1
|
Kılınçer M, Gürsoy E. Assessing the short-term hematological and pulmonary effects of air pollution: a cross-sectional study in a Turkish urban setting. BMC Public Health 2025; 25:16. [PMID: 39748373 PMCID: PMC11697805 DOI: 10.1186/s12889-024-21246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Air pollution has become a significant global public health concern, with evidence linking it to various adverse health outcomes, including respiratory and cardiovascular diseases. While numerous studies have investigated the effects of these particulate and gaseous pollutants on both healthy individuals and patients, further research is needed to clarify the short-term hematological and pulmonary responses in individuals without underlying health conditions. This study aims to explore the relationship between air quality, hematological parameters, and pulmonary function in a healthy population in Turkey. METHODS This cross-sectional study included 326 healthy, non-smoking adults aged 18-65 years. Air Quality Index (AQI) data for the examination day and the preceding 5 days were collected. Hematological parameters and pulmonary function tests were analyzed. Spearman and Pearson correlation tests were used to compare numerical variables. Group comparisons were conducted using the independent samples t-test and Mann-Whitney U test. RESULTS The mean AQI on the day of the medical visit was 68.20, indicating moderate air quality. Significant negative correlations were observed between AQI and hematological parameters, including leukocyte (r = -0.111, p = 0.046), lymphocyte (r = -0.134, p = 0.016), and platelet counts (r = -0.141, p = 0.011). Similar negative correlations were found for the 5-day average AQI. For pulmonary parameters, AQI was negatively correlated with FEF50% (r = -0.172, p = 0.002), FEF25% (r = -0.140, p = 0.012), FEV1/FVC% (r = -0.125, p = 0.024), and FEF75% (r = -0.124, p = 0.025). CONCLUSION Short-term exposure to moderate air pollution significantly impacts hematological parameters and specific pulmonary function indices, even in healthy individuals. These findings emphasize the importance of continuous air quality monitoring and public health interventions to mitigate the health risks of air pollution.
Collapse
Affiliation(s)
- Mehmet Kılınçer
- Niksar State Hospital, Family Medicine Clinic, Tokat, 60600, Turkey
| | - Ersan Gürsoy
- Department of Family Medicine, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, 24100, Turkey.
| |
Collapse
|
2
|
Yang Y, Wu H, Zeng Y, Xu F, Zhao S, Zhang L, An Z, Li H, Li J, Song J, Wu W. Short-term exposure to air pollution on peripheral white blood cells and inflammation biomarkers: a cross-sectional study on rural residents. BMC Public Health 2024; 24:1702. [PMID: 38926692 PMCID: PMC11201365 DOI: 10.1186/s12889-024-19116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Effects of short-term exposure to ambient air pollution on systemic immunological and inflammatory biomarkers in rural population have not been adequately characterized. From May to July 2021, 5816 participants in rural villages of northern Henan Province, China, participated in this cross-sectional study. Blood biomarkers of systemic inflammation were determined including peripheral white blood cells (WBC), eosinophils (EOS), basophils (BAS), monocytes (MON), lymphocytes (LYM), neutrophils (NEU), neutrophil-lymphocyte ratio (NLR), and serum high-sensitivity C-reactive protein (hs-CRP). The concentrations of ambient fine particulate matter (PM2.5), PM10, nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) were assessed up to 7 days prior to the blood draw. A generalized linear model was used to analyze the associations between air pollution exposure and the above-mentioned blood biomarkers. Significantly positive associations were revealed between PM2.5, CO and WBC; CO, O3 and LYM; PM2.5, PM10, SO2, CO and NEU; PM2.5, PM10, SO2, CO and NLR; PM2.5, PM10, SO2, NO2, CO, O3 and hs-CRP. Meanwhile, negative associations were found between SO2 and WBC; PM2.5, PM10, NO2, CO, or O3 and EOS; PM2.5, SO2, or CO and BAS; SO2, NO2 or O3 and MON; PM2.5, PM10, SO2, or NO2 and LYM. Moreover, men, individuals with normal body mass index (BMI), current smokers, and those older than 60 years were found vulnerable to air pollution effects. Taken together, short-term exposure to air pollution was associated with systemic inflammatory responses, providing insight into the potential mechanisms for air pollution-induced detrimental systemic effects in rural residents.
Collapse
Affiliation(s)
- Yishu Yang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Hui Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Yuling Zeng
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Fei Xu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Shuaiqi Zhao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Ling Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Huijun Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China.
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China.
| |
Collapse
|
3
|
Wu YK, Pacchioni TG, Gehi AK, Fitzgerald KE, Tailor DV. Emotional Eating and Cardiovascular Risk Factors in the Police Force: The Carolina Blue Project. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:332. [PMID: 38541330 PMCID: PMC10970079 DOI: 10.3390/ijerph21030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/24/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
There is an association between emotional eating and cardiovascular disease (CVD) risk factors; however, little is known about this association in the police force. This study explores the associations between emotional eating and CVD risk factors in law enforcement officers in North Carolina. Four hundred and five officers completed The Emotional Eating Scale, and 221 of them completed the assessment for CVD-related markers. Descriptive statistics, Pearson's correlation, and multiple linear regression analyses were performed. Emotional eating in response to anger was significantly positively associated with body weight (β = 1.51, t = 2.07, p = 0.04), diastolic blood pressure (β = 0.83, t = 2.18, p = 0.03), and mean arterial pressure (β = 0.84, t = 2.19, p = 0.03) after adjusting for age and use of blood pressure medicine. Emotional eating in response to depression was significantly positively associated with triglycerides (β = 5.28, t = 2.49, p = 0.02), while the emotional eating in response to anxiety was significantly negatively associated with triglycerides (β = -11.42, t = -2.64, p = 0.01), after adjusting for age and use of cholesterol medicine. Our findings offer new insights to address emotional eating and lower CVD risk in law enforcement officers.
Collapse
Affiliation(s)
- Ya-Ke Wu
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tany G. Pacchioni
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Anil K. Gehi
- Division of Cardiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Katherine E. Fitzgerald
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Divya V. Tailor
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| |
Collapse
|
4
|
Upadhya AR, Kushwaha M, Agrawal P, Gingrich JD, Asundi J, Sreekanth V, Marshall JD, Apte JS. Multi-season mobile monitoring campaign of on-road air pollution in Bengaluru, India: High-resolution mapping and estimation of quasi-emission factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169987. [PMID: 38211861 DOI: 10.1016/j.scitotenv.2024.169987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Mobile monitoring can supplement regulatory measurements, particularly in low-income countries where stationary monitoring is sparse. Here, we report results from a ~ year-long mobile monitoring campaign of on-road concentrations of black carbon (BC), ultrafine particles (UFP), and carbon dioxide (CO2) in Bengaluru, India. The study route included 150 unique kms (average: ~22 repeat measurements per monitored road segment). After cleaning the data for known instrument artifacts and sensitivities, we generated 30 m high-resolution stable 'data only' spatial maps of BC, UFP, and CO2 for the study route. For the urban residential areas, the mean BC levels for residential roads, arterials, and highways were ~ 10, 22, and 56 μg m-3, respectively. A similar pattern (highways being characterized by highest pollution levels) was also observed for UFP and CO2. Using the data from repeat measurements, we carried out a Monte Carlo subsampling analysis to understand the minimum number of repeat measures to generate stable maps of pollution in the city. Leveraging the simultaneous nature of the measurements, we also mapped the quasi-emission factors (QEF) of the pollutants under investigation. The current study is the first multi-season mobile monitoring exercise conducted in a low or middle -income country (LMIC) urban setting that oversampled the study route and investigated the optimum number of repeat rides required to achieve representative pollution spatial patterns characterized with high precision and low bias. Finally, the results are discussed in the context of technical aspects of the campaign, limitations, and their policy relevance for our study location and for other locations. Given the day-to-day variability in the pollution levels, the presence of dynamic and unorganized sources, and active government pollution mitigation policies, multi-year mobile measurement campaigns would help test the long-term representativeness of the current results.
Collapse
Affiliation(s)
| | | | - Pratyush Agrawal
- Center for Study of Science, Technology, and Policy, Bengaluru 560094, India
| | - Jonathan D Gingrich
- Civil, Architectural, and Environmental Engineering, University of Texas at Austin, TX 51250, United States of America
| | - Jai Asundi
- Center for Study of Science, Technology, and Policy, Bengaluru 560094, India
| | - V Sreekanth
- Center for Study of Science, Technology, and Policy, Bengaluru 560094, India.
| | - Julian D Marshall
- Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, United States of America
| | - Joshua S Apte
- Civil and Environmental Engineering, University of California, Berkeley, CA 94720, United States of America
| |
Collapse
|
5
|
Ghazihosseini S, De Rosa C, Trimarco V, Izzo R, Morisco C, Esposito G. The Environmental Pollution and Cardiovascular Risk: The Role of Health Surveillance and Legislative Interventions in Cardiovascular Prevention. High Blood Press Cardiovasc Prev 2023; 30:533-538. [PMID: 38070034 PMCID: PMC10721657 DOI: 10.1007/s40292-023-00612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Environmental pollution in considered an established determinant of non-communicable illness, including cardiovascular diseases (CVDs). Air pollution is the result of a complex combination of chemical, physical, and biological agents, and represents one of the main causes of mortality and morbidity in the world population. It is responsible for 7.6% of global mortality. In this regard, it has been documented that it increases the risk of CVDs and major adverse cardiovascular and cerebrovascular events. In northern regions of China, long-term exposures to the particulate matter < 2.5 µm (PM2.5) increase in the risk of ischemic heart disease by almost two-folds. Similarly, the additional risk for stroke, increases by almost 10% for long-term exposure to PM2.5. The detrimental effects of air pollution on cardiovascular system are particularly manifest in vulnerable subjects, such as the elderly, patients with heart disease, and obese individuals. Therefore, nowadays, cardiovascular prevention strategies, in addition to controlling traditional risk factors, should also include measures to improve the environment. This goal can be achieved by the implementation of the health surveillance in occupational medicine and by the extensive application of the national and international legislative measures. In fact, the health surveillance represents a crucial preventive measure for workers exposed to health risks (chemical, physical agents, etc.) that may lead to occupational diseases after long-term exposure. On the other hand, since environmental pollution does not recognize well-defined boundaries, only the implementation of regulations among large territorial areas can be useful to improve the quality of environment.
Collapse
Affiliation(s)
- Seyedali Ghazihosseini
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, Napoli, Via S. Pansini, 80131, Naples, Italy
| | - Carlo De Rosa
- Medicina Legale Università della Tuscia, Viterbo, Italy
| | - Valentina Trimarco
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, Napoli, Via S. Pansini, 80131, Naples, Italy
| | - Raffaele Izzo
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, Napoli, Via S. Pansini, 80131, Naples, Italy
| | - Carmine Morisco
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, Napoli, Via S. Pansini, 80131, Naples, Italy.
| | - Giovanni Esposito
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, Napoli, Via S. Pansini, 80131, Naples, Italy
| |
Collapse
|
6
|
Bouchriti Y, Korrida A, Haddou MA, Achbani A, Sine H, Rida J, Sine H, Amiha R, Kabbachi B. Mortality and morbidity assessment attributed to short- and long-term exposure to fine particles in ambient air of Agadir city, Morocco: The AirQ model approach. Environ Anal Health Toxicol 2023; 38:e2023009-0. [PMID: 37933103 PMCID: PMC10628402 DOI: 10.5620/eaht.2023009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/18/2023] [Indexed: 11/08/2023] Open
Abstract
It is well established that respiratory mortality and morbidity are associated with high concentrations of fine particles such as PM2.5. The aim of this study was to evaluate the long- and short-term impacts of PM2.5 on the population of Agadir, Morocco, using AirQ 2.1.1 software. The mean PM2.5 values were obtained from data collected at three sites. Baseline incidence data were obtained from the literature, and relative risk (RR) values were referenced from the World Health Organization. This study quantified long-term total mortality (LT-TM), lung cancer mortality (LT-LC), morbidity from acute lower respiratory tract infections (LT-ALRI), and morbidity from chronic obstructive pulmonary disease (LT-COPD), as well as short-term total mortality (ST-TM). The attributable proportions (AP) of LT-TM and LT-LC were estimated to 14.19% and 18.42%, respectively. Their excess deaths were estimated to 279 and 11 persons, respectively, and their RRs to 1.16 (95% CI: 1.10-1.22) and 1.23 (95% CI: 1.12-1.37), respectively. Furthermore, the AP of LT-ALRI and LT-COPD were estimated to 14.36% and 15.68%, respectively, their excess deaths to 33 and 4, and their RRs to 1.17 (95% CI: 1.11-1.31) and 1.19 (95% CI: 1.00-1.02), respectively. In comparison, the AP of ST-TM was estimated to 1.27%, with a 25-person excess death rate. This study was conducted to inform decision-making and to promote local policies on ambient air quality.
Collapse
Affiliation(s)
- Youssef Bouchriti
- Laboratory of Geosciences, Environment and Geomatics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
- High Institute of Nursing Professions and Health Techniques of Agadir, Agadir, Morocco
| | - Amal Korrida
- High Institute of Nursing Professions and Health Techniques of Agadir, Health Sciences and Environment Laboratory, Health Sciences, Epidemiology and Human Pathologies Research Team (ER-2SEPH), Agadir, Morocco
- Research Laboratory of Innovation in Health Sciences (LARISS), Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Ait Haddou
- Laboratory of Geosciences, Environment and Geomatics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Abderrahmane Achbani
- Laboratory of Cell Biology and Molecular Genetics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
- High Institute of Nursing Professions and Health Techniques, Marrakech, Morocco
| | - Hasnaa Sine
- Laboratory of Cell Biology and Molecular Genetics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
- High Institute of Nursing Professions and Health Techniques, Marrakech, Morocco
| | - Jamila Rida
- Health Sciences Research Laboratory, Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir, Morocco
| | - Hayat Sine
- High Institute of Nursing Professions and Health Techniques of Agadir, Agadir, Morocco
- Clinical Epidemiology and Medico-Surgical Sciences, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Rachid Amiha
- Laboratory of Geosciences, Environment and Geomatics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Belkacem Kabbachi
- Laboratory of Geosciences, Environment and Geomatics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
7
|
Xue Y, Cong J, Bai Y, Zheng P, Hu G, Kang Y, Wu Y, Cui L, Jia G, Wang T. Associations between Short-Term Air Pollution Exposure and the Peripheral Leukocyte Distribution in the Adult Male Population in Beijing, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4695. [PMID: 36981603 PMCID: PMC10048523 DOI: 10.3390/ijerph20064695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The inflammatory effects of air pollution exposure may account for increased public health risk. However, evidence regarding the effects of air pollution on peripheral blood leukocytes in the population is inconsistent. We investigated the association between the short-term effects of ambient air pollution and the peripheral blood leukocyte distribution in adult men in Beijing, China. From January 2015 to December 2019, a total of 11,035 men aged 22-45 years in Beijing were included in the study. Their peripheral blood routine parameters were measured. The ambient pollution monitoring parameters (particulate matter ≤ 10 µm (PM10), PM2.5, nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and ozone (O3)) were collected daily. The potential association between ambient air pollution exposure and peripheral blood leukocyte count and classification was analyzed with generalized additive models (GAMs). After adjusting for confounding factors, PM2.5, PM10, SO2, NO2, O3, and CO were significantly correlated with changes to at least one peripheral leukocyte subtype. Short-term and cumulative air pollutant exposure dramatically increased the participants' peripheral blood neutrophil, lymphocyte, and monocyte numbers and decreased eosinophils and basophils. Our results demonstrated that air pollution induced inflammation in the participants. The peripheral leukocyte count and classification can be utilized to evaluate the inflammation induced by air pollution in the exposed male population.
Collapse
Affiliation(s)
- Yuting Xue
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Ji Cong
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yi Bai
- Department of Epidemiology, School of Public Health, Peking University, Beijing 100191, China
| | - Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Guiping Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- School of Medical Science and Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Yulin Kang
- Institute of Environmental Information, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yonghua Wu
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Tiancheng Wang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
8
|
Wang R, Liu J, Qin Y, Chen Z, Li J, Guo P, Shan L, Li Y, Hao Y, Jiao M, Qi X, Meng N, Jiang S, Kang Z, Wu Q. Global attributed burden of death for air pollution: Demographic decomposition and birth cohort effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160444. [PMID: 36435245 DOI: 10.1016/j.scitotenv.2022.160444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/19/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND To identify the high-risk pollutants and evolving patterns of attributed mortality burden, more detailed evidence is needed to examine the contribution of different air pollutants to death across the disease spectrum, particularly considering population change as well as the context of the era. METHODS We explored the evolving patterns of all-cause and disease-specific deaths attributed to overall air pollution and its main subcategories by using the estimated annual percentage change and additionally assessing the contribution of population growth and ageing to death burden using the decomposition method. Age-period-cohort model and Joinpoint analysis were used to evaluate birth cohort effects specific-disease death burden owing to high-risk air pollution subcategories. FINDINGS The number of deaths caused by air pollution increased by 2.62 %, which was driven by ambient particulate matter pollution and ambient ozone pollution, whereas household air pollution decreased. Population ageing contributed 28.88 % of the deaths increase change for air pollution. Compared with other subcategories, the age-standardized mortality rate (ASMR) attributed to ambient particulate matter pollution remained the heaviest attributed death burden, comprehensively considering of bivariate burden. In 2019, ischemic heart disease attributed to ambient particulate matter pollution exhibited the highest ASMR, which may be impacted by a rapid increase era from 1950 to 1980 birth cohort in woman and 1970 to 1990 birth cohort in man. Diabetes mellitus attributed to ambient particulate matter pollution showed the largest increase for ASMR, which was driven primarily by men born 1910-1975 and women born 1950-1975.Uzbekistan showed the highest ASMR for ischemic heart disease, with Equatorial Guinea showing the fastest increase for diabetes mellitus. CONCLUSION Priority intervention targets for air pollution and health should emphasize the susceptibility of the elderly population as well as the structural factors of the era, in particular sensitive diseases to the ambient particulate matter pollution.
Collapse
Affiliation(s)
- Rizhen Wang
- Department of Health Policy, School of Health Management, Harbin Medical University, Harbin 150081, China
| | - Jingjing Liu
- Department of Health Policy, School of Health Management, Harbin Medical University, Harbin 150081, China
| | - Yinghua Qin
- Department of Health Policy, School of Health Management, Harbin Medical University, Harbin 150081, China; Department of Health Economy and Social Security, College of Humanities and Management, Guilin Medical University, Guilin 541199, China
| | - Zhuo Chen
- College of Public Health, University of Georgia, Athens 30602, GA, USA; School of Economics, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Jiacheng Li
- Department of Health Policy, School of Health Management, Harbin Medical University, Harbin 150081, China
| | - Pengfei Guo
- Department of Health Policy, School of Health Management, Harbin Medical University, Harbin 150081, China
| | - Linghan Shan
- Department of Health Policy, School of Health Management, Harbin Medical University, Harbin 150081, China
| | - Ye Li
- Department of Health Policy, School of Health Management, Harbin Medical University, Harbin 150081, China
| | - Yanhua Hao
- Department of Health Policy, School of Health Management, Harbin Medical University, Harbin 150081, China
| | - Mingli Jiao
- Department of Health Policy, School of Health Management, Harbin Medical University, Harbin 150081, China
| | - Xinye Qi
- Department of Social Medicine and Health Management, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Nan Meng
- Department of Health Policy, School of Health Management, Harbin Medical University, Harbin 150081, China
| | - Shengchao Jiang
- Department of Personnel Department, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Zheng Kang
- Department of Health Policy, School of Health Management, Harbin Medical University, Harbin 150081, China
| | - Qunhong Wu
- Department of Health Policy, School of Health Management, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
9
|
Pouriamehr S, Dabidi Roshan V, Shirani F. Does long-term exposure to air pollution suppress parasympathetic reactivation after incremental exercise among healthy males and females? Inhal Toxicol 2023; 35:14-23. [PMID: 36416472 DOI: 10.1080/08958378.2022.2149905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE As consequences of industrial processes, air pollution has led to increased cardiovascular diseases resulting in mortality. However, there are few pieces of evidence expressing physical fitness and gender impacts in such environments. Regarding long-term exposure to air pollution, this study aimed to determine the effect of physical fitness on post-exercise cardiac parasympathetic reactivation among healthy males and females. METHODS 120 individuals (46 ± 5 years) participated and were categorized into two main groups (n = 60; EG, CG); (1) The experimental group included individuals living in an air-polluted environment; (2) The control group included the citizens of a clean air region; and two physical fitness status subgroups (n = 30; active vs. sedentary) across both sexes. The heart rate (HR) changes at different timing after performing an incremental exercise, and T30 were calculated as metrics of cardiac parasympathetic reactivation. RESULTS The heart rate recovery values were substantially lower in EG in comparison to CG (p < 0.001) at different timing, while, T30 was significantly greater in residents of the air-polluted city compared to CG (p < 0.001). As for heart rate recovery at the 5th minute, the values were significantly lower in the steady-female group in comparison to the active females living in the air-polluted city (p < 0.01). CONCLUSION Based on our findings, although physical fitness modifies the adverse impacts of long-term exposure to air pollution on post-exercise cardio-parasympathetic reactivation, it appears to parallel the acute/intermediate recovery of the thermoregulatory and vascular systems, among both sexes, it does not prevent them.
Collapse
Affiliation(s)
- Sara Pouriamehr
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran
| | - Valiollah Dabidi Roshan
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran.,Athletic Performance and Health Research Center, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran
| | - Farimah Shirani
- Ph.D. Nursing and Midwifery Care Research Center, Faculty of Nursing and Midwifery, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
10
|
Basilio E, Chen R, Fernandez AC, Padula AM, Robinson JF, Gaw SL. Wildfire Smoke Exposure during Pregnancy: A Review of Potential Mechanisms of Placental Toxicity, Impact on Obstetric Outcomes, and Strategies to Reduce Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13727. [PMID: 36360613 PMCID: PMC9657128 DOI: 10.3390/ijerph192113727] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Climate change is accelerating the intensity and frequency of wildfires globally. Understanding how wildfire smoke (WS) may lead to adverse pregnancy outcomes and alterations in placental function via biological mechanisms is critical to mitigate the harms of exposure. We aim to review the literature surrounding WS, placental biology, biological mechanisms underlying adverse pregnancy outcomes as well as interventions and strategies to avoid WS exposure in pregnancy. This review includes epidemiologic and experimental laboratory-based studies of WS, air pollution, particulate matter (PM), and other chemicals related to combustion in relation to obstetric outcomes and placental biology. We summarized the available clinical, animal, and placental studies with WS and other combustion products such as tobacco, diesel, and wood smoke. Additionally, we reviewed current recommendations for prevention of WS exposure. We found that there is limited data specific to WS; however, studies on air pollution and other combustion sources suggest a link to inflammation, oxidative stress, endocrine disruption, DNA damage, telomere shortening, epigenetic changes, as well as metabolic, vascular, and endothelial dysregulation in the maternal-fetal unit. These alterations in placental biology contribute to adverse obstetric outcomes that disproportionally affect the most vulnerable. Limiting time outdoors, wearing N95 respirator face masks and using high quality indoor air filters during wildfire events reduces exposure to related environmental exposures and may mitigate morbidities attributable to WS.
Collapse
Affiliation(s)
- Emilia Basilio
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Rebecca Chen
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | | | - Amy M. Padula
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Joshua F. Robinson
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Stephanie L. Gaw
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
11
|
Stapelberg NJC, Branjerdporn G, Adhikary S, Johnson S, Ashton K, Headrick J. Environmental Stressors and the PINE Network: Can Physical Environmental Stressors Drive Long-Term Physical and Mental Health Risks? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13226. [PMID: 36293807 PMCID: PMC9603079 DOI: 10.3390/ijerph192013226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Both psychosocial and physical environmental stressors have been linked to chronic mental health and chronic medical conditions. The psycho-immune-neuroendocrine (PINE) network details metabolomic pathways which are responsive to varied stressors and link chronic medical conditions with mental disorders, such as major depressive disorder via a network of pathophysiological pathways. The primary objective of this review is to explore evidence of relationships between airborne particulate matter (PM, as a concrete example of a physical environmental stressor), the PINE network and chronic non-communicable diseases (NCDs), including mental health sequelae, with a view to supporting the assertion that physical environmental stressors (not only psychosocial stressors) disrupt the PINE network, leading to NCDs. Biological links have been established between PM exposure, key sub-networks of the PINE model and mental health sequelae, suggesting that in theory, long-term mental health impacts of PM exposure may exist, driven by the disruption of these biological networks. This disruption could trans-generationally influence health; however, long-term studies and information on chronic outcomes following acute exposure event are still lacking, limiting what is currently known beyond the acute exposure and all-cause mortality. More empirical evidence is needed, especially to link long-term mental health sequelae to PM exposure, arising from PINE pathophysiology. Relationships between physical and psychosocial stressors, and especially the concept of such stressors acting together to impact on PINE network function, leading to linked NCDs, evokes the concept of syndemics, and these are discussed in the context of the PINE network.
Collapse
Affiliation(s)
- Nicolas J. C. Stapelberg
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - Grace Branjerdporn
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - Sam Adhikary
- Mater Young Adult Health Centre, Mater Hospital, Brisbane, QID 4101, Australia
| | - Susannah Johnson
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
| | - Kevin Ashton
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - John Headrick
- School of Medical Science, Griffith University, Gold Coast, QID 4215, Australia
| |
Collapse
|
12
|
He F, Yanosky JD, Fernandez‐Mendoza J, Chinchilli VM, Al‐Shaar L, Vgontzas AN, Bixler EO, Liao D. Acute Impact of Fine Particulate Air Pollution on Cardiac Arrhythmias in a Population‐Based Sample of Adolescents: The Penn State Child Cohort. J Am Heart Assoc 2022; 11:e026370. [DOI: 10.1161/jaha.122.026370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
Fine particulate (fine particles with aerodynamic diameters ≤2.5 μm [PM
2.5
]) exposure has been associated with a risk of cardiac arrhythmias in adults. However, the association between PM
2.5
exposure and cardiac arrhythmias in adolescents remains unclear.
Methods and Results
To investigate the association and time course between PM
2.5
exposure with cardiac arrhythmias in adolescents, we analyzed the data collected from 322 adolescents who participated in the PSCC (Penn State Child Cohort) follow‐up examination. We obtained individual‐level 24‐hour PM
2.5
concentrations with a nephelometer. Concurrent with the PM
2.5
measure, we obtained 24‐hour ECG data using a Holter monitor, from which cardiac arrhythmias, including premature atrial contractions and premature ventricular contractions (PVCs), were identified. PM
2.5
concentration and numbers of premature atrial contractions/PVCs were summarized into 30‐minute‐based segments. Polynomial distributed lag models within a framework of a negative binomial model were used to assess the effect of PM
2.5
concentration on numbers of premature atrial contractions and PVCs. PM
2.5
exposure was associated with an acute increase in number of PVCs. Specifically, a 10 μg/m
3
increase in PM
2.5
concentration was associated with a 2% (95% CI, 0.4%–3.3%) increase in PVC counts 0.5 to 1.0, 1.0 to 1.5, and 1.5 to 2.0 hours after the exposure. Cumulatively, a 10 μg/m
3
increment in PM
2.5
was associated with a 5% (95% CI, 1%–10%) increase in PVC counts within 2 hours after exposure. PM
2.5
concentration was not associated with premature atrial contraction.
Conclusions
PM
2.5
exposure was associated with an acute increased number of ventricular arrhythmias in a population‐based sample of adolescents. The time course of the effect of PM
2.5
on ventricular arrhythmia is within 2 hours after exposure.
Collapse
Affiliation(s)
- Fan He
- Department of Public Health Sciences Pennsylvania State University College of Medicine Hershey PA
| | - Jeff D. Yanosky
- Department of Public Health Sciences Pennsylvania State University College of Medicine Hershey PA
| | - Julio Fernandez‐Mendoza
- Department of Psychiatry & Behavioral Health, Sleep Research and Treatment Center Pennsylvania State University College of Medicine Hershey PA
| | - Vernon M. Chinchilli
- Department of Public Health Sciences Pennsylvania State University College of Medicine Hershey PA
| | - Laila Al‐Shaar
- Department of Public Health Sciences Pennsylvania State University College of Medicine Hershey PA
| | - Alexandros N. Vgontzas
- Department of Psychiatry & Behavioral Health, Sleep Research and Treatment Center Pennsylvania State University College of Medicine Hershey PA
| | - Edward O. Bixler
- Department of Psychiatry & Behavioral Health, Sleep Research and Treatment Center Pennsylvania State University College of Medicine Hershey PA
| | - Duanping Liao
- Department of Public Health Sciences Pennsylvania State University College of Medicine Hershey PA
| |
Collapse
|
13
|
Zou C, Ke Y, Zhang W. Estimation of Low Rank High-Dimensional Multivariate Linear Models for Multi-Response Data. J Am Stat Assoc 2022. [DOI: 10.1080/01621459.2020.1799813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Changliang Zou
- School of Statistics and Data Sciences, Nankai University, Tianjin, China
| | - Yuan Ke
- Department of Statistics, University of Georgia, Athens, GA
| | - Wenyang Zhang
- Department of Mathematics, The University of York, York, UK
| |
Collapse
|
14
|
Alarabi AB, Lozano PA, Khasawneh FT, Alshbool FZ. The effect of emerging tobacco related products and their toxic constituents on thrombosis. Life Sci 2022; 290:120255. [PMID: 34953893 PMCID: PMC9118784 DOI: 10.1016/j.lfs.2021.120255] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 02/03/2023]
Abstract
Although conventional cigarette smoking is declining, emerging tobacco related products (ETRPs) are currently gaining ground, especially among the youth. These products include electronic cigarettes, waterpipes/hookah, cigars/cigarillo, smokeless tobacco, and heat-not-burn cigarettes. The observed increase in the use of ETRPs is multifactorial and complex but appears to be mainly driven by efforts from the major tobacco companies to reinvent themselves, and present more appealing and allegedly safe(r) tobacco products. However, it is becoming apparent that these products produce substantial amounts of toxic chemicals, many of which have been shown to exert negative health effects, including in the context of the cardiovascular system. Thus, there has been research efforts, albeit limited in general, to characterize the health impact of these products on occlusive/thrombotic cardiovascular diseases (CVD). In this review, we will discuss the potential impact of ETRPs on thrombosis-based CVD. Specifically, we will review how these products and the major chemicals they produce and/or emit can trigger key players in the process of thrombosis, namely inflammation, oxidative stress, platelets, coagulation, and the vascular endothelium, and the relationship between these effects.
Collapse
Affiliation(s)
- Ahmed B Alarabi
- Department of Pharmacy Practice, Irma Lerma Rangel College of Pharmacy Texas A&M University, Kingsville, TX, USA
| | - Patricia A Lozano
- Department of Pharmacy Practice, Irma Lerma Rangel College of Pharmacy Texas A&M University, Kingsville, TX, USA
| | - Fadi T Khasawneh
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy Texas A&M University, Kingsville, TX, USA.
| | - Fatima Z Alshbool
- Department of Pharmacy Practice, Irma Lerma Rangel College of Pharmacy Texas A&M University, Kingsville, TX, USA.
| |
Collapse
|
15
|
Ingo GM, Riccucci C, Pisani G, Pascucci M, D'Ercole D, Guerriero E, Boccaccini F, Falso G, Zambonini G, Paolini V, Di Carlo G. The vehicle braking systems as main source of inhalable airborne magnetite particles in trafficked areas. ENVIRONMENT INTERNATIONAL 2022; 158:106991. [PMID: 34991252 DOI: 10.1016/j.envint.2021.106991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Magnetite (Fe3O4) nano-particles (MNPs) have been found in human tissues and causally linked to serious illnesses. The possible negative role of MNPs has been not still fully ascertained even though MNPs might cause health effects due to their magnetic property, redox activity and surface charge. The origin of MNPs in human tissues still remains to be unambiguously identified since biological processes, natural phenomena and anthropogenic production have been proposed. According to this latter increasingly convincing hypothesis, anthropogenic MNPs might enter mainly in the human body via inhalation, penetrate deeply into the lungs and in the alveoli and also migrate into the blood circulation and gather in the extrapulmonary organs and central nervous system. In order to identify the releasing source of the potentially inhalable MNPs, we pioneered an innovative approach to rapidly investigate elemental profile and morphology of a large number of airborne micron and sub-micron-sized Fe-bearing particles (FePs). The study was performed by collecting a large amount of micron and sub-micron sized inhalable airborne FePs in trafficked and densely frequented areas of Rome (Italy). Then, we have investigated individually the elemental profile and morphology of the collected particles by means of high-spatial resolution scanning electron microscopy, energy dispersive spectroscopy and an automated software purposely developed for the metal-bearing particles analysis. On the basis of specific elemental tracing features, the investigation reveals that almost the total amount of the airborne FePs is released by the vehicle braking systems mainly in the form of magnetite. Furthermore, we point out that our approach might be more generally used to identify the releasing sources of different inorganic airborne particles and to contribute to establish more accurately the impact of specific natural or anthropogenic particles on the environment and human health.
Collapse
Affiliation(s)
- Gabriel M Ingo
- Institute for the Study of Nanostructured Materials, National Research Council, Rome 1 Research Area, via Salaria km 29.3, 00016 Monterotondo, Rome, Italy.
| | - Cristina Riccucci
- Institute for the Study of Nanostructured Materials, National Research Council, Rome 1 Research Area, via Salaria km 29.3, 00016 Monterotondo, Rome, Italy
| | - Gianluca Pisani
- Central Anticrime Directorate of the Italian National Police, Forensic Science Police Service, via Tuscolana 1548, 00173 Rome, Italy
| | - Marianna Pascucci
- Institute for the Study of Nanostructured Materials, National Research Council, Rome 1 Research Area, via Salaria km 29.3, 00016 Monterotondo, Rome, Italy
| | - Daniele D'Ercole
- Central Anticrime Directorate of the Italian National Police, Forensic Science Police Service, via Tuscolana 1548, 00173 Rome, Italy
| | - Ettore Guerriero
- Institute of Atmospheric Pollution Research, National Research Council, Rome 1 Research Area, via Salaria km 29.3, 00016 Monterotondo, Rome, Italy
| | - Francesca Boccaccini
- Institute for the Study of Nanostructured Materials, National Research Council, Rome 1 Research Area, via Salaria km 29.3, 00016 Monterotondo, Rome, Italy; University of Rome "Sapienza", p.le Aldo Moro 5, 00185 Rome, Italy
| | - Giacomo Falso
- Central Anticrime Directorate of the Italian National Police, Forensic Science Police Service, via Tuscolana 1548, 00173 Rome, Italy
| | - Gianpaolo Zambonini
- Central Anticrime Directorate of the Italian National Police, Forensic Science Police Service, via Tuscolana 1548, 00173 Rome, Italy
| | - Valerio Paolini
- Institute of Atmospheric Pollution Research, National Research Council, Rome 1 Research Area, via Salaria km 29.3, 00016 Monterotondo, Rome, Italy
| | - Gabriella Di Carlo
- Institute for the Study of Nanostructured Materials, National Research Council, Rome 1 Research Area, via Salaria km 29.3, 00016 Monterotondo, Rome, Italy
| |
Collapse
|
16
|
Pallikadavath S, Vali Z, Patel R, Mavilakandy A, Peckham N, Clegg M, Sandilands AJ, Ng GA. The Influence of Environmental Air Pollution on Ventricular Arrhythmias: A Scoping Review. Curr Cardiol Rev 2022; 18:e160422203685. [PMID: 35430968 PMCID: PMC9893149 DOI: 10.2174/1573403x18666220416203716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/07/2021] [Accepted: 01/16/2022] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Exposure to air pollution is a recognised risk factor for cardiovascular disease and has been associated with supraventricular arrhythmias. The effect of air pollution on ventricular arrhythmias is less clear. This scoping review assessed the effects of particulate and gaseous air pollutants on the incidence of ventricular arrhythmias. METHODS MEDLINE and EMBASE databases were searched for studies assessing the effects of air pollutants on ventricular tachycardia and ventricular fibrillation. These pollutants were particulate matter (PM) 2.5, PM10, Nitrogen Dioxide (NO2), Carbon Monoxide (CO), Sulphur Dioxide (SO2), and Ozone (O3). RESULTS This review identified 27 studies: nine in individuals with implantable cardioverter defibrillators, five in those with ischaemic heart disease, and 13 in the general population. Those with ischaemic heart disease appear to have the strongest association with ventricular arrhythmias in both gaseous and particulate pollution, with all three studies assessing the effects of PM2.5 demonstrating some association with ventricular arrythmia. Results in the general and ICD population were less consistent. CONCLUSION Individuals with ischaemic heart disease may be at an increased risk of ventricular arrhythmias following exposure to air pollution.
Collapse
Affiliation(s)
- Susil Pallikadavath
- Department of Cardiovascular Sciences, University of Leicester and the NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Zakariyya Vali
- Department of Cardiovascular Sciences, University of Leicester and the NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Roshan Patel
- Leicester Medical School, College of Life Sciences, University of Leicester, UK
| | - Akash Mavilakandy
- Department of Cardiovascular Sciences, University of Leicester and the NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Nicholas Peckham
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | - Matt Clegg
- Department of Geography, University of Birmingham, Birmingham, UK
| | - Alastair J. Sandilands
- Department of Cardiovascular Sciences, University of Leicester and the NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - G. André Ng
- Department of Cardiovascular Sciences, University of Leicester and the NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
17
|
Cong X, Zhang J, Sun R, Pu Y. Short-term ambient particulate air pollution exposure, microRNAs, blood pressure and lung function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118387. [PMID: 34673158 DOI: 10.1016/j.envpol.2021.118387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Ambient particulate air pollution is a risk factor for cardiovascular and respiratory disease, yet the biological mechanisms underlying this association are not well understood. The current study aimed to investigate the mediation role of microRNAs on the association between personal PM2.5 exposure and blood pressure and lung function. One hundred and twenty adults (60 truck drivers and 60 office workers) aged 18-46 years were assessed on the June 15, 2008 and at follow-up (1- to 2-weeks later). MicroRNAs were extracted from the peripheral blood samples. Compared to truck drivers, there is a significant increase in FEF25-75, FEV1, and FEV1/FVC and a decrease in PM2.5 in office workers (all p < 0.05). According to the Bonferroni corrected threshold p-value < 6.81 × 10-5 (0.05/734) used, personal PM2.5 data showed a significant positive association with miR-644 after the adjustment for age, BMI, smoking status, and habitual alcohol use. The mediation effect of miR-644 on the association between personal PM2.5 exposure and FEF25-75 [B (95%CI) = -1.342 (-2.810, -0.113)], PEF [B (95%CI) = -1.793 (-3.926, -0.195)], and FEV1/FVC [B (95%CI) = -0.119‰ (-0.224‰, -0.026‰)] was significant only for truck drivers after the adjustment for covariates. There were no similar associations with blood pressure. These results demonstrate microRNAs to potentially mediate association of PM2.5 with lung function. Subsequent studies are needed to further elucidate the potential mechanisms of action by which the mediation effect of microRNAs is achieved with this process.
Collapse
Affiliation(s)
- Xiaowei Cong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
18
|
Xing X, Liu F, Yang X, Liu Q, Wang X, Lin Z, Huang K, Cao J, Li J, Fan M, Chen X, Zhang C, Chen S, Lu X, Gu D, Huang J. Declines in heart rate variability associated with short-term PM 2.5 exposure were modified by blood pressure control and treatment: A multi-city panel study in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117572. [PMID: 34182395 DOI: 10.1016/j.envpol.2021.117572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Exposure to fine particulate matter (PM2.5) was associated with altered heart rate variability (HRV). However, whether blood pressure (BP) control and angiotensin II receptor blocker (ARB) treatment modifies the associations was seldom addressed. Therefore, we conducted a 3-phase panel study among 282 hypertensive subjects aged 35-74 years in four cities of China to address this issue. Real-time personal PM2.5 sampling and 24-h ambulatory electrocardiogram monitoring were performed repeatedly in 3 different seasons. Linear mixed-effects models were fitted overall and by control status of BP and ARB treatment to assess the associations between short-term PM2.5 exposure and HRV. The average hourly PM2.5 concentrations (Mean ± SD) ranged from 19.3 ± 18.2 μg/m3 to 99.4 ± 76.9 μg/m3 across study phases and cities. Generally, PM2.5 exposure was associated with decreased hourly and 24-h HRV. However, these adverse impacts were attenuated among patients with controlled BP (<140/90 mmHg). For each 10 μg/m3 increment in moving average of previous 2 days' (MA2d) PM2.5 exposure, 24-h SDNN (standard deviation of NN intervals) and rMSSD (root mean square of successive RR interval differences) decreased by 0.89% (95% CI: 0.19%-1.59%) and 2.98% (95% CI: 1.04%-4.89%) among patients with uncontrolled BP (≥140/90 mmHg), whereas no obvious declines were observed among those with controlled BP (Pdifference = 0.007 and 0.022, respectively). Furthermore, ARB treatment alleviated or eliminated PM2.5-associated declines in hourly and 24-h HRV among those with uncontrolled BP. For instance, 24-h SDNN decreased by 1.31% (95% CI: 0.54%-2.07%) with a 10 μg/m3 increment in lag 2 days' PM2.5 exposure in ARB nonusers, whereas no obvious changes were observed in ARB users (Pdifference = 0.021). In conclusion, although PM2.5 exposure would decrease HRV, better BP control and ARB treatment could attenuate these adverse impacts, which provides supporting evidence for alleviating autonomic dysfunction of hypertension patients living in areas with high-level PM2.5.
Collapse
Affiliation(s)
- Xiaolong Xing
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, 100037, China
| | - Fangchao Liu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, 100037, China
| | - Xueli Yang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Qiong Liu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, 100037, China
| | - Xinyan Wang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, 100037, China
| | - Zhennan Lin
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, 100037, China
| | - Keyong Huang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, 100037, China
| | - Jie Cao
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, 100037, China
| | - Jianxin Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, 100037, China
| | - Meng Fan
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaotian Chen
- Department of Clinical Epidemiology & Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201100, China
| | - Cuizhen Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shufeng Chen
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, 100037, China
| | - Xiangfeng Lu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, 100037, China
| | - Dongfeng Gu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, 100037, China; School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianfeng Huang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, 100037, China.
| |
Collapse
|
19
|
Tolis EI, Karanotas T, Svolakis G, Panaras G, Bartzis JG. Air quality in cabin environment of different passenger cars: effect of car usage, fuel type and ventilation/infiltration conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51232-51241. [PMID: 33978950 DOI: 10.1007/s11356-021-14349-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Despite that commuters spend only 5.5% of their time in cabin vehicles, their exposure to harmful air pollutants, originated from the vehicle itself, and traffic emission is considered significant. In this study, two passenger cars with different type of fuels were investigated in terms of air quality and thermal comfort of their cabin. Investigation was performed in the city of Kozani, Northern Greece. Moreover, air samples near the exhausts were taken, in order to compare concentration of compounds found indoors. Twelve volatile organic compounds and CO2 were measured inside the cabin when the cars were stopped, when idle and when they were cruising in medium and heavy traffic roads, under various ventilated conditions. Thermal comfort was investigated while driving the cars through the city traffic. Results showed that the air around the diesel exhaust is less affected by emissions from the engine compared to LPG fuel. This is reflected to the TVOC measured into the cabin. Results also revealed that the air quality of a diesel fuel moving car with open windows is only affected by the traffic emissions from neighbouring vehicles, while for the car with LPG fuel, the self-pollution from its own exhaust might contribute together with the outdoor air.
Collapse
Affiliation(s)
- Evangelos I Tolis
- Department of Mechanical Engineering, Environmental Technology Laboratory, University of Western Macedonia, Sialvera & Bakola Street, 50100, Kozani, Greece.
| | - Tilemachos Karanotas
- Department of Mechanical Engineering, Environmental Technology Laboratory, University of Western Macedonia, Sialvera & Bakola Street, 50100, Kozani, Greece
| | - Grigoris Svolakis
- Department of Mechanical Engineering, Environmental Technology Laboratory, University of Western Macedonia, Sialvera & Bakola Street, 50100, Kozani, Greece
| | - George Panaras
- Department of Mechanical Engineering, Environmental Technology Laboratory, University of Western Macedonia, Sialvera & Bakola Street, 50100, Kozani, Greece
| | - John G Bartzis
- Department of Mechanical Engineering, Environmental Technology Laboratory, University of Western Macedonia, Sialvera & Bakola Street, 50100, Kozani, Greece
| |
Collapse
|
20
|
Lind L, Araujo JA, Barchowsky A, Belcher S, Berridge BR, Chiamvimonvat N, Chiu WA, Cogliano VJ, Elmore S, Farraj AK, Gomes AV, McHale CM, Meyer-Tamaki KB, Posnack NG, Vargas HM, Yang X, Zeise L, Zhou C, Smith MT. Key Characteristics of Cardiovascular Toxicants. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:95001. [PMID: 34558968 PMCID: PMC8462506 DOI: 10.1289/ehp9321] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND The concept of chemical agents having properties that confer potential hazard called key characteristics (KCs) was first developed to identify carcinogenic hazards. Identification of KCs of cardiovascular (CV) toxicants could facilitate the systematic assessment of CV hazards and understanding of assay and data gaps associated with current approaches. OBJECTIVES We sought to develop a consensus-based synthesis of scientific evidence on the KCs of chemical and nonchemical agents known to cause CV toxicity along with methods to measure them. METHODS An expert working group was convened to discuss mechanisms associated with CV toxicity. RESULTS The group identified 12 KCs of CV toxicants, defined as exogenous agents that adversely interfere with function of the CV system. The KCs were organized into those primarily affecting cardiac tissue (numbers 1-4 below), the vascular system (5-7), or both (8-12), as follows: 1) impairs regulation of cardiac excitability, 2) impairs cardiac contractility and relaxation, 3) induces cardiomyocyte injury and death, 4) induces proliferation of valve stroma, 5) impacts endothelial and vascular function, 6) alters hemostasis, 7) causes dyslipidemia, 8) impairs mitochondrial function, 9) modifies autonomic nervous system activity, 10) induces oxidative stress, 11) causes inflammation, and 12) alters hormone signaling. DISCUSSION These 12 KCs can be used to help identify pharmaceuticals and environmental pollutants as CV toxicants, as well as to better understand the mechanistic underpinnings of their toxicity. For example, evidence exists that fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)] air pollution, arsenic, anthracycline drugs, and other exogenous chemicals possess one or more of the described KCs. In conclusion, the KCs could be used to identify potential CV toxicants and to define a set of test methods to evaluate CV toxicity in a more comprehensive and standardized manner than current approaches. https://doi.org/10.1289/EHP9321.
Collapse
Affiliation(s)
- Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, University of Uppsala, Sweden
| | - Jesus A. Araujo
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), UCLA, Los Angeles, California, USA
- Department of Environmental Health Sciences, Fielding School of Public Health and Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, USA
| | - Scott Belcher
- Department of Biological Sciences, North Carolina State University, North Carolina, USA
| | - Brian R. Berridge
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
| | - Weihsueh A. Chiu
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Vincent J. Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Sarah Elmore
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Aimen K. Farraj
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, California, USA
| | - Cliona M. McHale
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | | | - Nikki Gillum Posnack
- Children’s National Heart Institute and the Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Hugo M. Vargas
- Translational Safety & Bioanalytical Sciences, Amgen, Inc., Thousand Oaks, California, USA
| | - Xi Yang
- Division of Pharmacology and Toxicology, Office of Cardiology, Hematology, Endocrinology, and Nephrology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
21
|
Choi S, Kim KH, Choi D, Jeong S, Kim K, Chang J, Kim SM, Kim SR, Cho Y, Lee G, Son JS, Park SM. Association of Short-Term Particulate Matter Exposure among 5-Year Cancer Survivors with Incident Cardiovascular Disease: A Time-Stratified Case-Crossover Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157996. [PMID: 34360285 PMCID: PMC8345681 DOI: 10.3390/ijerph18157996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
The association of short-term particulate matter concentration with cardiovascular disease (CVD) among cancer survivors is yet unclear. Using the National Health Insurance Service database from South Korea, the study population consisted of 22,864 5-year cancer survivors with CVD events during the period 2015-2018. Using a time-stratified case-crossover design, each case date (date of incident CVD) was matched with three or four referent dates, resulting in a total of 101,576 case and referent dates. The daily average particulate matter 10 (PM10), 2.5 (PM2.5), and 2.5-10 (PM2.5-10) on the day of case or referent date (lag0), 1-3 days before the case or referent date (lag1, lag2, and lag3), and the mean value 0-3 days before the case or referent date (lag0-3) were determined. Conditional logistic regression was conducted to calculate the adjusted odds ratios (aORs) and 95% confidence intervals (CIs) for CVD according to quartiles of PM10, PM2.5, and PM2.5-10. Compared to the 1st (lowest) quartile of lag0-3 PM10, the 4th (highest) quartile of lag0-3 PM10 was associated with higher odds for CVD (aOR 1.13, 95% CI 1.06-1.21). The 4th quartiles of lag1 (aOR 1.12, 95% CI 1.06-1.19), lag2 (aOR 1.09, 95% CI 1.03-1.16), lag3 (aOR 1.06, 95% CI 1.00-1.12), and lag0-3 (aOR 1.11, 95% CI 1.05-1.18) PM2.5 were associated with higher odds for CVD compared to the respective 1st quartiles. Similarly, the 4th quartile of lag0-3 PM2.5-10 was associated with higher CVD events (aOR 1.11, 95% CI 1.03-1.19) compared to the 1st quartile. Short-term exposure to high levels of PM may be associated with increased CVD risk among cancer survivors.
Collapse
Affiliation(s)
- Seulggie Choi
- Department of Biomedical Sciences, Graduate School, Seoul National University, Seoul 03080, Korea; (S.C.); (S.J.); (J.C.); (S.M.K.)
| | - Kyae Hyung Kim
- Department of Family Medicine, Seoul National University Hospital, Seoul 03080, Korea; (K.H.K.); (G.L.)
| | - Daein Choi
- Department of Internal Medicine, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Seogsong Jeong
- Department of Biomedical Sciences, Graduate School, Seoul National University, Seoul 03080, Korea; (S.C.); (S.J.); (J.C.); (S.M.K.)
| | - Kyuwoong Kim
- National Cancer Control Institute, National Cancer Center, Goyang 10408, Korea;
| | - Jooyoung Chang
- Department of Biomedical Sciences, Graduate School, Seoul National University, Seoul 03080, Korea; (S.C.); (S.J.); (J.C.); (S.M.K.)
| | - Sung Min Kim
- Department of Biomedical Sciences, Graduate School, Seoul National University, Seoul 03080, Korea; (S.C.); (S.J.); (J.C.); (S.M.K.)
| | - Seong Rae Kim
- College of Medicine, Seoul National University Hospital, Seoul 03080, Korea;
| | - Yoosun Cho
- Total Healthcare Center, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul 06351, Korea;
| | - Gyeongsil Lee
- Department of Family Medicine, Seoul National University Hospital, Seoul 03080, Korea; (K.H.K.); (G.L.)
| | - Joung Sik Son
- Department of Family Medicine, Korea University Guro Hospital, Seoul 08308, Korea;
| | - Sang Min Park
- Department of Family Medicine, Seoul National University Hospital, Seoul 03080, Korea; (K.H.K.); (G.L.)
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2-2072-3331
| |
Collapse
|
22
|
Sekmoudi I, Khomsi K, Faieq S, Idrissi L. Assessment of global and regional PM 10 CAMSRA data: comparison to observed data in Morocco. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29984-29997. [PMID: 33576965 DOI: 10.1007/s11356-021-12783-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Given the strong impact of air quality on health, environment, and economy, Morocco has implemented an air quality network to assess air pollutants including PM10 (particulate matter with a diameter less than 10 μm). This network which is composed of 29 fixed measurement stations is spatially limited and does not provide sufficient time resolution. The scarcity of measured air quality data led to seek an optimal alternative source to conduct related data-based studies. This represents the primary objective of this paper. PM10 concentrations of global Copernicus Atmosphere Monitoring Service Reanalysis (CAMSRA) data (4D Variational analysis "4v" and analysis "an"), as well as regional CAMSRA data, were examined against the average daily PM10 concentrations collected from six fixed Moroccan air quality measurement stations in 2016 (i.e., observation data). The verification is carried out by studying and analyzing seasonal, extreme, and annual values. The study shows a strong seasonal dependence with a positive bias in winter and a negative bias during summer. For the study of extreme values, global CAMSRA "an" and "4v" data record significant bias of approximately 184 and 161 μg/m3, respectively. However, the annual analysis shows that the CAMSRA global "an" data have the smallest average bias (20.008 μg/m3) and hence has the closest representation of observation data. We conclude that the CAMSRA global analysis data could be used to compute climatology, study trends, evaluate models, benchmark other reanalysis, or serve as boundary conditions for regional models for past periods.
Collapse
Affiliation(s)
- Imane Sekmoudi
- Hassan II University of Casablanca, Faculty of Sciences and Techniques of Mohammedia (FSTM), Laboratory of Process Engineering and Environment, P.O. Box 146, 20650, Mohammedia, Morocco.
| | - Kenza Khomsi
- General Directorate of Meteorology, Face préfecture Hay Hassani, B.P. 8106 Casa-Oasis, Casablanca, Morocco
| | - Soufiane Faieq
- Univ.Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LIG, 3800, Grenoble, France
- LRIT Associated Unit to CNRST (URAC 29), Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Laila Idrissi
- Hassan II University of Casablanca, Faculty of Sciences and Techniques of Mohammedia (FSTM), Laboratory of Process Engineering and Environment, P.O. Box 146, 20650, Mohammedia, Morocco
| |
Collapse
|
23
|
Abstract
Climate change is one of the biggest challenges humanity is facing in the 21st century. Two recognized sequelae of climate change are global warming and air pollution. The gradual increase in ambient temperature, coupled with elevated pollution levels have a devastating effect on our health, potentially contributing to the increased rate and severity of numerous neurological disorders. The main aim of this review paper is to shed some light on the association between the phenomena of global warming and air pollution, and two of the most common and debilitating neurological conditions: stroke and neurodegenerative disorders. Extreme ambient temperatures induce neurological impairment and increase stroke incidence and mortality. Global warming does not participate in the etiology of neurodegenerative disorders, but it exacerbates symptoms of dementia, Alzheimer's disease (AD) and Parkinson's Disease (PD). A very close link exists between accumulated levels of air pollutants (principally particulate matter), and the incidence of ischemic rather than hemorrhagic strokes. People exposed to air pollutants have a higher risk of developing dementia and AD, but not PD. Oxidative stress, changes in cardiovascular and cerebrovascular haemodynamics, excitotoxicity, microglial activation, and cellular apoptosis, all play a central role in the overlap of the effect of climate change on neurological disorders. The complex interactions between global warming and air pollution, and their intricate effect on the nervous system, imply that future policies aimed to mitigate climate change must address these two challenges in unison.
Collapse
Affiliation(s)
- Christian Zammit
- Anatomy Department, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.
| | - Natalia Torzhenskaya
- Anatomy Department, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.
| | | | - Jean Calleja Agius
- Anatomy Department, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.
| |
Collapse
|
24
|
The Role of Ambient Particle Radioactivity in Inflammation and Endothelial Function in an Elderly Cohort. Epidemiology 2021; 31:499-508. [PMID: 32282436 DOI: 10.1097/ede.0000000000001197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The mechanisms by which exposure to particulate matter might increase risk of cardiovascular morbidity and mortality are not fully known. However, few existing studies have investigated the potential role of particle radioactivity. Naturally occurring radionuclides attach to particulate matter and continue to release ionizing radiation after inhalation and deposition in the lungs. We hypothesize that exposure to particle radioactivity increases biomarkers of inflammation. METHODS Our repeated-measures study included 752 men in the greater Boston area. We estimated regional particle radioactivity as a daily spatial average of gross beta concentrations from five monitors in the study area. We used linear mixed-effects regression models to estimate short- and medium-term associations between particle radioactivity and biomarkers of inflammation and endothelial dysfunction, with and without adjustment for additional particulate air pollutants. RESULTS We observed associations between particle radioactivity on C-reactive protein (CRP), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1), but no associations with fibrinogen. An interquartile range width increase in mean 7-day particle radioactivity (1.2 × 10 Bq/m) was associated with a 4.9% increase in CRP (95% CI = 0.077, 9.9), a 2.8% increase in ICAM-1 (95% CI = 1.4, 4.2), and a 4.3% increase in VCAM-1 (95% CI = 2.5, 6.1). The main effects of particle radioactivity remained similar after adjustment in most cases. We also obtained similar effect estimates in a sensitivity analysis applying a robust causal model. CONCLUSION Regional particle radioactivity is positively associated with inflammatory biomarkers, indicating a potential pathway for radiation-induced cardiovascular effects.
Collapse
|
25
|
Li L, Hu D, Zhang W, Cui L, Jia X, Yang D, Liu S, Deng F, Liu J, Guo X. Effect of short-term exposure to particulate air pollution on heart rate variability in normal-weight and obese adults. Environ Health 2021; 20:29. [PMID: 33726760 PMCID: PMC7968215 DOI: 10.1186/s12940-021-00707-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/24/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND The adverse effects of particulate air pollution on heart rate variability (HRV) have been reported. However, it remains unclear whether they differ by the weight status as well as between wake and sleep. METHODS A repeated-measure study was conducted in 97 young adults in Beijing, China, and they were classified by body mass index (BMI) as normal-weight (BMI, 18.5-24.0 kg/m2) and obese (BMI ≥ 28.0 kg/m2) groups. Personal exposures to fine particulate matter (PM2.5) and black carbon (BC) were measured with portable exposure monitors, and the ambient PM2.5/BC concentrations were obtained from the fixed monitoring sites near the subjects' residences. HRV and heart rate (HR) were monitored by 24-h Holter electrocardiography. The study period was divided into waking and sleeping hours according to time-activity diaries. Linear mixed-effects models were used to investigate the effects of PM2.5/BC on HRV and HR in both groups during wake and sleep. RESULTS The effects of short-term exposure to PM2.5/BC on HRV were more pronounced among obese participants. In the normal-weight group, the positive association between personal PM2.5/BC exposure and high-frequency power (HF) as well as the ratio of low-frequency power to high-frequency power (LF/HF) was observed during wakefulness. In the obese group, personal PM2.5/BC exposure was negatively associated with HF but positively associated with LF/HF during wakefulness, whereas it was negatively correlated to total power and standard deviation of all NN intervals (SDNN) during sleep. An interquartile range (IQR) increase in BC at 2-h moving average was associated with 37.64% (95% confidence interval [CI]: 25.03, 51.51%) increases in LF/HF during wakefulness and associated with 6.28% (95% CI: - 17.26, 6.15%) decreases in SDNN during sleep in obese individuals, and the interaction terms between BC and obesity in LF/HF and SDNN were both statistically significant (p < 0.05). The results also suggested that the effects of PM2.5/BC exposure on several HRV indices and HR differed in magnitude or direction between wake and sleep. CONCLUSIONS Short-term exposure to PM2.5/BC is associated with HRV and HR, especially in obese individuals. The circadian rhythm of HRV should be considered in future studies when HRV is applied.
Collapse
Affiliation(s)
- Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Dayu Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Xu Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Di Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.
| | - Junxiu Liu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| |
Collapse
|
26
|
Cole-Hunter T, Dhingra R, Fedak KM, Good N, L'Orange C, Luckasen G, Mehaffy J, Walker E, Wilson A, Balmes J, Brook RD, Clark ML, Devlin RB, Volckens J, Peel JL. Short-term differences in cardiac function following controlled exposure to cookstove air pollution: The subclinical tests on volunteers exposed to smoke (STOVES) study. ENVIRONMENT INTERNATIONAL 2021; 146:106254. [PMID: 33221594 PMCID: PMC7775898 DOI: 10.1016/j.envint.2020.106254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Exposure to household air pollution from solid fuel combustion for cooking and heating is an important risk factor for premature death and disability worldwide. Current evidence supports an association of ambient air pollution with cardiovascular disease but is limited for household air pollution and for cardiac function. Controlled exposure studies can complement evidence provided by field studies. OBJECTIVES To investigate effects of short-term, controlled exposures to emissions from five cookstoves on measures of cardiac function. METHODS Forty-eight healthy adults (46% female; 20-36 years) participated in six, 2-h exposures ('treatments'), including emissions from five cookstoves and a filtered-air control. Target fine particulate matter (PM2.5) exposure-concentrations per treatment were: control, 0 µg/m3; liquefied petroleum gas, 10 µg/m3; gasifier, 35 µg/m3; fan rocket, 100 µg/m3; rocket elbow, 250 µg/m3; and three stone fire, 500 µg/m3. Participants were treated in a set (pre-randomized) sequence as groups of 4 to minimize order bias and time-varying confounders. Heart rate variability (HRV) and cardiac repolarization metrics were calculated as 5-min means immediately and at 3 h following treatment, for analysis in linear mixed-effects models comparing cookstove to control. RESULTS Short-term differences in SDNN (standard deviation of duration of all NN intervals) and VLF (very-low frequency power) existed for several cookstoves compared to control. While all cookstoves compared to control followed a similar trend for SDNN, the greatest effect was seen immediately following three stone fire (β = -0.13 ms {%}; 95% confidence interval = -0.22, -0.03%), which reversed in direction at 3 h (0.03%; -0.06, 0.13%). VLF results were similar in direction and timing to SDNN; however, other HRV or cardiac repolarization results were not similar to those for SDNN. DISCUSSION We observed some evidence of short-term, effects on HRV immediately following cookstove treatments compared to control. Our results suggest that cookstoves with lower PM2.5 emissions are potentially capable of affecting cardiac function, similar to stoves emitting higher PM2.5 emissions.
Collapse
Affiliation(s)
- Tom Cole-Hunter
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Centre for Air Pollution, Energy, and Health Research, University of New South Wales, Sydney, NSW, Australia; International Laboratory for Air Quality and Health, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD, Australia; Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Radhika Dhingra
- Department of Environmental Sciences and Engineering, University of North Carolina, NC, USA; Environmental Public Health Division, United States Environmental Protection Agency, Chapel Hill, NC, USA
| | - Kristen M Fedak
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Nicholas Good
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Christian L'Orange
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | | | - John Mehaffy
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Ethan Walker
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - John Balmes
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Robert D Brook
- Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maggie L Clark
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Robert B Devlin
- Environmental Public Health Division, United States Environmental Protection Agency, Chapel Hill, NC, USA
| | - John Volckens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
27
|
Taylor AA, Freeman EL, van der Ploeg MJC. Regulatory developments and their impacts to the nano-industry: A case study for nano-additives in 3D printing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111458. [PMID: 33254383 DOI: 10.1016/j.ecoenv.2020.111458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 06/12/2023]
Abstract
Nanotechnology has increasing applications in numerous markets, particularly in additive processing (3D printing) and manufacturing, which is important for consumer products, medical devices, construction, and general research and development across many other industries. Nanomaterials are desirable in many products due to their unique properties, but those same properties have made evaluating the risk and regulation of these materials challenging. For risk-based regulations, new applications and nanomaterials should be assessed for both human and environmental hazards and exposure to ensure protection. In general, many risk assessments to date have focused on the non-nano versions of chemicals. The lack of guidance on assessing the hazard and exposure of nanomaterials in 3D printing is apparent, and these areas of assessment are actively being evaluated. Industry in most cases will now need to provide specific additional information for assessing the risk of nanomaterials in 3D printing. This review paper focuses on the use of nanomaterials in 3D printing for industrial and manufacturing applications, summarizes the current literature on human health and safety related to 3D printing and inhalation exposure, and the regulations relating to 3D printing in the U.S., Canada, and Europe for this industry.
Collapse
Affiliation(s)
- Alicia A Taylor
- Exponent, Inc., 475 14th Street, Suite 400, Oakland, CA 94612, USA.
| | - Elaine L Freeman
- Exponent, Inc., 1150 Connecticut Avenue NW, Suite 1100, Washington, District of Columbia 20036, USA.
| | - Merel J C van der Ploeg
- Exponent International Ltd., The Lenz, 1st Floor Hornbeam Park, Harrogate, North Yorkshire HG2 8RE, UK.
| |
Collapse
|
28
|
Niu Z, Liu F, Li B, Li N, Yu H, Wang Y, Tang H, Chen X, Lu Y, Cheng Z, Liu S, Chen G, Zhang Y, Xiang H. Acute effect of ambient fine particulate matter on heart rate variability: an updated systematic review and meta-analysis of panel studies. Environ Health Prev Med 2020; 25:77. [PMID: 33261557 PMCID: PMC7706193 DOI: 10.1186/s12199-020-00912-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/09/2020] [Indexed: 11/10/2022] Open
Abstract
Background Decreased heart rate variability (HRV) is a predictor of autonomic system dysfunction, and is considered as a potential mechanism of increased risk of cardiovascular disease (CVD) induced by exposure to particulate matter less than 2.5 μm in diameter (PM2.5). Previous studies have suggested that exposure to PM2.5 may lead to decreased HRV levels, but the results remain inconsistent. Methods An updated systematic review and meta-analysis of panel studies till November 1, 2019 was conducted to evaluate the acute effect of exposure to ambient PM2.5 on HRV. We searched electronic databases (PubMed, Web of Science, and Embase) to identify panel studies reporting the associations between exposure to PM2.5 and the four indicators of HRV (standard deviation of all normal-to-normal intervals (SDNN), root mean square of successive differences in adjacent normal-to-normal intervals (rMSSD), high frequency power (HF), and low frequency power (LF)). Random-effects model was used to calculate the pooled effect estimates. Results A total of 33 panel studies were included in our meta-analysis, with 16 studies conducted in North America, 12 studies in Asia, and 5 studies in Europe. The pooled results showed a 10 μg/m3 increase in PM2.5 exposure which was significantly associated with a − 0.92% change in SDNN (95% confidence intervals (95%CI) − 1.26%, − 0.59%), − 1.47% change in rMSSD (95%CI − 2.17%, − 0.77%), − 2.17% change in HF (95%CI − 3.24%, − 1.10%), and − 1.52% change in LF (95%CI − 2.50%, − 0.54%), respectively. Overall, subgroup analysis suggested that short-term exposure to PM2.5 was associated with lower HRV levels in Asians, healthy population, and those aged ≥ 40 years. Conclusion Short-term exposure to PM2.5 was associated with decreased HRV levels. Future studies are warranted to clarity the exact mechanism of exposure to PM2.5 on the cardiovascular system through disturbance of autonomic nervous function. Supplementary Information The online version contains supplementary material available at 10.1186/s12199-020-00912-2.
Collapse
Affiliation(s)
- Zhiping Niu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Feifei Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Baojing Li
- Department of Public Health Sciences, Karolinska Institutet, Tomtebodavägen 18, Solna, SE-171 65, Stockholm, Sweden
| | - Na Li
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Hongmei Yu
- School of Management, Chengdu University of Traditional Chinese Medicine, 37# Shierqiao Road, Chengdu, China
| | - Yongbo Wang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Hong Tang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Xiaolu Chen
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Yuanan Lu
- Environmental Health Laboratory, Department of Public Health Sciences, University Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Zilu Cheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122# Luoshi Road, Wuhan, China
| | - Suyang Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuxiao Zhang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China. .,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China.
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China. .,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China.
| |
Collapse
|
29
|
Indoor air quality in rural Southwestern Uganda: particulate matter, heavy metals and carbon monoxide in kitchens using charcoal fuel in Mbarara Municipality. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03800-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
30
|
Pirhadi M, Mousavi A, Sioutas C. Evaluation of a high flow rate electrostatic precipitator (ESP) as a particulate matter (PM) collector for toxicity studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140060. [PMID: 32554118 PMCID: PMC7442709 DOI: 10.1016/j.scitotenv.2020.140060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 05/07/2023]
Abstract
In this study, we investigated the performance of an electrostatic precipitator (ESP) operating at high flow rates (i.e., 50-100 lpm) as a fine particulate matter (PM2.5) collector for toxicological studies. The ESP optimum configuration (i.e., flow rate of 75 lpm and applied voltage of +12 kV) was determined based on maximum particle collection efficiencies and minimum ozone emissions associated with the instrument using different laboratory-generated aerosols. This configuration resulted in particle collection efficiencies above 80% for almost all particles in the size range of 0.015-2.5 μm while the ozone concentration was 17 ppb. The ESP was then deployed to our sampling site in central Los Angeles to evaluate its performance using ambient particles under the optimum configuration. Chemical composition and oxidative potential of PM2.5 samples collected on the foils placed inside the ESP tube were compared with those collected concurrently on filters and aerosol slurries using the versatile aerosol concentration enrichment system (VACES) operating in parallel. Our results demonstrated that the ESP was more efficient in preserving labile inorganic ions and total organic carbon (TOC) compared to filters. PM samples collected on ESP substrates also showed higher intrinsic oxidative potential compared to the filters, which might be the result of better preservation of redox active semi-volatile organic compounds on the ESP substrates. However, the TOC concentrations and intrinsic oxidative potential of PM samples collected on ESP substrates were somewhat lower than the aerosol slurries collected by the VACES, probably due to deficiency of water-insoluble compounds in extracted PM samples from ESP substrates. In conclusion, while particle collection for toxicological purposes by the ESP is somewhat inferior to a direct aerosol-into-liquid collection, the ESP performs equally well, if not better, than conventional filter samplers and can be utilized as a simple and adequately efficient PM collector for toxicological studies.
Collapse
Affiliation(s)
- Milad Pirhadi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Amirhosein Mousavi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA.
| |
Collapse
|
31
|
Wu J, Pu Y. Air pollution, general government public-health expenditures and income inequality: Empirical analysis based on the spatial Durbin model. PLoS One 2020; 15:e0240053. [PMID: 33002068 PMCID: PMC7529191 DOI: 10.1371/journal.pone.0240053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/17/2020] [Indexed: 11/18/2022] Open
Abstract
Environmental pollution and income inequality are important issues related to sustainable economic and social development. Air pollution affects residents' physical health, and income inequality affects social stability and economic development. No scholar has yet confirmed the causal impact of air pollution on income inequality; therefore, this study is an important extension of the environmental Kuznets curve theory. This article examines the impact using balanced panel data from 156 countries (2004-2017) and applies the spatial Durbin model to analyze the mechanism of air pollution's impact on income inequality from the perspective of public health. The results prove the following. First, increasing air pollution does increase income inequality. Second, the spatial spillover effect of air pollution constitutes a relatively important part of the total effect of air pollution on income inequality compared with the direct effect. Third, general government public-health expenditures are an important transmission channel by which air pollution affects income inequality. The conclusions of the research have some important policy implications for environmental governance and income distribution policies at the national as well as supranational level.
Collapse
Affiliation(s)
- Jianli Wu
- Institute of Chinese Financial Studies, Southwestern University of Finance and Economics, Chengdu, Sichuan, China
| | - Yue Pu
- School of International Business, Southwestern University of Finance and Economics, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
32
|
Liang Q, Sun M, Wang F, Ma Y, Lin L, Li T, Duan J, Sun Z. Short-term PM 2.5 exposure and circulating von Willebrand factor level: a meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:140180. [PMID: 32783836 DOI: 10.1016/j.scitotenv.2020.140180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Ambient fine particulate matter (PM2.5) is a major threat to cardiovascular health. Endothelial dysfunction is the initiating event associated with the PM2.5-induced cardiovascular disease (CVD). A sensitive marker of endothelial function-circulating von Willebrand factor (vWF), is an independent predictor of adverse clinical outcome in CVD patients. PM2.5 exposure may cause CVD, but the reports of relationship between short-term PM2.5 exposure and circulating vWF are inconsistent. OBJECTIVE To explore the influence of short-term PM2.5 exposure on circulating vWF. METHODS By using a combination of computer and manual retrieval, a systematic literature retrieval was conducted on PubMed, Cochrane Library, Web of Science, Embase and Scopus databases up to October 2019. The heterogeneity among studies was tested by Stata 12.0, and the pooled %-change (percentage change per 10 μg/m3 increase in PM2.5) and its 95% confidence interval (95%CI) were calculated by using random effect model. Sensitivity analysis and publication bias detection were also carried out. RESULTS 12 articles were included in this meta-analysis. Short-term PM2.5 exposure (per 10 μg/m3 increase) was associated with the increased vWF (%-change = 0.41, 95%CI: 0.11-0.71). The pooled effect estimates of subgroup with PM2.5 exposure level < 25 μg/m3 was higher (%-change = 8.26; 95%CI: 1.99-14.53) than that with PM2.5 exposure level ≥ 25 μg/m3 (%-change = 0.36; 95%CI: 0.09-0.63). CONCLUSION Short-term PM2.5 exposure is associated with the increased circulating vWF. It suggests that short-term PM2.5 exposure causes endothelial dysfunction.
Collapse
Affiliation(s)
- Qingqing Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; School of Public Health, Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou 014040, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Fenghong Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yuexiao Ma
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
33
|
Shahrbaf MA, Akbarzadeh MA, Tabary M, Khaheshi I. Air Pollution and Cardiac Arrhythmias: A Comprehensive Review. Curr Probl Cardiol 2020; 46:100649. [PMID: 32839041 DOI: 10.1016/j.cpcardiol.2020.100649] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/26/2022]
Abstract
Air pollution is the mixture of some chemical and environmental agents including dust, fumes, gases, particulate matters, and biological materials which can be harmful for the environment and the human body. The increasing trend of the air pollution, especially in developing countries, may exert its detrimental effects on human health. The potentially harmful effects of air pollution on the human health have been recognized and many epidemiological studies have clearly suggested the strong association between air pollution exposure and increased morbidities and mortalities. Air pollutants are classified into gaseous pollutants including carbon mono oxide, nitrogen oxides, ozone and sulfur dioxide, and particulate matters (PMs). All air pollutants have destructive effects on the health systems including cardiovascular system. Many studies have demonstrated the effect of air pollutant on the occurrence of ST elevation myocardial infarction, sudden cardiac death, cardiac arrythmias, and peripheral arterial disease. Recently, some studies suggested that air pollution may be associated with cardiac arrhythmias. In this study, we aimed to comprehensively review the last evidences related to the association of air pollutant and cardiac arrythmias. We found that particulate matters (PM10, PM2.5, and UFP) and gaseous air pollutants can exert undesirable effects on cardiac rhythms. Short-term and long-term exposure to the air pollutants can interact with the cardiac rhythms through oxidative stress, autonomic dysfunction, coagulation dysfunction, and inflammation. It seems that particulate matters, especially PM2.5 have stronger association with cardiac arrhythmias among all air pollutants. However, future studies are needed to confirm these results.
Collapse
|
34
|
Yang M, Zhou R, Qiu X, Feng X, Sun J, Wang Q, Lu Q, Zhang P, Liu B, Li W, Chen M, Zhao Y, Mo B, Zhou X, Zhang X, Hua Y, Guo J, Bi F, Cao Y, Ling F, Shi S, Li YG. Artificial intelligence-assisted analysis on the association between exposure to ambient fine particulate matter and incidence of arrhythmias in outpatients of Shanghai community hospitals. ENVIRONMENT INTERNATIONAL 2020; 139:105745. [PMID: 32334122 DOI: 10.1016/j.envint.2020.105745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Recently, the impact of fine particulate matter pollution on cardiovascular system is drawing considerable concern worldwide. The association between ambient fine particulate and the cardiac arrhythmias is not clear now. OBJECTIVE To study associations of ambient fine particulate with incidence of arrhythmias in outpatients. METHODS Data was collected from the remote electrocardiogram (ECG) system covering 282 community hospitals in Shanghai from June 24th, 2014 to June 23rd, 2016. ECG was performed for patients admitted to above hospitals with complaining of chest discomfort or palpitation, or for regular check-ups. Air quality data during this time period was obtained from China National Environment Monitoring Center. A generalized additive quasi-Poisson model was established to examine the associations between PM2.5 and cardiac arrhythmias. RESULTS Cardiac arrhythmias were detected in 202,661 out of 1,016,579 outpatients (19.9%) and fine particulate matter ranged from 6 to 219 μg/m3 during this period. Positive associations were evidenced between fine particulate matter level and prevalence of cardiac arrhythmia by different lag models. Per 10 μg/m3 increase in fine particulate matter was associated with a 0.584%(95%CI:0.346-0.689%, p < 0.001) increase of cardiac arrhythmia detected in these patient cohort at lag0-2. For different types of cardiac arrhythmias, an immediate arrhythmogenic effect of fine particulate matter (increase of the estimates of cardiac arrhythmia prevalence detected in daily outpatient visits) was found with paroxysmal supraventricular tachycardia; a lag effect was found with atrial fibrillation; and both immediate and lag effect was found with premature atrial contractions or atrial tachycardia, atrioventricular block. Moreover, the impact of fine particulate matter on cardiac arrhythmias was significantly greater in women (lag3 and lag0-4), and in people aged <65 years (lag0). CONCLUSION Ambient exposure to fine particulate matter is linked with increased risk of arrhythmias in outpatients visiting Shanghai community hospitals, with an immediate or lag effect. The arrhythmogenic effect varies among different types of cardiac arrhythmias.
Collapse
Affiliation(s)
- Mei Yang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Runze Zhou
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Cardiology, East Hospital, Tongji University, Shanghai, China
| | | | - Xiangfei Feng
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Sun
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qunshan Wang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiufen Lu
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pengpai Zhang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Liu
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mu Chen
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhao
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Binfeng Mo
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Zhou
- Clinical Research Unit, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Zhang
- Clinical Research Unit, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingxue Hua
- Pudong New Area Heqing Community Health Center, Shanghai, China
| | - Jin Guo
- Shanghai Huangpu Bund Subdistrict Community Health Center, Shanghai, China
| | - Fangfang Bi
- Changning Tianshan Community Health Center, Shanghai, China
| | - Yajun Cao
- Pudong New Area Sunqiao Community Health Center, Shanghai, China
| | - Feng Ling
- Shanghai Lingyun Community Health Center, Shanghai, China
| | - Shengming Shi
- Shangnail Xinhua Street Community Health Service Center, Shanghai, China
| | - Yi-Gang Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
35
|
Riaz H, Syed BM, Laghari Z, Pirzada S. Analysis of inflammatory markers in apparently healthy automobile vehicle drivers in response to exposure to traffic pollution fumes. Pak J Med Sci 2020; 36:657-662. [PMID: 32494251 PMCID: PMC7260889 DOI: 10.12669/pjms.36.4.2025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Objective: This study aimed to evaluate pattern of markers of inflammation in apparently healthy drivers who exposed to traffic fumes. Methods: This cross-sectional study was conducted from June 2016 to January 2017 at Liaquat University of Medical & Health Sciences (LUMHS), Jamshoro. It looked into the effects of traffic pollutants on markers of inflammation including CRP, Leukocytes count, IL-6, TNF-α, TNF-β of healthy human volunteers. Eighty-seven, apparently healthy, non-smoking automobile vehicle drivers, having daily contact of traffic exhaust for at least six hours, aged between 18-40 years recruited for this study. Levels of traffic-generated pollutants P.M2.5, P.M10, NOx were recorded in different areas of Hyderabad City. Results: P.M2.5 found to be positively correlated with markers of inflammation including IL-6 (rs = 0.99), TNF-α (rs = 0.41), CRP mg/dl (rs = 0.99) , neutrophils (rs = 0.29), lymphocytes (rs = 0.31), eosinophils (rs = 0.20), monocytes (rs = 0.42) and basophils (rs = 0.16). Positive correlation present among IL-6 (rs = 0.21), TNF-α (rs = 0.49) and CRP mg/dl (rs = 0.22) % (rs = -0.31), Leukocytes (rs = 0.14) neutrophils (rs = 0.31), lymphocytes (rs = 0.21), monocytes (rs = 0.50), basophils (rs = 0.17) with P.M10. NOx showed positive correlation with IL-6 (rs = 0.22), TNF-α (rs = 0.48), CRP (rs = 0.22), neutrophils (rs = 0.31), lymphocytes (rs = 0.13), basophils (rs = 0.17) and monocytes (rs = 0.48). Conclusion: Findings of our study suggest that almost all markers of inflammation are positively correlated with traffic pollutants and this condition might raise the risk of systemic diseases.
Collapse
Affiliation(s)
- Hina Riaz
- Dr. Hina Riaz, MBBS, Lecturer, Department of Physiology, Liaquat University of Medical & Health Sciences (LUMHS), Jamshoro, Pakistan
| | - Binafsha Manzoor Syed
- Dr. Binafsha Manzoor Syed, MBBS, PhD, Director Medical Research Centre, Director Clinical Research Division, Director ORIC, Liaquat University of Medical & Health Sciences (LUMHS), Jamshoro, Pakistan
| | - Zulfiqar Laghari
- Prof. Dr. Zulfiqar Laghari, PhD, Chairperson, Department of Physiology, University of Sindh, Jamshoro, Pakistan
| | - Suleman Pirzada
- Dr. Suleman Peerzada, MBBS, PhD, Assistant Professor, Department of Molecular Biology and Genetics, Liaquat University of Medical & Health Sciences (LUMHS), Jamshoro, Pakistan
| |
Collapse
|
36
|
Meza-Figueroa D, Barboza-Flores M, Romero FM, Acosta-Elias M, Hernández-Mendiola E, Maldonado-Escalante F, Pérez-Segura E, González-Grijalva B, Meza-Montenegro M, García-Rico L, Navarro-Espinoza S, Santacruz-Gómez K, Gallego-Hernández A, Pedroza-Montero M. Metal bioaccessibility, particle size distribution and polydispersity of playground dust in synthetic lysosomal fluids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136481. [PMID: 31954252 DOI: 10.1016/j.scitotenv.2019.136481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/25/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Inhalation of playground dust-derived fine particles in schoolyards poses a risk from exposure to metal(oids) and minerals. In this work, we obtained the total concentration and bioaccessibility of metal(oids) with Gamble Solution (GS) and Artificial Lysosomal Fluid (ALF) synthetic solutions, simulating the extracellular neutral pH environment of the lung and the intracellular conditions of the macrophage, respectively. Scanning Electron Microscope (SEM), and Dynamic Light Scattering analysis (DLS) techniques were used to characterize particles with a size smaller than 2.5 μm, which can be assimilated by macrophages in the deep part of the lung. Arsenic (As), lead (Pb), copper (Cu), manganese (Mn), zinc (Zn), and iron (Fe) showed concentrations of 39.9, 147.9, 286, 1369, 2313, 112,457 mg·kg-1, respectively. The results indicated that all studied elements were enriched when compared to (i) local geochemical background and (ii) findings reported in other cities around the world. Bioaccessibility of metal(oids) in GS was low-moderate for most studied elements. However, in ALF assays, bioaccessibility was high among the samples: for lead (Pb = 34-100%), arsenic (As = 14.7-100%), copper (Cu = 17.9-100%), and zinc (Zn = 35-52%) possibly related to hydrophobic minerals in dust. SEM and DLS image analysis showed that playground dust particles smaller than 2.5 μm are dominant, particularly particles with a size range of 500-600 nm. The polydispersity detected in these particle sizes showed that most of them might be crystalline compounds (elongated shapes) forming agglomerates instead of combustion particles (spheres). Moreover, the circularity detected varies from 0.57 to 0.79 (low roundness), which corroborates this finding. The presence of agglomerates of ultrafine/nanoparticles containing highly bioaccessible metals in playground sites may have severe implications in children's health. Therefore, further studies are required to characterize the size distribution, structure, shape and composition of such minerals which are essential factors related to the toxicology of inhaled dust particles.
Collapse
Affiliation(s)
- Diana Meza-Figueroa
- Department of Geology, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Marcelino Barboza-Flores
- Department of Physics Research, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Francisco M Romero
- Institute of Geology, National University of Mexico, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México 04510, Mexico
| | - Mónica Acosta-Elias
- Department of Physics Research, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Ernesto Hernández-Mendiola
- Institute of Geology, National University of Mexico, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México 04510, Mexico
| | | | - Efrén Pérez-Segura
- Department of Geology, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Belem González-Grijalva
- Department of Geology, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | | | - Leticia García-Rico
- Center of Research in Food and Development, A.C. Carretera a la Victoria km 0.6, Hermosillo, Sonora 83304, Mexico
| | - Sofía Navarro-Espinoza
- Nanotechnology PhD Program, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Karla Santacruz-Gómez
- Physics Department, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Ana Gallego-Hernández
- Department of Physics Research, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Martín Pedroza-Montero
- Department of Physics Research, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico.
| |
Collapse
|
37
|
Aweimer A, Jettkant B, Monsé C, Hagemeyer O, van Kampen V, Kendzia B, Gering V, Marek EM, Bünger J, Mügge A, Brüning T, Merget R. Heart rate variability and cardiac repolarization after exposure to zinc oxide nanoparticles in healthy adults. J Occup Med Toxicol 2020; 15:4. [PMID: 32140173 PMCID: PMC7048061 DOI: 10.1186/s12995-020-00255-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/19/2020] [Indexed: 01/06/2023] Open
Abstract
Background Exposure to airborne zinc oxide (ZnO) particles occurs in many industrial processes, especially in galvanizing and welding. Systemic inflammation after experimental inhalation of ZnO particles has been demonstrated previously, but little is known about the impact on the cardiovascular system, particularly on the autonomic cardiac system and the risk of arrhythmias. In this study we investigated the short-term effects of ZnO nanoparticles on heart rate variability (HRV) and repolarization in healthy adults in a concentration-dependent manner at rest and during exercise in a controlled experimental set-up. Methods Sixteen healthy subjects were exposed to filtered air and ZnO particles (0.5, 1.0 and 2.0 mg/m3) for 4 h, including 2 h of cycling at low workloads. Parameters were assessed before, during, immediately after, and about 24 h after each exposure. For each subject, a total number of 46 10-min-sections from electrocardiographic records were analyzed. Various parameters of HRV and QT interval were measured. Results Overall, no statistically significant effects of controlled ZnO inhalation on HRV parameters and QT interval were observed. Additionally, a concentration-response was absent. Conclusion Inhalation of ZnO nanoparticles up to 2.0 mg/m3 for 4 h does not affect HRV and cardiac repolarization in healthy adults at the chosen time points. This study supports the view that cardiac endpoints are insensitive for the assessment of adverse effects after short-term inhalation of ZnO nanoparticles.
Collapse
Affiliation(s)
- Assem Aweimer
- 1Department of Cardiology and Angiology Bergmannsheil University Hospital, Ruhr-Universität Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Birger Jettkant
- 2Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Christian Monsé
- 2Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Olaf Hagemeyer
- 2Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Vera van Kampen
- 2Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Benjamin Kendzia
- 2Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Vitali Gering
- 2Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Eike-Maximilian Marek
- 2Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Jürgen Bünger
- 2Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Andreas Mügge
- 1Department of Cardiology and Angiology Bergmannsheil University Hospital, Ruhr-Universität Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Thomas Brüning
- 2Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Rolf Merget
- 2Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| |
Collapse
|
38
|
Lu C, Zhang W, Zheng X, Sun J, Chen L, Deng Q. Combined effects of ambient air pollution and home environmental factors on low birth weight. CHEMOSPHERE 2020; 240:124836. [PMID: 31561165 DOI: 10.1016/j.chemosphere.2019.124836] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/29/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Low birth weight (LBW) remains a major public health problem worldwide, yet its crucial environmental risk factors are still unclear. OBJECTIVE To examine the association between LBW (term and preterm LBW) and prenatal exposure to ambient air pollution and home environmental factors as well as their combination, in order to identify critical time window for exposure and key outdoor and indoor factors in LBW development. METHODS A cohort study of 3509 preschool children was performed in Changsha, China during the period 2011-2012. A questionnaire was conducted to survey each child's birth outcome and each mother's exposure to home environmental factors including parental smoking, new furniture, redecoration, mold/damp stains, window pane condensation, and household pets during pregnancy. Maternal exposure to inhalable particulate matter (PM10), industrial air pollutant (SO2), and traffic air pollutant (NO2) was estimated during different time windows of gestation, including conception month, three trimesters, birth month, and whole gestation. Associations of term and preterm LBW with ambient air pollutants and home environmental factors were assessed by multiple logistic regression models in terms of odds ratio (OR) with 95% confidence interval (CI). RESULTS Term LBW (TLBW) was significantly associated with exposure to ambient PM10 during pregnancy, with OR (95% CI) = 1.47 (1.00-2.14) for per IQR increase after adjustment for the covariates and home environmental factors. Specifically, we identified the significant association in early phase of pregnancy including conception month (1.90, 1.09-3.30) and the first trimester (1.72, 1.10-2.69). We further found that TLBW was significantly related with parental smoking at home, OR (95% CI) = 2.17 (1.09-4.33). However, no association was observed for preterm LBW (PLBW). The TLBW risk of ambient air pollution and home environmental factors was independent each other and hence the combined exposure to ambient PM10 and indoor parental smoking caused the highest risk. Sensitivity analysis suggested that foetus with younger mothers were significantly more susceptible to risk of indoor parental smoking, while those with smaller house and cockroaches were more sensitive to risk of outdoor PM10 exposure. CONCLUSION Prenatal exposure to combined outdoor and indoor air pollution, particularly in critical window(s) during early pregnancy, significantly increases the risk of term LBW.
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University, Changsha, China; Hunan Engineering Research Center of Early Life Development and Disease Prevention, XiangYa Hospital, Central South University, Changsha, China.
| | - Weishe Zhang
- Hunan Engineering Research Center of Early Life Development and Disease Prevention, XiangYa Hospital, Central South University, Changsha, China; Department of Obstetrics, XiangYa Hospital, Central South University, Changsha, China
| | - Xiangrong Zheng
- Department of Pediatrics, XiangYa Hospital, Central South University, Changsha, China
| | - Jingchi Sun
- Department of Obstetrics, XiangYa Hospital, Central South University, Changsha, China
| | - Lv Chen
- XiangYa School of Public Health, Central South University, Changsha, China
| | - Qihong Deng
- XiangYa School of Public Health, Central South University, Changsha, China; Hunan Engineering Research Center of Early Life Development and Disease Prevention, XiangYa Hospital, Central South University, Changsha, China; School of Architecture and Art, Central South University, Changsha, China.
| |
Collapse
|
39
|
Regis da Costa E Oliveira J, Base LH, Maia LCP, Ferreira de Lima Antão JYF, de Abreu LC, Oliveira FR, Vanderlei LCM, Filho CF, Ferreira C. Geometric indexes of heart rate variability in healthy individuals exposed to long-term air pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4170-4177. [PMID: 31828705 DOI: 10.1007/s11356-019-06965-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to investigate the autonomic modulation of heart rate in healthy individuals exposed to long-term air pollution through geometric methods. We analyzed data from 109 healthy adults aged 18 to 49, divided into three groups according to the exposure time: period 0 to 15 years of exposure (n = 29), more than 15 years of exposure (n = 31), and control group (n = 49). For the analysis of heart rate variability (HRV), heart rate was recorded beat-to-beat for 20 min in the sitting position. The RR intervals were transformed into geometric indexes, and from them, we calculated the RRTri (triangular index), TINN (triangle interpolation of histogram of intervals NN), and Poincaré plot (SD1, SD2, and SD1/SD2). Significantly lower values were observed in the group of individuals exposed to air pollution for more than 15 years compared with the group of individuals exposed to air pollution for a period of 0-15 years and those not exposed for the RRTri (11.5 vs 13.8 vs 14.0), SD1 (16.4 vs 20.5 vs 20.6), SD2 (60.5 vs 68.1 vs 72.5), and SD1/SD2 (0.27 vs 0.34 vs 0.31), with the effect of this difference being considered large (RRTri), medium (SD1, SD1/SD2), and small (SD2). TINN was not significantly different among groups (198.2 vs 223.1 vs 233.6). Healthy individuals exposed to air pollution for more than 15 years present an autonomic imbalance, characterized by lower parasympathetic modulation and overall HRV.
Collapse
Affiliation(s)
- Juliana Regis da Costa E Oliveira
- Departamento de Medicina, Disciplina de Cardiologia, Hospital São Paulo, Escola Paulista de Medicina, Universidade Federal de São Paulo, 715 Napoleão de Barros St, São Paulo, SP, 04024-002, Brazil.
| | - Luis Henrique Base
- Departamento de Medicina, Disciplina de Cardiologia, Hospital São Paulo, Escola Paulista de Medicina, Universidade Federal de São Paulo, 715 Napoleão de Barros St, São Paulo, SP, 04024-002, Brazil
| | - Laura Cristina Pereira Maia
- Departamento de Medicina, Disciplina de Clínica Médica, Hospital São Paulo, Escola Paulista de Medicina, Universidade Federal de São Paulo, 715 Napoleão de Barros St, São Paulo, 04024-002, Brazil
| | | | - Luiz Carlos de Abreu
- Faculdade de Medicina do ABC, Laboratório de Epidemiologia e Escrita Científica, 2000 Lauro Gomes Av, Santo André, SP, 09060-870, Brazil
| | - Fernando Rocha Oliveira
- Departamento de Epidemiologia, Faculdade de Saúde Pública da Universidade de São Paulo (USP), 715 Dr. Arnaldo Av, São Paulo, SP, 01246-904, Brazil
| | - Luiz Carlos Marques Vanderlei
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), 305 Roberto Simonsen St, Presidente Prudente, SP, 19060-900, Brazil
| | - Celso Ferreira Filho
- Departamento de Medicina, Disciplina de Clínica Médica, Hospital São Paulo, Escola Paulista de Medicina, Universidade Federal de São Paulo, 715 Napoleão de Barros St, São Paulo, 04024-002, Brazil
| | - Celso Ferreira
- Departamento de Medicina, Disciplina de Cardiologia, Hospital São Paulo, Escola Paulista de Medicina, Universidade Federal de São Paulo, 715 Napoleão de Barros St, São Paulo, SP, 04024-002, Brazil
| |
Collapse
|
40
|
van Waveren A, Duncan MJ, Coulson F, Fenning A. Moderate-intensity physical activity reduces systemic inflammation and maintains cardiorespiratory function following chronic particulate matter 2.5 exposure in rats. Toxicol Rep 2020; 7:93-100. [PMID: 31908971 PMCID: PMC6940717 DOI: 10.1016/j.toxrep.2019.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 11/24/2022] Open
Abstract
Aims The purpose of the current study is to 1) examine the beneficial effects of moderate levels of physical activity (PA) on functional and biochemical markers of the cardiorespiratory system, 2) establish the detrimental effects of a single, daily particulate matter (PM) exposure event on cardiorespiratory function and 3) determine if exercising during daily PM exposure increases the deleterious effects caused by PM exposure due to increased inhalation of particulates on cardiorespiratory function. Methods Four groups of 16 rats were used: control (CON), PA, PM2.5 exposed and PA combined with PM2.5 exposure (PA + PM). Animals were purchased at 4 weeks old. However, both PA and PM exposure was initiated when the animals reached 8 weeks of age, for 8 weeks. Results PA alone did not alter body weight or blood pressure (BP) compared to control animals. However, there was a significant decrease in epididymal fat pad mass in the PA group. The PM exposed rats were hypertensive, showed increased systemic inflammation and oxidative stress, and had decreased spleen mass without pathological changes in the cardiac action potential or impaired vascular function. PA was able to decrease systemic inflammation in PM exposed animals, including a reduction in IL-6 serum levels, however, this did not translate to an improvement in BP or vascular reactivity. Smooth muscle relaxation in the trachea from the combination PA + PM group was not significantly different to CON and PA groups but was significantly higher than the PM group. Conclusions The current study showed that while there is an increased cardiovascular disease (CVD) risk associated with PM exposure, engaging in PA during exposure events imposes no increased risk with exercise providing a protective mechanism against some of the biochemical signaling changes caused by inhaled PM.
Collapse
Affiliation(s)
- Alannah van Waveren
- School of Medical and Applied Science, CQ University Rockhampton, Bruce Highway, Queensland, 4702, Australia.,School of Health, Medical and Applied Sciences, Central Queensland University, Australia
| | - Mitch J Duncan
- School of Medical and Applied Science, CQ University Rockhampton, Bruce Highway, Queensland, 4702, Australia.,School of Medicine & Public Health, Priority Research Centre in Physical Activity and Nutrition, The University of Newcastle, Newcastle, Australia
| | - Fiona Coulson
- School of Medical and Applied Science, CQ University Rockhampton, Bruce Highway, Queensland, 4702, Australia.,School of Health, Medical and Applied Sciences, Central Queensland University, Australia
| | - Andrew Fenning
- School of Medical and Applied Science, CQ University Rockhampton, Bruce Highway, Queensland, 4702, Australia.,School of Health, Medical and Applied Sciences, Central Queensland University, Australia
| |
Collapse
|
41
|
In-Vehicle Exposures at Transportation and the Health Concerns. CURRENT TOPICS IN ENVIRONMENTAL HEALTH AND PREVENTIVE MEDICINE 2020. [PMCID: PMC7123345 DOI: 10.1007/978-981-32-9182-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In-vehicle environment is a special indoor environment, which is mobile, either open or closed. This chapter reviewed in-vehicle air quality and passenger exposures for roadway commuters, commercial airplanes, and marine transportation. The sources of pollutants in-vehicle can be categorized as the same as other indoor environments, including outdoor air, human activity, emission from building material and interior furnisher, and biological metabolic process from animals and microbes. However, the exposure in vehicles varies from now and then, influenced by window open/closed, speed, air flow, ventilation on/off, air conditioner on/off, pollutants from ambient outdoor air, interior material, and number of passengers. There are few studies on health condition of passengers, except infectious disease during airway transportation. Some health studies of related occupations are reviewed.
Collapse
|
42
|
Gondalia R, Holliday KM, Baldassari A, Justice AE, Stewart JD, Liao D, Yanosky JD, Engel SM, Jordahl KM, Bhatti P, Horvath S, Assimes TL, Pankow JS, Demerath EW, Guan W, Fornage M, Bressler J, North KE, Conneely KN, Li Y, Hou L, Baccarelli AA, Whitsel EA. Leukocyte Traits and Exposure to Ambient Particulate Matter Air Pollution in the Women's Health Initiative and Atherosclerosis Risk in Communities Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:17004. [PMID: 31903802 PMCID: PMC7015624 DOI: 10.1289/ehp5360] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/25/2019] [Accepted: 12/03/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Inflammatory effects of ambient particulate matter (PM) air pollution exposures may underlie PM-related increases in cardiovascular disease risk and mortality, although evidence of PM-associated leukocytosis is inconsistent and largely based on small, cross-sectional, and/or unrepresentative study populations. OBJECTIVES Our objective was to estimate PM-leukocyte associations among U.S. women and men in the Women's Health Initiative and Atherosclerosis Risk in Communities study (n = 165,675 ). METHODS We based the PM-leukocyte estimations on up to four study visits per participant, at which peripheral blood leukocytes and geocoded address-specific concentrations of PM ≤ 10 , ≤ 2.5 , and 2.5 - 10 μ m in diameter (PM 10 , PM 2.5 , and PM 2.5 - 10 , respectively) were available. We multiply imputed missing data using chained equations and estimated PM-leukocyte count associations over daily to yearly PM exposure averaging periods using center-specific, linear, mixed, longitudinal models weighted for attrition and adjusted for sociodemographic, behavioral, meteorological, and geographic covariates. In a subset of participants with available data (n = 8,457 ), we also estimated PM-leukocyte proportion associations in compositional data analyses. RESULTS We found a 12 cells / μ L (95% confidence interval: - 9 , 33) higher leukocyte count, a 1.2% (0.6%, 1.8%) higher granulocyte proportion, and a - 1.1 % (- 1.9 % , - 0.3 % ) lower CD 8 + T-cell proportion per 10 - μ g / m 3 increase in 1-month mean PM 2.5 . However, shorter-duration PM 10 exposures were inversely and only modestly associated with leukocyte count. DISCUSSION The PM 2.5 -leukocyte estimates, albeit imprecise, suggest that among racially, ethnically, and environmentally diverse U.S. populations, sustained, ambient exposure to fine PM may induce subclinical, but epidemiologically important, inflammatory effects. https://doi.org/10.1289/EHP5360.
Collapse
Affiliation(s)
- Rahul Gondalia
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Katelyn M. Holliday
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina
- Department of Community and Family Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Antoine Baldassari
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Anne E. Justice
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina
- Geisinger Health System, Danville, Pennsylvania
| | - James D. Stewart
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Duanping Liao
- Division of Epidemiology, Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jeff D. Yanosky
- Division of Epidemiology, Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Stephanie M. Engel
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Kristina M. Jordahl
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| | - Parveen Bhatti
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| | - Steve Horvath
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, Los Angeles, California
| | | | - James S. Pankow
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota
| | - Ellen W. Demerath
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota
| | - Myriam Fornage
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas
| | - Kari E. North
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Karen N. Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Yun Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Biostatistics, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Andrea A. Baccarelli
- Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences and Epidemiology, Columbia University Mailman School of Public Health, New York, New York
| | - Eric A. Whitsel
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
43
|
Tang CS, Chuang KJ, Chang TY, Chuang HC, Chen LH, Lung SCC, Chang LT. Effects of Personal Exposures to Micro- and Nano-Particulate Matter, Black Carbon, Particle-Bound Polycyclic Aromatic Hydrocarbons, and Carbon Monoxide on Heart Rate Variability in a Panel of Healthy Older Subjects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234672. [PMID: 31771182 PMCID: PMC6926945 DOI: 10.3390/ijerph16234672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/12/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022]
Abstract
As a non-invasive method, heart rate variability (HRV) has been widely used to study cardiovascular autonomous control. Environmental epidemiological studies indicated that the increase in an average concentration of particulate matter (PM) would result in a decrease in HRV, which was related to the increase of cardiovascular mortality in patients with myocardial infarction and the general population. With rapid economic and social development in Asia, how air pollutants, such as PM of different sizes and their components, affect the cardiovascular health of older people, still need to be further explored. The current study includes a 72 h personal exposure monitoring of seven healthy older people who lived in the Taipei metropolitan area. Mobile equipment, a portable electrocardiogram recorder, and the generalized additive mixed model (GAMM) were adopted to evaluate how HRV indices were affected by size-fractionated PM, particle-bound polycyclic aromatic hydrocarbons (p-PAHs), black carbon (BC), and carbon monoxide (CO). Other related confounding factors, such as age, sex, body mass index (BMI), temperature, relative humidity (RH), time, and monitoring week were controlled by fixed effects of the GAMM. Statistical analyses of multi-pollutant models showed that PM2.5–10, PM1, and nanoparticle (NP) could cause heart rate (HR), time-domain indices, and frequency-domain indices to rise; PM1–2.5 and BC would cause the frequency-domain index to rise; p-PAHs would cause HR to rise, and CO would cause time-domain index and frequency-domain index to decline. In addition, the moving average time all fell after one hour and might appear at 8 h in HRVs’ largest percentage change caused by each pollutant, results of which suggested that size-fractionated PM, p-PAHs, BC, and CO exposures have delayed effects on HRVs. In conclusion, the results of the study showed that the increase in personal pollutant exposure would affect cardiac autonomic control function of healthy older residents in metropolitan areas, and the susceptibility of cardiovascular effects was higher than that of healthy young people. Since the small sample size would limit the generalizability of this study, more studies with larger scale are warranted to better understand the HRV effects of simultaneous PM and other pollution exposures for subpopulation groups.
Collapse
Affiliation(s)
- Chin-Sheng Tang
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ta-Yuan Chang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung 40402, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Li-Hsin Chen
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | | | - Li-Te Chang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724, Taiwan
- Correspondence: ; Tel.: +886-4-2451-7250
| |
Collapse
|
44
|
Tavera Busso I, Mateos AC, González Peroni A, Graziani NS, Carreras HA. Hepatic alterations associated with fine particulate matter exposure. Toxicol Res 2019; 36:139-148. [PMID: 32257926 DOI: 10.1007/s43188-019-00014-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/29/2019] [Accepted: 07/29/2019] [Indexed: 10/24/2022] Open
Abstract
Several studies have pointed to fine particulate matter (PM2.5) as the main responsible for air pollution toxic effects. Indeed, PM2.5 may not only cause respiratory and cardiovascular abnormalities but it may also affect other organs such as the liver. Be that as it may, only a few studies have evaluated the PM2.5 effects on hepatic tissue. Moreover, most of them have not analyzed the relationship between particles composition and toxicological effects. In this study, healthy rats were subjected to urban levels of PM2.5 particles in order to assess their structural and functional effects on the liver. During the exposure periods, mean PM2.5 concentrations were slightly higher than the value suggested by the daily guideline of the World Health Organization. The exposed rats showed a hepatic increase of Cr, Zn, Fe, Ba, Tl and Pb levels. This group also showed leukocyte infiltration, sinusoidal dilation, hydropic inclusions and alterations in carbohydrates distribution. These histologic lesions were accompanied by serological changes, such as increase of total cholesterol and triglycerides, as well as genotoxic damage in their nuclei. We also observed significant associations between several biomarkers and PM2.5 composition. Our results show that exposure to low levels of PM2.5 might cause histologic and serological changes in liver tissue, suggesting that PM2.5 toxicity is influenced not only by their concentration but also by their composition and the exposure frequency.
Collapse
Affiliation(s)
- Iván Tavera Busso
- 1Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET - Departamento de Química, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina.,J. Robert Cade Foundation, Córdoba, Argentina
| | - Ana Carolina Mateos
- 1Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET - Departamento de Química, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina
| | - Alicia González Peroni
- 1Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET - Departamento de Química, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina
| | - Natalia Soledad Graziani
- 1Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET - Departamento de Química, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina
| | - Hebe Alejandra Carreras
- 1Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET - Departamento de Química, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina
| |
Collapse
|
45
|
Madureira J, Brancher EA, Costa C, Aurino de Pinho R, Teixeira JP. Cardio-respiratory health effects of exposure to traffic-related air pollutants while exercising outdoors: A systematic review. ENVIRONMENTAL RESEARCH 2019; 178:108647. [PMID: 31450147 DOI: 10.1016/j.envres.2019.108647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Despite physical exercise provides numerous health benefits, outdoor exercisers are frequently exposed to traffic-related air pollutants (TRAP) known to be associated with respiratory and cardiovascular diseases. The aim of this systematic review was to investigate the effects of TRAP exposure, specifically particulate matter and nitrogen dioxide (NO2), during outdoor exercise on cardio-respiratory health effects. Systematic database searches of PubMed, Web of Science, Scopus and Medline were performed by two researchers to identify peer-reviewed studies from 2000 to 2018. Combinations of keywords related to cardio-respiratory health effects, physical exercise and ambient air pollution were used. Thirteen studies were included, originating predominantly from European countries but also the American. They suggested that exercising in an environment with high TRAP exposure increases markers of respiratory and systemic inflammation, as well as, impairs the vascular function and increases artery pressure, when compared with an environment with low-TRAP exposure. In addition, the smaller particles appear to have the most severe health consequences compared with the larger coarse particles and NO2. This study also provides evidence that specific groups of the population have enhanced susceptibility to adverse effects from particulate matter exposure while exercising. There is a need for more studies focused on the relationship between air pollution, physical exercise and health, as large societal benefits can be obtained from healthy environments that can promote outdoor physical exercise.
Collapse
Affiliation(s)
- Joana Madureira
- National Institute of Health, Environmental Health Department, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.
| | - Emerson Antonio Brancher
- Laboratório de Fisiologia e Bioquímica do Exercício (LAFIBE), Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil; Departamento de Educação Física, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
| | - Carla Costa
- National Institute of Health, Environmental Health Department, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.
| | - Ricardo Aurino de Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - João Paulo Teixeira
- National Institute of Health, Environmental Health Department, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| |
Collapse
|
46
|
Hadrup N, Mielżyńska-Švach D, Kozłowska A, Campisi M, Pavanello S, Vogel U. Association between a urinary biomarker for exposure to PAH and blood level of the acute phase protein serum amyloid A in coke oven workers. Environ Health 2019; 18:81. [PMID: 31477116 PMCID: PMC6721239 DOI: 10.1186/s12940-019-0523-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/23/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Coke oven workers are exposed to both free and particle bound PAH. Through this exposure, the workers may be at increased risk of cardiovascular diseases. Systemic levels of acute phase response proteins have been linked to cardiovascular disease in epidemiological studies, suggesting it as a marker of these conditions. The aim of this study was to assess whether there was association between PAH exposure and the blood level of the acute phase inflammatory response marker serum amyloid A (SAA) in coke oven workers. METHODS A total of 87 male Polish coke oven workers from two different plants comprised the study population. Exposure was assessed by means of the individual post-shift urinary excretion of 1-hydroxypyrene, as internal dose of short-term PAH exposure, and by anti-benzo[a]pyrene diolepoxide (anti-B[a]PDE)-DNA), as a biomarker of long-term PAH exposure. Blood levels of acute phase proteins SAA and CRP were measured by immunoassay. C-reactive protein (CRP) levels were included to adjust for baseline levels of SAA. RESULTS Multiple linear regression showed that the major determinants of increased SAA levels were urinary 1-hydroxypyrene (beta = 0.56, p = 0.030) and serum CRP levels (beta = 7.08; p < 0.0001) whereas anti-B[a]PDE-DNA, the GSTM1 detoxifying genotype, diet, and smoking were not associated with SAA levels. CONCLUSIONS Urinary 1-hydroxypyrene as biomarker of short-term PAH exposure and serum levels of CRP were predictive of serum levels of SAA in coke oven workers. Our data suggest that exposure of coke oven workers to PAH can lead to increased systemic acute response and therefore potentially increased risk of cardiovascular disease.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
| | - Danuta Mielżyńska-Švach
- Institute of Occupational Medicine and Environmental Health, Sosnowiec, Poland
- Witold Pilecki State School of Higher Education, Nursing Institute, Oświęcim, Poland
| | - Agnieszka Kozłowska
- Witold Pilecki State School of Higher Education, Nursing Institute, Oświęcim, Poland
| | - Manuela Campisi
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
| |
Collapse
|
47
|
Chen Q, Wang M, Wang Y, Zhang L, Li Y, Han Y. Oxidative Potential of Water-Soluble Matter Associated with Chromophoric Substances in PM 2.5 over Xi'an, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8574-8584. [PMID: 31248249 DOI: 10.1021/acs.est.9b01976] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Organic compounds are important contributors to the oxidative potential (OP) of atmospheric aerosols. This study is the first to report the OP of water-soluble organic matter (WSOM) related to the chromophoric substances in PM2.5 over Xi'an, China. The dithiothreitol (DTT) activity levels in PM2.5 extracted by water were quantified as well as the relationships between DTT activity and light absorption and fluorescence properties. The results show that the DTT activity has significantly correlated with colored WSOM, in which we identified three light absorbing substances (BrC1-3) and eight fluorescent substances (C1-8). It is further found that BrC3 and C7 accounted for almost all of the DTT activity by colored WSOM, although these two factors contributed only a small fraction of light absorption and fluorescence. BrC3 and C7 are clearly distinguished from other chromophoric substances because of their long absorption wavelength (λmax = 475 nm) and fluorescence emission wavelength (λmax = 462 nm), respectively. This discovery will help to better interpret and understand the mechanism of oxidation activity generation by light absorbing organic aerosols and provide guidance for predicting the OPs of light absorbing organic aerosols based on their optical properties.
Collapse
Affiliation(s)
- Qingcai Chen
- School of Environmental Science and Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
| | - Mamin Wang
- School of Environmental Science and Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
| | - Yuqin Wang
- School of Environmental Science and Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
- Department of Earth and Atmospheric Sciences , Saint Louis University , St. Louis , Missouri 63108 , United States
| | - Lixin Zhang
- School of Environmental Science and Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
| | - Yanguang Li
- Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits, MLR , Xi'an 710054 , China
- Xi'an Center of Geological Survey , China Geological Survey , Xi'an 710054 , China
| | - Yuemei Han
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment , Chinese Academy of Sciences , Xi'an 710061 , China
| |
Collapse
|
48
|
Liang D, Ladva CN, Golan R, Yu T, Walker DI, Sarnat SE, Greenwald R, Uppal K, Tran V, Jones DP, Russell AG, Sarnat JA. Perturbations of the arginine metabolome following exposures to traffic-related air pollution in a panel of commuters with and without asthma. ENVIRONMENT INTERNATIONAL 2019; 127:503-513. [PMID: 30981021 PMCID: PMC6513706 DOI: 10.1016/j.envint.2019.04.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Mechanisms underlying the effects of traffic-related air pollution on people with asthma remain largely unknown, despite the abundance of observational and controlled studies reporting associations between traffic sources and asthma exacerbation and hospitalizations. OBJECTIVES To identify molecular pathways perturbed following traffic pollution exposures, we analyzed data as part of the Atlanta Commuters Exposure (ACE-2) study, a crossover panel of commuters with and without asthma. METHODS We measured 27 air pollutants and conducted high-resolution metabolomics profiling on blood samples from 45 commuters before and after each exposure session. We evaluated metabolite and metabolic pathway perturbations using an untargeted metabolome-wide association study framework with pathway analyses and chemical annotation. RESULTS Most of the measured pollutants were elevated in highway commutes (p < 0.05). From both negative and positive ionization modes, 17,586 and 9087 metabolic features were extracted from plasma, respectively. 494 and 220 unique features were associated with at least 3 of the 27 exposures, respectively (p < 0.05), after controlling confounders and false discovery rates. Pathway analysis indicated alteration of several inflammatory and oxidative stress related metabolic pathways, including leukotriene, vitamin E, cytochrome P450, and tryptophan metabolism. We identified and annotated 45 unique metabolites enriched in these pathways, including arginine, histidine, and methionine. Most of these metabolites were not only associated with multiple pollutants, but also differentially expressed between participants with and without asthma. The analysis indicated that these metabolites collectively participated in an interrelated molecular network centering on arginine metabolism, underlying the impact of traffic-related pollutants on individuals with asthma. CONCLUSIONS We detected numerous significant metabolic perturbations associated with in-vehicle exposures during commuting and validated metabolites that were closely linked to several inflammatory and redox pathways, elucidating the potential molecular mechanisms of traffic-related air pollution toxicity. These results support future studies of metabolic markers of traffic exposures and the corresponding molecular mechanisms.
Collapse
Affiliation(s)
- Donghai Liang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA.
| | - Chandresh N Ladva
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Rachel Golan
- Department of Public Health, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tianwei Yu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Douglas I Walker
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Stefanie E Sarnat
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Roby Greenwald
- Division of Environmental Health, Georgia State University School of Public Health, Atlanta, USA
| | - Karan Uppal
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, USA
| | - ViLinh Tran
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, USA
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Jeremy A Sarnat
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| |
Collapse
|
49
|
Stanković A, Bogdanović D, Nikolić M, Anđelković Apostolović M. Does short-term air pollution exposure have effects on blood pressure and heart rate in healthy women in the city of Niš, Serbia? Cent Eur J Public Health 2019; 26:310-315. [PMID: 30660143 DOI: 10.21101/cejph.a5104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Epidemiological research has shown that air pollution is associated with cardiovascular events, but little is known about short-term effects on blood pressure (BP) and heart rate (HR) in Serbian population. The present study assessed the short-term association between black smoke (BS) and sulphur dioxide (SO2) levels in urban air and the daily values of blood pressure and heart rate in 98 healthy nonsmoking female volunteers. METHODS Generalized regression model was fitted controlling for temperature, relative humidity, air pressure, season, and the day of the week. RESULTS There was no association between short-term air pollution exposure and BP and HR, the exposure showed a tendency toward a decrease of diastolic BP and HR, but with no statistical significance. CONCLUSION The present findings did not support the conclusion that current levels of ambient BS and SO2 may have an effect on blood pressure and heart rate in women.
Collapse
Affiliation(s)
- Aleksandra Stanković
- Department of Hygiene, Medical Ecology, Medical Faculty, University of Nis, Nis, Serbia.,Centre for Hygiene and Human Ecology, Public Health Institute Nis, Nis, Serbia
| | - Dragan Bogdanović
- Department for Biomedical Science, State University of Novi Pazar, Novi Pazar, Serbia.,Centre for Informatics and Biostatistics in Health Care, Public Health Institute Nis, Nis, Serbia
| | - Maja Nikolić
- Department of Hygiene, Medical Ecology, Medical Faculty, University of Nis, Nis, Serbia.,Centre for Hygiene and Human Ecology, Public Health Institute Nis, Nis, Serbia
| | - Marija Anđelković Apostolović
- Centre for Informatics and Biostatistics in Health Care, Public Health Institute Nis, Nis, Serbia.,Department for Informatics and Biostatistics, Medical Faculty, University of Nis, Nis, Serbia
| |
Collapse
|
50
|
Gao X, Colicino E, Shen J, Kioumourtzoglou MA, Just AC, Nwanaji-Enwerem JC, Coull B, Lin X, Vokonas P, Zheng Y, Hou L, Schwartz J, Baccarelli AA. Impacts of air pollution, temperature, and relative humidity on leukocyte distribution: An epigenetic perspective. ENVIRONMENT INTERNATIONAL 2019; 126:395-405. [PMID: 30826618 PMCID: PMC6441628 DOI: 10.1016/j.envint.2019.02.053] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Exploring the associations of air pollution and weather variables with blood leukocyte distribution is critical to understand the impacts of environmental exposures on the human immune system. OBJECTIVES As previous analyses have been mainly based on data from cell counters, which might not be feasible in epidemiologic studies including large populations of long-stored blood samples, we aimed to expand the understanding of this topic by employing the leukocyte distribution estimated by DNA methylation profiles. METHODS We measured DNA methylation profiles in blood samples using Illumina HumanMethylation450 BeadChip from 1519 visits of 774 Caucasian males participating in the Normative Aging Study. Leukocyte distribution was estimated using Houseman's and Horvath's algorithms. Data on air pollution exposure, temperature, and relative humidity within 28 days before each blood draw was obtained. RESULTS After fully adjusting for potential covariates, PM2.5, black carbon, particle number, carbon monoxide, nitrogen dioxide, sulfur dioxide, temperature, and relative humidity were associated with the proportions of at least one subtype of leukocytes. Particularly, an interquartile range-higher 28-day average exposure of PM2.5 was associated with 0.147-, 0.054- and 0.101-unit lower proportions (z-scored) of plasma cells, naïve CD8+ T cells, and natural killers, respectively, and 0.059- and 0.161-unit higher proportions (z-scored) of naïve CD4+ T cells and CD8+ T cells, respectively. CONCLUSIONS Our study suggests that short-term air pollution exposure, temperature, and relative humidity are associated with leukocyte distribution. Our study further provides a successful attempt to use epigenetic patterns to assess the influences of environmental exposures on human immune profiles.
Collapse
Affiliation(s)
- Xu Gao
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jincheng Shen
- Department of Population Health Sciences, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | | | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Brent Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Pantel Vokonas
- Veterans Affairs Normative Aging Study, Veterans Affairs Boston Healthcare System, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|