruption of intestinal lymphatics involves dicarbonyl-modified lipoproteins. Kidney Int 2021; 100:585-596. [PMID: 34102217 DOI: 10.1016/j.kint.2021.05.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022]
Abstract
Kidney disease affects intestinal structure and function. Although intestinal lymphatics are central in absorption and remodeling of dietary and synthesized lipids/lipoproteins, little is known about how kidney injury impacts the intestinal lymphatic network, or lipoproteins transported therein. To study this, we used puromycin aminoglycoside-treated rats and NEP25 transgenic mice to show that proteinuric injury expanded the intestinal lymphatic network, activated lymphatic endothelial cells and increased mesenteric lymph flow. The lymph was found to contain increased levels of cytokines, immune cells, and isolevuglandin (a highly reactive dicarbonyl) and to have a greater output of apolipoprotein AI. Plasma levels of cytokines and isolevuglandin were not changed. However, isolevuglandin was also increased in the ileum of proteinuric animals, and intestinal epithelial cells exposed to myeloperoxidase produced more isolevuglandin. Apolipoprotein AI modified by isolevuglandin directly increased lymphatic vessel contractions, activated lymphatic endothelial cells, and enhanced the secretion of the lymphangiogenic promoter vascular endothelial growth factor-C by macrophages. Inhibition of isolevuglandin synthesis by a carbonyl scavenger reduced intestinal isolevuglandin adduct level and lymphangiogenesis. Thus, our data reveal a novel mediator, isolevuglandin modified apolipoprotein AI, and uncover intestinal lymphatic network structure and activity as a new pathway in the crosstalk between kidney and intestine that may contribute to the adverse impact of kidney disease on other organs.
Collapse
Affiliation(s)
- Jianyong Zhong
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hai-Chun Yang
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - Valery Yermalitsky
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Elaine L Shelton
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tadashi Otsuka
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Carrie B Wiese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Linda S May-Zhang
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Babak Banan
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Naji Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jiansheng Huang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ashley B Cavnar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Annet Kirabo
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Patricia G Yancey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Agnes B Fogo
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kasey C Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - MacRae F Linton
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sean S Davies
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Valentina Kon
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
16
|
Fallah S, Marsche G, Mohamadinarab M, Mohassel Azadi S, Ghasri H, Fadaei R, Moradi N. Impaired cholesterol efflux capacity in patients with Helicobacter pylori infection and its relation with inflammation. J Clin Lipidol 2021; 15:218-226.e1. [PMID: 33250430 DOI: 10.1016/j.jacl.2020.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gut microorganisms are associated with atherosclerosis and related cardiovascular disease. Helicobacter pylori (H. pylori) infection is associated with dyslipidemia and inflammation contributing to the progression of atherosclerosis. OBJECTIVE Several studies have reported reduced HDL-C levels in H. pylori infected patients, but HDL cholesterol efflux capacity (CEC) as the most important function of HDL has not been evaluated yet. METHODS This cross-sectional study was conducted with 44 biopsy confirmed H. pylori patients and 43 controls. ABCA1-mediated, non-ABCA1 and total CEC were measured in ApoB-depleted serum and levels of ApoA-I, ApoB and hsCRP were estimated using ELISA technique. RESULTS Total and ABCA1 mediated-CEC were reduced in patients compared to controls, independent of age, sex, body mass index and HDL-C (p < 0.001), while non-ABCA1 CEC indicated no significant change between the groups. In addition, patients showed lower serum levels of ApoA-I but increased levels of hsCRP when compared to controls. Total CEC and ABCA1-mediated CEC positively correlated with ApoA-I and HDL-C, furthermore, ABCA1-mediated CEC as well as ApoA-I inversely correlated with hsCRP. CONCLUSION The results of the present study indicate reduced CECs in H. pylori infected patients, especially ABCA1-mediated CEC which is associated with decreased ApoA-I and increased inflammation.
Collapse
Affiliation(s)
- Soudabeh Fallah
- Research Center of Pediatric Infectious Disease, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran; Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Maryam Mohamadinarab
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Samaneh Mohassel Azadi
- Department of Clinical Biochemistry, Faculty of Medicine Tehran, University of Medical Sciences, Tehran, Iran
| | - Hooman Ghasri
- Department of Internal Medicine, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Nariman Moradi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Research Center of Pediatric Infectious Disease, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Mistry RH, Liu F, Borewicz K, Lohuis MAM, Smidt H, Verkade HJ, Tietge UJF. Long-Term β-galacto-oligosaccharides Supplementation Decreases the Development of Obesity and Insulin Resistance in Mice Fed a Western-Type Diet. Mol Nutr Food Res 2020; 64:e1900922. [PMID: 32380577 PMCID: PMC7379190 DOI: 10.1002/mnfr.201900922] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/22/2020] [Indexed: 12/12/2022]
Abstract
SCOPE The gut microbiota might critically modify metabolic disease development. Dietary fibers such as galacto-oligosaccharides (GOS) presumably stimulate bacteria beneficial for metabolic health. This study assesses the impact of GOS on obesity, glucose, and lipid metabolism. METHODS AND RESULTS Following Western-type diet feeding (C57BL/6 mice) with or without β-GOS (7% w/w, 15 weeks), body composition, glucose and insulin tolerance, lipid profiles, fat kinetics and microbiota composition are analyzed. GOS reduces body weight gain (p < 0.01), accumulation of epididymal (p < 0.05), perirenal (p < 0.01) fat, and insulin resistance (p < 0.01). GOS-fed mice have lower plasma cholesterol (p < 0.05), mainly within low-density lipoproteins, lower intestinal fat absorption (p < 0.01), more fecal neutral sterol excretion (p < 0.05) and higher intestinal GLP-1 expression (p < 0.01). Fecal bile acid excretion is lower (p < 0.01) in GOS-fed mice with significant compositional differences, namely decreased cholic, α-muricholic, and deoxycholic acid excretion, whereas hyodeoxycholic acid increased. Substantial changes in microbiota composition, conceivably beneficial for metabolic health, occurred upon GOS feeding. CONCLUSION GOS supplementation to a Western-type diet improves body weight gain, dyslipidemia, and insulin sensitivity, supporting a therapeutic potential of GOS for individuals at risk of developing metabolic syndrome.
Collapse
Affiliation(s)
- Rima H. Mistry
- Department of Pediatrics
University of GroningenUniversity Medical Center GroningenGroningen9713GZThe Netherlands
| | - Fan Liu
- Department of Pediatrics
University of GroningenUniversity Medical Center GroningenGroningen9713GZThe Netherlands
- Division of Clinical Chemistry, Department of Laboratory MedicineKarolinska InstitutetStockholm141 83Sweden
| | - Klaudyna Borewicz
- Laboratory of MicrobiologyWageningen University & ResearchWageningenP.O. Box 8033, 6700 EHThe Netherlands
| | - Mirjam A. M. Lohuis
- Department of Pediatrics
University of GroningenUniversity Medical Center GroningenGroningen9713GZThe Netherlands
| | - Hauke Smidt
- Laboratory of MicrobiologyWageningen University & ResearchWageningenP.O. Box 8033, 6700 EHThe Netherlands
| | - Henkjan J. Verkade
- Department of Pediatrics
University of GroningenUniversity Medical Center GroningenGroningen9713GZThe Netherlands
| | - Uwe J. F. Tietge
- Department of Pediatrics
University of GroningenUniversity Medical Center GroningenGroningen9713GZThe Netherlands
- Division of Clinical Chemistry, Department of Laboratory MedicineKarolinska InstitutetStockholm141 83Sweden
- Clinical Chemistry, Karolinska University LaboratoryKarolinska University HospitalStockholmSE‐141 86Sweden
| |
Collapse
|
18
|
Dietary Isomalto/Malto‐Polysaccharides Increase Fecal Bulk and Microbial Fermentation in Mice. Mol Nutr Food Res 2020; 64:e2000251. [DOI: 10.1002/mnfr.202000251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/16/2020] [Indexed: 12/22/2022]
|
19
|
Villette R, Kc P, Beliard S, Salas Tapia MF, Rainteau D, Guerin M, Lesnik P. Unraveling Host-Gut Microbiota Dialogue and Its Impact on Cholesterol Levels. Front Pharmacol 2020; 11:278. [PMID: 32308619 PMCID: PMC7145900 DOI: 10.3389/fphar.2020.00278] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Disruption in cholesterol metabolism, particularly hypercholesterolemia, is a significant cause of atherosclerotic cardiovascular disease. Large interindividual variations in plasma cholesterol levels are traditionally related to genetic factors, and the remaining portion of their variance is accredited to environmental factors. In recent years, the essential role played by intestinal microbiota in human health and diseases has emerged. The gut microbiota is currently viewed as a fundamental regulator of host metabolism and of innate and adaptive immunity. Its bacterial composition but also the synthesis of multiple molecules resulting from bacterial metabolism vary according to diet, antibiotics, drugs used, and exposure to pollutants and infectious agents. Microbiota modifications induced by recent changes in the human environment thus seem to be a major factor in the current epidemic of metabolic/inflammatory diseases (diabetes mellitus, liver diseases, inflammatory bowel disease, obesity, and dyslipidemia). Epidemiological and preclinical studies report associations between bacterial communities and cholesterolemia. However, such an association remains poorly investigated and characterized. The objectives of this review are to present the current knowledge on and potential mechanisms underlying the host-microbiota dialogue for a better understanding of the contribution of microbial communities to the regulation of cholesterol homeostasis.
Collapse
Affiliation(s)
- Remy Villette
- INSERM, UMRS U1166, "Integrative Biology of Atherosclerosis" and Sorbonne Université, Paris, France
| | - Pukar Kc
- INSERM, UMRS U1166, "Integrative Biology of Atherosclerosis" and Sorbonne Université, Paris, France
| | - Sophie Beliard
- Aix-Marseille Université, INSERM U1263, INRA, C2VN, Marseille, France.,APHM, La Conception Hospital, Marseille, France
| | | | - Dominique Rainteau
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint Antoine, Département de Métabolomique Clinique, Paris, France
| | - Maryse Guerin
- INSERM, UMRS U1166, "Integrative Biology of Atherosclerosis" and Sorbonne Université, Paris, France
| | - Philippe Lesnik
- INSERM, UMRS U1166, "Integrative Biology of Atherosclerosis" and Sorbonne Université, Paris, France
| |
Collapse
|
20
|
Le Roy T, Lécuyer E, Chassaing B, Rhimi M, Lhomme M, Boudebbouze S, Ichou F, Haro Barceló J, Huby T, Guerin M, Giral P, Maguin E, Kapel N, Gérard P, Clément K, Lesnik P. The intestinal microbiota regulates host cholesterol homeostasis. BMC Biol 2019; 17:94. [PMID: 31775890 PMCID: PMC6882370 DOI: 10.1186/s12915-019-0715-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Management of blood cholesterol is a major focus of efforts to prevent cardiovascular diseases. The objective of this study was to investigate how the gut microbiota affects host cholesterol homeostasis at the organism scale. RESULTS We depleted the intestinal microbiota of hypercholesterolemic female Apoe-/- mice using broad-spectrum antibiotics. Measurement of plasma cholesterol levels as well as cholesterol synthesis and fluxes by complementary approaches showed that the intestinal microbiota strongly regulates plasma cholesterol level, hepatic cholesterol synthesis, and enterohepatic circulation. Moreover, transplant of the microbiota from humans harboring elevated plasma cholesterol levels to recipient mice induced a phenotype of high plasma cholesterol levels in association with a low hepatic cholesterol synthesis and high intestinal absorption pattern. Recipient mice phenotypes correlated with several specific bacterial phylotypes affiliated to Betaproteobacteria, Alistipes, Bacteroides, and Barnesiella taxa. CONCLUSIONS These results indicate that the intestinal microbiota determines the circulating cholesterol level and may thus represent a novel therapeutic target in the management of dyslipidemia and cardiovascular diseases.
Collapse
Affiliation(s)
- Tiphaine Le Roy
- INSERM, UMRS 1166, team "Integrative Biology of Atherosclerosis", Sorbonne Universités, Hôpital Pitié-Salpêtrière, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Emelyne Lécuyer
- INSERM, UMRS 1166, team "Integrative Biology of Atherosclerosis", Sorbonne Universités, Hôpital Pitié-Salpêtrière, Paris, France
| | - Benoit Chassaing
- Neuroscience Institute and Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.,INSERM, U1016, team "Mucosal microbiota in chronic inflammatory diseases", Paris, France.,Université de Paris, Paris, France
| | - Moez Rhimi
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Marie Lhomme
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Samira Boudebbouze
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Farid Ichou
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Júlia Haro Barceló
- INSERM, UMRS 1166, team "Integrative Biology of Atherosclerosis", Sorbonne Universités, Hôpital Pitié-Salpêtrière, Paris, France
| | - Thierry Huby
- INSERM, UMRS 1166, team "Integrative Biology of Atherosclerosis", Sorbonne Universités, Hôpital Pitié-Salpêtrière, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Maryse Guerin
- INSERM, UMRS 1166, team "Integrative Biology of Atherosclerosis", Sorbonne Universités, Hôpital Pitié-Salpêtrière, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Philippe Giral
- INSERM, UMRS 1166, team "Integrative Biology of Atherosclerosis", Sorbonne Universités, Hôpital Pitié-Salpêtrière, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Emmanuelle Maguin
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nathalie Kapel
- Laboratoire de Coprologie Fonctionnelle, Hôpital Pitié-Salpêtrière, Paris, France.,EA 4065 "Ecosystème intestinal, probiotiques, antibiotiques", Faculté des Sciences Pharmaceutiques et Biologiques Paris Descartes, Paris, France
| | - Philippe Gérard
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Karine Clément
- Sorbonne/INSERM, UMRS 1269, Nutrition et obésités : approches systémiques (nutriOmics), Hôpital Pitié-Salpêtrière, Paris, France
| | - Philippe Lesnik
- INSERM, UMRS 1166, team "Integrative Biology of Atherosclerosis", Sorbonne Universités, Hôpital Pitié-Salpêtrière, Paris, France. .,Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
21
|
Rodriguez A, Trigatti BL, Mineo C, Knaack D, Wilkins JT, Sahoo D, Asztalos BF, Mora S, Cuchel M, Pownall HJ, Rosales C, Bernatchez P, Ribeiro Martins da Silva A, Getz GS, Barber JL, Shearer GC, Zivkovic AM, Tietge UJF, Sacks FM, Connelly MA, Oda MN, Davidson WS, Sorci-Thomas MG, Vaisar T, Ruotolo G, Vickers KC, Martel C. Proceedings of the Ninth HDL (High-Density Lipoprotein) Workshop: Focus on Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2019; 39:2457-2467. [PMID: 31597448 DOI: 10.1161/atvbaha.119.313340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The HDL (high-density lipoprotein) Workshop was established in 2009 as a forum for candid discussions among academic basic scientists, clinical investigators, and industry researchers about the role of HDL in cardiovascular disease. This ninth HDL Workshop was held on May 16 to 17, 2019 in Boston, MA, and included outstanding oral presentations from established and emerging investigators. The Workshop featured 5 sessions with topics that tackled the role of HDL in the vasculature, its structural complexity, its role in health and disease states, and its interaction with the intestinal microbiome. The highlight of the program was awarding the Jack Oram Award to the distinguished professor emeritus G.S. Getz from the University of Chicago. The tenth HDL Workshop will be held on May 2020 in Chicago and will continue the focus on intellectually stimulating presentations by established and emerging investigators on novel roles of HDL in cardiovascular and noncardiovascular health and disease states.
Collapse
Affiliation(s)
- Annabelle Rodriguez
- From the Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health, Farmington (A.R.)
| | - Bernardo L Trigatti
- Department of Biochemistry and Biomedical Sciences, McMaster University, and Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada (B.L.T.)
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics and Cell Biology, University of Texas Southwestern Medical Center, Dallas (C.M.)
| | - Darcy Knaack
- Department of Biochemistry (D.K., D.S.), Medical College of Wisconsin, Milwaukee
| | - John T Wilkins
- Division of Cardiology, Departments of Medicine and of Preventive Medicine, Northwestern University, Chicago, IL (J.T.W.)
| | - Daisy Sahoo
- Department of Biochemistry (D.K., D.S.), Medical College of Wisconsin, Milwaukee.,Division of Endocrinology (D.S., M.G.S.-T.), Medical College of Wisconsin, Milwaukee
| | - Bela F Asztalos
- Human Nutrition Research Center, Tufts University, Boston, MA (B.F.A.)
| | - Samia Mora
- Center for Lipid Metabolomics, Divisions of Preventive and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.M.)
| | - Marina Cuchel
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (M.C.)
| | - Henry J Pownall
- Institute for Academic Medicine, Houston Methodist, Weill Cornell Medical College, Houston, TX (H.J.P., C.R.)
| | - Corina Rosales
- Institute for Academic Medicine, Houston Methodist, Weill Cornell Medical College, Houston, TX (H.J.P., C.R.)
| | - Pascal Bernatchez
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Heart and Lung Innovation Centre, St Paul's Hospital, Vancouver, BC, Canada (P.B.)
| | | | - Godfrey S Getz
- Department of Pathology, University of Chicago, IL (G.S.G.)
| | - Jacob L Barber
- Department of Exercise Science, University of South Carolina, Columbia (J.L.B.)
| | - Gregory C Shearer
- Department Nutritional Sciences, The Pennsylvania State University, University Park (G.C.S.)
| | | | - Uwe J F Tietge
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (U.J.F.T.).,Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden (U.J.F.T.)
| | - Frank M Sacks
- Harvard T.H. Chan School of Public Health, Boston, MA (F.M.S.)
| | - Margery A Connelly
- Laboratory Corporation of America Holdings (LabCorp), Morrisville, NC (M.A.C.)
| | | | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, OH (W.S.D.)
| | - Mary G Sorci-Thomas
- Division of Endocrinology (D.S., M.G.S.-T.), Medical College of Wisconsin, Milwaukee
| | - Tomas Vaisar
- UW Medicine Diabetes Institute, University of Washington, Seattle (T.V.)
| | | | - Kasey C Vickers
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (K.C.V.)
| | - Catherine Martel
- Montreal Heart Institute, Montreal and Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada (C.M.)
| |
Collapse
|
22
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Reporting Sex and Sex Differences in Preclinical Studies. Arterioscler Thromb Vasc Biol 2019; 38:e171-e184. [PMID: 30354222 DOI: 10.1161/atvbaha.118.311717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Daniel J Rader
- Department of Medicine (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Genetics (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Christian Weber
- Department of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany (C.W.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
23
|
Molinero N, Ruiz L, Sánchez B, Margolles A, Delgado S. Intestinal Bacteria Interplay With Bile and Cholesterol Metabolism: Implications on Host Physiology. Front Physiol 2019; 10:185. [PMID: 30923502 PMCID: PMC6426790 DOI: 10.3389/fphys.2019.00185] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
Bile is a biological fluid synthesized in the liver, mainly constituted by bile acids and cholesterol, which functions as a biological detergent that emulsifies and solubilizes lipids, thereby playing an essential role in fat digestion. Besides, bile acids are important signaling molecules that regulate key functions at intestinal and systemic levels in the human body, affecting glucose and lipid metabolism, and immune homeostasis. Apart from this, due to their amphipathic nature, bile acids are toxic for bacterial cells and, thus, exert a strong selective pressure on the microbial populations inhabiting the human gut, decisively shaping the microbial profiles of our gut microbiota, which has been recognized as a metabolic organ playing a pivotal role in host health. Remarkably, bacteria in our gut also display a range of enzymatic activities capable of acting on bile acids and, to a lesser extent, cholesterol. These activities can have a direct impact on host physiology as they influence the composition of the intestinal and circulating bile acid pool in the host, affecting bile homeostasis. Given that bile acids are important signaling molecules in the human body, changes in the microbiota-residing bile biotransformation ability can significantly impact host physiology and health status. Elucidating ways to fine-tune microbiota-bile acids-host interplay are promising strategies to act on bile and cholesterol-related disorders. This manuscript summarizes the current knowledge on bile and cholesterol metabolism by intestinal bacteria, as well as its influence on host physiology, identifying knowledge gaps and opportunities to guide further advances in the field.
Collapse
Affiliation(s)
- Natalia Molinero
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Susana Delgado
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| |
Collapse
|
24
|
Dempsey JL, Wang D, Siginir G, Fei Q, Raftery D, Gu H, Yue Cui J. Pharmacological Activation of PXR and CAR Downregulates Distinct Bile Acid-Metabolizing Intestinal Bacteria and Alters Bile Acid Homeostasis. Toxicol Sci 2019; 168:40-60. [PMID: 30407581 PMCID: PMC6821357 DOI: 10.1093/toxsci/kfy271] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The gut microbiome regulates important host metabolic pathways including xenobiotic metabolism and intermediary metabolism, such as the conversion of primary bile acids (BAs) into secondary BAs. The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are well-known regulators for xenobiotic biotransformation in liver. However, little is known regarding the potential effects of PXR and CAR on the composition and function of the gut microbiome. To test our hypothesis that activation of PXR and CAR regulates gut microbiota and secondary BA synthesis, 9-week-old male conventional and germ-free mice were orally gavaged with corn oil, PXR agonist PCN (75 mg/kg), or CAR agonist TCPOBOP (3 mg/kg) once daily for 4 days. PCN and TCPOBOP decreased two taxa in the Bifidobacterium genus, which corresponded with decreased gene abundance of the BA-deconjugating enzyme bile salt hydrolase. In liver and small intestinal content of germ-free mice, there was a TCPOBOP-mediated increase in total, primary, and conjugated BAs corresponding with increased Cyp7a1 mRNA. Bifidobacterium, Dorea, Peptociccaceae, Anaeroplasma, and Ruminococcus positively correlated with T-UDCA in LIC, but negatively correlated with T-CDCA in serum. In conclusion, PXR and CAR activation downregulates BA-metabolizing bacteria in the intestine and modulates BA homeostasis in a gut microbiota-dependent manner.
Collapse
Affiliation(s)
- Joseph L Dempsey
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Dongfang Wang
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109
- Chongqing Blood Center, Chongqing 400015, P.R. China
| | - Gunseli Siginir
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Qiang Fei
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109
- Department of Chemistry, Jilin University, Changchun, Jilin Province 130061, P.R. China
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, Center for Metabolic and Vascular Biology, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona 85004
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| |
Collapse
|
25
|
Lohuis MAM, Werkman CCN, Harmsen HJM, Tietge UJF, Verkade HJ. Absence of Intestinal Microbiota during Gestation and Lactation Does Not Alter the Metabolic Response to a Western-type Diet in Adulthood. Mol Nutr Food Res 2018; 63:e1800809. [PMID: 30471233 DOI: 10.1002/mnfr.201800809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/09/2018] [Indexed: 12/20/2022]
Abstract
SCOPE Microbiota composition in early life is implied to affect the risk to develop obesity in adulthood. It is unclear whether this risk is due to long-lasting microbiome-induced changes in host metabolism. This study aims to identify whether the presence or total absence of early-life microbiota affects host metabolism in adulthood. METHODS AND RESULTS The effects of a germ-free (Former GF) versus conventional status during gestation and lactation on the metabolic status in adult offspring are compared. Upon conventionalization at weaning, all mice were metabolically challenged with a Western-type diet (WTD) at 10 weeks age. Between age 10 and 30 weeks, a former GF status does not notably affect overall body weight gain, cholesterol metabolism, glucose tolerance or insulin sensitivity at adult age. However, Former GF mice have lower bile flow and bile acid secretion in adulthood, but similar bile acid composition. CONCLUSIONS A germ-free status during gestation and lactation does not substantially affect key parameters of the metabolic status before 10 weeks of age on chow diet or in adulthood following a WTD challenge. These data imply that microbiota in early life does not critically affect adult metabolic plasticity.
Collapse
Affiliation(s)
- Mirjam A M Lohuis
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands
| | - Cornelieke C N Werkman
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands
| | - Henkjan J Verkade
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
26
|
Canyelles M, Tondo M, Cedó L, Farràs M, Escolà-Gil JC, Blanco-Vaca F. Trimethylamine N-Oxide: A Link among Diet, Gut Microbiota, Gene Regulation of Liver and Intestine Cholesterol Homeostasis and HDL Function. Int J Mol Sci 2018; 19:ijms19103228. [PMID: 30347638 PMCID: PMC6214130 DOI: 10.3390/ijms19103228] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022] Open
Abstract
Recent evidence, including massive gene-expression analysis and a wide-variety of other multi-omics approaches, demonstrates an interplay between gut microbiota and the regulation of plasma lipids. Gut microbial metabolism of choline and l-carnitine results in the formation of trimethylamine (TMA) and concomitant conversion into trimethylamine-N-oxide (TMAO) by liver flavin monooxygenase 3 (FMO3). The plasma level of TMAO is determined by the genetic variation, diet and composition of gut microbiota. Multiple studies have demonstrated an association between TMAO plasma levels and the risk of atherothrombotic cardiovascular disease (CVD). We aimed to review the molecular pathways by which TMAO production and FMO3 exert their proatherogenic effects. TMAO may promote foam cell formation by upregulating macrophage scavenger receptors, deregulating enterohepatic cholesterol and bile acid metabolism and impairing macrophage reverse cholesterol transport (RCT). Furthermore, FMO3 may promote dyslipidemia by regulating multiple genes involved in hepatic lipogenesis and gluconeogenesis. FMO3 also impairs multiple aspects of cholesterol homeostasis, including transintestinal cholesterol export and macrophage-specific RCT. At least part of these FMO3-mediated effects on lipid metabolism and atherogenesis seem to be independent of the TMA/TMAO formation. Overall, these findings have the potential to open a new era for the therapeutic manipulation of the gut microbiota to improve CVD risk.
Collapse
Affiliation(s)
- Marina Canyelles
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain.
| | - Mireia Tondo
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain.
| | - Lídia Cedó
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08907 Barcelona, Spain.
| | - Marta Farràs
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 08003 Barcelona, Spain.
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08907 Barcelona, Spain.
| | - Francisco Blanco-Vaca
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08907 Barcelona, Spain.
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
27
|
Effect of the prebiotic fiber inulin on cholesterol metabolism in wildtype mice. Sci Rep 2018; 8:13238. [PMID: 30185894 PMCID: PMC6125380 DOI: 10.1038/s41598-018-31698-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/15/2018] [Indexed: 12/22/2022] Open
Abstract
Dietary non-digestible carbohydrates are perceived to improve health via gut microbiota-dependent generation of products such as short-chain fatty acids (SCFA). In addition, SCFA are also precursors for lipid and cholesterol synthesis potentially resulting in unwanted effects on lipid metabolism. Inulin is a widely used model prebiotic dietary fiber. Inconsistent reports on the effects of inulin on cholesterol homeostasis have emerged in humans and preclinical models. To clarify this issue, the present study aimed to provide an in-depth characterization of the effects of short-chain (sc)- and long-chain (lc)- inulin on cholesterol synthesis, absorption and elimination in mice. Feeding wildtype C57BL/6J mice diets supplemented with 10% (w/w) of either sc- or lc-inulin for two weeks resulted in approximately 2.5-fold higher fecal SCFA levels (P < 0.01) compared with controls, but had no significant effects on plasma and liver lipids. Subtle shifts in fecal and plasma bile acid species were detected with beta-muricholic acid increasing significantly in plasma of the inulin fed groups (1.7-fold, P < 0.05). However, neither sc-inulin nor lc-inulin affected intestinal cholesterol absorption, mass fecal cholesterol excretion or trans-intestinal cholesterol excretion (TICE). Combined, our data demonstrate that sc- and lc-inulin have no adverse effects on cholesterol metabolism in mice despite increased generation of SCFA.
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Accumulating evidence has provided new insights regarding potentially effective therapeutic options targeting modulation of HDL metabolism, resulting in the prevention of cardiovascular diseases. The gut microbiota has now been convincingly linked to host health, but its impact on host lipid metabolism, especially HDL metabolism, remains poorly understood. This review focuses on the recent progress in establishing associations between gut microbiota and host HDL metabolism. It also discusses causality and mechanisms, and how to translate the findings into clinical use. RECENT FINDINGS Recent human and animal studies have demonstrated that the gut microbiota composition can explain a substantial proportion of the individual variation in host blood lipid profiles. In addition, signaling molecules produced by gut microbiota have been shown to have potent effects on reverse cholesterol transport, a crucial atheroprotective function of HDL, which could subsequently influence the development of atherosclerosis. Ultimately, selective manipulation of gut microbiota may serve as an ideal therapeutic approach for improving HDL function and cardiovascular risk, although further studies are needed for a better understanding of which specific bacteria, or alternatively, which bacterial metabolites, are appropriate targets. SUMMARY We are just beginning to understand how the gut microbiota, a newly recognized endocrine organ system, influences HDL metabolism and atherosclerotic diseases. From recent experimental and clinical perspectives, it can be targeted for therapeutic benefit with respect to HDL function and cardiovascular diseases.
Collapse
Affiliation(s)
- Kazuhiro Nakaya
- Division of Antiaging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa
- Department of Cardiology, Japan Self Defense Forces Central Hospital, Tokyo, Japan
| | - Katsunori Ikewaki
- Division of Antiaging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa
| |
Collapse
|
29
|
Nakaya K, Takiguchi S, Ikewaki K. A New Frontier for Reverse Cholesterol Transport: The Impact of Intestinal Microbiota on Reverse Cholesterol Transport. Arterioscler Thromb Vasc Biol 2017; 37:385-386. [PMID: 28228442 DOI: 10.1161/atvbaha.117.309006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kazuhiro Nakaya
- From the Division of Neurology, Anti-aging, and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (K.N., S.T., K.I.); and Department of Cardiology, Japan Self Defense Forces Central Hospital, Tokyo (K.N., S.T.)
| | - Shunichi Takiguchi
- From the Division of Neurology, Anti-aging, and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (K.N., S.T., K.I.); and Department of Cardiology, Japan Self Defense Forces Central Hospital, Tokyo (K.N., S.T.)
| | - Katsunori Ikewaki
- From the Division of Neurology, Anti-aging, and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (K.N., S.T., K.I.); and Department of Cardiology, Japan Self Defense Forces Central Hospital, Tokyo (K.N., S.T.).
| |
Collapse
|
30
|
Ryan PM, Stanton C, Caplice NM. Bile acids at the cross-roads of gut microbiome-host cardiometabolic interactions. Diabetol Metab Syndr 2017; 9:102. [PMID: 29299069 PMCID: PMC5745752 DOI: 10.1186/s13098-017-0299-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023] Open
Abstract
While basic and clinical research over the last several decades has recognized a number of modifiable risk factors associated with cardiometabolic disease progression, additional and alternative biological perspectives may offer novel targets for prevention and treatment of this disease set. There is mounting preclinical and emerging clinical evidence indicating that the mass of metabolically diverse microorganisms which inhabit the human gastrointestinal tract may be implicated in initiation and modulation of cardiovascular and metabolic disease outcomes. The following review will discuss this gut microbiome-host metabolism axis and address newly proposed bile-mediated signaling pathways through which dysregulation of this homeostatic axis may influence host cardiovascular risk. With a central focus on the major nuclear and membrane-bound bile acid receptor ligands, we aim to review the putative impact of microbial bile acid modification on several major phenotypes of metabolic syndrome, from obesity to heart failure. Finally, attempting to synthesize several separate but complementary hypotheses, we will review current directions in preclinical and clinical investigation in this evolving field.
Collapse
Affiliation(s)
- Paul M. Ryan
- APC Microbiome Institute, Biosciences Institute, University College Cork, Cork, Ireland
- Centre for Research in Vascular Biology, University College Cork, Co. Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Institute, Biosciences Institute, University College Cork, Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Noel M. Caplice
- APC Microbiome Institute, Biosciences Institute, University College Cork, Cork, Ireland
- Centre for Research in Vascular Biology, University College Cork, Co. Cork, Ireland
| |
Collapse
|