1
|
Lou C, Cai X. The emerging roles of platelet-derived extracellular vesicles in disease. Ann Med 2025; 57:2499029. [PMID: 40317251 PMCID: PMC12054590 DOI: 10.1080/07853890.2025.2499029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 04/12/2025] [Accepted: 04/18/2025] [Indexed: 05/07/2025] Open
Abstract
INTRODUCTION Platelet-derived extracellular vesicles (pEVs) are nanoscale, membrane-bound vesicles released by platelets during activation or apoptosis. They contain various bioactive and non-bioactive molecules and play significant roles in numerous physiological and pathological processes through intercellular communication, thus attracting growing attention in biomedical research. METHODS This review comprehensively overviews the biogenesis, clearance, and molecular characteristics of pEVs. It also covers current methodologies for their isolation and characterization. The therapeutic implications of pEVs in key clinical settings like tissue regeneration, hemostasis, immune modulation, and vascular repair, with a focus on cancer progression, wound healing, and hemorrhagic shock management, are explored. Their role in cellular signal transduction is examined, and their functional properties are compared with other platelet-derived products such as platelet-rich plasma. RESULTS pEVs show potential as both therapeutic agents and diagnostic biomarkers. They are involved in modulating inflammatory responses, promoting angiogenesis, and enhancing cellular repair mechanisms. CONCLUSION Future research should concentrate on optimizing their therapeutic efficacy, refining biomarker applications, and exploring targeted delivery strategies to fully utilize their potential in regenerative medicine, oncology, and hemostasis management.
Collapse
Affiliation(s)
- Can Lou
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Blood Transfusion, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohong Cai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Blood Transfusion, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Albensi BC. Editorial: Are Mitochondrial Therapeutics the Next Disruptor in Molecular Healthcare? Mol Neurobiol 2025; 62:6633-6635. [PMID: 37773083 PMCID: PMC11034766 DOI: 10.1007/s12035-023-03653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Affiliation(s)
- Benedict C Albensi
- College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Ft. Lauderdale, FL, 33328, USA.
| |
Collapse
|
3
|
Tian Y, Zong Y, Pang Y, Zheng Z, Ma Y, Zhang C, Gao J. Platelets and diseases: signal transduction and advances in targeted therapy. Signal Transduct Target Ther 2025; 10:159. [PMID: 40374650 DOI: 10.1038/s41392-025-02198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/18/2024] [Accepted: 02/24/2025] [Indexed: 05/17/2025] Open
Abstract
Platelets are essential anucleate blood cells that play pivotal roles in hemostasis, tissue repair, and immune modulation. Originating from megakaryocytes in the bone marrow, platelets are small in size but possess a highly specialized structure that enables them to execute a wide range of physiological functions. The platelet cytoplasm is enriched with functional proteins, organelles, and granules that facilitate their activation and participation in tissue repair processes. Platelet membranes are densely populated with a variety of receptors, which, upon activation, initiate complex intracellular signaling cascades. These signaling pathways govern platelet activation, aggregation, and the release of bioactive molecules, including growth factors, cytokines, and chemokines. Through these mechanisms, platelets are integral to critical physiological processes such as thrombosis, wound healing, and immune surveillance. However, dysregulated platelet function can contribute to pathological conditions, including cancer metastasis, atherosclerosis, and chronic inflammation. Due to their central involvement in both normal physiology and disease, platelets have become prominent targets for therapeutic intervention. Current treatments primarily aim to modulate platelet signaling to prevent thrombosis in cardiovascular diseases or to reduce excessive platelet aggregation in other pathological conditions. Antiplatelet therapies are widely employed in clinical practice to mitigate clot formation in high-risk patients. As platelet biology continues to evolve, emerging therapeutic strategies focus on refining platelet modulation to enhance clinical outcomes and prevent complications associated with platelet dysfunction. This review explores the structure, signaling pathways, biological functions, and therapeutic potential of platelets, highlighting their roles in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Yuchen Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Yeh H, Gupta K, Lu YH, Srinivasan A, Delila L, Yen NTH, Nyam-Erdene A, Burnouf T. Platelet Extracellular Vesicles as Natural Delivery Vehicles for Mitochondrial Dysfunction Therapy? ACS Biomater Sci Eng 2025; 11:2601-2621. [PMID: 40280866 PMCID: PMC12076291 DOI: 10.1021/acsbiomaterials.5c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Mitochondria are vital for energy production, metabolic regulation, and cellular signaling. Their dysfunction is strongly implicated in neurological, cardiovascular, and muscular degenerative diseases, where energy deficits and oxidative stress accelerate disease progression. Platelet extracellular vesicles (PEVs), once called "platelet dust", have emerged as promising agents for mitigating mitochondrial dysfunction. Like other extracellular vesicles (EVs), PEVs carry diverse molecular cargo and surface markers implicated in disease processes and therapeutic efficacy. Notably, they may possibly contain intact or partially functional mitochondrial components, making them tentatively attractive for targeting mitochondrial damage. Although direct research on PEVs-mediated mitochondrial rescue remains limited, current evidence suggests that PEVs can modulate diseases associated with mitochondrial dysfunction and potentially enhance mitochondrial health. This review explores the therapeutic potential of PEVs in neurodegenerative and cardiovascular disorders, highlighting their role in restoring mitochondrial health. By examining recent advancements in PEVs research, we aim to shed light on novel strategies for utilizing PEVs as therapeutic agents. Our goal is to underscore the importance of further fundamental and applied research into PEVs-based interventions, as innovative tools for combating a wide range of diseases linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Hsien
Chang Yeh
- School
of Medicine, College of Medicine, Taipei
Medical University, Xin-Yi
Campus, Taipei City 110, Taiwan
| | - Kirti Gupta
- International
Graduate Program in Medicine, College of Medicine, Taipei Medical University, Xin-Yi Campus, Taipei 110, Taiwan
| | - Ya-Hsuan Lu
- School
of Biomedical Engineering, Taipei Medical
University, Shuang-Ho
Campus, New Taipei City 110, Taiwan
| | - Abinaya Srinivasan
- International
PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei
City 110, Taiwan
| | - Liling Delila
- Graduate
Institute of Biomedical Materials and Tissue Engineering, College
of Biomedical Engineering, Taipei Medical
University, Shuang-Ho
Campus, New Taipei City 110, Taiwan
| | - Nguyen Tran Hai Yen
- Graduate
Institute of Biomedical Materials and Tissue Engineering, College
of Biomedical Engineering, Taipei Medical
University, Shuang-Ho
Campus, New Taipei City 110, Taiwan
| | - Ariunjargal Nyam-Erdene
- International
PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei
City 110, Taiwan
| | - Thierry Burnouf
- International
PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei
City 110, Taiwan
- Graduate
Institute of Biomedical Materials and Tissue Engineering, College
of Biomedical Engineering, Taipei Medical
University, Shuang-Ho
Campus, New Taipei City 110, Taiwan
- International
PhD Program in Cell Therapy and Regeneration Medicine, College of
Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
5
|
Tao K, Tao K, Wang J. The potential mechanisms of extracellular vesicles in transfusion-related adverse reactions: Recent advances. Transfus Clin Biol 2025; 32:205-227. [PMID: 40180029 DOI: 10.1016/j.tracli.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Blood transfusion is an irreplaceable clinical treatment. Blood components are differentiated and stored according to specific guidelines. Storage temperatures and times vary depending on the blood component, but they all release extracellular vesicles (EVs) during storage. Although blood transfusions can be life-saving, they can also cause many adverse transfusion reactions, among which the effects of EVs are of increasing interest to researchers. EVs are submicron particles that vary in size, composition, and surface biomarkers, are encapsulated by a lipid bilayer, and are not capable of self-replication. EVs released by blood cells are important contributors to pathophysiologic states through proinflammatory, coagulant, and immunosuppressive effects, which in turn promote or inhibit the associated disease phenotype. Therefore, this review explores the potential mechanisms of hematopoietic-derived EVs in transfusion-associated adverse reactions and discusses the potential of the latest proteomics tools to be applied to the analysis of EVs in the field of transfusion medicine with a view to reducing the risk of blood transfusion.
Collapse
Affiliation(s)
- Keyi Tao
- Panzhihua University, Panzhihua 617000 Sichuan, China
| | - Keran Tao
- Institute of Medicine and Nursing, Hubei University of Medicine, Shiyan 442000 Hubei, China
| | - Jing Wang
- Southwest Medical University, Luzhou 646000 Sichuan, China; Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou Sichuan, 646000 China.
| |
Collapse
|
6
|
Liu Q, Zhu W, Wen X, Da Y. The Role of Platelet-Neutrophil Interactions in Driving Autoimmune Diseases. Immunology 2025; 175:1-15. [PMID: 39825744 DOI: 10.1111/imm.13901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
Platelets and neutrophils are among the most abundant cell types in peripheral blood. Beyond their traditional roles in thrombosis and haemostasis, they also play an active role in modulating immune responses. Current knowledge on the role of platelet-neutrophil interactions in the immune system has been rapidly expanding. Notably, circulating platelet-neutrophil complexes (PNCs) have been widely detected in various inflammatory diseases and infections, closely associated with inflammatory processes affecting multiple organs. These findings emphasise the critical role of platelet-neutrophil interactions in driving and sustaining inflammatory responses. In this review, we elucidate the mechanisms by which neutrophils and platelets physically interact, leading to mutual activation. Additionally, activated platelets release pro-inflammatory factors that further modulate neutrophil effector functions, enhancing their immune response capabilities. We highlight the role of platelets in promoting the formation of neutrophil extracellular traps (NETs), which, in turn, promote local platelet activation, thereby exacerbating the immune response and sustaining chronic inflammation. Furthermore, we review current evidence on the role of platelet-neutrophil interactions in common autoimmune diseases such as systemic lupus erythematosus (SLE), systemic sclerosis (SSc), and rheumatoid arthritis (RA). Finally, we identify gaps in understanding the mechanisms of these interactions in the context of other autoimmune diseases and underscore the potential of targeting platelets and neutrophils as a therapeutic strategy for these conditions.
Collapse
Affiliation(s)
- Qinyao Liu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Wenjia Zhu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Xinmei Wen
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Yuwei Da
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Brito AMP, Schreiber MA. Dried blood products: Current and potential uses in trauma. Transfusion 2025; 65 Suppl 1:S297-S303. [PMID: 40292825 DOI: 10.1111/trf.18220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 04/30/2025]
Affiliation(s)
- Alexandra M P Brito
- University of Hawaii, Honolulu, Hawaii, USA
- The Queen's Medical Center, Honolulu, Hawaii, USA
| | - Martin A Schreiber
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Kubaev A, Faez Sead F, Pirouzbakht M, Nazari M, Riyahi H, Sargazi Aval O, Hasanvand A, Mousavi F, Soleimani Samarkhazan H. Platelet-derived extracellular vesicles: emerging players in hemostasis and thrombosis. J Liposome Res 2025:1-11. [PMID: 40285331 DOI: 10.1080/08982104.2025.2495261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
Platelets, long recognized for their role in hemostasis and thrombosis, have emerged as key players in a wide array of physiological and pathological processes through the release of platelet-derived extracellular vesicles (PEVs). These nanoscale vesicles, rich in bioactive molecules such as proteins, lipids, and nucleic acids, facilitate intercellular communication and influence processes ranging from angiogenesis and inflammation to immune modulation and tissue repair. PEVs, the most abundant extracellular vesicles in circulation, display procoagulant activity 50-100 times greater than activated platelets, underscoring their pivotal role in hemostasis and thrombosis. Recent research has unveiled their dual role in health and disease, highlighting their potential as diagnostic biomarkers and therapeutic vehicles. PEVs are implicated in cancer progression, autoimmune diseases, and infectious diseases, where they modulate tumor microenvironments, immune responses, and inflammatory pathways. Moreover, their ability to deliver therapeutic agents with high specificity and biocompatibility positions them as promising tools in regenerative medicine, drug delivery, and targeted therapies. This review comprehensively explores PEV biogenesis, cargo composition, and their multifaceted roles in hemostasis and thrombosis, as well as their broader implications in disease. It also explores the potential of PEVs as diagnostic markers and innovative therapeutic strategies, offering insights into their application in treating thrombotic disorders, cancer, and inflammatory diseases. Despite significant advancements, challenges remain in standardizing isolation protocols and translating preclinical findings into clinical applications. Unlocking the full potential of PEVs promises to revolutionize diagnostics and therapeutics, paving the way for novel approaches to managing complex diseases.
Collapse
Affiliation(s)
- Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Fadhil Faez Sead
- Department of Dentistry, College of Dentistry, The Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Mohammad Pirouzbakht
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mobina Nazari
- High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | - Hanieh Riyahi
- Department of Laboratory Sciences, Faculty of Medical Sciences, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| | - Omolbanin Sargazi Aval
- Department of Hematology, Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Alireza Hasanvand
- Department of Laboratory Science, Bo.C., Islamic Azad University, Borujerd, Iran
| | - Forough Mousavi
- Department of Pharmacology and toxicology, pharmacy school, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamed Soleimani Samarkhazan
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Han J, Zhang X, Kang L, Guan J. Extracellular vesicles as therapeutic modulators of neuroinflammation in Alzheimer's disease: a focus on signaling mechanisms. J Neuroinflammation 2025; 22:120. [PMID: 40281600 PMCID: PMC12023694 DOI: 10.1186/s12974-025-03443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-beta (Aβ) plaques and tau tangles, which contribute significantly to neuroinflammation, a central driver of disease pathogenesis. The activation of microglia and astrocytes, coupled with the complex interactions between Aβ and tau pathologies and the innate immune response, leads to a cascade of inflammatory events. This process triggers the release of pro-inflammatory cytokines and chemokines, exacerbating neuronal damage and fostering a cycle of chronic inflammation that accelerates neurodegeneration. Key signaling pathways, such as nuclear factor-kappa B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), are involved in regulating the production of these inflammatory mediators, offering potential therapeutic targets for AD. Recently, extracellular vesicles (EVs) have emerged as a promising tool for AD therapy, due to their ability to cross the blood-brain barrier (BBB) and deliver therapeutic agents. Despite challenges in standardizing EV-based therapies and ensuring their safety, EVs offer a novel approach to modulating neuroinflammation and promoting neuroregeneration. This review aims to highlight the intricate relationship between neuroinflammation, signaling pathways, and the emerging role of EV-based therapeutics in advancing AD treatment strategies.
Collapse
Affiliation(s)
- Jingnan Han
- Department of Ophthalmology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110000, China
| | - Xue Zhang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, 110000, China
| | - Longdan Kang
- Department of Ophthalmology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110000, China.
| | - Jian Guan
- Department of Ophthalmology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110000, China.
| |
Collapse
|
10
|
Ratnapriya S, Yabaji SM. Vaccination and Platelet Biology: Unraveling the Immuno-Hemostatic Interplay. Vaccines (Basel) 2025; 13:403. [PMID: 40333325 PMCID: PMC12031077 DOI: 10.3390/vaccines13040403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025] Open
Abstract
Platelets, which have been traditionally associated with hemostasis and thrombosis functions, now receive attention for their role in immune responses that may affect vaccine development and effectiveness. Through their interactions with immune cells and modulation of inflammation alongside their role in antigen presentation, platelets become integral components of both innate and adaptive immune systems. New research shows platelets can improve vaccine effectiveness while reducing adverse side effects. During vaccine administration, platelets release cytokines and chemokines, which attract and stimulate immune cells to the injection site. Platelets work together with dendritic cells and T cells to support antigen processing and presentation, which leads to strong immune activation. Platelets' pro-inflammatory mediators strengthen local immune responses to boost protective immunity generation. Significant attention has been given to platelet involvement in vaccine-related thrombotic events, including vaccine-induced immune thrombotic thrombocytopenia (VITT). The rarity and severity of these events demonstrate the need to investigate the complex interplay between vaccine mechanisms and platelet activation. Exploration of the platelet-immune axis can lead to new methods for improving both the effectiveness and safety of vaccines. Researchers are working on creating innovative approaches for treatments that target platelet receptors and thrombosis pathways without interfering with the regular hemostatic functions of platelets. New vaccine development methods and personalized immunization strategies can emerge from targeting platelets with adjuvants and immune modulators.
Collapse
Affiliation(s)
- Sneha Ratnapriya
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shivraj M. Yabaji
- The National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA 02215, USA
| |
Collapse
|
11
|
Arauna D, Chandia E, Nova-Lamperti E, Radojkovic C, Fuentes E, Palomo I, Guzmán-Gutiérrez E, Moore-Carrasco R, Aguayo C. Platelet Content from Acute Myocardial Infarction Patients: Elevated Levels of IL-6 and IL-8 and their impact on Endothelial Nitric Oxide Production. Atherosclerosis 2025; 403:119119. [PMID: 40043445 DOI: 10.1016/j.atherosclerosis.2025.119119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/02/2025] [Accepted: 01/27/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND AND AIMS Platelets and inflammation play crucial roles in the atherothrombotic process of acute myocardial infarction (AMI), particularly in ischemia/reperfusion injury. This study aims to characterize the pro-inflammatory content of the platelet secretome in AMI patients, assess its effect on nitric oxide (NO) production, and correlate these findings with clinical parameters. METHODS Blood samples from 20 AMI patients and 20 controls were analyzed. Platelets were isolated and stimulated with thrombin, and their secretomes were collected. Endothelial cells were exposed to these secretomes, and NO production was measured. Our results demonstrate a significant reduction in NO production in endothelial cells exposed to the AMI platelet secretome (p < 0.05), suggesting acute endothelial dysfunction. RESULTS Elevated levels of interleukin-6 (IL-6) (p = 0.0323) and interleukin-8 (IL-8) (p = 0.0197) were identified in the secretome of AMI patients, correlating with clinical markers of myocardial injury. Specifically, IL-6 positively correlated with CK-MB levels (p = 0.04, Pearson r = 0.53), while IL-8 levels inversely correlated with NO production (p = 0.0141, Pearson r = -0.5652). CONCLUSIONS These findings underscore the critical role of platelet-derived IL-6 and IL-8 in endothelial dysfunction and myocardial injury in AMI patients. Future studies should explore the interactions between these cytokines in endothelial cells to further elucidate their roles in AMI pathology.
Collapse
Affiliation(s)
- Diego Arauna
- Thrombosis Research Center, Interuniversity Center for Healthy Aging, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, 3460000, Chile
| | - Emerson Chandia
- Thrombosis Research Center, Interuniversity Center for Healthy Aging, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, 3460000, Chile; Faculty of Health Sciences, University of Talca, Talca, 3460000, Chile
| | - Estefanía Nova-Lamperti
- Faculty of Pharmacy, Department of Clinical Biochemistry and Immunology, University of Concepcion, Concepción, Chile
| | - Claudia Radojkovic
- Faculty of Pharmacy, Department of Clinical Biochemistry and Immunology, University of Concepcion, Concepción, Chile
| | - Eduardo Fuentes
- Thrombosis Research Center, Interuniversity Center for Healthy Aging, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, 3460000, Chile
| | - Iván Palomo
- Thrombosis Research Center, Interuniversity Center for Healthy Aging, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, 3460000, Chile
| | - Enrique Guzmán-Gutiérrez
- Faculty of Pharmacy, Department of Clinical Biochemistry and Immunology, University of Concepcion, Concepción, Chile
| | | | - Claudio Aguayo
- Faculty of Pharmacy, Department of Clinical Biochemistry and Immunology, University of Concepcion, Concepción, Chile.
| |
Collapse
|
12
|
Ma J, Zhang L, Yan M, Liu Z, Xue L. The Relationship of Platelets With the Clinical Manifestations and Serologic Markers in Systemic Lupus Erythematosus: A Single-Center Retrospective Study. Immun Inflamm Dis 2025; 13:e70201. [PMID: 40265572 PMCID: PMC12015639 DOI: 10.1002/iid3.70201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/04/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Thrombocytopenia is a common clinical manifestation of Systemic lupus erythematosus (SLE), and platelets may play a central role in the pathogenesis of immune-mediated inflammatory diseases. The study aimed to investigate the relationship between platelet count and clinical manifestations and serologic markers in systemic lupus erythematosus (SLE). METHODS This single-center retrospective study extracted demographic data, blood cell counts, complement (C) levels, autoantibody profiles, and clinical presentation information from the electronic medical records of patients with SLE. The SLE Disease Activity Index 2000 (SLEDAI 2000) score was calculated, and Spearman's correlation coefficient was used to evaluate the correlation between platelet count and other variables. RESULTS A total of 418 patients with SLE were included in the study. The platelet count was correlated with hemoglobin, complement 3 (C3), and C4 levels; leukocyte, neutrophil, and lymphocyte counts; and the SLEDAI 2000 score. In patients with SLE with thrombocytopenia, the platelet count was associated with the hemoglobin level and a positive direct Coombs' test. The platelet count in patients with SLE without thrombocytopenia was significantly lower compared with the healthy controls, and the platelet count in this group was correlated with C3 and C4 levels, as well as the leukocyte, neutrophil, and lymphocyte counts. The disease characteristics of patients with SLE with thrombocytopenia differed from those of patients with SLE without thrombocytopenia, whereas the clinical features were essentially the same between patients with mild to moderate SLE-associated thrombocytopenia and patients with severe SLE-associated thrombocytopenia. CONCLUSION Patients with SLE can be categorized into two groups with different clinical features based on the presence or absence of thrombocytopenia. Furthermore, the platelet count correlates with other blood cell counts and complement levels, particularly in patients with SLE without thrombocytopenia.
Collapse
Affiliation(s)
- Jinlu Ma
- Department of Rheumatology and ImmunologySongjiang Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Rheumatology and Immunologythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Lin Zhang
- Department of Rheumatology and Immunologythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Mengxue Yan
- Department of Rheumatology and Immunologythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhichun Liu
- Department of Rheumatology and Immunologythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Leixi Xue
- Department of Rheumatology and Immunologythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
13
|
Zhuang F, Liu ZT, Zhou G, Liang F, Wang YH, Chen L, Zhang WF, Shen LH, Lu YQ, Huo HH, Shi X, Fang L, He B. Integrin β3-mediated platelet extracellular vesicle adhesion facilitates vascular smooth muscle cell dysfunction in postinjury intimal hyperplasia. Int J Biol Sci 2025; 21:2380-2395. [PMID: 40303298 PMCID: PMC12035895 DOI: 10.7150/ijbs.101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/25/2025] [Indexed: 05/02/2025] Open
Abstract
Vascular smooth muscle cell (VSMC) dysfunction is a critical pathological process in postinjury intima hyperplasia. This process is driven by the adherence and accumulation of platelet-derived extracellular vesicles (PEVs) released from activated platelets to VSMCs at the site of injured intima. However, the precise mechanism remains unclear. Thus, the present study aimed to investigate how PEVs adhere to VSMCs and facilitate VSMC dysfunction in postinjury intimal hyperplasia. Morphological results confirmed that PEVs led to VSMC dysfunction and intimal hyperplasia. Integrated single-cell and proteomic analysis revealed that increased secreted phosphoprotein 1 (SPP1) expression in VSMCs played a central role in this process, possibly by mediating PEV adhesion to VSMCs and activating the focal adhesion kinase (FAK)/phosphoinositide 3 kinase (PI3K)/protein kinase B (Akt) axis. In addition, integrin beta 3 (ITGβ3, CD61) on PEVs, with increased expression under pathological conditions, was predicted to interact with SPP1. Co-immunoprecipitation (Co-IP) analysis further confirmed that ITGβ3 interacted with SPP1, thereby activating the FAK/PI3K/AKT phosphorylation and promoting PEV adhesion. Of note, blocking ITGβ3 expression on PEVs reduced PEV adhesion and intimal hyperplasia. Thus, ITGβ3-SPP1-mediated PEV adhesion to VSMCs may be a novel mechanism in intimal hyperplasia, which proposed to be critical for vascular homeostasis.
Collapse
Affiliation(s)
- Fei Zhuang
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhi-tong Liu
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo Zhou
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Feng Liang
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ying-hua Wang
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Long Chen
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wei-feng Zhang
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ling-hong Shen
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yan-qiao Lu
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Huan-huan Huo
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liang Fang
- Department of Cardiac Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
14
|
Garofalo S, Mormino A, Mazzarella L, Cocozza G, Rinaldi A, Di Pietro E, Di Castro MA, De Felice E, Maggi L, Chece G, Andolina D, Ventura R, Ielpo D, Piacentini R, Catalano M, Stefanini L, Limatola C. Platelets tune fear memory in mice. Cell Rep 2025; 44:115261. [PMID: 39903668 DOI: 10.1016/j.celrep.2025.115261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/13/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
Several lines of evidence have shown that platelet-derived factors are key molecules in brain-body communication in pathological conditions. Here, we identify platelets as key actors in the modulation of fear behaviors in mice through the control of inhibitory neurotransmission and plasticity in the hippocampus. Interfering with platelet number or activation reduces hippocampal serotonin (5-HT) and modulates fear learning and memory in mice, and this effect is reversed by serotonin replacement by serotonin precursor (5-HTP)/benserazide. In addition, we unravel that natural killer (NK) cells participate in this mechanism, regulating interleukin-13 (IL-13) levels in the gut, with effects on serotonin production by enterochromaffin cells and uptake by platelets. Both NK cells and platelet depletion reduce the activation of hippocampal inhibitory neurons and increase the long-term potentiation of synaptic transmission. Understanding the role of platelets in the modulation of neuro-immune interactions offers additional tools for the definition of the molecular and cellular elements involved in the growing field of brain-body communication.
Collapse
Affiliation(s)
- Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
| | - Alessandro Mormino
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Letizia Mazzarella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Germana Cocozza
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Arianna Rinaldi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Erika Di Pietro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | | | - Eleonora De Felice
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Giuseppina Chece
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Diego Andolina
- Department of Psychology and Center for Research in Neurobiology 'D. Bovet', Sapienza University of Rome, Rome, Italy
| | - Rossella Ventura
- Department of Psychology and Center for Research in Neurobiology 'D. Bovet', Sapienza University of Rome, Rome, Italy
| | - Donald Ielpo
- Department of Psychology and Center for Research in Neurobiology 'D. Bovet', Sapienza University of Rome, Rome, Italy
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; IRCCS Fondazione Policlinico Universitario A. Gemelli, Largo A. Gemelli 1, Roma, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Lucia Stefanini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Cristina Limatola
- Laboratory affiliated with Istituto Pasteur, Department of Physiology and Pharmacology, Sapienza University, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy.
| |
Collapse
|
15
|
Boilard E, Burger D, Buzas E, Gresele P, Machlus KR, Mackman N, Siljander P, Nieuwland R. Deciphering Platelets: Are They Cells or an Evolved Form of Extracellular Vesicles? Circ Res 2025; 136:442-452. [PMID: 39946441 PMCID: PMC11839173 DOI: 10.1161/circresaha.124.324721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Platelets are abundant in blood, where they maintain the integrity of the vasculature. Megakaryocytes, the cells responsible for platelet genesis, produce membrane protrusions from which as many as 5000 anucleate platelets can be released into the bloodstream. Platelets lack genomic DNA but contain different molecules, such as RNA, as well as organelles transmitted from the parent megakaryocyte. There is no consensus in the scientific community on whether platelets are cells or not: for example, they are sometimes called cells, small cells, anucleated cells, cell fragments, or megakaryocyte fragments. Extracellular vesicles are particles delimited by a lipid bilayer that are released from cells but cannot replicate on their own. Like platelets, extracellular vesicles lack a nucleus and carry components from their donor cell. Herein, we will explore various viewpoints suggesting that platelets may be cells, albeit not conventional cells, or may be a previously unrecognized type of extracellular vesicle. Beyond a mere debate over terminology, this perspective seeks to help properly define and classify platelets, aiming for better integration into the concept of either cells or extracellular vesicles. This will foster a clearer understanding and drive advances in platelet research.
Collapse
Affiliation(s)
- Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Centre Arthrite-Université Laval, Québec, Canada (E. Boilard)
| | - Dylan Burger
- Kidney Research Centre, Inflammation and Chronic Disease Program, Ottawa Hospital Research Institute, Ontario, Canada (D.B.)
| | - Edit Buzas
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary (E. Buzas)
- HUN-RE-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary (E. Buzas)
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary (E. Buzas)
| | - Paolo Gresele
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Italy (P.G.)
| | - Kellie R Machlus
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA (K.R.M.)
| | - Nigel Mackman
- Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill (N.M.)
| | - Pia Siljander
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland (P.S.)
- Finnish Red Cross Blood Service, Helsinki, Finland (P.S.)
| | - Rienk Nieuwland
- Amsterdam University Medical Centers, University of Amsterdam, Laboratory of Experimental Clinical Chemistry, Laboratory Specialized Diagnostics and Research, Department of Laboratory Medicine, and Vesicle Observation Centre, The Netherlands (R.N.)
| |
Collapse
|
16
|
Coenen DM, Alfar HR, Whiteheart SW. Platelet endocytosis and α-granule cargo packaging are essential for normal skin wound healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.636051. [PMID: 39975047 PMCID: PMC11838500 DOI: 10.1101/2025.02.01.636051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The high prevalence of chronic wounds, i.e., 2.5-3% of the US population, causes a large social and financial burden. Physiological wound healing is a multi-step process that involves different cell types and growth factors. Platelet-rich plasma or platelet-derived factors have been used to accelerate wound repair, but their use has been controversial with mixed results. Thus, a detailed functional understanding of platelet functions in wound healing beyond hemostasis is needed. This study investigated the importance of platelet α-granule cargo packaging and endocytosis in a dorsal full-thickness excisional skin wound model using mice with defects in α-granule cargo packaging (Nbeal2 -/- mice) and endocytosis (platelet-specific Arf6 -/- and VAMP2/3 Δ mice). We found that proper kinetic and morphological healing of dorsal skin wounds in mice requires both de novo as well as endocytosed platelet α-granule cargo. Histological and morphometric analyses of cross-sectional wound sections illustrated that mice with defects in α-granule cargo packaging or platelet endocytosis had delayed (epi)dermal regeneration in both earlier and advanced healing. This was reflected by reductions in wound collagen and muscle/keratin content, delayed scab formation and/or resolution, re-epithelialization, and cell migration and proliferation. Molecular profiling analysis of wound extracts showed that the impact of platelet function extends beyond hemostasis to the inflammation, proliferation, and tissue remodeling phases via altered expression of several bioactive molecules, including IL-1β, VEGF, MMP-9, and TIMP-1. These findings provide a basis for advances in clinical wound care through a better understanding of key mechanistic processes and cellular interactions in (patho)physiological wound healing. Key points De novo and endocytosed platelet α-granule cargo support physiological skin wound healing Platelet function in wound healing extends to the inflammation, proliferation, and tissue remodeling phases.
Collapse
|
17
|
Greaves J, Pula G. Hyperactivity and Pro-inflammatory Functions of Platelets in Diabetes. FRONT BIOSCI-LANDMRK 2025; 30:26190. [PMID: 39862077 DOI: 10.31083/fbl26190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 01/27/2025]
Abstract
Cardiovascular complications claim the lives of up to 70% of patients with diabetes mellitus (DM). The mechanisms increasing cardiovascular risk in DM remain to be fully understood and successfully addressed. Nonetheless, there is increasing evidence in the scientific literature of the participation of platelets in the cardiovascular complications of DM. Multiple reports describe the hyperactivity of platelets in DM and their participation in inflammatory responses. The understanding of the mechanisms underlying the contribution of platelets to cardiovascular pathologies in DM will help the development of targeted therapeutic strategies able to reduce cardiovascular risk in these patients. In this literature review, we summarise our current understanding of the molecular mechanisms leading to the contribution of platelets to cardiovascular risk in DM. Both platelet haemostatic activity leading to thrombus formation and their participation to inflammatory processes are stimulated by the biochemical conditions associated with DM. We also present evidence on how DM affect the efficacy of existing therapeutic treatments for thrombosis and, by converse, how antidiabetic drugs may affect platelet function and the haemostasis/thrombosis balance. Taken together, the growing evidence of the different and unexpected roles of platelets in the progression of DM provides a strong rationale for the design of cardiovascular drugs targeting specifically platelets, their pro-inflammatory activity and their activation mechanisms in this disease. Overall, this article provides an important up-to-date overview of the pathophysiological alterations of platelets in DM, which need to be taken into account for the effective management of cardiovascular health in this disease.
Collapse
Affiliation(s)
- Jordan Greaves
- Biomedical Institute for Multimorbidity (BIM), Hull York Medical School (HYMS), University of Hull, HU6 7RX Hull, UK
| | - Giordano Pula
- Biomedical Institute for Multimorbidity (BIM), Hull York Medical School (HYMS), University of Hull, HU6 7RX Hull, UK
| |
Collapse
|
18
|
Weiss L, Macleod H, Maguire PB. Platelet-derived extracellular vesicles in cardiovascular disease and treatment - from maintaining homeostasis to targeted drug delivery. Curr Opin Hematol 2025; 32:4-13. [PMID: 39377239 PMCID: PMC11620325 DOI: 10.1097/moh.0000000000000845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) remains a major global health burden. Rising incidences necessitate improved understanding of the pathophysiological processes underlying disease progression to foster the development of novel therapeutic strategies. Besides their well recognized role in CVD, platelet-derived extracellular vesicles (PEVs) mediate inter-organ cross talk and contribute to various inflammatory diseases. RECENT FINDINGS PEVs are readily accessible diagnostic biomarkers that mirror pathophysiological disease progression but also may confer cardioprotective properties. Monitoring the effects of modulation of PEV signatures through pharmacotherapies has also provided novel insights into treatment efficacy. Furthermore, exploiting their inherent ability to infiltrate thrombi, atherosclerotic plaques and solid tumours, PEVs as well as platelet-membrane coated nanoparticles are emerging as novel effective and targeted treatment options for CVD and cancer. SUMMARY Collectively, in-depth characterization of PEVs in various diseases ultimately enhances their use as diagnostic or prognostic biomarkers and potential therapeutic targets, making them clinically relevant candidates to positively impact patient outcomes.
Collapse
Affiliation(s)
- Luisa Weiss
- Conway SPHERE Research Group, Conway Institute
- School of Biomolecular and Biomedical Science
- AI for Healthcare Hub, Institute for Discovery, O’Brien Centre of Science, University College Dublin, Dublin, Ireland
| | - Hayley Macleod
- Conway SPHERE Research Group, Conway Institute
- School of Biomolecular and Biomedical Science
| | - Patricia B. Maguire
- Conway SPHERE Research Group, Conway Institute
- School of Biomolecular and Biomedical Science
- AI for Healthcare Hub, Institute for Discovery, O’Brien Centre of Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Pelesz A, Rafa-Zablocka K, Kaczara P, Chlopicki S, Przyborowski K. Protein disulfide isomerase 1 (PDIA1) regulates platelet-derived extracellular vesicle release. Thromb Res 2025; 245:109209. [PMID: 39566352 DOI: 10.1016/j.thromres.2024.109209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Protein disulfide isomerase 1 (PDIA1) and 3 (PDIA3) regulate platelet activation and thrombus formation. However, their role in the formation of platelet-derived extracellular vesicles (pEVs) remains unknown. AIM To characterise the effects of PDIA1 and PDIA3 inhibition on pEV formation in washed murine platelets in response to platelet glycoprotein VI (GPVI) receptor or intracellular calcium signal activation. METHODS Washed platelets were isolated from C57BL/6 mice and activated using convulxin or the calcium ionophore A23187. Then, the resulting pEVs were analysed using nano flow cytometry (FC), platelet aggregation was measured by FC and a 96-well plate-based assay, and intracellular free calcium concentration ([Ca2+]i) was measured by indicator fluorescence. Platelet PDIs were blocked by a classic selective PDIA1 inhibitor (bepristat 2a) and sulphonamides of aziridine-2-carboxylic acid derivatives, novel PDI inhibitors relatively selective for PDIA1 or PDIA3 (C-3389 and C-3399, respectively). Clinically relevant antiplatelet drugs were used for comparison. RESULTS Convulxin and A23187 concentration-dependently induced pEV formation. However, unlike convulxin, platelet activation by A23187 did not stimulate their aggregation. Bepristat 2a, C-3389 and C-3399 inhibited convulxin-induced pEV release accompanied by the reduction of [Ca2+]i. In contrast, only bepristat 2a inhibited A23187-induced pEV release, but without effect on [Ca2+]i. Cangrelor and tirofiban, but not acetylsalicylic acid (ASA), inhibited convulxin-induced pEV release, but neither of them inhibited A23187-induced pEV release. CONCLUSION The inhibition of PDIA1 represents a novel approach to inhibit pEV formation by a mechanism independent of platelet aggregation and calcium signaling.
Collapse
Affiliation(s)
- Agnieszka Pelesz
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland
| | - Katarzyna Rafa-Zablocka
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland
| | - Patrycja Kaczara
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland; Jagiellonian University Medical College, Chair of Pharmacology, Krakow, Poland
| | - Kamil Przyborowski
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland.
| |
Collapse
|
20
|
Xin X, Koenen RR. Assessing platelet-derived extracellular vesicles for potential as therapeutic targets in cardiovascular diseases. Expert Opin Ther Targets 2025; 29:17-28. [PMID: 39817690 DOI: 10.1080/14728222.2025.2454617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/17/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
INTRODUCTION Cardiovascular disease (CVD) is the leading cause of death worldwide. Platelet-derived extracellular vesicles (PEV) have attracted extensive attention in cardiovascular disease research in recent years because their cargo is involved in a variety of pathophysiological processes, such as thrombosis, immune response, promotion or inhibition of inflammatory response, promotion of angiogenesis as well as cell proliferation and migration. AREAS COVERED This review explores the role of PEV in various cardiovascular diseases (such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, and heart failure), with relation to its molecular cargo (nucleic acids, bioactive lipids, proteins) and aims to provide new insights in the pathophysiologic role of PEV, and methods for preventing and treating cardiovascular diseases based on PEV. EXPERT OPINION Studies have shown that the cargo of PEV may be dysregulated during cardiovascular disease and delivery to tissues can result in detrimental pathophysiologic effects. Counteracting this process might have the potential to inhibit inflammation, promote angiogenesis, and inhibit cardiomyocyte death. In addition, PEV have potential as biocompatible and autologous drug carriers. Therefore, better research on the mechanisms how PEV act during cardiovascular disease and could be implemented as a therapeutic will provide new perspectives for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Xin Xin
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
21
|
Tyravska Y, Nadeem T, Savchenko O, Bondarchuk O, Talabko Y. Immunohaemostasis and the significance of immune reactions in the regulation of blood coagulation. Eur J Microbiol Immunol (Bp) 2024; 14:392-404. [PMID: 39630220 PMCID: PMC11836649 DOI: 10.1556/1886.2024.00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction This study was conducted to determine the specific features of the mutual influence of the immune and haemostatic systems in immunohaemostasis, the role of immune reactions in the regulation of blood coagulation, and the efficacy of modern methods of treating thrombosis and bleeding. Methods The study analysed relevant scientific sources on immunology and haematology and identified the specific features of the blood clotting process and the role of immune reactions in it. Results The study found that the immune system influences the haematological system through the interaction of blood clotting factors, platelets, plasminogen, endothelial cells with immune cells. The haemostatic system influences the immune system through mechanisms to maintain immune tolerance and immune memory and the properties of clotting factors to activate the stimulation and migration of immune cells to the site of infection. Immune reactions regulate blood coagulation by activating platelets, regulating blood coagulation factors, affecting fibrinolysis, and immune tolerance. The process of platelet activation involves immune cells, immune complexes, and microbial components. The regulation of blood coagulation factors is influenced by the ability of immune cells to produce activators and inhibitors of these factors and to stimulate or slow down fibrinolysis. The immune system's maintenance of immune tolerance to blood components is regulated by mechanisms of immune response suppression, partial immune ignoring of certain blood elements, inhibition of activation of certain immune cells, apoptosis, and selection of immature T-lymphocytes. Treatment methods for patients at risk of thrombosis and bleeding include anticoagulation, antiplatelet, dual antiplatelet therapy, thrombectomy, endovascular methods, medical prophylaxis of bleeding, and coagulation monitoring. Conclusions The findings of this study suggest the significance of immune responses in the regulation of blood coagulation processes, and therefore they can be used in the development of immunotherapy methods for the treatment of thrombosis and bleeding.
Collapse
Affiliation(s)
- Yuliya Tyravska
- Department of Internal Medicine No. 4, Bogomolets National Medical University, Kyiv, Ukraine
| | - Tarana Nadeem
- Department of Internal Medicine No. 4, Bogomolets National Medical University, Kyiv, Ukraine
| | - Oleksandr Savchenko
- Department of Internal Medicine No. 4, Bogomolets National Medical University, Kyiv, Ukraine
| | - Oleksandr Bondarchuk
- Department of Internal Medicine No. 4, Bogomolets National Medical University, Kyiv, Ukraine
| | - Yuliia Talabko
- Department of Internal Medicine No. 4, Bogomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
22
|
Paul M, Hong F, Falet H, Kim H. Gelsolin controls the release of phosphatidylserine (PS)-positive microvesicles (MVs) from platelets. Cell Signal 2024; 124:111433. [PMID: 39321905 DOI: 10.1016/j.cellsig.2024.111433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Upon activation by vascular injury or extracellular agonists, platelets undergo rapid change shape, a process regulated by the actin cytoskeleton and accessory proteins. Platelet shape change is accompanied by the secretion of hemostatic factors and immunomodulatory cytokines from their intracellular granules, as well as the release of microvesicles (MVs) containing pro-inflammatory cytokines and procoagulant phosphatidylserine (PS). However, the role of actin dynamics in MV generation remains unclear. In this study, we found that blocking actin polymerization with cytochalasin D attenuated the release of PS-positive MVs in human platelets stimulated by thrombin or the calcium ionophore A23187. The actin-severing protein gelsolin (Gsn) facilitates normal actin filament turnover in activated platelets. Platelets from Gsn-deficient (Gsn-/-) mice showed reduced MV release compared to platelets from control mice. These findings indicate that the proper dynamics of the actin cytoskeleton are essential for MV generation in platelets, which has implications for their pro-inflammatory and procoagulant functions.
Collapse
Affiliation(s)
- Manoj Paul
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Felix Hong
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Hervé Falet
- Versiti Blood Research Institute, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
23
|
Yeh WT, Yu EYL, Lu YH, Livkisa D, Burnouf T, Lundy DJ. Bioprocessing of human platelet concentrates to generate lysates and extracellular vesicles for therapeutic applications. MethodsX 2024; 13:102822. [PMID: 39105089 PMCID: PMC11299553 DOI: 10.1016/j.mex.2024.102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/22/2024] [Indexed: 08/07/2024] Open
Abstract
This work describes protocols for preparing specific forms of human platelet lysates from pooled platelet concentrates (PCs) and the isolation of platelet-derived extracellular vesicles (p-EVs). Clinical-grade PCs can be sourced from blood establishments immediately following expiration for transfusion use. Here, we describe methods to process PCs into specific lysates from which p-EVs can be isolated. Each lysate type is prepared using platelet activation and processing methods which produce distinct products that may be useful in different applications. For example, serum-converted platelet lysate (SCPL)-EVs were recently shown to have powerful therapeutic properties following myocardial infarction in mice. EVs can be isolated from all products using size exclusion chromatography, producing pure and consistent p-EVs from multiple batches. Together, these methods allow isolation of p-EVs with excellent potential for clinical and preclinical applications.•Platelet concentrates (PCs) obtained from local blood establishments are reliable and sustainable sources to generate biomaterials.•We outline five distinct methods of platelet lysate generation and one method for extracellular vesicle isolation.•Each platelet lysate form has different biological properties which may be suitable for certain applications.
Collapse
Affiliation(s)
- Wei-Ting Yeh
- School of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei 235603, Taiwan
| | - Ezrin Yi-Ling Yu
- School of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei 235603, Taiwan
| | - Ya-Hsuan Lu
- School of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei 235603, Taiwan
| | - Dora Livkisa
- International PhD Program in Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei 235603, Taiwan
| | - Thierry Burnouf
- International PhD Program in Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei 235603, Taiwan
- Graduate Institute of Biomedical Materials & Tissue Engineering, Taipei Medical University, 301 Yuantong Road, Taipei 235603, Taiwan
| | - David J. Lundy
- International PhD Program in Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei 235603, Taiwan
- Graduate Institute of Biomedical Materials & Tissue Engineering, Taipei Medical University, 301 Yuantong Road, Taipei 235603, Taiwan
| |
Collapse
|
24
|
Fan Z, Gan Y, Hu Y. The potential utilization of platelet-derived extracellular vesicles in clinical treatment. Platelets 2024; 35:2397592. [PMID: 39287127 DOI: 10.1080/09537104.2024.2397592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/09/2024] [Accepted: 08/02/2024] [Indexed: 09/19/2024]
Abstract
Platelet-derived extracellular vesicles (PEVs) are released by platelets in the blood circulation, which carry a rich bio-molecular cargo influential in intercellular communications. PEVs can enter the lymph, bone marrow, and synovial fluid as nano-sized particles, while platelets cannot cross tissue barriers. Considering the advantages of PEVs such as low immunogenicity, high regulation of signal transduction, and easy obtainment, PEVs may be promising therapeutic tools for medical applications. The exceptional functional roles played by PEVs explain the recent interest in exploring new cell-free therapies that could address needs in angiogenesis, regenerative medicine, and targeted drug delivery. The review takes a critical look at the main advances of PEVs in the treatment of diseases by presenting the latest knowledge from the performed studies, in order to enhance the further translation of the PEVs research into feasible therapeutic applications.
Collapse
Affiliation(s)
- Zhijia Fan
- Department of Laboratory Medicine, Beijing Chaoyang Hospital, Beijing Center for Clinical Laboratories, The Third Clinical Medical College of Capital Medical University, Beijing, PR China
| | - Yixiao Gan
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Yanwei Hu
- Department of Laboratory Medicine, Beijing Chaoyang Hospital, Beijing Center for Clinical Laboratories, The Third Clinical Medical College of Capital Medical University, Beijing, PR China
| |
Collapse
|
25
|
Hu Z, Wang W, Lin Y, Guo H, Chen Y, Wang J, Yu F, Rao L, Fan Z. Extracellular Vesicle-Inspired Therapeutic Strategies for the COVID-19. Adv Healthc Mater 2024; 13:e2402103. [PMID: 38923772 DOI: 10.1002/adhm.202402103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Emerging infectious diseases like coronavirus pneumonia (COVID-19) present significant challenges to global health, extensively affecting both human society and the economy. Extracellular vesicles (EVs) have demonstrated remarkable potential as crucial biomedical tools for COVID-19 diagnosis and treatment. However, due to limitations in the performance and titer of natural vesicles, their clinical use remains limited. Nonetheless, EV-inspired strategies are gaining increasing attention. Notably, biomimetic vesicles, inspired by EVs, possess specific receptors that can act as "Trojan horses," preventing the virus from infecting host cells. Genetic engineering can enhance these vesicles by enabling them to carry more receptors, significantly increasing their specificity for absorbing the novel coronavirus. Additionally, biomimetic vesicles inherit numerous cytokine receptors from parent cells, allowing them to effectively mitigate the "cytokine storm" by adsorbing pro-inflammatory cytokines. Overall, this EV-inspired strategy offers new avenues for the treatment of emerging infectious diseases. Herein, this review systematically summarizes the current applications of EV-inspired strategies in the diagnosis and treatment of COVID-19. The current status and challenges associated with the clinical implementation of EV-inspired strategies are also discussed. The goal of this review is to provide new insights into the design of EV-inspired strategies and expand their application in combating emerging infectious diseases.
Collapse
Affiliation(s)
- Ziwei Hu
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Wei Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Ying Lin
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Hui Guo
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, P. R. China
| | - Yiwen Chen
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Junjie Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Feng Yu
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China
| | - Zhijin Fan
- Institute for Engineering Medicine, Kunming Medical University, Kunming, 650500, P. R. China
| |
Collapse
|
26
|
Das K, Rao LVM. Coagulation protease-induced extracellular vesicles: their potential effects on coagulation and inflammation. J Thromb Haemost 2024; 22:2976-2990. [PMID: 39127325 PMCID: PMC11726980 DOI: 10.1016/j.jtha.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
Coagulation proteases, in addition to playing an essential role in blood coagulation, often influence diverse cellular functions by inducing specific signaling pathways via the activation of protease-activated receptors (PARs). PAR activation-induced cellular effects are known to be cell-specific as PARs are expressed selectively in specific cell types. However, a growing body of evidence indicates that coagulation protease-induced PAR activation in a specific cell type could affect cellular responses in other cell types via communicating through extracellular vesicles (EVs) as coagulation protease-induced PAR signaling could promote the release of EVs in various cell types. EVs are membrane-enclosed nanosized vesicles that facilitate intercellular communication by transferring bioactive molecules, such as proteins, lipids, messenger RNAs, and microRNAs, etc., from donor cells to recipient cells. Our recent findings established that factor (F)VIIa promotes the release of EVs from vascular endothelium via endothelial cell protein C receptor-dependent activation of PAR1-mediated biased signaling. FVIIa-released EVs exhibit procoagulant activity and cytoprotective responses in both in vitro and in vivo model systems. This review discusses how FVIIa and other coagulation proteases trigger the release of EVs. The review specifically discusses how FVIIa-released EVs are enriched with phosphatidylserine and anti-inflammatory microRNAs and the impact of FVIIa-released EVs on hemostasis in therapeutic settings. The review also briefly highlights the therapeutic potential of FVIIa-released EVs in treating bleeding and inflammatory disorders, such as hemophilic arthropathy.
Collapse
Affiliation(s)
- Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas at Tyler School of Medicine, The University of Texas at Tyler Health Science Center, Tyler, Texas, USA.
| |
Collapse
|
27
|
Hwang JH, Lai A, Tung JP, Harkin DG, Flower RL, Pecheniuk NM. Proteomic Characterization of Transfusable Blood Components: Fresh Frozen Plasma, Cryoprecipitate, and Derived Extracellular Vesicles via Data-Independent Mass Spectrometry. J Proteome Res 2024; 23:4508-4522. [PMID: 39254217 DOI: 10.1021/acs.jproteome.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Extracellular vesicles (EVs) are a heterogeneous collection of particles that play a crucial role in cell-to-cell communication, primarily due to their ability to transport molecules, such as proteins. Thus, profiling EV-associated proteins offers insight into their biological effects. EVs can be isolated from various biological fluids, including donor blood components such as cryoprecipitate and fresh frozen plasma (FFP). In this study, we conducted a proteomic analysis of five single donor units of cryoprecipitate, FFP, and EVs derived from these blood components using a quantitative mass spectrometry approach. EVs were successfully isolated from both cryoprecipitate and FFP based on community guidelines. We identified and quantified approximately 360 proteins across all sample groups. Principal component analysis and heatmaps revealed that both cryoprecipitate and FFP are similar. Similarly, EVs derived from cryoprecipitate and FFP are comparable. However, they differ between the originating fluids and their derived EVs. Using the R-package MS-DAP, differentially expressed proteins (DEPs) were identified. The DEPs for all comparisons, when submitted for gene enrichment analysis, are involved in the complement and coagulation pathways. The protein profile generated from this study will have important clinical implications in increasing our knowledge of the proteins that are associated with EVs derived from blood components.
Collapse
Affiliation(s)
- Ji Hui Hwang
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
| | - Andrew Lai
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
| | - John-Paul Tung
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Damien G Harkin
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
| | - Robert L Flower
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
| | - Natalie M Pecheniuk
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
| |
Collapse
|
28
|
Tran V, de Oliveira‐Jr GP, Chidester S, Lu S, Pleet ML, Ivanov AR, Tigges J, Yang M, Jacobson S, Gonçalves MCB, Schmaier AA, Jones J, Ghiran IC. Choice of blood collection methods influences extracellular vesicles counts and miRNA profiling. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70008. [PMID: 39440167 PMCID: PMC11494683 DOI: 10.1002/jex2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/15/2024] [Accepted: 08/26/2024] [Indexed: 10/25/2024]
Abstract
Circulating RNAs have been investigated systematically for over 20 years, both as constituents of circulating extracellular vesicles (EVs) or, more recently, non-EV RNA carriers, such as exomeres and supermeres. The high level of variability and low reproducibility rate of EV/extracellular RNA (exRNA) results generated even on the same biofluids promoted several efforts to limit pre-analytical variability by standardizing sample collection and sample preparation, along with instrument validation, setup and calibration. Anticoagulants (ACs) are often chosen based on the initial goal of the study and not necessarily for the later EV and/or exRNA analyses. We show the effects of blood collection on EV size, abundance, and antigenic composition, as well on the miRNAs. Our focus of this work was on the effect of ACs on the number and antigenic composition of circulating EVs and on a set of circulating miRNA species, which were shown to be relevant as disease markers in several cancers and Alzheimer's disease. Results show that while the number of plasma EVs, their relative size, and post-fluorescence labeling profile varied with each AC, their overall antigenic composition, with few exceptions, did not change significantly. However, the number of EVs expressing platelet and platelet-activation markers increased in serum samples. For overall miRNA expression levels, EDTA was a better AC, although this may have been associated with stimulation of cells in the blood collection tube. Citrate and serum rendered better results for a set of miRNAs that were described as circulating markers for Alzheimer's disease, colon, and papillary thyroid cancers.
Collapse
Affiliation(s)
- Vivian Tran
- Department of Anesthesia, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Getulio Pereira de Oliveira‐Jr
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Department of Chemistry and Chemical Biology, The Barnett Institute of Chemical & Biological AnalysisNortheastern UniversityBostonMassachusettsUSA
| | - Stephanie Chidester
- Laboratory of Pathology, Center for Cancer ResearchNational Cancer InstituteBethesdaMassachusettsUSA
| | - Shulin Lu
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Michelle L. Pleet
- Neuroimmunology and Neurovirology Division, National Institute for Neurological Disease and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | - Alexander R. Ivanov
- Department of Chemistry and Chemical Biology, The Barnett Institute of Chemical & Biological AnalysisNortheastern UniversityBostonMassachusettsUSA
| | - John Tigges
- Nanoflow Cytometry Core Facility, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Moua Yang
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Steven Jacobson
- Neuroimmunology and Neurovirology Division, National Institute for Neurological Disease and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | - Maria C. B. Gonçalves
- Department of Anesthesia, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Alec A. Schmaier
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Jennifer Jones
- Laboratory of Pathology, Center for Cancer ResearchNational Cancer InstituteBethesdaMassachusettsUSA
| | - Ionita C. Ghiran
- Department of Anesthesia, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
29
|
Zhuang T, Wang S, Yu X, He X, Guo H, Ou C. Current status and future perspectives of platelet-derived extracellular vesicles in cancer diagnosis and treatment. Biomark Res 2024; 12:88. [PMID: 39183323 PMCID: PMC11346179 DOI: 10.1186/s40364-024-00639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
Platelets are a significant component of the cell population in the tumour microenvironment (TME). Platelets influence other immune cells and perform cross-talk with tumour cells, playing an important role in tumour development. Extracellular vesicles (EVs) are small membrane vesicles released from the cells into the TME. They can transfer biological information, including proteins, nucleic acids, and metabolites, from secretory cells to target receptor cells. This process affects the progression of various human diseases, particularly cancer. In recent years, several studies have demonstrated that platelet-derived extracellular vesicles (PEVs) can help regulate the malignant biological behaviours of tumours, including malignant proliferation, resistance to cell death, invasion and metastasis, metabolic reprogramming, immunity, and angiogenesis. Consequently, PEVs have been identified as key regulators of tumour progression. Therefore, targeting PEVs is a potential strategy for tumour treatment. Furthermore, the extensive use of nanomaterials in medical research has indicated that engineered PEVs are ideal delivery systems for therapeutic drugs. Recent studies have demonstrated that PEV engineering technologies play a pivotal role in the treatment of tumours by combining photothermal therapy, immunotherapy, and chemotherapy. In addition, aberrant changes in PEVs are closely associated with the clinicopathological features of patients with tumours, which may serve as liquid biopsy markers for early diagnosis, monitoring disease progression, and the prognostic assessment of patients with tumours. A comprehensive investigation into the role and potential mechanisms of PEVs in tumourigenesis may provide novel diagnostic biomarkers and potential therapeutic strategies for treating human tumours.
Collapse
Affiliation(s)
- Tongtao Zhuang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shenrong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoqian Yu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hongbin Guo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
30
|
Gutmann C, Mayr M. Differential effects of physiological agonists on the proteome of platelet-derived extracellular vesicles. Proteomics 2024; 24:e2400090. [PMID: 39148210 DOI: 10.1002/pmic.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 08/17/2024]
Abstract
Arterial thrombosis contributes to some of the most frequent causes of mortality globally, such as myocardial infarction and stroke. Platelets are essential mediators of physiological haemostasis and pathological thrombosis. Platelet activation is controlled by a multitude of signalling pathways. Upon activation, platelets shed platelet-derived extracellular vesicles (pEVs). In this Special Issue: Extracellular Vesicles, Moon et al. investigate the impact of various platelet agonists (thrombin, ADP, collagen) on the proteome of pEVs. The study demonstrates that pEVs exhibit an agonist-dependent altered proteome compared to their parent cells, with significant variations in proteins related to coagulation, complement, and platelet activation. The study observes the rapid generation of pEVs following agonist stimulation with specific proteome alterations that underscore an active packaging process. This commentary highlights the implications of their findings and discusses the role of pEV cargo in cardiovascular disease with potential novel therapeutic and diagnostic opportunities.
Collapse
Affiliation(s)
- Clemens Gutmann
- Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Manuel Mayr
- Division of Cardiology, Medical University of Vienna, Vienna, Austria
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
31
|
Jan N, Bostanudin MF, Moutraji SA, Kremesh S, Kamal Z, Hanif MF. Unleashing the biomimetic targeting potential of platelet-derived nanocarriers on atherosclerosis. Colloids Surf B Biointerfaces 2024; 240:113979. [PMID: 38823339 DOI: 10.1016/j.colsurfb.2024.113979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
Atherosclerosis, the primary mechanism underlying the development of many cardiovascular illnesses, continues to be one of the leading causes of mortality worldwide. Platelet (PLT), which are essential for maintaining body homeostasis, have been strongly linked to the onset of atherosclerosis at various stages due to their inherent tendency to bind to atherosclerotic lesions and show an affinity for plaques. Therefore, mimicking PLT's innate adhesive features may be necessary to effectively target plaques. PLT-derived nanocarriers have emerged as a promising biomimetic targeting strategy for treating atherosclerosis due to their numerous advantages. These advantages include excellent biocompatibility, minimal macrophage phagocytosis, prolonged circulation time, targeting capability for impaired vascular sites, and suitability as carriers for anti-atherosclerotic drugs. Herein, we discuss the role of PLT in atherogenesis and propose the design of nanocarriers based on PLT-membrane coating and PLT-derived vesicles. These nanocarriers can target multiple biological elements relevant to plaque development. The review also emphasizes the current challenges and future research directions for the effective utilization of PLT-derived nanocarriers in treating atherosclerosis.
Collapse
Affiliation(s)
- Nasrullah Jan
- Department of Pharmacy, The University of Chenab, Gujrat 50700, Punjab, Pakistan.
| | - Mohammad F Bostanudin
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Sedq A Moutraji
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Sedra Kremesh
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Zul Kamal
- Department of Pharmacy, Shaheed Benazir Bhutto University, Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Farhan Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; Bahawalpur College of Pharmacy, BMDC Complex Bahawalpur 63100, Punjab, Pakistan
| |
Collapse
|
32
|
Delgado Dolset MI, Pablo-Torres C, Contreras N, Couto-Rodríguez A, Escolar-Peña A, Graña-Castro O, Izquierdo E, López-Rodríguez JC, Macías-Camero A, Pérez-Gordo M, Villaseñor A, Zubeldia-Varela E, Barber D, Escribese MM. Severe Allergy as a Chronic Inflammatory Condition From a Systems Biology Perspective. Clin Exp Allergy 2024; 54:550-584. [PMID: 38938054 DOI: 10.1111/cea.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 05/26/2024] [Indexed: 06/29/2024]
Abstract
Persistent and unresolved inflammation is a common underlying factor observed in several and seemingly unrelated human diseases, including cardiovascular and neurodegenerative diseases. Particularly, in atopic conditions, acute inflammatory responses such as those triggered by insect venom, food or drug allergies possess also a life-threatening potential. However, respiratory allergies predominantly exhibit late immune responses associated with chronic inflammation, that can eventually progress into a severe phenotype displaying similar features as those observed in other chronic inflammatory diseases, as is the case of uncontrolled severe asthma. This review aims to explore the different facets and systems involved in chronic allergic inflammation, including processes such as tissue remodelling and immune cell dysregulation, as well as genetic, metabolic and microbiota alterations, which are common to other inflammatory conditions. Our goal here was to deepen on the understanding of an entangled disease as is chronic allergic inflammation and expose potential avenues for the development of better diagnostic and intervention strategies.
Collapse
Affiliation(s)
- M I Delgado Dolset
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - C Pablo-Torres
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - N Contreras
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Couto-Rodríguez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Escolar-Peña
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - O Graña-Castro
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - E Izquierdo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - J C López-Rodríguez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Macías-Camero
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - M Pérez-Gordo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Villaseñor
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - E Zubeldia-Varela
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - D Barber
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - M M Escribese
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| |
Collapse
|
33
|
Peng D, Sun S, Zhao M, Zhan L, Wang X. Current Advances in Nanomaterials Affecting Functions and Morphology of Platelets. J Funct Biomater 2024; 15:188. [PMID: 39057309 PMCID: PMC11278457 DOI: 10.3390/jfb15070188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Nanomaterials have been extensively used in the biomedical field due to their unique physical and chemical properties. They promise wide applications in the diagnosis, prevention, and treatment of diseases. Nanodrugs are generally transported to target tissues or organs by coupling targeting molecules or enhanced permeability and retention effect (EPR) passively. As intravenous injection is the most common means of administration of nanomedicine, the transport process inevitably involves the interactions between nanoparticles (NPs) and blood cells. Platelets are known to not only play a critical role in normal coagulation by performing adhesion, aggregation, release, and contraction functions, but also be associated with pathological thrombosis, tumor metastasis, inflammation, and immune reactions, making it necessary to investigate the effects of NPs on platelet function during transport, particularly the way in which their physical and chemical properties determine their interaction with platelets and the underlying mechanisms by which they activate and induce platelet aggregation. However, such data are lacking. This review is intended to summarize the effects of NPs on platelet activation, aggregation, release, and apoptosis, as well as their effects on membrane proteins and morphology in order to shed light on such key issues as how to reduce their adverse reactions in the blood system, which should be taken into consideration in NP engineering.
Collapse
Affiliation(s)
| | | | | | - Linsheng Zhan
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China; (D.P.); (S.S.); (M.Z.)
| | - Xiaohui Wang
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China; (D.P.); (S.S.); (M.Z.)
| |
Collapse
|
34
|
Mladenović D, Vesković M, Šutulović N, Hrnčić D, Stanojlović O, Radić L, Macut JB, Macut D. Adipose-derived extracellular vesicles - a novel cross-talk mechanism in insulin resistance, non-alcoholic fatty liver disease, and polycystic ovary syndrome. Endocrine 2024; 85:18-34. [PMID: 38285412 DOI: 10.1007/s12020-024-03702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/14/2024] [Indexed: 01/30/2024]
Abstract
Obesity is the best described risk factor for the development of non-alcoholic fatty liver disease (NAFLD)/metabolic dysfunction associated steatotic liver disease (MASLD) and polycystic ovary syndrome (PCOS) while the major pathogenic mechanism linking these entities is insulin resistance (IR). IR is primarily caused by increased secretion of proinflammatory cytokines, adipokines, and lipids from visceral adipose tissue. Increased fatty acid mobilization results in ectopic fat deposition in the liver which causes endoplasmic reticulum stress, mitochondrial dysfunction, and oxidative stress resulting in increased cytokine production and subsequent inflammation. Similarly, IR with hyperinsulinemia cause hyperandrogenism, the hallmark of PCOS, and inflammation in the ovaries. Proinflammatory cytokines from both liver and ovaries aggravate IR thus providing a complex interaction between adipose tissue, liver, and ovaries in inducing metabolic abnormalities in obese subjects. Although many pathogenic mechanisms of IR, NAFLD/MASLD, and PCOS are known, there is still no effective therapy for these entities suggesting the need for further evaluation of their pathogenesis. Extracellular vesicles (EVs) represent a novel cross-talk mechanism between organs and include membrane-bound vesicles containing proteins, lipids, and nucleic acids that may change the phenotype and function of target cells. Adipose tissue releases EVs that promote IR, the development of all stages of NAFLD/MASLD and PCOS, while mesenchymal stem cell-derived AVs may alleviate metabolic abnormalities and may represent a novel therapeutic device in NAFLD/MASLD, and PCOS. The purpose of this review is to summarize the current knowledge on the role of adipose tissue-derived EVs in the pathogenesis of IR, NAFLD/MASLD, and PCOS.
Collapse
Affiliation(s)
- Dušan Mladenović
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Milena Vesković
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nikola Šutulović
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragan Hrnčić
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Olivera Stanojlović
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Lena Radić
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Jelica Bjekić Macut
- University of Belgrade Faculty of Medicine, Department of Endocrinology, UMC Bežanijska kosa, Belgrade, Serbia
| | - Djuro Macut
- University of Belgrade Faculty of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| |
Collapse
|
35
|
Wang D, Zhang L, He D, Zhang Y, Zhao L, Miao Z, Cheng W, Zhu C, Shao Y, Ge G, Zhu H, Jin H, Zhang W, Pan H. A natural hydrogel complex improves intervertebral disc degeneration by correcting fatty acid metabolism and inhibiting nucleus pulposus cell pyroptosis. Mater Today Bio 2024; 26:101081. [PMID: 38741924 PMCID: PMC11089368 DOI: 10.1016/j.mtbio.2024.101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
The degeneration of intervertebral discs is strongly associated with the occurrence of pyroptosis in nucleus pulposus (NP) cells. This pyroptosis is characterized by abnormal metabolism of fatty acids in the degenerative pathological state, which is further exacerbated by the inflammatory microenvironment and degradation of the extracellular matrix. In order to address this issue, we have developed a fibrin hydrogel complex (FG@PEV). This intricate formulation amalgamates the beneficial attributes of platelet extravasation vesicles, contributing to tissue repair and regeneration. Furthermore, this complex showcases exceptional stability, gradual-release capabilities, and a high degree of biocompatibility. In order to substantiate the biological significance of FG@PEV in intervertebral disc degeneration (IVDD), we conducted a comprehensive investigation into its potential mechanism of action through the integration of RNA-seq sequencing and metabolomics analysis. Furthermore, these findings were subsequently validated through experimentation in both in vivo and in vitro models. The experimental results revealed that the FG@PEV intervention possesses the capability to reshape the inflammatory microenvironment within the disc. It also addresses the irregularities in fatty acid metabolism of nucleus pulposus cells, consequently hindering cellular pyroptosis and slowing down disc degeneration through the regulation of extracellular matrix synthesis and degradation. As a result, this injectable gel system represents a promising and innovative therapeutic approach for mitigating disc degeneration.
Collapse
Affiliation(s)
- Dong Wang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| | - Liangping Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Du He
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Yujun Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Lan Zhao
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
| | - Zhimin Miao
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
| | - Wei Cheng
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
| | - Chengyue Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| | - Yinyan Shao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Guofen Ge
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Hang Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - HongTing Jin
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Wei Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| | - Hao Pan
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| |
Collapse
|
36
|
Nicolai L, Pekayvaz K, Massberg S. Platelets: Orchestrators of immunity in host defense and beyond. Immunity 2024; 57:957-972. [PMID: 38749398 DOI: 10.1016/j.immuni.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 06/05/2024]
Abstract
Platelets prevent blood loss during vascular injury and contribute to thrombus formation in cardiovascular disease. Beyond these classical roles, platelets are critical for the host immune response. They guard the vasculature against pathogens via specialized receptors, intracellular signaling cascades, and effector functions. Platelets also skew inflammatory responses by instructing innate immune cells, support adaptive immunosurveillance, and influence antibody production and T cell polarization. Concomitantly, platelets contribute to tissue reconstitution and maintain vascular function after inflammatory challenges. However, dysregulated activation of these multitalented cells exacerbates immunopathology with ensuing microvascular clotting, excessive inflammation, and elevated risk of macrovascular thrombosis. This dichotomy underscores the critical importance of precisely defining and potentially modulating platelet function in immunity.
Collapse
Affiliation(s)
- Leo Nicolai
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig-Maximilian University, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| | - Kami Pekayvaz
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig-Maximilian University, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig-Maximilian University, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
37
|
Huelsboemer L, Knoedler L, Kochen A, Yu CT, Hosseini H, Hollmann KS, Choi AE, Stögner VA, Knoedler S, Hsia HC, Pomahac B, Kauke-Navarro M. Cellular therapeutics and immunotherapies in wound healing - on the pulse of time? Mil Med Res 2024; 11:23. [PMID: 38637905 PMCID: PMC11025282 DOI: 10.1186/s40779-024-00528-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Chronic, non-healing wounds represent a significant challenge for healthcare systems worldwide, often requiring significant human and financial resources. Chronic wounds arise from the complex interplay of underlying comorbidities, such as diabetes or vascular diseases, lifestyle factors, and genetic risk profiles which may predispose extremities to local ischemia. Injuries are further exacerbated by bacterial colonization and the formation of biofilms. Infection, consequently, perpetuates a chronic inflammatory microenvironment, preventing the progression and completion of normal wound healing. The current standard of care (SOC) for chronic wounds involves surgical debridement along with localized wound irrigation, which requires inpatient care under general anesthesia. This could be followed by, if necessary, defect coverage via a reconstructive ladder utilizing wound debridement along with skin graft, local, or free flap techniques once the wound conditions are stabilized and adequate blood supply is restored. To promote physiological wound healing, a variety of approaches have been subjected to translational research. Beyond conventional wound healing drugs and devices that currently supplement treatments, cellular and immunotherapies have emerged as promising therapeutics that can behave as tailored therapies with cell- or molecule-specific wound healing properties. However, in contrast to the clinical omnipresence of chronic wound healing disorders, there remains a shortage of studies condensing the current body of evidence on cellular therapies and immunotherapies for chronic wounds. This review provides a comprehensive exploration of current therapies, experimental approaches, and translational studies, offering insights into their efficacy and limitations. Ultimately, we hope this line of research may serve as an evidence-based foundation to guide further experimental and translational approaches and optimize patient care long-term.
Collapse
Affiliation(s)
- Lioba Huelsboemer
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Leonard Knoedler
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
- School of Medicine, University of Regensburg, 93040, Regensburg, Germany
| | - Alejandro Kochen
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
- Regenerative Wound Healing Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Catherine T Yu
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Helia Hosseini
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Katharina S Hollmann
- School of Medicine, University of Wuerzburg, 97070, Würzburg, Germany
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Ashley E Choi
- California University of Science and Medicine, Colton, CA, 92324, USA
| | - Viola A Stögner
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Samuel Knoedler
- School of Medicine, University of Regensburg, 93040, Regensburg, Germany
| | - Henry C Hsia
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
- Regenerative Wound Healing Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Bohdan Pomahac
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Martin Kauke-Navarro
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
38
|
Zhang L, Chi J, Wu H, Xia X, Xu C, Hao H, Liu Z. Extracellular vesicles and endothelial dysfunction in infectious diseases. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e148. [PMID: 38938849 PMCID: PMC11080793 DOI: 10.1002/jex2.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 06/29/2024]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of mortality and morbidity globally. Studies have shown that infections especially bacteraemia and sepsis are associated with increased risks for endothelial dysfunction and related CVDs including atherosclerosis. Extracellular vesicles (EVs) are small, sealed membrane-derived structures that are released into body fluids and blood from cells and/or microbes and are critically involved in a variety of important cell functions and disease development, including intercellular communications, immune responses and inflammation. It is known that EVs-mediated mechanism(s) is important in the development of endothelial dysfunction in infections with a diverse spectrum of microorganisms including Escherichia coli, Candida albicans, SARS-CoV-2 (the virus for COVID-19) and Helicobacter pylori. H. pylori infection is one of the most common infections globally. During H. pylori infection, EVs can carry H. pylori components, such as lipopolysaccharide, cytotoxin-associated gene A, or vacuolating cytotoxin A, and transfer these substances into endothelial cells, triggering inflammatory responses and endothelial dysfunction. This review is to illustrate the important role of EVs in the pathogenesis of infectious diseases, and the development of endothelial dysfunction in infectious diseases especially H. pylori infection, and to discuss the potential mechanisms and clinical implications.
Collapse
Affiliation(s)
- Linfang Zhang
- Department of GastroenterologyThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
- Center for Precision Medicine and Division of Cardiovascular MedicineDepartment of MedicineUniversity of Missouri School of MedicineColumbiaMissouriUSA
| | - Jingshu Chi
- Center for Precision Medicine and Division of Cardiovascular MedicineDepartment of MedicineUniversity of Missouri School of MedicineColumbiaMissouriUSA
- Department of Gastroenterologythe Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Hao Wu
- Center for Precision Medicine and Division of Cardiovascular MedicineDepartment of MedicineUniversity of Missouri School of MedicineColumbiaMissouriUSA
| | - Xiujuan Xia
- Center for Precision Medicine and Division of Cardiovascular MedicineDepartment of MedicineUniversity of Missouri School of MedicineColumbiaMissouriUSA
| | - Canxia Xu
- Department of Gastroenterologythe Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular MedicineDepartment of MedicineUniversity of Missouri School of MedicineColumbiaMissouriUSA
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular MedicineDepartment of MedicineUniversity of Missouri School of MedicineColumbiaMissouriUSA
| |
Collapse
|
39
|
Parker WAE, Storey RF. The role of platelet P2Y 12 receptors in inflammation. Br J Pharmacol 2024; 181:515-531. [PMID: 37771103 DOI: 10.1111/bph.16256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/15/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Inflammation is a complex pathophysiological process underlying many clinical conditions. Platelets contribute to the thrombo-inflammatory response. Platelet P2Y12 receptors amplify platelet activation, potentiating platelet aggregation, degranulation and shape change. The contents of platelet alpha granules, in particular, act directly on leucocytes, including mediating platelet-leucocyte aggregation and activation via platelet P-selectin. Much evidence for the role of platelet P2Y12 receptors in inflammation comes from studies using antagonists of these receptors, such as the thienopyridines clopidogrel and prasugrel, and the cyclopentyltriazolopyrimidine ticagrelor, in animal and human experimental models. These suggest that antagonism of P2Y12 receptors decreases markers of inflammation with some evidence that this reduces incidence of adverse clinical sequelae during inflammatory conditions. Interpretation is complicated by pleiotropic effects such as those of the thienopyridines on circulating leucocyte numbers and of ticagrelor on adenosine reuptake. The available evidence suggests that P2Y12 receptors are prominent mediators of inflammation and P2Y12 receptor antagonism as a potentially powerful strategy in a broad range of inflammatory conditions. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.
Collapse
Affiliation(s)
- William A E Parker
- Cardiovascular Research Unit, Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Robert F Storey
- Cardiovascular Research Unit, Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
40
|
Bavuso M, Miller N, Sill JM, Dobrian A, Colunga Biancatelli RML. Extracellular vesicles in acute respiratory distress syndrome: Understanding protective and harmful signaling for the development of new therapeutics. Histol Histopathol 2024; 39:131-144. [PMID: 37712224 DOI: 10.14670/hh-18-659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe respiratory condition characterized by increased lung permeability, hyper-inflammatory state, and fluid leak into the alveolar spaces. ARDS is a heterogeneous disease, with multiple direct and indirect causes that result in a mortality of up to 40%. Due to the ongoing Covid-19 pandemic, its incidence has increased up to ten-fold. Extracellular vesicles (EVs) are small liposome-like particles that mediate intercellular communication and play a major role in ARDS pathophysiology. Indeed, they participate in endothelial barrier dysfunction and permeability, neutrophil, and macrophage activation, and also in the development of a hypercoagulable state. A more thorough understanding of the variegated and cell-specific functions of EVs may lead to the development of safe and effective therapeutics. In this review, we have collected evidence of EVs role in ARDS, revise the main mechanisms of production and internalization and summarize the current therapeutical approaches that have shown the ability to modulate EV signaling.
Collapse
Affiliation(s)
- Matthew Bavuso
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Noel Miller
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Joshua M Sill
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Anca Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ruben M L Colunga Biancatelli
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.
| |
Collapse
|
41
|
Saberian M, Abak N. Hydrogel-mediated delivery of platelet-derived exosomes: Innovations in tissue engineering. Heliyon 2024; 10:e24584. [PMID: 38312628 PMCID: PMC10835177 DOI: 10.1016/j.heliyon.2024.e24584] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
In this scholarly review, we conduct a thorough examination of the significant role played by platelet-derived exosomes (Plt-Exos) and hydrogels in the fields of tissue engineering and regenerative medicine. Our detailed investigation highlights the central involvement of Plt-Exos in various physiological and pathological processes, underscoring their potential contributions to diverse areas such as wound healing, neural rejuvenation, and cancer progression. Despite the promising therapeutic aspects, the notable variability in the isolation and characterization of pEVs underscores the need for a more rigorous and standardized methodology. Shifting our focus to hydrogels, they have emerged as promising biomaterials relevant to tissue engineering and regenerative medicine. Their unique characteristics, especially their chemical and physical adaptability, along with the modifiability of their biochemical properties, make hydrogels a captivating subject. These exceptional features open avenues for numerous tissue engineering applications, facilitating the delivery of essential growth factors, cytokines, and microRNAs. This analysis explores the innovative integration of Plt-Exos with hydrogels, presenting a novel paradigm in tissue engineering. Through the incorporation of Plt-Exos into hydrogels, there exists an opportunity to enhance tissue regeneration endeavors by combining the bioactive features of Plt-Exos with the restorative capabilities of hydrogel frameworks. In conclusion, the cooperative interaction between platelet-derived exosomes and hydrogels indicates a promising path in tissue engineering and regenerative medicine. Nevertheless, the successful execution of this approach requires a deep understanding of molecular dynamics, coupled with a dedication to refining isolation techniques.
Collapse
Affiliation(s)
- Mostafa Saberian
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Abak
- Hematology and Transfusion Science Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Ilvonen P, Pusa R, Härkönen K, Laitinen S, Impola U. Distinct targeting and uptake of platelet and red blood cell-derived extracellular vesicles into immune cells. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e130. [PMID: 38938679 PMCID: PMC11080822 DOI: 10.1002/jex2.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/03/2023] [Accepted: 11/28/2023] [Indexed: 06/29/2024]
Abstract
Blood-derived extracellular vesicles (EVs) hold great therapeutic potential. As blood contains mixed EV populations, it is challenging to study EVs originating from different cells separately. Blood cell concentrates manufactured in blood banks offer an excellent non-invasive source of blood cell-specific EV populations. To study blood cell-specific EVs, we isolated EVs from platelet (TREVs) and red blood cell (EryEVs) concentrates and characterized them using nanoparticle tracking analysis, imaging flow cytometry, electron microscopy and western blot analysis and co-cultured them with peripheral blood mononuclear cells (PBMCs). Our aim was to use imaging flow cytometry to investigate EV interaction with PBMCs as well as study their effects on T-lymphocyte populations to better understand their possible biological functions. As a conclusion, TREVs interacted with PBMCs more than EryEVs. Distinctively, TREVs were uptaken into CD11c+ monocytes rapidly and into CD19+ B-lymphocytes in 24 h. EryEVs were not uptaken into CD11c+ monocytes before the 24-h time point, and they were only seen on the surface of lymphocytes. Neither TREVs nor EryEV were uptaken into CD3+ T-lymphocytes and no effect on T-cell populations was detected. We have previously seen similar differences in targeting PC-3 cancer cells. Further studies are needed to address the functional properties of blood cell concentrate-derived EVs. This study demonstrates that imaging flow cytometry can be used to study the distinctive differences in the interaction and uptake of EVs. Considering our current and previous results, EVs present a new valuable component for the future development of blood-derived therapeutics.
Collapse
Affiliation(s)
| | - Reetta Pusa
- Finnish Red Cross Blood ServiceHelsinkiFinland
| | | | | | - Ulla Impola
- Finnish Red Cross Blood ServiceHelsinkiFinland
| |
Collapse
|
43
|
Cai Z, Feng J, Dong N, Zhou P, Huang Y, Zhang H. Platelet-derived extracellular vesicles play an important role in platelet transfusion therapy. Platelets 2023; 34:2242708. [PMID: 37578045 DOI: 10.1080/09537104.2023.2242708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023]
Abstract
Extracellular vesicles (EVs) contain the characteristics of their cell of origin and mediate cell-to-cell communication. Platelet-derived extracellular vesicles (PEVs) not only have procoagulant activity but also contain platelet-derived inflammatory factors (CD40L and mtDNA) that mediate inflammatory responses. Studies have shown that platelets are activated during storage to produce large amounts of PEVs, which may have implications for platelet transfusion therapy. Compared to platelets, PEVs have a longer storage time and greater procoagulant activity, making them an ideal alternative to platelets. This review describes the reasons and mechanisms by which PEVs may have a role in blood transfusion therapy.
Collapse
Affiliation(s)
- Zhi Cai
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Junyan Feng
- Class 2018 Medical Inspection Technology, Southwest Medical University, Luzhou, China
| | - Nian Dong
- Department of Clinical Laboratory, Gulin People's Hospital, Guilin, China
| | - Pan Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yuanshuai Huang
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Hongwei Zhang
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
44
|
Gavioli G, Razzoli A, Bedolla DE, Di Bartolomeo E, Quartieri E, Iotti B, Berni P, Birarda G, Vaccari L, Schiroli D, Marraccini C, Baricchi R, Merolle L. Cryopreservation affects platelet macromolecular composition over time after thawing and differently impacts on cancer cells behavior in vitro. Platelets 2023; 34:2281943. [PMID: 38010129 DOI: 10.1080/09537104.2023.2281943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Cryopreservation affects platelets' function, questioning their use for cancer patients. We aimed to investigate the biochemical events that occur over time after thawing to optimize transfusion timing and evaluate the effect of platelet supernatants on tumor cell behavior in vitro. We compared fresh (Fresh-PLT) with Cryopreserved platelets (Cryo-PLT) at 1 h, 3 h and 6 h after thawing. MCF-7 and HL-60 cells were cultured with Fresh- or 1 h Cryo-PLT supernatants to investigate cell proliferation, migration, and PLT-cell adhesion. We noticed a significant impairment of hemostatic activity accompanied by a post-thaw decrease of CD42b+ , which identifies the CD62P--population. FTIR spectroscopy revealed a decrease in the total protein content together with changes in their conformational structure, which identified two sub-groups: 1) Fresh and 1 h Cryo-PLT; 2) 3 h and 6 h cryo-PLT. Extracellular vesicle shedding and phosphatidylserine externalization (PS) increased after thawing. Cryo-PLT supernatants inhibited cell proliferation, impaired MCF-7 cell migration, and reduced ability to adhere to tumor cells. Within the first 3 hours after thawing, irreversible alterations of biomolecular structure occur in Cryo-PLT. Nevertheless, Cryo-PLT should be considered safe for the transfusion of cancer patients because of their insufficient capability to promote cancer cell proliferation, adhesion, or migration.
Collapse
Affiliation(s)
- Gaia Gavioli
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
- Clinical and Experimental PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Agnese Razzoli
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
- Clinical and Experimental PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Diana E Bedolla
- Elettra - Sincrotrone Trieste S.C.p.A, Basovizza, Italy
- Molecular Pathology Lab, International Center for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Trieste, Italy
- Center for Biospectroscopy and School of Chemistry, Monash University, Clayton, VIC, Australia
| | | | - Eleonora Quartieri
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
| | - Barbara Iotti
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
| | - Pamela Berni
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
| | | | - Lisa Vaccari
- Elettra - Sincrotrone Trieste S.C.p.A, Basovizza, Italy
| | - Davide Schiroli
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
| | - Chiara Marraccini
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
| | - Roberto Baricchi
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
| | - Lucia Merolle
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
| |
Collapse
|
45
|
Forteza-Genestra MA, Antich-Rosselló M, Ramis-Munar G, Calvo J, Gayà A, Monjo M, Ramis JM. Comparative effect of platelet- and mesenchymal stromal cell-derived extracellular vesicles on human cartilage explants using an ex vivo inflammatory osteoarthritis model. Bone Joint Res 2023; 12:667-676. [PMID: 37852621 PMCID: PMC10584413 DOI: 10.1302/2046-3758.1210.bjr-2023-0109.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Aims Extracellular vesicles (EVs) are nanoparticles secreted by all cells, enriched in proteins, lipids, and nucleic acids related to cell-to-cell communication and vital components of cell-based therapies. Mesenchymal stromal cell (MSC)-derived EVs have been studied as an alternative for osteoarthritis (OA) treatment. However, their clinical translation is hindered by industrial and regulatory challenges. In contrast, platelet-derived EVs might reach clinics faster since platelet concentrates, such as platelet lysates (PL), are already used in therapeutics. Hence, we aimed to test the therapeutic potential of PL-derived extracellular vesicles (pEVs) as a new treatment for OA, which is a degenerative joint disease of articular cartilage and does not have any curative or regenerative treatment, by comparing its effects to those of human umbilical cord MSC-derived EVs (cEVs) on an ex vivo OA-induced model using human cartilage explants. Methods pEVs and cEVs were isolated by size exclusion chromatography (SEC) and physically characterized by nanoparticle tracking analysis (NTA), protein content, and purity. OA conditions were induced in human cartilage explants (10 ng/ml oncostatin M and 2 ng/ml tumour necrosis factor alpha (TNFα)) and treated with 1 × 109 particles of pEVs or cEVs for 14 days. Then, DNA, glycosaminoglycans (GAG), and collagen content were quantified, and a histological study was performed. EV uptake was monitored using PKH26 labelled EVs. Results Significantly higher content of DNA and collagen was observed for the pEV-treated group compared to control and cEV groups. No differences were found in GAG quantification nor in EVs uptake within any treated group. Conclusion In conclusion, pEVs showed better performance than cEVs in our in vitro OA model. Although further studies are needed, pEVs are shown as a potential alternative to cEVs for cell-free regenerative medicine.
Collapse
Affiliation(s)
- Maria A. Forteza-Genestra
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Miquel Antich-Rosselló
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Guillem Ramis-Munar
- Microscopy Area, Serveis Cietificotècnics, University of the Balearic Islands, Palma, Spain
| | - Javier Calvo
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), Palma, Spain
| | - Antoni Gayà
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), Palma, Spain
| | - Marta Monjo
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Joana M. Ramis
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
46
|
Burnouf T, Chou ML, Lundy DJ, Chuang EY, Tseng CL, Goubran H. Expanding applications of allogeneic platelets, platelet lysates, and platelet extracellular vesicles in cell therapy, regenerative medicine, and targeted drug delivery. J Biomed Sci 2023; 30:79. [PMID: 37704991 PMCID: PMC10500824 DOI: 10.1186/s12929-023-00972-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
Platelets are small anucleated blood cells primarily known for their vital hemostatic role. Allogeneic platelet concentrates (PCs) collected from healthy donors are an essential cellular product transfused by hospitals to control or prevent bleeding in patients affected by thrombocytopenia or platelet dysfunctions. Platelets fulfill additional essential functions in innate and adaptive immunity and inflammation, as well as in wound-healing and tissue-repair mechanisms. Platelets contain mitochondria, lysosomes, dense granules, and alpha-granules, which collectively are a remarkable reservoir of multiple trophic factors, enzymes, and signaling molecules. In addition, platelets are prone to release in the blood circulation a unique set of extracellular vesicles (p-EVs), which carry a rich biomolecular cargo influential in cell-cell communications. The exceptional functional roles played by platelets and p-EVs explain the recent interest in exploring the use of allogeneic PCs as source material to develop new biotherapies that could address needs in cell therapy, regenerative medicine, and targeted drug delivery. Pooled human platelet lysates (HPLs) can be produced from allogeneic PCs that have reached their expiration date and are no longer suitable for transfusion but remain valuable source materials for other applications. These HPLs can substitute for fetal bovine serum as a clinical grade xeno-free supplement of growth media used in the in vitro expansion of human cells for transplantation purposes. The use of expired allogeneic platelet concentrates has opened the way for small-pool or large-pool allogeneic HPLs and HPL-derived p-EVs as biotherapy for ocular surface disorders, wound care and, potentially, neurodegenerative diseases, osteoarthritis, and others. Additionally, allogeneic platelets are now seen as a readily available source of cells and EVs that can be exploited for targeted drug delivery vehicles. This article aims to offer an in-depth update on emerging translational applications of allogeneic platelet biotherapies while also highlighting their advantages and limitations as a clinical modality in regenerative medicine and cell therapies.
Collapse
Affiliation(s)
- Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - David J Lundy
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hadi Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| |
Collapse
|
47
|
Ma Y, Jiang Q, Yang B, Hu X, Shen G, Shen W, Xu J. Platelet mitochondria, a potent immune mediator in neurological diseases. Front Physiol 2023; 14:1210509. [PMID: 37719457 PMCID: PMC10502307 DOI: 10.3389/fphys.2023.1210509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Dysfunction of the immune response is regarded as a prominent feature of neurological diseases, including neurodegenerative diseases, malignant tumors, acute neurotraumatic insult, and cerebral ischemic/hemorrhagic diseases. Platelets play a fundamental role in normal hemostasis and thrombosis. Beyond those normal functions, platelets are hyperactivated and contribute crucially to inflammation and immune responses in the central nervous system (CNS). Mitochondria are pivotal organelles in platelets and are responsible for generating most of the ATP that is used for platelet activation and aggregation (clumping). Notably, platelet mitochondria show marked morphological and functional alterations under heightened inflammatory/oxidative stimulation. Mitochondrial dysfunction not only leads to platelet damage and apoptosis but also further aggravates immune responses. Improving mitochondrial function is hopefully an effective strategy for treating neurological diseases. In this review, the authors discuss the immunomodulatory roles of platelet-derived mitochondria (PLT-mitos) in neurological diseases and summarize the neuroprotective effects of platelet mitochondria transplantation.
Collapse
Affiliation(s)
- Yan Ma
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Jiang
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxin Yang
- Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Hu
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Shen
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
| | - Wei Shen
- Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Xu
- Wuhan Blood Center, Wuhan, Hubei, China
| |
Collapse
|
48
|
Jiang Z, Jiang X, Chen A, He W. Platelet activation: a promoter for psoriasis and its comorbidity, cardiovascular disease. Front Immunol 2023; 14:1238647. [PMID: 37654493 PMCID: PMC10465348 DOI: 10.3389/fimmu.2023.1238647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease with a prevalence of 0.14% to 1.99%. The underlying pathology is mainly driven by the abnormal immune responses including activation of Th1, Th17, Th22 cells and secretion of cytokines. Patients with psoriasis are more likely to develop cardiovascular disease (CVD) which has been well recognized as a comorbidity of psoriasis. As mediators of hemostasis and thromboinflammation, platelets play an important part in CVD. However, less is known about their pathophysiological contribution to psoriasis and psoriasis-associated CVD. A comprehensive understanding of the role of platelet activation in psoriasis might pave the path for more accurate prediction of cardiovascular (CV) risk and provide new strategies for psoriasis management, which alleviates the increased CV burden associated with psoriasis. Here we review the available evidence about the biomarkers and mechanisms of platelet activation in psoriasis and the role of platelet activation in intriguing the common comorbidity, CVD. We further discussed the implications and efficacy of antiplatelet therapies in the treatment of psoriasis and prevention of psoriasis-associated CVD.
Collapse
Affiliation(s)
- Ziqi Jiang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoran Jiang
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Aijun Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenyan He
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
49
|
Jiang M, Wu W, Xia Y, Wang X, Liang J. Platelet-derived extracellular vesicles promote endothelial dysfunction in sepsis by enhancing neutrophil extracellular traps. BMC Immunol 2023; 24:22. [PMID: 37559007 PMCID: PMC10413488 DOI: 10.1186/s12865-023-00560-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/30/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND The role of platelet-derived extracellular vesicles (PEVs) in the development of sepsis was investigated in this study. METHODS After collection of blood samples from sepsis patients and normal volunteers, the extracellular vesicles (EVs) were separated, followed by the isolation of PEVs from the blood of rats. Next, a sepsis rat model was constructed by cecal ligation and puncture (CLP), and rats received tail vein injection of PEVs to explore the role of PEVs in sepsis. Subsequently, nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM) were adopted to determine the diameter of EVs and observe the morphology of PEVs, respectively; flow cytometry to detect the percentage of CD41-and CD61-positive EVs in isolated EVs; and ELISA to assess neutrophil extracellular trap (NET) formation, endothelial function injury-related markers in clinical samples or rat blood and serum inflammatory factor level. RESULTS Compared with normal volunteers, the percentage of CD41- and CD61-positive EVs and the number of EVs were significantly elevated in sepsis patients. Moreover, sepsis patients also presented notably increased histone H3, myeloperoxidase (MPO), angiopoietin-2 and endocan levels in the blood, and such increase was positively correlated with the number of EVs. Also, animal experiments demonstrated that PEVs significantly promoted NET formation, mainly manifested as up-regulation of histone H3, high mobility group protein B1 (HMGB1), and MPO; promoted endothelial dysfunction (up-regulation of angiopoietin-2, endocan, and syndecan-1); and stimulated inflammatory response (up-regulation of interleukin (IL) -1β, IL-6, tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein (MCP) -1) in the blood of sepsis rats. CONCLUSION PEVs aggravate endothelial function injury and inflammatory response in sepsis by promoting NET formation.
Collapse
Affiliation(s)
- Meini Jiang
- Department of critical care medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weidong Wu
- Department of critical care medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanmei Xia
- Department of critical care medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiuzhe Wang
- Department of critical care medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jifang Liang
- Department of critical care medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
50
|
Garima, Sharma D, Kumar A, Mostafavi E. Extracellular vesicle-based biovectors in chronic wound healing: Biogenesis and delivery approaches. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:822-840. [PMID: 37273778 PMCID: PMC10238601 DOI: 10.1016/j.omtn.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Chronic wounds remain an unresolved medical issue because of major social and therapeutic repercussions that require extensive focus. Recent related theragnostic focuses only on wound management and is not effectively promoting chronic wound healing. The rising number of patients with either under-healing or over-healing wounds highlights the ineffectiveness of current wound-healing treatments, and thus, there is an unmet need to focus on alternative treatments. To cover this gap, extracellular vesicles (EVs), for targeted delivery of therapeutics, are emerging as a potential therapy to treat both acute and persistent wounds. To address these issues, we explore the core biology of EVs, associated pharmacology, comprehension of immunogenic outcomes, and potential for long-term wound treatment with improved effectiveness and their nonacceptable side effects. Additionally, the therapeutic role of EVs in severe wound infections through biogenetic moderation, in combination with biomaterials (functional in nature), as well as drug carriers that can offer opportunities for the development of new treatments for this long-term condition, are also carefully elaborated, with an emphasis on biomaterial-based drug delivery systems. It is observed that exploring difficulties and potential outcomes of clinical translation of EV-based therapeutics for wound management has the potential to be adopted as a future therapy.
Collapse
Affiliation(s)
- Garima
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Deepika Sharma
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, India
| | - Arun Kumar
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya 824209, India
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|