1
|
Wulfse M, Vervoorn MT, Amelink JJGJ, Ballan EM, de Jager SCA, Sluijter JPG, Doevendans PA, Zwetsloot PPM, Van der Kaaij NP. Past Trends and Future Directions of Cardiac Regenerative Medicine - A Systematic Analysis of Clinical Trial Registries. J Cardiovasc Transl Res 2025; 18:209-220. [PMID: 39361114 PMCID: PMC11885401 DOI: 10.1007/s12265-024-10563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/12/2024] [Indexed: 03/09/2025]
Abstract
Cell therapy, gene therapy, and tissue engineering have been explored as potential strategies to repair or regenerate damaged cardiac tissue. Despite the presence of encouraging preclinical data, clinical trials of regenerative cardiac therapies have yielded mixed results. Our study aimed to investigate the fate of all registered clinical trials within regenerative cardiac medicine, with the purpose of exploring the potential role of publication bias (or trial-completion bias), how published and unpublished research affects the field, and to draw lessons and recommendations for future clinical trials. In this analysis, we show that only a third of all registered trials has yielded results and that a significant number of trials are not completed. Furthermore, we identified significant heterogeneity in study design, study phase, funding, specific therapies used, primary outcome measures and methods of outcome assessment. These observations might hinder the successful translation of cardiac regenerative therapies into clinical practice.
Collapse
Affiliation(s)
- Maaike Wulfse
- Department of Cardiothoracic Surgery, Division of Heart & Lungs, University Medical Center Utrecht, P.O. Box 85500, Utrecht, 3508, GA, The Netherlands
| | - Mats T Vervoorn
- Department of Cardiothoracic Surgery, Division of Heart & Lungs, University Medical Center Utrecht, P.O. Box 85500, Utrecht, 3508, GA, The Netherlands
| | - Jantijn J G J Amelink
- Department of Cardiothoracic Surgery, Division of Heart & Lungs, University Medical Center Utrecht, P.O. Box 85500, Utrecht, 3508, GA, The Netherlands
| | - Elisa M Ballan
- Department of Cardiothoracic Surgery, Division of Heart & Lungs, University Medical Center Utrecht, P.O. Box 85500, Utrecht, 3508, GA, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
- Department of Cardiology, Laboratory of Experimental Cardiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Saskia C A de Jager
- Department of Cardiology, Laboratory of Experimental Cardiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Circulatory Health Research Center, Regenerative Medicine Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Pieter A Doevendans
- Netherlands Heart Institute, Utrecht, The Netherlands
- Department of Cardiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter-Paul M Zwetsloot
- Department of Cardiology, Laboratory of Experimental Cardiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Cardiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Niels P Van der Kaaij
- Department of Cardiothoracic Surgery, Division of Heart & Lungs, University Medical Center Utrecht, P.O. Box 85500, Utrecht, 3508, GA, The Netherlands.
| |
Collapse
|
2
|
Fatehi Hassanabad A, Zarzycki AN, Fedak PWM. Cellular and molecular mechanisms driving cardiac tissue fibrosis: On the precipice of personalized and precision medicine. Cardiovasc Pathol 2024; 71:107635. [PMID: 38508436 DOI: 10.1016/j.carpath.2024.107635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Cardiac fibrosis is a significant contributor to heart failure, a condition that continues to affect a growing number of patients worldwide. Various cardiovascular comorbidities can exacerbate cardiac fibrosis. While fibroblasts are believed to be the primary cell type underlying fibrosis, recent and emerging data suggest that other cell types can also potentiate or expedite fibrotic processes. Over the past few decades, clinicians have developed therapeutics that can blunt the development and progression of cardiac fibrosis. While these strategies have yielded positive results, overall clinical outcomes for patients suffering from heart failure continue to be dire. Herein, we overview the molecular and cellular mechanisms underlying cardiac tissue fibrosis. To do so, we establish the known mechanisms that drive fibrosis in the heart, outline the diagnostic tools available, and summarize the treatment options used in contemporary clinical practice. Finally, we underscore the critical role the immune microenvironment plays in the pathogenesis of cardiac fibrosis.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anna N Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Bhaskara M, Anjorin O, Wang M. Mesenchymal Stem Cell-Derived Exosomal microRNAs in Cardiac Regeneration. Cells 2023; 12:2815. [PMID: 38132135 PMCID: PMC10742005 DOI: 10.3390/cells12242815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy is one of the most promising modalities for cardiac repair. Accumulated evidence suggests that the therapeutic value of MSCs is mainly attributable to exosomes. MSC-derived exosomes (MSC-Exos) replicate the beneficial effects of MSCs by regulating various cellular responses and signaling pathways implicated in cardiac regeneration and repair. miRNAs constitute an important fraction of exosome content and are key contributors to the biological function of MSC-Exo. MSC-Exo carrying specific miRNAs provides anti-apoptotic, anti-inflammatory, anti-fibrotic, and angiogenic effects within the infarcted heart. Studying exosomal miRNAs will provide an important insight into the molecular mechanisms of MSC-Exo in cardiac regeneration and repair. This significant information can help optimize cell-free treatment and overcome the challenges associated with MSC-Exo therapeutic application. In this review, we summarize the characteristics and the potential mechanisms of MSC-derived exosomal miRNAs in cardiac repair and regeneration.
Collapse
Affiliation(s)
| | | | - Meijing Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Kurian J, Bohl V, Behanan M, Mohsin S, Khan M. Transcriptional Profiling of Cardiac Cells Links Age-Dependent Changes in Acetyl-CoA Signaling to Chromatin Modifications. Int J Mol Sci 2021; 22:ijms22136987. [PMID: 34209657 PMCID: PMC8268808 DOI: 10.3390/ijms22136987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Metabolism has emerged as a regulator of core stem cell properties such as proliferation, survival, self-renewal, and multilineage potential. Metabolites serve as secondary messengers, fine-tuning signaling pathways in response to microenvironment alterations. Studies show a role for central metabolite acetyl-CoA in the regulation of chromatin state through changes in histone acetylation. Nevertheless, metabolic regulators of chromatin remodeling in cardiac cells in response to increasing biological age remains unknown. Previously, we identified novel cardiac-derived stem-like cells (CTSCs) that exhibit increased functional properties in the neonatal heart (nCTSC). These cells are linked to a unique metabolism which is altered with CTSC aging (aCTSC). Here, we present an in-depth, RNA-sequencing-based (RNA-Seq) bioinformatic with cluster analysis that details a distinct epigenome present in nCTSCs but not in aCTSCs. Gene Ontology (GO) and pathway enrichment reveal biological processes, including metabolism, gene regulation enriched in nCTSCs, and STRING analysis that identifies a network of genes related to acetyl-CoA that can potentially influence chromatin remodeling. Additional validation by Western blot and qRT-PCR shows increased acetyl-CoA signaling and histone acetylation in nCTSCs compared to aCTSCs. In conclusion, our data reveal that the link between metabolism and histone acetylation in cardiac cells is altered with the aging of the cardiac tissue.
Collapse
Affiliation(s)
- Justin Kurian
- Center for Metabolic Disease Research (CMDR), LKSOM, Temple University, Philadelphia, PA 19140, USA; (J.K.); (V.B.); (M.B.)
| | - Veronica Bohl
- Center for Metabolic Disease Research (CMDR), LKSOM, Temple University, Philadelphia, PA 19140, USA; (J.K.); (V.B.); (M.B.)
| | - Michael Behanan
- Center for Metabolic Disease Research (CMDR), LKSOM, Temple University, Philadelphia, PA 19140, USA; (J.K.); (V.B.); (M.B.)
| | - Sadia Mohsin
- Cardiovascular Research Center (CVRC), LKSOM, Temple University, Philadelphia, PA 19140, USA;
| | - Mohsin Khan
- Center for Metabolic Disease Research (CMDR), LKSOM, Temple University, Philadelphia, PA 19140, USA; (J.K.); (V.B.); (M.B.)
- Department of Physiology, LKSOM, Temple University, Philadelphia, PA 19140, USA
- Correspondence: ; Tel.: +1-215-707-1921
| |
Collapse
|
5
|
Liu SQ, Hou XY, Zhao F, Zhao XG. Nucleated red blood cells participate in myocardial regeneration in the toad Bufo Gargarizan Gargarizan. Exp Biol Med (Maywood) 2021; 246:1760-1775. [PMID: 34024142 DOI: 10.1177/15353702211013297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Heart regeneration is negligible in humans and mammals but remarkable in some ectotherms. Humans and mammals lack nucleated red blood cells (NRBCs), while ectotherms have sufficient NRBCs. This study used Bufo gargarizan gargarizan, a Chinese toad subspecies, as a model animal to verify our hypothesis that NRBCs participate in myocardial regeneration. NRBC infiltration into myocardium was seen in the healthy toad hearts. Heart needle-injury was used as an enlarged model of physiological cardiomyocyte loss. It recovered quickly and scarlessly. NRBC infiltration increased during the recovery. Transwell assay was done to in vitro explore effects of myocardial injury on NRBCs. In the transwell system, NRBCs could infiltrate into cardiac pieces and could transdifferentiate toward cardiomyocytes. Heart apex cautery caused approximately 5% of the ventricle to be injured to varying degrees. In the mildly to moderately injured regions, NRBC infiltration increased and myocardial regeneration started soon after the inflammatory response; the severely damaged region underwent inflammation, scarring, and vascularity before NRBC infiltration and myocardial regeneration, and recovered scarlessly in four months. NRBCs were seen in the newly formed myocardium. Enzyme-linked immunosorbent assay and Western blotting showed that the levels of tumor necrosis factor-α, interleukin- 1β, 6, and11, cardiotrophin-1, vascular endothelial growth factor, erythropoietin, matrix metalloproteinase- 2 and 9 in the serum and/or cardiac tissues fluctuated in different patterns during the cardiac injury-regeneration. Cardiotrophin-1 could induce toad NRBC transdifferentiation toward cardiomyocytes in vitro. Taken together, the results suggest that the NRBC is a cell source for cardiomyocyte renewal/regeneration in the toad; cardiomyocyte loss triggers a series of biological processes, facilitating NRBC infiltration and transition to cardiomyocytes. This finding may guide a new direction for improving human myocardial regeneration.
Collapse
Affiliation(s)
- Shu-Qin Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xiao-Ye Hou
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Feng Zhao
- The Basic Medical Central Laboratory, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xiao-Ge Zhao
- The Central Laboratory For Biomedical Research, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| |
Collapse
|
6
|
Li H, Hu D, Chen G, Zheng D, Li S, Lin Y, Hong H, Luo Y, Ke Y, Huang Y, Wu L, Lan T, Wang W, Fang J. Adropin-based dual treatment enhances the therapeutic potential of mesenchymal stem cells in rat myocardial infarction. Cell Death Dis 2021; 12:505. [PMID: 34006853 PMCID: PMC8131743 DOI: 10.1038/s41419-021-03610-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 01/01/2023]
Abstract
Both weak survival ability of stem cells and hostile microenvironment are dual dilemma for cell therapy. Adropin, a bioactive substance, has been demonstrated to be cytoprotective. We therefore hypothesized that adropin may produce dual protective effects on the therapeutic potential of stem cells in myocardial infarction by employing an adropin-based dual treatment of promoting stem cell survival in vitro and modifying microenvironment in vivo. In the current study, adropin (25 ng/ml) in vitro reduced hydrogen peroxide-induced apoptosis in rat bone marrow mesenchymal stem cells (MSCs) and improved MSCs survival with increased phosphorylation of Akt and extracellular regulated protein kinases (ERK) l/2. Adropin-induced cytoprotection was blocked by the inhibitors of Akt and ERK1/2. The left main coronary artery of rats was ligated for 3 or 28 days to induce myocardial infarction. Bromodeoxyuridine (BrdU)-labeled MSCs, which were in vitro pretreated with adropin, were in vivo intramyocardially injected after ischemia, following an intravenous injection of 0.2 mg/kg adropin (dual treatment). Compared with MSCs transplantation alone, the dual treatment with adropin reported a higher level of interleukin-10, a lower level of tumor necrosis factor-α and interleukin-1β in plasma at day 3, and higher left ventricular ejection fraction and expression of paracrine factors at day 28, with less myocardial fibrosis and higher capillary density, and produced more surviving BrdU-positive cells at day 3 and 28. In conclusion, our data evidence that adropin-based dual treatment may enhance the therapeutic potential of MSCs to repair myocardium through paracrine mechanism via the pro-survival pathways.
Collapse
Affiliation(s)
- HuiYa Li
- Department of Cardiology, Fujian Institute of Coronary Heart Disease, Fujian Heart Medical Center, Fujian Medical University Union Hospital, Fuzhou, PR China.,YinZhou People's Hospital & Affiliated Hospital, Medical School, Ningbo University, Ningbo, PR China
| | - DanQing Hu
- Department of Cardiology, Fujian Institute of Coronary Heart Disease, Fujian Heart Medical Center, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - Guilin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, PR China
| | - DeDong Zheng
- Department of Cardiology, Fujian Institute of Coronary Heart Disease, Fujian Heart Medical Center, Fujian Medical University Union Hospital, Fuzhou, PR China.,Department of Emergency, People's Hospital of Longhua, Shenzhen, PR China
| | - ShuMei Li
- Department of Cardiology, Fujian Institute of Coronary Heart Disease, Fujian Heart Medical Center, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - YunLing Lin
- Department of Cardiology, Fujian Institute of Coronary Heart Disease, Fujian Heart Medical Center, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - HuaShan Hong
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - Yukun Luo
- Department of Cardiology, Fujian Institute of Coronary Heart Disease, Fujian Heart Medical Center, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - YiLang Ke
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - Yu Huang
- Department of Cardiology, Fujian Institute of Coronary Heart Disease, Fujian Heart Medical Center, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - LingZhen Wu
- Department of Cardiology, Fujian Institute of Coronary Heart Disease, Fujian Heart Medical Center, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - TingXiang Lan
- Department of Cardiology, Fujian Institute of Coronary Heart Disease, Fujian Heart Medical Center, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - WenYing Wang
- Department of Cardiology, Fujian Institute of Coronary Heart Disease, Fujian Heart Medical Center, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - Jun Fang
- Department of Cardiology, Fujian Institute of Coronary Heart Disease, Fujian Heart Medical Center, Fujian Medical University Union Hospital, Fuzhou, PR China.
| |
Collapse
|
7
|
Fathi E, Farahzadi R, Javanmardi S, Vietor I. L-carnitine Extends the Telomere Length of the Cardiac Differentiated CD117 +- Expressing Stem Cells. Tissue Cell 2020; 67:101429. [PMID: 32861877 DOI: 10.1016/j.tice.2020.101429] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 01/06/2023]
Abstract
Stem cell-based therapy has emerged as an attractive method for regenerating and repairing the lost heart organ. On other hand, poor survival and maintenance of the cells transferred into the damaged heart tissue are broadly accepted as serious barriers to enhance the efficacy of the regenerative therapy. For this reason, external factors, such as antioxidants are used as a favorite strategy by the investigators to improve the cell survival and retention properties. Therefore, the present study was conducted to investigate the In -vitro effect of L-carnitine (LC) on the telomere length and human telomerase reverse transcriptase (hTERT) gene expression in the cardiac differentiated bone marrow resident CD117+ stem cells through Wnt3/β-catenin and ERK1/2 pathways. To do this, bone marrow resident CD117+ stem cells were enriched by the magnetic-activated cell sorting (MACS) method, and were differentiated to the cardiac cells in the absence (-LC) and presence of the LC (+LC). Also, characterization of the enriched c-kit+ cells was performed using the flow cytometry and immunocytochemistry. At the end of the treatment period, the cells were subjected to the real-time PCR technique along with western blotting assay for measurement of the telomere length and assessment of mRNA and protein, respectively. The results showed that 0.2 mM LC caused the elongation of the telomere length and increased the hTERT gene expression in the cardiac differentiated CD117+ stem cells. In addition, a significant increase was observed in the mRNA and protein expression of Wnt3, β-catenin and ERK1/2 as key components of these pathways. It can be concluded that the LC can increase the telomere length as an effective factor in increasing the cell survival and maintenance of the cardiac differentiated bone marrow resident CD117+ stem cells via Wnt3/β-catenin and ERK1/2 signaling pathway components.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Javanmardi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ilja Vietor
- Institute of Cell Biology, Medical University of Innsbruck, Biocenter, Innsbruck, Austria
| |
Collapse
|
8
|
Fathi E, Farahzadi R, Vietor I, Javanmardi S. Cardiac differentiation of bone-marrow-resident c-kit+ stem cells by L-carnitine increases through secretion of VEGF, IL6, IGF-1, and TGF-β as clinical agents in cardiac regeneration. J Biosci 2020; 45:92. [DOI: 10.1007/s12038-020-00063-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/01/2020] [Indexed: 01/05/2023]
|
9
|
Menasché P. Cell Therapy With Human ESC-Derived Cardiac Cells: Clinical Perspectives. Front Bioeng Biotechnol 2020; 8:601560. [PMID: 33195177 PMCID: PMC7649799 DOI: 10.3389/fbioe.2020.601560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
In the ongoing quest for the “ideal” cell type for heart repair, pluripotent stem cells (PSC) derived from either embryonic or reprogrammed somatic cells have emerged as attractive candidates because of their unique ability to give rise to lineage-specific cells and to transplant them at the desired stage of differentiation. The technical obstacles which have initially hindered their clinical use have now been largely overcome and several trials are under way which encompass several different diseases, including heart failure. So far, there have been no safety warning but it is still too early to draw definite conclusions regarding efficacy. In parallel, mechanistic studies suggest that the primary objective of “remuscularizing” the heart with PSC-derived cardiac cells can be challenged by their alternate use as ex vivo sources of a biologically active extracellular vesicle-enriched secretome equally able to improve heart function through harnessing endogenous repair pathways. The exclusive use of this secretome would combine the advantages of a large-scale production more akin to that of a biological medication, the likely avoidance of cell-associated immune and tumorigenicity risks and the possibility of intravenous infusions compatible with repeated dosing.
Collapse
Affiliation(s)
- Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Paris, France.,PARCC, INSERM, University of Paris, Paris, France
| |
Collapse
|
10
|
Desgres M, Menasché P. Clinical Translation of Pluripotent Stem Cell Therapies: Challenges and Considerations. Cell Stem Cell 2020; 25:594-606. [PMID: 31703770 DOI: 10.1016/j.stem.2019.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although the clinical outcomes of cell therapy trials have not met initial expectations, emerging evidence suggests that injury-mediated tissue damage might benefit from the delivery of cells or their secreted products. Pluripotent stem cells (PSCs) are promising cell sources primarily because of their capacity to generate stage- and lineage-specific differentiated derivatives. However, they carry inherent challenges for safe and efficacious clinical translation. This Review describes completed or ongoing trials of PSCs, discusses their potential mechanisms of action, and considers how to address the challenges required for them to become a major therapy, using heart repair as a case study.
Collapse
Affiliation(s)
- Manon Desgres
- Université de Paris, PARCC, INSERM, 75015 Paris, France
| | - Philippe Menasché
- Université de Paris, PARCC, INSERM, 75015 Paris, France; Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou 20, rue Leblanc, 75015 Paris, France.
| |
Collapse
|
11
|
Barreto S, Hamel L, Schiatti T, Yang Y, George V. Cardiac Progenitor Cells from Stem Cells: Learning from Genetics and Biomaterials. Cells 2019; 8:E1536. [PMID: 31795206 PMCID: PMC6952950 DOI: 10.3390/cells8121536] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiac Progenitor Cells (CPCs) show great potential as a cell resource for restoring cardiac function in patients affected by heart disease or heart failure. CPCs are proliferative and committed to cardiac fate, capable of generating cells of all the cardiac lineages. These cells offer a significant shift in paradigm over the use of human induced pluripotent stem cell (iPSC)-derived cardiomyocytes owing to the latter's inability to recapitulate mature features of a native myocardium, limiting their translational applications. The iPSCs and direct reprogramming of somatic cells have been attempted to produce CPCs and, in this process, a variety of chemical and/or genetic factors have been evaluated for their ability to generate, expand, and maintain CPCs in vitro. However, the precise stoichiometry and spatiotemporal activity of these factors and the genetic interplay during embryonic CPC development remain challenging to reproduce in culture, in terms of efficiency, numbers, and translational potential. Recent advances in biomaterials to mimic the native cardiac microenvironment have shown promise to influence CPC regenerative functions, while being capable of integrating with host tissue. This review highlights recent developments and limitations in the generation and use of CPCs from stem cells, and the trends that influence the direction of research to promote better application of CPCs.
Collapse
Affiliation(s)
- Sara Barreto
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | | | - Teresa Schiatti
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | - Ying Yang
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | - Vinoj George
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| |
Collapse
|
12
|
Berry JL, Zhu W, Tang YL, Krishnamurthy P, Ge Y, Cooke JP, Chen Y, Garry DJ, Yang HT, Rajasekaran NS, Koch WJ, Li S, Domae K, Qin G, Cheng K, Kamp TJ, Ye L, Hu S, Ogle BM, Rogers JM, Abel ED, Davis ME, Prabhu SD, Liao R, Pu WT, Wang Y, Ping P, Bursac N, Vunjak-Novakovic G, Wu JC, Bolli R, Menasché P, Zhang J. Convergences of Life Sciences and Engineering in Understanding and Treating Heart Failure. Circ Res 2019; 124:161-169. [PMID: 30605412 DOI: 10.1161/circresaha.118.314216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
On March 1 and 2, 2018, the National Institutes of Health 2018 Progenitor Cell Translational Consortium, Cardiovascular Bioengineering Symposium, was held at the University of Alabama at Birmingham. Convergence of life sciences and engineering to advance the understanding and treatment of heart failure was the theme of the meeting. Over 150 attendees were present, and >40 scientists presented their latest work on engineering human functional myocardium for disease modeling, drug development, and heart failure research. The scientists, engineers, and physicians in the field of cardiovascular sciences met and discussed the most recent advances in their work and proposed future strategies for overcoming the major roadblocks of cardiovascular bioengineering and therapy. Particular emphasis was given for manipulation and using of stem/progenitor cells, biomaterials, and methods to provide molecular, chemical, and mechanical cues to cells to influence their identity and fate in vitro and in vivo. Collectively, these works are profoundly impacting and progressing toward deciphering the mechanisms and developing novel treatments for left ventricular dysfunction of failing hearts. Here, we present some important perspectives that emerged from this meeting.
Collapse
Affiliation(s)
- Joel L Berry
- From the Department of Biomedical Engineering (J.L.B., W.Z., P.K., G.Q., J.M.R., J.Z.), University of Alabama at Birmingham
| | - Wuqiang Zhu
- From the Department of Biomedical Engineering (J.L.B., W.Z., P.K., G.Q., J.M.R., J.Z.), University of Alabama at Birmingham
| | - Yao Liang Tang
- Vascular Biology Center, Medical College of Georgia, Augusta University (Y.T.)
| | - Prasanna Krishnamurthy
- From the Department of Biomedical Engineering (J.L.B., W.Z., P.K., G.Q., J.M.R., J.Z.), University of Alabama at Birmingham
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, (Y.G., T.J.K.)
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX (J.P.C.)
| | - Yabing Chen
- Department of Pathology (Y.C., N.S.R.), University of Alabama at Birmingham
| | - Daniel J Garry
- Lillehei Heart Institute, Department of Medicine, Division of Cardiology, University of Minnesota, Minneapolis (D.J.G.)
| | - Huang-Tian Yang
- Shanghai Institutes for Biological Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), China (H.-T.Y.)
| | | | - Walter J Koch
- Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (W.J.K.)
| | - Song Li
- Department of Bioengineering, University of California at Los Angeles (S.L.)
| | - Keitaro Domae
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Japan (K.D.)
| | - Gangjian Qin
- From the Department of Biomedical Engineering (J.L.B., W.Z., P.K., G.Q., J.M.R., J.Z.), University of Alabama at Birmingham
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh (K.C.)
| | - Timothy J Kamp
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, (Y.G., T.J.K.)
| | - Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore (L.Y.)
| | - Shijun Hu
- Institute for Cardiovascular Science, Medical College of Soochow University, Suzhou, China (S.H.)
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, MN (B.M.O.)
| | - Jack M Rogers
- From the Department of Biomedical Engineering (J.L.B., W.Z., P.K., G.Q., J.M.R., J.Z.), University of Alabama at Birmingham
| | - E Dale Abel
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine (E.D.A.)
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory University School of Medicine, Atlanta (M.E.D.)
| | - Sumanth D Prabhu
- Division of Cardiovascular Disease and Comprehensive Cardiovascular Center, Department of Medicine (S.D.P.), University of Alabama at Birmingham
| | - Ronglih Liao
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University School of Medicine, CA (R.L., J.C.W.)
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, MA (W.T.P.)
| | - Yibin Wang
- Department of Anesthesiology and Medicine (Y.W.), David Geffen School of Medicine, University of California, Los Angeles
| | - Peipei Ping
- Department of Physiology (P.P.), David Geffen School of Medicine, University of California, Los Angeles
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC (N.B.)
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering and Department of Medicine, Columbia University, New York City, NY (G.V.-N.)
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University School of Medicine, CA (R.L., J.C.W.)
| | - Roberto Bolli
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY (R.B.)
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Paris, France (P.M.)
| | - Jianyi Zhang
- From the Department of Biomedical Engineering (J.L.B., W.Z., P.K., G.Q., J.M.R., J.Z.), University of Alabama at Birmingham
| |
Collapse
|
13
|
Desgres M, Menasché P. [Pluripotent stem cells for the treatment of heart failure: current status, persisting issues and perspectives]. Med Sci (Paris) 2019; 35:771-778. [PMID: 31625899 DOI: 10.1051/medsci/2019155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although the first wave of cell therapy trials has not commonly yielded clinically meaningful improvements, some encouraging hints have emerged which suggest that stem cells or their secreted products could ultimately find a place within the armamentarium of therapies that can be offered to patients with heart failure. In this setting, pluripotent stem cells raise a particular interest because of their unique ability to generate lineage-specific cells which can be transplanted at the desired stage of differentiation. This review discusses the current status of research in this field, the persisting roadblocks that need to be overcome and the approaches which might hasten the clinical applications of this cell type.
Collapse
Affiliation(s)
- Manon Desgres
- Université de Paris, PARCC, Inserm, F-75015 Paris, France
| | - Philippe Menasché
- Université de Paris, PARCC, Inserm, F-75015 Paris, France - Département de chirurgie cardio-vasculaire, Hôpital Européen Georges Pompidou, 20 rue Leblanc, 75015 Paris, France
| |
Collapse
|
14
|
Safety profiling of genetically engineered Pim-1 kinase overexpression for oncogenicity risk in human c-kit+ cardiac interstitial cells. Gene Ther 2019; 26:324-337. [PMID: 31239537 DOI: 10.1038/s41434-019-0084-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/19/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
Advancement of stem cell-based treatment will involve next-generation approaches to enhance therapeutic efficacy which is often modest, particularly in the context of myocardial regenerative therapy. Our group has previously demonstrated the beneficial effect of genetic modification of cardiac stem cells with Pim-1 kinase overexpression to rejuvenate aged cells as well as potentiate myocardial repair. Despite these encouraging findings, concerns were raised regarding potential for oncogenic risk associated with Pim-1 kinase overexpression. Testing of Pim-1 engineered c-kit+ cardiac interstitial cells (cCIC) derived from heart failure patient samples for indices of oncogenic risk was undertaken using multiple assessments including soft agar colony formation, micronucleation, gamma-Histone 2AX foci, and transcriptome profiling. Collectively, findings demonstrate comparable phenotypic and biological properties of cCIC following Pim-1 overexpression compared with using baseline control cells with no evidence for oncogenic phenotype. Using a highly selective and continuous sensor for quantitative assessment of PIM1 kinase activity revealed a sevenfold increase in Pim-1 engineered vs. control cells. Kinase activity profiling using a panel of sensors for other kinases demonstrates elevation of IKKs), AKT/SGK, CDK1-3, p38, and ERK1/2 in addition to Pim-1 consistent with heightened kinase activity correlating with Pim-1 overexpression that may contribute to Pim-1-mediated effects. Enhancement of cellular survival, proliferation, and other beneficial properties to augment stem cell-mediated repair without oncogenic risk is a feasible, logical, and safe approach to improve efficacy and overcome current limitations inherent to cellular adoptive transfer therapeutic interventions.
Collapse
|
15
|
Dubey NK, Wei HJ, Yu SH, Williams DF, Wang JR, Deng YH, Tsai FC, Wang PD, Deng WP. Adipose-derived Stem Cells Attenuates Diabetic Osteoarthritis via Inhibition of Glycation-mediated Inflammatory Cascade. Aging Dis 2019; 10:483-496. [PMID: 31164994 PMCID: PMC6538220 DOI: 10.14336/ad.2018.0616] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/16/2018] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) is well-known to exert complications such as retinopathy, cardiomyopathy and neuropathy. However, in recent years, an elevated osteoarthritis (OA) complaints among diabetics have been observed, portending the risk of diabetic OA. Since formation of advanced glycation end products (AGE) is believed to be the etiology of various diseases under hyperglycemic conditions, we firstly established that streptozotocin-induced DM could potentiate the development of OA in C57BL/6J mouse model, and further explored the intra-articularly administered adipose-derived stem cell (ADSC) therapy focusing on underlying AGE-associated mechanism. Our results demonstrated that hyperglycemic mice exhibited OA-like structural impairments including a proteoglycan loss and articular cartilage fibrillations in knee joint. Highly expressed levels of carboxymethyl lysine (CML), an AGE and their receptors (RAGE), which are hallmarks of hyperglycemic microenvironment were manifested. The elevated oxidative stress in diabetic OA knee-joint was revealed through increased levels of malondialdehyde (MDA). Further, oxidative stress-activated nuclear factor kappa B (NF-κB), the marker of proinflammatory signalling pathway was also accrued; and levels of matrix metalloproteinase-1 and 13 were upregulated. However, ADSC treatment attenuated all OA-like changes by 4 weeks, and dampened levels of CML, RAGE, MDA, NF-κB, MMP-1 and 13. These results suggest that during repair and regeneration, ADSCs inhibited glycation-mediated inflammatory cascade and rejuvenated cartilaginous tissue, thereby promoting knee-joint integrity in diabetic milieu.
Collapse
Affiliation(s)
- Navneet Kumar Dubey
- 1Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,2Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hong-Jian Wei
- 2Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,3School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,4School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sung-Hsun Yu
- 2Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - David F Williams
- 5Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC, USA
| | - Joseph R Wang
- 6Department of Periodontics, College of Dental Medicine, Columbia University, New York, USA
| | - Yue-Hua Deng
- 7Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Feng-Chou Tsai
- 8Stem Cell Research Center, Cosmetic Clinic Group, Taipei, Taiwan
| | - Peter D Wang
- 4School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,9Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Win-Ping Deng
- 2Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,4School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,10Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
16
|
Hinderer S, Schenke-Layland K. Cardiac fibrosis - A short review of causes and therapeutic strategies. Adv Drug Deliv Rev 2019; 146:77-82. [PMID: 31158407 DOI: 10.1016/j.addr.2019.05.011] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 04/22/2019] [Accepted: 05/22/2019] [Indexed: 01/07/2023]
Abstract
Fibrotic diseases cause annually more than 800,000 deaths worldwide, whereof the majority accounts for lung and cardiac fibrosis. A pathological remodeling of the extracellular matrix either due to ageing or as a result of an injury or disease leads to fibrotic scars. In the heart, these scars cause several cardiac dysfunctions either by reducing the ejection fraction due to a stiffened myocardial matrix, or by impairing electric conductance, or they can even lead to death. Today it is known that there are several different types of cardiac scars depending on the underlying cause of fibrosis. In this review, we present an overview of what is known about cardiac fibrosis including the role of cardiac cells and extracellular matrix in this disease. We will further summarize current diagnostic tools and highlight pre-clinical or clinical therapeutic strategies to address cardiac fibrosis.
Collapse
Affiliation(s)
- Svenja Hinderer
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany; Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, 675 Charles E. Young Drive South, MRL, 3645 Los Angeles, CA, USA.
| |
Collapse
|
17
|
Crisostomo V, Baez C, Abad JL, Sanchez B, Alvarez V, Rosado R, Gómez-Mauricio G, Gheysens O, Blanco-Blazquez V, Blazquez R, Torán JL, Casado JG, Aguilar S, Janssens S, Sánchez-Margallo FM, Rodriguez-Borlado L, Bernad A, Palacios I. Dose-dependent improvement of cardiac function in a swine model of acute myocardial infarction after intracoronary administration of allogeneic heart-derived cells. Stem Cell Res Ther 2019; 10:152. [PMID: 31151405 PMCID: PMC6544975 DOI: 10.1186/s13287-019-1237-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Allogeneic cardiac-derived progenitor cells (CPC) without immunosuppression could provide an effective ancillary therapy to improve cardiac function in reperfused myocardial infarction. We set out to perform a comprehensive preclinical feasibility and safety evaluation of porcine CPC (pCPC) in the infarcted porcine model, analyzing biodistribution and mid-term efficacy, as well as safety in healthy non-infarcted swine. METHODS The expression profile of several pCPC isolates was compared with humans using both FACS and RT-qPCR. ELISA was used to compare the functional secretome. One week after infarction, female swine received an intracoronary (IC) infusion of vehicle (CON), 25 × 106 pCPC (25 M), or 50 × 106 pCPC (50 M). Animals were followed up for 10 weeks using serial cardiac magnetic resonance imaging to assess functional and structural remodeling (left ventricular ejection fraction (LVEF), systolic and diastolic volumes, and myocardial salvage index). Statistical comparisons were performed using Kruskal-Wallis and Mann-Whitney U tests. Biodistribution analysis of 18F-FDG-labeled pCPC was also performed 4 h after infarction in a different subset of animals. RESULTS Phenotypic and functional characterization of pCPC revealed a gene expression profile comparable to their human counterparts as well as preliminary functional equivalence. Left ventricular functional and structural remodeling showed significantly increased LVEF 10 weeks after IC administration of 50 M pCPC, associated to the recovery of left ventricular volumes that returned to pre-infarction values (LVEF at 10 weeks was 42.1 ± 10.0% in CON, 46.5 ± 7.4% in 25 M, and 50.2 ± 4.9% in 50 M, p < 0.05). Infarct remodeling was also improved following pCPC infusion with a significantly higher myocardial salvage index in both treated groups (0.35 ± 0.20 in CON; 0.61 ± 0.20, p = 0.04, in 25 M; and 0.63 ± 0.17, p = 0.01, in 50 M). Biodistribution studies demonstrated cardiac tropism 4 h after IC administration, with substantial myocardial retention of pCPC-associated tracer activity (18% of labeled cells in the heart), and no obstruction of coronary flow, indicating their suitability as a cell therapy product. CONCLUSIONS IC administration of allogeneic pCPC at 1 week after acute myocardial infarction is feasible, safe, and associated with marked structural and functional benefit. The robust cardiac tropism of pCPC and the paracrine effects on left ventricle post-infarction remodeling established the preclinical bases for the CAREMI clinical trial (NCT02439398).
Collapse
Affiliation(s)
- Veronica Crisostomo
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain. .,CIBERCV, Instituto de Salud Carlos III. C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029, Madrid, Spain.
| | - Claudia Baez
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain.,CIBERCV, Instituto de Salud Carlos III. C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029, Madrid, Spain
| | - José Luis Abad
- Coretherapix S.L.U./Tigenix Group C/Marconi 1, 28076, Tres Cantos, Madrid, Spain
| | - Belén Sanchez
- Coretherapix S.L.U./Tigenix Group C/Marconi 1, 28076, Tres Cantos, Madrid, Spain
| | - Virginia Alvarez
- Coretherapix S.L.U./Tigenix Group C/Marconi 1, 28076, Tres Cantos, Madrid, Spain
| | - Rosalba Rosado
- Coretherapix S.L.U./Tigenix Group C/Marconi 1, 28076, Tres Cantos, Madrid, Spain
| | - Guadalupe Gómez-Mauricio
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain
| | - Olivier Gheysens
- Department of Cardiovascular Medicine, UZ Leuven Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium
| | - Virginia Blanco-Blazquez
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain.,CIBERCV, Instituto de Salud Carlos III. C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029, Madrid, Spain
| | - Rebeca Blazquez
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain.,CIBERCV, Instituto de Salud Carlos III. C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029, Madrid, Spain
| | - José Luis Torán
- Department of Immunology and Oncology, Spanish National Center for Biotechnology (CNB-CSIC), C/Darwin, 3 (Campus UAM Cantoblanco), 28049, Madrid, Spain
| | - Javier G Casado
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain.,CIBERCV, Instituto de Salud Carlos III. C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029, Madrid, Spain
| | - Susana Aguilar
- Department of Immunology and Oncology, Spanish National Center for Biotechnology (CNB-CSIC), C/Darwin, 3 (Campus UAM Cantoblanco), 28049, Madrid, Spain
| | - Stefan Janssens
- Department of Cardiovascular Medicine, UZ Leuven Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium
| | - Francisco M Sánchez-Margallo
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain.,CIBERCV, Instituto de Salud Carlos III. C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029, Madrid, Spain
| | | | - Antonio Bernad
- Department of Immunology and Oncology, Spanish National Center for Biotechnology (CNB-CSIC), C/Darwin, 3 (Campus UAM Cantoblanco), 28049, Madrid, Spain
| | - Itziar Palacios
- Coretherapix S.L.U./Tigenix Group C/Marconi 1, 28076, Tres Cantos, Madrid, Spain.
| |
Collapse
|
18
|
Marino F, Scalise M, Cianflone E, Mancuso T, Aquila I, Agosti V, Torella M, Paolino D, Mollace V, Nadal-Ginard B, Torella D. Role of c-Kit in Myocardial Regeneration and Aging. Front Endocrinol (Lausanne) 2019; 10:371. [PMID: 31275242 PMCID: PMC6593054 DOI: 10.3389/fendo.2019.00371] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022] Open
Abstract
c-Kit, a type III receptor tyrosine kinase (RTK), is involved in multiple intracellular signaling whereby it is mainly considered a stem cell factor receptor, which participates in vital functions of the mammalian body, including the human. Furthermore, c-kit is a necessary yet not sufficient marker to detect and isolate several types of tissue-specific adult stem cells. Accordingly, c-kit was initially used as a marker to identify and enrich for adult cardiac stem/progenitor cells (CSCs) that were proven to be clonogenic, self-renewing and multipotent, being able to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells in vitro as well as in vivo after myocardial injury. Afterwards it was demonstrated that c-kit expression labels a heterogenous cardiac cell population, which is mainly composed by endothelial cells while only a very small fraction represents CSCs. Furthermore, c-kit as a signaling molecule is expressed at different levels in this heterogenous c-kit labeled cardiac cell pool, whereby c-kit low expressers are enriched for CSCs while c-kit high expressers are endothelial and mast cells. This heterogeneity in cell composition and expression levels has been neglected in recent genetic fate map studies focusing on c-kit, which have claimed that c-kit identifies cells with robust endothelial differentiation potential but with minimal if not negligible myogenic commitment potential. However, modification of c-kit gene for Cre Recombinase expression in these Cre/Lox genetic fate map mouse models produced a detrimental c-kit haploinsufficiency that prevents efficient labeling of true CSCs on one hand while affecting the regenerative potential of these cells on the other. Interestingly, c-kit haploinsufficiency in c-kit-deficient mice causes a worsening myocardial repair after injury and accelerates cardiac aging. Therefore, these studies have further demonstrated that adult c-kit-labeled CSCs are robustly myogenic and that the adult myocardium relies on c-kit expression to regenerate after injury and to counteract aging effects on cardiac structure and function.
Collapse
Affiliation(s)
- Fabiola Marino
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
- Department of Health Sciences, Interregional Research Center on Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Mariangela Scalise
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Eleonora Cianflone
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Teresa Mancuso
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Iolanda Aquila
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Valter Agosti
- Interdepartmental Center of Services (CIS) of Genomics, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Michele Torella
- Department of Cardiothoracic Sciences, University of Campania L. Vanvitelli, Naples, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Interregional Research Center on Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Bernardo Nadal-Ginard
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
- StemCell OpCo, Madrid, Spain
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
- *Correspondence: Daniele Torella
| |
Collapse
|
19
|
Scalise M, Marino F, Cianflone E, Mancuso T, Marotta P, Aquila I, Torella M, Nadal-Ginard B, Torella D. Heterogeneity of Adult Cardiac Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:141-178. [PMID: 31487023 DOI: 10.1007/978-3-030-24108-7_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cardiac biology and heart regeneration have been intensively investigated and debated in the last 15 years. Nowadays, the well-established and old dogma that the adult heart lacks of any myocyte-regenerative capacity has been firmly overturned by the evidence of cardiomyocyte renewal throughout the mammalian life as part of normal organ cell homeostasis, which is increased in response to injury. Concurrently, reproducible evidences from independent laboratories have convincingly shown that the adult heart possesses a pool of multipotent cardiac stem/progenitor cells (CSCs or CPCs) capable of sustaining cardiomyocyte and vascular tissue refreshment after injury. CSC transplantation in animal models displays an effective regenerative potential and may be helpful to treat chronic heart failure (CHF), obviating at the poor/modest results using non-cardiac cells in clinical trials. Nevertheless, the degree/significance of cardiomyocyte turnover in the adult heart, which is insufficient to regenerate extensive damage from ischemic and non-ischemic origin, remains strongly disputed. Concurrently, different methodologies used to detect CSCs in situ have created the paradox of the adult heart harboring more than seven different cardiac progenitor populations. The latter was likely secondary to the intrinsic heterogeneity of any regenerative cell agent in an adult tissue but also to the confusion created by the heterogeneity of the cell population identified by a single cell marker used to detect the CSCs in situ. On the other hand, some recent studies using genetic fate mapping strategies claimed that CSCs are an irrelevant endogenous source of new cardiomyocytes in the adult. On the basis of these contradictory findings, here we critically reviewed the available data on adult CSC biology and their role in myocardial cell homeostasis and repair.
Collapse
Affiliation(s)
- Mariangela Scalise
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Fabiola Marino
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Eleonora Cianflone
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Teresa Mancuso
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pina Marotta
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Iolanda Aquila
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Michele Torella
- Department of Cardiothoracic Surgery, University of Campania "L.Vanvitelli", Naples, Italy
| | - Bernardo Nadal-Ginard
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Daniele Torella
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| |
Collapse
|
20
|
Tao Z, Tan S, Chen W, Chen X. Stem Cell Homing: a Potential Therapeutic Strategy Unproven for Treatment of Myocardial Injury. J Cardiovasc Transl Res 2018; 11:403-411. [PMID: 30324254 DOI: 10.1007/s12265-018-9823-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
Abstract
Despite advances in the prevention and therapeutic modalities of ischemic heart disease, morbidity and mortality post-infarction heart failure remain big challenges in modern society. Stem cell therapy is emerging as a promising therapeutic strategy. Stem cell homing, the ability of stem cells to find their destination, is receiving more attention. Identification of specific cues and understanding the signaling pathways that direct stem cells to targeted destination will improve stem cell homing efficiency. This review discusses the cellular and molecular mechanism of stem cell homing at length in the light of literature and analyzes the problem and considerations of this approach as a treatment strategy for the treatment of ischemic heart disease clinically.
Collapse
Affiliation(s)
- Zhonghao Tao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Shihua Tan
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Pre-Conditioning Stem Cells in a Biomimetic Environment for Enhanced Cardiac Tissue Repair: In Vitro and In Vivo Analysis. Cell Mol Bioeng 2018; 11:321-336. [PMID: 31579283 DOI: 10.1007/s12195-018-0543-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Introduction Stem cell-based therapies represent a valid approach to restore cardiac function due to their beneficial effect in reducing scar area formation and promoting angiogenesis. However, their translation into the clinic is limited by the poor differentiation and inability to secrete sufficient therapeutic factors. To address this issue, several strategies such as genetic modification and biophysical preconditioning have been used to enhance the efficacy of stem cells for cardiac tissue repair. Methods In this study, a biomimetic approach was used to mimic the natural mechanical stimulation of the myocardium tissue. Specifically, human adipose-derived stem cells (hASCs) were cultured on a thin gelatin methacrylamide (GelMA) hydrogel disc and placed on top of a beating cardiomyocyte layer. qPCR studies and metatranscriptomic analysis of hASCs gene expression were investigated to confirm the correlation between mechanical stimuli and cardiomyogenic differentiation. In vivo intramyocardial delivery of pre-conditioned hASCs was carried out to evaluate their efficacy to restore cardiac function in mice hearts post-myocardial infarction. Results The cyclic strain generated by cardiomyocytes significantly upregulated the expression of both mechanotransduction and cardiomyogenic genes in hASCs as compared to the static control group. The inherent angiogenic secretion profile of hASCs was not hindered by the mechanical stimulation provided by the designed biomimetic system. Finally, in vivo analysis confirmed the regenerative potential of the pre-conditioned hASCs by displaying a significant improvement in cardiac function and enhanced angiogenesis in the peri-infarct region. Conclusion Overall, these findings indicate that cyclic strain provided by the designed biomimetic system is an essential stimulant for hASCs cardiomyogenic differentiation, and therefore can be a potential solution to improve stem-cell based efficacy for cardiovascular repair.
Collapse
|
22
|
Cianflone E, Aquila I, Scalise M, Marotta P, Torella M, Nadal-Ginard B, Torella D. Molecular basis of functional myogenic specification of Bona Fide multipotent adult cardiac stem cells. Cell Cycle 2018; 17:927-946. [PMID: 29862928 PMCID: PMC6103696 DOI: 10.1080/15384101.2018.1464852] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/01/2018] [Accepted: 04/08/2018] [Indexed: 01/14/2023] Open
Abstract
Ischemic Heart Disease (IHD) remains the developed world's number one killer. The improved survival from Acute Myocardial Infarction (AMI) and the progressive aging of western population brought to an increased incidence of chronic Heart Failure (HF), which assumed epidemic proportions nowadays. Except for heart transplantation, all treatments for HF should be considered palliative because none of the current therapies can reverse myocardial degeneration responsible for HF syndrome. To stop the HF epidemic will ultimately require protocols to reduce the progressive cardiomyocyte (CM) loss and to foster their regeneration. It is now generally accepted that mammalian CMs renew throughout life. However, this endogenous regenerative reservoir is insufficient to repair the extensive damage produced by AMI/IHD while the source and degree of CM turnover remains strongly disputed. Independent groups have convincingly shown that the adult myocardium harbors bona-fide tissue specific cardiac stem cells (CSCs). Unfortunately, recent reports have challenged the identity and the endogenous myogenic capacity of the c-kit expressing CSCs. This has hampered progress and unless this conflict is settled, clinical tests of repair/regenerative protocols are unlikely to provide convincing answers about their clinical potential. Here we review recent data that have eventually clarified the specific phenotypic identity of true multipotent CSCs. These cells when coaxed by embryonic cardiac morphogens undergo a precisely orchestrated myogenic commitment process robustly generating bona-fide functional cardiomyocytes. These data should set the path for the revival of further investigation untangling the regenerative biology of adult CSCs to harness their potential for HF prevention and treatment.
Collapse
Affiliation(s)
- Eleonora Cianflone
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Iolanda Aquila
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Mariangela Scalise
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Pina Marotta
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Michele Torella
- Department of Cardiothoracic Sciences, University of Campania Campus “Salvatore Venuta” Viale Europa- Loc. Germaneto “L. Vanvitelli”, Naples, Italy
| | - Bernardo Nadal-Ginard
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
23
|
Kirby RJ, Divlianska DB, Whig K, Bryan N, Morfa CJ, Koo A, Nguyen KH, Maloney P, Peddibhotla S, Sessions EH, Hershberger PM, Smith LH, Malany S. Discovery of Novel Small-Molecule Inducers of Heme Oxygenase-1 That Protect Human iPSC-Derived Cardiomyocytes from Oxidative Stress. J Pharmacol Exp Ther 2018; 364:87-96. [PMID: 29101218 DOI: 10.1124/jpet.117.243717] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/31/2017] [Indexed: 01/09/2023] Open
Abstract
Oxidative injury to cardiomyocytes plays a critical role in cardiac pathogenesis following myocardial infarction. Transplantation of stem cell-derived cardiomyocytes has recently progressed as a novel treatment to repair damaged cardiac tissue but its efficacy has been limited by poor survival of transplanted cells owing to oxidative stress in the post-transplantation environment. Identification of small molecules that activate cardioprotective pathways to prevent oxidative damage and increase survival of stem cells post-transplantation is therefore of great interest for improving the efficacy of stem cell therapies. This report describes a chemical biology phenotypic screening approach to identify and validate small molecules that protect human-induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) from oxidative stress. A luminescence-based high-throughput assay for cell viability was used to screen a diverse collection of 48,640 small molecules for protection of hiPSC-CMs from peroxide-induced cell death. Cardioprotective activity of "hit" compounds was confirmed using impedance-based detection of cardiomyocyte monolayer integrity and contractile function. Structure-activity relationship studies led to the identification of a potent class of compounds with 4-(pyridine-2-yl)thiazole scaffold. Examination of gene expression in hiPSC-CMs revealed that the hit compound, designated cardioprotectant 312 (CP-312), induces robust upregulation of heme oxygenase-1, a marker of the antioxidant response network that has been strongly correlated with protection of cardiomyocytes from oxidative stress. CP-312 therefore represents a novel chemical scaffold identified by phenotypic high-throughput screening using hiPSC-CMs that activates the antioxidant defense response and may lead to improved pharmacological cardioprotective therapies.
Collapse
Affiliation(s)
- R Jason Kirby
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Daniela B Divlianska
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Kanupriya Whig
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Nadezda Bryan
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Camilo J Morfa
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Ada Koo
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Kevin H Nguyen
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Patrick Maloney
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Satayamaheshwar Peddibhotla
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - E Hampton Sessions
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Paul M Hershberger
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Layton H Smith
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Siobhan Malany
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| |
Collapse
|
24
|
Greenberg JM, Lumbreras V, Pelaez D, Rajguru SM, Cheung HS. Neural Crest Stem Cells Can Differentiate to a Cardiomyogenic Lineage with an Ability to Contract in Response to Pulsed Infrared Stimulation. Tissue Eng Part C Methods 2017; 22:982-990. [PMID: 28192031 DOI: 10.1089/ten.tec.2016.0232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Cellular cardiomyoplasty has rapidly risen to prominence in the clinic following a myocardial infarction; however, low engraftment of transplanted cells limits the therapeutic benefit to these procedures. Recently, lineage-specific stem cells differentiated into cardiomyocytes have gained much attention to assist in the repair of an injured heart tissue; however, questions regarding the ideal cell source remain. In the present study, we have identified a source that is easy to extract stem cells from and show that the cells present have a high plasticity toward the cardiomyogenic lineage. We focused on the recently discovered neural crest stem cells residing in the periodontal ligament that can be easily obtained through dental procedures. MATERIALS AND METHODS Neural crest stem cells were obtained from human excised third molars and differentiated in culture using a protocol for directed differentiation into cardiomyocytes. Differentiation of cells was assessed through gene expression and immunostaining studies. Optical stimulation using pulsed infrared radiation (IR) (λ = 1863 nm) was delivered to cell aggregates to study their contractile ability. RESULTS We show that neural crest stem cells can be differentiated to a cardiomyogenic lineage, which was verified through immunostaining and gene expression. We observed a significant increase in cardiomyocyte-specific markers, NK2 homeobox 5 (NKX2.5) and troponin T type 2 (TNNT2), with positive changes in tropomyosin I (TPM1), gap junction protein alpha 1/Cx43 (GJA1/Cx43), and myocyte enhancement factor 2C (MEF2C). Furthermore, we were able to elicit and maintain pulse-by-pulse contractile responses in the derived cells, including in cardiospheres, with pulsed IR delivered at various radiant energies. The contractility in responses to IR could be maintained at different frequencies (0.25-2 Hz) and up to 10-min durations. While these cells did not maintain their contractility following cessation of IR, these cells demonstrated responses to the optical stimuli that are consistent with previous reports. We also found no evidence for irreversible mitochondrial depolarization in these cells following the long duration of infrared stimulation, suggesting the robustness of these cells. CONCLUSIONS Overall, these results suggest the merit of neural crest-derived stem cells for cardiomyogenic applications and a potential cell source for repair that should contribute to efforts to translate cell-based strategies to the clinic.
Collapse
Affiliation(s)
- Jordan M Greenberg
- 1 Department of Biomedical Engineering, College of Engineering, University of Miami , Coral Gables, Florida
| | - Vicente Lumbreras
- 1 Department of Biomedical Engineering, College of Engineering, University of Miami , Coral Gables, Florida
| | - Daniel Pelaez
- 2 Geriatric Research, Education and Clinical Center (GRECC), Miami Veterans Affairs Medical Center , Miami, Florida
| | - Suhrud M Rajguru
- 1 Department of Biomedical Engineering, College of Engineering, University of Miami , Coral Gables, Florida.,3 Department of Otolaryngology, Miller School of Medicine, University of Miami , Miami, Florida
| | - Herman S Cheung
- 1 Department of Biomedical Engineering, College of Engineering, University of Miami , Coral Gables, Florida.,2 Geriatric Research, Education and Clinical Center (GRECC), Miami Veterans Affairs Medical Center , Miami, Florida
| |
Collapse
|
25
|
Strategies to Enhance the Effectiveness of Adult Stem Cell Therapy for Ischemic Heart Diseases Affecting the Elderly Patients. Stem Cell Rev Rep 2017; 12:214-23. [PMID: 26779896 DOI: 10.1007/s12015-016-9642-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Myocardial infarctions and chronic ischemic heart disease both commonly and disproportionately affect elderly patients more than any other patient population. Despite available treatments, heart tissue is often permanently damaged as a result of cardiac injury. This review aims to summarize recent literature proposing the use of modified autologous adult stem cells to promote healing of post-infarct cardiac tissue. This novel cellular treatment involves isolation of adult stem cells from the patient, in vitro manipulation of these stem cells, and subsequent transplantation back into the patient's own heart to accelerate healing. One of the hindrances affecting this process is that cardiac issues are increasingly common in elderly patients, and stem cells recovered from their tissues tend to be pre-senescent or already in senescence. As a result, harsh in vitro manipulations can cause the aged stem cells to undergo massive in vivo apoptosis after transplantation. The consensus in literature is that inhibition or reversal of senescence onset in adult stem cells would be of utmost benefit. In fact, it is believed that this strategy may lower stem cell mortality and coerce aged stem cells into adopting more resilient phenotypes similar to that of their younger counterparts. This review will discuss a selection of the most efficient and most-recent strategies used experimentally to enhance the effectiveness of current stem cell therapies for ischemic heart diseases.
Collapse
|
26
|
Franchi F, Peterson KM, Paulmurugan R, Folmes C, Lanza IR, Lerman A, Rodriguez-Porcel M. Noninvasive Monitoring of the Mitochondrial Function in Mesenchymal Stromal Cells. Mol Imaging Biol 2017; 18:510-8. [PMID: 26865378 DOI: 10.1007/s11307-016-0929-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Mitochondria are a gatekeeper of cell survival and mitochondrial function can be used to monitor cell stress. Here we validate a pathway-specific reporter gene to noninvasively image the mitochondrial function of stem cells. PROCEDURES We constructed a mitochondrial sensor with the firefly luciferase (Fluc) reporter gene driven by the NQO1 enzyme promoter. The sensor was introduced in stem cells and validated in vitro and in vivo, in a mouse model of myocardial ischemia/reperfusion (IR). RESULTS The sensor activity showed an inverse relationship with mitochondrial function (R (2) = -0.975, p = 0.025) and showed specificity and sensitivity for mitochondrial dysfunction. In vivo, NQO1-Fluc activity was significantly higher in IR animals vs. controls, indicative of mitochondrial dysfunction, and was corroborated by ex vivo luminometry. CONCLUSIONS Reporter gene imaging allows assessment of the biology of transplanted mesenchymal stromal cells (MSCs), providing important information that can be used to improve the phenotype and survival of transplanted stem cells.
Collapse
Affiliation(s)
- Federico Franchi
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Karen M Peterson
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Ramasamy Paulmurugan
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
| | - Clifford Folmes
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Ian R Lanza
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Martin Rodriguez-Porcel
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
27
|
Abstract
Stem cell mediated cardiac repair is an exciting and controversial area of cardiovascular research that holds the potential to produce novel, revolutionary therapies for the treatment of heart disease. Extensive investigation to define cell types contributing to cardiac formation, homeostasis and regeneration has produced several candidates, including adult cardiac c-Kit+ expressing stem and progenitor cells that have even been employed in a Phase I clinical trial demonstrating safety and feasibility of this therapeutic approach. However, the field of cardiac cell based therapy remains deeply divided due to strong disagreement among researchers and clinicians over which cell types, if any, are the best candidates for these applications. Research models that identify and define specific cardiac cells that effectively contribute to heart repair are urgently needed to resolve this debate. In this review, current c-Kit reporter models are discussed with respect to myocardial c-Kit cell biology and function, and future designs imagined to better represent endogenous myocardial c-Kit expression.
Collapse
|
28
|
Talkhabi M, Zonooz ER, Baharvand H. Boosters and barriers for direct cardiac reprogramming. Life Sci 2017; 178:70-86. [PMID: 28427897 DOI: 10.1016/j.lfs.2017.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/08/2017] [Accepted: 04/16/2017] [Indexed: 12/16/2022]
Abstract
Heart disease is currently the most significant cause of morbidity and mortality worldwide, which accounts for approximately 33% of all deaths. Recently, a promising and alchemy-like strategy has been developed called direct cardiac reprogramming, which directly converts somatic cells such as fibroblasts to cardiac lineage cells such as cardiomyocytes (CMs), termed induced CMs or iCMs. The first in vitro cardiac reprogramming study, mediated by cardiac transcription factors (TFs)-Gata4, Tbx5 and Mef2C-, was not enough efficient to produce an adequate number of fully reprogrammed, functional iCMs. As a result, numerous combinations of cardiac TFs exist for direct cardiac reprogramming of mouse and human fibroblasts. However, the efficiency of direct cardiac reprogramming remains low. Recently, a number of cellular and molecular mechanisms have been identified to increase the efficiency of direct cardiac reprogramming and the quality of iCMs. For example, microgrooved substrate, cardiogenic growth factors [VEGF, FGF, BMP4 and Activin A], and an appropriate stoichiometry of TFs boost the direct cardiac reprogramming. On the other hand, serum, TGFβ signaling, activators of epithelial to mesenchymal transition, and some epigenetic factors (Bmi1 and Ezh2) are barriers for direct cardiac reprogramming. Manipulating these mechanisms by the application of boosters and removing barriers can increase the efficiency of direct cardiac reprogramming and possibly make iCMs reliable for cell-based therapy or other potential applications. In this review, we summarize the latest trends in cardiac TF- or miRNA-based direct cardiac reprogramming and comprehensively discuses all molecular and cellular boosters and barriers affecting direct cardiac reprogramming.
Collapse
Affiliation(s)
- Mahmood Talkhabi
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Elmira Rezaei Zonooz
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
29
|
Li G, Chen J, Zhang X, He G, Tan W, Wu H, Li R, Chen Y, Gu R, Xie J, Xu B. Cardiac repair in a mouse model of acute myocardial infarction with trophoblast stem cells. Sci Rep 2017; 7:44376. [PMID: 28295048 PMCID: PMC5353648 DOI: 10.1038/srep44376] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/07/2017] [Indexed: 12/25/2022] Open
Abstract
Various stem cells have been explored for the purpose of cardiac repair. However, any individual stem cell population has not been considered as the ideal source. Recently, trophoblast stem cells (TSCs), a newly described stem cell type, have demonstrated extensive plasticity. The present study evaluated the therapeutic effect of TSCs transplantation for heart regeneration in a mouse model of myocardial infarction (MI) and made a direct comparison with the most commonly used mesenchymal stem cells (MSCs). Transplantation of TSCs and MSCs led to a remarkably improved cardiac function in contrast with the PBS control, but only the TSCs exhibited the potential of differentiation into cardiomyocytes in vivo. In addition, a significantly high proliferation level of both transplanted stem cells and resident cardiomyocytes was observed in the TSCs group. These findings primary revealed the therapeutic potential of TSCs in transplantation therapy for MI.
Collapse
Affiliation(s)
- Guannan Li
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Jianzhou Chen
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Xinlin Zhang
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Guixin He
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
- Department of Cardiology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, 530023, China
| | - Wei Tan
- Department of Cardiology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, 530023, China
| | - Han Wu
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Ran Li
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Yuhan Chen
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Rong Gu
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Jun Xie
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| |
Collapse
|
30
|
Broughton KM, Sussman MA. Myocardial Regeneration for Humans ― Modifying Biology and Manipulating Evolution ―. Circ J 2017; 81:142-148. [DOI: 10.1253/circj.cj-16-1228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kathleen M. Broughton
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute
| | - Mark A. Sussman
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute
| |
Collapse
|
31
|
Waseem M, Khan I, Iqbal H, Eijaz S, Usman S, Ahmed N, Alam G, Salim A. Hypoxic Preconditioning Improves the Therapeutic Potential of Aging Bone Marrow Mesenchymal Stem Cells in Streptozotocin-Induced Type-1 Diabetic Mice. Cell Reprogram 2016; 18:344-355. [PMID: 27500307 DOI: 10.1089/cell.2016.0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Insulin replacement is the current therapeutic option for type-1 diabetes. However, exogenous insulin cannot precisely represent the normal pattern of insulin secretion. Another therapeutic strategy is transplantation of pancreatic islets, but this is limited by immune rejection, intrinsic complications, and lack of donor availability. Stem cell therapy that results in the regeneration of insulin-producing cells represents an attractive choice. However, with advancing age, stem cells also undergo senescence, which leads to changes in the function of various cellular processes that result in a decrease in the regeneration potential of these aging stem cells. In this study, the effect of young and aging mesenchymal stem cells (MSCs) on the regeneration of pancreatic beta cells in streptozotocin (STZ)-induced type-1 diabetic mice was observed after hypoxic preconditioning. Hypoxia was chemically induced by 2, 4-dinitrophenol (DNP). Plasma insulin and glucose levels were measured at various time intervals, and pancreatic sections were analyzed histochemically. The effect of DNP was also analyzed on apoptosis of MSCs by flow cytometry and on gene expression of certain growth factors by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). We observed that hypoxic preconditioning caused changes in the gene expression levels of growth factors in both young and aging MSCs. Young MSCs showed significant regeneration potential compared with the aging cells in vivo. However, hypoxic preconditioning was able to improve the regeneration potential of aging MSCs. It is concluded from the present study that the regeneration potential of aging MSCs into pancreatic β-cells can be enhanced by hypoxic preconditioning, which causes changes in the gene expression of certain growth factors.
Collapse
Affiliation(s)
- Muhammad Waseem
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi , Karachi, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi , Karachi, Pakistan
| | - Hana'a Iqbal
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi , Karachi, Pakistan
| | - Sana Eijaz
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi , Karachi, Pakistan
| | - Shumaila Usman
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi , Karachi, Pakistan
| | - Nazia Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi , Karachi, Pakistan
| | - Gulzar Alam
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi , Karachi, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi , Karachi, Pakistan
| |
Collapse
|
32
|
Hamid T, Xu Y, Ismahil MA, Li Q, Jones SP, Bhatnagar A, Bolli R, Prabhu SD. TNF receptor signaling inhibits cardiomyogenic differentiation of cardiac stem cells and promotes a neuroadrenergic-like fate. Am J Physiol Heart Circ Physiol 2016; 311:H1189-H1201. [PMID: 27591224 DOI: 10.1152/ajpheart.00904.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 08/25/2016] [Indexed: 01/23/2023]
Abstract
Despite expansion of resident cardiac stem cells (CSCs; c-kit+Lin-) after myocardial infarction, endogenous repair processes are insufficient to prevent adverse cardiac remodeling and heart failure (HF). This suggests that the microenvironment in post-ischemic and failing hearts compromises CSC regenerative potential. Inflammatory cytokines, such as tumor necrosis factor-α (TNF), are increased after infarction and in HF; whether they modulate CSC function is unknown. As the effects of TNF are specific to its two receptors (TNFRs), we tested the hypothesis that TNF differentially modulates CSC function in a TNFR-specific manner. CSCs were isolated from wild-type (WT), TNFR1-/-, and TNFR2-/- adult mouse hearts, expanded and evaluated for cell competence and differentiation in vitro in the absence and presence of TNF. Our results indicate that TNF signaling in murine CSCs is constitutively related primarily to TNFR1, with TNFR2 inducible after stress. TNFR1 signaling modestly diminished CSC proliferation, but, along with TNFR2, augmented CSC resistance to oxidant stress. Deficiency of either TNFR1 or TNFR2 did not impact CSC telomerase activity. Importantly, TNF, primarily via TNFR1, inhibited cardiomyogenic commitment during CSC differentiation, and instead promoted smooth muscle and endothelial fates. Moreover, TNF, via both TNFR1 and TNFR2, channeled an alternate CSC neuroadrenergic-like fate (capable of catecholamine synthesis) during differentiation. Our results suggest that elevated TNF in the heart restrains cardiomyocyte differentiation of resident CSCs and may enhance adrenergic activation, both effects that would reduce the effectiveness of endogenous cardiac repair and the response to exogenous stem cell therapy, while promoting adverse cardiac remodeling.
Collapse
Affiliation(s)
- Tariq Hamid
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama; and
| | - Yuanyuan Xu
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama; and
| | - Mohamed Ameen Ismahil
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama; and
| | - Qianhong Li
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Steven P Jones
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Aruni Bhatnagar
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Roberto Bolli
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Sumanth D Prabhu
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama; and
| |
Collapse
|
33
|
Gómez-Mauricio G, Moscoso I, Martín-Cancho MF, Crisóstomo V, Prat-Vidal C, Báez-Díaz C, Sánchez-Margallo FM, Bernad A. Combined administration of mesenchymal stem cells overexpressing IGF-1 and HGF enhances neovascularization but moderately improves cardiac regeneration in a porcine model. Stem Cell Res Ther 2016; 7:94. [PMID: 27423905 PMCID: PMC4947339 DOI: 10.1186/s13287-016-0350-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/13/2016] [Accepted: 06/21/2016] [Indexed: 12/12/2022] Open
Abstract
Background Insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) are among the most promising growth factors for promoting cardiorepair. Here, we evaluated the combination of cell- and gene-based therapy using mesenchymal stem cells (MSC) genetically modified to overexpress IGF-1 or HGF to treat acute myocardial infarction (AMI) in a porcine model. Methods Pig MSC from adipose tissue (paMSC) were genetically modified for evaluation of different therapeutic strategies to improve AMI treatment. Three groups of infarcted Large White pigs were compared (I, control, non-transplanted; II, transplanted with paMSC-GFP (green fluorescent protein); III, transplanted with paMSC-IGF-1/HGF). Cardiac function was evaluated non-invasively using magnetic resonance imaging (MRI) for 1 month. After euthanasia and sampling of the animal, infarcted areas were studied by histology and immunohistochemistry. Results Intramyocardial transplant in a porcine infarct model demonstrated the safety of paMSC in short-term treatments. Treatment with paMSC-IGF-1/HGF (1:1) compared with the other groups showed a clear reduction in inflammation in some sections analyzed and promoted angiogenic processes in ischemic tissue. Although cardiac function parameters were not significantly improved, cell retention and IGF-1 overexpression was confirmed within the myocardium. Conclusions The simultaneous administration of IGF-1- and HGF-overexpressing paMSC appears not to promote a synergistic effect or effective repair. The combined enhancement of neovascularization and fibrosis in paMSC-IGF-1/HGF-treated animals nonetheless suggests that sustained exposure to high IGF-1 + HGF levels promotes beneficial as well as deleterious effects that do not improve overall cardiac regeneration. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0350-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guadalupe Gómez-Mauricio
- Jesús Usón Minimally Invasive Surgery Center, Cáceres, Spain.,Department of Cardiovascular Development and Repair, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Isabel Moscoso
- Department of Cardiovascular Development and Repair, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Cardiovascular Area, CIMUS, Instituto de Investigación Sanitaria, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | - Cristina Prat-Vidal
- Department of Cardiovascular Development and Repair, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,ICREC (Heart Failure and Cardiac Regeneration) Research Program, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain
| | | | | | - Antonio Bernad
- Department of Cardiovascular Development and Repair, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain. .,Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3 (Campus UAM Cantoblanco), 28049, Madrid, Spain.
| |
Collapse
|
34
|
Abstract
Stem cell-based therapy is currently tested in several trials of chronic heart failure. The main question is to determine how its implementation could be extended to common clinical practice. To fill this gap, it is critical to first validate the hypothesis that the grafted stem cells primarily act by harnessing endogenous repair pathways. The confirmation of this mechanism would have three major clinically relevant consequences: (i) the use of cardiac-committed cells, since even though cells primarily act in a paracrine manner, such a phenotype seems the most functionally effective; (ii) the optimization of early cell retention, rather than of sustained cell survival, so that the cells reside in the target tissue long enough to deliver the factors underpinning their action; and (iii) the reliance on allogeneic cells, the expected rejection of which should only have to be delayed since a permanent engraftment would no longer be the objective. One step further, the long-term objective of cell therapy could be to use the cells exclusively for producing factors and then to only administer them to the patient. The production process would then be closer to that of a biological pharmaceutic, thereby facilitating an extended clinical use.
Collapse
Affiliation(s)
- Philippe Menasché
- Department of Cardiovascular Surgery; Université Paris Descartes, Sorbonne Paris Cité; INSERM U-970, Hôpital Européen Georges Pompidou 20, rue Leblanc 75015 Paris, France
| |
Collapse
|
35
|
Menasché P, Vanneaux V. Stem cells for the treatment of heart failure. Curr Res Transl Med 2016; 64:97-106. [PMID: 27316393 DOI: 10.1016/j.retram.2016.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/02/2016] [Accepted: 04/08/2016] [Indexed: 12/17/2022]
Abstract
Stem cell-based therapy is currently tested in several trials of chronic heart failure. The main question is to determine how its implementation could be extended to standard clinical practice. To answer this question, it is helpful to capitalize on the three main lessons drawn from the accumulated experience, both in the laboratory and in the clinics. Regarding the cell type, the best outcomes seem to be achieved by cells the phenotype of which closely matches that of the target tissue. This argues in favor of the use of cardiac-committed cells among which the pluripotent stem cell-derived cardiac progeny is particularly attractive. Regarding the mechanism of action, there has been a major paradigm shift whereby cells are no longer expected to structurally integrate within the recipient myocardium but rather to release biomolecules that foster endogenous repair processes. This implies to focus on early cell retention, rather than on sustained cell survival, so that the cells reside in the target tissue long enough and in sufficient amounts to deliver the factors underpinning their action. Biomaterials are here critical adjuncts to optimize this residency time. Furthermore, the paracrine hypothesis gives more flexibility for using allogeneic cells in that targeting an only transient engraftment requires to delay, and no longer to avoid, rejection, which, in turn, should simplify immunomodulation regimens. Regarding manufacturing, a broad dissemination of cardiac cell therapy requires the development of automated systems allowing to yield highly reproducible cell products. This further emphasizes the interest of allogeneic cells because of their suitability for industrially-relevant and cost-effective scale-up and quality control procedures. At the end, definite confirmation that the effects of cells can be recapitulated by the factors they secrete could lead to acellular therapies whereby factors alone (possibly clustered in extracellular vesicles) would be delivered to the patient. The production process of these cell-derived biologics would then be closer to that of a pharmaceutical compound, which could streamline the manufacturing and regulatory paths and thereby facilitate an expended clinical use.
Collapse
Affiliation(s)
- P Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, 20, rue Leblanc, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75010 Paris, France; INSERM U 970, 75010 Paris, France.
| | - V Vanneaux
- INSERM UMR1160, Institut Universitaire d'Hématologie, 75475 Paris cedex 10, France; Assistance publique-Hôpitaux de Paris, Unité de thérapie cellulaire et CIC de Biothérapies, Hôpital Saint-Louis, 75475 Paris cedex 10, France
| |
Collapse
|
36
|
Abstract
Much has changed since our survey of the landscape for myocardial regeneration powered by adult stem cells 4 years ago.(1) The intervening years since that first review has witnessed an explosive expansion of studies that advance both understanding and implementation of adult stem cells in promoting myocardial repair. Painstaking research from innumerable laboratories throughout the world is prying open doors that may lead to restoration of myocardial structure and function in the wake of pathological injury. This global effort has produced deeper mechanistic comprehension coupled with an evolving appreciation for the complexity of myocardial regeneration in the adult context. Undaunted by both known and (as yet) unknown challenges, pursuit of myocardial regenerative medicine mediated by adult stem cell therapy has gathered momentum fueled by tantalizing clues and visionary goals. This concise review takes a somewhat different perspective than our initial treatise, taking stock of the business sector that has become an integral part of the field while concurrently updating state of affairs in cutting edge research. Looking retrospectively at advancement over the years as all reviews eventually must, the fundamental lesson to be learned is best explained by Jonatan Mårtensson: "Success will never be a big step in the future. Success is a small step taken just now."
Collapse
Affiliation(s)
- Kathleen M Broughton
- From the San Diego State University Heart Institute and the Integrated Regenerative Research Institute, San Diego, CA
| | - Mark A Sussman
- From the San Diego State University Heart Institute and the Integrated Regenerative Research Institute, San Diego, CA.
| |
Collapse
|
37
|
Mizukami T, Iso Y, Sato C, Sasai M, Spees JL, Toyoda M, Umezawa A, Miyazaki A, Suzuki H. Priming with erythropoietin enhances cell survival and angiogenic effect of mesenchymal stem cell implantation in rat limb ischemia. Regen Ther 2016; 4:1-8. [PMID: 31245482 PMCID: PMC6581814 DOI: 10.1016/j.reth.2016.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/03/2016] [Accepted: 01/07/2016] [Indexed: 11/17/2022] Open
Abstract
Introduction Bone marrow mesenchymal stem cells (BMMSCs) ameliorate tissue damage after ischemic injury. Erythropoietin (Epo) has pleiotropic effects in addition to hematopoietic activity. The aim of this study was to investigate whether Epo enhanced cell survival and angiogenic effect of BMMSC implantation in rat limb ischemia model. Methods and results MSCs were isolated from BM in GFP-transgenic rats. In a culture study, Epo promoted BMMSC proliferation in normoxia and enhanced cell survival under the culture condition mimicking ischemia (1% oxygen and nutrient deprivation). BMMSCs with and without 48 h of pretreatment by Epo (80 IU/ml) were locally administered to rat hindlimb ischemia models in vivo. At 3 days after implantation, BMMSC engraftment in the perivascular area of the injured muscle was significantly higher in the cells preconditioned with Epo than in the cells without preconditioning. Stromal derived factor-1α and fibroblast growth factor-2 expressions were detected in the engrafted BMMSCs. At 14 days after implantation, the Epo-preconditioned BMMSCs significantly promoted blood perfusion and capillary growth compared to the controls in laser Doppler and histological studies. In addition to promoting neovascularization, the Epo-preconditioned BMMSCs significantly inhibited macrophage infiltration in the perivascular area. Conclusion Epo elicited pro-survival potential in the BMMSCs. Pharmacological cell modification with Epo before implantation may become a feasible and promising strategy for improving current therapeutic angiogenesis with BMMSCs. Erythropoietin rescued the BMMSCs against the culture condition mimicking ischemia. Erythropoietin promoted cellular engraftment of the BMMSCs in rat ischemic limbs. Preconditioning with erythropoietin enhanced angiogenic effects of the BMMSC implantation.
Collapse
Affiliation(s)
- Takuya Mizukami
- Division of Cardiology, Showa University Fujigaoka Hospital, Yokohama, Japan.,Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Yoshitaka Iso
- Division of Cardiology, Showa University Fujigaoka Hospital, Yokohama, Japan.,Showa University Research Institute for Sport and Exercise Sciences, Yokohama, Japan
| | - Chisato Sato
- Division of Cardiology, Showa University Fujigaoka Hospital, Yokohama, Japan.,Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Masahiro Sasai
- Division of Cardiology, Showa University Fujigaoka Hospital, Yokohama, Japan.,Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Jeffery L Spees
- Department of Medicine, Stem Cell Core, University of Vermont, VT, USA
| | - Masashi Toyoda
- Research Team for Vascular Medicine, Tokyo, Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akira Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Hiroshi Suzuki
- Division of Cardiology, Showa University Fujigaoka Hospital, Yokohama, Japan
| |
Collapse
|
38
|
Li YF, Huang X, Li X, Gong R, Yin Y, Nelson J, Gao E, Zhang H, Hoffman NE, Houser SR, Madesh M, Tilley DG, Choi ET, Jiang X, Huang CX, Wang H, Yang XF. Caspase-1 mediates hyperlipidemia-weakened progenitor cell vessel repair. Front Biosci (Landmark Ed) 2016; 21:178-91. [PMID: 26709768 DOI: 10.2741/4383] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Caspase-1 activation senses metabolic danger-associated molecular patterns (DAMPs) and mediates the initiation of inflammation in endothelial cells. Here, we examined whether the caspase-1 pathway is responsible for sensing hyperlipidemia as a DAMP in bone marrow (BM)-derived Stem cell antigen-1 positive (Sca-(1+)) stem/progenitor cells and weakening their angiogenic ability. Using biochemical methods, gene knockout, cell therapy and myocardial infarction (MI) models, we had the following findings: 1) Hyperlipidemia induces caspase-1 activity in mouse Sca-(1+) progenitor cells in vivo; 2) Caspase-1 contributes to hyperlipidemia-induced modulation of vascular cell death-related gene expression in vivo; 3) Injection of Sca-1+ progenitor cells from caspase-1(-/-) mice improves endothelial capillary density in heart and decreases cardiomyocyte death in a mouse model of MI; and 4) Caspase-1(-/-) Sca-(1+) progenitor cell therapy improves mouse cardiac function after MI. Our results provide insight on how hyperlipidemia activates caspase-1 in Sca-(1+) progenitor cells, which subsequently weakens Sca-(1+) progenitor cell repair of vasculature injury. These results demonstrate the therapeutic potential of caspase-1 inhibition in improving progenitor cell therapy for MI.
Collapse
Affiliation(s)
- Ya-Feng Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Xiao Huang
- Department of Cardiology, The Second Affiliated Hospital to Nanchang University, Nanchang, JiangXi 330006, China
| | - Xinyuan Li
- Center for Metabolic Disease Research, Department of Pharmacology, Thrombosis Research Center
| | - Ren Gong
- Department of Cardiology, The Second Affiliated Hospital to Nanchang University, Nanchang, JiangXi 330006, China
| | - Ying Yin
- Center for Metabolic Disease Research, Department of Pharmacology, Thrombosis Research Center
| | - Jun Nelson
- Center for Metabolic Disease Research, Department of Pharmacology, Thrombosis Research Center
| | - Erhe Gao
- Center for Translational Medicine, Department of Surgery, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Hongyu Zhang
- Center for Metabolic Disease Research, Department of Pharmacology, Thrombosis Research Center
| | - Nicholas E Hoffman
- Center for Translational Medicine, Department of Surgery, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | - Muniswamy Madesh
- Center for Translational Medicine, Department of Surgery, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Douglas G Tilley
- Center for Translational Medicine, Department of Surgery, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | - Xiaohua Jiang
- Center for Metabolic Disease Research, Department of Pharmacology, Thrombosis Research Center
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China,
| | - Hong Wang
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences(307 Hospital, PLA), No.8 DongDa Road, FengTai Area, Beijing, P. R. China
| | - Xiao-Feng Yang
- Department of Pharmacology, Cardiovascular Research Center
| |
Collapse
|
39
|
Katz MG, Fargnoli AS, Kendle AP, Hajjar RJ, Bridges CR. The role of microRNAs in cardiac development and regenerative capacity. Am J Physiol Heart Circ Physiol 2015; 310:H528-41. [PMID: 26702142 DOI: 10.1152/ajpheart.00181.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 12/16/2015] [Indexed: 12/14/2022]
Abstract
The mammalian heart has long been considered to be a postmitotic organ. It was thought that, in the postnatal period, the heart underwent a transition from hyperplasic growth (more cells) to hypertrophic growth (larger cells) due to the conversion of cardiomyocytes from a proliferative state to one of terminal differentiation. This hypothesis was gradually disproven, as data were published showing that the myocardium is a more dynamic tissue in which cardiomyocyte karyokinesis and cytokinesis produce new cells, leading to the hyperplasic regeneration of some of the muscle mass lost in various pathological processes. microRNAs have been shown to be critical regulators of cardiomyocyte differentiation and proliferation and may offer the novel opportunity of regenerative hyperplasic therapy. Here we summarize the relevant processes and recent progress regarding the functions of specific microRNAs in cardiac development and regeneration.
Collapse
Affiliation(s)
- Michael G Katz
- Sanger Heart & Vascular Institute, Carolinas HealthCare System, Charlotte, North Carolina; and Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York
| | - Anthony S Fargnoli
- Sanger Heart & Vascular Institute, Carolinas HealthCare System, Charlotte, North Carolina; and
| | - Andrew P Kendle
- Sanger Heart & Vascular Institute, Carolinas HealthCare System, Charlotte, North Carolina; and
| | - Roger J Hajjar
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York
| | - Charles R Bridges
- Sanger Heart & Vascular Institute, Carolinas HealthCare System, Charlotte, North Carolina; and
| |
Collapse
|
40
|
Affiliation(s)
- Tiziano Moccetti
- Fondazione Cardiocentro Ticino, University of Zurich, Lugano 6900, Switzerland
| | - Annarosa Leri
- Departments of Anesthesia & Medicine, & Division of Cardiovascular Medicine, 75 Francis Street, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Piero Anversa
- Departments of Anesthesia & Medicine, & Division of Cardiovascular Medicine, 75 Francis Street, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
41
|
Mohsin S, Troupes CD, Starosta T, Sharp TE, Agra EJ, Smith S, Duran JM, Zalavadia N, Zhou Y, Kubo H, Berretta RM, Houser SR. Unique Features of Cortical Bone Stem Cells Associated With Repair of the Injured Heart. Circ Res 2015; 117:1024-33. [PMID: 26472818 DOI: 10.1161/circresaha.115.307362] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/15/2015] [Indexed: 12/26/2022]
Abstract
RATIONALE Adoptive transfer of multiple stem cell types has only had modest effects on the structure and function of failing human hearts. Despite increasing the use of stem cell therapies, consensus on the optimal stem cell type is not adequately defined. The modest cardiac repair and functional improvement in patients with cardiac disease warrants identification of a novel stem cell population that possesses properties that induce a more substantial improvement in patients with heart failure. OBJECTIVE To characterize and compare surface marker expression, proliferation, survival, migration, and differentiation capacity of cortical bone stem cells (CBSCs) relative to mesenchymal stem cells (MSCs) and cardiac-derived stem cells (CDCs), which have already been tested in early stage clinical trials. METHODS AND RESULTS CBSCs, MSCs, and CDCs were isolated from Gottingen miniswine or transgenic C57/BL6 mice expressing enhanced green fluorescent protein and were expanded in vitro. CBSCs possess a unique surface marker profile, including high expression of CD61 and integrin β4 versus CDCs and MSCs. In addition, CBSCs were morphologically distinct and showed enhanced proliferation capacity versus CDCs and MSCs. CBSCs had significantly better survival after exposure to an apoptotic stimuli when compared with MSCs. ATP and histamine induced a transient increase of intracellular Ca(2+) concentration in CBSCs versus CDCs and MSCs, which either respond to ATP or histamine only further documenting the differences between the 3 cell types. CONCLUSIONS CBSCs are unique from CDCs and MSCs and possess enhanced proliferative, survival, and lineage commitment capacity that could account for the enhanced protective effects after cardiac injury.
Collapse
Affiliation(s)
- Sadia Mohsin
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Constantine D Troupes
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Timothy Starosta
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Thomas E Sharp
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Elorm J Agra
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Shavonn Smith
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Jason M Duran
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Neil Zalavadia
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Yan Zhou
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Hajime Kubo
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Remus M Berretta
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Steven R Houser
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.).
| |
Collapse
|
42
|
Al-Daccak R, Charron D. Allogenic benefit in stem cell therapy: cardiac repair and regeneration. ACTA ACUST UNITED AC 2015. [DOI: 10.1111/tan.12614] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- R. Al-Daccak
- Laboratoire “Jean Dausset” Hôpital Saint Louis - AP-HP; INSERM U976, Université Paris Diderot; Paris France
| | - D. Charron
- Laboratoire “Jean Dausset” Hôpital Saint Louis - AP-HP; INSERM U976, Université Paris Diderot; Paris France
| |
Collapse
|
43
|
Hong W, Tatsuo S, Shou-Dong W, Qian Z, Jian-Feng H, Jue W, Chen J, Hai-Yan Q, Yue-Jin Y. Resveratrol Upregulates Cardiac SDF-1 in Mice with Acute Myocardial Infarction through the Deacetylation of Cardiac p53. PLoS One 2015; 10:e0128978. [PMID: 26053177 PMCID: PMC4459949 DOI: 10.1371/journal.pone.0128978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 05/04/2015] [Indexed: 01/09/2023] Open
Abstract
AIMS We previously demonstrated that resveratrol (RSV) administration causes cardiac stromal cell-derived factor (SDF)-1 upregulation and can enhance the mobilization of stem cells in mice with acute myocardial infarction (AMI). However, the upstream signal transduction involved in SDF-1 regulation in the setting of AMI and RSV administration remains unclear. Because RSV is a sirtuin 1 (SIRT1) activator and SIRT proteins act as deacetylases, we investigated the role of SIRT1 in SDF-1 upregulation and its subsequent effects. METHODS AND RESULTS In vitro experiments with H9C2 cardiomyocytes under hypoxia and serum-deprivation conditions showed that p53 acted upstream of SDF-1. RSV could not regulate SDF-1 effectively after SIRT1 silencing, indicating that it is dependent on SIRT1. Subsequently, male C57BL/6 mice were divided into four groups: 1) sham, 2) MI, 3) MI+RSV, and 4) MI+RSV plus nicotinamide, an inhibitor of the deacetylase activity of SIRT (MI+RSV+NAM). Compared with the sham mice, AMI caused a slight increase in the cardiac p53 level and resulted in significant SIRT1 downregulation and p53 acetylation or activation. Compared with the MI mice, MI+RSV administration improved the cardiac SDF-1 level and reversed the reduction of SIRT1 and the activation of p53. Furthermore, we observed less cardiac dysfunction in MI+RSV mice and determined that NAM abolished the effects of RSV. CONCLUSIONS RSV enhances cardiac SDF-1 excretion after AMI partially through a SIRT1 normalization/p53 inactivation pathway.
Collapse
Affiliation(s)
- Wang Hong
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shimosawa Tatsuo
- Department of Clinical Laboratory, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Wang Shou-Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhang Qian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hou Jian-Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wang Jue
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Hai-Yan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Yue-Jin
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
44
|
Gude N, Joyo E, Toko H, Quijada P, Villanueva M, Hariharan N, Sacchi V, Truffa S, Joyo A, Voelkers M, Alvarez R, Sussman MA. Notch activation enhances lineage commitment and protective signaling in cardiac progenitor cells. Basic Res Cardiol 2015; 110:29. [PMID: 25893875 DOI: 10.1007/s00395-015-0488-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/04/2015] [Accepted: 04/14/2015] [Indexed: 12/12/2022]
Abstract
Phase I clinical trials applying autologous progenitor cells to treat heart failure have yielded promising results; however, improvement in function is modest, indicating a need to enhance cardiac stem cell reparative capacity. Notch signaling plays a crucial role in cardiac development, guiding cell fate decisions that underlie myocyte and vessel differentiation. The Notch pathway is retained in the adult cardiac stem cell niche, where level and duration of Notch signal influence proliferation and differentiation of cardiac progenitors. In this study, Notch signaling promotes growth, survival and differentiation of cardiac progenitor cells into smooth muscle lineages in vitro. Cardiac progenitor cells expressing tamoxifen-regulated intracellular Notch1 (CPCeK) are significantly larger and proliferate more slowly than control cells, exhibit elevated mTORC1 and Akt signaling, and are resistant to oxidative stress. Vascular smooth muscle and cardiomyocyte markers increase in CPCeK and are augmented further upon ligand-mediated induction of Notch signal. Paracrine signals indicative of growth, survival and differentiation increase with Notch activity, while markers of senescence are decreased. Adoptive transfer of CPCeK into infarcted mouse myocardium enhances preservation of cardiac function and reduces infarct size relative to hearts receiving control cells. Greater capillary density and proportion of vascular smooth muscle tissue in CPCeK-treated hearts indicate improved vascularization. Finally, we report a previously undescribed signaling mechanism whereby Notch activation stimulates CPC growth, survival and differentiation via mTORC1 and paracrine factor expression. Taken together, these findings suggest that regulated Notch activation potentiates the reparative capacity of CPCs in the treatment of cardiac disease.
Collapse
Affiliation(s)
- Natalie Gude
- Heart Institute, and Biology Department, SDSU Integrated Regenerative Research Institute, Life Sciences North, Room 426, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cardiac aging - Getting to the stem of the problem. J Mol Cell Cardiol 2015; 83:32-6. [PMID: 25886698 DOI: 10.1016/j.yjmcc.2015.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/20/2015] [Accepted: 04/08/2015] [Indexed: 01/08/2023]
Abstract
Cardiac aging is a heterogeneous process caused by a combination of stochastic events which manifests as loss of structure and function in the heart, however several recent studies draw attention to aging being primarily a stem cell problem. This review summarizes findings in support of the "stem cell hypothesis of aging" and discusses the impact of age on cardiac stem cells and the niche. This article is part of a Special Issue entitled 'CV Aging'.
Collapse
|
46
|
Abstract
This review article discusses the mechanisms of cardiomyogenesis in the adult heart. They include the re-entry of cardiomyocytes into the cell cycle; dedifferentiation of pre-existing cardiomyocytes, which assume an immature replicating cell phenotype; transdifferentiation of hematopoietic stem cells into cardiomyocytes; and cardiomyocytes derived from activation and lineage specification of resident cardiac stem cells. The recognition of the origin of cardiomyocytes is of critical importance for the development of strategies capable of enhancing the growth response of the myocardium; in fact, cell therapy for the decompensated heart has to be based on the acquisition of this fundamental biological knowledge.
Collapse
Affiliation(s)
- Annarosa Leri
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | - Marcello Rota
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Francesco S Pasqualini
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Polina Goichberg
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Piero Anversa
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
47
|
Dixit P, Katare R. Challenges in identifying the best source of stem cells for cardiac regeneration therapy. Stem Cell Res Ther 2015; 6:26. [PMID: 25886612 PMCID: PMC4357059 DOI: 10.1186/s13287-015-0010-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/17/2015] [Indexed: 12/14/2022] Open
Abstract
The overall clinical cardiac regeneration experience suggests that stem cell therapy can be safely performed, but it also underlines the need for reproducible results for their effective use in a real-world scenario. One of the significant challenges is the identification and selection of the best suited stem cell type for regeneration therapy. Bone marrow mononuclear cells, bone marrow-derived mesenchymal stem cells, resident or endogenous cardiac stem cells, endothelial progenitor cells and induced pluripotent stem cells are some of the stem cell types which have been extensively tested for their ability to regenerate the lost myocardium. While most of these cell types are being evaluated in clinical trials for their safety and efficacy, results show significant heterogeneity in terms of efficacy. The enthusiasm surrounding regenerative medicine in the heart has been dampened by the reports of poor survival, proliferation, engraftment, and differentiation of the transplanted cells. Therefore, the primary challenge is to create clearcut evidence on what actually drives the improvement of cardiac function after the administration of stem cells. In this review, we provide an overview of different types of stem cells currently being considered for cardiac regeneration and discuss why associated factors such as practicality and difficulty in cell collection should also be considered when selecting the stem cells for transplantation. Next, we discuss how the experimental variables (type of disease, marker-based selection and use of different isolation techniques) can influence the study outcome. Finally, we provide an outline of the molecular and genetic approaches to increase the functional ability of stem cells before and after transplantation.
Collapse
Affiliation(s)
- Parul Dixit
- Department of Physiology, HeartOtago, Otago School of Medical Sciences, University of Otago, Dunedin, 9010, New Zealand.
| | - Rajesh Katare
- Department of Physiology, HeartOtago, Otago School of Medical Sciences, University of Otago, Dunedin, 9010, New Zealand.
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Outcomes of stem cell trials in patients with advanced heart failure have been divergent, which has raised some scepticism about this therapy and led to recommending slowing clinical trials until basic issues have been more thoroughly addressed. It is therefore timely and relevant to examine the current data and discuss how recent findings may change the perspectives of stem cell therapy. RECENT FINDINGS The most important recent change has been a shift in the mechanistic paradigm. Although the initial objective of stem cells was to physically replace dead cardiomyocytes and build a new electromechanically integrated myocardial tissue, it is now recognized that the unavoidable death of most of the transplanted cells makes this objective unrealistic. Indeed, the primary mechanism of action of the cells seems to be paracrine through the release of factors activating the endogenous signalling pathways, leading to cardioprotection. This hypothesis has several implications. First, it leads to focus on the efficiency of early retention, rather than on sustained survival, which, in turn, implies improving delivery approaches, largely through an increased reliance on adjunctive biomaterials; second, it may rationalize the use of allogeneic cells as long as their rejection is delayed to give them enough time for releasing the signalling biomolecules; and, finally, it raises the possibility that transplantation of cells could be replaced by the delivery of their sole secretome, possibly under the form of microvesicles. SUMMARY Put together, these approaches could streamline the translational process and enhance large-scale clinical applications.
Collapse
|
49
|
Buikema JW, Van Der Meer P, Sluijter JPG, Domian IJ. Concise review: Engineering myocardial tissue: the convergence of stem cells biology and tissue engineering technology. Stem Cells 2015; 31:2587-98. [PMID: 23843322 DOI: 10.1002/stem.1467] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/09/2013] [Accepted: 05/14/2013] [Indexed: 12/11/2022]
Abstract
Advanced heart failure represents a leading public health problem in the developed world. The clinical syndrome results from the loss of viable and/or fully functional myocardial tissue. Designing new approaches to augment the number of functioning human cardiac muscle cells in the failing heart serve as the foundation of modern regenerative cardiovascular medicine. A number of clinical trials have been performed in an attempt to increase the number of functional myocardial cells by the transplantation of a diverse group of stem or progenitor cells. Although there are some encouraging suggestions of a small early therapeutic benefit, to date, no evidence for robust cell or tissue engraftment has been shown, emphasizing the need for new approaches. Clinically meaningful cardiac regeneration requires the identification of the optimum cardiogenic cell types and their assembly into mature myocardial tissue that is functionally and electrically coupled to the native myocardium. We here review recent advances in stem cell biology and tissue engineering and describe how the convergence of these two fields may yield novel approaches for cardiac regeneration.
Collapse
Affiliation(s)
- Jan Willem Buikema
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
50
|
Menasché P. How Close Are We to Using Stem Cells in Routine Cardiac Therapy? Can J Cardiol 2014; 30:1265-9. [DOI: 10.1016/j.cjca.2014.03.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 12/14/2022] Open
|