1
|
Nyberg H, Bogen IL, Duale N, Andersen JM. Prenatal exposure to methadone or buprenorphine alters transcriptional networks associated with synaptic signaling in newborn rats. Neuropharmacology 2025; 270:110368. [PMID: 39956318 DOI: 10.1016/j.neuropharm.2025.110368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
While the use of methadone or buprenorphine during pregnancy is beneficial for the mother's health compared to illicit opioid use, prenatal exposure to these medications may have adverse consequences for the unborn child. However, the underlying molecular mechanisms of prenatal opioid exposure on neurodevelopment remain poorly understood. Hence, this study aimed to investigate gene expression changes, focusing on synapse-related genes, in cerebral tissue from newborn rats prenatally exposed to methadone or buprenorphine. Female Sprague-Dawley rats were exposed to methadone (10 mg/kg/day), buprenorphine (1 mg/kg/day), or sterile water through osmotic minipumps during pregnancy. Total RNA was isolated from the cerebrum on postnatal day 2 and analyzed using RNA-sequencing. Analyses of differentially expressed genes (DEGs) and enriched biological processes were conducted to compare the gene expression profiles between treatment groups within each sex. Prenatal buprenorphine exposure resulted in 598 DEGs (333 up- and 265 downregulated) in males and 175 (75 up- and 100 downregulated) in females, while prenatal methadone exposure resulted in 335 DEGs (224 up- and 111 downregulated) in males and 201 (57 up- and 144 downregulated) in females. Gene ontology analyses demonstrated that enriched biological processes included synaptic signaling, immune responses, and apoptosis. Analysis of the DEGs using the synapse database SynGO revealed that males prenatally exposed to buprenorphine displayed the highest number of enriched synapse-related biological process terms. Understanding gene expression changes following prenatal methadone or buprenorphine exposure is crucial to uncover the mechanisms underlying behavioral alterations and to develop interventions to mitigate the impact of opioid exposure on neurodevelopment.
Collapse
Affiliation(s)
- Henriette Nyberg
- Section of Forensic Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway; Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Inger Lise Bogen
- Section of Forensic Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway; Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Nur Duale
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
| | - Jannike Mørch Andersen
- Section of Forensic Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway; Department of Pharmacy, University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Zhao C, Wang H, Xu C, Fang F, Gao L, Zhai N, Zhong Y, Wang X. The critical role of the Hippo signaling pathway in renal fibrosis. Cell Signal 2025; 130:111661. [PMID: 39988289 DOI: 10.1016/j.cellsig.2025.111661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
Renal fibrosis is a fundamental pathological change in the progression of various chronic kidney diseases to the end stage of renal disease. The Hippo signaling pathway is an evolutionary highly conserved signaling pathway that is involved in the regulation of organ size, tissue regeneration, and human reproduction and development. Currently, many studies have shown that it is closely associated with renal diseases, such as, renal fibrosis, diabetic nephropathy, and renal cancer. Here, we review the current researches on the effect of Hippo signaling pathway on renal fibrosis, which provides new ideas and theoretical basis for clinical therapeutics of renal fibrosis.
Collapse
Affiliation(s)
- Chenchen Zhao
- Hebei Key Laboratory of Liver and Kidney Diseases of Integrated Traditional Chinese and Western Medicine 7th Floor, Scientific Research Building, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, China
| | - Hongshuang Wang
- Hebei Key Laboratory of Liver and Kidney Diseases of Integrated Traditional Chinese and Western Medicine 7th Floor, Scientific Research Building, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, China
| | - Chang Xu
- Hebei Key Laboratory of Liver and Kidney Diseases of Integrated Traditional Chinese and Western Medicine 7th Floor, Scientific Research Building, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, China
| | - Fang Fang
- Hebei Key Laboratory of Liver and Kidney Diseases of Integrated Traditional Chinese and Western Medicine 7th Floor, Scientific Research Building, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, China
| | - Lanjun Gao
- Hebei Key Laboratory of Liver and Kidney Diseases of Integrated Traditional Chinese and Western Medicine 7th Floor, Scientific Research Building, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, China
| | - Nan Zhai
- Hebei Key Laboratory of Liver and Kidney Diseases of Integrated Traditional Chinese and Western Medicine 7th Floor, Scientific Research Building, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, China
| | - Yan Zhong
- Hebei Key Laboratory of Liver and Kidney Diseases of Integrated Traditional Chinese and Western Medicine 7th Floor, Scientific Research Building, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, China.
| | - Xiangting Wang
- Hebei Key Laboratory of Liver and Kidney Diseases of Integrated Traditional Chinese and Western Medicine 7th Floor, Scientific Research Building, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, China.
| |
Collapse
|
3
|
Emin MT, Dubuisson AM, Sujin Kumar P, Knutsen C, Alvira CM, Hough RF. Yes-associated Protein Induces Age-dependent Inflammatory Signaling in the Pulmonary Endothelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640349. [PMID: 40196616 PMCID: PMC11974671 DOI: 10.1101/2025.02.26.640349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Acute Lung Injury (ALI) causes the highly lethal Acute Respiratory Distress Syndrome (ARDS) in children and adults, for which therapy is lacking. Children with Pediatric ARDS (PARDS) have a mortality rate that is about half of adults with ARDS. Improved ALI measures can be reproduced in rodent models with juvenile animals, suggesting that physiologic differences may underlie these outcomes. Here, we show that pneumonia-induced ALI caused inflammatory signaling in the endothelium of adult mice which depended on Yes-associated protein (YAP). This signaling was not present in 21-day-old weanling mice. Transcriptomic analysis of lung endothelial responses revealed nuclear factor kappa-B (NF-κB) as significantly increased with ALI in adult versus weanling mice. Blockade of YAP signaling protected against inflammatory response, hypoxemia, and NF-κB nuclear translocation in response to Pseudomonas aeruginosa pneumonia in adult mice. Our results demonstrate an important signaling cascade in the lung endothelium of adult mice that is not present in weanlings. We suggest other pathways may also exhibit age-dependent signaling, which would have important implications for ARDS therapeutics in the adult and pediatric age groups.
Collapse
|
4
|
Wu CH, Hu S, Li D, Jiang XW, Ou-Yang H, Bi GF, Wang P, Liang FT, Zhou WH, Yang X, Fang JH, Bi HC. Pregnane X receptor alleviates sepsis-induced liver injury through activation of yes-associated protein in mice. Acta Pharmacol Sin 2025:10.1038/s41401-025-01552-4. [PMID: 40234620 DOI: 10.1038/s41401-025-01552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/20/2025] [Indexed: 04/17/2025]
Abstract
The severity of sepsis is attributed to excessive inflammatory responses leading to liver injury. Pregnane X receptor (PXR), a nuclear receptor that controls xenobiotic and endobiotic metabolism, has been implicated in regulating inflammation and liver regeneration. This study aimed to investigate the role of PXR in sepsis-induced liver injury and the underlying mechanisms. Sepsis models were established in mice, the mice were administered the typical mouse PXR agonist PCN (100 mg·kg-1·d-1, i.p.) for 3 consecutive days in advance, then subjected to CLP operation or LPS administration 1 h after the last administration of PCN. The results showed that PCN pretreatment significantly increased the survival rate of septic mice, while the survival rate was reduced after the knockout of Pxr. In addition, PCN pretreatment effectively alleviated sepsis-induced liver injury. In Pxr knockout mice, liver injury was more severe, whereas the protective effects of PCN pretreatment were abolished. Mechanistically, PCN pretreatment significantly upregulated the expression of yes-associated protein (YAP) and its downstream targets and decreased the level of phosphorylated nuclear factor-κB (NF-κB). Moreover, liver-specific knockdown of Yap blocked the protective effects of PCN pretreatment against sepsis-induced liver injury and downregulated the phosphorylation level of NF-κB. In summary, this study demonstrated that PXR activation protects against sepsis-induced liver injury through activation of the YAP signaling pathway, providing a new strategy for the diagnosis and treatment of sepsis-induced liver injury.
Collapse
Affiliation(s)
- Cheng-Hua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Dan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Wen Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hui Ou-Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guo-Fang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Feng-Ting Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Hong Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian-Hong Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hui-Chang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518000, China.
| |
Collapse
|
5
|
Lin J, Zhang X, Ge W, Duan Y, Zhang X, Zhang Y, Dai X, Jiang M, Zhang X, Zhang J, Qiang H, Sun D. Rnd3 Ameliorates Diabetic Cardiac Microvascular Injury via Facilitating Trim40-Mediated Rock1 Ubiquitination. Diabetes 2025; 74:569-584. [PMID: 39792251 DOI: 10.2337/db24-0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
ARTICLE HIGHLIGHTS Impaired cardiac microvascular function is a significant contributor to diabetic cardiomyopathy. Rnd3 expression is notably downregulated in cardiac microvascular endothelial cells under diabetic conditions. Rnd3 overexpression mitigates diabetic myocardial microvascular injury and improves cardiac function through the Rock1/myosin light chain signaling pathway. Rnd3 facilitates the recruitment and interaction with Trim40 to promote Rock1 ubiquitination, thereby preserving endothelial barrier integrity in the diabetic heart.
Collapse
Affiliation(s)
- Jie Lin
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xuebin Zhang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Wen Ge
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yu Duan
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xiao Zhang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yan Zhang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xinchun Dai
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xiaohua Zhang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jiye Zhang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Huanhuan Qiang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Li Y, Ren S, Zhou S. Advances in sepsis research: Insights into signaling pathways, organ failure, and emerging intervention strategies. Exp Mol Pathol 2025; 142:104963. [PMID: 40139086 DOI: 10.1016/j.yexmp.2025.104963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Sepsis is a complex syndrome resulting from an aberrant host response to infection. A hallmark of sepsis is the failure of the immune system to restore balance, characterized by hyperinflammation or immunosuppression. However, the net effect of immune system imbalance and the clinical manifestations are highly heterogeneous among patients. In recent years, research interest has shifted from focusing on the pathogenicity of microorganisms to the molecular mechanisms of host responses which is also associated with biomarkers that can help early diagnose sepsis and guide treatment decisions. Despite significant advancements in medical science, sepsis remains a major challenge in healthcare, contributing to substantial morbidity and mortality worldwide. Further research is needed to improve our understanding of this condition and develop novel therapies to improve outcomes for patients with sepsis. This review explores the related signal pathways of sepsis and underscores recent advancements in understanding its mechanisms. Exploration of diverse biomarkers and the emerging concept of sepsis endotypes offer promising avenues for precision therapy in the future.
Collapse
Affiliation(s)
- Yehua Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, PR China.
| | - Siying Ren
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Shen'ao Zhou
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, CAS. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
7
|
Li Y, Chen T, Cheang I, Liu P, Zhao L, He X, Jin Y, Tang M, Zhang Z, Sheng C, Zhang Z, Zuo X. Macrophage A2aR Alleviates LPS-Induced Vascular Endothelial Injury and Inflammation via Inhibiting M1 Polarisation and Oxidative Stress. J Cell Mol Med 2025; 29:e70458. [PMID: 40045158 PMCID: PMC11882390 DOI: 10.1111/jcmm.70458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/03/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
Vascular inflammation and endothelial dysfunction secondary to unchecked activation of endothelium are key mechanisms underlying sepsis and organ failure. However, the intrinsic processes that mitigate excessive endothelial cell activation remain incompletely understood. To determine the central role of adenosine A2a receptor (A2aR) on macrophages in modulating lipopolysaccharide (LPS)-induced vascular endothelial dysfunction, we constructed macrophage A2aR-conditional knockout (Mac-A2aR KO) mice, and stimulated the mice and macrophages with LPS. A2aR agonist, CGS21680, was administered to these models to further explore its impact. Results showed that knockout of Macrophage A2aR exacerbated LPS-induced vascular permeability, oedema, inflammatory cardiac damage and upregulated expression of intercellular adhesion molecule-1 (ICAM-1) and E-selectin in cardiopulmonary vascular endothelium. Moreover, deletion of A2aR on macrophages also markedly aggravated LPS-induced increases in reactive oxygen species (ROS) and declines in antioxidant enzyme gene mRNA and protein expression levels related to oxidative stress (OS). Furthermore, deficiency of A2aR in bone marrow-derived macrophages (BMDMs) promotes LPS-induced macrophage M1 polarisation and secretion of inflammatory cytokines, especially tumour necrosis factor-alpha (TNF-α). Conversely, the pretreatment with CGS21680 in vivo and in vitro showed corresponding improvement in functions of vascular endothelial dysfunction. These data demonstrate that A2aR in macrophages represents a promising novel therapeutic target for LPS-induced uncontrolled vascular endothelial injury and inflammation potentially through reducing macrophage M1 polarisation and OS and inhibiting the production and release of TNF-α production.
Collapse
Affiliation(s)
- Yanxiu Li
- Department of Critical Care MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Tingzhen Chen
- Department of Critical Care MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Iokfai Cheang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Peiben Liu
- Department of Critical Care MedicineThe Second Hospital of NanjingNanjingChina
| | - Lin Zhao
- Jiangsu Province Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
| | - Xiaoxin He
- Jiangsu Province Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
| | - Yuxi Jin
- Jiangsu Province Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
| | - Mingmin Tang
- Department of Critical Care MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhongqi Zhang
- Department of Critical Care MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Chengyu Sheng
- Jiangsu Province Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
| | - Zhongwen Zhang
- Department of General SurgeryThe Affiliated Jiangning Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiangrong Zuo
- Department of Critical Care MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
8
|
Zhong B, Du J, Liu F, Sun S. The Role of Yes-Associated Protein in Inflammatory Diseases and Cancer. MedComm (Beijing) 2025; 6:e70128. [PMID: 40066231 PMCID: PMC11892025 DOI: 10.1002/mco2.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 03/17/2025] Open
Abstract
Yes-associated protein (YAP) plays a central role in the Hippo pathway, primarily governing cell proliferation, differentiation, and apoptosis. Its significance extends to tumorigenesis and inflammatory conditions, impacting disease initiation and progression. Given the increasing relevance of YAP in inflammatory disorders and cancer, this study aims to elucidate its pathological regulatory functions in these contexts. Specifically, we aim to investigate the involvement and molecular mechanisms of YAP in various inflammatory diseases and cancers. We particularly focus on how YAP activation, whether through Hippo-dependent or independent pathways, triggers the release of inflammation and inflammatory mediators in respiratory, cardiovascular, and digestive inflammatory conditions. In cancer, YAP not only promotes tumor cell proliferation and differentiation but also modulates the tumor immune microenvironment, thereby fostering tumor metastasis and progression. Additionally, we provide an overview of current YAP-targeted therapies. By emphasizing YAP's role in inflammatory diseases and cancer, this study aims to enhance our understanding of the protein's pivotal involvement in disease processes, elucidate the intricate pathological mechanisms of related diseases, and contribute to future drug development strategies targeting YAP.
Collapse
Affiliation(s)
- Bing Zhong
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jintao Du
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Feng Liu
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Silu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
9
|
Wang H, Tan Y, Liu Q, Yang S, Cui L. Ubiquitin-proteasome system: a potential participant and therapeutic target in antiphospholipid syndrome. Front Immunol 2025; 16:1523799. [PMID: 40040717 PMCID: PMC11876059 DOI: 10.3389/fimmu.2025.1523799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
APS (antiphospholipid syndrome) is an autoimmune disease characterized by thrombosis, pregnancy complications and persistent elevation of aPLs (antiphospholipid antibodies). Dysfunction of innate immune cells, ECs (endothelial cells), platelets and trophoblast cells are central to the development of APS. The UPS (ubiquitin-proteasome system) is a highly conserved post-translational modification in eukaryotes. Imbalance of the UPS potentially disrupts the protein homeostasis network and provokes prothrombotic and proinflammatory signaling during APS progression. In vivo, low-dose proteasome inhibitors are believed to effectively inhibit the production of proinflammatory factors and the clinical manifestations of APS. In this review, we would like to summarize the likely contribution of dysregulated UPS to the pathogenesis of APS. Given the significant progress made in understanding the molecular mechanisms of the UPS and how alterations in the UPS lead to the development of autoimmune diseases, targeting the UPS may represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- He Wang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Yuan Tan
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Qi Liu
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Shuo Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
10
|
Zhang J, Shao Y, Wu J, Zhang J, Xiong X, Mao J, Wei Y, Miao C, Zhang H. Dysregulation of neutrophil in sepsis: recent insights and advances. Cell Commun Signal 2025; 23:87. [PMID: 39953528 PMCID: PMC11827254 DOI: 10.1186/s12964-025-02098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/09/2025] [Indexed: 02/17/2025] Open
Abstract
Sepsis remains the leading cause of death in intensive care units. Despite newer antimicrobial and supportive therapies, specific treatments are still lacking. Neutrophils are pivotal components of the effector phase of the host immune defense against pathogens and play a crucial role in the control of infections under normal circumstances. In addition to its anti-infective effects, the dysregulation and overactivation of neutrophils may lead to severe inflammation or tissue damage and are potential mechanisms for poor prognosis in sepsis. This review focuses on recent advancements in the understanding of the functional status of neutrophils across various pathological stages of sepsis to explore the mechanisms by which neutrophils participate in sepsis progression and provide insights for the treatment of sepsis by targeting neutrophils.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuwen Shao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingyi Wu
- Department of Anesthesiology, Zhongshan Hospital(Xiamen), Fudan University, Xiamen, China
| | - Jing Zhang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, China
| | - Xiangsheng Xiong
- Department of Anesthesiology, Huai'an hospital affiliated to Yangzhou University (The fifth People's Hospital of Huai'an), Huai'an, Jiangsu, China
| | - Jingjing Mao
- Department of Anesthesiology, Huai'an hospital affiliated to Yangzhou University (The fifth People's Hospital of Huai'an), Huai'an, Jiangsu, China
| | - Yunwei Wei
- Department of Anesthesiology, Women's Health Center of Shanxi, Children's Hospital of Shanxi, Taiyuan, Shanxi, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Yin Y, Xu J, Ilyas I, Xu S. Bioactive Flavonoids in Protecting Against Endothelial Dysfunction and Atherosclerosis. Handb Exp Pharmacol 2025; 287:1-31. [PMID: 38755351 DOI: 10.1007/164_2024_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Atherosclerosis is a common cardiovascular disease closely associated with factors such as hyperlipidaemia and chronic inflammation. Among them, endothelial dysfunction serves as a major predisposing factor. Vascular endothelial dysfunction is manifested by impaired endothelium-dependent vasodilation, enhanced oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, endothelial senescence, and endothelial-mesenchymal transition (EndoMT). Flavonoids are known for their antioxidant activity, eliminating oxidative stress induced by reactive oxygen species (ROS), thereby preventing the oxidation of low-density lipoprotein (LDL) cholesterol, reducing platelet aggregation, alleviating ischemic damage, and improving vascular function. Flavonoids have also been shown to possess anti-inflammatory activity and to protect the cardiovascular system. This review focuses on the protective effects of these naturally-occuring bioactive flavonoids against the initiation and progression of atherosclerosis through their effects on endothelial cells including, but not limited to, their antioxidant, anti-inflammatory, anti-thrombotic, and lipid-lowering properties. However, more clinical evidences are still needed to determine the exact role and optimal dosage of these compounds in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yanjun Yin
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Jingjing Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
12
|
Miyajima C, Nagasaka M, Aoki H, Toriuchi K, Yamanaka S, Hashiguchi S, Morishita D, Aoyama M, Hayashi H, Inoue Y. The Hippo Signaling Pathway Manipulates Cellular Senescence. Cells 2024; 14:13. [PMID: 39791714 PMCID: PMC11719916 DOI: 10.3390/cells14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
The Hippo pathway, a kinase cascade, coordinates with many intracellular signals and mediates the regulation of the activities of various downstream transcription factors and their coactivators to maintain homeostasis. Therefore, the aberrant activation of the Hippo pathway and its associated molecules imposes significant stress on tissues and cells, leading to cancer, immune disorders, and a number of diseases. Cellular senescence, the mechanism by which cells counteract stress, prevents cells from unnecessary damage and leads to sustained cell cycle arrest. It acts as a powerful defense mechanism against normal organ development and aging-related diseases. On the other hand, the accumulation of senescent cells without their proper removal contributes to the development or worsening of cancer and age-related diseases. A correlation was recently reported between the Hippo pathway and cellular senescence, which preserves tissue homeostasis. This review is the first to describe the close relationship between aging and the Hippo pathway, and provides insights into the mechanisms of aging and the development of age-related diseases. In addition, it describes advanced findings that may lead to the development of tissue regeneration therapies and drugs targeting rejuvenation.
Collapse
Affiliation(s)
- Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Mai Nagasaka
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
- Department of Experimental Chemotherapy, Cancer Chemotherapy Center of JFCR, Tokyo 135-8550, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (H.A.); (K.T.); (M.A.)
| | - Kohki Toriuchi
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (H.A.); (K.T.); (M.A.)
| | - Shogo Yamanaka
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Sakura Hashiguchi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Daisuke Morishita
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Mineyoshi Aoyama
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (H.A.); (K.T.); (M.A.)
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| |
Collapse
|
13
|
Sun H, Pang X, Li JR, Li H, Tang M, Zhang T, Yu LY, Peng ZG. Isoechinulin B, a natural product from Antarctic fungus, attenuates acute liver injury by inhibiting excessive cell adhesion. Eur J Pharmacol 2024; 984:177065. [PMID: 39427860 DOI: 10.1016/j.ejphar.2024.177065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Abnormal cell adhesion between leukocytes and endothelial cells is closely associated with the development of numerous inflammation-related diseases, with adhesion molecules playing a crucial role. The disruption of cell adhesion directly or indirectly inhibits excessive cell adhesion and thus produces a therapeutic effect. However, there are only a few clinically available antagonists of cell adhesion. One of the biggest challenges is the development of novel and efficient cell adhesion inhibitors. Recently, the anti-inflammatory pharmacological activity of natural products of microbial origin has also received increasing attention. Here, we obtained a potential cell adhesion inhibitor isoechinulin B, an indole diketopiperazine derivative, from the Antarctic fungus Aspergillus sp. CPCC 401072, which is active against cell adhesion. Isoechinulin B decreased the expression of vascular endothelial adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) by inhibiting the activation of the NF-κB signaling pathway, thereby inhibiting cell adhesion between leukocytes and endothelial cells to reduce macrophage infiltration in the liver and significantly attenuate lipopolysaccharide-induced acute liver injury in mice. CONCLUSION: Isoechinulin B is a novel cell adhesion inhibitor derived from fungi found in extreme environments.
Collapse
Affiliation(s)
- Han Sun
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xu Pang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Jian-Rui Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Mei Tang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tao Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Li-Yan Yu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
14
|
Liu L, Li J, Wang Y, Gong P, Feng J, Xiao S, Xu J, Yin X, Liao F, You Y. Effects of Panax notoginseng saponins on alleviating low shear induced endothelial inflammation and thrombosis via Piezo1 signalling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118639. [PMID: 39084271 DOI: 10.1016/j.jep.2024.118639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng saponins (PNS) are the major effective components of Panax notoginseng (burk) F.H.Chen which is one of the classic promoting blood circulation herbs in traditional Chinese medicine. PNS is widely used in China for the treatment of cerebral ischemic stroke. Pathological low shear stress is a causal factor in endothelial inflammation and thrombosis. However, the mechanism of PNS against low shear related endothelial inflammation is still unclear. AIM TO THE STUDY This study aims to investigate the effects of PNS against endothelial inflammation induced by low shear stress and to explore the underlying mechanical and biological mechanisms. MATERIALS AND METHODS Mouse model of carotid partial ligation for inducing low endothelial shear stress was established, the pharmacodynamic effect and mechanism of PNS against endothelial inflammation induced by low shear stress through Piezo1 were explored. Yoda1-evoked Piezo1 activation and expression in human umbilical vein endothelial cells (HUVECs) were determined at static condition. Microfluidic channel systems were used to apply shear stress on HUVECs and Piezo1 siRNA HUVECs to determine PECAM-1, p-YAP and VCAM-1 expression. And platelet rich plasma (PRP) was introduced to low shear treated endothelial cells surface to observe the adhesion and activation by fluorescence imaging and flowcytometry. RESULTS PNS attenuated endothelial inflammation and improved blood flow in a reasonable dose response pattern in carotid partial ligation mouse model by influencing Piezo1 and PECAM-1 expression, while suppressing yes-associated protein (YAP) nuclear translocation. We found Piezo1 sensed abnormal shear stress and transduced these mechanical signals by different pathways in HUVECs, and PNS relieved endothelial inflammation induced by low shear stress through Piezo1. We also found Piezo1 signalling has interaction with PECAM-1 under low shear stress, which were involved in platelets adhesion to endothelial cells. Low shear stress increased YAP nuclear translocation and increased VCAM-1 expression in HUVECs which might activate platelets. PNS inhibited low shear induced Piezo1 and PECAM-1 expression and YAP nuclear translocation in HUVECs, furthermore inhibited platelet adhesion and activation on dysfunctional endothelial cells induced by low shear stress. CONCLUSION PNS ameliorated endothelial inflammation and thrombosis induced by low shear stress through modulation of the Piezo1 channel, PECAM-1 expression, and YAP nuclear translocation. PNS might serve as a potential therapeutic candidate for ameliorating endothelial inflammation induced by abnormal blood shear stress.
Collapse
Affiliation(s)
- Lu Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yilin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Gong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiantao Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shunli Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojie Yin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fulong Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yun You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
15
|
Xi Y, Li J, Wu Z, Ma Y, Li J, Yang Z, Wang F, Yang D, Jiang Y, Yi Q, Huang S. Yorkie negatively regulates the Crustin expression during molting in Chinese mitten crab, Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105242. [PMID: 39128619 DOI: 10.1016/j.dci.2024.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
Molting is a key biological process of crustaceans, which is mainly regulated by 20-hydroxyecdyone (20E). The molting cycle could be divided into three main stages including pre-molt, post-molt and inter-molt stages. The mechanism of immune regulation during molting process still requires further exploration. Yorkie (Yki) is a pivotal transcription factor in the Hippo signaling pathway, and it plays an essential role in regulating cell growth and immune response. In the present study, a Yki gene was identified from Eriocheir sinensis (designed as EsYki), and the regulatory role of EsYki in controlling the expression of antimicrobial peptide genes throughout the molting process was investigated. The mRNA expression level of EsYki was higher at the pre-molt stage compared to the post-molt stage and inter-molt stage. Following the injection of 20E, there was a notable and consistent rise in the EsYki mRNA expression in haemocytes. The increase was observed from 3 h to 48 h with the maximum level at 12 h. And the phosphorylation of Yki in the haemocytes was also significantly up-regulated at 3 h post 20E injection. Moreover, the levels of EsYki mRNA expression at three molting stages were significantly increased post Aeromonas hydrophila stimulation. The maximum level was detected at post-molt stage following A. hydrophila stimulation, while the lowest level was observed at inter-molt stage. The expression pattern of EsCrus was in contrast to EsCrus. After EsYki mRNA transcripts were inhibited by Yki inhibitor (CA3), the mRNA expression levels of EsCrus1 and EsCrus2 following A. hydrophila stimulation were significantly elevated. Furthermore, the phosphorylation level of NF-κB was also increased following the inhibition of Yki. Collectively, our findings indicated that EsYki could be induced by 20E and has a suppressive effect on the expression of EsCrus via inhibiting NF-κB during molting process. This research contributes to the understanding of the immunological regulation mechanism during molting process in crustaceans.
Collapse
Affiliation(s)
- Yuting Xi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jialin Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zihao Wu
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Ma
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jiaming Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zhichao Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Fengchi Wang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Dazuo Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian, 116023, China
| | - Yusheng Jiang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, 116023, China
| | - Qilin Yi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China.
| | - Shu Huang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian, 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, 116023, China.
| |
Collapse
|
16
|
Islam R, Hong Z. YAP/TAZ as mechanobiological signaling pathway in cardiovascular physiological regulation and pathogenesis. MECHANOBIOLOGY IN MEDICINE 2024; 2:100085. [PMID: 39281415 PMCID: PMC11391866 DOI: 10.1016/j.mbm.2024.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Cardiovascular diseases (CVDs) persistently rank as a leading cause of premature death and illness worldwide. The Hippo signaling pathway, known for its highly conserved nature and integral role in regulating organ size, tissue homeostasis, and stem cell function, has been identified as a critical factor in the pathogenesis of CVDs. Recent findings underscore the significance of the Yes-associated protein (YAP) and the Transcriptional Coactivator with PDZ-binding motif (TAZ), collectively referred to as YAP/TAZ. These proteins play pivotal roles as downstream components of the Hippo pathway, in the regulation of cardiovascular development and homeostasis. YAP/TAZ can regulate various cellular processes such as cell proliferation, migration, differentiation, and apoptosis through their interactions with transcription factors, particularly those within the transcriptional enhancer associate domain (TEAD) family. The aim of this review is to provide a comprehensive overview of the current understanding of YAP/TAZ signaling in cardiovascular physiology and pathogenesis. We analyze the regulatory mechanisms of YAP/TAZ activation, explore their downstream effectors, and examine their association across numerous cardiovascular disorders, including myocardial hypertrophy, myocardial infarction, pulmonary hypertension, myocardial ischemia-reperfusion injury, atherosclerosis, angiogenesis, restenosis, and cardiac fibrosis. Furthermore, we investigate the potential therapeutic implications of targeting the YAP/TAZ pathway for the treatment of CVDs. Through this comprehensive review, our aim is to elucidate the current understanding of YAP/TAZ signaling in cardiovascular biology and underscore its potential implications for the diagnosis and therapeutic intervention of CVDs.
Collapse
Affiliation(s)
- Rakibul Islam
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Zhongkui Hong
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
17
|
Gao ZX, Xu H, Yang Q, Xie L, Chen LN, Liu HM. Screening and verification of differentially expressed serum proteins in children with severe adenovirus pneumonia. Front Public Health 2024; 12:1476330. [PMID: 39635211 PMCID: PMC11614773 DOI: 10.3389/fpubh.2024.1476330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Background Human adenoviruses are prevalent pathogens that cause severe acute respiratory infections. The clinical presentation of the adenoviral pneumonia is varied; in severe cases, they may cause systemic multi-system damages. Currently, early clinical differential diagnosis is difficult under the existing testing methods, the study identified potential biomarkers by screening and validating differentially expressed proteins (DEPs), and aimed at distinguishing between severe and non-severe adenovirus pneumonia in children aged <14 years. Methods DEPs were identified using data-independent acquisition (DIA) quantitative proteomics technology, and potential biomarkers were further validated using an enzyme-linked immunosorbent assay (ELISA). Results Twenty-seven identical DEPs were found in patients with severe adenovirus pneumonia. Among these, 10 were downregulated, and 17 were upregulated. In the protein-protein interaction network, five proteins were located at the center of the functional network. Among these, E-selectin showed significantly higher serum expression levels in the severe adenoviral pneumonia group than in adenoviral pneumonia and control groups (p < 0.001). ELISA results were consistent with the proteomic analyses. The receiver operating characteristic (ROC) curve for E-selectin revealed a sensitivity of 79.31% and a specificity of 96.55%, with an area under the curve (AUC) of 0.92. Conclusion E-selectin has potential as a novel biomarker for severe adenoviral pneumonia, and offers insights for improved diagnosis and clinical management.
Collapse
Affiliation(s)
- Zheng-Xiang Gao
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Hong Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qu Yang
- College of Laboratory Medicine, North Sichuan Medical College, Nanchong, China
| | - Liang Xie
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li-Na Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Han-Min Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan University Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Li M, Wang C, Yu Q, Chen H, Ma Y, Wei L, Wu MX, Yao M, Lu M. A wearable and stretchable dual-wavelength LED device for home care of chronic infected wounds. Nat Commun 2024; 15:9380. [PMID: 39477919 PMCID: PMC11525593 DOI: 10.1038/s41467-024-53579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Phototherapy can offer a safe and non-invasive solution against infections, while promoting wound healing. Conventional phototherapeutic devices are bulky and limited to hospital use. To overcome these challenges, we developed a wearable, flexible red and blue LED (r&bLED) patch controlled by a mobile-connected system, enabling safe self-application at home. The patch exhibits excellent skin compatibility, flexibility, and comfort, with high safety under system supervision. Additionally, we synthesized a sprayable fibrin gel (F-gel) containing blue light-sensitive thymoquinone and red light-synergistic NADH. Combined with bLED, thymoquinone eradicated microbes and biofilms within minutes, regardless of antibiotic resistance. Furthermore, NADH and rLED synergistically improved macrophage and endothelial cell mitochondrial function, promoting wound healing, reducing inflammation, and enhancing angiogenesis, as validated in infected diabetic wounds in mice and minipigs. This innovative technology holds great promise for revolutionizing at-home phototherapy for chronic infected wounds.
Collapse
Affiliation(s)
- Ming Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chenxi Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiang Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haoyi Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingying Ma
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA.
| | - Min Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
19
|
Yang X, Duan H, Li S, Zhang J, Dong L, Ding J, Li X. Yap1 alleviates sepsis associated encephalopathy by inhibiting hippocampus ferroptosis via maintaining mitochondrial dynamic homeostasis. J Cell Mol Med 2024; 28:e70156. [PMID: 39400418 PMCID: PMC11472648 DOI: 10.1111/jcmm.70156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/13/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a serious neurological complication accompanied by acute and long-term cognitive dysfunction. Ferroptosis is a newly discovered type of cell death that is produced by iron-dependent lipid peroxidation. As a key transcriptional coactivator in the Hippo signalling pathway, Yes-associated protein 1 (YAP1) could target ferroptosis-related genes. This study was aimed to determine whether Yap1 protects against SAE and inhibits ferroptosis via maintaining mitochondrial dynamic homeostasis. Caecal ligation puncture (CLP) was used to establish the SAE model, and LPS was applied in hippocampal cells to mimic the inflammatory model in vitro. The results showed that Yap1 conditional knockout in hippocampal caused lower survival in SAE mice and cognitive dysfunction, as proved by Morri's water maze (MWM) task, tail suspension test (TST), open field test (OFT) and elevated plus maze test (EPMT). After Yap1 knockout, the production of ROS, MDA and Fe2+ and proinflammatory cytokines in the hippocampus were increased, indicating that Yap1 deficiency exacerbates CLP-induced brain injury and hippocampus ferroptosis. Meanwhile, GPX4, SLC7A11, ferritin (FTH1) and GSH levels were decreased in the Yap1 knockout group. In vitro, Yap1 overexpression mitigated LPS-induced hippocampal cell ferroptosis and improved mitochondrial function by inhibiting mitochondrial fission, as evidenced by lower mitochondrial ROS, cell viability, Fe2+ and the expression of Fis1 and Drp1. Further, the present study suggested that Yap1 could inhibit ferritinophagy-mediated ferroptosis in the hippocampus via inhibiting mitochondrial fission, thus reducing cognitive dysfunction in SAE mice.
Collapse
Affiliation(s)
- Xin Yang
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular SurgeryWuhanChina
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart DiseaseWuhanChina
| | - Haifeng Duan
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Sirui Li
- Department of RadiologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Jing Zhang
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Liang Dong
- Liuzhou People's Hospital Affiliated to Guangxi Medical UniversityGuangxiChina
| | - Jingli Ding
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Xinyi Li
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular SurgeryWuhanChina
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart DiseaseWuhanChina
| |
Collapse
|
20
|
Guo ZF, Tongmuang N, Li C, Zhang C, Hu L, Capreri D, Zuo MX, Summer R, Sun J. Inhibiting endothelial cell Mst1 attenuates acute lung injury in mice. JCI Insight 2024; 9:e178208. [PMID: 39253972 PMCID: PMC11385092 DOI: 10.1172/jci.insight.178208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/25/2024] [Indexed: 09/11/2024] Open
Abstract
Lung endothelium plays a pivotal role in the orchestration of inflammatory responses to acute pulmonary insults. Mammalian sterile 20-like kinase 1 (Mst1) is a serine/threonine kinase that has been shown to play an important role in the regulation of apoptosis, stress responses, and organ growth. This study investigated the role of Mst1 in lung endothelial activation and acute lung injury (ALI). We found that Mst1 was significantly activated in inflamed lung endothelial cells (ECs) and mouse lung tissues. Overexpression of Mst1 promoted nuclear factor κ-B (NF-κB) activation through promoting JNK and p38 activation in lung ECs. Inhibition of Mst1 by either its dominant negative form (DN-Mst1) or its pharmacological inhibitor markedly attenuated cytokine-induced expression of cytokines, chemokines, and adhesion molecules in lung ECs. Importantly, in a mouse model of lipopolysaccharide-induced (LPS-induced) ALI, both deletion of Mst1 in lung endothelium and treatment of WT mice with a pharmacological Mst1 inhibitor significantly protected mice from LPS-induced ALI. Together, our findings identified Mst1 kinase as a key regulator in controlling lung EC activation and suggest that therapeutic strategies aimed at inhibiting Mst1 activation might be effective in the prevention and treatment of inflammatory lung diseases.
Collapse
Affiliation(s)
- Zhi-Fu Guo
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai
| | - Nopprarat Tongmuang
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Chao Li
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Chen Zhang
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Louis Hu
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Daniel Capreri
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mei-Xing Zuo
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ross Summer
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jianxin Sun
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Zhang TM, Jiao MN, Yang K, Wang HL, Zhang CS, Wang SH, Zhang GM, Miao HJ, Shen J, Yan YB. YAP promotes the early development of temporomandibular joint bony ankylosis by regulating mesenchymal stem cell function. Sci Rep 2024; 14:12704. [PMID: 38830996 PMCID: PMC11148065 DOI: 10.1038/s41598-024-63613-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
To explore the role of YAP, a key effector of the Hippo pathway, in temporomandibular joint (TMJ) ankylosis. The temporal and spatial expression of YAP was detected via immunohistochemistry and multiplex immunohistochemistry on postoperative Days 1, 4, 7, 9, 11, 14 and 28 in a sheep model. Isolated mesenchymal stem cells (MSCs) from samples of the Day 14. The relative mRNA expression of YAP was examined before and after the osteogenic induction of MSCs. A YAP-silenced MSC model was constructed, and the effect of YAP knockdown on MSC function was examined. YAP is expressed in the nucleus of the key sites that determine the ankylosis formation, indicating that YAP is activated in a physiological state. The expression of YAP increased gradually over time. Moreover, the number of cells coexpressing of RUNX2 and YAP-with the osteogenic active zone labelled by RUNX2-tended to increase after Day 9. After the osteogenic induction of MSCs, the expression of YAP increased. After silencing YAP, the osteogenic, proliferative and migratory abilities of the MSCs were inhibited. YAP is involved in the early development of TMJ bony ankylosis. Inhibition of YAP using shRNA might be a promising way to prevent or treat TMJ ankylosis.
Collapse
Affiliation(s)
- Tong-Mei Zhang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, China
- Tianjin's Clinical Research Center for Cancer, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, China
- Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, China
- Tianjin Medical University, 22 Qi-Xiang-Tai Road, Heping District, Tianjin, 300070, China
| | - Mai-Ning Jiao
- Department of Oral and Maxillofacial Surgery, Weifang People's Hospital, 151 GuangWen Street, KuiWen District, Weifang, 261100, ShanDong Province, China
| | - Kun Yang
- Department of Oromaxillofacial-Head and Neck Surgery, China Three Gorges University Affiliated Renhe Hospital, 410 Yiling Ave, Hubei, 261100, China
| | - Hua-Lun Wang
- Department of Oral and Maxillofacial Surgery, Jining Stomatological Hospital, 22 Communist Youth League Road, Rencheng District, Jining, 261100, ShanDong Province, China
| | - Chang-Song Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China
| | - Shi-Hua Wang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin, 300041, China
| | - Guan-Meng Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China
| | - He-Jing Miao
- Department of Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), 1 Jiazi Road, Shunde District, Foshan, 528300, GuangDong Province, China
| | - Jun Shen
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, China.
- Tianjin's Clinical Research Center for Cancer, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, China.
- Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, China.
| | - Ying-Bin Yan
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin, 300041, China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China.
| |
Collapse
|
22
|
Ritsvall O, Albinsson S. Emerging role of YAP/TAZ in vascular mechanotransduction and disease. Microcirculation 2024; 31:e12838. [PMID: 38011540 DOI: 10.1111/micc.12838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Cells have an incredible ability to physically interact with neighboring cells and their environment. They can detect and respond to mechanical forces by converting mechanical stimuli into biochemical signals in a process known as mechanotransduction. This is a key process for the adaption of vascular smooth muscle and endothelial cells to altered flow and pressure conditions. Mechanical stimuli, referring to a physical force exerted on cells, are primarily sensed by transmembrane proteins and the actin cytoskeleton, which initiate a cascade of intracellular events, including the activation of signaling pathways, ion channels, and transcriptional regulators. Recent work has highlighted an important role of the transcriptional coactivators YAP/TAZ for mechanotransduction in vascular cells. Interestingly, the activity of YAP/TAZ decreases with age, providing a potential mechanism for the detrimental effects of aging in the vascular wall. In this review, we summarize the current knowledge on the functional role of YAP and TAZ in vascular endothelial and smooth muscle cells for mechanotransduction in homeostasis and disease. In particular, the review is focused on in vivo observations from conditional knockout (KO) models of YAP/TAZ and the potential implications these studies may have for our understanding of vascular disease development.
Collapse
Affiliation(s)
- Olivia Ritsvall
- Department of Experimental Medical Science, Molecular Vascular Physiology, Lund University, Lund, Sweden
| | - Sebastian Albinsson
- Department of Experimental Medical Science, Molecular Vascular Physiology, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Qiao X, Yin J, Zheng Z, Li L, Feng X. Endothelial cell dynamics in sepsis-induced acute lung injury and acute respiratory distress syndrome: pathogenesis and therapeutic implications. Cell Commun Signal 2024; 22:241. [PMID: 38664775 PMCID: PMC11046830 DOI: 10.1186/s12964-024-01620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis, a prevalent critical condition in clinics, continues to be the leading cause of death from infections and a global healthcare issue. Among the organs susceptible to the harmful effects of sepsis, the lungs are notably the most frequently affected. Consequently, patients with sepsis are predisposed to developing acute lung injury (ALI), and in severe cases, acute respiratory distress syndrome (ARDS). Nevertheless, the precise mechanisms associated with the onset of ALI/ARDS remain elusive. In recent years, there has been a growing emphasis on the role of endothelial cells (ECs), a cell type integral to lung barrier function, and their interactions with various stromal cells in sepsis-induced ALI/ARDS. In this comprehensive review, we summarize the involvement of endothelial cells and their intricate interplay with immune cells and stromal cells, including pulmonary epithelial cells and fibroblasts, in the pathogenesis of sepsis-induced ALI/ARDS, with particular emphasis placed on discussing the several pivotal pathways implicated in this process. Furthermore, we discuss the potential therapeutic interventions for modulating the functions of endothelial cells, their interactions with immune cells and stromal cells, and relevant pathways associated with ALI/ARDS to present a potential therapeutic strategy for managing sepsis and sepsis-induced ALI/ARDS.
Collapse
Affiliation(s)
- Xinyu Qiao
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Zhihuan Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Liangge Li
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
24
|
Shao Y, Xu C, Zhu S, Wu J, Sun C, Huang S, Li G, Yang W, Zhang T, Ma XL, Du J, Li P, Xu FJ, Li Y. One Endothelium-Targeted Combined Nucleic Acid Delivery System for Myocardial Infarction Therapy. ACS NANO 2024; 18:8107-8124. [PMID: 38442075 DOI: 10.1021/acsnano.3c11661] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Acute myocardial infarction (MI) and ischemic heart disease are the leading causes of heart failure and mortality. Currently, research on MI treatment is focused on angiogenic and anti-inflammatory therapies. Although endothelial cells (ECs) are critical for triggering inflammation and angiogenesis, no approach has targeted them for the treatment of MI. In this study, we proposed a nonviral combined nucleic acid delivery system consisting of an EC-specific polycation (CRPPR-grafted ethanolamine-modified poly(glycidyl methacrylate), CPC) that can efficiently codeliver siR-ICAM1 and pCXCL12 for the treatment of MI. Animals treated with the combination therapy exhibited better cardiac function than those treated with each nucleic acid alone. In particular, the combination therapy of CPC/siR-ICAM1 and CPC/pCXCL12 significantly improved cardiac systolic function, anti-inflammatory responses, and angiogenesis compared to the control group. In conclusion, CPC-based combined gene delivery systems show impressive performance in the treatment of MI and provide a programmed strategy for the development of codelivery systems for various EC-related diseases.
Collapse
Affiliation(s)
- Yihui Shao
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Chen Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuolin Zhu
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Jianing Wu
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Canghao Sun
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Shan Huang
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Guoqi Li
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Weijie Yang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ting Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Jie Du
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Ping Li
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yulin Li
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| |
Collapse
|
25
|
Zhao G, Tang Y, Liu X, Li P, Zhang T, Li N, He F, Peng Y. Pasteurella multocida activates Rassf1-Hippo-Yap pathway to induce pulmonary epithelial apoptosis. Vet Res 2024; 55:31. [PMID: 38493147 PMCID: PMC10943858 DOI: 10.1186/s13567-024-01285-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/06/2024] [Indexed: 03/18/2024] Open
Abstract
Pasteurella multocida is an opportunistic zoonotic pathogen that primarily causes fatal respiratory diseases, such as pneumonia and respiratory syndromes. However, the precise mechanistic understanding of how P. multocida disrupts the epithelial barrier in mammalian lung remains largely unknown. In this study, using unbiased RNA-seq analysis, we found that the evolutionarily conserved Hippo-Yap pathway was dysregulated after P. multocida infection. Given the complexity of P. multocida infection associated with lung injury and systemic inflammatory processes, we employed a combination of cell culture models, mouse models, and rabbit models to investigate the dynamics of the Hippo-Yap pathway during P. multocida infection. Our findings reveal that P. multocida infection activates the Hippo-Yap pathway both in vitro and in vivo, by upregulating the upstream factors p-Mst1/2, p-Lats1, and p-Yap, and downregulating the downstream effectors Birc5, Cyr61, and Slug. Conversely, pharmacological inhibition of the Hippo pathway by XMU-MP-1 significantly rescued pulmonary epithelial cell apoptosis in vitro and reduced lung injury, systemic inflammation, and mouse mortality in vivo. Mechanistic studies revealed that P. multocida induced up-regulation of Rassf1 expression, and Rassf1 enhanced Hippo-Yap pathway through phosphorylation. Accordingly, in vitro knockdown of Rassf1 significantly enhanced Yap activity and expression of Yap downstream factors and reduced apoptosis during P. multocida infection. P. multocida-infected rabbit samples also showed overexpression of Rassf1, p-Lats1, and p-Yap, suggesting that P. multocida activates the Rassf1-Hippo-Yap pathway. These results elucidate the pathogenic role of the Rassf1-Hippo-Yap pathway in P. multocida infection and suggest that this pathway has the potential to be a drug target for the treatment of pasteurellosis.
Collapse
Affiliation(s)
- Guangfu Zhao
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yunhan Tang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiongli Liu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Pan Li
- Department of Environment and Safety Engineering, Taiyuan Institute of Technology, Taiyuan, China
| | - Tianci Zhang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Nengzhang Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Fang He
- College of Veterinary Medicine, Southwest University, Chongqing, China.
| | - Yuanyi Peng
- College of Veterinary Medicine, Southwest University, Chongqing, China.
| |
Collapse
|
26
|
Liu K, Wehling L, Wan S, Weiler SME, Tóth M, Ibberson D, Marhenke S, Ali A, Lam M, Guo T, Pinna F, Pedrini F, Damle-Vartak A, Dropmann A, Rose F, Colucci S, Cheng W, Bissinger M, Schmitt J, Birner P, Poth T, Angel P, Dooley S, Muckenthaler MU, Longerich T, Vogel A, Heikenwälder M, Schirmacher P, Breuhahn K. Dynamic YAP expression in the non-parenchymal liver cell compartment controls heterologous cell communication. Cell Mol Life Sci 2024; 81:115. [PMID: 38436764 PMCID: PMC10912141 DOI: 10.1007/s00018-024-05126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 03/05/2024]
Abstract
INTRODUCTION The Hippo pathway and its transcriptional effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are targets for cancer therapy. It is important to determine if the activation of one factor compensates for the inhibition of the other. Moreover, it is unknown if YAP/TAZ-directed perturbation affects cell-cell communication of non-malignant liver cells. MATERIALS AND METHODS To investigate liver-specific phenotypes caused by YAP and TAZ inactivation, we generated mice with hepatocyte (HC) and biliary epithelial cell (BEC)-specific deletions for both factors (YAPKO, TAZKO and double knock-out (DKO)). Immunohistochemistry, single-cell sequencing, and proteomics were used to analyze liver tissues and serum. RESULTS The loss of BECs, liver fibrosis, and necrosis characterized livers from YAPKO and DKO mice. This phenotype was weakened in DKO tissues compared to specimens from YAPKO animals. After depletion of YAP in HCs and BECs, YAP expression was induced in non-parenchymal cells (NPCs) in a cholestasis-independent manner. YAP positivity was detected in subgroups of Kupffer cells (KCs) and endothelial cells (ECs). The secretion of pro-inflammatory chemokines and cytokines such as C-X-C motif chemokine ligand 11 (CXCL11), fms-related receptor tyrosine kinase 3 ligand (FLT3L), and soluble intercellular adhesion molecule-1 (ICAM1) was increased in the serum of YAPKO animals. YAP activation in NPCs could contribute to inflammation via TEA domain transcription factor (TEAD)-dependent transcriptional regulation of secreted factors. CONCLUSION YAP inactivation in HCs and BECs causes liver damage, and concomitant TAZ deletion does not enhance but reduces this phenotype. Additionally, we present a new mechanism by which YAP contributes to cell-cell communication originating from NPCs.
Collapse
Affiliation(s)
- Kaijing Liu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangdong, China
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Lilija Wehling
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Department of Modeling of Biological Processes, COS Heidelberg/BioQuant, Heidelberg University, Heidelberg, Germany
| | - Shan Wan
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Sofia M E Weiler
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Marcell Tóth
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, CellNetworks Excellence Cluster, Heidelberg University, Heidelberg, Germany
| | - Silke Marhenke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Adnan Ali
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Macrina Lam
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Te Guo
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Federico Pinna
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Fabiola Pedrini
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Amruta Damle-Vartak
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Anne Dropmann
- Department of Medicine II, Molecular Hepatology Section, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabian Rose
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Silvia Colucci
- Department of Pediatric Oncology, Hematology & Immunology, University Hospital Heidelberg, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Wenxiang Cheng
- Translational Medicine R&D Center, Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Michaela Bissinger
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Jennifer Schmitt
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Patrizia Birner
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Tanja Poth
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steven Dooley
- Department of Medicine II, Molecular Hepatology Section, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology & Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.
| |
Collapse
|
27
|
Medina-Dols A, Cañellas G, Capó T, Solé M, Mola-Caminal M, Cullell N, Jaume M, Nadal-Salas L, Llinàs J, Gómez L, Tur S, Jiménez C, Díaz RM, Carrera C, Muiño E, Gallego-Fabrega C, Soriano-Tárraga C, Ruiz-Guerra L, Pol-Fuster J, Asensio V, Muncunill J, Fleischer A, Iglesias A, Giralt-Steinhauer E, Lazcano U, Fernández-Pérez I, Jiménez-Balado J, Gabriel-Salazar M, Garcia-Gabilondo M, Lei T, Torres-Aguila NP, Cárcel-Márquez J, Lladó J, Olmos G, Rosell A, Montaner J, Planas AM, Rabionet R, Hernández-Guillamon M, Jiménez-Conde J, Fernández-Cadenas I, Vives-Bauzá C. Role of PATJ in stroke prognosis by modulating endothelial to mesenchymal transition through the Hippo/Notch/PI3K axis. Cell Death Discov 2024; 10:85. [PMID: 38368420 PMCID: PMC10874379 DOI: 10.1038/s41420-024-01857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024] Open
Abstract
Through GWAS studies we identified PATJ associated with functional outcome after ischemic stroke (IS). The aim of this study was to determine PATJ role in brain endothelial cells (ECs) in the context of stroke outcome. PATJ expression analyses in patient's blood revealed that: (i) the risk allele of rs76221407 induces higher expression of PATJ, (ii) PATJ is downregulated 24 h after IS, and (iii) its expression is significantly lower in those patients with functional independence, measured at 3 months with the modified Rankin scale ((mRS) ≤2), compared to those patients with marked disability (mRS = 4-5). In mice brains, PATJ was also downregulated in the injured hemisphere at 48 h after ischemia. Oxygen-glucose deprivation and hypoxia-dependent of Hypoxia Inducible Factor-1α also caused PATJ depletion in ECs. To study the effects of PATJ downregulation, we generated PATJ-knockdown human microvascular ECs. Their transcriptomic profile evidenced a complex cell reprogramming involving Notch, TGF-ß, PI3K/Akt, and Hippo signaling that translates in morphological and functional changes compatible with endothelial to mesenchymal transition (EndMT). PATJ depletion caused loss of cell-cell adhesion, upregulation of metalloproteases, actin cytoskeleton remodeling, cytoplasmic accumulation of the signal transducer C-terminal transmembrane Mucin 1 (MUC1-C) and downregulation of Notch and Hippo signaling. The EndMT phenotype of PATJ-depleted cells was associated with the nuclear recruitment of MUC1-C, YAP/TAZ, β-catenin, and ZEB1. Our results suggest that PATJ downregulation 24 h after IS promotes EndMT, an initial step prior to secondary activation of a pro-angiogenic program. This effect is associated with functional independence suggesting that activation of EndMT shortly after stroke onset is beneficial for stroke recovery.
Collapse
Affiliation(s)
- Aina Medina-Dols
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
| | - Guillem Cañellas
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Toni Capó
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Montse Solé
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marina Mola-Caminal
- Neurology, Hospital del Mar Medical Research Institute, Barcelona, Spain
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Natalia Cullell
- Neurology, Hospital Universitari Mútua de Terrassa/Fundacio Docència i Recerca Mútua Terrassa, Terrassa, Spain
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Marina Jaume
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Laura Nadal-Salas
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Jaume Llinàs
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Lluis Gómez
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Silvia Tur
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Neurology, Hospital Universitari Son Espases (HUSE), Palma, Spain
| | - Carmen Jiménez
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Neurology, Hospital Universitari Son Espases (HUSE), Palma, Spain
| | - Rosa M Díaz
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Neurology, Hospital Universitari Son Espases (HUSE), Palma, Spain
| | - Caty Carrera
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Elena Muiño
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Cristina Gallego-Fabrega
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | | | - Laura Ruiz-Guerra
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
| | - Josep Pol-Fuster
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Víctor Asensio
- Department of Genetics (GEN-IB), HUSE, IdISBa, Palma, Spain
| | | | | | - Amanda Iglesias
- Department of Respiratory Medicine,, Hospital Universitari Son Espases-IdISBa Palma, Spain; CIBERES, Instituto de Salud Carlos III, Madrid, Spain
- CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | | | - Uxue Lazcano
- Neurology, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | | | | | - Marina Gabriel-Salazar
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miguel Garcia-Gabilondo
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ting Lei
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nuria-Paz Torres-Aguila
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Jara Cárcel-Márquez
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Jerònia Lladó
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Gabriel Olmos
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institute of Biomedicine of Seville, IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville & Department of Neurology, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Anna M Planas
- Department of Neuroscience and Experimental Therapeutics, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Area of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Raquel Rabionet
- Department of Genetics, Microbiology & Statistics, IBUB, University of Barcelona (UB), Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Cristòfol Vives-Bauzá
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain.
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain.
| |
Collapse
|
28
|
Jing X, Qin X, Liu H, Liu H, Wang H, Qin J, Zhang Y, Cao S, Fan X. DNA damage response alterations in clear cell renal cell carcinoma: clinical, molecular, and prognostic implications. Eur J Med Res 2024; 29:107. [PMID: 38326910 PMCID: PMC10848511 DOI: 10.1186/s40001-024-01678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/08/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND DNA damage repair (DDR) pathways modulate cancer risk, progression, and therapeutic responses. Nonetheless, the characteristics and significance of DDR alterations in clear cell renal cell carcinoma (ccRCC) remain undefined. This study aimed to explore the predictive role, molecular mechanism, and tumor immune profile of DDR genes in ccRCC. METHODS We prospectively sequenced 757 tumors and matched blood DNA samples from Chinese patients with ccRCC using next-generation sequencing (NGS) and analyzed data from 537 patients from The Cancer Genome Atlas (TCGA). A comprehensive analysis was performed. RESULTS Fifty-two percent of Chinese patients with ccRCC harbored DDR gene mutations and 57% of TCGA patients. The immunotherapy treatment prognosis of patients with DDR gene mutations was superior to that of patients without DDR gene mutations (p = 0.047). DDR gene mutations were associated with more gene mutations and a higher tumor mutation load (TMB, p < 0.001). Moreover, patients with DDR gene mutations have a distinct mutational signature compared with those with wild-type DDR. Furthermore, the DDR-mut group had elevated neoantigen load (including single-nucleotide variants (SNV) and indel neoantigen load, p = 0.037 and p = 0.002, respectively), TCR Shannon (p = 0.025), and neutrophils (p = 0.010). DDR gene mutations exhibited a distinct immune profile with significantly higher expression levels of TNFSF9, CD70, ICAM1, and indoleamine-2,3-dioxygenase (IDO) and lower expression levels of VTCN1 and IL12A. CONCLUSIONS Our data suggest that the detection of somatic mutations in DDR genes can predict the efficacy of immunotherapy in patients with ccRCC. Furthermore, we revealed the unique molecular and immune mechanisms underlying ccRCC with DDR gene mutations.
Collapse
Affiliation(s)
- Xiao Jing
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangcheng Qin
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo, China
| | - Hao Liu
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huanhuan Liu
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Huina Wang
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Jiayue Qin
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Yanui Zhang
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Shanbo Cao
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Xiaodong Fan
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo, China.
| |
Collapse
|
29
|
Yan Y, Qin X, Zheng Y, Jin T, Hu Y, An Q, Leng B. Decreased PDLIM1 expression in endothelial cells contributes to the development of intracranial aneurysm. Vasc Med 2024; 29:5-16. [PMID: 38334094 DOI: 10.1177/1358863x231218210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Intracranial aneurysm (IA) is a common vascular enlargement that occurs in the wall of cerebral vessels and frequently leads to fatal subarachnoid hemorrhage. PDZ and LIM domain protein 1 (PDLIM1) is a cytoskeletal protein that functions as a platform for multiple protein complex formation. However, whether PDLIM is involved in the pathogenesis of IA remains poorly understood. METHODS Loss-of-function and gain-of-function strategies were employed to determine the in vitro roles of PDLIM1 in vascular endothelial cells (VECs). A rat model of IA was generated to study the role of PDLIM1 in vivo. Gene expression profiling, Western blotting, and dual luciferase reporter assays were performed to uncover the underlying cellular mechanism. Clinical IA samples were used to determine the expression of PDLIM1 and its downstream signaling molecules. RESULTS PDLIM1 expression was reduced in the endothelial cells of IA and was regulated by Yes-associated protein 1 (YAP1). Genetic silencing of PDLIM1 inhibited the viability, migratory ability, and tube formation ability of VECs. Opposite results were obtained by ectopic expression of PDLIM1. Additionally, PDLIM1 overexpression mitigated IA in vivo. Mechanistic investigations revealed that PDLIM1 promoted the transcriptional activity of β-catenin and induced the expression of v-myc myelocytomatosis viral oncogene homolog (MYC) and cyclin D1 (CCND1). In clinical settings, reduced expression of PDLIM1 and β-catenin downstream target genes was observed in human IA samples. CONCLUSION Our study indicates that YAP1-dependent expression of PDLIM1 can inhibit IA development by modulating the activity of the Wnt/β-catenin signaling pathway and that PDLIM1 deficiency in VECs may represent a potential marker of aggressive disease.
Collapse
Affiliation(s)
- Yan Yan
- Department of Neurosurgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuanfeng Qin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongtao Zheng
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Jin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanyuan Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingzhu An
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Bing Leng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
30
|
He Y, Zou P, Lu J, Lu Y, Yuan S, Zheng X, Liu J, Zeng C, Liu L, Tang L, Fang Z, Hu X, Liu Q, Zhou S. CD4+ T-Cell Legumain Deficiency Attenuates Hypertensive Damage via Preservation of TRAF6. Circ Res 2024; 134:9-29. [PMID: 38047378 DOI: 10.1161/circresaha.123.322835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND T cells are central to the immune responses contributing to hypertension. LGMN (legumain) is highly expressed in T cells; however, its role in the pathogenesis of hypertension remains unclear. METHODS Peripheral blood samples were collected from patients with hypertension, and cluster of differentiation (CD)4+ T cells were sorted for gene expression and Western blotting analysis. TLGMNKO (T cell-specific LGMN-knockout) mice (Lgmnf/f/CD4Cre), regulatory T cell (Treg)-specific LGMN-knockout mice (Lgmnf/f/Foxp3YFP Cre), and RR-11a (LGMN inhibitor)-treated C57BL/6 mice were infused with Ang II (angiotensin II) or deoxycorticosterone acetate/salt to establish hypertensive animal models. Flow cytometry, 4-dimensional label-free proteomics, coimmunoprecipitation, Treg suppression, and in vivo Treg depletion or adoptive transfer were used to delineate the functional importance of T-cell LGMN in hypertension development. RESULTS LGMN mRNA expression was increased in CD4+ T cells isolated from hypertensive patients and mice, was positively correlated with both systolic and diastolic blood pressure, and was negatively correlated with serum IL (interleukin)-10 levels. TLGMNKO mice exhibited reduced Ang II-induced or deoxycorticosterone acetate/salt-induced hypertension and target organ damage relative to wild-type (WT) mice. Genetic and pharmacological inhibition of LGMN blocked Ang II-induced or deoxycorticosterone acetate/salt-induced immunoinhibitory Treg reduction in the kidneys and blood. Anti-CD25 antibody depletion of Tregs abolished the protective effects against Ang II-induced hypertension in TLGMNKO mice, and LGMN deletion in Tregs prevented Ang II-induced hypertension in mice. Mechanistically, endogenous LGMN impaired Treg differentiation and function by directly interacting with and facilitating the degradation of TRAF6 (tumor necrosis factor receptor-associated factor 6) via chaperone-mediated autophagy, thereby inhibiting NF-κB (nuclear factor kappa B) activation. Adoptive transfer of LGMN-deficient Tregs reversed Ang II-induced hypertension, whereas depletion of TRAF6 in LGMN-deficient Tregs blocked the protective effects. CONCLUSIONS LGMN deficiency in T cells prevents hypertension and its complications by promoting Treg differentiation and function. Specifically targeting LGMN in Tregs may be an innovative approach for hypertension treatment.
Collapse
Affiliation(s)
- Yuhu He
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Pu Zou
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Junmi Lu
- Pathology (J. Lu), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yufei Lu
- Division of Physical Therapy Education, College of Allied Health Professions, University of Nebraska Medical Center, Omaha (Y.L.)
| | - Shuguang Yuan
- Nephrology (S.Y.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xialei Zheng
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jing Liu
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Cheng Zeng
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ling Liu
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liang Tang
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhenfei Fang
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinqun Hu
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qiming Liu
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shenghua Zhou
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
31
|
Zhang Y, Li J, Jing Q, Chen Z, Wang K, Sun C. An Erythrocyte Membrane-Derived Nanosystem for Efficient Reversal of Endothelial Injury in Sepsis. Adv Healthc Mater 2024; 13:e2302320. [PMID: 37883686 DOI: 10.1002/adhm.202302320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Sepsis is caused by a disordered host immune in response to infection and endothelial cells perform a crucial role in boosting immunity reaction in the pathophysiology of sepsis and septic organ failure. The aim of this study is to construct a novel erythrocyte membrane-derived nanosystems to reverse endothelial damage in sepsis. Herein, an innovative nanometer calcium metal-organic framework (Ca-MOF) is generated for the first time by using chelidonic acid as a ligand and calcium chloride as an ion donor for anti-inflammation. Then, zoliflodacin is loaded into Ca-MOF (CMZ) to sterilize and nanoscale erythrocyte membrane vesicles are prepared by modification with a γ3 peptide on the surface (γ3-RM) for precise targeting. Finally, γ3-RM camouflages the nanocore CMZ, to form novel erythrocyte membrane-camouflaged nanoparticle γ3-RCMZ. The superior performance of novel nanosystem results from its suitable biocompatibility, nontoxicity, specific targeting, and anti-inflammatory and bactericidal effects. Its anti-inflammatory mechanism mainly involves inhibiting the Caspase1-nuclear factor kappa-B (Caspase1-NF-κB) pathway and oxidative stress reduction to alleviate endothelial damage. Moreover, the findings have revealed for the first time that the bactericidal drug zoliflodacin also has anti-inflammatory effects in vivo and in vitro. Therefore, the novel nanosystem (γ3-RCMZ) provides a new nanotherapy strategy for sepsis treatment.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Qi Jing
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Ziying Chen
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Kai Wang
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Chuanzheng Sun
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| |
Collapse
|
32
|
Cho S, Park YJ, Kim E, Bae JS. The Therapeutic Potential of (+)-Afzelechin for Alleviating Sepsis-Associated Pulmonary Injury. J Med Food 2024; 27:12-21. [PMID: 38236692 DOI: 10.1089/jmf.2023.k.0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Sepsis-induced acute lung injury (ALI) poses a common and formidable challenge in clinical practice, currently lacking efficacious therapeutic approaches. This study delves into the evaluation of (+)-afzelechin (AZC), a natural compound derived from Bergenia ligulata with a diverse array of properties, encompassing antioxidant, anticancer, antimicrobial, and cardiovascular effects to ascertain its effectiveness and underlying mechanisms in mitigating sepsis-induced ALI through animal experimentation. An ALI mouse model induced by sepsis was established through lipopolysaccharide (LPS) administration, and various analytical techniques, including quantitative real-time polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay were employed to gauge inflammatory cytokine levels, lung injury, and associated signaling pathways. The animal experiments revealed that AZC offered safeguards against lung injury induced by LPS while reducing inflammatory cytokine levels in both blood serum and lung tissue. Western blotting experiments revealed AZC's downregulation of the toll-like receptor (TLR)4/NF-κB pathway and the upregulation of PI3K/Akt, coupled with inhibition of the Hippo and Rho signaling pathways. These findings underscore AZC's efficacy in ameliorating sepsis-induced ALI by modulating cytokine storms and curtailing inflammation via the regulation of TLR4/NF-κB, PI3K/Akt, Hippo, and Rho signaling pathways. This work serves as a foundation for additional exploration into AZC's mechanisms and its potential as a therapy for sepsis-induced ALI. Animals in accordance with Kyungpook National University (IRB No. KNU 2022-174).
Collapse
Affiliation(s)
- Sanghee Cho
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| | - Yun Jin Park
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| | - Eunjeong Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| | - Jong-Sup Bae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| |
Collapse
|
33
|
Ren G, Han J, Mo J, Xu Z, Feng X, Chen F, Wu Y, Peng Q. Differential Gene Expression and Immune Cell Infiltration in Patients with Steroid-induced Necrosis of the Femoral Head. Endocr Metab Immune Disord Drug Targets 2024; 24:1377-1394. [PMID: 38204239 PMCID: PMC11348512 DOI: 10.2174/0118715303266951231206114153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/06/2023] [Accepted: 10/25/2023] [Indexed: 01/12/2024]
Abstract
OBJECTIVE The study aimed to study the differential gene expression and immune cell infiltration in patients with steroid-induced necrosis of the femoral head (SANFH), identify the key genes and immune cells of SANFH, and explore the relationship between immune cells and SANFH. METHODS The high-throughput gene chip dataset GSE123568 was downloaded from the GEO database, and the differential gene expression was analyzed with the R language. The STRING database and Cytoscape software were used to analyze the protein interaction network and screen key genes, and enrichment analysis was carried out on key genes. The infiltration of immune cells in SANFH patients was analyzed and verified by immunohistochemistry. RESULTS EP300, TRAF6, STAT1, JAK1, CASP8, and JAK2 are key genes in the pathogenesis of SANFH, which mainly involve myeloid cell differentiation, cytokine-mediated signaling pathway, tumor necrosis factor-mediated signaling pathway, and cellular response to tumor necrosis factor through JAK-STAT, NOD-like receptor, toll-like receptor, and other signaling pathways, leading to the occurrence of diseases; immune infiltration and immunohistochemical results have shown the expression of memory B cells and activated dendritic cells as reduced in SANFH patients, while in the same SANFH samples, M1 macrophages have been positively correlated with monocytes, and neutrophils have been negatively correlated with monocytes expression. CONCLUSION EP300, TRAF6, STAT1, JAK1, CASP8, and JAK2 have exhibited significant differences in SANFH (spontaneous osteonecrosis of the femoral head). Memory B cells, activated dendritic cells, M1 macrophages, monocytes, and neutrophils have shown abnormal expression in SANFH.
Collapse
Affiliation(s)
- Guowu Ren
- Guangxi University of Traditional Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, 530001 China
- Department of Orthopedics, Wenshan Prefecture Traditional Chinese Medicine Hospital, Yun Nan Region, 663100 China
| | - Jie Han
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, 530011 China
| | - Jian Mo
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, 530011 China
| | - Zhiwei Xu
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, 530011 China
| | - Xinjian Feng
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, 530011 China
| | - Feng Chen
- Guangxi University of Traditional Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, 530001 China
| | - Yukun Wu
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, 530011 China
| | - Qinglin Peng
- Guangxi University of Traditional Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, 530001 China
| |
Collapse
|
34
|
Lin Q, Cao J, Yu J, Zhu Y, Shen Y, Wang S, Wang Y, Liu Z, Chang Y. YAP-mediated trophoblast dysfunction: the common pathway underlying pregnancy complications. Cell Commun Signal 2023; 21:353. [PMID: 38098027 PMCID: PMC10722737 DOI: 10.1186/s12964-023-01371-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/29/2023] [Indexed: 12/17/2023] Open
Abstract
Yes-associated protein (YAP) is a pivotal regulator in cellular proliferation, survival, differentiation, and migration, with significant roles in embryonic development, tissue repair, and tumorigenesis. At the maternal-fetal interface, emerging evidence underscores the importance of precisely regulated YAP activity in ensuring successful pregnancy initiation and progression. However, despite the established association between YAP dysregulation and adverse pregnancy outcomes, insights into the impact of aberrant YAP levels in fetal-derived, particularly trophoblast cells, and the ensuing dysfunction at the maternal-fetal interface remain limited. This review comprehensively examines YAP expression and its regulatory mechanisms in trophoblast cells throughout pregnancy. We emphasize its integral role in placental development and maternal-fetal interactions and delve into the correlations between YAP dysregulation and pregnancy complications. A nuanced understanding of YAP's functions during pregnancy could illuminate intricate molecular mechanisms and pave the way for innovative prevention and treatment strategies for pregnancy complications. Video Abstract.
Collapse
Affiliation(s)
- Qimei Lin
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Jiasong Cao
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Jing Yu
- School of Clinical Medicine, Tianjin Medical University, Tianjin, 300070, China
| | - Yu Zhu
- School of Clinical Medicine, Tianjin Medical University, Tianjin, 300070, China
| | - Yongmei Shen
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Shuqi Wang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Yixin Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhen Liu
- Academy of Clinical Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China.
- Academy of Clinical Medicine, Medical College, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
35
|
Lai TC, Lee CW, Hsu MH, Chen YC, Lin SR, Lin SW, Lee TL, Lin SY, Hsu SH, Tsai JS, Chen YL. Nanocurcumin Reduces High Glucose and Particulate Matter-Induced Endothelial Inflammation: Mitochondrial Function and Involvement of miR-221/222. Int J Nanomedicine 2023; 18:7379-7402. [PMID: 38084125 PMCID: PMC10710795 DOI: 10.2147/ijn.s433658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose Particulate matter (PM) 2.5, harmful air pollutants, and diabetes are associated with high morbidity and mortality from cardiovascular disease (CVD). However, the molecular mechanisms underlying the combined effects of PM and diabetes on CVD remain unclear. Methods Endothelial cells (ECs) treated with high glucose (HG) and PM mimic hyperglycemia and air pollutant exposure in CVD. Endothelial inflammation was evaluated by Western blot and immunofluorescence of ICAM-1 expression and monocyte adhesion. The mechanisms underlying endothelial inflammation were elucidated through MitoSOX Red analysis, JC-1 staining, MitoTracker analysis, and Western blot analysis of mitochondrial fission-related, autophagy-related, and mitophagy-related proteins. Furthermore. nanocurcumin (NCur) pretreatment was used to test if it has a protective effect. Results ECs under co-exposure to HG and PM increased ICAM-1 expression and monocyte adhesion, whereas NCur pretreatment attenuated these changes and improved endothelial inflammation. PM exposure increased mitochondrial ROS levels, worsened mitochondrial membrane potential, promoted mitochondrial fission, induced mitophagy, and aggravated inflammation in HG-treated ECs, while NCur reversed these changes. Also, HG and PM-induced endothelial inflammation is through the JNK signaling pathway and miR-221/222 specifically targeting ICAM-1 and BNIP3. PM exposure also aggravated mitochondrial ROS levels, mitochondrial fission, mitophagy, and endothelial inflammation in STZ-induced hyperglycemic mice, whereas NCur attenuated these changes. Conclusion This study elucidated the mechanisms underlying HG and PM-induced endothelial inflammation in vitro and in vivo. HG and PM treatment increased mitochondrial ROS, mitochondrial fission, and mitophagy in ECs, whereas NCur reversed these conditions. In addition, miR-221/222 plays a role in the amelioration of endothelial inflammation through targeting Bnip3 and ICAM-1, and NCur pretreatment can modulate miR-221/222 levels. Therefore, NCur may be a promising approach to intervene in diabetes and air pollution-induced CVD.
Collapse
Affiliation(s)
- Tsai-Chun Lai
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan, Republic of China
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan, Republic of China
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan, Republic of China
| | - Mei-Hsiang Hsu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yu-Chen Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, Republic of China
| | - Shu-Rung Lin
- Department of Bioscience Technology, College of Science, Chung-Yuan Christian University, Taoyuan, Taiwan, Republic of China
- Center for Nanotechnology and Center for Biomedical Technology, Chung-Yuan Christian University, Taoyuan, Taiwan, Republic of China
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Tzu-Lin Lee
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | - Shu-Hao Hsu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Jaw-Shiun Tsai
- Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
- Center for Complementary and Integrated Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| |
Collapse
|
36
|
Kobayashi S, Cox AG, Harvey KF, Hogan BM. Vasculature is getting Hip(po): Hippo signaling in vascular development and disease. Dev Cell 2023; 58:2627-2640. [PMID: 38052179 DOI: 10.1016/j.devcel.2023.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/29/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023]
Abstract
The Hippo signaling pathway regulates developmental organ growth, regeneration, and cell fate decisions. Although the role of the Hippo pathway, and its transcriptional effectors YAP and TAZ, has been well documented in many cell types and species, only recently have the roles for this pathway come to light in vascular development and disease. Experiments in mice, zebrafish, and in vitro have uncovered roles for the Hippo pathway, YAP, and TAZ in vasculogenesis, angiogenesis, and lymphangiogenesis. In addition, the Hippo pathway has been implicated in vascular cancers and cardiovascular diseases, thus identifying it as a potential therapeutic target for the treatment of these conditions. However, despite recent advances, Hippo's role in the vasculature is still underappreciated compared with its role in epithelial tissues. In this review, we appraise our current understanding of the Hippo pathway in blood and lymphatic vessel development and highlight the current knowledge gaps and opportunities for further research.
Collapse
Affiliation(s)
- Sakurako Kobayashi
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew G Cox
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kieran F Harvey
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin M Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
37
|
Yang X, Tang X, Jia G, Wang Y, Yang L, Li Y, Wu M, Zhang Z, Yu Y, Xiao Y, Zhu X, Li S. Multifunctional Carbon Quantum Dots: Iron Clearance and Antioxidation for Neuroprotection in Intracerebral Hemorrhage Mice. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38038958 DOI: 10.1021/acsami.3c13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Iron overload and oxidative stress are pivotal in the pathogenesis of brain injury secondary to intracerebral hemorrhage (ICH). There is a compelling need for agents that can chelate iron and scavenge free radicals, particularly those that demonstrate substantial brain penetration, to mitigate ICH-related damage. In this study, we have engineered an amine-functionalized aspirin-derived carbon quantum dot (NACQD) with a nominal diameter of 6-13 nm. The NACQD possesses robust iron-binding and antioxidative capacities. Through intrathecal administration, NACQD therapy substantially reduced iron deposition and oxidative stress in brain tissue, alleviated meningeal inflammatory responses, and improved the recovery of neurological function in a murine ICH model. As a proof of concept, the intrathecal injection of NACQD is a promising therapeutic strategy to ameliorate the ICH injury.
Collapse
Affiliation(s)
- Xinyu Yang
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Xiaolong Tang
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Guangyu Jia
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Ye Wang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Li Yang
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
| | - Yuanyuan Li
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
| | - Miaojing Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Zhe Zhang
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Yamei Yu
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Yao Xiao
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Xingen Zhu
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Shiyong Li
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| |
Collapse
|
38
|
Ma Q, Yu J, Liu L, Ma X, Zhang J, Zhang J, Wang X, Deng G, Wu X. TRAF6 triggers Mycobacterium-infected host autophagy through Rab7 ubiquitination. Cell Death Discov 2023; 9:427. [PMID: 38016969 PMCID: PMC10684575 DOI: 10.1038/s41420-023-01731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is an E3 ubiquitin ligase that is extensively involved in the autophagy process by interacting with diverse autophagy initiation and autophagosome maturation molecules. However, whether TRAF6 interacts with lysosomal proteins to regulate Mycobacterium-induced autophagy has not been completely characterized. Herein, the present study showed that TRAF6 interacted with lysosomal key proteins Rab7 through RING domain which caused Rab7 ubiquitination and subsequently ubiquitinated Rab7 binds to STX17 (syntaxin 17, a SNARE protein that is essential for mature autophagosome), and thus promoted the fusion of autophagosomes and lysosomes. Furthermore, TRAF6 enhanced the initiation and formation of autophagosomes in Mycobacterium-induced autophagy in both BMDMs and RAW264.7 cells, as evidenced by autophagic flux, colocalization of LC3 and BCG, autophagy rates, and autophagy-associated protein expression. Noteworthy to mention, TRAF6 deficiency exacerbated lung injury and promoted BCG survival. Taken together, these results identify novel molecular and cellular mechanisms by which TRAF6 positively regulates Mycobacterium-induced autophagy.
Collapse
Affiliation(s)
- Qinmei Ma
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China
| | - Jialin Yu
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China
| | - Li Liu
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China
| | - Xiaoyan Ma
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China
| | - Jiaxue Zhang
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China
| | - Jiamei Zhang
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China
| | - Xiaoping Wang
- The Fourth People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, NingXia, 750021, China
| | - Guangcun Deng
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China.
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China.
| | - Xiaoling Wu
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China.
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China.
| |
Collapse
|
39
|
Hu Z, Deng X, Zhou S, Zhou C, Shen M, Gao X, Huang Y. Pathogenic mechanisms and therapeutic implications of extracellular matrix remodelling in cerebral vasospasm. Fluids Barriers CNS 2023; 20:81. [PMID: 37925414 PMCID: PMC10625254 DOI: 10.1186/s12987-023-00483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
Cerebral vasospasm significantly contributes to poor prognosis and mortality in patients with aneurysmal subarachnoid hemorrhage. Current research indicates that the pathological and physiological mechanisms of cerebral vasospasm may be attributed to the exposure of blood vessels to toxic substances, such as oxyhaemoglobin and inflammation factors. These factors disrupt cerebral vascular homeostasis. Vascular homeostasis is maintained by the extracellular matrix (ECM) and related cell surface receptors, such as integrins, characterised by collagen deposition, collagen crosslinking, and elastin degradation within the vascular ECM. It involves interactions between the ECM and smooth muscle cells as well as endothelial cells. Its biological activities are particularly crucial in the context of cerebral vasospasm. Therefore, regulating ECM homeostasis may represent a novel therapeutic target for cerebral vasospasm. This review explores the potential pathogenic mechanisms of cerebral vasospasm and the impacts of ECM protein metabolism on the vascular wall during ECM remodelling. Additionally, we underscore the significance of an ECM protein imbalance, which can lead to increased ECM stiffness and activation of the YAP pathway, resulting in vascular remodelling. Lastly, we discuss future research directions.
Collapse
Affiliation(s)
- Ziliang Hu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Liuting Street 59, Ningbo, 315010, Zhejiang, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315302, Zhejiang, China
| | - Xinpeng Deng
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Liuting Street 59, Ningbo, 315010, Zhejiang, China
| | - Shengjun Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Liuting Street 59, Ningbo, 315010, Zhejiang, China
| | - Chenhui Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Liuting Street 59, Ningbo, 315010, Zhejiang, China
| | - Menglu Shen
- Cixi Third People's Hospital, Cixi, 315324, Zhejiang, China
| | - Xiang Gao
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Liuting Street 59, Ningbo, 315010, Zhejiang, China.
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Liuting Street 59, Ningbo, 315010, Zhejiang, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
40
|
Shi H, Zou Y, Zhong W, Li Z, Wang X, Yin Y, Li D, Liu Y, Li M. Complex roles of Hippo-YAP/TAZ signaling in hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:15311-15322. [PMID: 37608027 DOI: 10.1007/s00432-023-05272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND The Hippo signaling pathway is an evolutionarily conserved signaling module that controls organ size in different species, and the disorder of the Hippo pathway can induce liver cancer in organisms, especially hepatocellular carcinoma (HCC). The exact mechanism that causes cancer is still unknown. Recent studies have shown that it is a classical kinase cascade that phosphorylates the Mst1/2-sav1 complex and activates the phosphorylation of the Lats1/2-mob1A/B complex for inactivating Yap and Taz. These kinases and scaffolds are regarded as primary regulators of the Hippo pathway, and help in activating a variety of carcinogenic processes. Among them, Yap/Taz is seen to be the main effector molecule, which is downstream of the Hippo pathway, and its abnormal activation is related to a variety of human cancers including liver cancer. Currently, since Yap/Taz plays a variety of roles in cancer promotion and tumor regeneration, the Hippo pathway has emerged as an attractive target in recent drug development research. METHODS We collect and review relevant literature in web of Science and Pubmed. CONCLUSION This review highlights the important roles of Yap/Taz in activating Hippo pathway in liver cancer. The recent findings on the crosstalks between the Hippo and other cancer associated pathways and moleculars are also discussed. In this review, we summarized and discussed recent breakthroughs in our understanding of how key components of the Hippo-YAP/TAZ pathway influence the hepatocellular carcinoma, including their effects on tumor occurrence and development, their roles in regulating metastasis, and their function in chemotherapy resistance. Further, the molecular mechanism and roles in regulating cross talk between Hippo-YAP/TAZ pathway and other cancer-associated pathways or oncogenes/cancer suppressor genes were summarized and discussed. More, many other inducers and inhibitors of this signaling cascade and available experimental therapies against the YAP/TAZ/TEAD axis were discussed. Targeting this pathway for cancer therapy may have great significance in the treatment of hepatocellular carcinoma. Graphical summary of the complex role of Hippo-YAP/TAZ signaling in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hewen Shi
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Ying Zou
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Weiwei Zhong
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Zhaoying Li
- Traditional Chinese Medicine Research Center, Shandong Public Health Clinical Center, Jinan, 250102, People's Republic of China
| | - Xiaoxue Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Yancun Yin
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Ying Liu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
| | - Minjing Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
| |
Collapse
|
41
|
Xue C, Chen K, Gao Z, Bao T, Dong L, Zhao L, Tong X, Li X. Common mechanisms underlying diabetic vascular complications: focus on the interaction of metabolic disorders, immuno-inflammation, and endothelial dysfunction. Cell Commun Signal 2023; 21:298. [PMID: 37904236 PMCID: PMC10614351 DOI: 10.1186/s12964-022-01016-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/11/2022] [Indexed: 11/01/2023] Open
Abstract
Diabetic vascular complications (DVCs), including macro- and micro- angiopathy, account for a high percentage of mortality in patients with diabetes mellitus (DM). Endothelial dysfunction is the initial and role step for the pathogenesis of DVCs. Hyperglycemia and lipid metabolism disorders contribute to endothelial dysfunction via direct injury of metabolism products, crosstalk between immunity and inflammation, as well as related interaction network. Although physiological and phenotypic differences support their specified changes in different targeted organs, there are still several common mechanisms underlying DVCs. Also, inhibitors of these common mechanisms may decrease the incidence of DVCs effectively. Thus, this review may provide new insights into the possible measures for the secondary prevention of DM. And we discussed the current limitations of those present preventive measures in DVCs research. Video Abstract.
Collapse
Affiliation(s)
- Chongxiang Xue
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Keyu Chen
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zezheng Gao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - LiShuo Dong
- Changchun University of Traditional Chinese Medicine, Changchun, 130117, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China.
| | - Xiuyang Li
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China.
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
42
|
Ogata H, Higasa K, Kageyama Y, Tahara H, Shimamoto A, Takekita Y, Koshikawa Y, Nonen S, Kato T, Kinoshita T, Kato M. Relationship between circulating mitochondrial DNA and microRNA in patients with major depression. J Affect Disord 2023; 339:538-546. [PMID: 37467797 DOI: 10.1016/j.jad.2023.07.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/22/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) and circulating cell-free mitochondrial DNA (ccf-mtDNA) have attracted interest as biological markers of affective disorders. In response to stress, it is known that miRNAs in mitochondria diffuse out of the cytoplasm alongside mtDNA; however, this process has not yet been identified. We hypothesized that miRNAs derived from specific cell nuclei cause mitochondrial damage and mtDNA fragmentation under MDD-associated stress conditions. METHODS A comprehensive analysis of the plasma miRNA levels and quantification of the plasma ccf-mtDNA copy number were performed in 69 patients with depression to determine correlations and identify genes and pathways interacting with miRNAs. The patients were randomly assigned to receive either selective serotonin reuptake inhibitors (SSRI) or mirtazapine. Their therapeutic efficacy over four weeks was evaluated in relation to miRNAs correlated with ccf-mtDNA copy number. RESULTS The expression levels of the five miRNAs showed a significant positive correlation with the ccf-mtDNA copy number after correcting for multiple testing. These miRNAs are involved in gene expression related to thyroid hormone synthesis, the Hippo signaling pathway, vasopressin-regulated water reabsorption, and lysine degradation. Of these five miRNAs, miR-6068 and miR-4708-3p were significantly associated with the SSRI and mirtazapine treatment outcomes, respectively. LIMITATIONS This study did not show comparison with a healthy group. CONCLUSIONS The expression levels of specific miRNAs were associated with ccf-mtDNA copy number in untreated depressed patients; moreover, these miRNAs were linked to antidepressant treatment outcomes. These findings are expected to lead to the elucidation of new pathological mechanism of depression.
Collapse
Affiliation(s)
- Haruhiko Ogata
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| | - Koichiro Higasa
- Institute of Biomedical Science, Department of Genome Analysis, Kansai Medical University, Osaka, Japan
| | - Yuki Kageyama
- Department of Neuropsychiatry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hidetoshi Tahara
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akira Shimamoto
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo Onoda, Yamaguchi, Japan
| | | | - Yosuke Koshikawa
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| | - Shinpei Nonen
- Department of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan
| | - Tadafumi Kato
- Department of Psychiatry & Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Masaki Kato
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan.
| |
Collapse
|
43
|
Ran X, Müller S, Brunssen C, Huhle R, Scharffenberg M, Schnabel C, Koch T, Gama de Abreu M, Morawietz H, Ferreira JMC, Wittenstein J. Modulation of the hippo-YAP pathway by cyclic stretch in rat type 2 alveolar epithelial cells-a proof-of-concept study. Front Physiol 2023; 14:1253810. [PMID: 37877098 PMCID: PMC10591329 DOI: 10.3389/fphys.2023.1253810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023] Open
Abstract
Background: Mechanical ventilation (MV) is a life supporting therapy but may also cause lung damage. This phenomenon is known as ventilator-induced lung injury (VILI). A potential pathomechanisms of ventilator-induced lung injury may be the stretch-induced production and release of cytokines and pro-inflammatory molecules from the alveolar epithelium. Yes-associated protein (YAP) might be regulated by mechanical forces and involved in the inflammation cascade. However, its role in stretch-induced damage of alveolar cells remains poorly understood. In this study, we explored the role of YAP in the response of alveolar epithelial type II cells (AEC II) to elevated cyclic stretch in vitro. We hypothesize that Yes-associated protein activates its downstream targets and regulates the interleukin-6 (IL-6) expression in response to 30% cyclic stretch in AEC II. Methods: The rat lung L2 cell line was exposed to 30% cyclic equibiaxial stretch for 1 or 4 h. Non-stretched conditions served as controls. The cytoskeleton remodeling and cell junction integrity were evaluated by F-actin and Pan-cadherin immunofluorescence, respectively. The gene expression and protein levels of IL-6, Yes-associated protein, Cysteine-rich angiogenic inducer 61 (Cyr61/CCN1), and connective tissue growth factor (CTGF/CCN2) were studied by real-time polymerase chain reaction (RT-qPCR) and Western blot, respectively. Verteporfin (VP) was used to inhibit Yes-associated protein activation. The effects of 30% cyclic stretch were assessed by two-way ANOVA. Statistical significance as accepted at p < 0.05. Results: Cyclic stretch of 30% induced YAP nuclear accumulation, activated the transcription of Yes-associated protein downstream targets Cyr61/CCN1 and CTGF/CCN2 and elevated IL-6 expression in AEC II after 1 hour, compared to static control. VP (2 µM) inhibited Yes-associated protein activation in response to 30% cyclic stretch and reduced IL-6 protein levels. Conclusion: In rat lung L2 AEC II, 30% cyclic stretch activated YAP, and its downstream targets Cyr61/CCN1 and CTGF/CCN2 and proinflammatory IL-6 expression. Target activation was blocked by a Yes-associated protein inhibitor. This novel YAP-dependent pathway could be involved in stretch-induced damage of alveolar cells.
Collapse
Affiliation(s)
- Xi Ran
- Department of Intensive Care Medicine, Chongqing General Hospital, Changqing, China
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Sabine Müller
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Robert Huhle
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Martin Scharffenberg
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Christian Schnabel
- Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Thea Koch
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Marcelo Gama de Abreu
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
- Department of Intensive Care and Resuscitation, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Jorge M. C. Ferreira
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Jakob Wittenstein
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
| |
Collapse
|
44
|
Guo ZF, Tongmuang N, Li C, Zhang C, Hu L, Capreri D, Zuo MX, Summer R, Sun J. Inhibiting endothelial cell Mst1 attenuates acute lung injury in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559864. [PMID: 37808846 PMCID: PMC10557750 DOI: 10.1101/2023.09.27.559864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Background Lung endothelium plays a pivotal role in the orchestration of inflammatory and injury responses to acute pulmonary insults. Mammalian sterile 20-like kinase 1 (Mst1), a mammalian homolog of Hippo, is a serine/threonine kinase that is ubiquitously expressed in many tissues and has been shown to play an important role in the regulation of apoptosis, inflammation, stress responses, and organ growth. While Mst1 exhibits high expression in the lung, its involvement in the endothelial response to pulmonary insults remains largely unexplored. Methods Mst1 activity was assessed in lung endothelium by western blot. Mst1 endothelial specific knockout mice and a pharmacological inhibitor were employed to assess the effects of Mst1 on homeostatic and lipopolysaccharide (LPS)-induced endothelial responses. Readouts for these studies included various assays, including NF-κB activation and levels of various inflammatory cytokines and adhesion molecules. The role of Mst1 in lung injury was evaluated in a LPS-induced murine model of acute lung injury (ALI). Results Mst1 phosphorylation was significantly increased in lung endothelial cells after exposure to tumor necrosis factor (TNF)-alpha (TNF-α) and mouse lung tissues after LPS exposure. Overexpression of full length Mst1 or its kinase domain promoted nuclear factor kappaB (NF-κB) activation through promoting JNK and p38 activation, whereas dominant negative forms of Mst1 (DN-Mst1) attenuated endothelial responses to TNF-α and interleukin-1β. Consistent with this, targeted deletion of Mst1 in lung endothelium reduced lung injury to LPS in mice. Similarly, wild-type mice were protected from LPS-induced lung injury following treatment with a pharmacological inhibitor of Mst1/2. Conclusions Our findings identified Mst1 kinase as a key regulator in the control of lung EC activation and suggest that therapeutic strategies aimed at inhibiting Mst1 activation might be effective in the prevention and treatment of lung injury to inflammatory insults.
Collapse
|
45
|
Chen X, Liu Z, Huang L, Li Z, Dai X. Targeting the mechanism of IRF3 in sepsis-associated acute kidney injury via the Hippo pathway. Int Immunopharmacol 2023; 122:110625. [PMID: 37441808 DOI: 10.1016/j.intimp.2023.110625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Sepsis-induced inflammatory damage and adaptive repair are critical in the pathophysiological mechanisms of acute kidney injury (AKI). Here, we investigated the role of interferon regulatory factor three (IRF3) and subsequent activation of the Hippo pathway in inflammatory damage and repair using an in vitro cell model of LPS-induced AKI. LPS caused the phosphorylation and activation of IRF3 in the early stages of sepsis, and activated IRF3 enhanced the production of type I interferon (IFN), resulting in an excessive inflammatory response. Furthermore, LPS generated considerably more inflammatory injury than intended cell death, and IRF3 activation triggered the Hippo pathway, causing a reduction in YAP, which eventually impaired proliferation and repair in surviving renal tubular epithelial cells and exacerbated the development of AKI. In conclusion, IRF3 promoted the development of sepsis-associated AKI (SAKI) by modulating the Hippo pathway.
Collapse
Affiliation(s)
- Xiaomei Chen
- Institute of Critical Care Medicine, The First People's Hospital of Chenzhou, The First Affliated Hospital of Xiangnan University, Hunan 423000, People's Republic of China
| | - Ze Liu
- School of Nursing, Xiangnan University, Hunan 423000, People's Republic of China
| | - Lingkun Huang
- Department of Anaesthesiology, The First People's Hospital of Chenzhou, The First Affliated Hospital of Xiangnan University, Hunan 423000, People's Republic of China
| | - Zhenhua Li
- Institute of Critical Care Medicine, The First People's Hospital of Chenzhou, The First Affliated Hospital of Xiangnan University, Hunan 423000, People's Republic of China.
| | - Xingui Dai
- Institute of Critical Care Medicine, The First People's Hospital of Chenzhou, The First Affliated Hospital of Xiangnan University, Hunan 423000, People's Republic of China.
| |
Collapse
|
46
|
Zhang Y, Zhu Z, Cao Y, Xiong Z, Duan Y, Lin J, Zhang X, Jiang M, Liu Y, Man W, Jia T, Feng J, Chen Y, Li C, Guo B, Sun D. Rnd3 suppresses endothelial cell pyroptosis in atherosclerosis through regulation of ubiquitination of TRAF6. Clin Transl Med 2023; 13:e1406. [PMID: 37743632 PMCID: PMC10518494 DOI: 10.1002/ctm2.1406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND As the main pathological basis for various cardiovascular and cerebrovascular diseases, atherosclerosis has become one of the leading causes of death and disability worldwide. Emerging evidence has suggested that Rho GTPase Rnd3 plays an indisputable role in cardiovascular diseases, although its function in atherosclerosis remains unclear. Here, we found a significant correlation between Rnd3 and pyroptosis of aortic endothelial cells (ECs). METHODS ApoeKO mice were utilized as a model for atherosclerosis. Endothelium-specific transgenic mice were employed to disrupt the expression level of Rnd3 in vivo. Mechanistic investigation of the impact of Rnd3 on endothelial cell pyroptosis was carried out using liquid chromatography tandem mass spectrometry (LC-MS/MS), co-immunoprecipitation (Co-IP) assays, and molecular docking. RESULTS Evidence from gain-of-function and loss-of-function studies denoted a protective role for Rnd3 against ECs pyroptosis. Downregulation of Rnd3 sensitized ECs to pyroptosis under oxidized low density lipoprotein (oxLDL) challenge and exacerbated atherosclerosis, while overexpression of Rnd3 effectively prevented these effects. LC-MS/MS, Co-IP assay, and molecular docking revealed that Rnd3 negatively regulated pyroptosis signaling by direct interaction with the ring finger domain of tumor necrosis factor receptor-associated factor 6 (TRAF6). This leads to the suppression of K63-linked TRAF6 ubiquitination and the promotion of K48-linked TRAF6 ubiquitination, inhibiting the activation of NF-κB and promoting the degradation of TRAF6. Moreover, TRAF6 knockdown countered Rnd3 knockout-evoked exacerbation of EC pyroptosis in vivo and vitro. CONCLUSIONS These findings establish a critical functional connection between Rnd3 and the TRAF6/NF-κB/NLRP3 signaling pathway in ECs, indicating the essential role of Rnd3 in preventing pyroptosis of ECs.
Collapse
Affiliation(s)
- Yan Zhang
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Zhengru Zhu
- Department of OtolaryngologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Yang Cao
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Zhenyu Xiong
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Yu Duan
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Jie Lin
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Xuebin Zhang
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Mengyuan Jiang
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Yue Liu
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Wanrong Man
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Tengfei Jia
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Jiaxu Feng
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Yanyan Chen
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Congye Li
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Baolin Guo
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Dongdong Sun
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
47
|
Xue J, Zhang Z, Sun Y, Jin D, Guo L, Li X, Zhao D, Feng X, Qi W, Zhu H. Research Progress and Molecular Mechanisms of Endothelial Cells Inflammation in Vascular-Related Diseases. J Inflamm Res 2023; 16:3593-3617. [PMID: 37641702 PMCID: PMC10460614 DOI: 10.2147/jir.s418166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Endothelial cells (ECs) are widely distributed inside the vascular network, forming a vital barrier between the bloodstream and the walls of blood vessels. These versatile cells serve myriad functions, including the regulation of vascular tension and the management of hemostasis and thrombosis. Inflammation constitutes a cascade of biological responses incited by biological, chemical, or physical stimuli. While inflammation is inherently a protective mechanism, dysregulated inflammation can precipitate a host of vascular pathologies. ECs play a critical role in the genesis and progression of vascular inflammation, which has been implicated in the etiology of numerous vascular disorders, such as atherosclerosis, cardiovascular diseases, respiratory diseases, diabetes mellitus, and sepsis. Upon activation, ECs secrete potent inflammatory mediators that elicit both innate and adaptive immune reactions, culminating in inflammation. To date, no comprehensive and nuanced account of the research progress concerning ECs and inflammation in vascular-related maladies exists. Consequently, this review endeavors to synthesize the contributions of ECs to inflammatory processes, delineate the molecular signaling pathways involved in regulation, and categorize and consolidate the various models and treatment strategies for vascular-related diseases. It is our aspiration that this review furnishes cogent experimental evidence supporting the established link between endothelial inflammation and vascular-related pathologies, offers a theoretical foundation for clinical investigations, and imparts valuable insights for the development of therapeutic agents targeting these diseases.
Collapse
Affiliation(s)
- Jiaojiao Xue
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Ziwei Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Yuting Sun
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Di Jin
- Department of Nephrology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Liming Guo
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Xiaochun Feng
- Department of Nephropathy and Rheumatology in Children, Children’s Medical Center, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Haoyu Zhu
- Department of Nephropathy and Rheumatology in Children, Children’s Medical Center, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| |
Collapse
|
48
|
Wang Y, Yixiong Z, Wang L, Huang X, Xin HB, Fu M, Qian Y. E3 Ubiquitin Ligases in Endothelial Dysfunction and Vascular Diseases: Roles and Potential Therapies. J Cardiovasc Pharmacol 2023; 82:93-103. [PMID: 37314134 PMCID: PMC10527814 DOI: 10.1097/fjc.0000000000001441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023]
Abstract
ABSTRACT Ubiquitin E3 ligases are a structurally conserved family of enzymes that exert a variety of regulatory functions in immunity, cell death, and tumorigenesis through the ubiquitination of target proteins. Emerging evidence has shown that E3 ubiquitin ligases play crucial roles in the pathogenesis of endothelial dysfunction and related vascular diseases. Here, we reviewed the new findings of E3 ubiquitin ligases in regulating endothelial dysfunction, including endothelial junctions and vascular integrity, endothelial activation, and endothelial apoptosis. The critical role and potential mechanism of E3 ubiquitin ligases in vascular diseases, such as atherosclerosis, diabetes, hypertension, pulmonary hypertension, and acute lung injury, were summarized. Finally, the clinical significance and potential therapeutic strategies associated with the regulation of E3 ubiquitin ligases were also proposed.
Collapse
Affiliation(s)
- Yihan Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Zhan Yixiong
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Chongqing Research Institute, Nanchang University, Chongqing, 402660, China
| | - Linsiqi Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xuan Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Mingui Fu
- Department of Biomedical Sciences and Shock/Trauma Research Center, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Yisong Qian
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Chongqing Research Institute, Nanchang University, Chongqing, 402660, China
| |
Collapse
|
49
|
Wang C, Tang Y, Hou H, Su C, Gao Y, Yang X. CIRC_0026466 KNOCKDOWN PROTECTS HUMAN BRONCHIAL EPITHELIAL CELLS FROM CIGARETTE SMOKE EXTRACT-INDUCED INJURY BY PROMOTING THE MIR-153-3P/TRAF6/NF-ΚB PATHWAY. Shock 2023; 60:121-129. [PMID: 37179246 DOI: 10.1097/shk.0000000000002141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
ABSTRACT Background: Considerable data have shown that circular RNAs (circRNAs) mediate the pathogenesis of chronic obstructive pulmonary disease (COPD). The study aims to analyze the function and mechanism of circ_0026466 in COPD. Methods: Human bronchial epithelial cells (16HBE) were treated with cigarette smoke extract (CSE) to establish a COPD cell model. Quantitative real-time polymerase chain reaction and Western blot were used to detect the expression of circ_0026466, microRNA-153-3p (miR-153-3p), TNF receptor associated factor 6 (TRAF6), cell apoptosis-related proteins, and NF-κB pathway-related proteins. Cell viability, proliferation, apoptosis, and inflammation were investigated by cell counting kit-8, EdU assay, flow cytometry, and enzyme-linked immunosorbent assay, respectively. Oxidative stress was evaluated by lipid peroxidation malondialdehyde assay kit and superoxide dismutase activity assay kit. The interaction between miR-153-3p and circ_0026466 or TRAF6 was confirmed by dual-luciferase reporter assay and RNA pull-down assay. Results: Circ_0026466 and TRAF6 expression were significantly increased, but miR-153-3p was decreased in the blood samples of smokers with COPD and CSE-induced 16HBE cells when compared with controls. CSE treatment inhibited the viability and proliferation of 16HBE cells but induced cell apoptosis, inflammation, and oxidative stress, but these effects were attenuated after circ_0026466 knockdown. Circ_0026466 interacted with miR-153-3p and regulated CSE-caused 16HBE cell damage by targeting miR-153-3p. Additionally, TRAF6, a target gene of miR-153-3p, regulated CSE-induced 16HBE cell injury by combining with miR-153-3p. Importantly, circ_0026466 activated NF-κB pathway by targeting the miR-153-3p/TRAF6 axis. Conclusion: Circ_0026466 absence protected against CSE-triggered 16HBE cell injury by activating the miR-153-3p/TRAF6/NF-κB pathway, providing a potential therapeutic target for COPD.
Collapse
Affiliation(s)
- Cong Wang
- Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Pulmonary and Critical Care Medicine, Nantong, China
| | - Yanfen Tang
- Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Pulmonary and Critical Care Medicine, Nantong, China
| | - Haihui Hou
- Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Pulmonary and Critical Care Medicine, Nantong, China
| | - Chengcheng Su
- Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Pulmonary and Critical Care Medicine, Nantong, China
| | - Yemeng Gao
- Comprehensive Rehabilitation Department of Beidahuang Group General Hospital, Harbin, China
| | - Xu Yang
- Nantong Hospital of Traditional Chinese Medicine Surgery of Traditional Chinese Medicine, Nantong, China
| |
Collapse
|
50
|
Wang J, He Y, Zhou D. The role of ubiquitination in microbial infection induced endothelial dysfunction: potential therapeutic targets for sepsis. Expert Opin Ther Targets 2023; 27:827-839. [PMID: 37688775 DOI: 10.1080/14728222.2023.2257888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023]
Abstract
INTRODUCTION The ubiquitin system is an evolutionarily conserved and universal means of protein modification that regulates many essential cellular processes. Endothelial dysfunction plays a critical role in the pathophysiology of sepsis and organ failure. However, the mechanisms underlying the ubiquitination-mediated regulation on endothelial dysfunction are not fully understood. AREAS COVERED Here we review the advances in basic and clinical research for relevant papers in PubMed database. We attempt to provide an updated overview of diverse ubiquitination events in endothelial cells, discussing the fundamental role of ubiquitination mediated regulations involving in endothelial dysfunction to provide potential therapeutic targets for sepsis. EXPERT OPINION The central event underlying sepsis syndrome is the overwhelming host inflammatory response to the pathogen infection, leading to endothelial dysfunction. As the key components of the ubiquitin system, E3 ligases are at the center stage of the battle between host and microbial pathogens. Such a variety of ubiquitination regulates a multitude of cellular regulatory processes, including signal transduction, autophagy, inflammasome activation, redox reaction and immune response and so forth. In this review, we discuss the many mechanisms of ubiquitination-mediated regulation with a focus on those that modulate endothelial function to provide potential therapeutic targets for the management of sepsis.
Collapse
Affiliation(s)
- Junshuai Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yang He
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Daixing Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|