1
|
Wakeham DJ, Pierce GL, Heffernan KS. Effect of Acute Resistance Exercise and Resistance Exercise Training on Central Pulsatile Hemodynamics and Large Artery Stiffness: Part II. Pulse (Basel) 2025; 13:45-61. [PMID: 39991442 PMCID: PMC11842081 DOI: 10.1159/000543314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/16/2024] [Indexed: 02/25/2025] Open
Abstract
Background In part one of this two-part series, we performed a detailed analysis of the hemodynamic signature produced during resistance exercise (RE) and discussed the subacute effects on short-term modulation of large artery stiffness and central pulsatile hemodynamics. In this second part of our two-part series, we consider the subacute recovery window as the driver of resistance exercise training (RET) adaptations. We then discuss the results of RET interventions and corroborate these findings against the information gleaned from cross-sectional studies in habitually strength-trained athletes. Finally, we explore associations between muscular strength and arterial stiffness. Summary Our reanalysis of key studies assessing arterial stiffness in the hour post-RE suggests changes in both load-dependent and load-independent indices of arterial (aortic) stiffness. Regarding adaptations to habitual RET, a growing body of evidence contradicts earlier findings that suggested RET increases large artery stiffness. Recent meta-analyses conclude that longitudinal RET has no effect or may even reduce large artery stiffness. However, cross-sectional studies continue to support early RET intervention studies and note that habitual RET may increase large artery stiffness and central pulsatile hemodynamics. Complex interactions between vascular smooth muscle cells and the extracellular matrix may offer insight into inter-individual heterogeneity in subacute responses and chronic adaptations to acute RE and habitual RET. Key Messages Habitual RET is fundamentally important for skeletal muscle quality and quantity as well as cardiovascular function. Recent literature suggests that habitual RET has negligible effects on large artery stiffness and central hemodynamic pressure pulsatility, but cross-sectional observations still raise questions about the chronic large artery effects of habitual RET.
Collapse
Affiliation(s)
- Denis J. Wakeham
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gary L. Pierce
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA
| | - Kevin S. Heffernan
- Department of Biobehavioral Sciences, Movement Science and Applied Physiology, Teachers College, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Bywaters BC, Trache A, Rivera GM. Modulation of arterial intima stiffness by disturbed blood flow. Exp Biol Med (Maywood) 2024; 249:10090. [PMID: 39143955 PMCID: PMC11323813 DOI: 10.3389/ebm.2024.10090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
The intima, comprising the endothelium and the subendothelial matrix, plays a crucial role in atherosclerosis pathogenesis. The mechanical stress arising from disturbed blood flow (d-flow) and the stiffening of the arterial wall contributes to endothelial dysfunction. However, the specific impacts of these physical forces on the mechanical environment of the intima remain undetermined. Here, we investigated whether inhibiting collagen crosslinking could ameliorate the detrimental effects of persistent d-flow on the mechanical properties of the intima. Partial ligation of the left carotid artery (LCA) was performed in C57BL/6J mice, inducing d-flow. The right carotid artery (RCA) served as an internal control. Carotids were collected 2 days and 2 weeks after surgery to study acute and chronic effects of d-flow on the mechanical phenotype of the intima. The chronic effects of d-flow were decoupled from the ensuing arterial wall stiffening by administration of β-aminopropionitrile (BAPN), an inhibitor of collagen crosslinking by lysyl oxidase (LOX) enzymes. Atomic force microscopy (AFM) was used to determine stiffness of the endothelium and the denuded subendothelial matrix in en face carotid preparations. The stiffness of human aortic endothelial cells (HAEC) cultured on soft and stiff hydrogels was also determined. Acute exposure to d-flow caused a slight decrease in endothelial stiffness in male mice but had no effect on the stiffness of the subendothelial matrix in either sex. Regardless of sex, the intact endothelium was softer than the subendothelial matrix. In contrast, exposure to chronic d-flow led to a substantial increase in the endothelial and subendothelial stiffness in both sexes. The effects of chronic d-flow were largely prevented by concurrent BAPN administration. In addition, HAEC displayed reduced stiffness when cultured on soft vs. stiff hydrogels. We conclude that chronic d-flow results in marked stiffening of the arterial intima, which can be effectively prevented by inhibition of collagen crosslinking.
Collapse
Affiliation(s)
- Briana C. Bywaters
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Andreea Trache
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Gonzalo M. Rivera
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
3
|
Theodoridis X, Chourdakis M, Papaemmanouil A, Chaloulakou S, Georgakou AV, Chatzis G, Triantafyllou A. The Effect of Diet on Vascular Aging: A Narrative Review of the Available Literature. Life (Basel) 2024; 14:267. [PMID: 38398776 PMCID: PMC10890697 DOI: 10.3390/life14020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Early vascular aging is related to various cardiovascular diseases including hypertension, coronary heart disease, and stroke. Healthful lifestyle practices and interventions, including dietary regimens and consistent aerobic exercise, exert favorable modulation on these processes, thereby diminishing the risk of cardiovascular disease with advancing age. The principal objective of this review was to conduct a comprehensive evaluation and synthesis of the available literature regarding the effectiveness of different diets on vascular health, such as arterial stiffness and endothelial function. To conduct this review, a thorough search of electronic databases including PubMed, Scopus, and Web of Science Core Collection was carried out. Based on the existing evidence, the Mediterranean, Dietary Approaches to Stop Hypertension, and low-calorie diets may have a beneficial effect on vascular health. However, more randomized controlled trials with sufficient sample sizes, longer follow-ups, rigorous methodologies, and, possibly, head-to-head comparisons between the different diets are needed to shed light on this topic.
Collapse
Affiliation(s)
- Xenophon Theodoridis
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (A.V.G.)
- Third Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| | - Michail Chourdakis
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (A.V.G.)
| | - Androniki Papaemmanouil
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (A.V.G.)
| | - Stavroula Chaloulakou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (A.V.G.)
| | - Athina Vasiliki Georgakou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (A.V.G.)
| | - Georgios Chatzis
- School of Physical Education and Sports Science, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece;
| | - Areti Triantafyllou
- Third Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| |
Collapse
|
4
|
Hayden MR. Brain Endothelial Cells Play a Central Role in the Development of Enlarged Perivascular Spaces in the Metabolic Syndrome. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1124. [PMID: 37374328 DOI: 10.3390/medicina59061124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Brain capillary endothelial cell(s) (BECs) have numerous functions, including their semipermeable interface-barrier (transfer and diffusion of solutes), trophic (metabolic homeostasis), tonic (vascular hemodynamics), and trafficking (vascular permeability, coagulation, and leukocyte extravasation) functions to provide brain homeostasis. BECs also serve as the brain's sentinel cell of the innate immune system and are capable of antigen presentation. In metabolic syndrome (MetS), there are two regions resulting in the proinflammatory signaling of BECs, namely visceral adipose tissue depots supplying excessive peripheral cytokines/chemokines (pCCs) and gut microbiota dysbiotic regions supplying excessive soluble lipopolysaccharide (sLPS), small LPS-enriched extracellular vesicle exosomes (lpsEVexos), and pCCs. This dual signaling of BECs at their receptor sites results in BEC activation and dysfunction (BECact/dys) and neuroinflammation. sLPS and lpsEVexos signal BECs' toll-like receptor 4, which then signals translocated nuclear factor kappa B (NFkB). Translocated NFkB promotes the synthesis and secretion of BEC proinflammatory cytokines and chemokines. Specifically, the chemokine CCL5 (RANTES) is capable of attracting microglia cells to BECs. BEC neuroinflammation activates perivascular space(s) (PVS) resident macrophages. Excessive phagocytosis by reactive resident PVS macrophages results in a stagnation-like obstruction, which along with increased capillary permeability due to BECact/dys could expand the fluid volume within the PVS to result in enlarged PVS (EPVS). Importantly, this remodeling may result in pre- and post-capillary EPVS that would contribute to their identification on T2-weighted MRI, which are considered to be biomarkers for cerebral small vessel disease.
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65211, USA
| |
Collapse
|
5
|
Komnenov D, Rossi NF. Fructose-induced salt-sensitive blood pressure differentially affects sympathetically mediated aortic stiffness in male and female Sprague-Dawley rats. Physiol Rep 2023; 11:e15687. [PMID: 37161090 PMCID: PMC10169770 DOI: 10.14814/phy2.15687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/11/2023] Open
Abstract
Hypertension is the leading risk factor for major adverse cardiovascular events (MACE). Aortic stiffness and sympathoexcitation are robust predictors of MACE. Combined high fructose and sodium intake increases arterial pressure, aortic stiffness, renin, and sympathetic nerve activity in male rats. We hypothesized that activation of the renin angiotensin system (RAS) and/or the sympathetic system mediates aortic stiffness in rats with fructose-induced salt-sensitive blood pressure. Male and female Sprague-Dawley rats ingested 20% fructose or 20% glucose in drinking water with 0.4% NaCl chow for 1 week. Then, fructose-fed rats were switched to 4% NaCl chow (Fru + HS); glucose-fed rats remained on 0.4% NaCl chow (Glu + NS, controls for caloric intake). After 2 weeks, mean arterial pressure (MAP) and aortic pulsed wave velocity (PWV) were evaluated at baseline or after acute intravenous vehicle, clonidine, enalapril, losartan, or hydrochlorothiazide. Baseline global longitudinal strain (GLS) was also assessed. MAP and PWV were greater in male Fru + HS versus Glu + NS male rats (p < 0.05 and p < 0.001, respectively). PWV was similar between the female groups. Despite similarly reduced MAP after clonidine, PWV decreased in Fru + HS versus Glu + NS male rats (p < 0.01). Clonidine induced similar decreases in MAP and PWV in females on either diet. GLS was lower in Fru + HS versus Glu + NS male rats and either of the female groups. Thus, acute sympathoinhibition improved aortic compliance in male rats with fructose salt-sensitive blood pressure. Female rats retained aortic compliance regardless of diet. Acute RAS inhibition exerted no significant effects. Male rats on fructose high salt diet displayed an early deficit in myocardial function. Taken together, these findings suggest that adult female rats are protected from the impact of fructose and high salt diet on blood pressure, aortic stiffness, and early left ventricular dysfunction compared with male rats.
Collapse
Affiliation(s)
- Dragana Komnenov
- Department of PhysiologyWayne State UniversityDetroitMichiganUSA
| | - Noreen F. Rossi
- Department of PhysiologyWayne State UniversityDetroitMichiganUSA
- John D. Dingell VA Medical CenterDetroitMichiganUSA
- Department of Internal MedicineWayne State UniversityDetroitMichiganUSA
| |
Collapse
|
6
|
Hayden MR. Overview and New Insights into the Metabolic Syndrome: Risk Factors and Emerging Variables in the Development of Type 2 Diabetes and Cerebrocardiovascular Disease. Medicina (B Aires) 2023; 59:medicina59030561. [PMID: 36984562 PMCID: PMC10059871 DOI: 10.3390/medicina59030561] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Metabolic syndrome (MetS) is considered a metabolic disorder that has been steadily increasing globally and seems to parallel the increasing prevalence of obesity. It consists of a cluster of risk factors which traditionally includes obesity and hyperlipidemia, hyperinsulinemia, hypertension, and hyperglycemia. These four core risk factors are associated with insulin resistance (IR) and, importantly, the MetS is known to increase the risk for developing cerebrocardiovascular disease and type 2 diabetes mellitus. The MetS had its early origins in IR and syndrome X. It has undergone numerous name changes, with additional risk factors and variables being added over the years; however, it has remained as the MetS worldwide for the past three decades. This overview continues to add novel insights to the MetS and suggests that leptin resistance with hyperleptinemia, aberrant mitochondrial stress and reactive oxygen species (ROS), impaired folate-mediated one-carbon metabolism with hyperhomocysteinemia, vascular stiffening, microalbuminuria, and visceral adipose tissues extracellular vesicle exosomes be added to the list of associated variables. Notably, the role of a dysfunctional and activated endothelium and deficient nitric oxide bioavailability along with a dysfunctional and attenuated endothelial glycocalyx, vascular inflammation, systemic metainflammation, and the important role of ROS and reactive species interactome are discussed. With new insights and knowledge regarding the MetS comes the possibility of new findings through further research.
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Ultrastructural Remodeling of the Blood-Brain Barrier and Neurovascular Unit by Lipopolysaccharide-Induced Neuroinflammation. Int J Mol Sci 2023; 24:ijms24021640. [PMID: 36675154 PMCID: PMC9862046 DOI: 10.3390/ijms24021640] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The blood-brain barrier (BBB) is an interface primarily comprised of brain endothelial cells (BECs), separating the central nervous system (CNS) from the systemic circulation while carefully regulating the transport of molecules and inflammatory cells, and maintaining the required steady-state environment. Inflammation modulates many BBB functions, but the ultrastructural cytoarchitectural changes of the BBB with inflammation are understudied. Inflammation was induced in male 8-10-week-old CD-1 mice with intraperitoneal lipopolysaccharide (LPS), using a regimen (3 mg/kg at 0, 6, and 24 h) that caused robust BBB disruption but had minimal lethality at the study timepoint of 28 h. Perfusion-fixed brains were collected and the frontal cortical layer III regions were analyzed using a transmission electron microscopy (TEM). The LPS-treated mice had pronounced ultrastructural remodeling changes in BECs that included plasma membrane ruffling, increased numbers of extracellular microvesicles, small exosome formation, aberrant BEC mitochondria, increased BEC transcytosis, while tight junctions appeared to be unaltered. Aberrant pericytes were contracted with rounded nuclei and a loss of their elongated cytoplasmic processes. Surveilling microglial cells were attracted to the neurovascular unit (NVU) of BECs, and astrocyte detachment and separation were associated with the formation of a perivascular space and pericapillary edema. The LPS treatment resulted in numerous ultrastructural aberrant remodeling changes to the neurovascular unit's BECs, microglia, pericytes, and astrocytes. In summary, a disturbance of the NVU morphology is a consequence of LPS treatment.
Collapse
|
8
|
Ramirez-Perez FI, Cabral-Amador FJ, Whaley-Connell AT, Aroor AR, Morales-Quinones M, Woodford ML, Ghiarone T, Ferreira-Santos L, Jurrissen TJ, Manrique-Acevedo CM, Jia G, DeMarco VG, Padilla J, Martinez-Lemus LA, Lastra G. Cystamine reduces vascular stiffness in Western diet-fed female mice. Am J Physiol Heart Circ Physiol 2022; 322:H167-H180. [PMID: 34890280 PMCID: PMC8742720 DOI: 10.1152/ajpheart.00431.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Consumption of diets high in fat, sugar, and salt (Western diet, WD) is associated with accelerated arterial stiffening, a major independent risk factor for cardiovascular disease (CVD). Women with obesity are more prone to develop arterial stiffening leading to more frequent and severe CVD compared with men. As tissue transglutaminase (TG2) has been implicated in vascular stiffening, our goal herein was to determine the efficacy of cystamine, a nonspecific TG2 inhibitor, at reducing vascular stiffness in female mice chronically fed a WD. Three experimental groups of female mice were created. One was fed regular chow diet (CD) for 43 wk starting at 4 wk of age. The second was fed a WD for the same 43 wk, whereas a third cohort was fed WD, but also received cystamine (216 mg/kg/day) in the drinking water during the last 8 wk on the diet (WD + C). All vascular stiffness parameters assessed, including aortic pulse wave velocity and the incremental modulus of elasticity of isolated femoral and mesenteric arteries, were significantly increased in WD- versus CD-fed mice, and reduced in WD + C versus WD-fed mice. These changes coincided with respectively augmented and diminished vascular wall collagen and F-actin content, with no associated effect in blood pressure. In cultured human vascular smooth muscle cells, cystamine reduced TG2 activity, F-actin:G-actin ratio, collagen compaction capacity, and cellular stiffness. We conclude that cystamine treatment represents an effective approach to reduce vascular stiffness in female mice in the setting of WD consumption, likely because of its TG2 inhibitory capacity.NEW & NOTEWORTHY This study evaluates the novel role of transglutaminase 2 (TG2) inhibition to directly treat vascular stiffness. Our data demonstrate that cystamine, a nonspecific TG2 inhibitor, improves vascular stiffness induced by a diet rich in fat, fructose, and salt. This research suggests that TG2 inhibition might bear therapeutic potential to reduce the disproportionate burden of cardiovascular disease in females in conditions of chronic overnutrition.
Collapse
Affiliation(s)
- Francisco I. Ramirez-Perez
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,2Biomedical, Biological, and Chemical Engineering Department, University of Missouri, Columbia, Missouri
| | | | - Adam T. Whaley-Connell
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,4Division of Nephrology and Hypertension, Department of Medicine, University of Missouri, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | - Annayya R. Aroor
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | | | - Makenzie L. Woodford
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Thaysa Ghiarone
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Larissa Ferreira-Santos
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,6Instituto do Coracao, Hospital das Clínicas da Faculdade de
Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade
de São Paulo, São Paulo, Brazil
| | - Thomas J. Jurrissen
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,7Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Camila M. Manrique-Acevedo
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | - GuangHong Jia
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | - Vincent G. DeMarco
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,4Division of Nephrology and Hypertension, Department of Medicine, University of Missouri, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri,8Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,7Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Luis A. Martinez-Lemus
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,2Biomedical, Biological, and Chemical Engineering Department, University of Missouri, Columbia, Missouri,8Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Guido Lastra
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
9
|
Ramirez-Perez FI, Woodford ML, Morales-Quinones M, Grunewald ZI, Cabral-Amador FJ, Yoshida T, Brenner DA, Manrique-Acevedo C, Martinez-Lemus LA, Chandrasekar B, Padilla J. Mutation of the 5'-untranslated region stem-loop mRNA structure reduces type I collagen deposition and arterial stiffness in male obese mice. Am J Physiol Heart Circ Physiol 2021; 321:H435-H445. [PMID: 34242094 PMCID: PMC8526337 DOI: 10.1152/ajpheart.00076.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arterial stiffening, a characteristic feature of obesity and type 2 diabetes, contributes to the development and progression of cardiovascular diseases (CVD). Currently, no effective prophylaxis or therapeutics is available to prevent or treat arterial stiffening. A better understanding of the molecular mechanisms underlying arterial stiffening is vital to identify newer targets and strategies to reduce CVD burden. A major contributor to arterial stiffening is increased collagen deposition. In the 5'-untranslated regions of mRNAs encoding for type I collagen, an evolutionally conserved stem-loop (SL) structure plays an essential role in its stability and post-transcriptional regulation. Here, we show that feeding a high-fat/high-sucrose (HFHS) diet for 28 wk increases adiposity, insulin resistance, and blood pressure in male wild-type littermates. Moreover, arterial stiffness, assessed in vivo via aortic pulse wave velocity, and ex vivo using atomic force microscopy in aortic explants or pressure myography in isolated femoral and mesenteric arteries, was also increased in those mice. Notably, all these indices of arterial stiffness, along with collagen type I levels in the vasculature, were reduced in HFHS-fed mice harboring a mutation in the 5'SL structure, relative to wild-type littermates. This protective vascular phenotype in 5'SL-mutant mice did not associate with a reduction in insulin resistance or blood pressure. These findings implicate the 5'SL structure as a putative therapeutic target to prevent or reverse arterial stiffening and CVD associated with obesity and type 2 diabetes.NEW & NOTEWORTHY In the 5'-untranslated (UTR) regions of mRNAs encoding for type I collagen, an evolutionally conserved SL structure plays an essential role in its stability and posttranscriptional regulation. We demonstrate that a mutation of the SL mRNA structure in the 5'-UTR decreases collagen type I deposition and arterial stiffness in obese mice. Targeting this evolutionarily conserved SL structure may hold promise in the management of arterial stiffening and CVD associated with obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri
| | - Makenzie L Woodford
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | | | - Zachary I Grunewald
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | | | - Tadashi Yoshida
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - David A Brenner
- School of Medicine, University of California-San Diego, La Jolla, California
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri.,Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Bysani Chandrasekar
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri.,Division of Cardiovascular Medicine, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| |
Collapse
|
10
|
Wenceslau CF, McCarthy CG, Earley S, England SK, Filosa JA, Goulopoulou S, Gutterman DD, Isakson BE, Kanagy NL, Martinez-Lemus LA, Sonkusare SK, Thakore P, Trask AJ, Watts SW, Webb RC. Guidelines for the measurement of vascular function and structure in isolated arteries and veins. Am J Physiol Heart Circ Physiol 2021; 321:H77-H111. [PMID: 33989082 PMCID: PMC8321813 DOI: 10.1152/ajpheart.01021.2020] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
The measurement of vascular function in isolated vessels has revealed important insights into the structural, functional, and biomechanical features of the normal and diseased cardiovascular system and has provided a molecular understanding of the cells that constitutes arteries and veins and their interaction. Further, this approach has allowed the discovery of vital pharmacological treatments for cardiovascular diseases. However, the expansion of the vascular physiology field has also brought new concerns over scientific rigor and reproducibility. Therefore, it is appropriate to set guidelines for the best practices of evaluating vascular function in isolated vessels. These guidelines are a comprehensive document detailing the best practices and pitfalls for the assessment of function in large and small arteries and veins. Herein, we bring together experts in the field of vascular physiology with the purpose of developing guidelines for evaluating ex vivo vascular function. By using this document, vascular physiologists will have consistency among methodological approaches, producing more reliable and reproducible results.
Collapse
Grants
- R01HL139585 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P20 GM130459 NIGMS NIH HHS
- R01HL121871 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- DK115255 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- R61 NS115132 NINDS NIH HHS
- K99HL151889 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL151413 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00HL116769 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL091905 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL088554 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL139585 NHLBI NIH HHS
- P20GM130459 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL135901 NHLBI NIH HHS
- RF1 NS110044 NINDS NIH HHS
- R01ES014639 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- U24 DK076169 NIDDK NIH HHS
- S10OD023438 HHS | NIH | NIH Office of the Director (OD)
- R01HL137112 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL135901 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL146914 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00 HL116769 NHLBI NIH HHS
- K99 HL151889 NHLBI NIH HHS
- U24 DK115255 NIDDK NIH HHS
- R21 EB026518 NIBIB NIH HHS
- R01 HL149762 NHLBI NIH HHS
- DK076169 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- R01NS082521 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01 HL146054 NHLBI NIH HHS
- R21EB026518 HHS | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- R01 HL123301 NHLBI NIH HHS
- P01 HL134604 NHLBI NIH HHS
- R00GM118885 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL091905 NHLBI NIH HHS
- RF1NS110044 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01HL142808 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R61NS115132 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL088105 NHLBI NIH HHS
- SB1 HL121871 NHLBI NIH HHS
- R01 HD037831 NICHD NIH HHS
- R01 HL137852 NHLBI NIH HHS
- R35 HL155008 NHLBI NIH HHS
- R01 HL137112 NHLBI NIH HHS
- R01HL149762 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL123301 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL146914 NHLBI NIH HHS
- R01 HL142808 NHLBI NIH HHS
- R01 HL088554 NHLBI NIH HHS
- R01HD037831 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- R01HL146054 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL146562 NHLBI NIH HHS
- R44 HL121871 NHLBI NIH HHS
- R01HL088105 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 ES014639 NIEHS NIH HHS
- P01HL134604 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL137852 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- S10 OD023438 NIH HHS
- R01 HL151413 NHLBI NIH HHS
- R41 HL121871 NHLBI NIH HHS
- R00 GM118885 NIGMS NIH HHS
Collapse
Affiliation(s)
- Camilla F Wenceslau
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Cameron G McCarthy
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, Nevada
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Jessica A Filosa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin Cardiovascular Center, Milwaukee, Wisconsin
| | - Brant E Isakson
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Nancy L Kanagy
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| | - Luis A Martinez-Lemus
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Swapnil K Sonkusare
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, Nevada
| | - Aaron J Trask
- Center for Cardiovascular Research, The Heart Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - R Clinton Webb
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
11
|
Sangha GS, Goergen CJ, Prior SJ, Ranadive SM, Clyne AM. Preclinical techniques to investigate exercise training in vascular pathophysiology. Am J Physiol Heart Circ Physiol 2021; 320:H1566-H1600. [PMID: 33385323 PMCID: PMC8260379 DOI: 10.1152/ajpheart.00719.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is a dynamic process starting with endothelial dysfunction and inflammation and eventually leading to life-threatening arterial plaques. Exercise generally improves endothelial function in a dose-dependent manner by altering hemodynamics, specifically by increased arterial pressure, pulsatility, and shear stress. However, athletes who regularly participate in high-intensity training can develop arterial plaques, suggesting alternative mechanisms through which excessive exercise promotes vascular disease. Understanding the mechanisms that drive atherosclerosis in sedentary versus exercise states may lead to novel rehabilitative methods aimed at improving exercise compliance and physical activity. Preclinical tools, including in vitro cell assays, in vivo animal models, and in silico computational methods, broaden our capabilities to study the mechanisms through which exercise impacts atherogenesis, from molecular maladaptation to vascular remodeling. Here, we describe how preclinical research tools have and can be used to study exercise effects on atherosclerosis. We then propose how advanced bioengineering techniques can be used to address gaps in our current understanding of vascular pathophysiology, including integrating in vitro, in vivo, and in silico studies across multiple tissue systems and size scales. Improving our understanding of the antiatherogenic exercise effects will enable engaging, targeted, and individualized exercise recommendations to promote cardiovascular health rather than treating cardiovascular disease that results from a sedentary lifestyle.
Collapse
Affiliation(s)
- Gurneet S Sangha
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland.,Baltimore Veterans Affairs Geriatric Research, Education, and Clinical Center, Baltimore, Maryland
| | - Sushant M Ranadive
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland
| | - Alisa M Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
12
|
Boonpattrawong NP, Golbidi S, Tai DC, Aleliunas RE, Bernatchez P, Miller JW, Laher I, Devlin AM. Exercise during pregnancy mitigates the adverse effects of maternal obesity on adult male offspring vascular function and alters one-carbon metabolism. Physiol Rep 2020; 8:e14582. [PMID: 32975908 PMCID: PMC7518297 DOI: 10.14814/phy2.14582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022] Open
Abstract
Maternal obesity during pregnancy can adversely affect adult offspring vascular endothelial function. This study examined whether maternal exercise during pregnancy and lactation mitigates the adverse effects of maternal obesity on offspring vascular endothelial function. Female (C57BL/6N) mice were fed from weaning a control diet (10% kcal fat) or western diet (45% kcal fat) to induce excess adiposity (maternal obesity). After 13 weeks, the female mice were bred and maintained on the diets, with and without access to a running wheel (exercise), throughout breeding, pregnancy, and lactation. Offspring were weaned onto the control or western diet and fed for 13 weeks; male offspring were studied. Maternal exercise prevented the adverse effects of maternal obesity on offspring vascular endothelial function. However, this was dependent on offspring diet and the positive effect of maternal exercise was only observed in offspring fed the western diet. This was accompanied by alterations in aorta and liver one-carbon metabolism, suggesting a role for these pathways in the improved endothelial function observed in the offspring. Obesity and exercise had no effect on endothelial function in the dams but did affect aorta and liver one-carbon metabolism, suggesting the phenotype observed in the offspring may be due to obesity and exercise-induced changes in one-carbon metabolism in the dams. Our findings demonstrate that maternal exercise prevented vascular dysfunction in male offspring from obese dams and is associated with alterations in one-carbon metabolism.
Collapse
Affiliation(s)
- Nicha P. Boonpattrawong
- Department of Pathology and Laboratory MedicineThe University of British Columbia, and BC Children’s Hospital Research InstituteVancouverBCCanada
| | - Saeid Golbidi
- Department of Family PracticeThe University of British Columbia, and BC Children’s Hospital Research InstituteVancouverBCCanada
| | - Daven C. Tai
- Department of PediatricsThe University of British Columbia, and BC Children’s Hospital Research InstituteVancouverBCCanada
| | - Rika E. Aleliunas
- Department of PediatricsThe University of British Columbia, and BC Children’s Hospital Research InstituteVancouverBCCanada
| | - Pascal Bernatchez
- Department of Anesthesiology, Pharmacology and TherapeuticsThe University of British ColumbiaVancouverBCCanada
| | - Joshua W. Miller
- Department of Nutritional SciencesRutgers UniversityThe State University of New JerseyNew BrunswickNJUSA
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and TherapeuticsThe University of British ColumbiaVancouverBCCanada
| | - Angela M. Devlin
- Department of Pathology and Laboratory MedicineThe University of British Columbia, and BC Children’s Hospital Research InstituteVancouverBCCanada
- Department of PediatricsThe University of British Columbia, and BC Children’s Hospital Research InstituteVancouverBCCanada
| |
Collapse
|
13
|
Grunewald ZI, Ramirez-Perez FI, Woodford ML, Morales-Quinones M, Mejia S, Manrique-Acevedo C, Siebenlist U, Martinez-Lemus LA, Chandrasekar B, Padilla J. TRAF3IP2 (TRAF3 Interacting Protein 2) Mediates Obesity-Associated Vascular Insulin Resistance and Dysfunction in Male Mice. Hypertension 2020; 76:1319-1329. [PMID: 32829657 DOI: 10.1161/hypertensionaha.120.15262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin resistance in the vasculature is a characteristic feature of obesity and contributes to the pathogenesis of vascular dysfunction and disease. However, the molecular mechanisms underlying obesity-associated vascular insulin resistance and dysfunction remain poorly understood. We hypothesized that TRAF3IP2 (TRAF3 interacting protein 2), a proinflammatory adaptor molecule known to activate pathological stress pathways and implicated in cardiovascular diseases, plays a causal role in obesity-associated vascular insulin resistance and dysfunction. We tested this hypothesis by employing genetic-manipulation in endothelial cells in vitro, in isolated arteries ex vivo, and diet-induced obesity in a mouse model of TRAF3IP2 ablation in vivo. We show that ectopic expression of TRAF3IP2 blunts insulin signaling in endothelial cells and diminishes endothelium-dependent vasorelaxation in isolated aortic rings. Further, 16 weeks of high fat/high sucrose feeding impaired glucose tolerance, aortic insulin-induced vasorelaxation, and hindlimb postocclusive reactive hyperemia, while increasing blood pressure and arterial stiffness in wild-type male mice. Notably, TRAF3IP2 ablation protected mice from such high fat/high sucrose feeding-induced metabolic and vascular defects. Interestingly, wild-type female mice expressed markedly reduced levels of TRAF3IP2 mRNA independent of diet and were protected against high fat/high sucrose diet-induced vascular dysfunction. These data indicate that TRAF3IP2 plays a causal role in vascular insulin resistance and dysfunction. Specifically, the present findings highlight a sexual dimorphic role of TRAF3IP2 in vascular control and identify it as a promising therapeutic target in vasculometabolic derangements associated with obesity, particularly in males.
Collapse
Affiliation(s)
- Zachary I Grunewald
- From the Department of Nutrition and Exercise Physiology (Z.I.G., M.L.W., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia.,Department of Biological Engineering (F.I.R.-P., L.A.M.-L.), University of Missouri, Columbia
| | - Makenzie L Woodford
- From the Department of Nutrition and Exercise Physiology (Z.I.G., M.L.W., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia
| | - Mariana Morales-Quinones
- Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia
| | - Salvador Mejia
- Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia.,Division of Endocrinology and Metabolism, Department of Medicine (C.M.-A.), University of Missouri, Columbia.,Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (C.M.-A., B.C.)
| | | | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia.,Department of Biological Engineering (F.I.R.-P., L.A.M.-L.), University of Missouri, Columbia.,Department of Medical Pharmacology and Physiology (L.A.M.-L., B.C.), University of Missouri, Columbia
| | - Bysani Chandrasekar
- Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia.,Division of Cardiovascular Medicine, Department of Medicine (B.C.), University of Missouri, Columbia.,Department of Medical Pharmacology and Physiology (L.A.M.-L., B.C.), University of Missouri, Columbia.,Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (C.M.-A., B.C.)
| | - Jaume Padilla
- From the Department of Nutrition and Exercise Physiology (Z.I.G., M.L.W., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia
| |
Collapse
|
14
|
Maliszewska-Cyna E, Vecchio LM, Thomason LAM, Oore JJ, Steinman J, Joo IL, Dorr A, McLaurin J, Sled JG, Stefanovic B, Aubert I. The effects of voluntary running on cerebrovascular morphology and spatial short-term memory in a mouse model of amyloidosis. Neuroimage 2020; 222:117269. [PMID: 32818618 DOI: 10.1016/j.neuroimage.2020.117269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022] Open
Abstract
Physical activity has been correlated with a reduced risk of cognitive decline, including that associated with vascular dementia, mild cognitive impairment (MCI) and Alzheimer's disease (AD); recent literature suggests this may in part result from benefits to the cerebrovascular network. Using a transgenic (Tg) mouse model of AD, we evaluated the effect of running on cortical and hippocampal vascular morphology, cerebral amyloid angiopathy, amyloid plaque load, and spatial memory. TgCRND8 mice present with progressive amyloid pathology, advancing from the cortex to the hippocampus in a time-dependent manner. We postulated that the characteristic progression of pathology could lead to differential, time-dependent effects of physical activity on vascular morphology in these brain regions at 6 months of age. We used two-photon fluorescent microscopy and 3D vessel tracking to characterize vascular and amyloid pathology in sedentary TgCRND8 mice compared those who have a history of physical activity (unlimited access to a running wheel, from 3 to 6 months of age). In sedentary TgCRND8 mice, capillary density was found to be lower in the cortex and higher in the hippocampus compared to non-transgenic (nonTg) littermates. Capillary length, vessel branching, and non-capillary vessel tortuosity were also higher in the hippocampus of sedentary TgCRND8 compared to nonTg mice. Three months of voluntary running resulted in normalizing cortical and hippocampal microvascular morphology, with no significant difference between TgCRND8 and nonTg mice. The benefits of physical activity on cortical and hippocampal vasculature in 6-month old TgCRND8 mice were not paralleled by significant changes on parenchymal and cerebral amyloid pathology. Short-term spatial memory- as evaluated by performance in the Y-maze- was significantly improved in running compared to sedentary TgCRND8 mice. These results suggest that long-term voluntary running contributes to the maintenance of vascular morphology and spatial memory in TgCRND8 mice, even in the absence of an effect on amyloid pathology.
Collapse
Affiliation(s)
- Ewelina Maliszewska-Cyna
- Hurvitz Brain Sciences, Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, S112, Toronto, Ontario M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Laura M Vecchio
- Hurvitz Brain Sciences, Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, S112, Toronto, Ontario M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | - Lynsie A M Thomason
- Hurvitz Brain Sciences, Physical Sciences, Sunnybrook Research Institute, Canada
| | - Jonathan J Oore
- Hurvitz Brain Sciences, Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, S112, Toronto, Ontario M4N 3M5, Canada
| | - Joe Steinman
- Mouse Imaging Centre, Hospital for Sick Children, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - Illsung Lewis Joo
- Hurvitz Brain Sciences, Physical Sciences, Sunnybrook Research Institute, Canada
| | - Adrienne Dorr
- Hurvitz Brain Sciences, Physical Sciences, Sunnybrook Research Institute, Canada
| | - JoAnne McLaurin
- Hurvitz Brain Sciences, Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, S112, Toronto, Ontario M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - John G Sled
- Mouse Imaging Centre, Hospital for Sick Children, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - Bojana Stefanovic
- Hurvitz Brain Sciences, Physical Sciences, Sunnybrook Research Institute, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - Isabelle Aubert
- Hurvitz Brain Sciences, Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, S112, Toronto, Ontario M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
15
|
Morales-Quinones M, Ramirez-Perez FI, Foote CA, Ghiarone T, Ferreira-Santos L, Bloksgaard M, Spencer N, Kimchi ET, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. LIMK (LIM Kinase) Inhibition Prevents Vasoconstriction- and Hypertension-Induced Arterial Stiffening and Remodeling. Hypertension 2020; 76:393-403. [PMID: 32594801 DOI: 10.1161/hypertensionaha.120.15203] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increased arterial stiffness and vascular remodeling precede and are consequences of hypertension. They also contribute to the development and progression of life-threatening cardiovascular diseases. Yet, there are currently no agents specifically aimed at preventing or treating arterial stiffening and remodeling. Previous research indicates that vascular smooth muscle actin polymerization participates in the initial stages of arterial stiffening and remodeling and that LIMK (LIM kinase) promotes F-actin formation and stabilization via cofilin phosphorylation and consequent inactivation. Herein, we hypothesize that LIMK inhibition is able to prevent vasoconstriction- and hypertension-associated arterial stiffening and inward remodeling. We found that small visceral arteries isolated from hypertensive subjects are stiffer and have greater cofilin phosphorylation than those from nonhypertensives. We also show that LIMK inhibition prevents arterial stiffening and inward remodeling in isolated human small visceral arteries exposed to prolonged vasoconstriction. Using cultured vascular smooth muscle cells, we determined that LIMK inhibition prevents vasoconstrictor agonists from increasing cofilin phosphorylation, F-actin volume, and cell cortex stiffness. We further show that localized LIMK inhibition prevents arteriolar inward remodeling in hypertensive mice. This indicates that hypertension is associated with increased vascular smooth muscle cofilin phosphorylation, cytoskeletal stress fiber formation, and heightened arterial stiffness. Our data further suggest that pharmacological inhibition of LIMK prevents vasoconstriction-induced arterial stiffening, in part, via reductions in vascular smooth muscle F-actin content and cellular stiffness. Accordingly, LIMK inhibition should represent a promising therapeutic means to stop the progression of arterial stiffening and remodeling in hypertension.
Collapse
Affiliation(s)
- Mariana Morales-Quinones
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO
| | - Francisco I Ramirez-Perez
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Biological Engineering (F.I.R.-P., L.A.M.-L.), University of Missouri, Columbia, MO
| | - Christopher A Foote
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO
| | - Thaysa Ghiarone
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO
| | - Larissa Ferreira-Santos
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Instituto do Coração (InCor), Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, Brazil (L.F.-S.)
| | - Maria Bloksgaard
- Department of Molecular Medicine, University of Southern Denmark, Odense (M.B.)
| | | | - Eric T Kimchi
- Department of Surgery (E.T.K.), University of Missouri, Columbia, MO.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (E.T.K., C.M.-A.)
| | - Camila Manrique-Acevedo
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism (C.M.-A.), University of Missouri, Columbia, MO.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (E.T.K., C.M.-A.)
| | - Jaume Padilla
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, MO
| | - Luis A Martinez-Lemus
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Biological Engineering (F.I.R.-P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology (L.A.M.-L.), University of Missouri, Columbia, MO
| |
Collapse
|
16
|
Xiong Y, Aroor AR, Ramirez-Perez FI, Jia G, Habibi J, Manrique-Acevedo C, Lastra G, Chen D, DeMarco VG, Martinez-Lemus LA, Hill MA, Jaisser F, Sowers JR, Whaley-Connell A. Western diet induces renal artery endothelial stiffening that is dependent on the epithelial Na + channel. Am J Physiol Renal Physiol 2020; 318:F1220-F1228. [PMID: 32281419 DOI: 10.1152/ajprenal.00517.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Consumption of a Western diet (WD) induces central aortic stiffening that contributes to the transmittance of pulsatile blood flow to end organs, including the kidney. Our recent work supports that endothelial epithelial Na+ channel (EnNaC) expression and activation enhances aortic endothelial cell stiffening through reductions in endothelial nitric oxide (NO) synthase (eNOS) and bioavailable NO that result in inflammatory and oxidant responses and perivascular fibrosis. However, the role that EnNaC activation has on endothelial responses in the renal circulation remains unknown. We hypothesized that cell-specific deletion of the α-subunit of EnNaC would prevent WD-induced central aortic stiffness and protect the kidney from endothelial dysfunction and vascular stiffening. Twenty-eight-week-old female αEnNaC knockout and wild-type mice were fed either mouse chow or WD containing excess fat (46%), sucrose, and fructose (17.5% each). WD feeding increased fat mass, indexes of vascular stiffening in the aorta and renal artery (in vivo pulse wave velocity and ultrasound), and renal endothelial cell stiffening (ex vivo atomic force microscopy). WD further impaired aortic endothelium-dependent relaxation and renal artery compliance (pressure myography) without changes in blood pressure. WD-induced renal arterial stiffening occurred in parallel to attenuated eNOS activation, increased oxidative stress, and aortic and renal perivascular fibrosis. αEnNaC deletion prevented these abnormalities and support a novel mechanism by which WD contributes to renal arterial stiffening that is endothelium and Na+ channel dependent. These results demonstrate that cell-specific EnNaC is important in propagating pulsatility into the renal circulation, generating oxidant stress, reduced bioavailable NO, and renal vessel wall fibrosis and stiffening.
Collapse
Affiliation(s)
- Yuxin Xiong
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Division of Nephrology and Hypertension, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Division of Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Department of Endocrinology, The Second People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Annayya R Aroor
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Division of Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Missouri
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Bioengineering, University of Missouri, Columbia, Missouri
| | - Guanghong Jia
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Division of Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Missouri
| | - Javad Habibi
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Division of Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Missouri
| | - Camila Manrique-Acevedo
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Division of Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Missouri
| | - Guido Lastra
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Division of Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Missouri
| | - Donqqing Chen
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Division of Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Missouri
| | - Vincent G DeMarco
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Division of Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri-Columbia School of Medicine, Columbia, Missouri
| | - Luis A Martinez-Lemus
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Department of Bioengineering, University of Missouri, Columbia, Missouri
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri-Columbia School of Medicine, Columbia, Missouri
| | - Frederic Jaisser
- Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Cordeliers Research Center, Sorbonne University, University Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - James R Sowers
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Division of Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Missouri
| | - Adam Whaley-Connell
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Division of Nephrology and Hypertension, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Division of Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Missouri
| |
Collapse
|
17
|
Padilla J, Woodford ML, Lastra-Gonzalez G, Martinez-Diaz V, Fujie S, Yang Y, Lising AMC, Ramirez-Perez FI, Aroor AR, Morales-Quinones M, Ghiarone T, Whaley-Connell A, Martinez-Lemus LA, Hill MA, Manrique-Acevedo C. Sexual Dimorphism in Obesity-Associated Endothelial ENaC Activity and Stiffening in Mice. Endocrinology 2019; 160:2918-2928. [PMID: 31617909 PMCID: PMC6853665 DOI: 10.1210/en.2019-00483] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/10/2019] [Indexed: 02/08/2023]
Abstract
Obesity and insulin resistance stiffen the vasculature, with females appearing to be more adversely affected. As augmented arterial stiffness is an independent predictor of cardiovascular disease (CVD), the increased predisposition of women with obesity and insulin resistance to arterial stiffening may explain their heightened risk for CVD. However, the cellular mechanisms by which females are more vulnerable to arterial stiffening associated with obesity and insulin resistance remain largely unknown. In this study, we provide evidence that female mice are more susceptible to Western diet-induced endothelial cell stiffening compared with age-matched males. Mechanistically, we show that the increased stiffening of the vascular intima in Western diet-fed female mice is accompanied by enhanced epithelial sodium channel (ENaC) activity in endothelial cells (EnNaC). Our data further indicate that: (i) estrogen signaling through estrogen receptor α (ERα) increases EnNaC activity to a larger extent in females compared with males, (ii) estrogen-induced activation of EnNaC is mediated by the serum/glucocorticoid inducible kinase 1 (SGK-1), and (iii) estrogen signaling stiffens endothelial cells when nitric oxide is lacking and this stiffening effect can be reduced with amiloride, an ENaC inhibitor. In aggregate, we demonstrate a sexual dimorphism in obesity-associated endothelial stiffening, whereby females are more vulnerable than males. In females, endothelial stiffening with obesity may be attributed to estrogen signaling through the ERα-SGK-1-EnNaC axis, thus establishing a putative therapeutic target for female obesity-related vascular stiffening.
Collapse
Affiliation(s)
- Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Makenzie L Woodford
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Guido Lastra-Gonzalez
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
| | - Vanesa Martinez-Diaz
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
| | - Shumpei Fujie
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Faculty of Sport and Health Sciences, University of Tsukuba, Ibaraki, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yan Yang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Alexandre M C Lising
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Biological Engineering, University of Missouri, Columbia, Missouri
| | - Annayya R Aroor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
| | | | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Adam Whaley-Connell
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- Division of Nephrology, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Biological Engineering, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- Correspondence: Camila Manrique-Acevedo, MD, Department of Medicine, University of Missouri, D109 Diabetes Center UHC, One Hospital Drive, Columbia, Missouri 65212. E-mail:
| |
Collapse
|
18
|
Kohn JC, Bordeleau F, Miller J, Watkins HC, Modi S, Ma J, Azar J, Putnam D, Reinhart-King CA. Beneficial Effects of Exercise on Subendothelial Matrix Stiffness are Short-Lived. J Biomech Eng 2019; 140:2675127. [PMID: 29560498 DOI: 10.1115/1.4039579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Indexed: 11/08/2022]
Abstract
Aerobic exercise helps to maintain cardiovascular health in part by mitigating age-induced arterial stiffening. However, the long-term effects of exercise regimens on aortic stiffness remain unknown, especially in the intimal extracellular matrix layer known as the subendothelial matrix. To examine how the stiffness of the subendothelial matrix changes following exercise cessation, mice were exposed to an 8 week swimming regimen followed by an 8 week sedentary rest period. Whole vessel and subendothelial matrix stiffness were measured after both the exercise and rest periods. After swimming, whole vessel and subendothelial matrix stiffness decreased, and after 8 weeks of rest, these values returned to baseline. Within the same time frame, the collagen content in the intima layer and the presence of advanced glycation end products (AGEs) in the whole vessel were also affected by the exercise and the rest periods. Overall, our data indicate that consistent exercise is necessary for maintaining compliance in the subendothelial matrix.
Collapse
Affiliation(s)
- Julie C Kohn
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY 14853 e-mail:
| | - François Bordeleau
- Department of Biomedical Engineering, Vanderbilt University, Engineering and Science Building, Nashville, TN 351631 e-mail:
| | - Joseph Miller
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY 14853 e-mail:
| | - Hannah C Watkins
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY 14853 e-mail:
| | - Shweta Modi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY 14853 e-mail:
| | - Jenny Ma
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY 14853 e-mail:
| | - Julian Azar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY 14853 e-mail:
| | - David Putnam
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY 14853.,Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, , Ithaca, NY 14853 e-mail:
| | - Cynthia A Reinhart-King
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY 14853.,Cornelius Vanderbilt Professor of Engineering, Department of Biomedical Engineering, Vanderbilt University, Mailbox PMB 351631, 440 Engineering and Science Building, Nashville, TN 351631 e-mails:
| |
Collapse
|
19
|
Aroor AR, Habibi J, Nistala R, Ramirez-Perez FI, Martinez-Lemus LA, Jaffe IZ, Sowers JR, Jia G, Whaley-Connell A. Diet-Induced Obesity Promotes Kidney Endothelial Stiffening and Fibrosis Dependent on the Endothelial Mineralocorticoid Receptor. Hypertension 2019; 73:849-858. [PMID: 30827147 PMCID: PMC6448566 DOI: 10.1161/hypertensionaha.118.12198] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/04/2019] [Indexed: 12/29/2022]
Abstract
Obesity is characterized by enhanced MR (mineralocorticoid receptor) activation, vascular stiffness, and associated cardiovascular and kidney disease. Consumption of a Western-style diet (WD), high in saturated fat and refined carbohydrates, by female mice, leads to obesity and vascular stiffening. Use of ECMR (endothelial cell-specific MR) knockout mice supports that ECMR activation is critical for development of vascular and cardiac fibrosis and stiffening. However, the role of ECMR activation in kidney inflammation and fibrosis remains unknown. We hypothesized that cell-specific deletion of ECMR would prevent WD-induced central aortic stiffness and protect the kidney from endothelial dysfunction and vascular stiffening. Four-week-old female ECMR KO and wild-type mice were fed either mouse chow or WD for 16 weeks. WD feeding increased body weight and fat mass, proteinuria, as well as vascular stiffness indices (pulse wave velocity and kidney artery stiffening) and impaired endothelial-dependent vasodilatation without blood pressure changes. The WD-induced kidney arterial stiffening was associated with attenuated eNOS (endothelial NO synthase) activation, increased oxidative stress, proinflammatory immune responses, alterations in extracellular matrix degradation pathways, and fibrosis. ECMR deletion prevented these abnormalities by improving eNOS activation and reducing macrophage proinflammatory M1 polarization, expression of TG2 (transglutaminase 2), and MMP (matrix metalloproteinase)-9. Our data support the concept that ECMR activation contributes to endothelial dysfunction, increased kidney artery fibrosis/stiffening, and impaired NOS (NO synthase) activation, processes associated with macrophage infiltration and polarization, inflammation, and oxidative stress, collectively resulting in tubulointerstitial fibrosis in females consuming a WD.
Collapse
Affiliation(s)
- Annayya R Aroor
- From the Diabetes and Cardiovascular Center (A.R.A., J.H., R.N., J.R.S., G.J., A.W.-C.)
- Department of Medicine (A.R.A., J.H., R.N., J.R.S., G.J., A.W.-C.)
- Division of Endocrinology and Metabolism (A.R.A., J.H., J.R.S., G.J., A.W.-C.)
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO (A.R.A., J.H., R.N., L.A.M.-L., J.R.S., A.W.-C.)
| | - Javad Habibi
- From the Diabetes and Cardiovascular Center (A.R.A., J.H., R.N., J.R.S., G.J., A.W.-C.)
- Department of Medicine (A.R.A., J.H., R.N., J.R.S., G.J., A.W.-C.)
- Division of Endocrinology and Metabolism (A.R.A., J.H., J.R.S., G.J., A.W.-C.)
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO (A.R.A., J.H., R.N., L.A.M.-L., J.R.S., A.W.-C.)
| | - Ravi Nistala
- From the Diabetes and Cardiovascular Center (A.R.A., J.H., R.N., J.R.S., G.J., A.W.-C.)
- Department of Medicine (A.R.A., J.H., R.N., J.R.S., G.J., A.W.-C.)
- Division of Nephrology and Hypertension (R.N., A.W.-C.)
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO (A.R.A., J.H., R.N., L.A.M.-L., J.R.S., A.W.-C.)
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri-Columbia School of Medicine (F.I.R.-P., L.A.M.-L., J.R.S.)
| | - Luis A Martinez-Lemus
- Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.)
- Dalton Cardiovascular Research Center, University of Missouri-Columbia School of Medicine (F.I.R.-P., L.A.M.-L., J.R.S.)
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO (A.R.A., J.H., R.N., L.A.M.-L., J.R.S., A.W.-C.)
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - James R Sowers
- From the Diabetes and Cardiovascular Center (A.R.A., J.H., R.N., J.R.S., G.J., A.W.-C.)
- Department of Medicine (A.R.A., J.H., R.N., J.R.S., G.J., A.W.-C.)
- Division of Endocrinology and Metabolism (A.R.A., J.H., J.R.S., G.J., A.W.-C.)
- Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.)
- Dalton Cardiovascular Research Center, University of Missouri-Columbia School of Medicine (F.I.R.-P., L.A.M.-L., J.R.S.)
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO (A.R.A., J.H., R.N., L.A.M.-L., J.R.S., A.W.-C.)
| | - Guanghong Jia
- From the Diabetes and Cardiovascular Center (A.R.A., J.H., R.N., J.R.S., G.J., A.W.-C.)
- Department of Medicine (A.R.A., J.H., R.N., J.R.S., G.J., A.W.-C.)
- Division of Endocrinology and Metabolism (A.R.A., J.H., J.R.S., G.J., A.W.-C.)
| | - Adam Whaley-Connell
- From the Diabetes and Cardiovascular Center (A.R.A., J.H., R.N., J.R.S., G.J., A.W.-C.)
- Department of Medicine (A.R.A., J.H., R.N., J.R.S., G.J., A.W.-C.)
- Division of Endocrinology and Metabolism (A.R.A., J.H., J.R.S., G.J., A.W.-C.)
- Division of Nephrology and Hypertension (R.N., A.W.-C.)
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO (A.R.A., J.H., R.N., L.A.M.-L., J.R.S., A.W.-C.)
| |
Collapse
|
20
|
Aroor AR, Das NA, Carpenter AJ, Habibi J, Jia G, Ramirez-Perez FI, Martinez-Lemus L, Manrique-Acevedo CM, Hayden MR, Duta C, Nistala R, Mayoux E, Padilla J, Chandrasekar B, DeMarco VG. Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury. Cardiovasc Diabetol 2018; 17:108. [PMID: 30060748 PMCID: PMC6065158 DOI: 10.1186/s12933-018-0750-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/23/2018] [Indexed: 02/06/2023] Open
Abstract
Background Arterial stiffness is emerging as an independent risk factor for the development of chronic kidney disease. The sodium glucose co-transporter 2 (SGLT2) inhibitors, which lower serum glucose by inhibiting SGLT2-mediated glucose reabsorption in renal proximal tubules, have shown promise in reducing arterial stiffness and the risk of cardiovascular and kidney disease in individuals with type 2 diabetes mellitus. Since hyperglycemia contributes to arterial stiffness, we hypothesized that the SGLT2 inhibitor empagliflozin (EMPA) would improve endothelial function, reduce aortic stiffness, and attenuate kidney disease by lowering hyperglycemia in type 2 diabetic female mice (db/db). Materials/methods Ten-week-old female wild-type control (C57BLKS/J) and db/db (BKS.Cg-Dock7m+/+Leprdb/J) mice were divided into three groups: lean untreated controls (CkC, n = 17), untreated db/db (DbC, n = 19) and EMPA-treated db/db mice (DbE, n = 19). EMPA was mixed with normal mouse chow at a concentration to deliver 10 mg kg−1 day−1, and fed for 5 weeks, initiated at 11 weeks of age. Results Compared to CkC, DbC showed increased glucose levels, blood pressure, aortic and endothelial cell stiffness, and impaired endothelium-dependent vasorelaxation. Furthermore, DbC exhibited impaired activation of endothelial nitric oxide synthase, increased renal resistivity and pulsatility indexes, enhanced renal expression of advanced glycation end products, and periarterial and tubulointerstitial fibrosis. EMPA promoted glycosuria and blunted these vascular and renal impairments, without affecting increases in blood pressure. In addition, expression of “reversion inducing cysteine rich protein with Kazal motifs” (RECK), an anti-fibrotic mediator, was significantly suppressed in DbC kidneys and partially restored by EMPA. Confirming the in vivo data, EMPA reversed high glucose-induced RECK suppression in human proximal tubule cells. Conclusions Empagliflozin ameliorates kidney injury in type 2 diabetic female mice by promoting glycosuria, and possibly by reducing systemic and renal artery stiffness, and reversing RECK suppression.
Collapse
Affiliation(s)
- Annayya R Aroor
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA.,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Nitin A Das
- Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, San Antonio, TX, USA
| | - Andrea J Carpenter
- Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, San Antonio, TX, USA
| | - Javad Habibi
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA.,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Guanghong Jia
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA.,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | | | - Luis Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Camila M Manrique-Acevedo
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA.,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Melvin R Hayden
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA.,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Cornel Duta
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Division of Nephrology, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Ravi Nistala
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Division of Nephrology, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Eric Mayoux
- Boehringer Ingelheim, Biberach an der Riss, Germany
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA.,Department of Child Health, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Bysani Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Division of Cardiology, Department of Medicine, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Vincent G DeMarco
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA. .,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA. .,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA. .,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA. .,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri-Columbia School of Medicine, D110, DC043.0, One Hospital Dr, Columbia, MO, 65212, USA.
| |
Collapse
|
21
|
Ogola BO, Zimmerman MA, Clark GL, Abshire CM, Gentry KM, Miller KS, Lindsey SH. New insights into arterial stiffening: does sex matter? Am J Physiol Heart Circ Physiol 2018; 315:H1073-H1087. [PMID: 30028199 DOI: 10.1152/ajpheart.00132.2018] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review discusses sexual dimorphism in arterial stiffening, disease pathology interactions, and the influence of sex on mechanisms and pathways. Arterial stiffness predicts cardiovascular mortality independent of blood pressure. Patients with increased arterial stiffness have a 48% higher risk for developing cardiovascular disease. Like other cardiovascular pathologies, arterial stiffness is sexually dimorphic. Young women have lower stiffness than aged-matched men, but this sex difference reverses during normal aging. Estrogen therapy does not attenuate progressive stiffening in postmenopausal women, indicating that currently prescribed drugs do not confer protection. Although remodeling of large arteries is a protective adaptation to higher wall stress, arterial stiffening increases afterload to the left ventricle and transmits higher pulsatile pressure to smaller arteries and target organs. Moreover, an increase in aortic stiffness may precede or exacerbate hypertension, particularly during aging. Additional studies are needed to elucidate the mechanisms by which females are protected from arterial stiffness to provide insight into its mechanisms and, ultimately, therapeutic targets for treating this pathology.
Collapse
Affiliation(s)
- Benard O Ogola
- Department of Pharmacology, Tulane University , New Orleans, Louisiana
| | | | - Gabrielle L Clark
- Department of Biomedical Engineering, Tulane University , New Orleans, Louisiana
| | - Caleb M Abshire
- Department of Pharmacology, Tulane University , New Orleans, Louisiana
| | - Kaylee M Gentry
- Department of Pharmacology, Tulane University , New Orleans, Louisiana
| | - Kristin S Miller
- Department of Biomedical Engineering, Tulane University , New Orleans, Louisiana
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University , New Orleans, Louisiana
| |
Collapse
|
22
|
Dumor K, Shoemaker-Moyle M, Nistala R, Whaley-Connell A. Arterial Stiffness in Hypertension: an Update. Curr Hypertens Rep 2018; 20:72. [DOI: 10.1007/s11906-018-0867-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Elrashidy RA, Zhang J, Liu G. Long-term consumption of Western diet contributes to endothelial dysfunction and aortic remodeling in rats: Implication of Rho-kinase signaling. Clin Exp Hypertens 2018; 41:174-180. [DOI: 10.1080/10641963.2018.1462375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Rania A. Elrashidy
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Jing Zhang
- Department of Hyperbaric Oxygen, Capital Medical University Beijing Chao-Yang Hospital, Beijing, China
| | - Guiming Liu
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
24
|
Kohn JC, Azar J, Seta F, Reinhart-King CA. High-Fat, High-Sugar Diet-Induced Subendothelial Matrix Stiffening is Mitigated by Exercise. Cardiovasc Eng Technol 2018; 9:84-93. [PMID: 29159794 PMCID: PMC5797500 DOI: 10.1007/s13239-017-0335-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
Abstract
Consumption of a high-fat, high-sugar diet and sedentary lifestyle are correlated with bulk arterial stiffening. While measurements of bulk arterial stiffening are used to assess cardiovascular health clinically, they cannot account for changes to the tissue occurring on the cellular scale. The compliance of the subendothelial matrix in the intima mediates vascular permeability, an initiating step in atherosclerosis. High-fat, high-sugar diet consumption and a sedentary lifestyle both cause micro-scale subendothelial matrix stiffening, but the impact of these factors in concert remains unknown. In this study, mice on a high-fat, high-sugar diet were treated with aerobic exercise or returned to a normal diet. We measured bulk arterial stiffness through pulse wave velocity and subendothelial matrix stiffness ex vivo through atomic force microscopy. Our data indicate that while diet reversal mitigates high-fat, high-sugar diet-induced macro- and micro-scale stiffening, exercise only significantly decreases micro-scale stiffness and not macro-scale stiffness, during the time-scale studied. These data underscore the need for both healthy diet and exercise to maintain vascular health. These data also indicate that exercise may serve as a key lifestyle modification to partially reverse the deleterious impacts of high-fat, high-sugar diet consumption, even while macro-scale stiffness indicators do not change.
Collapse
Affiliation(s)
- Julie C Kohn
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Julian Azar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Francesca Seta
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, USA
| | - Cynthia A Reinhart-King
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 351631, USA.
| |
Collapse
|
25
|
The Role of Age-Related Intimal Remodeling and Stiffening in Atherosclerosis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:365-391. [PMID: 29310802 DOI: 10.1016/bs.apha.2017.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Age-related vascular stiffening is closely associated with cardiovascular risk. The clinical measure of arterial stiffness, pulse wave velocity, reflects bulk structural changes in the media observed with age, but does not reflect intimal remodeling that also drives atherosclerosis. Endothelial barrier integrity is disrupted during early atherogenesis and is regulated by the mechanics and composition of the underlying intima, which undergoes significant atherogenic remodeling in response to age and hemodynamics. Here, we first review the best characterized of these changes, including physiological intimal thickening throughout the arterial tree, fibronectin and collagen deposition, and collagen cross-linking. We then address the most common in vivo and in vitro models used to gain mechanistic insight into the consequences of intimal remodeling. Finally, we consider the impacts of intimal stiffening upon endothelial cell mechanotransduction with emphasis on the emerging impact of increased complexity in cellular traction forces and substrate rigidity upon endothelial barrier integrity.
Collapse
|
26
|
Brown SM, Smith CE, Meuth AI, Khan M, Aroor AR, Cleeton HM, Meininger GA, Sowers JR, DeMarco VG, Chandrasekar B, Nistala R, Bender SB. Dipeptidyl Peptidase-4 Inhibition With Saxagliptin Ameliorates Angiotensin II-Induced Cardiac Diastolic Dysfunction in Male Mice. Endocrinology 2017; 158:3592-3604. [PMID: 28977602 PMCID: PMC5659692 DOI: 10.1210/en.2017-00416] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/25/2017] [Indexed: 12/28/2022]
Abstract
Activation of the renin-angiotensin-aldosterone system is common in hypertension and obesity and contributes to cardiac diastolic dysfunction, a condition for which no treatment currently exists. In light of recent reports that antihyperglycemia incretin enhancing dipeptidyl peptidase (DPP)-4 inhibitors exert cardioprotective effects, we examined the hypothesis that DPP-4 inhibition with saxagliptin (Saxa) attenuates angiotensin II (Ang II)-induced cardiac diastolic dysfunction. Male C57BL/6J mice were infused with either Ang II (500 ng/kg/min) or vehicle for 3 weeks receiving either Saxa (10 mg/kg/d) or placebo during the final 2 weeks. Echocardiography revealed Ang II-induced diastolic dysfunction, evidenced by impaired septal wall motion and prolonged isovolumic relaxation, coincident with aortic stiffening. Ang II induced cardiac hypertrophy, coronary periarterial fibrosis, TRAF3-interacting protein 2 (TRAF3IP2)-dependent proinflammatory signaling [p-p65, p-c-Jun, interleukin (IL)-17, IL-18] associated with increased cardiac macrophage, but not T cell, gene expression. Flow cytometry revealed Ang II-induced increases of cardiac CD45+F4/80+CD11b+ and CD45+F4/80+CD11c+ macrophages and CD45+CD4+ lymphocytes. Treatment with Saxa reduced plasma DPP-4 activity and abrogated Ang II-induced cardiac diastolic dysfunction independent of aortic stiffening or blood pressure. Furthermore, Saxa attenuated Ang II-induced periarterial fibrosis and cardiac inflammation, but not hypertrophy or cardiac macrophage infiltration. Analysis of Saxa-induced changes in cardiac leukocytes revealed Saxa-dependent reduction of the Ang II-mediated increase of cardiac CD11c messenger RNA and increased cardiac CD8 gene expression and memory CD45+CD8+CD44+ lymphocytes. In summary, these results demonstrate that DPP-4 inhibition with Saxa prevents Ang II-induced cardiac diastolic dysfunction, fibrosis, and inflammation associated with unique shifts in CD11c-expressing leukocytes and CD8+ lymphocytes.
Collapse
Affiliation(s)
- Scott M. Brown
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Cassandra E. Smith
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Endocrinology, Diabetes, and Metabolism, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Alex I. Meuth
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Maloree Khan
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Annayya R. Aroor
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Endocrinology, Diabetes, and Metabolism, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Hannah M. Cleeton
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Gerald A. Meininger
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - James R. Sowers
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Endocrinology, Diabetes, and Metabolism, University of Missouri School of Medicine, Columbia, Missouri 65212
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Vincent G. DeMarco
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Endocrinology, Diabetes, and Metabolism, University of Missouri School of Medicine, Columbia, Missouri 65212
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Bysani Chandrasekar
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Ravi Nistala
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Nephrology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Shawn B. Bender
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
27
|
Affiliation(s)
- Gary L Pierce
- From the Department of Health and Human Physiology (G.L.P.), Abboud Cardiovascular Research Center (G.L.P.), and UIHC Center for Hypertension Research (G.L.P.), The University of Iowa, Iowa City.
| |
Collapse
|
28
|
Reho JJ, Rahmouni K. Oxidative and inflammatory signals in obesity-associated vascular abnormalities. Clin Sci (Lond) 2017; 131:1689-1700. [PMID: 28667067 DOI: 10.1042/cs20170219] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2025]
Abstract
Obesity is associated with increased cardiovascular morbidity and mortality in part due to vascular abnormalities such as endothelial dysfunction and arterial stiffening. The hypertension and other health complications that arise from these vascular defects increase the risk of heart diseases and stroke. Prooxidant and proinflammatory signaling pathways as well as adipocyte-derived factors have emerged as critical mediators of obesity-associated vascular abnormalities. Designing treatments aimed specifically at improving the vascular dysfunction caused by obesity may provide an effective therapeutic approach to prevent the cardiovascular sequelae associated with excessive adiposity. In this review, we discuss the recent evidence supporting the role of oxidative stress and cytokines and inflammatory signals within the vasculature as well as the impact of the surrounding perivascular adipose tissue (PVAT) on the regulation of vascular function and arterial stiffening in obesity. In particular, we focus on the highly plastic nature of the vasculature in response to altered oxidant and inflammatory signaling and highlight how weight management can be an effective therapeutic approach to reduce the oxidative stress and inflammatory signaling and improve vascular function.
Collapse
Affiliation(s)
- John J Reho
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, U.S.A
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, U.S.A.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, U.S.A
- Obesity Research and Education Initiative, University of Iowa, Iowa City, Iowa, U.S.A
- Center for Hypertension Research, University of Iowa, Iowa City, Iowa, U.S.A
| |
Collapse
|
29
|
Manrique-Acevedo C, Ramirez-Perez FI, Padilla J, Vieira-Potter VJ, Aroor AR, Barron BJ, Chen D, Haertling D, Declue C, Sowers JR, Martinez-Lemus LA. Absence of Endothelial ERα Results in Arterial Remodeling and Decreased Stiffness in Western Diet-Fed Male Mice. Endocrinology 2017; 158:1875-1885. [PMID: 28430983 PMCID: PMC5460939 DOI: 10.1210/en.2016-1831] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/13/2017] [Indexed: 01/16/2023]
Abstract
The role of estrogen receptor-α (ERα) signaling in the vasculature of females has been described under different experimental conditions and our group recently reported that lack of endothelial cell (EC) ERα in female mice fed a Western diet (WD) results in amelioration of vascular stiffness. Conversely, the role of ERα in the male vasculature in this setting has not been explored. In conditions of overnutrition and insulin resistance, augmented arterial stiffness, endothelial dysfunction, and arterial remodeling contribute to the development of cardiovascular disease. Here, we used a rodent model of decreased ERα expression in ECs [endothelial cell estrogen receptor-α knockout (EC-ERαKO)] to test the hypothesis that, similar to our findings in females, loss of ERα signaling in the endothelium of insulin-resistant males would result in decreased arterial stiffness. EC-ERαKO male mice and same-sex littermates were fed a WD (high in fructose and fat) for 20 weeks and then assessed for vascular function and stiffness. EC-ERαKO mice were heavier than littermates but exhibited decreased vascular stiffness without differences in endothelial-dependent vasodilatory responses. Mesenteric arteries from EC-ERαKO mice had significantly increased diameters, wall cross-sectional areas, and mean wall thicknesses, indicative of outward hypertrophic remodeling. This remodeling paralleled an increased vessel wall content of collagen and elastin, inhibition of matrix metalloproteinase activation and a decrease of the incremental modulus of elasticity. In addition, internal elastic lamina fenestrae were more abundant in the EC-ERαKO mice. In conclusion, loss of endothelial ERα reduces vascular stiffness in male mice fed a WD with an associated outward hypertrophic remodeling of resistance arteries.
Collapse
Affiliation(s)
- Camila Manrique-Acevedo
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri 65212
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Biological Engineering, University of Missouri, Columbia, Missouri 65211
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri 65211
- Department of Child Health, University of Missouri, Columbia, Missouri 65212
| | - Victoria J Vieira-Potter
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri 65211
| | - Annayya R Aroor
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri 65212
| | - Brady J Barron
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri 65212
| | - Dongqing Chen
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri 65212
| | - Dominic Haertling
- School of Medicine, University of Missouri, Columbia, Missouri 65212
| | - Cory Declue
- School of Medicine, University of Missouri, Columbia, Missouri 65212
| | - James R Sowers
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri 65212
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Biological Engineering, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212
| |
Collapse
|
30
|
Lastra G, Manrique C, Jia G, Aroor AR, Hayden MR, Barron BJ, Niles B, Padilla J, Sowers JR. Xanthine oxidase inhibition protects against Western diet-induced aortic stiffness and impaired vasorelaxation in female mice. Am J Physiol Regul Integr Comp Physiol 2017; 313:R67-R77. [PMID: 28539355 DOI: 10.1152/ajpregu.00483.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/25/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022]
Abstract
Consumption of a high-fat, high-fructose diet [Western diet (WD)] promotes vascular stiffness, a critical factor in the development of cardiovascular disease (CVD). Obese and diabetic women exhibit greater arterial stiffness than men, which contributes to the increased incidence of CVD in these women. Furthermore, high-fructose diets result in elevated plasma concentrations of uric acid via xanthine oxidase (XO) activation, and uric acid elevation is also associated with increased vascular stiffness. However, the mechanisms by which increased xanthine oxidase activity and uric acid contribute to vascular stiffness in obese females remain to be fully uncovered. Accordingly, we examined the impact of XO inhibition on endothelial function and vascular stiffness in female C57BL/6J mice fed a WD or regular chow for 16 wk. WD feeding resulted in increased arterial stiffness, measured by atomic force microscopy in aortic explants (16.19 ± 1.72 vs. 5.21 ± 0.54 kPa, P < 0.05), as well as abnormal aortic endothelium-dependent and -independent vasorelaxation. XO inhibition with allopurinol (widely utilized in the clinical setting) substantially improved vascular relaxation and attenuated stiffness (16.9 ± 0.50 vs. 3.44 ± 0.50 kPa, P < 0.05) while simultaneously lowering serum uric acid levels (0.55 ± 0.98 vs. 0.21 ± 0.04 mg/dL, P < 0.05). In addition, allopurinol improved WD-induced markers of fibrosis and oxidative stress in aortic tissue, as analyzed by immunohistochemistry and transmission electronic microscopy. Collectively, these results demonstrate that XO inhibition protects against WD-induced vascular oxidative stress, fibrosis, impaired vasorelaxation, and aortic stiffness in females. Furthermore, excessive oxidative stress resulting from XO activation appears to play a key role in mediating vascular dysfunction induced by chronic exposure to WD consumption in females.
Collapse
Affiliation(s)
- Guido Lastra
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri; .,Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri.,University of Missouri, School of Medicine, Research Service Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri
| | - Camila Manrique
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri.,Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri.,University of Missouri, School of Medicine, Research Service Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri
| | - Guanghong Jia
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri.,Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri.,University of Missouri, School of Medicine, Research Service Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri
| | - Annayya R Aroor
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri.,Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri.,University of Missouri, School of Medicine, Research Service Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri
| | - Melvin R Hayden
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri.,Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri.,University of Missouri, School of Medicine, Research Service Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri
| | - Brady J Barron
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri.,Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri.,University of Missouri, School of Medicine, Research Service Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri
| | - Brett Niles
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri.,Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri.,University of Missouri, School of Medicine, Research Service Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri.,Department of Child Health, University of Missouri, Columbia, Missouri; and
| | - James R Sowers
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri.,Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri.,University of Missouri, School of Medicine, Research Service Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| |
Collapse
|
31
|
Bostick B, Aroor AR, Habibi J, Durante W, Ma L, DeMarco VG, Garro M, Hayden MR, Booth FW, Sowers JR. Daily exercise prevents diastolic dysfunction and oxidative stress in a female mouse model of western diet induced obesity by maintaining cardiac heme oxygenase-1 levels. Metabolism 2017; 66:14-22. [PMID: 27923445 PMCID: PMC6581195 DOI: 10.1016/j.metabol.2016.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/19/2016] [Accepted: 09/12/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Obesity is a global epidemic with profound cardiovascular disease (CVD) complications. Obese women are particularly vulnerable to CVD, suffering higher rates of CVD compared to non-obese females. Diastolic dysfunction is the earliest manifestation of CVD in obese women but remains poorly understood with no evidence-based therapies. We have shown early diastolic dysfunction in obesity is associated with oxidative stress and myocardial fibrosis. Recent evidence suggests exercise may increase levels of the antioxidant heme oxygenase-1 (HO-1). Accordingly, we hypothesized that diastolic dysfunction in female mice consuming a western diet (WD) could be prevented by daily volitional exercise with reductions in oxidative stress, myocardial fibrosis and maintenance of myocardial HO-1 levels. MATERIALS/METHODS Four-week-old female C57BL/6J mice were fed a high-fat/high-fructose WD for 16weeks (N=8) alongside control diet fed mice (N=8). A separate cohort of WD fed females was allowed a running wheel for the entire study (N=7). Cardiac function was assessed at 20weeks by high-resolution cardiac magnetic resonance imaging (MRI). Functional assessment was followed by immunohistochemistry, transmission electron microscopy (TEM) and Western blotting to identify pathologic mechanisms and assess HO-1 protein levels. RESULTS There was no significant body weight decrease in exercising mice, normalized body weight 14.3g/mm, compared to sedentary mice, normalized body weight 13.6g/mm (p=0.38). Total body fat was also unchanged in exercising, fat mass of 6.6g, compared to sedentary mice, fat mass 7.4g (p=0.55). Exercise prevented diastolic dysfunction with a significant reduction in left ventricular relaxation time to 23.8ms for exercising group compared to 33.0ms in sedentary group (p<0.01). Exercise markedly reduced oxidative stress and myocardial fibrosis with improved mitochondrial architecture. HO-1 protein levels were increased in the hearts of exercising mice compared to sedentary WD fed females. CONCLUSIONS This study provides seminal evidence that exercise can prevent diastolic dysfunction in WD-induced obesity in females even without changes in body weight. Furthermore, the reduction in myocardial oxidative stress and fibrosis and improved HO-1 levels in exercising mice suggests a novel mechanism for the antioxidant effect of exercise.
Collapse
Affiliation(s)
- Brian Bostick
- Division of Cardiovascular Medicine, Diabetes Cardiovascular Center, University of Missouri Columbia, Columbia, MO, USA; Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Annayya R Aroor
- Department of Medicine, University of Missouri, Columbia, MO, USA; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Division of Endocrinology and Metabolism, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO, USA
| | - Javad Habibi
- Department of Medicine, University of Missouri, Columbia, MO, USA; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Division of Endocrinology and Metabolism, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO, USA
| | - William Durante
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Lixin Ma
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Department of Radiology, University of Missouri, Columbia, MO, USA
| | - Vincent G DeMarco
- Division of Endocrinology and Metabolism, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO, USA
| | - Mona Garro
- Division of Endocrinology and Metabolism, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO, USA
| | - Melvin R Hayden
- Department of Medicine, University of Missouri, Columbia, MO, USA; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Division of Endocrinology and Metabolism, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO, USA
| | - Frank W Booth
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA; Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - James R Sowers
- Department of Medicine, University of Missouri, Columbia, MO, USA; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Division of Endocrinology and Metabolism, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|