1
|
Patalakh I, Wandersee A, Schlüter J, Erdmann M, Hackstein H, Cunningham S. Influence of the Immune Checkpoint Inhibitors on the Hemostatic Potential of Blood Plasma. Transfus Med Hemother 2025; 52:120-131. [PMID: 40201622 PMCID: PMC11975347 DOI: 10.1159/000535926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/18/2023] [Indexed: 04/10/2025] Open
Abstract
Introduction Immune checkpoint inhibitors (ICIs) have revolutionized classical treatment approaches of various cancer entities, but are also associated with a number of side effects. One of these may be life-threatening clotting disorders with the risk of thrombotic or hemorrhagic complications, the mechanisms of which are still poorly understood. In the present study, we analyzed the direct effects of pembrolizumab, nivolumab, and ipilimumab on platelet aggregation as well as plasma coagulation followed by fibrinolysis in an ex vivo model. Methods Microplate spectrometry was used to analyze aggregation, coagulation, and fibrinolysis in platelet-free (PFP) and platelet-rich (PRP) healthy donor plasma samples treated with pembrolizumab, nivolumab, ipilimumab, and appropriate isotype controls. Aggregation was induced by TRAP-6. Clotting of PFP and PRP followed by lysis was initiated with a tissue factor in a mixture of phosphatidylserine:phosphatidylcholine and the addition of t-PA. Among other parameters, the area under the curve (AUC) was used to compare the effect of ICIs on aggregation, coagulation, and fibrinolysis. Results Upon direct contact with platelets, pembrolizumab stimulated platelet aggregation in PRP, while nivolumab and ipilimumab promoted disaggregation with corresponding changes in the AUC. Pembrolizumab and nivolumab, both PD-1 receptor inhibitors, had no effect on the plasma coagulation cascade. Ipilimumab, a CTLA-4 receptor inhibitor, significantly increased the rate of PRP clotting. When clotting was followed by lysis, all ICIs were found to prolong the growth of the PRP-derived fibrin clot and delay its elimination. This was manifested by an increase in AUC relative to control PRP. Conclusion This study characterizes the potential impact of pembrolizumab, nivolumab, and ipilimumab on hemostasis. Nivolumab and ipilimumab are able to reduce aggregation and increase the procoagulant properties of platelets, which can cause side effects associated with hemostatic imbalance leading to thrombosis or bleeding. The observed ICI-specific effects may contribute to our understanding of the mechanisms by which ICI affects platelets and suggest how, in a clinical setting, to reduce coagulation disorders during ICI treatment in the future.
Collapse
Affiliation(s)
- Irina Patalakh
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
- Department of Chemistry and Biochemistry of Enzymes, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alexandra Wandersee
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Julian Schlüter
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Michael Erdmann
- Department of Dermatology, Uniklinikum Erlangen, Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Sarah Cunningham
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
2
|
Khalifa GLAH, El-Sayed AA, Elmasry Z, Elsayh KI, Atwa ZT, Morgan DS, Hassan EE, Hassan MA, Youssef MAM. Epidemiological and clinical characteristics of children and young adults with Glanzmann's thrombasthenia in upper Egypt: a multicenter cross-sectional study. Ann Hematol 2025; 104:1961-1973. [PMID: 40074839 PMCID: PMC12031911 DOI: 10.1007/s00277-025-06290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/23/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Glanzmann's thrombasthenia (GT) is an inherited rare bleeding disorder characterized by a deficiency or functional defect in the platelet αIIbβ3 integrin. This impairs normal platelet aggregation and leads to prolonged and spontaneous mucocutaneous bleeds. OBJECTIVES To report disease characteristics of a GT cohort from five tertiary hospitals in Upper Egypt. MATERIALS AND METHODS We conducted a retrospective cross-sectional observational study, relying on patients' medical records and interview surveys to collect information from patients diagnosed with congenital GT between October 2023 and April 2024. RESULTS We recruited 131 people with GT (PwGT) of different ages, mainly children and adolescents. 73.3% of the study cohort had type I GT, 23.7% had type II GT, and 3% had type III GT. Consanguinity and family history were prevalent in our cohort, with an expected prevalence of more than one per 200,000 in our region. The median value of ADP aggregation was 8%. In type I GT, the median levels of CD41 and CD61 were 0.3%. In contrast, type II GT had median levels of 12% for CD41 and 17% for CD61. The most frequent manifestations were epistaxis (77.1%), subcutaneous bleeds (40.5%), menorrhagia (22.1%), and mucosal bleeds (18.3%). 72.5% of PwGT used rFVIIa and 69.5% used platelet transfusions to treat acute and surgical bleeds, while only 6.9% used tranexamic acid as monotherapy. CONCLUSION Estimating the actual burden of GT in Egypt requires accurate diagnoses, as well as systematic and standardized data collection. The rooted consanguinity pattern in Upper Egypt contributes to a higher prevalence of GT above the country's average.
Collapse
Affiliation(s)
| | - Amr Abdallah El-Sayed
- Medical Affairs Department, Novo Nordisk Egypt, Cairo, Egypt
- Freelance Public Health Researcher, Cairo, Egypt
| | - Zahraa Elmasry
- Pediatric hematology unit, Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Khalid I Elsayh
- Pediatric hematology unit, Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Zizi T Atwa
- Pediatric hematology unit, Department of Pediatrics, Faculty of Medicine, Fayoum University, Al-Fayoum, Egypt
| | - Dalia Saber Morgan
- Pediatric hematology unit, Department of Pediatrics, Faculty of Medicine, Beni-Suef University, October 6 University, Beni-Suef, Cairo, Egypt
| | - Ebtesam Esmail Hassan
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Mohmed A Hassan
- Genetics Unit, Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mervat A M Youssef
- Pediatric hematology unit, Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Jiang L, Yuan C, Flaumenhaft R, Huang M. Recent advances in vascular thiol isomerases: insights into structures, functions in thrombosis and antithrombotic inhibitor development. Thromb J 2025; 23:16. [PMID: 39962537 PMCID: PMC11834194 DOI: 10.1186/s12959-025-00699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/08/2025] [Indexed: 02/20/2025] Open
Abstract
Vascular thiol isomerases (VTIs) encompass proteins such as protein disulfide isomerase (PDI), endoplasmic reticulum protein 5 (ERp5), ERp46, ERp57, ERp72, thioredoxin-related transmembrane protein 1 (TMX1), and TMX4, and play pivotal functions in platelet aggregation and formation of thrombosis. Investigating vascular thiol isomerases, their substrates implicated in thrombosis, the underlying regulatory mechanisms, and the development of inhibitors targeting these enzymes represents a rapidly advancing frontier within vascular biology. In this review, we summarize the structural characteristics and functional attributes of VTIs, describe the associations between these enzymes and thrombosis, and outline the progress in developing inhibitors of VTIs for potential antithrombotic therapeutic applications.
Collapse
Affiliation(s)
- Longguang Jiang
- College of Chemistry, Fuzhou University, Fujian, 350108, China
- National and Local Joint Engineering Research Center On Biopharmaceutical and Photodynamic Therapy Technologies, Fuzhou University, Fuzhou, 350116, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
- National and Local Joint Engineering Research Center On Biopharmaceutical and Photodynamic Therapy Technologies, Fuzhou University, Fuzhou, 350116, China
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA, 02215, USA.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fujian, 350108, China.
- National and Local Joint Engineering Research Center On Biopharmaceutical and Photodynamic Therapy Technologies, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
4
|
Chinigò G, Ruffinatti FA, Munaron L. The potential of TRP channels as new prognostic and therapeutic targets against prostate cancer progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189226. [PMID: 39586480 DOI: 10.1016/j.bbcan.2024.189226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/28/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Prostate cancer (PCa) is the second deadliest cancer among men worldwide. Particularly critical is its development towards metastatic androgen-independent forms for which the current therapies are ineffective. Indeed, the 5-year relative survival for PCa drops dramatically to 34 % in the presence of metastases. The superfamily of Transient Receptor Potential (TRP) channels could answer the urgent request to identify new prognostic and therapeutic tools against metastatic PCa. Indeed, this class of ion channels revealed an appealing de-regulation during PCa development and its progression towards aggressive forms. Altered expression and/or functionality of several TRPs have been associated with the PCa metastatic cascade by significantly impacting tumor growth, invasiveness, and angiogenesis. In this review, we will dissect the contribution of TRP channels in such hallmarks of PCa and then discuss their applicability as new prognostic and therapeutic agents in the fight against metastatic PCa. In particular, the great potential of TRPM8, TRPV6, and TRPA1 in opening the way to new treatment perspectives will be highlighted.
Collapse
Affiliation(s)
- Giorgia Chinigò
- University of Turin, Department of Life Sciences and Systems Biology, via Accademia Albertina 13, 10123 Turin, Italy.
| | | | - Luca Munaron
- University of Turin, Department of Life Sciences and Systems Biology, via Accademia Albertina 13, 10123 Turin, Italy.
| |
Collapse
|
5
|
Freuville L, Matthys C, Quinton L, Gillet JP. Venom-derived peptides for breaking through the glass ceiling of drug development. Front Chem 2024; 12:1465459. [PMID: 39398192 PMCID: PMC11468230 DOI: 10.3389/fchem.2024.1465459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024] Open
Abstract
Venoms are complex mixtures produced by animals and consist of hundreds of components including small molecules, peptides, and enzymes selected for effectiveness and efficacy over millions of years of evolution. With the development of venomics, which combines genomics, transcriptomics, and proteomics to study animal venoms and their effects deeply, researchers have identified molecules that selectively and effectively act against membrane targets, such as ion channels and G protein-coupled receptors. Due to their remarkable physico-chemical properties, these molecules represent a credible source of new lead compounds. Today, not less than 11 approved venom-derived drugs are on the market. In this review, we aimed to highlight the advances in the use of venom peptides in the treatment of diseases such as neurological disorders, cardiovascular diseases, or cancer. We report on the origin and activity of the peptides already approved and provide a comprehensive overview of those still in development.
Collapse
Affiliation(s)
- Lou Freuville
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Chloé Matthys
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
6
|
Huo T, Wu H, Moussa Z, Sen M, Dalton V, Wang Z. Full-length αIIbβ3 cryo-EM structure reveals intact integrin initiate-activation intrinsic architecture. Structure 2024; 32:899-906.e3. [PMID: 38579706 PMCID: PMC11246237 DOI: 10.1016/j.str.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/06/2023] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Integrin αIIbβ3 is the key receptor regulating platelet retraction and accumulation and a proven drug-target for antithrombotic therapies. Here we resolve the cryo-EM structures of the full-length αIIbβ3, which covers three distinct states along the activation pathway. Firstly, we obtain the αIIbβ3 structure at 3 Å resolution in the inactive state, revealing the overall topology of the heterodimer with the transmembrane (TM) helices and the ligand-binding domain tucked in a specific angle proximity to the TM region. After the addition of a Mn2+ agonist, we resolve two coexisting structures representing two new states between inactive and active state. Our structures show conformational changes of the αIIbβ3 activating trajectory and a unique twisting of the integrin legs, which is required for platelets accumulation. Our structure provides direct structural evidence for how the lower legs are involved in full-length integrin activation mechanisms and offers a new strategy to target the αIIbβ3 lower leg.
Collapse
Affiliation(s)
- Tong Huo
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hongjiang Wu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Graduate School of Baylor College of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeinab Moussa
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Mehmet Sen
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Valerie Dalton
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhao Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Cryo-EM/ET CPRIT Core, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Paulus J, Sewald N. Small molecule- and peptide-drug conjugates addressing integrins: A story of targeted cancer treatment. J Pept Sci 2024; 30:e3561. [PMID: 38382900 DOI: 10.1002/psc.3561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 02/23/2024]
Abstract
Targeted cancer treatment should avoid side effects and damage to healthy cells commonly encountered during traditional chemotherapy. By combining small molecule or peptidic ligands as homing devices with cytotoxic drugs connected by a cleavable or non-cleavable linker in peptide-drug conjugates (PDCs) or small molecule-drug conjugates (SMDCs), cancer cells and tumours can be selectively targeted. The development of highly affine, selective peptides and small molecules in recent years has allowed PDCs and SMDCs to increasingly compete with antibody-drug conjugates (ADCs). Integrins represent an excellent target for conjugates because they are overexpressed by most cancer cells and because of the broad knowledge about native binding partners as well as the multitude of small-molecule and peptidic ligands that have been developed over the last 30 years. In particular, integrin αVβ3 has been addressed using a variety of different PDCs and SMDCs over the last two decades, following various strategies. This review summarises and describes integrin-addressing PDCs and SMDCs while highlighting points of great interest.
Collapse
Affiliation(s)
- Jannik Paulus
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
8
|
Guo X, Fu Y, Peng J, Fu Y, Dong S, Ding RB, Qi X, Bao J. Emerging anticancer potential and mechanisms of snake venom toxins: A review. Int J Biol Macromol 2024; 269:131990. [PMID: 38704067 DOI: 10.1016/j.ijbiomac.2024.131990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/13/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Animal-derived venom, like snake venom, has been proven to be valuable natural resources for the drug development. Previously, snake venom was mainly investigated in its pharmacological activities in regulating coagulation, vasodilation, and cardiovascular function, and several marketed cardiovascular drugs were successfully developed from snake venom. In recent years, snake venom fractions have been demonstrated with anticancer properties of inducing apoptotic and autophagic cell death, restraining proliferation, suppressing angiogenesis, inhibiting cell adhesion and migration, improving immunity, and so on. A number of active anticancer enzymes and peptides have been identified from snake venom toxins, such as L-amino acid oxidases (LAAOs), phospholipase A2 (PLA2), metalloproteinases (MPs), three-finger toxins (3FTxs), serine proteinases (SPs), disintegrins, C-type lectin-like proteins (CTLPs), cell-penetrating peptides, cysteine-rich secretory proteins (CRISPs). In this review, we focus on summarizing these snake venom-derived anticancer components on their anticancer activities and underlying mechanisms. We will also discuss their potential to be developed as anticancer drugs in the future.
Collapse
Affiliation(s)
- Xijun Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Yuanfeng Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Junbo Peng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ying Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xingzhu Qi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
9
|
Lan Y, Qiu X, Xu Y. Expression, Purification and Characterization of Recombinant Disintegrin from Gloydius Brevicaudus Venom in Escherichia Coli. Protein J 2024; 43:603-612. [PMID: 38734856 DOI: 10.1007/s10930-024-10198-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 05/13/2024]
Abstract
Disintegrins, a family of snake venom protein, which are capable of modulating the activity of integrins that play a fundamental role in the regulation of many physiological and pathological processes. The main purpose of this study is to obtain the recombinant disintegrin (r-DI) and evaluate its biological activity. In this study, we explored a high-level expression prokaryotic system and purification strategy for r-DI. Then, r-DI was treated to assay effects on cell growth, migration, and invasion. The affinity for the interactions of r-DI with integrin was determined using Surface plasmon resonance (SPR) analyses. The r-DI can be expressed in Escherichia coli and purified by one-step chromatography. The r-DI can inhibit B16F10 cells proliferation, migration, and invasion. Also, we found that r-DI could interact with the integrin αIIbβ3 (GPIIb/IIIa). The r-DI can be expressed, purified, characterized through functional assays, and can also maintain strong biological activities. Thus, this study showed potential therapeutic effects of r-DI for further functional and structural studies.
Collapse
Affiliation(s)
- Yinxiang Lan
- Department of Pharmacy, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, FuJian Medical University, Fuzhou, Fujian, China
| | - Xiuliang Qiu
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yunlu Xu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China.
- Center of Translational Hematology of Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
10
|
Tang X, Liu Y, Wang J, Long T, Yee Mok BW, Huang Y, Peng Z, Jia Q, Liu C, So PK, Pui-Kam Tse S, Hei Ng C, Liu S, Sun F, Tang S, Yao ZP, Chen H, Guo Y. Identifications of novel host cell factors that interact with the receptor-binding domain of the SARS-CoV-2 spike protein. J Biol Chem 2024; 300:107390. [PMID: 38777146 PMCID: PMC11237930 DOI: 10.1016/j.jbc.2024.107390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
SARS-CoV-2 entry into host cells is facilitated by the interaction between the receptor-binding domain of its spike protein (CoV2-RBD) and host cell receptor, ACE2, promoting viral membrane fusion. The virus also uses endocytic pathways for entry, but the mediating host factors remain largely unknown. It is also unknown whether mutations in the RBD of SARS-CoV-2 variants promote interactions with additional host factors to promote viral entry. Here, we used the GST pull-down approach to identify novel surface-located host factors that bind to CoV2-RBD. One of these factors, SH3BP4, regulates internalization of CoV2-RBD in an ACE2-independent but integrin- and clathrin-dependent manner and mediates SARS-CoV-2 pseudovirus entry, suggesting that SH3BP4 promotes viral entry via the endocytic route. Many of the identified factors, including SH3BP4, ADAM9, and TMEM2, show stronger affinity to CoV2-RBD than to RBD of the less infective SARS-CoV, suggesting SARS-CoV-2-specific utilization. We also found factors preferentially binding to the RBD of the SARS-CoV-2 Delta variant, potentially enhancing its entry. These data identify the repertoire of host cell surface factors that function in the events leading to the entry of SARS-CoV-2.
Collapse
Affiliation(s)
- Xiao Tang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China; Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yang Liu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jinhui Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Teng Long
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China; Centre for Virology, Vaccinology and Therapeutics Limited, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Bobo Wing Yee Mok
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China; Centre for Virology, Vaccinology and Therapeutics Limited, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yan Huang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ziqing Peng
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Qinyu Jia
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Research Centre for Chinese Medicine Innovation, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Chengxi Liu
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Research Centre for Chinese Medicine Innovation, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Pui-Kin So
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Research Centre for Chinese Medicine Innovation, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Sirius Pui-Kam Tse
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Research Centre for Chinese Medicine Innovation, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Cheuk Hei Ng
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Shiyi Liu
- Thrust of Bioscience and Biomedical Engineering, Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Fei Sun
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Shaojun Tang
- Thrust of Bioscience and Biomedical Engineering, Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Research Centre for Chinese Medicine Innovation, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Honglin Chen
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China; Centre for Virology, Vaccinology and Therapeutics Limited, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yusong Guo
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China; Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
11
|
Clissa PB, Della-Casa MS, Zychar BC, Sanabani SS. The Role of Snake Venom Disintegrins in Angiogenesis. Toxins (Basel) 2024; 16:127. [PMID: 38535794 PMCID: PMC10974740 DOI: 10.3390/toxins16030127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 02/08/2024] [Indexed: 01/03/2025] Open
Abstract
Angiogenesis, the formation of new blood vessels, plays a critical role in various physiological and pathological conditions. Snake venom disintegrins (SVDs) have been identified as significant regulators of this process. In this review, we explore the dual roles of SVD in angiogenesis, both as antiangiogenic agents by inhibiting integrin binding and interfering with vascular endothelial growth factors and as proangiogenic agents by enhancing integrin binding, stimulating cell migration and proliferation, and inducing neoangiogenesis. Studies in vitro and in animal models have demonstrated these effects and offer significant therapeutic opportunities. The potential applications of SVD in diseases related to angiogenesis, such as cancer, ocular diseases, tissue regeneration, wound healing, and cardiovascular diseases, are also discussed. Overall, SVDs are promising potential therapeutics, and further advances in this field could lead to innovative treatments for diseases related to angiogenesis.
Collapse
Affiliation(s)
| | | | | | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, Sao Paulo 05508-220, Brazil
| |
Collapse
|
12
|
Wang J, Jin W, Huang S, Wang W, Wang S, Yu Z, Gao L, Gao Y, Han H, Wang L. Microbubble Biointerfacing by Regulation of the Platelet Membrane Surfactant Activity at the Gas-Liquid Interface for Acute Thrombosis Targeting. Angew Chem Int Ed Engl 2024; 63:e202314583. [PMID: 38196289 DOI: 10.1002/anie.202314583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Biointerfacing nanomaterials with cell membranes has been successful in the functionalization of nanoparticles or nanovesicles, but microbubble functionalization remains challenging due to the unique conformation of the lipid monolayer structure at the gas-liquid interface that provides insufficient surfactant activity. Here, we describe a strategy to rationally regulate the surfactant activity of platelet membrane vesicles by adjusting the ratio of proteins to lipids through fusion with synthetic phospholipids (i.e., liposomes). A "platesome" with the optimized protein-to-lipid ratio can be assembled at the gas-liquid interface in the same manner as pulmonary surfactants to stabilize a microsized gas bubble. Platesome microbubbles (PMBs) inherited 61.4 % of the platelet membrane vesicle proteins and maintained the active conformation of integrin αIIbβ3 without the talin 1 for fibrin binding. We demonstrated that the PMBs had good stability, long circulation, and superior functionality both in vitro and in vivo. Moreover, by molecular ultrasound imaging, the PMBs provide up to 11.8 dB of ultrasound signal-to-noise ratio enhancement for discriminating between acute and chronic thrombi. This surface tension regulating strategy may provide a paradigm for biointerfacing microbubbles with cell membranes, offering a potential new approach for the construction of molecular ultrasound contrast agents for the diagnosis of different diseases.
Collapse
Affiliation(s)
- Jiahui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Weikui Jin
- Department of Ultrasound Diagnostics, The Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, P. R. China
| | - Shengyu Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Wenqi Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Siyu Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Zhen Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Li Gao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Yu Gao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Hao Han
- Department of Ultrasound Diagnostics, The Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, P. R. China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
13
|
Akram AW, Saba E, Rhee MH. Antiplatelet and Antithrombotic Activities of Lespedeza cuneata via Pharmacological Inhibition of Integrin αIIb β3, MAPK, and PI3K/AKT Pathways and FeCl3-Induced Murine Thrombosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:9927160. [PMID: 38370873 PMCID: PMC10872769 DOI: 10.1155/2024/9927160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
Cardiovascular diseases (CVDs) have been the major cause of mortality all around the globe. Lespedeza cuneata abbreviated as L. cuneata with the authority name of Dumont de Courset (G. Don) is a perennial flowering plant commonly grown in Asian countries such as Korea, Japan, China, and Taiwan. We aimed to investigate the L. cuneata extract's antiplatelet and antithrombotic properties as GC-MS analysis indicated that the extract contained short-chain fatty acids, which have been reported to possess beneficial cardiovascular effects. L. cuneata was extracted using water, 50% EtOH, 70% EtOH, and 100% EtOH. For in vitro antiplatelet analysis, washed platelets were prepared and incubated with L. cuneata with 200 μg/mL of 50% EtOH in the presence of 1 mM of CaCl2 for 1 minute followed by agonist (collagen 2.5 μg/mL or ADP 10 μM or thrombin 0.1 U/mL) stimulation for 5 minutes over light transmission aggregometer. Scanning electron microscopy was performed to assess platelet shape change. ATP release and intracellular calcium mobilization were quantified to assess the granular content. Fibrinogen-binding assay and clot retraction assay assessed integrin αIIbβ3-mediated inside-out and outside-in signaling. Protein phosphorylation expression was investigated by western blot analysis. Finally, the in vivo antithrombotic efficacy was investigated by oral dosage of L. cuneata 200 and 400 mg/kg and aspirin 100 mg/kg for 7 days, and tail bleeding and FeCl3-induced murine thrombus model were performed. In vitro platelet aggregation and platelet shape change were dose-dependently suppressed by L. cuneata. Calcium mobilization, dense granules secretion, integrin αIIbβ3-mediated inside-out and outside-in signaling, and protein phosphorylation of MAPK and PI3K/Akt pathways were significantly inhibited. In vivo assays revealed that L. cuneata prevents side effects of synthetic drugs via nonsignificantly increasing bleeding time and improving coronary artery blood flow and animal survival. Our results demonstrate that L. cuneata exhibited potent antiplatelet and antithrombotic effects and can be considered a potential herbal medicine with cardioprotective effects.
Collapse
Affiliation(s)
- Abdul Wahab Akram
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Evelyn Saba
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46000, Pakistan
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Companion Animal Medical Institute, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
14
|
Klaus T, Hieber C, Bros M, Grabbe S. Integrins in Health and Disease-Suitable Targets for Treatment? Cells 2024; 13:212. [PMID: 38334604 PMCID: PMC10854705 DOI: 10.3390/cells13030212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Integrin receptors are heterodimeric surface receptors that play multiple roles regarding cell-cell communication, signaling, and migration. The four members of the β2 integrin subfamily are composed of an alternative α (CD11a-d) subunit, which determines the specific receptor properties, and a constant β (CD18) subunit. This review aims to present insight into the multiple immunological roles of integrin receptors, with a focus on β2 integrins that are specifically expressed by leukocytes. The pathophysiological role of β2 integrins is confirmed by the drastic phenotype of patients suffering from leukocyte adhesion deficiencies, most often resulting in severe recurrent infections and, at the same time, a predisposition for autoimmune diseases. So far, studies on the role of β2 integrins in vivo employed mice with a constitutive knockout of all β2 integrins or either family member, respectively, which complicated the differentiation between the direct and indirect effects of β2 integrin deficiency for distinct cell types. The recent generation and characterization of transgenic mice with a cell-type-specific knockdown of β2 integrins by our group has enabled the dissection of cell-specific roles of β2 integrins. Further, integrin receptors have been recognized as target receptors for the treatment of inflammatory diseases as well as tumor therapy. However, whereas both agonistic and antagonistic agents yielded beneficial effects in animal models, the success of clinical trials was limited in most cases and was associated with unwanted side effects. This unfavorable outcome is most probably related to the systemic effects of the used compounds on all leukocytes, thereby emphasizing the need to develop formulations that target distinct types of leukocytes to modulate β2 integrin activity for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (T.K.); (C.H.); (M.B.)
| |
Collapse
|
15
|
Steadman E, Steadman D, Rubenstein DA, Yin W. Platelet and endothelial cell responses under concurrent shear stress and tensile strain. Microvasc Res 2024; 151:104613. [PMID: 37793562 DOI: 10.1016/j.mvr.2023.104613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Thrombosis can lead to significant mortality and morbidity. Both platelets and vascular endothelial cells play significant roles in thrombosis. Platelets' response to blood flow-induced shear stress can vary greatly depending on shear stress magnitude, pattern and shear exposure time. Endothelial cells are also sensitive to the biomechanical environment. Endothelial cell activation and dysfunction can occur under low oscillatory shear stress and low tensile strain. Platelet and endothelial cell interaction can also be affected by mechanical conditions. The goal of this study was to investigate how blood flow-induced shear stress, vascular wall tensile strain, platelet-endothelial cell stress history, and platelet-endothelial cell interaction affect platelet thrombogenicity. Platelets and human coronary artery endothelial cells were pretreated with physiological and pathological shear stress and/or tensile strain separately. The pretreated cells were then put together and exposed to pulsatile shear stress and cyclic tensile strain simultaneously in a shearing-stretching device. Following treatment, platelet thrombin generation rate, platelet and endothelial cell activation, and platelet adhesion to endothelial cells was measured. The results demonstrated that shear stress pretreatment of endothelial cells and platelets caused a significant increase in platelet thrombin generation rate, cell surface phosphatidylserine expression, and adhesion to endothelial cells. Shear stress pretreatment of platelets and endothelial cells attenuated endothelial cell ICAM-1 expression under stenosis conditions, as well as vWF expression under recirculation conditions. These results indicate that platelets are sensitized by prior shearing, while in comparison, the interaction with shear stress-pretreated platelets may reduce endothelial cell sensitivity to pathological shear stress and tensile strain.
Collapse
Affiliation(s)
- Elisabeth Steadman
- Department of Biomedical Engineering, Stony Brook University, 100 Nicolls Rd., Stony Brook, NY 11794, USA
| | - Danielle Steadman
- Department of Biomedical Engineering, Stony Brook University, 100 Nicolls Rd., Stony Brook, NY 11794, USA
| | - David A Rubenstein
- Department of Biomedical Engineering, Stony Brook University, 100 Nicolls Rd., Stony Brook, NY 11794, USA
| | - Wei Yin
- Department of Biomedical Engineering, Stony Brook University, 100 Nicolls Rd., Stony Brook, NY 11794, USA.
| |
Collapse
|
16
|
Lee CS, Huguenin Y, Pillois X, Moulieras M, Marcy E, Whittaker S, Chen VM, Fiore M. In vitro characterization of rare anti-α IIbβ 3 isoantibodies produced by patients with Glanzmann thrombasthenia that severely block fibrinogen binding and generate procoagulant platelets via complement activation. Res Pract Thromb Haemost 2024; 8:102253. [PMID: 38268518 PMCID: PMC10805943 DOI: 10.1016/j.rpth.2023.102253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 01/26/2024] Open
Abstract
Background Glanzmann thrombasthenia (GT) is a rare bleeding disorder caused by inherited defects of the platelet αIIbβ3 integrin. Platelet transfusions can be followed by an immune response that can block integrin function by interfering with fibrinogen binding. Objectives In this study, we aimed to determine the prevalence of such isoantibodies and better characterize their pathogenic properties. Methods Twelve patients with GT were evaluated for anti-αIIbβ3 isoantibodies. Sera from patients with GT with or without anti-αIIbβ3 isoantibodies were then used to study their in vitro effect on platelets from healthy donors. We used several approaches (IgG purification, immunofluorescence staining, and inhibition of signaling pathways) to characterize the pathogenic properties of the anti-αIIbβ3 isoantibodies. Results Only 2 samples were able to severely block integrin function. We observed that these 2 sera caused a reduction in platelet size similar to that observed when platelets become procoagulant. Mixing healthy donor platelets with patients' sera or purified IgGs led to microvesiculation, phosphatidylserine exposure, and induction of calcium influx. This was associated with an increase in procoagulant platelets. Pore formation and calcium entry were associated with complement activation, leading to the constitution of a membrane attack complex (MAC) with enhanced complement protein C5b-9 formation. This process was inhibited by the complement 5 inhibitor eculizumab and reduced by polyvalent human immunoglobulins. Conclusion Our data suggest that complement activation induced by rare blocking anti-αIIbβ3 isoantibodies may lead to the formation of a MAC with subsequent pore formation, resulting in calcium influx and procoagulant platelet phenotype.
Collapse
Affiliation(s)
- Christine S.M. Lee
- ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Yoann Huguenin
- Competence Centre for Inherited Bleeding Disorders, University Hospital of Bordeaux, Bordeaux, France
| | - Xavier Pillois
- French Reference Centre for Inherited Platelet Disorders, University Hospital of Bordeaux, Pessac, France
| | - Mikeldi Moulieras
- French Reference Centre for Inherited Platelet Disorders, University Hospital of Bordeaux, Pessac, France
| | - Ella Marcy
- French Reference Centre for Inherited Platelet Disorders, University Hospital of Bordeaux, Pessac, France
| | - Shane Whittaker
- ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Vivien M.Y. Chen
- ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
- Department of Haematology, Concord Repatriation General Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | - Mathieu Fiore
- French Reference Centre for Inherited Platelet Disorders, University Hospital of Bordeaux, Pessac, France
- Department of Haematology, University Hospital of Bordeaux, Pessac, France
- Inserm U1034, Biology of Cardiovascular Disease, Pessac, France
| |
Collapse
|
17
|
Terabayashi T, Takezaki D, Hanada K, Matsuoka S, Sasaki T, Akamine T, Katoh A, Ishizaki T. Timosaponin AIII Disrupts Cell-Extracellular Matrix Interactions through the Inhibition of Endocytic Pathways. Biol Pharm Bull 2024; 47:1648-1656. [PMID: 39401908 DOI: 10.1248/bpb.b24-00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2024]
Abstract
Timosaponin AIII (TAIII), a steroidal saponin isolated from the root of Anemarrhena asphodeloides Bunge, exhibits various pharmacological activities, including anti-cancer properties. TAIII inhibits the migration and invasion of various cancer cell types. However, the mechanism underlying how TAIII regulates the motility of cancer cells remains incompletely understood. In this study, we demonstrate that TAIII disrupted cell-extracellular matrix (ECM) interactions by inhibiting internalization of cell surface proteins, such as integrins. We found that TAIII inhibited cell adhesion on various ECMs. Structure-activity relationship analysis demonstrated that TAIII exhibited unique activity among the saponins from Anemarrhena asphodeloides Bunge and that the number and position of saccharide moieties were important for TAIII to exert its activity. Time lapse imaging revealed that TAIII also suppressed cell spreading on the ECM, membrane ruffling, and lamellipodia formation. Furthermore, we examined integrin β1 behaviors in response to TAIII treatment and found that TAIII blocked its internalization. These findings contribute to delineating the potential molecular mechanisms by which TAIII exerts anti-metastatic activity.
Collapse
Affiliation(s)
| | - Daisuke Takezaki
- Department of Pharmacology, Faculty of Medicine, Oita University
| | - Katsuhiro Hanada
- Clinical Engineering Research Center, Faculty of Medicine, Oita University
| | - Shigeru Matsuoka
- Department of Clinical Pharmacology & Therapeutics, Faculty of Medicine, Oita University
| | - Takako Sasaki
- Department of Pharmacology, Faculty of Medicine, Oita University
| | - Takahiro Akamine
- Department of Pharmacology, Faculty of Medicine, Oita University
| | - Akira Katoh
- Department of Clinical Pharmacology & Therapeutics, Faculty of Medicine, Oita University
| | | |
Collapse
|
18
|
Xie B, Tang W, Wen S, Chen F, Yang C, Wang M, Yang Y, Liang W. GDF-15 Inhibits ADP-Induced Human Platelet Aggregation through the GFRAL/RET Signaling Complex. Biomolecules 2023; 14:38. [PMID: 38254638 PMCID: PMC10813690 DOI: 10.3390/biom14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Growth differentiation factor-15 (GDF-15) is proposed to be strongly associated with several cardiovascular diseases, such as heart failure and atherosclerosis. Moreover, some recent studies have reported an association between GDF-15 and platelet activation. In this study, we isolated peripheral blood platelets from healthy volunteers and evaluated the effect of GDF-15 on adenosine diphosphate (ADP)-induced platelet activation using the platelet aggregation assay. Subsequently, we detected the expression of GDF-15-related receptors on platelets, including the epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), human epidermal growth factor receptor 3 (HER3), transforming growth factor-beta receptor I (TGF-βRI), transforming growth factor-beta receptor II (TGF-βRII), glial-cell-line-derived neurotrophic factor family receptor α-like (GFRAL), and those rearranged during transfection (RET). Then, we screened for GDF-15 receptors using the GDF-15-related receptor microarray comprising these recombinant proteins. We also performed the immunoprecipitation assay to investigate the interaction between GDF-15 and the receptors on platelets. For the further exploration of signaling pathways, we investigated the effects of GDF-15 on the extracellular signal-regulated kinase (ERK), protein kinase B (AKT), and Janus kinase 2 (JAK2) pathways. We also investigated the effects of GDF-15 on the ERK and AKT pathways and platelet aggregation in the presence or absence of RET agonists or inhibition. Our study revealed that GDF-15 can dose-independently inhibit ADP-induced human platelet aggregation and that the binding partner of GDF-15 on platelets is GFRAL. We also found that GDF-15 inhibits ADP-induced AKT and ERK activation in platelets. Meanwhile, our results revealed that the inhibitory effects of GDF-15 can be mediated by the GFRAL/RET complex. These findings reveal the novel inhibitory mechanism of ADP-induced platelet activation by GDF-15.
Collapse
Affiliation(s)
- Baikang Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (B.X.); (W.T.); (F.C.); (M.W.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenjing Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (B.X.); (W.T.); (F.C.); (M.W.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuang Wen
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Fen Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (B.X.); (W.T.); (F.C.); (M.W.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Yang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Min Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (B.X.); (W.T.); (F.C.); (M.W.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yong Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (B.X.); (W.T.); (F.C.); (M.W.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Liang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (B.X.); (W.T.); (F.C.); (M.W.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
19
|
Stanger L, Yamaguchi A, Holinstat M. Antiplatelet strategies: past, present, and future. J Thromb Haemost 2023; 21:3317-3328. [PMID: 38000851 PMCID: PMC10683860 DOI: 10.1016/j.jtha.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 11/26/2023]
Abstract
Antiplatelet therapy plays a critical role in the prevention and treatment of major cardiovascular diseases triggered by thrombosis. Since the 1900s, significant progress in reducing morbidity and death caused by cardiovascular diseases has been made. However, despite the development and approval of drugs that specifically target the platelet, including inhibitors for cycloxygenase-1, P2Y12 receptor, integrin αIIbβ3, phosphodiesterases, and protease-activated receptor 1, the risk of recurrent thrombotic events remains high, and the increased risk of bleeding is a major concern. Scientific advances in our understanding of the role of platelets in haemostasis and thrombosis have revealed novel targets, such as protease-activated receptor 4 (PAR4), glycoprotein Ib (GPIb)-V-IX complex, glycoprotein VI, and 12-lipoxygenase. The antithrombotic effects and safety of the pharmacologic inhibition of these targets are currently under investigation in clinical studies. This review provides an overview of drugs in early development to target the platelet and those in current use in clinical practice. Furthermore, it describes the emerging drug targets being developed and studied to reduce platelet activity and outlines potential novel therapeutic targets in the platelet.
Collapse
Affiliation(s)
- Livia Stanger
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Adriana Yamaguchi
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Surgery, Division of Vascular Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
20
|
Ames P, Baal N, Speckmann M, Michel G, Ratke J, Klesser C, Cooper N, Takahashi D, Bayat B, Bein G, Santoso S. In vitro analysis of anti-HPA-1a dependent platelet phagocytosis and its inhibition using a new whole blood phagocytosis assay (WHOPPA). Front Immunol 2023; 14:1283704. [PMID: 38077345 PMCID: PMC10702767 DOI: 10.3389/fimmu.2023.1283704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is a serious bleeding condition mostly caused by the reaction between maternal anti-HPA-1a antibodies and fetal platelets. This reaction leads to Fc-dependent platelet phagocytosis. Although several serological methods have been developed to identify maternal antibodies, a reliable laboratory parameter as a prognostic tool for FNAIT severity is still lacking. In this study, we developed whole blood platelet phagocytosis assay (WHOPPA), a flow cytometry-based phagocytosis assay that uses a pH-sensitive fluorescent dye (pHrodo-SE) to analyze anti-HPA-1a-dependent platelet phagocytosis in whole blood. WHOPPA revealed a high phagocytosis rate for the anti-HPA-1a opsonized platelets by monocytes but not by neutrophils. Analysis of different monocyte populations showed that all monocyte subsets, including classical (CD14++CD16-), intermediate (CD14++CD16+), and nonclassical (CD14+CD16++) monocytes, were able to engulf opsonized platelets. A unique monocyte subset, termed shifted monocytes (CD14+CD16-), showed the highest phagocytosis rate and was detected after platelet engulfment. FcγR inhibition tests revealed that except for FcγRIIa, FcγRI and FcγRIII on monocytes were responsible for the phagocytosis of anti-HPA-1a opsonized platelets. Analysis of anti-HPA-1a antibodies from FNAIT cases (n = 7) showed the phagocytosis of HPA-1aa but not of HPA-1bb platelets by monocytes. The phagocytosis rate was highly correlated with bound antibodies measured by flow cytometry (p < 0001; r = 0.9214) and MAIPA assay (p < 0.001; r = 0.7692). The phagocytosis rates were equal for type I and II anti-HPA-1a antibodies recognizing the plexin-semaphoring-integrin (PSI) domain and PSI/epidermal growth factor 1 domain of β3 integrin, respectively. By contrast, type III anti-HPA-1a antibodies reacting with αvβ3 integrin did not induce platelet phagocytosis. Furthermore, effector-silenced mAbs against HPA-1a inhibited the phagocytosis of anti-HPA-1a opsonized platelets. In conclusion, WHOPPA is a reliable in vitro platelet phagocytosis assay that mimics the phagocytosis of anti-HPA-1a opsonized platelets in whole blood. This assay allows to prove platelet phagocytosis ex vivo and evaluate the inhibitory capacity of different inhibitors as therapeutically strategies for the prevention of fetal thrombocytopenia in FNAIT in the future.
Collapse
Affiliation(s)
- Paula Ames
- Institute for Clinical Immunology, Transfusion Medicine and Hemostasis, Justus Liebig University, Giessen, Germany
| | - Nelli Baal
- Institute for Clinical Immunology, Transfusion Medicine and Hemostasis, Justus Liebig University, Giessen, Germany
| | - Martin Speckmann
- Institute for Clinical Immunology, Transfusion Medicine and Hemostasis, Justus Liebig University, Giessen, Germany
- Flow Cytometry Core Facility, Justus Liebig University, Giessen, Germany
| | - Gabriela Michel
- Institute for Clinical Immunology, Transfusion Medicine and Hemostasis, Justus Liebig University, Giessen, Germany
| | - Judith Ratke
- Institute for Clinical Immunology, Transfusion Medicine and Hemostasis, Justus Liebig University, Giessen, Germany
| | - Christina Klesser
- Institute for Clinical Immunology, Transfusion Medicine and Hemostasis, Justus Liebig University, Giessen, Germany
| | - Nina Cooper
- Institute for Clinical Immunology, Transfusion Medicine and Hemostasis, Justus Liebig University, Giessen, Germany
| | | | - Behnaz Bayat
- Institute for Clinical Immunology, Transfusion Medicine and Hemostasis, Justus Liebig University, Giessen, Germany
| | - Gregor Bein
- Institute for Clinical Immunology, Transfusion Medicine and Hemostasis, Justus Liebig University, Giessen, Germany
| | - Sentot Santoso
- Institute for Clinical Immunology, Transfusion Medicine and Hemostasis, Justus Liebig University, Giessen, Germany
| |
Collapse
|
21
|
Safdar NZ, Kietsiriroje N, Ajjan RA. The Cellular and Protein Arms of Coagulation in Diabetes: Established and Potential Targets for the Reduction of Thrombotic Risk. Int J Mol Sci 2023; 24:15328. [PMID: 37895008 PMCID: PMC10607436 DOI: 10.3390/ijms242015328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Diabetes is a metabolic condition with a rising global prevalence and is characterised by abnormally high blood glucose levels. Cardiovascular disease (CVD) accounts for the majority of deaths in diabetes and, despite improvements in therapy, mortality and hospitalisations in this cohort remain disproportionally higher compared to individuals with normal glucose metabolism. One mechanism for increased CVD risk is enhanced thrombosis potential, due to altered function of the cellular and acellular arms of coagulation. Different mechanisms have been identified that mediate disordered blood clot formation and breakdown in diabetes, including dysglycaemia, insulin resistance, and metabolic co-morbidities. Collectively, these induce platelet/endothelial dysfunction and impair the fibrinolytic process, thus creating a prothrombotic milieu. Despite these abnormalities, current antithrombotic therapies are largely similar in diabetes compared to those without this condition, which explains the high proportion of patients experiencing treatment failure while also displaying an increased risk of bleeding events. In this narrative review, we aimed to summarise the physiological functioning of haemostasis followed by the pathological effects of diabetes mellitus on platelets and the fibrin network. Moreover, we carefully reviewed the literature to describe the current and future therapeutic targets to lower the thrombosis risk and improve vascular outcomes in diabetes.
Collapse
Affiliation(s)
- Nawaz Z. Safdar
- Department of Internal Medicine, St James’s University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK;
- Light Laboratories, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, 6 Clarendon Way, Leeds LS2 3AA, UK
| | - Noppadol Kietsiriroje
- Endocrinology and Metabolism Unit, Faculty of Medicine, Prince of Songkla University, Songkla 90110, Thailand;
| | - Ramzi A. Ajjan
- Light Laboratories, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, 6 Clarendon Way, Leeds LS2 3AA, UK
| |
Collapse
|
22
|
Li S, Sampson C, Liu C, Piao HL, Liu HX. Integrin signaling in cancer: bidirectional mechanisms and therapeutic opportunities. Cell Commun Signal 2023; 21:266. [PMID: 37770930 PMCID: PMC10537162 DOI: 10.1186/s12964-023-01264-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023] Open
Abstract
Integrins are transmembrane receptors that possess distinct ligand-binding specificities in the extracellular domain and signaling properties in the cytoplasmic domain. While most integrins have a short cytoplasmic tail, integrin β4 has a long cytoplasmic tail that can indirectly interact with the actin cytoskeleton. Additionally, 'inside-out' signals can induce integrins to adopt a high-affinity extended conformation for their appropriate ligands. These properties enable integrins to transmit bidirectional cellular signals, making it a critical regulator of various biological processes.Integrin expression and function are tightly linked to various aspects of tumor progression, including initiation, angiogenesis, cell motility, invasion, and metastasis. Certain integrins have been shown to drive tumorigenesis or amplify oncogenic signals by interacting with corresponding receptors, while others have marginal or even suppressive effects. Additionally, different α/β subtypes of integrins can exhibit opposite effects. Integrin-mediated signaling pathways including Ras- and Rho-GTPase, TGFβ, Hippo, Wnt, Notch, and sonic hedgehog (Shh) are involved in various stages of tumorigenesis. Therefore, understanding the complex regulatory mechanisms and molecular specificities of integrins are crucial to delaying cancer progression and suppressing tumorigenesis. Furthermore, the development of integrin-based therapeutics for cancer are of great importance.This review provides an overview of integrin-dependent bidirectional signaling mechanisms in cancer that can either support or oppose tumorigenesis by interacting with various signaling pathways. Finally, we focus on the future opportunities for emergent therapeutics based on integrin agonists. Video Abstract.
Collapse
Affiliation(s)
- Siyi Li
- Department of Thoracic Surgery, Cancer Research Institute, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chibuzo Sampson
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Changhao Liu
- Department of Thoracic Surgery, Cancer Research Institute, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Hai-Long Piao
- Department of Thoracic Surgery, Cancer Research Institute, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China.
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
| | - Hong-Xu Liu
- Department of Thoracic Surgery, Cancer Research Institute, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China.
| |
Collapse
|
23
|
Gawaz M, Geisler T, Borst O. Current concepts and novel targets for antiplatelet therapy. Nat Rev Cardiol 2023; 20:583-599. [PMID: 37016032 DOI: 10.1038/s41569-023-00854-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/06/2023]
Abstract
Platelets have a crucial role in haemostasis and atherothrombosis. Pharmacological control of platelet hyper-reactivity has become a cornerstone in the prevention of thrombo-ischaemic complications in atherosclerotic diseases. Current antiplatelet therapies substantially improve clinical outcomes in patients with coronary artery disease, but at the cost of increased risk of bleeding. Beyond their role in thrombosis, platelets are known to regulate inflammatory (thrombo-inflammatory) and microcirculatory pathways. Therefore, controlling platelet hyper-reactivity might have implications for both tissue inflammation (myocardial ischaemia) and vascular inflammation (vulnerable plaque formation) to prevent atherosclerosis. In this Review, we summarize the pathophysiological role of platelets in acute myocardial ischaemia, vascular inflammation and atherosclerotic progression. Furthermore, we highlight current clinical concepts of antiplatelet therapy that have contributed to improving patient care and have facilitated more individualized therapy. Finally, we discuss novel therapeutic targets and compounds for antiplatelet therapy that are currently in preclinical development, some of which have a more favourable safety profile than currently approved drugs with regard to bleeding risk. These novel antiplatelet targets might offer new strategies to treat cardiovascular disease.
Collapse
Affiliation(s)
- Meinrad Gawaz
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Tobias Geisler
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
Vavlukis A, Mladenovska K, Davalieva K, Vavlukis M, Dimovski A. Rosuvastatin effects on the HDL proteome in hyperlipidemic patients. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:363-384. [PMID: 37708957 DOI: 10.2478/acph-2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
The advancements in proteomics have provided a better understanding of the functionality of apolipoproteins and lipoprotein-associated proteins, with the HDL lipoprotein fraction being the most studied. The focus of this study was to evaluate the HDL proteome in dyslipidemic subjects without an established cardiovascular disease, as well as to test whether rosuvastatin treatment alters the HDL proteome. Patients with primary hypercholesterolemia or mixed dyslipidemia were assigned to 20 mg/day rosuvastatin and blood samples were drawn at study entry and after 12 weeks of treatment. A label-free LC-MS/MS protein profiling was conducted, coupled with bioinformatics analysis. Sixty-nine HDL proteins were identified, belonging to four main biological function clusters: lipid transport and metabolism; platelet activation, degranulation, and aggregation, wound response and wound healing; immune response; inflammatory and acute phase response. Five HDL proteins showed statistically significant differences in the abundance (Anova ≤ 0.05), before and after rosuvastatin treatment. Platelet factor 4 variant (PF4V1), Pregnancy-specific beta-1-glycoprotein 2 (PSG2), Profilin-1 (PFN1) and Keratin type II cytoskeletal 2 epidermal (KRT2) showed decreased expressions, while Integrin alpha-IIb (ITGA2B) showed an increased expression after treatment with rosuvastatin. The ELISA validation of PFN1 segregated the subjects into responders and non-responders, as PFN1 levels after rosuvastatin were shown to mostly depend on the subjects' inflammatory phenotype. Findings from this study introduce novel insights into the HDL proteome and statin pleiotropism.
Collapse
Affiliation(s)
- Ana Vavlukis
- University Ss Cyril and Methodius Faculty of Pharmacy, 1000 Skopje RN Macedonia
| | | | - Katarina Davalieva
- Macedonian Academy of Sciences and Arts, Research Center for Genetic Engineering and Biotechnology "Georgi D. Efremov", 1000 Skopje RN Macedonia
| | - Marija Vavlukis
- University Ss Cyril and Methodius Faculty of Medicine, 1000 Skopje RN Macedonia
| | - Aleksandar Dimovski
- University Ss Cyril and Methodius Faculty of Pharmacy, 1000 Skopje RN Macedonia
- Macedonian Academy of Sciences and Arts, Research Center for Genetic Engineering and Biotechnology "Georgi D. Efremov", 1000 Skopje RN Macedonia
| |
Collapse
|
25
|
Rossi E, Pericacho M, Kauskot A, Gamella-Pozuelo L, Reboul E, Leuci A, Egido-Turrion C, El Hamaoui D, Marchelli A, Fernández FJ, Margaill I, Vega MC, Gaussem P, Pasquali S, Smadja DM, Bachelot-Loza C, Bernabeu C. Soluble endoglin reduces thrombus formation and platelet aggregation via interaction with αIIbβ3 integrin. J Thromb Haemost 2023; 21:1943-1956. [PMID: 36990159 DOI: 10.1016/j.jtha.2023.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND The circulating form of human endoglin (sEng) is a cleavage product of membrane-bound endoglin present on endothelial cells. Because sEng encompasses an RGD motif involved in integrin binding, we hypothesized that sEng would be able to bind integrin αIIbβ3, thereby compromising platelet binding to fibrinogen and thrombus stability. METHODS In vitro human platelet aggregation, thrombus retraction, and secretion-competition assays were performed in the presence of sEng. Surface plasmon resonance (SPR) binding and computational (docking) analyses were carried out to evaluate protein-protein interactions. A transgenic mouse overexpressing human sEng (hsEng+) was used to measure bleeding/rebleeding, prothrombin time (PT), blood stream, and embolus formation after FeCl3-induced injury of the carotid artery. RESULTS Under flow conditions, supplementation of human whole blood with sEng led to a smaller thrombus size. sEng inhibited platelet aggregation and thrombus retraction, interfering with fibrinogen binding, but did not affect platelet activation. SPR binding studies demonstrated that the specific interaction between αIIbβ3 and sEng and molecular modeling showed a good fitting between αIIbβ3 and sEng structures involving the endoglin RGD motif, suggesting the possible formation of a highly stable αIIbβ3/sEng. hsEng+ mice showed increased bleeding time and number of rebleedings compared to wild-type mice. No differences in PT were denoted between genotypes. After FeCl3 injury, the number of released emboli in hsEng+ mice was higher and the occlusion was slower compared to controls. CONCLUSIONS Our results demonstrate that sEng interferes with thrombus formation and stabilization, likely via its binding to platelet αIIbβ3, suggesting its involvement in primary hemostasis control.
Collapse
Affiliation(s)
- Elisa Rossi
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France.
| | - Miguel Pericacho
- Department of Physiology and Pharmacology, Universidad de Salamanca, Salamanca, Spain
| | - Alexandre Kauskot
- HITh, INSERM UMR-S 1176, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Luis Gamella-Pozuelo
- Department of Physiology and Pharmacology, Universidad de Salamanca, Salamanca, Spain; Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Etienne Reboul
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
| | - Alexandre Leuci
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
| | | | - Divina El Hamaoui
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
| | - Aurore Marchelli
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
| | - Francisco J Fernández
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Isabelle Margaill
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
| | - M Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pascale Gaussem
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France; Service d'hématologie biologique, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Samuela Pasquali
- Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), UMR8038 CNRS, Paris, France
| | - David M Smadja
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France; Service d'hématologie biologique, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Laboratory of Biosurgical Research, Carpentier Foundation, Paris, France
| | | | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
26
|
Vicente JM, Lescano CH, Bordin S, Mónica FZ, Gobbi G, Anhê GF. Agomelatine inhibits platelet aggregation through melatonin receptor-dependent and independent mechanisms. Life Sci 2023:121906. [PMID: 37394096 DOI: 10.1016/j.lfs.2023.121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
AIMS Melatonin is known to inhibit platelet aggregation induced by arachidonic acid (AA). In the present study we investigated whether agomelatine (Ago), an antidepressant with agonist activity at melatonin receptor 1 (MT1) and MT2 could reduce platelets aggregation and adhesion. MAIN METHODS Human platelets from healthy donors were used to test the in vitro effects of Ago in the presence of different platelet activators. We performed aggregation and adhesion assays, thromboxane B2 (TxB2), cAMP and cGMP measurements, intra-platelet calcium registration and flow cytometry assays. KEY FINDINGS Our data revealed that different concentrations of Ago reduced AA- and collagen-induced human platelet aggregation in vitro. Ago also reduced AA-induced increase in thromboxane B2 (TxB2) production, intracellular calcium levels and P-selectin expression at plasma membrane. The effects of Ago in AA-activated platelets were likely dependent on MT1 as they were blocked by luzindole (a MT1/MT2 antagonist) and mimicked by the MT1 agonist UCM871 in a luzindole-sensitive manner. The MT2 agonist UCM924 was also able to inhibit platelet aggregation, but this response was not affected by luzindole. On the other hand, although UCM871 and UCM924 reduced collagen-induced platelet aggregation and adhesion, inhibition of collagen-induced platelet aggregation by Ago was not mediated by melatonin receptors because it was not affected by luzindole. SIGNIFICANCE The present data show that Ago suppresses human platelet aggregation and suggest that this antidepressant may have the potential to prevent atherothrombotic ischemic events by reducing thrombus formation and vessel occlusion.
Collapse
Affiliation(s)
- Julia Modesto Vicente
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Caroline Honaiser Lescano
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Fabiola Zakia Mónica
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gabriel Forato Anhê
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil.
| |
Collapse
|
27
|
Wang Z, Huo T, Wu H, Moussa Z, Sen M, Dalton V. Full-length αIIbβ3 CryoEM structure reveals intact integrin initiate-activation intrinsic architecture. RESEARCH SQUARE 2023:rs.3.rs-2394542. [PMID: 36865117 PMCID: PMC9980189 DOI: 10.21203/rs.3.rs-2394542/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Integrin αIIbβ3 is the key receptor regulating platelet retraction and accumulation, thus pivotal for hemostasis, and arterial thrombosis as well as a proven drug-target for antithrombotic therapies. Here we resolve the cryoEM structures of the intact full-length αIIbβ3, which covers three distinct states along the activation pathway. Here, we resolve intact αIIbβ3 structure at 3Å resolution, revealing the overall topology of the heterodimer with the transmembrane (TM) helices and the head region ligand-binding domain tucked in a specific angle proximity to the TM region. In response to the addition of an Mn2+ agonist, we resolved two coexisting states, "intermediate" and "pre-active". Our structures show conformational changes of the intact αIIbβ3 activating trajectory, as well as a unique twisting of the lower integrin legs representing intermediate state (TM region at a twisting conformation) integrin and a coexisting pre-active state (bent and opening in leg), which is required for inducing the transitioning platelets to accumulate. Our structure provides for the first time direct structural evidence for the lower legs' involvement in full-length integrin activation mechanisms. Additionally, our structure offers a new strategy to target the αIIbβ3 lower leg allosterically instead of modulating the affinity of the αIIbβ3 head region.
Collapse
|
28
|
NINJ1 Regulates Platelet Activation and PANoptosis in Septic Disseminated Intravascular Coagulation. Int J Mol Sci 2023; 24:ijms24044168. [PMID: 36835580 PMCID: PMC9958814 DOI: 10.3390/ijms24044168] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Disseminated intravascular coagulation (DIC), which is closely related to platelet activation, is a key factor leading to high mortality in sepsis. The release of contents from plasma membrane rupture after platelet death further aggravates thrombosis. Nerve injury-induced protein 1 (NINJ1) is a cell membrane protein that mediates membrane disruption, a typical marker of cell death, through oligomerization. Nevertheless, whether NINJ1 is expressed in platelets and regulates the platelet function remains unclear. The aim of this study was to evaluate the expression of NINJ1 in human and murine platelets and elucidate the role of NINJ1 in platelets and septic DIC. In this study, NINJ1 blocking peptide (NINJ126-37) was used to verify the effect of NINJ1 on platelets in vitro and in vivo. Platelet αIIbβ3 and P-selectin were detected by flow cytometry. Platelet aggregation was measured by turbidimetry. Platelet adhesion, spreading and NINJ1 oligomerization were examined by immunofluorescence. Cecal perforation-induced sepsis and FeCl3-induced thrombosis models were used to evaluate the role of NINJ1 in platelet, thrombus and DIC in vivo. We found that inhibition of NINJ1 alleviates platelet activation in vitro. The oligomerization of NINJ1 is verified in membrane-broken platelets, which is regulated by the PANoptosis pathway. In vivo studies demonstrate that inhibition of NINJ1 effectively reduces platelet activation and membrane disruption, thus suppressing platelet-cascade reaction and leading to anti-thrombosis and anti-DIC in sepsis. These data demonstrate that NINJ1 is critical in platelet activation and plasma membrane disruption, and inhibition of NINJ1 effectively reduces platelet-dependent thrombosis and DIC in sepsis. This is the first study to reveal the key role of NINJ1 in platelet and its related disorders.
Collapse
|
29
|
Suzuki R, Kozuma Y, Inoue C, Tanabe K, Noboruo I, Arao H, Kawaguchi T, Shimizu N, Yamamoto T. Artificial cerebrospinal fluid restores aspirin-inhibited physiological hemostasis through recovery of platelet aggregation function. Acta Neurochir (Wien) 2023; 165:1269-1276. [PMID: 36595058 DOI: 10.1007/s00701-022-05471-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Optimal hemostasis provides safety and reliability during neurosurgery which improves surgical outcomes. Previously, artificial cerebrospinal fluid (aCSF) and its component sodium bicarbonate were found to facilitate physiological hemostasis by amplifying platelet aggregation. This study aimed to verify whether aCSF amplifies platelet-dependent hemostasis in the presence of antiplatelet agents. METHODS We prepared platelet-rich plasma (PRP) or washed platelets using aspirin (acetylsalicylic acid, (ASA)) or normal saline (NS). We evaluated samples treated with a commercially available aCSF solution or NS for amplification of aggregation, activation of integrin αIIbβ3, phosphatidylserine (PS) exposure, P-selectin (CD62P) expression, and formation of microparticles (MPs). We assessed the effect of aCSF on in vivo hemostasis in the presence of ASA by measuring the tail bleeding time in ASA-or NS-injected C57BL/6 N mice. RESULTS Compared with NS, aCSF amplified ASA-inhibited platelet aggregation by recovering platelet activation including PS exposure, MP release, CD62P expression, and integrin αIIbβ3 activation. When using washed platelets, aCSF almost completely counteracted the inhibition of platelet aggregation by ASA. Prolonged bleeding time from the amputated tail of ASA-injected mice was significantly shortened by the treatment with aCSF compared to NS. Sodium bicarbonate also directly amplified ASA-inhibited platelet aggregation. CONCLUSIONS aCSF and sodium bicarbonate facilitate physiological hemostasis through the recovery of inhibited platelet aggregation even in the presence of ASA. The utilization of aCSF in the operative field may be advantageous for facilitating hemostasis in patients with impaired platelet function and contribute to improving outcomes of neurosurgery.
Collapse
Affiliation(s)
- Ryosuke Suzuki
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yukinori Kozuma
- Department of Medical Technology, Faculty of Health Science, Kumamoto Health Science University, Kumamoto, Kumamoto, Japan.,Division of Medical Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Chisako Inoue
- Division of Medical Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kano Tanabe
- Department of Medical Technology, Faculty of Health Science, Kumamoto Health Science University, Kumamoto, Kumamoto, Japan
| | - Ippei Noboruo
- Department of Medical Technology, Faculty of Health Science, Kumamoto Health Science University, Kumamoto, Kumamoto, Japan
| | - Hohomi Arao
- Department of Medical Technology, Faculty of Health Science, Kumamoto Health Science University, Kumamoto, Kumamoto, Japan
| | - Tatsuya Kawaguchi
- Department of Medical Technology, Faculty of Health Science, Kumamoto Health Science University, Kumamoto, Kumamoto, Japan
| | - Nobuyuki Shimizu
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
| |
Collapse
|
30
|
Siman-Tov R, Shalabi R, Shlomai A, Goldberg E, Essa W, Shusterman E, Ablin JN, Caspi M, Rosin-Arbesfeld R, Sklan EH. Elevated Serum Amyloid A Levels Contribute to Increased Platelet Adhesion in COVID-19 Patients. Int J Mol Sci 2022; 23:ijms232214243. [PMID: 36430724 PMCID: PMC9692251 DOI: 10.3390/ijms232214243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Coronavirus disease-19 (COVID-19) patients are prone to thrombotic complications that may increase morbidity and mortality. These complications are thought to be driven by endothelial activation and tissue damage promoted by the systemic hyperinflammation associated with COVID-19. However, the exact mechanisms contributing to these complications are still unknown. To identify additional mechanisms contributing to the aberrant clotting observed in COVID-19 patients, we analyzed platelets from COVID-19 patients compared to those from controls using mass spectrometry. We identified increased serum amyloid A (SAA) levels, an acute-phase protein, on COVID-19 patients' platelets. In addition, using an in vitro adhesion assay, we showed that healthy platelets adhered more strongly to wells coated with COVID-19 patient serum than to wells coated with control serum. Furthermore, inhibitors of integrin aIIbβ3 receptors, a mediator of platelet-SAA binding, reduced platelet adhesion to recombinant SAA and to wells coated with COVID-19 patient serum. Our results suggest that SAA may contribute to the increased platelet adhesion observed in serum from COVID-19 patients. Thus, reducing SAA levels by decreasing inflammation or inhibiting SAA platelet-binding activity might be a valid approach to abrogate COVID-19-associated thrombotic complications.
Collapse
Affiliation(s)
- Ronen Siman-Tov
- Department of Clinical Microbiology and Immunology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rulla Shalabi
- Department of Medicine F, Rabin Medical Center, Beilinson Hospital, Petah Tikva 4941492, Israel
| | - Amir Shlomai
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Medicine D, Rabin Medical Center, Beilinson Hospital, Petah Tikva 4941492, Israel
| | - Elad Goldberg
- Department of Medicine F, Rabin Medical Center, Beilinson Hospital, Petah Tikva 4941492, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Wesam Essa
- Department of Medicine F, Rabin Medical Center, Beilinson Hospital, Petah Tikva 4941492, Israel
| | - Eden Shusterman
- Department of Internal Medicine H, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
| | - Jacob N. Ablin
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Internal Medicine H, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ella H. Sklan
- Department of Clinical Microbiology and Immunology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-3-6408197
| |
Collapse
|
31
|
Peptides for Coating TiO 2 Implants: An In Silico Approach. Int J Mol Sci 2022; 23:ijms232214048. [PMID: 36430525 PMCID: PMC9693858 DOI: 10.3390/ijms232214048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Titanium is usually used in the manufacturing of metal implants due to its biocompatibility and high resistance to corrosion. A structural and functional connection between the living bone and the surface of the implant, a process called osseointegration, is mandatory for avoiding prolonged healing, infections, and tissue loss. Therefore, osseointegration is crucial for the success of the implantation procedure. Osseointegration is a process mediated by bone-matrix progenitor cells' proteins, named integrins. In this study, we used an in silico approach to assemble and test peptides that can be strategically used in sensitizing TiO2 implants in order to improve osseointegration. To do so, we downloaded PDB structures of integrins α5β1, αvβ3, and αIIbβ3; their biological ligands; and low-cost proteins from the Protein Data Bank, and then we performed a primary (integrin-protein) docking analysis. Furthermore, we modeled complex peptides with the potential to bind to the TiO2 surface on the implant, as well as integrins in the bone-matrix progenitor cells. Then we performed a secondary (integrin-peptide) docking analysis. The ten most promising integrin-peptide docking results were further verified by molecular dynamics (MD) simulations. We recognized 82 peptides with great potential to bind the integrins, and therefore to be used in coating TiO2 implants. Among them, peptides 1 (GHTHYHAVRTQTTGR), 3 (RKLPDATGR), and 8 (GHTHYHAVRTQTLKA) showed the highest binding stability during the MD simulations. This bioinformatics approach saves time and more effectively directs in vitro studies.
Collapse
|
32
|
Zhang Y, Wang J, Ma Z, Mu G, Liang D, Li Y, Qian X, Zhang L, Shen F, Zhang L, Yu J, Liu Y. Prospective pilot study of tirofiban in progressive stroke after intravenous thrombolysis. Front Neurol 2022; 13:982684. [PMID: 36267890 PMCID: PMC9577296 DOI: 10.3389/fneur.2022.982684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Intravenous thrombolysis (IVT) is a standard procedure for the treatment of patients with acute ischemic stroke (AIS). Improving the therapeutic efficacy of IVT is an important task for neurologists. The aim of this study was to evaluate the efficacy and safety of early low-dose tirofiban treatment in AIS patients with early neurological deterioration (END) after IVT. Methods In this prospective and randomized pilot study, 73 AIS patients with END were recruited from a local hospital in China. Of these, 14 patients were treated with regular antiplatelet agents (aspirin plus clopidogrel) and 59 patients were treated with tirofiban within 24 h of IVT, followed by regular antiplatelet therapy. Neurological deficits and functional recovery were assessed with NIHSS and modified Rankin Scale (mRS) at 7 and 90 days. During the 90-day follow-up period, both hemorrhagic (e.g., intracerebral hemorrhage) and non-hemorrhagic (e.g., pneumonia) events were recorded. Results Treatment with tirofiban compared with regular antiplatelet therapy: (1) improved functional recovery of AIS patients to mRS (≤2) at both 7 and 90 days (odds ratios [ORs], 1.37 and 1.64; 95% confidence interval [CI], 1.16–1.61 and 1.26–2.12; P = 0.008 and < 0.001, respectively), and (2) reduced NIHSS scores from 11.14 ± 2.38 to 5.95 ± 3.48 at day 7 (P < 0.001) and from 8.14 ± 2.74 to 4.08 ± 3.50 at day 90 (P < 0.001). Tirofiban treatment did not increase the risk of hemorrhagic complications. Multivariate regression analysis showed that tirofiban treatment independently predicted a favorable functional outcome (P ≤ 0.001). Conclusion Early treatment with low-dose tirofiban in AIS patients with neurologic deterioration after IVT potentially improved functional recovery and attenuated neurologic deficits as early as 7 days and did not increase the risk of various hemorrhagic complications. However, the therapeutic efficacy of tirofiban treatment in END patients needs to be determined by future randomized clinical trials with a large study population. Clinical trial registration http://www.chictr.org.cn/, Identifier ChiCTR2200058513.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Neurology, The Kunshan Affiliated Hospital of Jiangsu University, The First People's Hospital of Kunshan, Kunshan, China
- *Correspondence: Yan Zhang
| | - Jianliang Wang
- Department of Radiology, The Kunshan Affiliated Hospital of Jiangsu University, The First People's Hospital of Kunshan, Kunshan, China
| | - Zhaoxi Ma
- Department of Neurology, The Kunshan Affiliated Hospital of Jiangsu University, The First People's Hospital of Kunshan, Kunshan, China
| | - Guihua Mu
- Department of Neurology, The Kunshan Affiliated Hospital of Jiangsu University, The First People's Hospital of Kunshan, Kunshan, China
| | - Da Liang
- Department of Neurology, The Kunshan Affiliated Hospital of Jiangsu University, The First People's Hospital of Kunshan, Kunshan, China
| | - Yifan Li
- Department of Neurology, The Kunshan Affiliated Hospital of Jiangsu University, The First People's Hospital of Kunshan, Kunshan, China
| | - Xiaoyan Qian
- Department of Neurology, The Kunshan Affiliated Hospital of Jiangsu University, The First People's Hospital of Kunshan, Kunshan, China
| | - Luyuan Zhang
- Department of Scientific and Technological Talents, The Kunshan Affiliated Hospital of Jiangsu University, The First People's Hospital of Kunshan, Kunshan, China
| | - Fang Shen
- Department of Outpatient, The Kunshan Affiliated Hospital of Jiangsu University, The First People's Hospital of Kunshan, Kunshan, China
| | - Lei Zhang
- Department of Neurology, The Kunshan Affiliated Hospital of Jiangsu University, The First People's Hospital of Kunshan, Kunshan, China
| | - Jie Yu
- Department of Neurology, The Second People's Hospital of Kunshan, Kunshan, China
| | - Yang Liu
- Department of Neurology, Saarland University, Homburg, Germany
- Yang Liu
| |
Collapse
|
33
|
Succar BB, Saldanha-Gama RFG, Valle AS, Wermelinger LS, Barja-Fidalgo C, Kurtenbach E, Zingali RB. The recombinant disintegrin, jarastatin, inhibits platelet adhesion and endothelial cell migration. Toxicon 2022; 217:87-95. [PMID: 35981667 DOI: 10.1016/j.toxicon.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/16/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022]
Abstract
Integrins are transmembrane heterodimeric glycoproteins, present in most cell types that act as mechanoreceptors, connecting extracellular matrix proteins to the cytoskeleton of the cell, mediating several physiological and pathological processes. The disintegrins are peptides capable of modulating the activity of integrins, such as αIIbβ3, responsible for the platelet aggregation and αvβ3, related to angiogenesis. The aim of this study was to produce the recombinant disintegrin jarastatin (rJast), to evaluate its secondary structure and biological activity. rJast was expressed in the yeast Komagataella phaffii (earlier Pichia pastoris) purified using molecular exclusion chromatography and the internal sequence and molecular mass were confirmed by mass spectrometry. The yield was approximately 40 mg/L of culture. rJast inhibited platelet aggregation induced by 2-4 μM ADP, 10 nM thrombin, and 1 μg/mL collagen (IC50 of 244.8 nM, 166.3 nM and 223.5 nM, respectively). It also blocked the adhesion of platelets to collagen under continuous flow in approximately 60% when used 1 μM. We also evaluated the effect of rJast on HMEC-1 cells. rJast significantly inhibited the adhesion of these cells to vitronectin, as well as cell migration (IC50 1.77 μM) without changing the viability. Conclusions: rJast was successfully expressed with activity in human platelets aggregation identical to the native molecule. Also, rJast inhibits adhesion and migration of endothelial cells. Thus, being relevant for the development of anti-thrombotic and anti-angiogenic drugs.
Collapse
Affiliation(s)
- Barbara Barbosa Succar
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, And Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (Inbeb) - Universidade Federal do Rio de Janeiro -UFRJ, RJ, Brazil
| | - Roberta F G Saldanha-Gama
- Laboratório de Farmacologia Celular e Molecular, IBRAG, Universidade do Estado do Rio de Janeiro - UERJ, RJ, Brazil
| | - Aline Sol Valle
- Laboratório de Biologia Molecular e Bioquímica de Proteínas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro - UFRJ, RJ, Brazil
| | - Luciana Serrão Wermelinger
- Departamento de Análises Clínicas e Toxicológicas - Faculdade de Farmácia, Universidade Federal do Rio de Janeiro - UFRJ, RJ, Brazil
| | - Christina Barja-Fidalgo
- Laboratório de Farmacologia Celular e Molecular, IBRAG, Universidade do Estado do Rio de Janeiro - UERJ, RJ, Brazil
| | - Eleonora Kurtenbach
- Laboratório de Biologia Molecular e Bioquímica de Proteínas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro - UFRJ, RJ, Brazil
| | - Russolina Benedeta Zingali
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, And Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (Inbeb) - Universidade Federal do Rio de Janeiro -UFRJ, RJ, Brazil.
| |
Collapse
|
34
|
Oliveira AL, Viegas MF, da Silva SL, Soares AM, Ramos MJ, Fernandes PA. The chemistry of snake venom and its medicinal potential. Nat Rev Chem 2022; 6:451-469. [PMID: 35702592 PMCID: PMC9185726 DOI: 10.1038/s41570-022-00393-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 12/15/2022]
Abstract
The fascination and fear of snakes dates back to time immemorial, with the first scientific treatise on snakebite envenoming, the Brooklyn Medical Papyrus, dating from ancient Egypt. Owing to their lethality, snakes have often been associated with images of perfidy, treachery and death. However, snakes did not always have such negative connotations. The curative capacity of venom has been known since antiquity, also making the snake a symbol of pharmacy and medicine. Today, there is renewed interest in pursuing snake-venom-based therapies. This Review focuses on the chemistry of snake venom and the potential for venom to be exploited for medicinal purposes in the development of drugs. The mixture of toxins that constitute snake venom is examined, focusing on the molecular structure, chemical reactivity and target recognition of the most bioactive toxins, from which bioactive drugs might be developed. The design and working mechanisms of snake-venom-derived drugs are illustrated, and the strategies by which toxins are transformed into therapeutics are analysed. Finally, the challenges in realizing the immense curative potential of snake venom are discussed, and chemical strategies by which a plethora of new drugs could be derived from snake venom are proposed.
Collapse
Affiliation(s)
- Ana L. Oliveira
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Matilde F. Viegas
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Saulo L. da Silva
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Andreimar M. Soares
- Biotechnology Laboratory for Proteins and Bioactive Compounds from the Western Amazon, Oswaldo Cruz Foundation, National Institute of Epidemiology in the Western Amazon (INCT-EpiAmO), Porto Velho, Brazil
- Sao Lucas Universitary Center (UniSL), Porto Velho, Brazil
| | - Maria J. Ramos
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Pedro A. Fernandes
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| |
Collapse
|
35
|
Chinigò G, Grolez GP, Audero M, Bokhobza A, Bernardini M, Cicero J, Toillon RA, Bailleul Q, Visentin L, Ruffinatti FA, Brysbaert G, Lensink MF, De Ruyck J, Cantelmo AR, Fiorio Pla A, Gkika D. TRPM8-Rap1A Interaction Sites as Critical Determinants for Adhesion and Migration of Prostate and Other Epithelial Cancer Cells. Cancers (Basel) 2022; 14:2261. [PMID: 35565390 PMCID: PMC9102551 DOI: 10.3390/cancers14092261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Emerging evidence indicates that the TRPM8 channel plays an important role in prostate cancer (PCa) progression, by impairing the motility of these cancer cells. Here, we reveal a novel facet of PCa motility control via direct protein-protein interaction (PPI) of the channel with the small GTPase Rap1A. The functional interaction of the two proteins was assessed by active Rap1 pull-down assays and live-cell imaging experiments. Molecular modeling analysis allowed the identification of four putative residues involved in TRPM8-Rap1A interaction. Point mutations of these sites impaired PPI as shown by GST-pull-down, co-immunoprecipitation, and PLA experiments and revealed their key functional role in the adhesion and migration of PC3 prostate cancer cells. More precisely, TRPM8 inhibits cell migration and adhesion by trapping Rap1A in its GDP-bound inactive form, thus preventing its activation at the plasma membrane. In particular, residues E207 and Y240 in the sequence of TRPM8 and Y32 in that of Rap1A are critical for the interaction between the two proteins not only in PC3 cells but also in cervical (HeLa) and breast (MCF-7) cancer cells. This study deepens our knowledge of the mechanism through which TRPM8 would exert a protective role in cancer progression and provides new insights into the possible use of TRPM8 as a new therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Giorgia Chinigò
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy; (G.C.); (M.A.); (M.B.); (L.V.); (F.A.R.); (A.F.P.)
- INSERM, U1003—PHYCEL—Physiologie Cellulaire, University of Lille, F-59000 Lille, France; (G.P.G.); (A.B.); (Q.B.); (A.R.C.)
| | - Guillaume P. Grolez
- INSERM, U1003—PHYCEL—Physiologie Cellulaire, University of Lille, F-59000 Lille, France; (G.P.G.); (A.B.); (Q.B.); (A.R.C.)
| | - Madelaine Audero
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy; (G.C.); (M.A.); (M.B.); (L.V.); (F.A.R.); (A.F.P.)
- INSERM, U1003—PHYCEL—Physiologie Cellulaire, University of Lille, F-59000 Lille, France; (G.P.G.); (A.B.); (Q.B.); (A.R.C.)
| | - Alexandre Bokhobza
- INSERM, U1003—PHYCEL—Physiologie Cellulaire, University of Lille, F-59000 Lille, France; (G.P.G.); (A.B.); (Q.B.); (A.R.C.)
| | - Michela Bernardini
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy; (G.C.); (M.A.); (M.B.); (L.V.); (F.A.R.); (A.F.P.)
| | - Julien Cicero
- CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France; (J.C.); (R.-A.T.)
- UR 2465—Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University of Artois, F-62300 Lens, France
| | - Robert-Alain Toillon
- CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France; (J.C.); (R.-A.T.)
| | - Quentin Bailleul
- INSERM, U1003—PHYCEL—Physiologie Cellulaire, University of Lille, F-59000 Lille, France; (G.P.G.); (A.B.); (Q.B.); (A.R.C.)
| | - Luca Visentin
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy; (G.C.); (M.A.); (M.B.); (L.V.); (F.A.R.); (A.F.P.)
| | - Federico Alessandro Ruffinatti
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy; (G.C.); (M.A.); (M.B.); (L.V.); (F.A.R.); (A.F.P.)
| | - Guillaume Brysbaert
- CNRS UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, 59000 Lille, France; (G.B.); (M.F.L.); (J.D.R.)
| | - Marc F. Lensink
- CNRS UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, 59000 Lille, France; (G.B.); (M.F.L.); (J.D.R.)
| | - Jerome De Ruyck
- CNRS UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, 59000 Lille, France; (G.B.); (M.F.L.); (J.D.R.)
| | - Anna Rita Cantelmo
- INSERM, U1003—PHYCEL—Physiologie Cellulaire, University of Lille, F-59000 Lille, France; (G.P.G.); (A.B.); (Q.B.); (A.R.C.)
| | - Alessandra Fiorio Pla
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy; (G.C.); (M.A.); (M.B.); (L.V.); (F.A.R.); (A.F.P.)
- INSERM, U1003—PHYCEL—Physiologie Cellulaire, University of Lille, F-59000 Lille, France; (G.P.G.); (A.B.); (Q.B.); (A.R.C.)
| | - Dimitra Gkika
- CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France; (J.C.); (R.-A.T.)
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Institut Universitaire de France (IUF), 75231 Paris, France
| |
Collapse
|
36
|
Yue M, Hu M, Fu F, Ruan H, Wu C. Emerging Roles of Platelets in Allergic Asthma. Front Immunol 2022; 13:846055. [PMID: 35432313 PMCID: PMC9010873 DOI: 10.3389/fimmu.2022.846055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/21/2023] Open
Abstract
Allergic asthma is a complex chronic inflammatory disease of the airways, driven by Th2 immune responses and characterized by eosinophilic pulmonary inflammation, airway hyperresponsiveness, excessive mucus production, and airway remodeling. Overwhelming evidence from studies in animal models and allergic asthmatic patients suggests that platelets are aberrantly activated and recruited to the lungs. It has been established that platelets can interact with other immune cells and secrete various biochemical mediators to promote allergic sensitization and airway inflammatory response, and platelet deficiency may alleviate the pathological features and symptoms of allergic asthma. However, the comprehensive roles of platelets in allergic asthma have not been fully clarified, leaving attempts to treat allergic asthma with antiplatelet agents questionable. In this review, we summarize the role of platelet activation and pulmonary accumulation in allergic asthma; emphasis is placed on the different interactions between platelets with crucial immune cell types and the contribution of platelet-derived mediators in this context. Furthermore, clinical antiplatelet approaches to treat allergic asthma are discussed. This review provides a clearer understanding of the roles of platelets in the pathogenesis of allergic asthma and could be informative in the development of novel strategies for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Ming Yue
- Department of Physiology, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengjiao Hu
- Department of Immunology and Microbiology, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Hongfeng Ruan,
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
37
|
Jahn K, Kohler TP, Swiatek LS, Wiebe S, Hammerschmidt S. Platelets, Bacterial Adhesins and the Pneumococcus. Cells 2022; 11:cells11071121. [PMID: 35406684 PMCID: PMC8997422 DOI: 10.3390/cells11071121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/25/2023] Open
Abstract
Systemic infections with pathogenic or facultative pathogenic bacteria are associated with activation and aggregation of platelets leading to thrombocytopenia and activation of the clotting system. Bacterial proteins leading to platelet activation and aggregation have been identified, and while platelet receptors are recognized, induced signal transduction cascades are still often unknown. In addition to proteinaceous adhesins, pathogenic bacteria such as Staphylococcus aureus and Streptococcus pneumoniae also produce toxins such as pneumolysin and alpha-hemolysin. They bind to cellular receptors or form pores, which can result in disturbance of physiological functions of platelets. Here, we discuss the bacteria-platelet interplay in the context of adhesin–receptor interactions and platelet-activating bacterial proteins, with a main emphasis on S. aureus and S. pneumoniae. More importantly, we summarize recent findings of how S. aureus toxins and the pore-forming toxin pneumolysin of S. pneumoniae interfere with platelet function. Finally, the relevance of platelet dysfunction due to killing by toxins and potential treatment interventions protecting platelets against cell death are summarized.
Collapse
|
38
|
The extracellular matrix of hematopoietic stem cell niches. Adv Drug Deliv Rev 2022; 181:114069. [PMID: 34838648 PMCID: PMC8860232 DOI: 10.1016/j.addr.2021.114069] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Comprehensive overview of different classes of ECM molecules in the HSC niche. Overview of current knowledge on role of biophysics of the HSC niche. Description of approaches to create artificial stem cell niches for several application. Importance of considering ECM in drug development and testing.
Hematopoietic stem cells (HSCs) are the life-long source of all types of blood cells. Their function is controlled by their direct microenvironment, the HSC niche in the bone marrow. Although the importance of the extracellular matrix (ECM) in the niche by orchestrating niche architecture and cellular function is widely acknowledged, it is still underexplored. In this review, we provide a comprehensive overview of the ECM in HSC niches. For this purpose, we first briefly outline HSC niche biology and then review the role of the different classes of ECM molecules in the niche one by one and how they are perceived by cells. Matrix remodeling and the emerging importance of biophysics in HSC niche function are discussed. Finally, the application of the current knowledge of ECM in the niche in form of artificial HSC niches for HSC expansion or targeted differentiation as well as drug testing is reviewed.
Collapse
|
39
|
Nguyen HTT, Xu Z, Shi X, Liu S, Schulte ML, White GC, Ma YQ. Paxillin binding to the PH domain of kindlin-3 in platelets is required to support integrin αIIbβ3 outside-in signaling. J Thromb Haemost 2021; 19:3126-3138. [PMID: 34411430 PMCID: PMC9080902 DOI: 10.1111/jth.15505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Kindlin-3 is essential for supporting the bidirectional signaling of integrin αIIbβ3 in platelets by bridging the crosstalk between integrin αIIbβ3 and the cytoplasmic signaling adaptors. OBJECTIVE In this study, we identified a previously unrecognized paxillin binding site in the pleckstrin homology (PH) domain of kindlin-3 and verified its functional significance. METHODS Structure-based approaches were employed to identify the paxillin binding site in the PH domain of kindlin-3. In addition, the bidirectional signaling of integrin αIIbβ3 were evaluated in both human and mouse platelets. RESULTS In brief, we found that a β1-β2 loop in the PH domain of kindlin-3, an important part of the canonical membrane phospholipid binding pocket, was also involved in mediating paxillin interaction. Interestingly, the binding sites of paxillin and membrane phospholipids in the PH domain of kindlin-3 were mutually exclusive. Specific disruption of paxillin binding to the PH domain by point mutations inhibited platelet spreading on immobilized fibrinogen while having no inhibition on soluble fibrinogen binding to stimulated platelets. In addition, a membrane-permeable peptide derived from the β1-β2 loop in the PH domain of kindlin-3 was capable of inhibiting platelet spreading and clot retraction, but it had no effect on soluble fibrinogen binding to platelets and platelet aggregation. Treatment with this peptide significantly reduced thrombus formation in mice. CONCLUSION Taken together, these findings suggest that interaction between paxillin and the PH domain of kindlin-3 plays an important role in supporting integrin αIIbβ3 outside-in signaling in platelets, thus providing a novel antithrombotic target.
Collapse
Affiliation(s)
| | - Zhen Xu
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
| | - Xiaofeng Shi
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- The second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shuzhen Liu
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Gilbert C. White
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Biochemistry, Medical College of Milwaukee, Milwaukee, Wisconsin, USA
| | - Yan-Qing Ma
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
- Department of Biochemistry, Medical College of Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
40
|
Vascular thiol isomerases: Structures, regulatory mechanisms, and inhibitor development. Drug Discov Today 2021; 27:626-635. [PMID: 34757205 DOI: 10.1016/j.drudis.2021.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/15/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
Vascular thiol isomerases (VTIs), including PDI, ERp5, ERp57, ERp72, and thioredoxin-related transmembrane protein 1 (TMX1), have important roles in platelet aggregation and thrombosis. Research on VTIs, their substrates in thrombosis, their regulatory mechanisms, and inhibitor development is an emerging and rapidly evolving area in vascular biology. Here, we describe the structures and functions of VTIs, summarize the relationship between the vascular TIs and thrombosis, and focus on the development of VTI inhibitors for antithrombotic applications.
Collapse
|
41
|
Puzari U, Fernandes PA, Mukherjee AK. Advances in the Therapeutic Application of Small-Molecule Inhibitors and Repurposed Drugs against Snakebite. J Med Chem 2021; 64:13938-13979. [PMID: 34565143 DOI: 10.1021/acs.jmedchem.1c00266] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The World Health Organization has declared snakebite as a neglected tropical disease. Antivenom administration is the sole therapy against venomous snakebite; however, several limitations of this therapy reinforce the dire need for an alternative and/or additional treatment against envenomation. Inhibitors against snake venoms have been explored from natural resources and are synthesized in the laboratory; however, repurposing of small-molecule therapeutics (SMTs) against the principal toxins of snake venoms to inhibit their lethality and/or obnoxious effect of envenomation has been garnering greater attention owing to their established pharmacokinetic properties, low-risk attributes, cost-effectiveness, ease of administration, and storage stability. Nevertheless, SMTs are yet to be approved and commercialized for snakebite treatment. Therefore, we have systematically reviewed and critically analyzed the scenario of small synthetic inhibitors and repurposed drugs against snake envenomation from 2005 to date and proposed novel approaches and commercialization strategies for the development of efficacious therapies against snake envenomation.
Collapse
Affiliation(s)
- Upasana Puzari
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur-784028, Assam, India
| | - Pedro Alexandrino Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur-784028, Assam, India.,Institute of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati-781035, Assam, India
| |
Collapse
|
42
|
Liu S, Yuan D, Li S, Xie R, Kong Y, Zhu X. Synthesis and evaluation of novel and potent protease activated receptor 4 (PAR4) antagonists based on a quinazolin-4(3H)-one scaffold. Eur J Med Chem 2021; 225:113764. [PMID: 34391031 DOI: 10.1016/j.ejmech.2021.113764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/17/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
Protease activated receptor 4 (PAR4) is an important target in antiplatelet therapy to reduce the risk of heart attack and thrombotic complications in stroke. PAR4 antagonists can prevent harmful and stable thrombus growth, while retaining initial thrombus formation, by acting on the late diffusion stage of platelet aggregation, and may provide a safer alternative to other antiplatelet agents. To date, only two PAR4 antagonists, BMS-986120 and BMS-986141 have entered clinical trials for thrombosis. Thus, the development of a potent and selective PAR4 antagonist with a novel chemotype is highly desirable. In this study, we explored the activity of quinazolin-4(3H)-one-based PAR4 antagonists, beginning with their IDT analogues. By repeated structural optimisation, we developed a series of highly selective PAR4 antagonists with nanomolar potency on human platelets. Of these, 13 and 30g, with an 8-benzo[d]thiazol-2-yl-substituted quinazolin-4(3H)-one structure, showed optimal activity (h. PAR4-AP PRP IC50 = 19.6 nM and 6.59 nM, respectively) on human platelets. Furthermore, 13 and 30g showed excellent selectivity for PAR4 versus PAR1 and other receptors (IC50s > 10 μM) on human platelets. And 13 and 30g were lack of cross-reactivity for PAR1 or PAR2 (PAR1 AP FLIPR IC50 > 3162 nM, PAR2 AP FLIPR IC50 > 1000 nM) in the calcium mobilization assays. Metabolic stability assays and cytotoxicity tests of 13 and 30g indicated that these compounds could sever as promising drug candidates for the development of novel PAR4 antagonists. In summary, the quinazolin-4(3H)-one-based analogues are the first reported chemotypes with excellent activity and selectivity against PAR4, and, in the current study, we expanded the structural diversity of PAR4 antagonists. The two compounds, 13 and 30g, found in our study could be promising starting points with great potential for further research in antiplatelet therapy.
Collapse
Affiliation(s)
- Shangde Liu
- Institute of Medicinal & Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Duo Yuan
- Institute of Medicinal & Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Shanshan Li
- Institute of Medicinal & Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Roujie Xie
- Institute of Medicinal & Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yi Kong
- School of Life & Technology, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Xiong Zhu
- Institute of Medicinal & Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
43
|
Sun XD, Han L, Lan HT, Qin RR, Song M, Zhang W, Zhong M, Wang ZH. Endothelial microparticle-associated protein disulfide isomerase increases platelet activation in diabetic coronary heart disease. Aging (Albany NY) 2021; 13:18718-18739. [PMID: 34285139 PMCID: PMC8351716 DOI: 10.18632/aging.203316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/29/2021] [Indexed: 12/19/2022]
Abstract
Background: Endothelial microparticles (EMPs) carrying the protein disulfide isomerase (PDI) might play a key role in promoting platelet activation in diabetes. This study aimed to examine the activation of platelets, the amounts of MPs, PMPs, and EMPs, and the concentration and activity of PDI in patients with diabetic coronary heart disease (CHD) and non-diabetic CHD. Methods: Patients with CHD (n=223) were divided as non-diabetic CHD (n=121) and diabetic CHD (n=102). Platelet activation biomarkers, circulating microparticles (MPs), the concentration of protein disulfide isomerase (PDI), and MP-PDI activity were determined. The effect of EMPs on platelet activation was investigated in vitro. Allosteric GIIb/IIIa receptors that bind to PDI were detected by a proximity ligation assay (PLA). Results: Platelet activation, platelet-leukocyte aggregates, circulating MPs, EMPs, PDI, and MP-PDI activity in the diabetic CHD group were significantly higher than in the non-diabetic CHD group (P<0.05). Diabetes (P=0.006) and heart rate <60 bpm (P=0.047) were associated with elevated EMPs. EMPs from diabetes increased CD62p on the surface of the platelets compared with the controls (P<0.01), which could be inhibited by the PDI inhibitor RL90 (P<0.05). PLA detected the allosteric GIIb/IIIa receptors caused by EMP-PDI, which was also inhibited by RL90. Conclusions: In diabetic patients with CHD, platelet activation was significantly high. Diabetes and heart rate <60 bpm were associated with elevated EMPs and simultaneously increased PDI activity on EMP, activating platelets through the allosteric GPIIb/IIIa receptors.
Collapse
Affiliation(s)
- Xiao-Di Sun
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Department of Geriatric Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Lu Han
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Department of General Practice, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Hong-Tao Lan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong key Laboratory of Cardiovascular Proteomics, Jinan 250012, Shandong, China
| | - Ran-Ran Qin
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao 266071, Shandong, China
| | - Ming Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Zhi-Hao Wang
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong key Laboratory of Cardiovascular Proteomics, Jinan 250012, Shandong, China
| |
Collapse
|
44
|
Ludwig BS, Kessler H, Kossatz S, Reuning U. RGD-Binding Integrins Revisited: How Recently Discovered Functions and Novel Synthetic Ligands (Re-)Shape an Ever-Evolving Field. Cancers (Basel) 2021; 13:1711. [PMID: 33916607 PMCID: PMC8038522 DOI: 10.3390/cancers13071711] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Integrins have been extensively investigated as therapeutic targets over the last decades, which has been inspired by their multiple functions in cancer progression, metastasis, and angiogenesis as well as a continuously expanding number of other diseases, e.g., sepsis, fibrosis, and viral infections, possibly also Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Although integrin-targeted (cancer) therapy trials did not meet the high expectations yet, integrins are still valid and promising targets due to their elevated expression and surface accessibility on diseased cells. Thus, for the future successful clinical translation of integrin-targeted compounds, revisited and innovative treatment strategies have to be explored based on accumulated knowledge of integrin biology. For this, refined approaches are demanded aiming at alternative and improved preclinical models, optimized selectivity and pharmacological properties of integrin ligands, as well as more sophisticated treatment protocols considering dose fine-tuning of compounds. Moreover, integrin ligands exert high accuracy in disease monitoring as diagnostic molecular imaging tools, enabling patient selection for individualized integrin-targeted therapy. The present review comprehensively analyzes the state-of-the-art knowledge on the roles of RGD-binding integrin subtypes in cancer and non-cancerous diseases and outlines the latest achievements in the design and development of synthetic ligands and their application in biomedical, translational, and molecular imaging approaches. Indeed, substantial progress has already been made, including advanced ligand designs, numerous elaborated pre-clinical and first-in-human studies, while the discovery of novel applications for integrin ligands remains to be explored.
Collapse
Affiliation(s)
- Beatrice S. Ludwig
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
| | - Horst Kessler
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, University Hospital Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| |
Collapse
|
45
|
Hulshof AM, Hemker HC, Spronk HMH, Henskens YMC, ten Cate H. Thrombin-Fibrin(ogen) Interactions, Host Defense and Risk of Thrombosis. Int J Mol Sci 2021; 22:2590. [PMID: 33806700 PMCID: PMC7961882 DOI: 10.3390/ijms22052590] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Fibrinogen is a well-known risk factor for arterial and venous thrombosis. Its function is not restricted to clot formation, however, as it partakes in a complex interplay between thrombin, soluble plasma fibrinogen, and deposited fibrin matrices. Fibrinogen, like thrombin, participates predominantly in hemostasis to maintain vascular integrity, but executes some important pleiotropic effects: firstly, as observed in thrombin generation experiments, fibrin removes thrombin from free solution by adsorption. The adsorbed thrombin is protected from antithrombins, notably α2-macroglobulin, and remains physiologically active as it can activate factors V, VIII, and platelets. Secondly, immobilized fibrinogen or fibrin matrices activate monocytes/macrophages and neutrophils via Mac-1 interactions. Immobilized fibrin(ogen) thereby elicits a pro-inflammatory response with a reciprocal stimulating effect of the immune system on coagulation. In contrast, soluble fibrinogen prohibits recruitment of these immune cells. Thus, while fibrin matrices elicit a procoagulant response, both directly by protecting thrombin and indirectly through the immune system, high soluble fibrinogen levels might protect patients due to its immune diminutive function. The in vivo influence of the 'protective' plasma fibrinogen versus the 'pro-thrombotic' fibrin matrices on thrombosis should be explored in future research.
Collapse
Affiliation(s)
- Anne-Marije Hulshof
- Central Diagnostic Laboratory, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands;
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - H. Coenraad Hemker
- Synapse Research Institute, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Henri M. H. Spronk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Yvonne M. C. Henskens
- Central Diagnostic Laboratory, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands;
| | - Hugo ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
- Thrombosis Expert Centre Maastricht and Department of Internal Medicine, Section Vascular Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
46
|
Link KG, Sorrells MG, Danes NA, Neeves KB, Leiderman K, Fogelson AL. A MATHEMATICAL MODEL OF PLATELET AGGREGATION IN AN EXTRAVASCULAR INJURY UNDER FLOW. MULTISCALE MODELING & SIMULATION : A SIAM INTERDISCIPLINARY JOURNAL 2020; 18:1489-1524. [PMID: 33867873 PMCID: PMC8051825 DOI: 10.1137/20m1317785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present the first mathematical model of flow-mediated primary hemostasis in an extravascular injury which can track the process from initial deposition to occlusion. The model consists of a system of ordinary differential equations (ODEs) that describe platelet aggregation (adhesion and cohesion), soluble-agonist-dependent platelet activation, and the flow of blood through the injury. The formation of platelet aggregates increases resistance to flow through the injury, which is modeled using the Stokes-Brinkman equations. Data from analogous experimental (microfluidic flow) and partial differential equation models informed parameter values used in the ODE model description of platelet adhesion, cohesion, and activation. This model predicts injury occlusion under a range of flow and platelet activation conditions. Simulations testing the effects of shear and activation rates resulted in delayed occlusion and aggregate heterogeneity. These results validate our hypothesis that flow-mediated dilution of activating chemical adenosine diphosphate hinders aggregate development. This novel modeling framework can be extended to include more mechanisms of platelet activation as well as the addition of the biochemical reactions of coagulation, resulting in a computationally efficient high throughput screening tool of primary and secondary hemostasis.
Collapse
Affiliation(s)
- Kathryn G Link
- Department of Mathematics, University of California, Davis, Davis, CA 95616 USA
| | - Matthew G Sorrells
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401 USA
| | - Nicholas A Danes
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO 80401 USA
| | - Keith B Neeves
- Departments of Bioengineering and Pediatrics, Hemophilia and Thrombosis Center, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80401 USA
| | - Karin Leiderman
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO 80401 USA
| | - Aaron L Fogelson
- Department of Mathematics, University of California, Davis, Davis, CA 95616 USA
- Department of Biomedical Engineering University of Utah, Salt Lake City, UT 84112 USA
| |
Collapse
|
47
|
Shen C, Liu M, Tian H, Li J, Xu R, Mwangi J, Lu Q, Hao X, Lai R. Conformation-Specific Blockade of αIIbβ3 by a Non-RGD Peptide to Inhibit Platelet Activation without Causing Significant Bleeding and Thrombocytopenia. Thromb Haemost 2020; 120:1432-1441. [PMID: 32717755 DOI: 10.1055/s-0040-1714215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Bleeding and thrombocytopenia to readministration are the most serious side effects of clinical integrin αIIbβ3 antagonists such as RGD-containing peptides. Here we show that a non-RGD peptide ZDPI, identified from skin secretions of Amolops loloensis, inhibited platelet aggregation induced by agonists, such as adenosine diphosphate, collagen, arachidonic acid, PAR1AP, and integrin αIIbβ3 allosteric activator, and reduces soluble fibrinogen binding to activated platelets without perturbing adhesion numbers on immobilized fibrinogen. Further study showed that ZDPI preferred to bind to the active conformation of integrin αIIbβ3, and thus inhibited c-Src-mediated integrin signaling transduction. In contrast to currently used clinical blockers of integrin αIIbβ3, which are all conformation-unspecific blockers, ZDPI conformation specifically binds to activated integrin αIIbβ3, subsequently suppressing platelet spreading. In vivo study revealed that ZDPI inhibited carotid arterial thrombosis with limited bleeding and thrombocytopenia. A non-RGD peptide which targets the active conformation of integrin αIIbβ3, such as ZDPI, might be an excellent candidate or template to develop antithrombotics without significant bleeding and thrombocytopenia side effects.
Collapse
Affiliation(s)
- Chuanbin Shen
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ming Liu
- Department of Molecular and Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Huiwen Tian
- Department of Zoology, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiameng Li
- Department of Zoology, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Runjia Xu
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - James Mwangi
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qiumin Lu
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xue Hao
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ren Lai
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Department of Zoology, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu, China.,Sino-African Joint Research Center, CAS, Kunming Institute of Zoology, Kunming, Yunnan, China
| |
Collapse
|
48
|
Pang A, Cheng N, Cui Y, Bai Y, Hong Z, Delaney MK, Zhang Y, Chang C, Wang C, Liu C, Plata PL, Zakharov A, Kabirov K, Rehman J, Skidgel RA, Malik AB, Liu Y, Lyubimov A, Gu M, Du X. High-loading Gα 13-binding EXE peptide nanoparticles prevent thrombosis and protect mice from cardiac ischemia/reperfusion injury. Sci Transl Med 2020; 12:eaaz7287. [PMID: 32669423 PMCID: PMC8061427 DOI: 10.1126/scitranslmed.aaz7287] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Inefficient delivery is a major obstacle to the development of peptide-based drugs targeting the intracellular compartment. We recently showed that selectively inhibiting integrin outside-in signaling using a peptide (mP6) derived from the Gα13-binding ExE motif within the integrin β3 cytoplasmic domain had antithrombotic effects. Here, we engineered lipid-stabilized, high-loading peptide nanoparticles (HLPN), in which a redesigned ExE peptide (M3mP6) constituted up to 70% of the total nanoparticle molarity, allowing efficient in vivo delivery. We observed that M3mP6 HLPN inhibited occlusive thrombosis more potently than a clopidogrel/aspirin combination without adverse effects on hemostasis in rodents. Furthermore, M3mP6 HLPN synergized with P2Y12 receptor inhibitors or the clopidogrel/aspirin combination in preventing thrombosis, without exacerbating hemorrhage. M3mP6 HLPN also inhibited intravascular coagulation more potently than the P2Y12 inhibitor cangrelor. Postischemia injection of M3mP6 HLPN protected the heart from myocardial ischemia-reperfusion injury in a mouse model. This study demonstrates an efficient in vivo peptide delivery strategy for a therapeutic that not only efficaciously prevented thrombosis with minimal bleeding risk but also protected from myocardial ischemia-reperfusion injury in mice.
Collapse
Affiliation(s)
- Aiming Pang
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ni Cheng
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yujie Cui
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yanyan Bai
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zhigang Hong
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - M Keegan Delaney
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Dupage Medical Technology Inc., Willowbrook, IL 60527, USA
| | - Yaping Zhang
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Claire Chang
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Can Wang
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chang Liu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Paola Leon Plata
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alexander Zakharov
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kasim Kabirov
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jalees Rehman
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Asrar B Malik
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ying Liu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Aleksander Lyubimov
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Minyi Gu
- Dupage Medical Technology Inc., Willowbrook, IL 60527, USA
| | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
49
|
Improved Antithrombotic Activity and Diminished Bleeding Side Effect of a PEGylated α IIbβ 3 Antagonist, Disintegrin. Toxins (Basel) 2020; 12:toxins12070426. [PMID: 32605221 PMCID: PMC7404706 DOI: 10.3390/toxins12070426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/28/2023] Open
Abstract
Polymer polyethylene glycol (PEG), or PEGylation of polypeptides improves protein drug stability by decreasing degradation and reducing renal clearance. To produce a pharmaceutical disintegrin derivative, the N-terminal PEGylation technique was used to modify the disintegrin derivative [KGDRR]trimucrin for favorable safety, pharmacokinetic profiles, and antithrombotic efficacy. We compared intact [KGDRR]trimucrin (RR) and PEGylated KGDRR (PEG-RR) by in vitro and in vivo systems for their antithrombotic activities. The activity of platelet aggregation inhibition and the bleeding tendency side effect were also investigated. PEG-RR exhibited optimal potency in inhibiting platelet aggregation of human/mouse platelet-rich plasma activated by collagen or ADP with a lower IC50 than the intact derivative RR. In the illumination-induced mesenteric venous thrombosis model, RR and PEG-RR efficaciously prevented occlusive thrombosis in a dose-dependent manner. In rotational thromboelastometry assay, PEG-RR did not induce hypocoagulation in human whole blood even given at a higher concentration (30 μg/mL), while RR slightly prolonged clotting time. However, RR and PEG-RR were not associated with severe thrombocytopenia or bleeding in FcγRIIa-transgenic mice at equally efficacious antithrombotic dosages. We also found the in vivo half-life of PEGylation was longer than RR (RR: 15.65 h vs. PEG-RR: 20.45 h). In conclusion, injectable PEG-RR with prolonged half-life and decreased bleeding risk is a safer anti-thrombotic agent for long-acting treatment of thrombus diseases.
Collapse
|
50
|
Chen Y, Ju LA. Biomechanical thrombosis: the dark side of force and dawn of mechano-medicine. Stroke Vasc Neurol 2020; 5:185-197. [PMID: 32606086 PMCID: PMC7337368 DOI: 10.1136/svn-2019-000302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Arterial thrombosis is in part contributed by excessive platelet aggregation, which can lead to blood clotting and subsequent heart attack and stroke. Platelets are sensitive to the haemodynamic environment. Rapid haemodynamcis and disturbed blood flow, which occur in vessels with growing thrombi and atherosclerotic plaques or is caused by medical device implantation and intervention, promotes platelet aggregation and thrombus formation. In such situations, conventional antiplatelet drugs often have suboptimal efficacy and a serious side effect of excessive bleeding. Investigating the mechanisms of platelet biomechanical activation provides insights distinct from the classic views of agonist-stimulated platelet thrombus formation. In this work, we review the recent discoveries underlying haemodynamic force-reinforced platelet binding and mechanosensing primarily mediated by three platelet receptors: glycoprotein Ib (GPIb), glycoprotein IIb/IIIa (GPIIb/IIIa) and glycoprotein VI (GPVI), and their implications for development of antithrombotic 'mechano-medicine' .
Collapse
Affiliation(s)
- Yunfeng Chen
- Molecular Medicine, Scripps Research Institute, La Jolla, California, USA
| | - Lining Arnold Ju
- School of Biomedical Engineering, Heart Research Institute and Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|