1
|
Pincikova T, Merikallio H, Kotortsi I, Karimi R, Li CX, Lappi-Blanco E, Lindén SK, Padra M, Wheelock ÅM, Nyrén S, Sköld CM, Kaarteenaho RL. Expression Levels of MUC5AC and MUC5B in Airway Goblet Cells Are Associated with Traits of COPD and Progression of Chronic Airflow Limitation. Int J Mol Sci 2024; 25:13653. [PMID: 39769414 PMCID: PMC11678853 DOI: 10.3390/ijms252413653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Mucins 5AC (MUC5AC) and 5B (MUC5B) are the major mucins providing the organizing framework for the airway's mucus gel. We retrieved bronchial mucosal biopsies and bronchial wash (BW) samples through bronchoscopy from patients with chronic obstructive pulmonary disease (n = 38), healthy never-smokers (n = 40), and smokers with normal lung function (n = 40). The expression of MUC5AC and MUC5B was assessed immunohistochemically. The mucin concentrations in BW were determined using the slot-blot technique. The immunohistochemical expression of MUC5AC and MUC5B was localized to goblet cells and submucosal glands. Smokers had higher MUC5AC and lower MUC5B goblet cell expression and higher concentrations of soluble MUC5AC in BW than never-smokers. The MUC5B expression in goblet cells correlated positively with expiratory air flows, diffusing capacity, and the dyspnoea score. Chronic bronchitis, emphysema, and the progression of chronic airflow limitation during a median follow-up time of 8.4 years were associated with higher MUC5AC and lower MUC5B expression in goblet cells. Sustainers, slow progressors, and rapid progressors of airflow obstruction differed in their MUC5B expression at baseline. Emphysema and bronchial wall thickening on CT at a follow-up visit were associated with lower MUC5B expression at baseline. Our findings strengthen the hypothesis that MUC5AC and MUC5B are yet another contributing factor to smoking-associated lung disease progression.
Collapse
Grants
- NA The Foundation of the Finnish Anti-Tuberculosis Association
- NA The Jalmari and Rauha Ahokas Foundation
- NA The Research Foundation of the Pulmonary Diseases
- NA A state subsidy of Oulu University Hospital
- CMS 20100435, 20130293, 20160418, 20180235, 20190320; SL 20230626 The Swedish Heart-Lung Foundation
- CMS 2016 The Swedish Respiratory Society
- CMS 2011, 2012, 2013 King Gustaf V's and Queen Victoria's Freemasons' Foundation
- CMS 2010 Hesselmans Foundation
- NA Karolinska Institutet
- 2017-01142, 2018-00520 and 2021-02542 The Swedish Research Council
- CMS 071217 The Swedish Cancer- and Allergy Foundation
- CMS 2013 Sandoz A/S
- CMS 20110434, 20130051, 20150061, 20170393 and 20200287 The Regional Agreement on Medical Training and Clinical Research (ALF) between Stockholm County Council and Karolinska Institutet
- MCF [7214]-2013 ERS-EU RESPIRE2
Collapse
Affiliation(s)
- Terezia Pincikova
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden (Å.M.W.)
- Stockholm CF-Center, Albatross, K56, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Heta Merikallio
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, 902 20 Oulu, Finland
- Center of Internal Medicine and Respiratory Medicine, Medical Research Center Oulu, Oulu University Hospital, 902 20 Oulu, Finland
| | - Ioanna Kotortsi
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden (Å.M.W.)
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Reza Karimi
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden (Å.M.W.)
| | - Chuan-Xing Li
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden (Å.M.W.)
| | - Elisa Lappi-Blanco
- Cancer and Translational Medicine Research Unit, Department of Pathology, Oulu University Hospital and University of Oulu, 902 20 Oulu, Finland
| | - Sara K. Lindén
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (S.K.L.)
| | - Médea Padra
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (S.K.L.)
| | - Åsa M. Wheelock
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden (Å.M.W.)
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Sven Nyrén
- Department of Molecular Medicine and Surgery, Division of Radiology, Karolinska Institute, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Carl Magnus Sköld
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden (Å.M.W.)
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Riitta L. Kaarteenaho
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, 902 20 Oulu, Finland
- Center of Internal Medicine and Respiratory Medicine, Medical Research Center Oulu, Oulu University Hospital, 902 20 Oulu, Finland
| |
Collapse
|
2
|
Agraval H, Kandhari K, Yadav UCS. MMPs as potential molecular targets in epithelial-to-mesenchymal transition driven COPD progression. Life Sci 2024; 352:122874. [PMID: 38942362 DOI: 10.1016/j.lfs.2024.122874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of mortality globally and the risk of developing lung cancer is six times greater in individuals with COPD who smoke compared to those who do not smoke. Matrix metalloproteinases (MMPs) play a crucial role in the pathophysiology of respiratory diseases by promoting inflammation and tissue degradation. Furthermore, MMPs are involved in key processes like epithelial-to-mesenchymal transition (EMT), metastasis, and invasion in lung cancer. While EMT has traditionally been associated with the progression of lung cancer, recent research highlights its active involvement in individuals with COPD. Current evidence underscores its role in orchestrating airway remodeling, fostering airway fibrosis, and contributing to the potential for malignant transformation in the complex pathophysiology of COPD. The precise regulatory roles of diverse MMPs in steering EMT during COPD progression needs to be elucidated. Additionally, the less-understood aspect involves how these MMPs bi-directionally activate or regulate various EMT-associated signaling cascades during COPD progression. This review article explores recent advancements in understanding MMPs' role in EMT during COPD progression and various pharmacological approaches to target MMPs. It also delves into the limitations of current MMP inhibitors and explores novel, advanced strategies for inhibiting MMPs, potentially offering new avenues for treating respiratory diseases.
Collapse
Affiliation(s)
- Hina Agraval
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Umesh C S Yadav
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
3
|
Russell RJ, Boulet LP, Brightling CE, Pavord ID, Porsbjerg C, Dorscheid D, Sverrild A. The airway epithelium: an orchestrator of inflammation, a key structural barrier and a therapeutic target in severe asthma. Eur Respir J 2024; 63:2301397. [PMID: 38453256 PMCID: PMC10991852 DOI: 10.1183/13993003.01397-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Asthma is a disease of heterogeneous pathology, typically characterised by excessive inflammatory and bronchoconstrictor responses to the environment. The clinical expression of the disease is a consequence of the interaction between environmental factors and host factors over time, including genetic susceptibility, immune dysregulation and airway remodelling. As a critical interface between the host and the environment, the airway epithelium plays an important role in maintaining homeostasis in the face of environmental challenges. Disruption of epithelial integrity is a key factor contributing to multiple processes underlying asthma pathology. In this review, we first discuss the unmet need in asthma management and provide an overview of the structure and function of the airway epithelium. We then focus on key pathophysiological changes that occur in the airway epithelium, including epithelial barrier disruption, immune hyperreactivity, remodelling, mucus hypersecretion and mucus plugging, highlighting how these processes manifest clinically and how they might be targeted by current and novel therapeutics.
Collapse
Affiliation(s)
- Richard J Russell
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | | | - Christopher E Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Ian D Pavord
- Respiratory Medicine, NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Celeste Porsbjerg
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark
| | - Del Dorscheid
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Asger Sverrild
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
4
|
Yang R, Wu X, Gounni AS, Xie J. Mucus hypersecretion in chronic obstructive pulmonary disease: From molecular mechanisms to treatment. J Transl Int Med 2023; 11:312-315. [PMID: 38130649 PMCID: PMC10732574 DOI: 10.2478/jtim-2023-0094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Ruonan Yang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, Hubei Province, China
| | - Xiaojie Wu
- Department of Respiratory and Critical Care Medicine, Wuhan NO. 1 Hospital, Wuhan Hospital of traditional Chinese and Western Medicine, Wuhan430022, Hubei Province, China
| | - Abdelilah Soussi Gounni
- Department of Immunology, Faculty of Medicine, University of Manitoba, ManitobaR3E 0W3, Canada
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, Hubei Province, China
| |
Collapse
|
5
|
Cha SR, Jang J, Park SM, Ryu SM, Cho SJ, Yang SR. Cigarette Smoke-Induced Respiratory Response: Insights into Cellular Processes and Biomarkers. Antioxidants (Basel) 2023; 12:1210. [PMID: 37371940 DOI: 10.3390/antiox12061210] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Cigarette smoke (CS) poses a significant risk factor for respiratory, vascular, and organ diseases owing to its high content of harmful chemicals and reactive oxygen species (ROS). These substances are known to induce oxidative stress, inflammation, apoptosis, and senescence due to their exposure to environmental pollutants and the presence of oxidative enzymes. The lung is particularly susceptible to oxidative stress. Persistent oxidative stress caused by chronic exposure to CS can lead to respiratory diseases such as chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), and lung cancer. Avoiding exposure to environmental pollutants, like cigarette smoke and air pollution, can help mitigate oxidative stress. A comprehensive understanding of oxidative stress and its impact on the lungs requires future research. This includes identifying strategies for preventing and treating lung diseases as well as investigating the underlying mechanisms behind oxidative stress. Thus, this review aims to investigate the cellular processes induced by CS, specifically inflammation, apoptosis, senescence, and their associated biomarkers. Furthermore, this review will delve into the alveolar response provoked by CS, emphasizing the roles of potential therapeutic target markers and strategies in inflammation and oxidative stress.
Collapse
Affiliation(s)
- Sang-Ryul Cha
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Jimin Jang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Sung-Min Park
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Se Min Ryu
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Seong-Joon Cho
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| |
Collapse
|
6
|
Kim MD, Chung S, Baumlin N, Sun L, Silswal N, Dennis JS, Yoshida M, Sabater J, Horrigan FT, Salathe M. E-cigarette aerosols of propylene glycol impair BK channel activity and parameters of mucociliary function. Am J Physiol Lung Cell Mol Physiol 2023; 324:L468-L479. [PMID: 36809074 PMCID: PMC10042605 DOI: 10.1152/ajplung.00157.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/26/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Propylene glycol (PG) is a common delivery vehicle for nicotine and flavorings in e-cigarette (e-cig) liquids and is largely considered safe for ingestion. However, little is known about its effects as an e-cig aerosol on the airway. Here, we investigated whether pure PG e-cig aerosols in realistic daily amounts impact parameters of mucociliary function and airway inflammation in a large animal model (sheep) in vivo and primary human bronchial epithelial cells (HBECs) in vitro. Five-day exposure of sheep to e-cig aerosols of 100% PG increased mucus concentrations (% mucus solids) of tracheal secretions. PG e-cig aerosols further increased the activity of matrix metalloproteinase-9 (MMP-9) in tracheal secretions. In vitro exposure of HBECs to e-cig aerosols of 100% PG decreased ciliary beating and increased mucus concentrations. PG e-cig aerosols further reduced the activity of large conductance, Ca2+-activated, and voltage-dependent K+ (BK) channels. We show here for the first time that PG can be metabolized to methylglyoxal (MGO) in airway epithelia. PG e-cig aerosols increased levels of MGO and MGO alone reduced BK activity. Patch-clamp experiments suggest that MGO can disrupt the interaction between the major pore-forming BK subunit human Slo1 (hSlo1) and the gamma regulatory subunit LRRC26. PG exposures also caused a significant increase in mRNA expression levels of MMP9 and interleukin 1 beta (IL1B). Taken together, these data show that PG e-cig aerosols cause mucus hyperconcentration in sheep in vivo and HBECs in vitro, likely by disrupting the function of BK channels important for airway hydration.
Collapse
Affiliation(s)
- Michael D Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Samuel Chung
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Nathalie Baumlin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Liang Sun
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States
| | - Neerupma Silswal
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - John S Dennis
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Makoto Yoshida
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Juan Sabater
- Department of Research, Mount Sinai Medical Center, Miami Beach, Florida, United States
| | - Frank T Horrigan
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States
| | - Matthias Salathe
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| |
Collapse
|
7
|
The Tobacco Smoke Component, Acrolein, as a Major Culprit in Lung Diseases and Respiratory Cancers: Molecular Mechanisms of Acrolein Cytotoxic Activity. Cells 2023; 12:cells12060879. [PMID: 36980220 PMCID: PMC10047238 DOI: 10.3390/cells12060879] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Acrolein, a highly reactive unsaturated aldehyde, is a ubiquitous environmental pollutant that seriously threatens human health and life. Due to its high reactivity, cytotoxicity and genotoxicity, acrolein is involved in the development of several diseases, including multiple sclerosis, neurodegenerative diseases such as Alzheimer’s disease, cardiovascular and respiratory diseases, diabetes mellitus and even the development of cancer. Traditional tobacco smokers and e-cigarette users are particularly exposed to the harmful effects of acrolein. High concentrations of acrolein have been found in both mainstream and side-stream tobacco smoke. Acrolein is considered one of cigarette smoke’s most toxic and harmful components. Chronic exposure to acrolein through cigarette smoke has been linked to the development of asthma, acute lung injury, chronic obstructive pulmonary disease (COPD) and even respiratory cancers. This review addresses the current state of knowledge on the pathological molecular mechanisms of acrolein in the induction, course and development of lung diseases and cancers in smokers.
Collapse
|
8
|
In Vitro Characteristics of Canine Primary Tracheal Epithelial Cells Maintained at an Air-Liquid Interface Compared to In Vivo Morphology. Int J Mol Sci 2023; 24:ijms24054987. [PMID: 36902418 PMCID: PMC10003254 DOI: 10.3390/ijms24054987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Culturing respiratory epithelial cells at an air-liquid interface (ALI) represents an established method for studies on infection or toxicology by the generation of an in vivo-like respiratory tract epithelial cellular layer. Although primary respiratory cells from a variety of animals have been cultured, an in-depth characterization of canine tracheal ALI cultures is lacking despite the fact that canines are a highly relevant animal species susceptible to various respiratory agents, including zoonotic pathogens such as severe acute respiratory coronavirus 2 (SARS-CoV-2). In this study, canine primary tracheal epithelial cells were cultured under ALI conditions for four weeks, and their development was characterized during the entire culture period. Light and electron microscopy were performed to evaluate cell morphology in correlation with the immunohistological expression profile. The formation of tight junctions was confirmed using transepithelial electrical resistance (TEER) measurements and immunofluorescence staining for the junctional protein ZO-1. After 21 days of culture at the ALI, a columnar epithelium containing basal, ciliated and goblet cells was seen, resembling native canine tracheal samples. However, cilia formation, goblet cell distribution and epithelial thickness differed significantly from the native tissue. Despite this limitation, tracheal ALI cultures could be used to investigate the pathomorphological interactions of canine respiratory diseases and zoonotic agents.
Collapse
|
9
|
Gefitinib and fostamatinib target EGFR and SYK to attenuate silicosis: a multi-omics study with drug exploration. Signal Transduct Target Ther 2022; 7:157. [PMID: 35551173 PMCID: PMC9098425 DOI: 10.1038/s41392-022-00959-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Silicosis is the most prevalent and fatal occupational disease with no effective therapeutics, and currently used drugs cannot reverse the disease progress. Worse still, there are still challenges to be addressed to fully decipher the intricated pathogenesis. Thus, specifying the essential mechanisms and targets in silicosis progression then exploring anti-silicosis pharmacuticals are desperately needed. In this work, multi-omics atlas was constructed to depict the pivotal abnormalities of silicosis and develop targeted agents. By utilizing an unbiased and time-resolved analysis of the transcriptome, proteome and phosphoproteome of a silicosis mouse model, we have verified the significant differences in transcript, protein, kinase activity and signaling pathway level during silicosis progression, in which the importance of essential biological processes such as macrophage activation, chemotaxis, immune cell recruitment and chronic inflammation were emphasized. Notably, the phosphorylation of EGFR (p-EGFR) and SYK (p-SYK) were identified as potential therapeutic targets in the progression of silicosis. To inhibit and validate these targets, we tested fostamatinib (targeting SYK) and Gefitinib (targeting EGFR), and both drugs effectively ameliorated pulmonary dysfunction and inhibited the progression of inflammation and fibrosis. Overall, our drug discovery with multi-omics approach provides novel and viable therapeutic strategies for the treatment of silicosis.
Collapse
|
10
|
Tassew D, Fort S, Mebratu Y, McDonald J, Chu HW, Petersen H, Tesfaigzi Y. Effects of Wood Smoke Constituents on Mucin Gene Expression in Mice and Human Airway Epithelial Cells and on Nasal Epithelia of Subjects with a Susceptibility Gene Variant in Tp53. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:17010. [PMID: 35072516 PMCID: PMC8785869 DOI: 10.1289/ehp9446] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Exposure to wood smoke (WS) increases the risk for chronic bronchitis more than exposure to cigarette smoke (CS), but the underlying mechanisms are unclear. OBJECTIVE The effect of WS and CS on mucous cell hyperplasia in mice and in human primary airway epithelial cells (AECs) was compared with replicate the findings in human cohorts. Responsible WS constituents were identified to better delineate the pathway involved, and the role of a tumor protein p53 (Tp53) gene polymorphism was investigated. METHODS Mice and primary human AECs were exposed to WS or CS and the signaling receptor and pathway were identified using short hairpin structures, small molecule inhibitors, and Western analyses. Mass spectrometric analysis was used to identify active WS constituents. The role of a gene variant in Tp53 that modifies proline to arginine was examined using nasal brushings from study participants in the Lovelace Smokers Cohort, primary human AECs, and mice with a modified Tp53 gene. RESULTS WS at 25-fold lower concentration than CS increased mucin expression more efficiently in mice and in human AECs in a p53 pathway-dependent manner. Study participants who were homozygous for p53 arginine compared with the proline variant showed higher mucin 5AC (MUC5AC) mRNA levels in nasal brushings if they reported WS exposure. The WS constituent, oxalate, increased MUC5AC levels similar to the whole WS extract, especially in primary human AECs homozygous for p53 arginine, and in mice with a modified Tp53 gene. Further, the anion exchange protein, SLC26A9, when reduced, enhanced WS- and oxalate-induced mucin expression. DISCUSSION The potency of WS compared with CS in inducing mucin expression may explain the increased risk for chronic bronchitis in participants exposed to WS. Identification of the responsible compounds could help estimate the risk of pollutants in causing chronic bronchitis in susceptible individuals and provide strategies to improve management of lung diseases. https://doi.org/10.1289/EHP9446.
Collapse
Affiliation(s)
- Dereje Tassew
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Fort
- Chronic Obstructive Pulmonary Disease Program, Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Yohannes Mebratu
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jacob McDonald
- Applied Sciences, Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Hans Petersen
- Chronic Obstructive Pulmonary Disease Program, Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Yohannes Tesfaigzi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Talbot A, Gargan L, Moran G, Prudent L, O'Connor I, Mirimin L, Carlsson J, MacCarthy E. Investigation of the transcriptomic response in Atlantic salmon (Salmo salar) gill exposed to Paramoeba perurans during early onset of disease. Sci Rep 2021; 11:20682. [PMID: 34667245 PMCID: PMC8526816 DOI: 10.1038/s41598-021-99996-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/23/2021] [Indexed: 01/06/2023] Open
Abstract
Amoebic Gill Disease (AGD), caused by the protozoan extracellular parasite Paramoeba perurans (P. perurans) is a disease affecting Atlantic salmon (Salmo salar). This study investigated the gill transcriptomic profile of pre-clinical AGD using RNA-sequencing (RNA-seq) technology. RNA-seq libraries generated at 0, 4, 7, 14 and 16 days post infection (dpi) identified 19,251 differentially expressed genes (DEGs) of which 56.2% were up-regulated. DEGs mapped to 224 Gene Ontology (GO) terms including 140 biological processes (BP), 45 cellular components (CC), and 39 molecular functions (MF). A total of 27 reference pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) and 15 Reactome gene sets were identified. The RNA-seq data was validated using real-time, quantitative PCR (qPCR). A host immune response though the activation of complement and the acute phase genes was evident at 7 dpi, with a concurrent immune suppression involving cytokine signalling, notably in interleukins, interferon regulatory factors and tumour necrosis factor-alpha (tnf-α) genes. Down-regulated gene expression with involvement in receptor signalling pathways (NOD-like, Toll-like and RIG-1) were also identified. The results of this study support the theory that P. perurans can evade immune surveillance during the initial stages of gill colonisation through interference of signal transduction pathways.
Collapse
Affiliation(s)
- Anita Talbot
- Galway Mayo Institute of Technology, Galway, Ireland.
| | | | - Grainne Moran
- Galway Mayo Institute of Technology, Galway, Ireland
| | - Louis Prudent
- Galway Mayo Institute of Technology, Galway, Ireland
| | - Ian O'Connor
- Galway Mayo Institute of Technology, Galway, Ireland
| | - Luca Mirimin
- Galway Mayo Institute of Technology, Galway, Ireland
| | | | | |
Collapse
|
12
|
Mammen MJ, Ali J, Aurora A, Sharma UC, Aalinkeel R, Mahajan SD, Sands M, Schwartz SA. IL-17 Is a Key Regulator of Mucin-Galectin-3 Interactions in Asthma. Int J Cell Biol 2021; 2021:9997625. [PMID: 34221020 PMCID: PMC8211528 DOI: 10.1155/2021/9997625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022] Open
Abstract
Mucus hypersecretion and chronic airway inflammation are standard characteristics of several airway diseases, such as chronic obstructive pulmonary disease and asthma. Increased mucus secretion from increased mucin gene expression in the airway epithelium is associated with poor prognosis and mortality. We previously showed that the absence of tissue inhibitor of metalloproteinase 1 (TIMP-1) enhances lung inflammation, airway hyperreactivity, and lung remodeling in asthma in an ovalbumin (OVA) asthma model of TIMP-1 knockout (TIMPKO) mice as compared to wild-type (WT) controls and mediated by increased galectin-3 (Gal-3) levels. Additionally, we have shown that in the lung epithelial cell line A549, Gal-3 inhibition increases interleukin-17 (IL-17) levels, leading to increased mucin expression in the airway epithelium. Therefore, in the current study, we further examined the relationship between Gal-3 and the production of IL-17-axis cytokines and critical members of the mucin family in the murine TIMPKO asthma model and the lung epithelium cell line A549. While Gal-3 may regulate a Th1/Th2 response, IL-17 could stimulate the mucin genes, MUC5B and MUC5AC. Gal-3 and IL-17 interactions induce mucus expression in OVA-sensitized mice. We conclude that Gal-3 may play an essential role in the pathogenesis of asthma, and modulation of Gal-3 may prove helpful in the treatment of this disease.
Collapse
Affiliation(s)
- Manoj J. Mammen
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, State University of New York at Buffalo, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Jamil Ali
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, State University of New York at Buffalo, 875 Ellicott Street, Buffalo, NY 14203, USA
- Division of Allergy, Immunology & Rheumatology, Department of Medicine, State University of New York at Buffalo, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Amita Aurora
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, State University of New York at Buffalo, 875 Ellicott Street, Buffalo, NY 14203, USA
- Division of Allergy, Immunology & Rheumatology, Department of Medicine, State University of New York at Buffalo, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Umesh C. Sharma
- Division of Cardiology, Department of Medicine, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Ravikumar Aalinkeel
- Division of Allergy, Immunology & Rheumatology, Department of Medicine, State University of New York at Buffalo, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Supriya D. Mahajan
- Division of Allergy, Immunology & Rheumatology, Department of Medicine, State University of New York at Buffalo, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Mark Sands
- Division of Allergy, Immunology & Rheumatology, Department of Medicine, State University of New York at Buffalo, 875 Ellicott Street, Buffalo, NY 14203, USA
- WNY VA Healthcare System, Buffalo, NY 14215, USA
| | - Stanley A. Schwartz
- Division of Allergy, Immunology & Rheumatology, Department of Medicine, State University of New York at Buffalo, 875 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
13
|
McKelvey MC, Brown R, Ryan S, Mall MA, Weldon S, Taggart CC. Proteases, Mucus, and Mucosal Immunity in Chronic Lung Disease. Int J Mol Sci 2021; 22:5018. [PMID: 34065111 PMCID: PMC8125985 DOI: 10.3390/ijms22095018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulated protease activity has long been implicated in the pathogenesis of chronic lung diseases and especially in conditions that display mucus obstruction, such as chronic obstructive pulmonary disease, cystic fibrosis, and non-cystic fibrosis bronchiectasis. However, our appreciation of the roles of proteases in various aspects of such diseases continues to grow. Patients with muco-obstructive lung disease experience progressive spirals of inflammation, mucostasis, airway infection and lung function decline. Some therapies exist for the treatment of these symptoms, but they are unable to halt disease progression and patients may benefit from novel adjunct therapies. In this review, we highlight how proteases act as multifunctional enzymes that are vital for normal airway homeostasis but, when their activity becomes immoderate, also directly contribute to airway dysfunction, and impair the processes that could resolve disease. We focus on how proteases regulate the state of mucus at the airway surface, impair mucociliary clearance and ultimately, promote mucostasis. We discuss how, in parallel, proteases are able to promote an inflammatory environment in the airways by mediating proinflammatory signalling, compromising host defence mechanisms and perpetuating their own proteolytic activity causing structural lung damage. Finally, we discuss some possible reasons for the clinical inefficacy of protease inhibitors to date and propose that, especially in a combination therapy approach, proteases represent attractive therapeutic targets for muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Michael C. McKelvey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Sinéad Ryan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| |
Collapse
|
14
|
Birru RL, Bein K, Wells H, Bondarchuk N, Barchowsky A, Di YP, Leikauf GD. Phloretin, an Apple Polyphenol, Inhibits Pathogen-Induced Mucin Overproduction. Mol Nutr Food Res 2021; 65:e2000658. [PMID: 33216464 PMCID: PMC8163070 DOI: 10.1002/mnfr.202000658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/03/2020] [Indexed: 12/26/2022]
Abstract
SCOPE Bacterial infection induces mucus overproduction, contributing to acute exacerbations and lung function decline in chronic respiratory diseases. A diet enriched in apples may provide protection from pulmonary disease development and progression. This study examined whether phloretin, an apple polyphenol, inhibits mucus synthesis and secretion induced by the predominant bacteria associated with chronic respiratory diseases. METHODS AND RESULTS The expression of mucus constituent mucin 5AC (MUC5AC) in FVB/NJ mice and NCI-H292 epithelial cells is analyzed. Nontypeable Haemophilus influenzae (NTHi)-infected mice developed increased MUC5AC mRNA, which a diet containing phloretin inhibited. In NCI-H292 cells, NTHi, Moraxella catarrhalis, Streptococcus pneumoniae, and Pseudomonas aeruginosa increased MUC5AC mRNA, which phloretin inhibited. Phloretin also diminished NTHi-induced MUC5AC protein secretion. NTHi-induced increased MUC5AC required toll-like receptor 4 (TLR4) and NADH oxidase 4 (NOX4) signaling and subsequent activation of the epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK) pathway. Phloretin inhibited NTHi-induced TLR4/NOX4 and EGFR/MAPK signaling, thereby preventing increased MUC5AC mRNA. EGFR activation can also result from increased EGFR ligand synthesis and subsequent ligand activation by matrix metalloproteinases (MMPs). In NCI-H292 cells, NTHi increased EGFR ligand and MMP1 and MMP13 mRNA, which phloretin inhibited. CONCLUSIONS In summary, phloretin is a promising therapeutic candidate for preventing bacterial-induced mucus overproduction.
Collapse
Affiliation(s)
- Rahel L Birru
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Kiflai Bein
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Heather Wells
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Natalya Bondarchuk
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yuanpu Peter Di
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
15
|
Kim V, Jeong S, Zhao H, Kesimer M, Boucher RC, Wells JM, Christenson SA, Han MK, Dransfield M, Paine R, Cooper CB, Barjaktarevic I, Bowler R, Curtis JL, Kaner RJ, O'Beirne SL, O'Neal WK, Rennard SI, Martinez FJ, Woodruff PG. Current smoking with or without chronic bronchitis is independently associated with goblet cell hyperplasia in healthy smokers and COPD subjects. Sci Rep 2020; 10:20133. [PMID: 33208859 PMCID: PMC7674445 DOI: 10.1038/s41598-020-77229-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/02/2020] [Indexed: 01/01/2023] Open
Abstract
COPD, chronic bronchitis (CB) and active smoking have all been associated with goblet cell hyperplasia (GCH) in small studies. Active smoking is strongly associated with CB, but there is a disconnect between CB clinical symptoms and pathology. Chronic cough and sputum production poorly correlate with the presence of GCH or COPD. We hypothesized that the primary determinant of GCH in ever smokers with or without airflow obstruction is active smoking. Goblet Cell Density (GCD) was measured in 71 current or former smokers [32 subjects without COPD and 39 COPD subjects]. Endobronchial mucosal biopsies were stained with Periodic Acid Schiff-Alcian Blue, and GCD was measured as number of goblet cells/mm basement membrane. GCD was divided into tertiles based on log10 transformed values. Log10GCD was greater in current smokers compared to former smokers. Those with classically defined CB or SGRQ defined CB had a greater log10 GCD compared to those without CB. Current smoking was independently associated with tertile 3 (high log10GCD) whereas CB was not in multivariable regression when adjusting for lung function and demographics. These results suggest that GCH is induced by active smoke exposure and does not necessarily correlate with the clinical symptoms of CB.
Collapse
Affiliation(s)
- Victor Kim
- Lewis Katz School of Medicine at Temple University, 3401 North Broad Street, 785 Parkinson Pavilion, Philadelphia, PA, 19140, USA.
| | - Stephanie Jeong
- Lewis Katz School of Medicine at Temple University, 3401 North Broad Street, 785 Parkinson Pavilion, Philadelphia, PA, 19140, USA
| | - Huaqing Zhao
- Lewis Katz School of Medicine at Temple University, 3401 North Broad Street, 785 Parkinson Pavilion, Philadelphia, PA, 19140, USA
| | - Mehmet Kesimer
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Richard C Boucher
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | | | - MeiLan K Han
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | - Robert Paine
- University of Utah Health, Salt Lake City, UT, USA
| | | | - Igor Barjaktarevic
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | | | | | | - Wanda K O'Neal
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
16
|
Associations of TIMP-3 Genetic Polymorphisms with EGFR Statuses and Cancer Clinicopathologic Development in Lung Adenocarcinoma Patients. Int J Mol Sci 2020; 21:ijms21218023. [PMID: 33126605 PMCID: PMC7662501 DOI: 10.3390/ijms21218023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/29/2022] Open
Abstract
Lung adenocarcinoma (LADC) is a major subtype of lung cancer, particularly among populations of East Asia. The epidermal growth factor receptor (EGFR) is the most frequently mutated oncogene promoting LADC progression and can serve as a therapeutic target in LADC. The tissue inhibitor of metalloproteinases (TIMP)-3 is a major regulator of extracellular matrix turnover via targeting of matrix metalloproteinases (MMPs), and thus, plays a critical role in tumor development and progression. The purpose of this study was to investigate potential associations among TIMP-3 genetic polymorphisms, EGFR statuses, and cancer clinicopathologic development in patients with LADC. In this study, 277 LADC patients with different EGFR statuses were recruited to dissect the allelic discrimination of TIMP-3 -1296 T>C (rs9619311), TIMP3 249T>C (rs9862), and TIMP3 261C>T (rs11547635) polymorphisms using a TaqMan allelic discrimination assay. Our data showed that compared to those LADC patients with wild-type CC homozygotes of TIMP-3 rs9862, patients harboring TT homozygotes of rs9862 were at a higher risk of developing mutant EGFR (adjusted odds ratio (AOR) = 2.530; 95% confidence interval (CI): 1.230–5.205; p = 0.012), particularly the EGFR L858R point mutation (AOR = 2.975; 95% CI: 1.182–7.488; p = 0.021). Moreover, we observed that TIMP-3 TT homozygotes of rs9862 were correlated with the incidence of EGFR mutations in patients with a smoking habit (p = 0.045). Within male patients harboring a mutant EGFR, TIMP-3 rs9862 T (CT+TT) allele carriers were at higher risk of developing an advanced stage (p = 0.025) and lymph node metastasis (p = 0.043). Further analyses of clinical datasets revealed correlations of TIMP-3 expression with a favorable prognosis in patients with LADC. In conclusion, the data suggest that TIMP-3 rs9862 polymorphisms may contribute to identify subgroups of lung cancer patients at high risk for tumor progression, among carriers of LADC-bearing mutant EGFR.
Collapse
|
17
|
An L, Zhao J, Sun X, Zhou Y, Zhao Z. S-allylmercaptocysteine inhibits mucin overexpression and inflammation via MAPKs and PI3K-Akt signaling pathways in acute respiratory distress syndrome. Pharmacol Res 2020; 159:105032. [PMID: 32574825 PMCID: PMC7305891 DOI: 10.1016/j.phrs.2020.105032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 11/17/2022]
Abstract
Cytokine storm is an important cause of acute respiratory distress syndrome and multiple organ failure. Excessive secretion and accumulation of mucins on the surface of airway cause airway obstruction and exacerbate lung infections. MUC5AC and MUC5B are the main secreted mucins and overexpressed in various inflammatory responses. S-allylmercaptocysteine, a water-soluble organic sulfur compound extracted from garlic, has anti-inflammatory and anti-oxidative effects for various pulmonary diseases. The aim of this work was to investigate the therapeutic effects of SAMC on mucin overproduction and inflammation in 16HBE cells and LPS-induced ARDS mice. Results show that SAMC treatment ameliorated inflammatory cell infiltration and lung histopathological changes in the LPS-induced ARDS mice. SAMC also inhibited the expressions of MUC5AC and MUC5B, decreased the production of pro-inflammatory markers (IL-6, TNF-α, CD86 and IL-12) and increased the production of anti-inflammatory markers (IL-10, CD206 and TGF-β). These results confirm that SAMC had potential beneficial effects on suppressed hyperinflammation and mucin overexpression. Furthermore, SAMC exerted the therapeutic effects through the inhibition of phosphorylation of MAPKs and PI3K-Akt signaling pathways in the 16HBE cells and mice. Overall, our results demonstrate the effects of SAMC on the LPS-induced mucin overproduction and inflammation both in the 16HBE cells and mice.
Collapse
Affiliation(s)
- Lulu An
- School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Jianxiong Zhao
- School of Basic Medical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Xiao Sun
- School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Yingying Zhou
- School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Shandong Key University Laboratory of Pharmaceutics & Drug Delivery Systems, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Shandong Engineering & Technology Research Center for Jujube Food and Drug, 44 West Wenhua Road, Jinan, Shandong 250012, PR China.
| |
Collapse
|
18
|
Wang Y, Wu Q, Muskhelishvili L, Davis K, Bryant M, Cao X. Assessing the respiratory toxicity of dihydroxyacetone using an in vitro human airway epithelial tissue model. Toxicol In Vitro 2019; 59:78-86. [PMID: 30959092 DOI: 10.1016/j.tiv.2019.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/15/2022]
Abstract
Dihydroxyacetone (DHA) is an approved color additive used in sunless tanning lotions. Recently, there has been an increased use of DHA in sunless tanning booths in a manner that could result in its inhalation during application. In the present study, we have evaluated the potential for DHA causing toxicity via inhalation using a human air-liquid-interface (ALI) in vitro airway epithelial tissue model. ALI airway models have a close structural and functional resemblance to the in vivo airway epithelium, and thus data generated in these models may have relevance for predicting human responses. To simulate in vivo exposure conditions, we employed a method for liquid aerosol generation that mimics the physical form of inhaled chemicals and used doses of DHA and an exposure frequency reflecting human respiratory exposures during tanning sessions. Compared to the vehicle control, cilia beating frequency (CBF) and MUC5AC secretion were significantly decreased after each exposure. However, time-course studies indicated that both CBF and MUC5AC secretion returned to normal levels within 3 days after the treatment. Matrix metalloproteinase (MMP) release, on the other hand, was decreased 24 h after the first exposure and its level returned to baseline after 5 exposures. No significant morphological changes occurred in the DHA-treated cultures after 5 weekly exposures. Our findings indicate that DHA, at concentrations likely to be experienced by humans, has transient toxic effects on human airway ALI cultures.
Collapse
Affiliation(s)
- Yiying Wang
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, United States of America
| | - Qiangen Wu
- Division of Biochemistry Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, United States of America
| | | | - Kelly Davis
- Toxicologic Pathology Associates, Jefferson, AR 72079, United States of America
| | - Matthew Bryant
- Division of Biochemistry Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, United States of America
| | - Xuefei Cao
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, United States of America.
| |
Collapse
|
19
|
Marcos-López M, Calduch-Giner JA, Mirimin L, MacCarthy E, Rodger HD, O'Connor I, Sitjà-Bobadilla A, Pérez-Sánchez J, Piazzon MC. Gene expression analysis of Atlantic salmon gills reveals mucin 5 and interleukin 4/13 as key molecules during amoebic gill disease. Sci Rep 2018; 8:13689. [PMID: 30209326 PMCID: PMC6135806 DOI: 10.1038/s41598-018-32019-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
Amoebic gill disease (AGD) is one of the main diseases affecting Atlantic salmon (Salmo salar L.) mariculture. Hallmarks of AGD are hyperplasia of the lamellar epithelium and increased production of gill mucus. This study investigated the expression of genes involved in mucus secretion, cell cycle regulation, immunity and oxidative stress in gills using a targeted 21-gene PCR array. Gill samples were obtained from experimental and natural Neoparamoeba perurans infections, and sampling points included progressive infection stages and post-freshwater treatment. Up-regulation of genes related to mucin secretion and cell proliferation, and down-regulation of pro-inflammatory and pro-apoptotic genes were associated with AGD severity, while partial restoration of the gill homeostasis was detected post-treatment. Mucins and Th2 cytokines accoun ted for most of the variability observed between groups highlighting their key role in AGD. Two mucins (muc5, muc18) showed differential regulation upon disease. Substantial up-regulation of the secreted muc5 was detected in clinical AGD, and the membrane bound muc18 showed an opposite pattern. Th2 cytokines, il4/13a and il4/13b2, were significantly up-regulated from 2 days post-infection onwards, and changes were lesion-specific. Despite the differences between experimental and natural infections, both yielded comparable results that underline the importance of the studied genes in the respiratory organs of fish, and during AGD progression.
Collapse
Affiliation(s)
- Mar Marcos-López
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Road, Galway, Co., Galway, H91 T8NW, Ireland. .,FishVet Group Ireland, Unit 7b Oranmore Business Park, Oranmore, Co, Galway, H91 XP3F, Ireland.
| | - Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, 12595, Spain
| | - Luca Mirimin
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Road, Galway, Co., Galway, H91 T8NW, Ireland
| | - Eugene MacCarthy
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Road, Galway, Co., Galway, H91 T8NW, Ireland
| | - Hamish D Rodger
- FishVet Group Ireland, Unit 7b Oranmore Business Park, Oranmore, Co, Galway, H91 XP3F, Ireland
| | - Ian O'Connor
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Road, Galway, Co., Galway, H91 T8NW, Ireland
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, 12595, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, 12595, Spain
| | - M Carla Piazzon
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, 12595, Spain.
| |
Collapse
|
20
|
The EGFR-ADAM17 Axis in Chronic Obstructive Pulmonary Disease and Cystic Fibrosis Lung Pathology. Mediators Inflamm 2018. [PMID: 29540993 PMCID: PMC5818912 DOI: 10.1155/2018/1067134] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) share molecular mechanisms that cause the pathological symptoms they have in common. Here, we review evidence suggesting that hyperactivity of the EGFR/ADAM17 axis plays a role in the development of chronic lung disease in both CF and COPD. The ubiquitous transmembrane protease A disintegrin and metalloprotease 17 (ADAM17) forms a functional unit with the EGF receptor (EGFR), in a feedback loop interaction labeled the ADAM17/EGFR axis. In airway epithelial cells, ADAM17 sheds multiple soluble signaling proteins by proteolysis, including EGFR ligands such as amphiregulin (AREG), and proinflammatory mediators such as the interleukin 6 coreceptor (IL-6R). This activity can be enhanced by injury, toxins, and receptor-mediated external triggers. In addition to intracellular kinases, the extracellular glutathione-dependent redox potential controls ADAM17 shedding. Thus, the epithelial ADAM17/EGFR axis serves as a receptor of incoming luminal stress signals, relaying these to neighboring and underlying cells, which plays an important role in the resolution of lung injury and inflammation. We review evidence that congenital CFTR deficiency in CF and reduced CFTR activity in chronic COPD may cause enhanced ADAM17/EGFR signaling through a defect in glutathione secretion. In future studies, these complex interactions and the options for pharmaceutical interventions will be further investigated.
Collapse
|
21
|
Positive feedback of the amphiregulin-EGFR-ERK pathway mediates PM2.5 from wood smoke-induced MUC5AC expression in epithelial cells. Sci Rep 2017; 7:11084. [PMID: 28894207 PMCID: PMC5593934 DOI: 10.1038/s41598-017-11541-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/18/2017] [Indexed: 11/08/2022] Open
Abstract
Biomass fuel smoke is thought to contribute to chronic obstructive pulmonary disease, which is characterized by mucous cell metaplasia and enhanced mucus secretion. We investigated the effect of particulate matter (PM) with a diameter <2.5 μm (PM2.5) from wood smoke (WSPM2.5) on the expression of the most prominent secreted mucin, MUC5AC. Wood smoke was able to induce MUC5AC expression in the rat respiratory tract after 3 months of exposure. WSPM2.5 could induce MUC5AC production in both primary human airway epithelial cells and the NCI-H292 cell line. This induction process was mediated by activation of epithelial growth factor receptor (EGFR)-extracellular signal-regulated kinase (ERK) signaling through an EGFR ligand-dependent mechanism. Amphiregulin (AR) was identified as the major ligand responsible for EGFR-ERK signaling activation and MUC5AC expression. In turn, EGFR-ERK pathway activation was found to contribute to the de novo synthesis of AR. This positive feedback loop might play an important role in a sustained mucus hypersecretion response.
Collapse
|
22
|
Raju SV, Lin VY, Liu L, McNicholas CM, Karki S, Sloane PA, Tang L, Jackson PL, Wang W, Wilson L, Macon KJ, Mazur M, Kappes JC, DeLucas LJ, Barnes S, Kirk K, Tearney GJ, Rowe SM. The Cystic Fibrosis Transmembrane Conductance Regulator Potentiator Ivacaftor Augments Mucociliary Clearance Abrogating Cystic Fibrosis Transmembrane Conductance Regulator Inhibition by Cigarette Smoke. Am J Respir Cell Mol Biol 2017; 56:99-108. [PMID: 27585394 DOI: 10.1165/rcmb.2016-0226oc] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acquired cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction may contribute to chronic obstructive pulmonary disease pathogenesis and is a potential therapeutic target. We sought to determine the acute effects of cigarette smoke on ion transport and the mucociliary transport apparatus, their mechanistic basis, and whether deleterious effects could be reversed with the CFTR potentiator ivacaftor (VX-770). Primary human bronchial epithelial (HBE) cells and human bronchi were exposed to cigarette smoke extract (CSE) and/or ivacaftor. CFTR function and expression were measured in Ussing chambers and by surface biotinylation. CSE-derived acrolein modifications on CFTR were determined by mass spectroscopic analysis of purified protein, and the functional microanatomy of the airway epithelia was measured by 1-μm resolution optical coherence tomography. CSE reduced CFTR-dependent current in HBE cells (P < 0.05) and human bronchi (P < 0.05) within minutes of exposure. The mechanism involved CSE-induced reduction of CFTR gating, decreasing CFTR open-channel probability by approximately 75% immediately after exposure (P < 0.05), whereas surface CFTR expression was partially reduced with chronic exposure, but was stable acutely. CSE treatment of purified CFTR resulted in acrolein modifications on lysine and cysteine residues that likely disrupt CFTR gating. In primary HBE cells, CSE reduced airway surface liquid depth (P < 0.05) and ciliary beat frequency (P < 0.05) within 60 minutes that was restored by coadministration with ivacaftor (P < 0.005). Cigarette smoking transmits acute reductions in CFTR activity, adversely affecting the airway surface. These effects are reversible by a CFTR potentiator in vitro, representing a potential therapeutic strategy in patients with chronic obstructive pulmonary disease with chronic bronchitis.
Collapse
Affiliation(s)
- S Vamsee Raju
- Departments of 1 Medicine.,2 the Cystic Fibrosis Research Center
| | | | - Limbo Liu
- 3 Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Carmel M McNicholas
- 2 the Cystic Fibrosis Research Center.,4 Cell Developmental and Integrative Biology
| | | | | | - Liping Tang
- Departments of 1 Medicine.,2 the Cystic Fibrosis Research Center
| | | | - Wei Wang
- 2 the Cystic Fibrosis Research Center.,4 Cell Developmental and Integrative Biology
| | | | | | | | - John C Kappes
- Departments of 1 Medicine.,2 the Cystic Fibrosis Research Center
| | | | - Stephen Barnes
- 5 Targeted Metabolomics and Proteomics Laboratory.,7 Pharmacology, and
| | - Kevin Kirk
- 2 the Cystic Fibrosis Research Center.,4 Cell Developmental and Integrative Biology
| | - Guillermo J Tearney
- 3 Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Steven M Rowe
- Departments of 1 Medicine.,2 the Cystic Fibrosis Research Center.,4 Cell Developmental and Integrative Biology.,8 Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
23
|
Almeida-Reis R, Theodoro-Junior OA, Oliveira BTM, Oliva LV, Toledo-Arruda AC, Bonturi CR, Brito MV, Lopes FDTQS, Prado CM, Florencio AC, Martins MA, Owen CA, Leick EA, Oliva MLV, Tibério IFLC. Plant Proteinase Inhibitor BbCI Modulates Lung Inflammatory Responses and Mechanic and Remodeling Alterations Induced by Elastase in Mice. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8287125. [PMID: 28466019 PMCID: PMC5390602 DOI: 10.1155/2017/8287125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/20/2017] [Accepted: 03/09/2017] [Indexed: 11/18/2022]
Abstract
Background. Proteinases play a key role in emphysema. Bauhinia bauhinioides cruzipain inhibitor (BbCI) is a serine-cysteine proteinase inhibitor. We evaluated BbCI treatment in elastase-induced pulmonary alterations. Methods. C57BL/6 mice received intratracheal elastase (ELA group) or saline (SAL group). One group of mice was treated with BbCI (days 1, 15, and 21 after elastase instillation, ELABC group). Controls received saline and BbCI (SALBC group). After 28 days, we evaluated respiratory mechanics, exhaled nitric oxide, and bronchoalveolar lavage fluid. In lung tissue we measured airspace enlargement, quantified neutrophils, TNFα-, MMP-9-, MMP-12-, TIMP-1-, iNOS-, and eNOS-positive cells, 8-iso-PGF2α, collagen, and elastic fibers in alveolar septa and airways. MUC-5-positive cells were quantified only in airways. Results. BbCI reduced elastase-induced changes in pulmonary mechanics, airspace enlargement and elastase-induced increases in total cells, and neutrophils in BALF. BbCI reduced macrophages and neutrophils positive cells in alveolar septa and neutrophils and TNFα-positive cells in airways. BbCI attenuated elastic and collagen fibers, MMP-9- and MMP-12-positive cells, and isoprostane and iNOS-positive cells in alveolar septa and airways. BbCI reduced MUC5ac-positive cells in airways. Conclusions. BbCI improved lung mechanics and reduced lung inflammation and airspace enlargement and increased oxidative stress levels induced by elastase. BbCI may have therapeutic potential in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Rafael Almeida-Reis
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Bruno T M Oliveira
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Leandro V Oliva
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | - Camila R Bonturi
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Marlon V Brito
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda D T Q S Lopes
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Carla M Prado
- Department of Biological Sciences, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Ariana C Florencio
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Mílton A Martins
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Edna A Leick
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Maria L V Oliva
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Iolanda F L C Tibério
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
24
|
Luettich K, Talikka M, Lowe FJ, Haswell LE, Park J, Gaca MD, Hoeng J. The Adverse Outcome Pathway for Oxidative Stress-Mediated EGFR Activation Leading to Decreased Lung Function. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2016.0032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Karsta Luettich
- Philip Morris International R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Neuchâtel, Switzerland
| | - Marja Talikka
- Philip Morris International R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Neuchâtel, Switzerland
| | - Frazer J. Lowe
- British American Tobacco (Investments) Ltd., Southampton, United Kingdom
| | - Linsey E. Haswell
- British American Tobacco (Investments) Ltd., Southampton, United Kingdom
| | | | - Marianna D. Gaca
- British American Tobacco (Investments) Ltd., Southampton, United Kingdom
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Neuchâtel, Switzerland
| |
Collapse
|
25
|
A Plant Proteinase Inhibitor from Enterolobium contortisiliquum Attenuates Pulmonary Mechanics, Inflammation and Remodeling Induced by Elastase in Mice. Int J Mol Sci 2017; 18:ijms18020403. [PMID: 28216579 PMCID: PMC5343937 DOI: 10.3390/ijms18020403] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/17/2017] [Accepted: 02/03/2017] [Indexed: 01/02/2023] Open
Abstract
Proteinase inhibitors have been associated with anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment for emphysema. Our aim was to evaluate the effects of a plant Kunitz proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on several aspects of experimental elastase-induced pulmonary inflammation in mice. C57/Bl6 mice were intratracheally administered elastase (ELA) or saline (SAL) and were treated intraperitoneally with EcTI (ELA-EcTI, SAL-EcTI) on days 1, 14 and 21. On day 28, pulmonary mechanics, exhaled nitric oxide (ENO) and number leucocytes in the bronchoalveolar lavage fluid (BALF) were evaluated. Subsequently, lung immunohistochemical staining was submitted to morphometry. EcTI treatment reduced responses of the mechanical respiratory system, number of cells in the BALF, and reduced tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-12 (MMP-12), tissue inhibitor of matrix metalloproteinase (TIMP-1), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)-positive cells and volume proportion of isoprostane, collagen and elastic fibers in the airways and alveolar walls compared with the ELA group. EcTI treatment reduced elastase induced pulmonary inflammation, remodeling, oxidative stress and mechanical alterations, suggesting that this inhibitor may be a potential therapeutic tool for chronic obstructive pulmonary disease (COPD) management.
Collapse
|
26
|
Gohy ST, Hupin C, Pilette C, Ladjemi MZ. Chronic inflammatory airway diseases: the central role of the epithelium revisited. Clin Exp Allergy 2016; 46:529-42. [PMID: 27021118 DOI: 10.1111/cea.12712] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The respiratory epithelium plays a critical role for the maintenance of airway integrity and defense against inhaled particles. Physical barrier provided by apical junctions and mucociliary clearance clears inhaled pathogens, allergens or toxics, to prevent continuous stimulation of adaptive immune responses. The "chemical barrier", consisting of several anti-microbial factors such as lysozyme and lactoferrin, constitutes another protective mechanism of the mucosae against external aggressions before adaptive immune response starts. The reconstruction of damaged respiratory epithelium is crucial to restore this barrier. This review examines the role of the airway epithelium through recent advances in health and chronic inflammatory diseases in the lower conducting airways (in asthma and chronic obstructive pulmonary disease). Better understanding of normal and altered epithelial functions continuously provides new insights into the physiopathology of chronic airway diseases and should help to identify new epithelial-targeted therapies.
Collapse
Affiliation(s)
- S T Gohy
- Université catholique de Louvain (UCL), Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Brussels, Belgium.,Department of Pneumology, Cliniques universitaires St-Luc, Brussels, Belgium
| | - C Hupin
- Université catholique de Louvain (UCL), Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Brussels, Belgium
| | - C Pilette
- Université catholique de Louvain (UCL), Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Brussels, Belgium.,Department of Pneumology, Cliniques universitaires St-Luc, Brussels, Belgium.,Institute for Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Brussels, Belgium
| | - M Z Ladjemi
- Université catholique de Louvain (UCL), Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Brussels, Belgium.,Institute for Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Brussels, Belgium
| |
Collapse
|
27
|
Burcham PC. Acrolein and Human Disease: Untangling the Knotty Exposure Scenarios Accompanying Several Diverse Disorders. Chem Res Toxicol 2016; 30:145-161. [DOI: 10.1021/acs.chemrestox.6b00310] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Philip C. Burcham
- Pharmacology, Pharmacy & Anaesthesiology Unit, School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia 6007, Australia
| |
Collapse
|
28
|
Danyal K, de Jong W, O'Brien E, Bauer RA, Heppner DE, Little AC, Hristova M, Habibovic A, van der Vliet A. Acrolein and thiol-reactive electrophiles suppress allergen-induced innate airway epithelial responses by inhibition of DUOX1 and EGFR. Am J Physiol Lung Cell Mol Physiol 2016; 311:L913-L923. [PMID: 27612966 DOI: 10.1152/ajplung.00276.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/05/2016] [Indexed: 01/27/2023] Open
Abstract
Acrolein is a major thiol-reactive component of cigarette smoke (CS) that is thought to contribute to increased asthma incidence associated with smoking. Here, we explored the effects of acute acrolein exposure on innate airway responses to two common airborne allergens, house dust mite and Alternaria alternata, and observed that acrolein exposure of C57BL/6 mice (5 ppm, 4 h) dramatically inhibited innate airway responses to subsequent allergen challenge, demonstrated by attenuated release of the epithelial-derived cytokines IL-33, IL-25, and IL-1α. Acrolein and other anti-inflammatory thiol-reactive electrophiles, cinnamaldehyde, curcumin, and sulforaphane, similarly inhibited allergen-induced production of these cytokines from human or murine airway epithelial cells in vitro. Based on our previous observations indicating the importance of Ca2+-dependent signaling, activation of the NADPH oxidase DUOX1, and Src/EGFR-dependent signaling in allergen-induced epithelial secretion of these cytokines, we explored the impact of acrolein on these pathways. Acrolein and other thiol-reactive electrophiles were found to dramatically prevent allergen-induced activation of DUOX1 as well as EGFR, and acrolein was capable of inhibiting EGFR tyrosine kinase activity via modification of C797. Biotin-labeling strategies indicated increased cysteine modification and carbonylation of Src, EGFR, as well as DUOX1, in response to acrolein exposure in vitro and in vivo, suggesting that direct alkylation of these proteins on accessible cysteine residues may be responsible for their inhibition. Collectively, our findings indicate a novel anti-inflammatory mechanism of CS-derived acrolein and other thiol-reactive electrophiles, by directly inhibiting DUOX1- and EGFR-mediated airway epithelial responses to airborne allergens.
Collapse
Affiliation(s)
- Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Willem de Jong
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Edmund O'Brien
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Robert A Bauer
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - David E Heppner
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Andrew C Little
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
29
|
Stolarczyk M, Amatngalim GD, Yu X, Veltman M, Hiemstra PS, Scholte BJ. ADAM17 and EGFR regulate IL-6 receptor and amphiregulin mRNA expression and release in cigarette smoke-exposed primary bronchial epithelial cells from patients with chronic obstructive pulmonary disease (COPD). Physiol Rep 2016; 4:e12878. [PMID: 27561911 PMCID: PMC5002905 DOI: 10.14814/phy2.12878] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/08/2016] [Accepted: 07/09/2016] [Indexed: 01/31/2023] Open
Abstract
Aberrant activity of a disintegrin and metalloprotease 17 (ADAM17), also known as TACE, and epidermal growth factor receptor (EGFR) has been suggested to contribute to chronic obstructive pulmonary disease (COPD) development and progression. The aim of this study was to investigate the role of these proteins in activation of primary bronchial epithelial cells differentiated at the air-liquid interface (ALI-PBEC) by whole cigarette smoke (CS), comparing cells from COPD patients with non-COPD CS exposure of ALI-PBEC enhanced ADAM17-mediated shedding of the IL-6 receptor (IL6R) and the EGFR agonist amphiregulin (AREG) toward the basolateral compartment, which was more pronounced in cells from COPD patients than in non-COPD controls. CS transiently increased IL6R and AREG mRNA in ALI-PBEC to a similar extent in cultures from both groups, suggesting that posttranslational events determine differential shedding between COPD and non-COPD cultures. We show for the first time by in situ proximity ligation (PLA) that CS strongly enhances interactions of phosphorylated ADAM17 with AREG and IL-6R in an intracellular compartment, suggesting that CS-induced intracellular trafficking events precede shedding to the extracellular compartment. Both EGFR and ADAM17 activity contribute to CS-induced IL-6R and AREG protein shedding and to mRNA expression, as demonstrated using selective inhibitors (AG1478 and TMI-2). Our data are consistent with an autocrine-positive feedback mechanism in which CS triggers shedding of EGFR agonists evoking EGFR activation, in ADAM17-dependent manner, and subsequently transduce paracrine signaling toward myeloid cells and connective tissue. Reducing ADAM17 and EGFR activity could therefore be a therapeutic approach for the tissue remodeling and inflammation observed in COPD.
Collapse
Affiliation(s)
| | - Gimano D Amatngalim
- Pulmonology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Xiao Yu
- Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Mieke Veltman
- Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Pieter S Hiemstra
- Pulmonology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Bob J Scholte
- Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
30
|
Conklin DJ. Acute cardiopulmonary toxicity of inhaled aldehydes: role of TRPA1. Ann N Y Acad Sci 2016; 1374:59-67. [PMID: 27152448 DOI: 10.1111/nyas.13055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/26/2016] [Accepted: 03/07/2016] [Indexed: 12/13/2022]
Abstract
Inhalation of high-level volatile aldehydes, as present in smoke from wildfires and in tobacco smoke, is associated with both acute and chronic cardiopulmonary morbidity and mortality, but the underlying mechanisms are unclear. The transient receptor potential ankyrin 1 (TRPA1) protein forms a cation channel (irritant receptor) that mediates tobacco smoke-induced airway and lung injury, yet the role of TRPA1 in the cardiovascular toxicity of aldehyde exposure is unclear. Physiologically, airway-located TRPA1 activation triggers an irritant response (e.g., coughing and "respiratory braking") that alters the rate and depth of breathing to reduce exposure. Acrolein (2-propenal), a volatile, unsaturated aldehyde, activates TRPA1. Acrolein was used as a chemical weapon in World War I and is present at high levels in wildfires and tobacco smoke. Acrolein is thought to contribute to pulmonary and cardiovascular injury caused by tobacco smoke exposure, although the role of TRPA1 in cardiovascular toxicity is unclear. This minireview addresses this gap in our knowledge by exploring literature and recent data indicating a connection between TRPA1 and cardiovascular as well as pulmonary injury due to inhaled aldehydes.
Collapse
Affiliation(s)
- Daniel J Conklin
- Diabetes and Obesity Center, Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
31
|
Yang Q, Zhou Y, Li FY, Mao H, Shrestha A, Ma WJ, Cheng NS, Zhang W. Effects of epidermal growth factor receptor inhibitor on proliferative cholangitis in hepatolithiasis. Hepatobiliary Pancreat Dis Int 2015; 14:509-15. [PMID: 26459727 DOI: 10.1016/s1499-3872(15)60395-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND There is currently no effective medication to prevent stone recurrence after choledochoscopic lithotomy or to treat proliferative cholangitis (PC), which is the pathologic basis of hepatolithiasis. This study aimed to investigate whether gefitinib, an epidermal growth factor receptor (EGFR) inhibitor, inhibited cholangio hyperplasia and lithogenesis in PC. METHODS After cholangioscopic lithotomy, indwelling catheters were placed in the diseased bile duct lumens in 94 patients with hepatolithiasis. Subsequently, 49 of the 94 patients were treated with 250 mg gefitinib solution via a catheter twice a week, and they were subjected to choledochoscopic biopsy at 6 and 12 weeks. The rest 45 hepatolithiasis patients without gefitinib treatment served as controls. RESULTS The expressions of EGFR, PCNA and procollagen I were significantly reduced in the patients treated with gefitinib in 12 weeks compared with those in the control group. Patients in the gefitinib group had a much lower degree of hyperplasia of the biliary epithelium, submucosal glands and collagen fibers compared with those in the control group. Gefitinib treatment significantly decreased mucin 3 expression and beta-glucuronidase activity. CONCLUSION Postoperative gefitinib treatment could significantly inhibit PC-mediated hyperplasia and lithogenesis, which might provide a novel strategy for the prevention of biliary restenosis and stone recurrence in patients with hepatolithiasis.
Collapse
Affiliation(s)
- Qin Yang
- Department of Hepatobiliary Surgery, West China Hospital of Sichuan University, Chengdu 610041, China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Moghe A, Ghare S, Lamoreau B, Mohammad M, Barve S, McClain C, Joshi-Barve S. Molecular mechanisms of acrolein toxicity: relevance to human disease. Toxicol Sci 2015; 143:242-55. [PMID: 25628402 DOI: 10.1093/toxsci/kfu233] [Citation(s) in RCA: 341] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acrolein, a highly reactive unsaturated aldehyde, is a ubiquitous environmental pollutant and its potential as a serious environmental health threat is beginning to be recognized. Humans are exposed to acrolein per oral (food and water), respiratory (cigarette smoke, automobile exhaust, and biocide use) and dermal routes, in addition to endogenous generation (metabolism and lipid peroxidation). Acrolein has been suggested to play a role in several disease states including spinal cord injury, multiple sclerosis, Alzheimer's disease, cardiovascular disease, diabetes mellitus, and neuro-, hepato-, and nephro-toxicity. On the cellular level, acrolein exposure has diverse toxic effects, including DNA and protein adduction, oxidative stress, mitochondrial disruption, membrane damage, endoplasmic reticulum stress, and immune dysfunction. This review addresses our current understanding of each pathogenic mechanism of acrolein toxicity, with emphasis on the known and anticipated contribution to clinical disease, and potential therapies.
Collapse
Affiliation(s)
- Akshata Moghe
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Smita Ghare
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Bryan Lamoreau
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Mohammad Mohammad
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Shirish Barve
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202 *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Craig McClain
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202 *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202 *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Swati Joshi-Barve
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202 *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| |
Collapse
|
33
|
Martin MJ, Harrison TW. Causes of chronic productive cough: An approach to management. Respir Med 2015; 109:1105-13. [PMID: 26184784 DOI: 10.1016/j.rmed.2015.05.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 04/13/2015] [Accepted: 05/24/2015] [Indexed: 02/04/2023]
Abstract
A chronic 'productive' or 'wet' cough is a common presenting complaint for patients attending the adult respiratory clinic. Most reviews and guidelines suggest that the causes of a productive cough are the same as those of a non-productive cough and as such the same diagnostic pathway should be followed. We suggest a different diagnostic approach for patients with a productive cough, focussing on the conditions that are the most likely causes of this problem. This review is intended to briefly summarise the epidemiology, clinical features, pathophysiology and treatment of a number of conditions which are often associated with chronic productive cough to aid decision making when encountering a patient with this often distressing symptom. The conditions discussed include bronchiectasis, chronic bronchitis, asthma, eosinophilic bronchitis and immunodeficiency. We also propose an adult version of the paediatric diagnosis of protracted bacterial bronchitis (PBB) in patients with idiopathic chronic productive cough who appear to respond well to low dose macrolide therapy.
Collapse
Affiliation(s)
- Matthew J Martin
- Nottingham Respiratory Research Unit, University of Nottingham, Nottingham City Hospital, Nottingham, UK.
| | - Tim W Harrison
- Nottingham Respiratory Research Unit, University of Nottingham, Nottingham City Hospital, Nottingham, UK
| |
Collapse
|
34
|
Kurotani R, Shima R, Miyano Y, Sakahara S, Matsumoto Y, Shibata Y, Abe H, Kimura S. SCGB3A2 Inhibits Acrolein-Induced Apoptosis through Decreased p53 Phosphorylation. Acta Histochem Cytochem 2015; 48:61-8. [PMID: 26019375 PMCID: PMC4427566 DOI: 10.1267/ahc.14065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/21/2015] [Indexed: 12/02/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a major global health problem with increasing morbidity and mortality rates, is anticipated to become the third leading cause of death worldwide by 2020. COPD arises from exposure to cigarette smoke. Acrolein, which is contained in cigarette smoke, is the most important risk factor for COPD. It causes lung injury through altering apoptosis and causes inflammation by augmenting p53 phosphorylation and producing reactive oxygen species (ROS). Secretoglobin (SCGB) 3A2, a secretory protein predominantly present in the epithelial cells of the lungs and trachea, is a cytokine-like small molecule having anti-inflammatory, antifibrotic, and growth factor activities. In this study, the effect of SCGB3A2 on acrolein-related apoptosis was investigated using the mouse fibroblast cell line MLg as the first step in determining the possible therapeutic value of SCGB3A2 in COPD. Acrolein increased the production of ROS and phosphorylation of p53 and induced apoptosis in MLg cells. While the extent of ROS production induced by acrolein was not affected by SCGB3A2, p53 phosphorylation was significantly decreased by SCGB3A2. These results demonstrate that SCGB3A2 inhibited acrolein-induced apoptosis through decreased p53 phosphorylation, not altered ROS levels.
Collapse
Affiliation(s)
- Reiko Kurotani
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Reika Shima
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Yuki Miyano
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Satoshi Sakahara
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Yoshie Matsumoto
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Yoko Shibata
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine
| | - Hiroyuki Abe
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health
| |
Collapse
|
35
|
Yu Q, Chen X, Fang X, Chen Q, Hu C. Caveolin-1 aggravates cigarette smoke extract-induced MUC5AC secretion in human airway epithelial cells. Int J Mol Med 2015; 35:1435-42. [PMID: 25776934 DOI: 10.3892/ijmm.2015.2133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/04/2015] [Indexed: 11/06/2022] Open
Abstract
Airway mucus hypersecretion is a major pathological characteristic of chronic obstructive pulmonary disease (COPD), and cigarette smoke is highly implicated in mucus secretion and the development of COPD. Cigarette smoke reportedly induces mucin overproduction through the epidermal growth factor receptor (EGFR) in the airway epithelium; however, the underlying mechanisms responsible for the activation of EGFR remain unknown. Caveolin-1, a component protein in the cytomembrane, reportedly regulates airway inflammation and lung injury. In this study, we aimed to determine whether caveolin-1 modulates mucin hyperproduction induced by cigarette smoke. Our results revealed that cigarette smoke extract (CSE) significantly increased MUC5AC production, as well as the levels of phosphorylated EGFR (p-EGFR) and phosphorylated Akt (p-Akt) in human bronchial epithelial cells (16HBE cells), as shown by ELISA, RT-PCR and western blot analysis. These effects were prevented by treatment with EGFR inhibitor (AG1478) and phosphatidylinostol-3-kinase (PI3K) inhibitor (LY294002). We also found that the overexpression of caveolin-1 enhanced the expression of MUC5AC, p-EGFR and p-Akt induced by CSE. Conversely, the downregulation of caveolin-1 by siRNA against caveolin-1 inhibited the expression of MUC5AC, p-EGFR and p-Akt. Taken together, our data suggest that caveolin-1 enhances CSE-induced MUC5AC hypersecretion through the EGFR/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Qiao Yu
- Department of Gerontology and Respirology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xi Chen
- Department of Gerontology and Respirology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xia Fang
- Department of Gerontology and Respirology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qiong Chen
- Department of Gerontology and Respirology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chengping Hu
- Department of Gerontology and Respirology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
36
|
Abstract
Airway mucus is part of the lung's native immune function that traps particulates and microorganisms, enabling their clearance from the lung by ciliary transport and cough. Mucus hypersecretion and chronic productive cough are the features of the chronic bronchitis and chronic obstructive pulmonary disease (COPD). Overproduction and hypersecretion by goblet cells and the decreased elimination of mucus are the primary mechanisms responsible for excessive mucus in chronic bronchitis. Mucus accumulation in COPD patients affects several important outcomes such as lung function, health-related quality of life, COPD exacerbations, hospitalizations, and mortality. Nonpharmacologic options for the treatment of mucus accumulation in COPD are smoking cessation and physical measures used to promote mucus clearance. Pharmacologic therapies include expectorants, mucolytics, methylxanthines, beta-adrenergic receptor agonists, anticholinergics, glucocorticoids, phosphodiesterase-4 inhibitors, antioxidants, and antibiotics.
Collapse
Affiliation(s)
- Frederick L Ramos
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Jason S Krahnke
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Victor Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
37
|
Wright JL, Churg A. Animal models of cigarette smoke-induced chronic obstructive pulmonary disease. Expert Rev Respir Med 2014; 4:723-34. [DOI: 10.1586/ers.10.68] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
38
|
Martinez CH, Kim V, Chen Y, Kazerooni EA, Murray S, Criner GJ, Curtis JL, Regan EA, Wan E, Hersh CP, Silverman EK, Crapo JD, Martinez FJ, Han MK. The clinical impact of non-obstructive chronic bronchitis in current and former smokers. Respir Med 2013; 108:491-9. [PMID: 24280543 DOI: 10.1016/j.rmed.2013.11.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND As the clinical significance of chronic bronchitis among smokers without airflow obstruction is unclear, we sought to determine morbidity associated with this disorder. METHODS We examined subjects from the COPDGene study and compared those with FEV1/FVC ≥ 0.70, no diagnosis of asthma and chronic bronchitis as defined as a history of cough and phlegm production for ≥ 3 months/year for ≥ 2 years (NCB) to non-obstructed subjects without chronic bronchitis (CB-). Multivariate analysis was used to determine factors associated with and impact of NCB. RESULTS We identified 597 NCB and 4283 CB- subjects. NCB participants were younger (55.4 vs. 57.2 years, p < 0.001) with greater tobacco exposure (42.9 vs. 37.8 pack-years, p < 0.001) and more often current smokers; more frequently reported occupational exposure to fumes (52.8% vs. 42.2%, p < 0.001), dust for ≥ 1 year (55.3% vs. 42.0%, p < 0.001) and were less likely to be currently working. NCB subjects demonstrated worse quality-of-life (SGRQ 35.6 vs. 15.1, p < 0.001) and exercise capacity (walk distance 415 vs. 449 m, p < 0.001) and more frequently reported respiratory "flare-ups" requiring treatment with antibiotics or steroids (0.30 vs. 0.10 annual events/subject, p < 0.001) prior to enrollment and during follow-up (0.34 vs. 0.16 annual events/subject, p < 0.001). In multivariate analysis, current smoking, GERD, sleep apnea and occupational exposures were significantly associated with NCB. CONCLUSIONS While longitudinal data will be needed to determine whether NCB progresses to COPD, NCB patients have poorer quality-of-life, exercise capacity and frequent respiratory events. Beyond smoking cessation interventions, further research is warranted to determine the benefit of other therapeutics in this population. Clinical Trials Registration # NCT00608764 (http://clinicaltrials.gov/show/NCT00608764). Link to study protocol: http://www.copdgene.org/sites/default/files/COPDGeneProtocol-5-0_06-19-2009.pdf.
Collapse
Affiliation(s)
- Carlos H Martinez
- Pulmonary & Critical Care Division, University of Michigan Health System, Ann Arbor, MI, USA.
| | - Victor Kim
- Division of Pulmonary and Critical Care, Temple University School of Medicine, Philadelphia, PA, USA
| | - Yahong Chen
- Respiratory Department, Peking University Third Hospital, Beijing, China
| | - Ella A Kazerooni
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Susan Murray
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Gerard J Criner
- Division of Pulmonary and Critical Care, Temple University School of Medicine, Philadelphia, PA, USA
| | - Jeffrey L Curtis
- Pulmonary & Critical Care Division, University of Michigan Health System, Ann Arbor, MI, USA; Medicine Service, VA Healthcare System, Ann Arbor, MI, USA
| | - Elizabeth A Regan
- Department of Medicine, National Jewish Medical and Research Center, Denver, CO, USA
| | - Emily Wan
- Channing Division of Network Medicine and Pulmonary and Critical Care Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Craig P Hersh
- Channing Division of Network Medicine and Pulmonary and Critical Care Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine and Pulmonary and Critical Care Division, Brigham and Women's Hospital, Boston, MA, USA
| | - James D Crapo
- Department of Medicine, National Jewish Medical and Research Center, Denver, CO, USA
| | - Fernando J Martinez
- Pulmonary & Critical Care Division, University of Michigan Health System, Ann Arbor, MI, USA
| | - Meilan K Han
- Pulmonary & Critical Care Division, University of Michigan Health System, Ann Arbor, MI, USA
| | | |
Collapse
|
39
|
Westra JW, Schlage WK, Hengstermann A, Gebel S, Mathis C, Thomson T, Wong B, Hoang V, Veljkovic E, Peck M, Lichtner RB, Weisensee D, Talikka M, Deehan R, Hoeng J, Peitsch MC. A modular cell-type focused inflammatory process network model for non-diseased pulmonary tissue. Bioinform Biol Insights 2013; 7:167-92. [PMID: 23843693 PMCID: PMC3700945 DOI: 10.4137/bbi.s11509] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exposure to environmental stressors such as cigarette smoke (CS) elicits a variety of biological responses in humans, including the induction of inflammatory responses. These responses are especially pronounced in the lung, where pulmonary cells sit at the interface between the body’s internal and external environments. We combined a literature survey with a computational analysis of multiple transcriptomic data sets to construct a computable causal network model (the Inflammatory Process Network (IPN)) of the main pulmonary inflammatory processes. The IPN model predicted decreased epithelial cell barrier defenses and increased mucus hypersecretion in human bronchial epithelial cells, and an attenuated pro-inflammatory (M1) profile in alveolar macrophages following exposure to CS, consistent with prior results. The IPN provides a comprehensive framework of experimentally supported pathways related to CS-induced pulmonary inflammation. The IPN is freely available to the scientific community as a resource with broad applicability to study the pathogenesis of pulmonary disease.
Collapse
|
40
|
Kim V, Criner GJ. Chronic bronchitis and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013; 187:228-37. [PMID: 23204254 PMCID: PMC4951627 DOI: 10.1164/rccm.201210-1843ci] [Citation(s) in RCA: 304] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 11/16/2012] [Indexed: 11/16/2022] Open
Abstract
Chronic bronchitis (CB) is a common but variable phenomenon in chronic obstructive pulmonary disease (COPD). It has numerous clinical consequences, including an accelerated decline in lung function, greater risk of the development of airflow obstruction in smokers, a predisposition to lower respiratory tract infection, higher exacerbation frequency, and worse overall mortality. CB is caused by overproduction and hypersecretion of mucus by goblet cells, which leads to worsening airflow obstruction by luminal obstruction of small airways, epithelial remodeling, and alteration of airway surface tension predisposing to collapse. Despite its clinical sequelae, little is known about the pathophysiology of CB and goblet cell hyperplasia in COPD, and treatment options are limited. In addition, it is becoming increasingly apparent that in the classic COPD spectrum, with emphysema on one end and CB on the other, most patients lie somewhere in the middle. It is known now that many patients with severe emphysema can develop CB, and small airway pathology has been linked to worse clinical outcomes, such as increased mortality and lesser improvement in lung function after lung volume reduction surgery. However, in recent years, a greater understanding of the importance of CB as a phenotype to identify patients with a beneficial response to therapy has been described. Herein we review the epidemiology of CB, the evidence behind its clinical consequences, the current understanding of the pathophysiology of goblet cell hyperplasia in COPD, and current therapies for CB.
Collapse
Affiliation(s)
- Victor Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
41
|
Xu J, Song D, Xue Z, Gu L, Hertz L, Peng L. Requirement of Glycogenolysis for Uptake of Increased Extracellular K+ in Astrocytes: Potential Implications for K+ Homeostasis and Glycogen Usage in Brain. Neurochem Res 2012; 38:472-85. [DOI: 10.1007/s11064-012-0938-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/09/2012] [Accepted: 11/20/2012] [Indexed: 11/29/2022]
|
42
|
Kim JH, Park DK, Lee CH, Yoon DY. A new isoflavone glycitein 7-O-beta-D-glucoside 4''-O-methylate, isolated from Cordyceps militaris grown on germinated soybeans extract, inhibits EGF-induced mucus hypersecretion in the human lung mucoepidermoid cells. Phytother Res 2012; 26:1807-12. [PMID: 22407817 DOI: 10.1002/ptr.4655] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/26/2012] [Accepted: 02/01/2012] [Indexed: 12/11/2022]
Abstract
A new isoflavone glycitein 7-O-beta-d-glucoside 4''-O-methylate (CGLM) has been isolated recently from Cordyceps militaris grown on germinated soybean extract and has antioxidant activity. In the present study, CGLM was investigated for its suppression of airway mucous hyper-secretion in epidermal growth factor (EGF)-treated human lung mucoepidermoid cells. NCI-H292 cells were treated with CGLM for 1 h, followed by EGF treatment for 24 h. The decrease in cyclooxygenase-2 (COX-2) production was correlated with reduced levels of protein and mRNA of inducible matrix metalloproteinase 9 (MMP-9) and also MUC5AC gene expression. CGLM directly inhibited down-regulated NF-κB activity, and significantly inhibited the phosphorylation of p38 and ERK1/2 (p42/p44) in NCI-H292 cells. These results suggest that CGLM protects NCI-H292 cells from EGF-induced damage by down-regulation of COX-2, MMP-9 and MUC5AC gene expression, mediated via blocking the NF-kappa-B and p38/ERK MAPK pathways.
Collapse
Affiliation(s)
- Jung-Hee Kim
- Department of Bioscience and Biotechnology, BIMC, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | | |
Collapse
|
43
|
Moretto N, Volpi G, Pastore F, Facchinetti F. Acrolein effects in pulmonary cells: relevance to chronic obstructive pulmonary disease. Ann N Y Acad Sci 2012; 1259:39-46. [PMID: 22758635 DOI: 10.1111/j.1749-6632.2012.06531.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acrolein (2-propenal) is a highly reactive α,β-unsaturated aldehyde and a respiratory irritant that is ubiquitously present in the environment but that can also be generated endogenously at sites of inflammation. Acrolein is abundant in tobacco smoke, which is the major environmental risk factor for chronic obstructive pulmonary disease (COPD), and elevated levels of acrolein are found in the lung fluids of COPD patients. Its high electrophilicity makes acrolein notorious for its facile reaction with biological nucleophiles, leading to the modification of proteins and DNA and depletion of antioxidant defenses. As a consequence, acrolein results in oxidative stress as well as altered intracellular signaling and gene transcription/translation. In pulmonary cells, acrolein, at subtoxic concentrations, can activate intracellular stress kinases, alter the production of inflammatory mediators and proteases, modify innate immune response, induce mucus hypersecretion, and damage airway epithelium. A better comprehension of the mechanisms underlying acrolein effects in the airways may suggest novel treatment strategies in COPD.
Collapse
Affiliation(s)
- Nadia Moretto
- Department of Pharmacology, Chiesi Farmaceutici SpA, Parma, Italy
| | | | | | | |
Collapse
|
44
|
Li FF, Shen J, Shen HJ, Zhang X, Cao R, Zhang Y, Qui Q, Lin XX, Xie YC, Zhang LH, Jia YL, Dong XW, Jiang JX, Bao MJ, Zhang S, Ma WJ, Wu XM, Shen H, Xie QM, Ke Y. Shp2 plays an important role in acute cigarette smoke-mediated lung inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:3159-67. [PMID: 22891281 PMCID: PMC3496208 DOI: 10.4049/jimmunol.1200197] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 07/04/2012] [Indexed: 12/24/2022]
Abstract
Cigarette smoke (CS), the major cause of chronic obstructive pulmonary disease, contains a variety of oxidative components that were implicated in the regulation of Src homology domain 2-containing protein tyrosine phosphatase 2 (Shp2) activity. However, the contribution of Shp2 enzyme to chronic obstructive pulmonary disease pathogenesis remains unclear. We investigated the role of Shp2 enzyme in blockading CS-induced pulmonary inflammation. Shp2 levels were assessed in vivo and in vitro. Mice (C57BL/6) or pulmonary epithelial cells (NCI-H292) were exposed to CS or cigarette smoke extract (CSE) to induce acute injury and inflammation. Lungs of smoking mice showed increased levels of Shp2, compared with those of controls. Treatment of lung epithelial cells with CSE showed elevated levels of Shp2 associated with the increased release of IL-8. Selective inhibition or knockdown of Shp2 resulted in decreased IL-8 release in response to CSE treatment in pulmonary epithelial cells. In comparison with CS-exposed wild-type mice, selective inhibition or conditional knockout of Shp2 in lung epithelia reduced IL-8 release and pulmonary inflammation in CS-exposed mice. In vitro biochemical data correlate CSE-mediated IL-8 release with Shp2-regulated epidermal growth factor receptor/Grb-2-associated binders/MAPK signaling. Our data suggest an important role for Shp2 in the pathological alteration associated with CS-mediated inflammation. Shp2 may be a potential target for therapeutic intervention for inflammation in CS-induced pulmonary diseases.
Collapse
Affiliation(s)
- Fen-fen Li
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China 310058; and
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Jian Shen
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Hui-juan Shen
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China 310058; and
| | - Rui Cao
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Yun Zhang
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China 310058; and
| | - Qiu Qui
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China 310058; and
| | - Xi-xi Lin
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Yi-cheng Xie
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Lin-hui Zhang
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Yong-liang Jia
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Xin-wei Dong
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Jun-xia Jiang
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Meng-jing Bao
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Shanshan Zhang
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China 310058; and
| | - Wen-jiang Ma
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Xi-mei Wu
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Huahao Shen
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Qiang-min Xie
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China 310058; and
| |
Collapse
|
45
|
Takami S, Mizuno T, Oyanagi T, Tadaki H, Suzuki T, Muramatsu K, Takizawa T, Arakawa H. Glucocorticoids inhibit MUC5AC production induced by transforming growth factor-α in human respiratory cells. Allergol Int 2012; 61:451-9. [PMID: 22824974 DOI: 10.2332/allergolint.11-oa-0411] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/19/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Mucus hypersecretion from airway epithelium is a characteristic feature of severe asthma. Glucocorticoids (GCs) may suppress mucus production and diminish the harmful airway obstruction. We investigated the ability of GCs to suppress mRNA expression and protein synthesis of a gene encoding mucin, MUC5AC, induced by transforming growth factor (TGF)-α in human mucoepidermoid carcinoma (NCI-H292) cells and the molecular mechanisms underlying the suppression. METHODS We determined if GCs such as dexamethasone (DEX), budesonide (BUD), and fluticasone (FP) could suppress MUC5AC production induced by a combination of TGF-α and double-strand RNA, polyinosinic-polycytidylic acid (polyI:C). MUC5AC mRNA expression and MUC5AC protein production were evaluated. The signaling pathways activated by TGF-α and their inhibition by GCs were tested using a phosphoprotein assay and MUC5AC promoter assay. RESULTS DEX significantly suppressed the expression of MUC5AC mRNA and MUC5AC protein induced by TGF-α. The activation of the MUC5AC promoter by TGF-α was significantly inhibited by DEX. DEX did not affect activation of downstream pathways of the EGF receptor or mRNA stability of MUC5AC transcripts. DEX, BUD, and FP suppressed MUC5AC protein expression induced by a combination of TGF-α and polyI:C in a dose-dependent manner. CONCLUSIONS GCs inhibited MUC5AC production induced by TGF-α alone or a combination of TGF-α and polyI:C; the repression may be mediated at the transcriptional but not post-transcriptional level.
Collapse
Affiliation(s)
- Satoru Takami
- Department of Pediatrics, Gunma University Graduate School of Medicine, 3−39−15 Showa-machi, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Barbier D, Garcia-Verdugo I, Pothlichet J, Khazen R, Descamps D, Rousseau K, Thornton D, Si-Tahar M, Touqui L, Chignard M, Sallenave JM. Influenza A induces the major secreted airway mucin MUC5AC in a protease-EGFR-extracellular regulated kinase-Sp1-dependent pathway. Am J Respir Cell Mol Biol 2012; 47:149-57. [PMID: 22383584 DOI: 10.1165/rcmb.2011-0405oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mucins, the main glycoproteins present within mucus, modulate the rheologic properties of airways and participate in lung defense. They are thought to be able to trap and eliminate microorganisms from the lung. Among the mucins secreted in the lung, MUC5AC is the most prominent factor secreted by surface epithelial cells. Although much is known about the signaling pathways involved in the regulation of MUC5AC by host factors such as cytokines or proteases, less is known about the pathways triggered by microorganisms and, specifically, by influenza A virus (IAV). We therefore set up experiments to dissect the molecular mechanisms responsible for the potential modulation of MUC5AC by IAV. Using epithelial cells, C57/Bl6 mice, and IAV strains, we measured MUC5AC expression at the RNA and protein levels, specificity protein 1 (Sp1) activation, and protease activity. Intermediate molecular partners were confirmed using pharmacological inhibitors, blocking antibodies, and small interfering (si)RNAs. We showed in vitro and in vivo that IAV up-regulates epithelial cell-derived MUC5AC and Muc5ac expression in mice, both at transcriptional (through the induction of Sp1) and translational levels. In addition, we determined that this induction was dependent on a protease-epithelial growth factor receptor-extracellular regulated kinase-Sp1 signaling cascade, involving in particular the human airway trypsin. Our data point to MUC5AC as a potential modulatory mechanism by which the lung epithelia respond to IAV infection, and we dissect, for the first time to the best of our knowledge, the molecular partners involved. Future experiments using MUC5AC-targeted strategies should help further unravel the pathophysiological consequences of IAV-induced MUC5AC expression for lung homeostasis.
Collapse
Affiliation(s)
- Diane Barbier
- Unité Défense Innée et Inflammation, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sadowska AM. N-Acetylcysteine mucolysis in the management of chronic obstructive pulmonary disease. Ther Adv Respir Dis 2012; 6:127-35. [DOI: 10.1177/1753465812437563] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To develop an efficient therapy for chronic obstructive pulmonary disease (COPD), N-acetylcysteine (NAC) has been tested as a medication that can suppress various pathogenic processes in this disease. NAC is a thiol compound, which provides sulfhydryl groups. NAC can act as a precursor of reduced glutathione and as a direct reactive oxygen species scavenger, hence regulating the redox status in the cells. In this way NAC can interfere with several signaling pathways that play a role in regulating apoptosis, angiogenesis, cell growth and inflammatory response. Mucus hypersecretion has been reported in COPD and in other respiratory conditions. Two pathological processes have been described to play an important role in COPD, namely oxidative stress and inflammation. Both of these processes can induce mucin gene expression leading to mucin production. NAC, therefore, may influence mucin expression by acting on oxidative stress and inflammation, and play a role as a mucolytic agent. In this review we focus on the mucolysis of NAC in the management of COPD.
Collapse
Affiliation(s)
- Anna M. Sadowska
- Department of Respiratory Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| |
Collapse
|
48
|
Hirota N, Risse PA, Novali M, McGovern T, Al-Alwan L, McCuaig S, Proud D, Hayden P, Hamid Q, Martin JG. Histamine may induce airway remodeling through release of epidermal growth factor receptor ligands from bronchial epithelial cells. FASEB J 2012; 26:1704-16. [PMID: 22247333 DOI: 10.1096/fj.11-197061] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Asthma is a chronic inflammatory disease that is associated with airway remodeling, including hyperplasia of airway epithelial cells and airway smooth muscle cells, and goblet cell differentiation. We wished to address the potential role of histamine, a key biogenic amine involved in allergic reactions, in airway remodeling through the epidermal growth factor receptor (EGFR) pathway. Here, we demonstrate that histamine releases 2 EGFR ligands, amphiregulin and heparin-binding epidermal growth factor-like growth factor (HB-EGF), from airway epithelial cells. Amphiregulin and HB-EGF were expressed in airway epithelium of patients with asthma. Histamine up-regulated their mRNA expression (amphiregulin 3.2-fold, P<0.001; HB-EGF 2.3-fold, P<0.05) and triggered their release (amphiregulin EC(50) 0.50 μM, 31.2 ± 2.7 pg/ml with 10 μM histamine, P<0.01; HB-EGF EC(50) 0.54 μM, 78.5 ± 1.8 pg/ml with 10 μM histamine, P<0.001) compared to vehicle control (amphiregulin 19.3 ± 0.9 pg/ml; HB-EGF 60.2 ± 1.0 pg/ml), in airway epithelial cells. Histamine increased EGFR phosphorylation (2.1-fold by Western blot analysis) and induced goblet cell differentiation (CLCA1 up-regulation by real-time qPCR) in normal human bronchial epithelial (NHBE) cells. Moreover, amphiregulin and HB-EGF caused proliferation and migration of both NHBE cells and human airway smooth muscle cells. These results suggest that histamine may induce airway remodeling via the epithelial-derived EGFR ligands amphiregulin and HB-EGF.
Collapse
Affiliation(s)
- Nobuaki Hirota
- Meakins-Christie Laboratories, Department of Medicine, McGill University, 3626 St-Urbain, Montréal, QC, H2X 2P2 Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
De S, Leong SC, Fenton JE, Carter SD, Clarke RW, Jones AS. The effect of passive smoking on the levels of matrix metalloproteinase 9 in nasal secretions of children. Am J Rhinol Allergy 2011; 25:226-30. [PMID: 21819758 DOI: 10.2500/ajra.2011.25.3623] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Matrix metalloproteinase (MMP) 9 is a gelatinase associated with tissue remodeling. It is thought to play a part in the pathogenesis of allergy. Increased levels of MMP-9 have been shown to increase in the acute allergic response in the nose, lungs, and skin. Exposure to passive tobacco smoke is associated with an increase in sneezing, nasal blockage, and a decreased sense of smell. The aim of this study was to study the effect of passive smoking on the levels of MMP-9 in nasal secretions of children. METHODS A prospective descriptive study was performed. Thirty-nine children aged between 7 and 16 years were enrolled in the study. They were selected based on attendance at the Otorhinolaryngology Outpatients Clinic with a primary complaint unrelated to the nose or paranasal sinuses. Children with allergic rhinitis, sinusitis, or a recent cold were excluded. The study was performed at a tertiary pediatric referral center. Exposure to passive smoking was determined by measuring the urinary cotinine to creatinine ratio. Nasal fluid was obtained by using a Rhino-Probe curette (Arlington Scientific, Inc., Springville, UT). The concentration of MMP-9 was determined by ELISA. MMP-9 activity was determined by gelatin zymography. Data were tabulated on Microsoft Excel (Microsoft Corp., Redmond, WA) and analyzed using SPSS (SPSS Inc., Chicago, IL). RESULTS Using a cutoff urinary cotinine/creatinine ratio of 0.025 ng/mg, 15 children were found to be exposed to passive smoking. Both the MMP-9 concentration and the activity were significantly higher in nasal secretions of children exposed to passive smoking. There was a distinct difference between the two cohorts with regard to the level of enzyme activity per weight of protein. The lowest level of enzyme activity recorded in the "exposed" cohort was over twice that of the level in the "not exposed" cohort. CONCLUSION MMP-9 activity and concentration is higher in nasal secretions of children exposed to passive smoking. This suggests that passive smoking might alter the inflammatory response within the nasal mucosa in a similar way to allergy.
Collapse
Affiliation(s)
- Sujata De
- Department of Otorhinolaryngology, Alder Hey Children's Hospital, Liverpool, United Kingdom, UK.
| | | | | | | | | | | |
Collapse
|
50
|
Kim JH, Kang JW, Kim M, Lee DH, Kim H, Choi HS, Kim EJ, Chung IM, Chung IY, Yoon DY. The liquid Panax ginseng inhibits epidermal growth factor-induced metalloproteinase 9 and cyclooxygenase 2 expressions via inhibition of inhibitor factor kappa-B-alpha and extracellular signal-regulated kinase in NCI-H292 human airway epithelial cells. Am J Rhinol Allergy 2011; 25:e55-9. [PMID: 21679500 DOI: 10.2500/ajra.2011.25.3586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Ginseng (Panax ginseng C.A. Meyer) has been used in Asian countries for the treatment of various diseases. However, the mechanisms of liquid Panax ginseng (LG) on allergic inflammatory response in epidermal growth factor (EGF)-stimulated human airway epithelial cells remain largely unclear. METHODS MUC5AC, cyclooxygenase (COX) 2, and matrix metalloproteinase (MMP) 9 expressions were measured using reverse transcription-polymerase chain reaction, Western blotting, and gelatin zymogram analyses in NCI-H292 cells. Extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) protein levels were analyzed by Western blotting. RESULTS To gain insight into the antiallergy effects of LG, we examined its influence on epidermal growth factor (EGF)-induced MMP-9 and COX-2 productions in NCI-H292 cells. LG was treated for 1 hour and then followed by EGF treatment for 24 hours into NCI-H292 cells. The decrease of COX-2 production was correlated with the reduced levels of proteins and mRNAs of inducible MMP-9 and MUC5AC. LG blocked upstream signaling of NF-kappa-B activation via inhibition of phosphorylations of inhibitor factor-kappa- B-alpha (I-kappa-B-alpha) and ERK. These results suggest that LG protects NCI-H292 cells from EGF-induced damage by down-regulation of COX-2, MMP-9, and MUC5AC gene expressions by blocking NF-kappa-B and ERK. CONCLUSION LG modulates allergic inflammatory response in EGF-stimulated NCI-H292 human airway epithelial cells via inhibition of I-kappa-B-alpha and ERK.
Collapse
Affiliation(s)
- Jung-Hee Kim
- Department of Biocience and Biotechnology, Bio/Molecular Informatics Center, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|