1
|
Kreger JE, Sliwicki AL, Essoh SN, Li Y, Jayachandran C, Czapla JA, Lewis TC, Kirkham EM, Vergotine RJ, Popova AP, Flori HR, Hershenson MB. Upper Airway Gene Expression in Hospitalized Children with Rhinovirus-induced Respiratory Illnesses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.29.651288. [PMID: 40370957 PMCID: PMC12077871 DOI: 10.1101/2025.04.29.651288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Background The precise mechanisms underlying rhinovirus (RV)-induced respiratory illnesses are not completely known. Objective We sought to obtain nasal transcriptomic data from hospitalized children with respiratory viral infections. Methods We obtained nasal swabs from 46 children with RV (16 RV-A, 30 RV-C). For comparison, we examined swabs from 12 children with RSV and six controls. Subjects ranged in age from 1 month to 18 years. Viral detection, genotyping and copy number were determined by PCR. RNA transcripts were measured by next generation sequencing and differences in gene expression calculated using DESeq2. Results Compared to controls, 1232 transcripts were upregulated (adjusted p<0.05, fold change >1.5) by all three viruses, including genes regulating granulocyte chemotaxis, cysteinyl leukotriene production, epithelial remodeling and antiviral responses. Cilium-related genes were downregulated. Compared to RSV, RV induced greater expression of 207 genes including those regulating eosinophilic inflammation, mucus secretion and mast cell function.RSV induced greater upregulation of 674 genes including those regulating neutrophilic inflammation and type 1 IFN response. Computational deconvolution of RNA-seq profiles revealed that viral infection decreased ciliated cells while increasing neutrophils, natural killer cells, monocytes (all viral species) and goblet cells (RV only). RV-C infections increased mast cells and IFN-λ mRNA expression. RV copy number correlated with the expression of mast cell proteases and numerous pro-inflammatory and IFN-stimulated genes. Conclusion Children hospitalized with RV and RSV infections mount robust inflammatory responses, but virus-specific differences exist. Clinical Implication These data provide insight into mechanisms by which RV, and in particular, RV-C, trigger respiratory illnesses. Capsule summary Nasal transcriptomics demonstrate that RV infections in hospitalized children induce expression of genes regulating eosinophilic inflammation, mucus secretion and mast cell function, with RV-C in particular increasing IFN-λ expression.
Collapse
|
2
|
Sutradhar S, Ali H. Mast cell MrgprB2 in neuroimmune interaction in IgE-mediated airway inflammation and its modulation by β-arrestin2. Front Immunol 2024; 15:1470016. [PMID: 39483467 PMCID: PMC11524863 DOI: 10.3389/fimmu.2024.1470016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Allergic asthma has been linked to the activation of mast cells (MCs) by the neuropeptide substance P (SP), but the mechanism underlying this neuroimmune interaction is unknown. Substance P produced from cutaneous nociceptors activates MCs via Mas-related G-protein-coupled receptor B2 (MrgprB2) to enhance type 2 immune response in experimental atopic dermatitis in mice. We recently showed that the adapter protein β-arrestin2 (β-arr2) contributes to MrgprB2-mediated MC chemotaxis. The goals of this study were to determine if MrgprB2 facilitates neuroimmune interaction in IgE (FcεRI)-mediated allergic airway inflammation (AAI) and to assess if this response is modulated by β-arr2. Methods Wild-type (WT), MrgprB2-/- mice and mice with MC-specific deletion of β-arr2 (Cpa3Cre+ /β-arr2fl/fl ) were passively sensitized with anti-TNP-IgE and challenged with antigen. The generation of SP and MC recruitment in the lung were determined by immunofluorescence and toluidine blue staining, respectively. The transcripts for Tac1, MrgprB2, TNF-α, and Th2 cytokines in lung tissue were assessed by RT-PCR, and the release of selected cytokines in bronchoalveolar lavage (BAL) was determined by ELISA. Eosinophil and neutrophil recruitment in lung tissue and BAL were determined by immunofluorescence staining and flow cytometry, respectively. Goblet cell hyperplasia was determined by periodic acid-Schiff staining. Results Following IgE sensitization and antigen challenge in WT mice, SP generation, and MC recruitment, transcripts for Tac1, MrgprB2, TNF-α, and Th2 cytokine were upregulated when compared to the control challenge. TNF-α, Th2 cytokine production, eosinophil/neutrophil recruitment, and goblet cell hyperplasia were also increased. These responses were significantly reduced in MrgprB2-/- and Cpa3Cre+ /β-arr2fl/fl mice. Discussion The data presented herein suggest that SP-mediated MrgprB2 activation contributes to AAI and goblet cell hyperplasia in mice. Furthermore, these responses are modulated by β-arr2, which promotes MC recruitment to facilitate their activation through FcεRI.
Collapse
Affiliation(s)
| | - Hydar Ali
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
3
|
Brightling CE, Marone G, Aegerter H, Chanez P, Heffler E, Pavord ID, Rabe KF, Uller L, Dorscheid D. The epithelial era of asthma research: knowledge gaps and future direction for patient care. Eur Respir Rev 2024; 33:240221. [PMID: 39694589 PMCID: PMC11653196 DOI: 10.1183/16000617.0221-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 12/20/2024] Open
Abstract
The Epithelial Science Expert Group convened on 18-19 October 2023, in Naples, Italy, to discuss the current understanding of the fundamental role of the airway epithelium in asthma and other respiratory diseases and to explore the future direction of patient care. This review summarises the key concepts and research questions that were raised. As an introduction to the epithelial era of research, the evolution of asthma management throughout the ages was discussed and the role of the epithelium as an immune-functioning organ was elucidated. The role of the bronchial epithelial cells in lower airway diseases beyond severe asthma was considered, as well as the role of the epithelium in upper airway diseases such as chronic rhinosinusitis. The biology and application of biomarkers in patient care was also discussed. The Epithelial Science Expert Group also explored future research needs by identifying the current knowledge and research gaps in asthma management and ranking them by priority. It was identified that there is a need to define and support early assessment of asthma to characterise patients at high risk of severe asthma. Furthermore, a better understanding of asthma progression is required. The development of new treatments and diagnostic tests as well as the identification of new biomarkers will also be required to address the current unmet needs. Finally, an increased understanding of epithelial dysfunction will determine if we can alter disease progression and achieve clinical remission.
Collapse
Affiliation(s)
- Christopher E Brightling
- Institute for Lung Health, National Institute for Health and Care Research Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
- Joint first authors
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, School of Medicine, University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council of Italy, Naples, Italy
- Joint first authors
| | - Helena Aegerter
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Pascal Chanez
- Department of Respiratory Diseases, Aix-Marseille University, Marseille, France
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Ian D Pavord
- Respiratory Medicine, National Institute for Health and Care Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Klaus F Rabe
- LungenClinic Grosshansdorf, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
- Chirstian-Alrechts University Kiel, Member of the German Center for Lung Research (DZL), Kiel, Germany
| | - Lena Uller
- Unit of Respiratory Immunopharmacology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Del Dorscheid
- Center for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Marchi E, Hinks TS, Richardson M, Khalfaoui L, Symon FA, Rajasekar P, Clifford R, Hargadon B, Austin CD, MacIsaac JL, Kobor MS, Siddiqui S, Mar JS, Arron JR, Choy DF, Bradding P. The effects of inhaled corticosteroids on healthy airways. Allergy 2024; 79:1831-1843. [PMID: 38686450 PMCID: PMC7616167 DOI: 10.1111/all.16146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND The effects of inhaled corticosteroids (ICS) on healthy airways are poorly defined. OBJECTIVES To delineate the effects of ICS on gene expression in healthy airways, without confounding caused by changes in disease-related genes and disease-related alterations in ICS responsiveness. METHODS Randomized open-label bronchoscopy study of high-dose ICS therapy in 30 healthy adult volunteers randomized 2:1 to (i) fluticasone propionate 500 mcg bd daily or (ii) no treatment, for 4 weeks. Laboratory staff were blinded to allocation. Biopsies and brushings were analysed by immunohistochemistry, bulk RNA sequencing, DNA methylation array and metagenomics. RESULTS ICS induced small between-group differences in blood and lamina propria eosinophil numbers, but not in other immunopathological features, blood neutrophils, FeNO, FEV1, microbiome or DNA methylation. ICS treatment upregulated 72 genes in brushings and 53 genes in biopsies, and downregulated 82 genes in brushings and 416 genes in biopsies. The most downregulated genes in both tissues were canonical markers of type-2 inflammation (FCER1A, CPA3, IL33, CLEC10A, SERPINB10 and CCR5), T cell-mediated adaptive immunity (TARP, TRBC1, TRBC2, PTPN22, TRAC, CD2, CD8A, HLA-DQB2, CD96, PTPN7), B-cell immunity (CD20, immunoglobulin heavy and light chains) and innate immunity, including CD48, Hobit, RANTES, Langerin and GFI1. An IL-17-dependent gene signature was not upregulated by ICS. CONCLUSIONS In healthy airways, 4-week ICS exposure reduces gene expression related to both innate and adaptive immunity, and reduces markers of type-2 inflammation. This implies that homeostasis in health involves tonic type-2 signalling in the airway mucosa, which is exquisitely sensitive to ICS.
Collapse
Affiliation(s)
- Emanuele Marchi
- NIHR Oxford Respiratory BRC and Respiratory Medicine Unit, Experimental Medicine, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
| | - Timothy S.C. Hinks
- NIHR Oxford Respiratory BRC and Respiratory Medicine Unit, Experimental Medicine, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
| | - Matthew Richardson
- Department of Respiratory Sciences, University of Leicester, Leicester Respiratory NIHR BRC, Glenfield Hospital, Leicester, UK
| | - Latifa Khalfaoui
- Department of Respiratory Sciences, University of Leicester, Leicester Respiratory NIHR BRC, Glenfield Hospital, Leicester, UK
| | - Fiona A. Symon
- Department of Respiratory Sciences, University of Leicester, Leicester Respiratory NIHR BRC, Glenfield Hospital, Leicester, UK
| | - Poojitha Rajasekar
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine; Nottingham NIHR Biomedical Research Centre; and Biodiscovery Institute, University Park, University of Nottingham, Nottingham, UK
| | - Rachel Clifford
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine; Nottingham NIHR Biomedical Research Centre; and Biodiscovery Institute, University Park, University of Nottingham, Nottingham, UK
| | - Beverley Hargadon
- Department of Respiratory Sciences, University of Leicester, Leicester Respiratory NIHR BRC, Glenfield Hospital, Leicester, UK
| | | | - Julia L. MacIsaac
- Edwin S.H. Leong Centre for Healthy Aging, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Michael S. Kobor
- Edwin S.H. Leong Centre for Healthy Aging, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Salman Siddiqui
- Department of Respiratory Sciences, University of Leicester, Leicester Respiratory NIHR BRC, Glenfield Hospital, Leicester, UK
| | | | | | | | - Peter Bradding
- Department of Respiratory Sciences, University of Leicester, Leicester Respiratory NIHR BRC, Glenfield Hospital, Leicester, UK
| |
Collapse
|
5
|
Zheng J, Bai Y, Xia L, Sun X, Pan J, Wang S, Qi C. Orally administered yeast-derived β-glucan alleviates mast cell-dependent airway hyperresponsiveness and inflammation in a murine model of asthma. Immun Inflamm Dis 2024; 12:e1333. [PMID: 38934407 PMCID: PMC11209540 DOI: 10.1002/iid3.1333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Particulate β-glucans (WGP) are natural compounds with regulatory roles in various biological processes, including tumorigenesis and inflammatory diseases such as allergic asthma. However, their impact on mast cells (MCs), contributors to airway hyperresponsiveness (AHR) and inflammation in asthma mice, remains unknown. METHODS C57BL/6 mice underwent repeated OVA sensitization without alum, followed by Ovalbumin (OVA) challenge. Mice received daily oral administration of WGP (OAW) at doses of 50 or 150 mg/kg before sensitization and challenge. We assessed airway function, lung histopathology, and pulmonary inflammatory cell composition in the airways, as well as proinflammatory cytokines and chemokines in the bronchoalveolar lavage fluid (BALF). RESULTS The 150 mg/kg OAW treatment mitigated OVA-induced AHR and airway inflammation, evidenced by reduced airway reactivity to aerosolized methacholine (Mch), diminished inflammatory cell infiltration, and goblet cell hyperplasia in lung tissues. Additionally, OAW hindered the recruitment of inflammatory cells, including MCs and eosinophils, in lung tissues and BALF. OAW treatment attenuated proinflammatory tumor necrosis factor (TNF)-α and IL-6 levels in BALF. Notably, OAW significantly downregulated the expression of chemokines CCL3, CCL5, CCL20, CCL22, CXCL9, and CXCL10 in BALF. CONCLUSION These results highlight OAW's robust anti-inflammatory properties, suggesting potential benefits in treating MC-dependent AHR and allergic inflammation by influencing inflammatory cell infiltration and regulating proinflammatory cytokines and chemokines in the airways.
Collapse
Affiliation(s)
- Jianzhou Zheng
- Laboratory of OncologyThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Basic Research CenterChangzhouChina
- Largescale Equipment PlatformThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical CenterChangzhouChina
| | - Yu Bai
- Laboratory of OncologyThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Basic Research CenterChangzhouChina
| | - Lei Xia
- Largescale Equipment PlatformThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical CenterChangzhouChina
| | - Xiao Sun
- Largescale Equipment PlatformThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical CenterChangzhouChina
| | - Jie Pan
- Laboratory of OncologyThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Basic Research CenterChangzhouChina
| | - Shizhong Wang
- Laboratory of OncologyThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Basic Research CenterChangzhouChina
| | - Chunjian Qi
- Laboratory of OncologyThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Basic Research CenterChangzhouChina
| |
Collapse
|
6
|
Calzetta L, Page C, Matera MG, Cazzola M, Rogliani P. Use of human airway smooth muscle in vitro and ex vivo to investigate drugs for the treatment of chronic obstructive respiratory disorders. Br J Pharmacol 2024; 181:610-639. [PMID: 37859567 DOI: 10.1111/bph.16272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
Isolated airway smooth muscle has been extensively investigated since 1840 to understand the pharmacology of airway diseases. There has often been poor predictability from murine experiments to drugs evaluated in patients with asthma or chronic obstructive pulmonary disease (COPD). However, the use of isolated human airways represents a sensible strategy to optimise the development of innovative molecules for the treatment of respiratory diseases. This review aims to provide updated evidence on the current uses of isolated human airways in validated in vitro methods to investigate drugs in development for the treatment of chronic obstructive respiratory disorders. This review also provides historical notes on the pioneering pharmacological research on isolated human airway tissues, the key differences between human and animal airways, as well as the pivotal differences between human medium bronchi and small airways. Experiments carried out with isolated human bronchial tissues in vitro and ex vivo replicate many of the main anatomical, pathophysiological, mechanical and immunological characteristics of patients with asthma or COPD. In vitro models of asthma and COPD using isolated human airways can provide information that is directly translatable into humans with obstructive lung diseases. Regardless of the technique used to investigate drugs for the treatment of chronic obstructive respiratory disorders (i.e., isolated organ bath systems, videomicroscopy and wire myography), the most limiting factors to produce high-quality and repeatable data remain closely tied to the manual skills of the researcher conducting experiments and the availability of suitable tissue.
Collapse
Affiliation(s)
- Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Clive Page
- Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
7
|
Gauthier M, Kale SL, Oriss TB, Gorry M, Ramonell RP, Dalton K, Ray P, Fahy JV, Seibold MA, Castro M, Jarjour N, Gaston B, Bleecker ER, Meyers DA, Moore W, Hastie AT, Israel E, Levy BD, Mauger D, Erzurum S, Comhair SA, Wenzel SE, Ray A. CCL5 is a potential bridge between type 1 and type 2 inflammation in asthma. J Allergy Clin Immunol 2023; 152:94-106.e12. [PMID: 36893862 PMCID: PMC10330021 DOI: 10.1016/j.jaci.2023.02.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/06/2023] [Accepted: 02/13/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Type 1 (T1) inflammation (marked by IFN-γ expression) is now consistently identified in subsets of asthma cohorts, but how it contributes to disease remains unclear. OBJECTIVE We sought to understand the role of CCL5 in asthmatic T1 inflammation and how it interacts with both T1 and type 2 (T2) inflammation. METHODS CCL5, CXCL9, and CXCL10 messenger RNA expression from sputum bulk RNA sequencing, as well as clinical and inflammatory data were obtained from the Severe Asthma Research Program III (SARP III). CCL5 and IFNG expression from bronchoalveolar lavage cell bulk RNA sequencing was obtained from the Immune Mechanisms in Severe Asthma (IMSA) cohort and expression related to previously identified immune cell profiles. The role of CCL5 in tissue-resident memory T-cell (TRM) reactivation was evaluated in a T1high murine severe asthma model. RESULTS Sputum CCL5 expression strongly correlated with T1 chemokines (P < .001 for CXCL9 and CXCL10), consistent with a role in T1 inflammation. CCL5high participants had greater fractional exhaled nitric oxide (P = .009), blood eosinophils (P < .001), and sputum eosinophils (P = .001) in addition to sputum neutrophils (P = .001). Increased CCL5 bronchoalveolar lavage expression was unique to a previously described T1high/T2variable/lymphocytic patient group in the IMSA cohort, with IFNG trending with worsening lung obstruction only in this group (P = .083). In a murine model, high expression of the CCL5 receptor CCR5 was observed in TRMs and was consistent with a T1 signature. A role for CCL5 in TRM activation was supported by the ability of the CCR5 inhibitor maraviroc to blunt reactivation. CONCLUSION CCL5 appears to contribute to TRM-related T1 neutrophilic inflammation in asthma while paradoxically also correlating with T2 inflammation and with sputum eosinophilia.
Collapse
Affiliation(s)
- Marc Gauthier
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pa.
| | - Sagar Laxman Kale
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Timothy B Oriss
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Michael Gorry
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Richard P Ramonell
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Kathryn Dalton
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Prabir Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - John V Fahy
- Division of Pulmonary Allergy and Critical Care, University of California, San Francisco, Calif
| | - Max A Seibold
- Center for Genes, Environment, and Health and Department of Pediatrics, National Jewish Health, Denver, Colo; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, Colo
| | - Mario Castro
- Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, Kan
| | - Nizar Jarjour
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine, Madison, Wis
| | - Benjamin Gaston
- Riley Hospital for Children and Indiana University School of Medicine Department of Pediatrics, Indianapolis, Ind
| | - Eugene R Bleecker
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, Ariz
| | - Deborah A Meyers
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, Ariz
| | - Wendy Moore
- Section on Pulmonary, Critical Care, Allergy & Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC
| | - Annette T Hastie
- Section on Pulmonary, Critical Care, Allergy & Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC
| | - Elliot Israel
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - David Mauger
- Division of Statistics and Bioinformatics, Department of Public Health Sciences, Pennsylvania State University, Hershey, Pa
| | - Serpil Erzurum
- Lerner Research Institute, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Suzy A Comhair
- Lerner Research Institute, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Sally E Wenzel
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pa; Department of Environmental and Occupation Health, University of Pittsburgh School of Public Health, Pittsburgh, Pa
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| |
Collapse
|
8
|
Hvidtfeldt M, Sverrild A, Pulga A, Frøssing L, Silberbrandt A, Hostrup M, Thomassen M, Sanden C, Clausson CM, Siddhuraj P, Bornesund D, Nieto-Fontarigo JJ, Uller L, Erjefält J, Porsbjerg C. Airway hyperresponsiveness reflects corticosteroid-sensitive mast cell involvement across asthma phenotypes. J Allergy Clin Immunol 2023; 152:107-116.e4. [PMID: 36907566 DOI: 10.1016/j.jaci.2023.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Airway hyperresponsiveness is a hallmark of asthma across asthma phenotypes. Airway hyperresponsiveness to mannitol specifically relates to mast cell infiltration of the airways, suggesting inhaled corticosteroids to be effective in reducing the response to mannitol, despite low levels of type 2 inflammation. OBJECTIVE We sought to investigate the relationship between airway hyperresponsiveness and infiltrating mast cells, and the response to inhaled corticosteroid treatment. METHODS In 50 corticosteroid-free patients with airway hyperresponsiveness to mannitol, mucosal cryobiopsies were obtained before and after 6 weeks of daily treatment with 1600 μg of budesonide. Patients were stratified according to baseline fractional exhaled nitric oxide (Feno) with a cutoff of 25 parts per billion. RESULTS Airway hyperresponsiveness was comparable at baseline and improved equally with treatment in both patients with Feno-high and Feno-low asthma: doubling dose, 3.98 (95% CI, 2.49-6.38; P < .001) and 3.85 (95% CI, 2.51-5.91; P < .001), respectively. However, phenotypes and distribution of mast cells differed between the 2 groups. In patients with Feno-high asthma, airway hyperresponsiveness correlated with the density of chymase-high mast cells infiltrating the epithelial layer (ρ, -0.42; P = .04), and in those with Feno-low asthma, it correlated with the density in the airway smooth muscle (ρ, -0.51; P = .02). The improvement in airway hyperresponsiveness after inhaled corticosteroid treatment correlated with a reduction in mast cells, as well as in airway thymic stromal lymphopoietin and IL-33. CONCLUSIONS Airway hyperresponsiveness to mannitol is related to mast cell infiltration across asthma phenotypes, correlating with epithelial mast cells in patients with Feno-high asthma and with airway smooth muscle mast cells in patients with Feno-low asthma. Treatment with inhaled corticosteroids was effective in reducing airway hyperresponsiveness in both groups.
Collapse
Affiliation(s)
- Morten Hvidtfeldt
- Respiratory Research Unit, Bispebjerg Hospital, Copenhagen, Denmark.
| | - Asger Sverrild
- Respiratory Research Unit, Bispebjerg Hospital, Copenhagen, Denmark; Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| | - Alexis Pulga
- Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| | - Laurits Frøssing
- Respiratory Research Unit, Bispebjerg Hospital, Copenhagen, Denmark
| | | | - Morten Hostrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Martin Thomassen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | - Lena Uller
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jonas Erjefält
- Unit of Airway Inflammation, Lund University, Lund, Sweden
| | - Celeste Porsbjerg
- Respiratory Research Unit, Bispebjerg Hospital, Copenhagen, Denmark; Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| |
Collapse
|
9
|
Costanzo G, Costanzo GAML, Del Moro L, Nappi E, Pelaia C, Puggioni F, Canonica GW, Heffler E, Paoletti G. Mast Cells in Upper and Lower Airway Diseases: Sentinels in the Front Line. Int J Mol Sci 2023; 24:ijms24119771. [PMID: 37298721 DOI: 10.3390/ijms24119771] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Mast cells (MCs) are fascinating cells of the innate immune system involved not only in allergic reaction but also in tissue homeostasis, response to infection, wound healing, protection against kidney injury, the effects of pollution and, in some circumstances, cancer. Indeed, exploring their role in respiratory allergic diseases would give us, perhaps, novel therapy targets. Based on this, there is currently a great demand for therapeutic regimens to enfeeble the damaging impact of MCs in these pathological conditions. Several strategies can accomplish this at different levels in response to MC activation, including targeting individual mediators released by MCs, blockade of receptors for MC-released compounds, inhibition of MC activation, limiting mast cell growth, or inducing mast cell apoptosis. The current work focuses on and summarizes the mast cells' role in pathogenesis and as a personalized treatment target in allergic rhinitis and asthma; even these supposed treatments are still at the preclinical stage.
Collapse
Affiliation(s)
- Giovanni Costanzo
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | | | - Lorenzo Del Moro
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy
| | - Emanuele Nappi
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Corrado Pelaia
- Department of Health Sciences, University 'Magna Græcia' of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Puggioni
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Giorgio Walter Canonica
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Enrico Heffler
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Giovanni Paoletti
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| |
Collapse
|
10
|
Singla A, Reuter S, Taube C, Peters M, Peters K. The molecular mechanisms of remodeling in asthma, COPD and IPF with a special emphasis on the complex role of Wnt5A. Inflamm Res 2023; 72:577-588. [PMID: 36658268 PMCID: PMC10023767 DOI: 10.1007/s00011-023-01692-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Chronic inflammatory lung diseases are a common cause of suffering and death. Chronic obstructive pulmonary disease (COPD) is the reason for 6% of all deaths worldwide. A total of 262 million people are affected by asthma and 461,000 people died in 2019. Idiopathic pulmonary fibrosis (IPF) is diagnosed in 3 million people worldwide, with an onset over the age of 50 with a mean survival of only 24-30 months. These three diseases have in common that remodeling of the lung tissue takes place, which is responsible for an irreversible decline of lung function. Pathological lung remodeling is mediated by a complex interaction of different, often misguided, repair processes regulated by a variety of mediators. One group of these, as has recently become known, are the Wnt ligands. In addition to their well-characterized role in embryogenesis, this group of glycoproteins is also involved in immunological and structural repair processes. Depending on the combination of the Wnt ligand with its receptors and co-receptors, canonical and noncanonical signaling cascades can be induced. Wnt5A is a mediator that is described mainly in noncanonical Wnt signaling and has been shown to play an important role in different inflammatory diseases and malignancies. OBJECTIVES In this review, we summarize the literature available regarding the role of Wnt5A as an immune modulator and its role in the development of asthma, COPD and IPF. We will focus specifically on what is known about Wnt5A concerning its role in the remodeling processes involved in the chronification of the diseases. CONCLUSION Wnt5A has been shown to be involved in all three inflammatory lung diseases. Since the ligand affects both structural and immunological processes, it is an interesting target for the treatment of lung diseases whose pathology involves a restructuring of the lung tissue triggered in part by an inflammatory immune response.
Collapse
Affiliation(s)
- Abhinav Singla
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, Germany
- Department of Molecular Immunology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Sebastian Reuter
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, Germany
| | - Marcus Peters
- Department of Molecular Immunology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Karin Peters
- Department of Molecular Immunology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
11
|
Liu D, Tang Z, Bajinka O, Dai P, Wu G, Qin L, Tan Y. miR-34b/c-5p/CXCL10 Axis Induced by RSV Infection Mediates a Mechanism of Airway Hyperresponsive Diseases. BIOLOGY 2023; 12:biology12020317. [PMID: 36829591 PMCID: PMC9953223 DOI: 10.3390/biology12020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Background: RSV is closely correlated with post-infection airway hyperresponsive diseases (AHD), but the mechanism remains unclear. Objective: Due to the pivotal role of miRNAs in AHD, we analyzed the differentially expressed miRNAs (DEmiRs) in RSV-infected patients, asthma patients, and COPD patients from public datasets and explored the mechanisms of association between RSV and AHD. Methods: We obtained miRNA and mRNA databases of patients with RSV infection, as well as miRNA databases of asthma and COPD patients from the GEO database. Through integrated analysis, we screened DEmiRs and DEGs. Further analysis was carried out to obtain the hub genes through the analysis of biological pathways and enrichment pathways of DEGs targeted by DEmiRs and the construction of a protein-protein interaction (PPI) network. Results: The five differential molecules (miR-34b/c-5p, Cd14, Cxcl10, and Rhoh) were verified through in vivo experiments that had the same expression trend in the acute and chronic phases of RSV infection. Following infection of BEAS-2B cells with RSV, we confirmed that RSV infection down-regulated miR-34b/c-5p, and up-regulated the expression levels of CXCL10 and CD14. Furthermore, the results of the dual-luciferase reporter assay showed that CXCL10 was the target of hsa-miR-34c-5p. Conclusions: miR-34b/c-5p/CXCL10 axis mediates a mechanism of AHD.
Collapse
Affiliation(s)
- Dan Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Central South University, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Zhongxiang Tang
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha 410078, China
| | - Ousman Bajinka
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha 410078, China
| | - Pei Dai
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha 410078, China
| | - Guojun Wu
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
| | - Ling Qin
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Central South University, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha 410078, China
- Correspondence: (L.Q.); (Y.T.)
| | - Yurong Tan
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha 410078, China
- Correspondence: (L.Q.); (Y.T.)
| |
Collapse
|
12
|
Gruba S, Wu X, Spanolios E, He J, Xiong-Hang K, Haynes CL. Platelet Response to Allergens, CXCL10, and CXCL5 in the Context of Asthma. ACS BIO & MED CHEM AU 2023; 3:87-96. [PMID: 36820311 PMCID: PMC9936497 DOI: 10.1021/acsbiomedchemau.2c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Asthma is a chronic respiratory disease initiated by a variety of factors, including allergens. During an asthma attack, the secretion of C-X-C-motif chemokine 10 (CXCL10) and chemokine ligand 5 (CCL5) causes the migration of immune cells, including platelets, into the lungs and airway. Platelets, which contain three classes of chemical messenger-filled granules, can secrete vasodilators (adenosine diphosphate and adenosine triphosphate), serotonin (a vasoconstrictor and a vasodilator, depending on the biological system), platelet-activating factor, N-formylmethionyl-leucyl-phenylalanine ((fMLP), a bacterial tripeptide that stimulates chemotaxis), and chemokines (CCL5, platelet factor 4 (PF4), and C-X-C-motif chemokine 12 (CXCL12)), amplifying the asthma response. The goal of this work was threefold: (1) to understand if and how the antibody immunoglobulin E (IgE), responsible for allergic reactions, affects platelet response to the common platelet activator thrombin; (2) to understand how allergen stimulation compares to thrombin stimulation; and (3) to monitor platelet response to fMLP and the chemokines CXCL10 and CCL5. Herein, high-pressure liquid chromatography with electrochemical detection and/or carbon-fiber microelectrode amperometry measured granular secretion events from platelets with and without IgE in the presence of the allergen 2,4,6-trinitrophenyl-conjugated ovalbumin (TNP-Ova), thrombin, CXCL10, or CCL5. Platelet adhesion and chemotaxis were measured using a microfluidic platform in the presence of CXCL10, CCL5, or TNP-OVA. Results indicate that IgE binding promotes δ-granule secretion in response to platelet stimulation by thrombin in bulk. Single-cell results on platelets with exogenous IgE exposure showed significant changes in the post-membrane-granule fusion behavior during chemical messenger delivery events after thrombin stimulation. In addition, TNP-Ova allergen stimulation of IgE-exposed platelets secreted serotonin to the same extent as thrombin platelet stimulation. Enhanced adhesion to endothelial cells was demonstrated by TNP-Ova stimulation. Finally, only after incubation with IgE did platelets secrete chemical messengers in response to stimulation with fMLP, CXCL10, and CCL5.
Collapse
Affiliation(s)
- Sarah Gruba
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xiaojie Wu
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Eleni Spanolios
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jiayi He
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kang Xiong-Hang
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Multi-omic factors associated with future wheezing in infants. Pediatr Res 2023; 93:579-585. [PMID: 36167817 DOI: 10.1038/s41390-022-02318-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/23/2022] [Accepted: 09/13/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND The pathophysiology of wheezing is multifactorial, impacted by medical, demographic, environmental, and immunologic factors. We hypothesized that multi-omic analyses of host and microbial factors in saliva would enhance the ability to identify infants at risk for wheezing. METHODS This longitudinal cohort study included 161 term infants. Infants who developed wheezing (n = 27) within 24 months of delivery were identified using the International Study of Asthma and Allergies in Childhood Written Questionnaire and review of the medical record. Standardized surveys were used to assess infant traits and environmental exposures. Saliva was collected for multi-omic assessment of cytokines, microRNAs, mRNAs, and microbiome/virome RNAs. RESULTS Two infant factors (daycare attendance, family history of asthma) and three salivary "omic" features (miR-26a-5p, Elusimicrobia, Streptococcus phage phiARI0131-1) differed between the two groups (adjusted p < 0.05). miR-26a-5p levels were correlated with Elusimicrobia (R = -0.87, p = 3.7 × 10-31). A model employing the three omic features plus daycare attendance and family asthma history yielded the highest predictive accuracy for future wheezing episodes (AUC = 0.74, 95% CI: 0.703-0.772, 77% sensitivity, 62% specificity). CONCLUSIONS Host-microbiome interactions in saliva may yield pathophysiologic clues about the origins of wheezing and aid identification of infants at risk of future wheezing episodes. IMPACT Wheezing is multi-factorial, but the relative contributions of infant traits, environment, and underlying biology are poorly understood. This multi-omic study identifies three molecular factors, including salivary microRNAs, microbes, and viral phages associated with increased risk of infant wheezing. Measurement of these molecular factors enhanced predictive accuracy for future wheezing when combined with family asthma history and daycare attendance. Validation of this approach could be used to identify infants at risk for wheezing and guide personalized medical management.
Collapse
|
14
|
Kamiya S, Ikegami I, Yanagi M, Takaki H, Kamekura R, Sato T, Kobayashi K, Kamiya T, Kamada Y, Abe T, Inoue KI, Hida T, Uhara H, Ichimiya S. Functional Interplay between IL-9 and Peptide YY Contributes to Chronic Skin Inflammation. J Invest Dermatol 2022; 142:3222-3231.e5. [PMID: 35850207 DOI: 10.1016/j.jid.2022.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 01/05/2023]
Abstract
Complex interactions between keratinocytes and various cell types, such as inflammatory cells and stromal cells, contribute to the pathogenesis of chronic inflammatory skin lesions. In proinflammatory cytokine‒mediated disease settings, IL-9 plays a pathological role in inflammatory dermatitis. However, IL-9‒related mechanisms remain incompletely understood. In this study, we established tamoxifen-induced keratinocyte-specific IL-9RA-deficient mice (K14CRE/ERTIl9raΔ/Δ mice) to examine the role of IL-9 in multicellular interactions under chronic skin inflammatory conditions. Studies using an imiquimod-induced psoriasis-like model showed that K14CRE/ERTIl9raΔ/Δ mice exhibited a significantly reduced severity of dermatitis and mast cell infiltration compared with control K14WTIl9rafl/fl mice. Transcriptome analyses of psoriasis-like lesions showed that the level of peptide Y-Y (Pyy), a member of the neuropeptide Y family, was markedly downregulated in K14CRE/ERTIl9raΔ/Δ epidermis. Pyy blockade suppressed epidermal thickening and mast cell numbers in imiquimod-treated wild-type mice. Together with in vitro studies indicating that Pyy induced IL-9 production and chemotactic activity in bone marrow‒derived mast cells, these findings suggest that Pyy-mediated interplay between keratinocytes and mast cells contributes to psoriasiform inflammation. Further investigation focusing on the IL-9‒Pyy axis may provide valuable information for the development of new treatment modalities for inflammatory dermatitis.
Collapse
Affiliation(s)
- Shiori Kamiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ippei Ikegami
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Yanagi
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromi Takaki
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryuta Kamekura
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Taiki Sato
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keiju Kobayashi
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takafumi Kamiya
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuka Kamada
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Ken-Ichi Inoue
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tokimasa Hida
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shingo Ichimiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
15
|
Qiao M, Li S, Yuan J, Ren W, Shang Y, Wang W, Liu R, Zhang F, Li Q, Wu X, Lu J, Gao M, Pang Y. Delamanid suppresses CXCL10 expression via regulation of JAK/STAT1 signaling and correlates with reduced inflammation in tuberculosis patients. Front Immunol 2022; 13:923492. [DOI: 10.3389/fimmu.2022.923492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
BackgroundApart from bactericidal effects, anti-tuberculosis drugs can interfere with the host’s immune system. In this study, we analyzed the role of delamanid (DLM), an inhibitor of mycolic acid synthesis of mycobacterial cell wall, on human macrophages.MethodsBased on a cohort of multidrug-resistant tuberculosis (MDR-TB) patients treated with DLM, the levels of C-reaction protein (CRP) and cytokines in the plasma were monitored using immunoturbidimetric assay and flow cytometry, respectively. We investigated the role of DLM on CXCL10 expression in U937 cell model using the following methods: cell viability assay, reverse transcription-quantitative polymerase chain reaction, enzyme linked immunosorbent assay, immunoblot, and transwell co-culture assay.ResultsA total of 23 MDR-TB patients were included, comprising of 13 patients treated with optimized background therapeutic regimen (OBR) plus DLM regimen (OBR+DLM) and 10 patients treated with OBR plus placebo. DLM administration was associated with a significant reduce in circulating CRP level. Correspondingly, after treatment, the level of CXCL10 in patients treated with OBR+DLM was significantly lower than that with control. Using cell model, DLM dramatically suppressed CXCL10 expression, which majorly depended on inhibiting the JAK/STAT pathway, and impaired the migration of PBMCs.ConclusionOur data firstly demonstrate that DLM suppresses CXCL10 expression via regulation of JAK2/STAT1 signaling and correlates with reduced inflammation in MDR-TB patients. DLM could be used as a potential drug for immunotherapy of patients with overactive immune response due to CXCL10.
Collapse
|
16
|
Xiong D(JP, Martin JG, Lauzon AM. Airway smooth muscle function in asthma. Front Physiol 2022; 13:993406. [PMID: 36277199 PMCID: PMC9581182 DOI: 10.3389/fphys.2022.993406] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022] Open
Abstract
Known to have affected around 340 million people across the world in 2018, asthma is a prevalent chronic inflammatory disease of the airways. The symptoms such as wheezing, dyspnea, chest tightness, and cough reflect episodes of reversible airway obstruction. Asthma is a heterogeneous disease that varies in clinical presentation, severity, and pathobiology, but consistently features airway hyperresponsiveness (AHR)—excessive airway narrowing due to an exaggerated response of the airways to various stimuli. Airway smooth muscle (ASM) is the major effector of exaggerated airway narrowing and AHR and many factors may contribute to its altered function in asthma. These include genetic predispositions, early life exposure to viruses, pollutants and allergens that lead to chronic exposure to inflammatory cells and mediators, altered innervation, airway structural cell remodeling, and airway mechanical stress. Early studies aiming to address the dysfunctional nature of ASM in the etiology and pathogenesis of asthma have been inconclusive due to the methodological limitations in assessing the intrapulmonary airways, the site of asthma. The study of the trachealis, although convenient, has been misleading as it has shown no alterations in asthma and it is not as exposed to inflammatory cells as intrapulmonary ASM. Furthermore, the cartilage rings offer protection against stress and strain of repeated contractions. More recent strategies that allow for the isolation of viable intrapulmonary ASM tissue reveal significant mechanical differences between asthmatic and non-asthmatic tissues. This review will thus summarize the latest techniques used to study ASM mechanics within its environment and in isolation, identify the potential causes of the discrepancy between the ASM of the extra- and intrapulmonary airways, and address future directions that may lead to an improved understanding of ASM hypercontractility in asthma.
Collapse
Affiliation(s)
- Dora (Jun Ping) Xiong
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - James G. Martin
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Anne-Marie Lauzon
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- *Correspondence: Anne-Marie Lauzon,
| |
Collapse
|
17
|
Komolafe K, Pacurari M. CXC Chemokines in the Pathogenesis of Pulmonary Disease and Pharmacological Relevance. Int J Inflam 2022; 2022:4558159. [PMID: 36164329 PMCID: PMC9509283 DOI: 10.1155/2022/4558159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Chemokines and their receptors play important roles in the pathophysiology of many diseases by regulating the cellular migration of major inflammatory and immune players. The CXC motif chemokine subfamily is the second largest family, and it is further subdivided into ELR motif CXC (ELR+) and non-ELR motif (ELR-) CXC chemokines, which are effective chemoattractants for neutrophils and lymphocytes/monocytes, respectively. These chemokines and their receptors are expected to have a significant impact on a wide range of lung diseases, many of which have inflammatory or immunological underpinnings. As a result, manipulations of this subfamily of chemokines and their receptors using small molecular agents and other means have been explored for potential therapeutic benefit in the setting of several lung pathologies. Furthermore, encouraging preclinical data has necessitated the progression of a few of these drugs into clinical trials in order to make the most effective use of interventions in the development of viable targeted therapeutics. The current review presents the understanding of the roles of CXC ligands (CXCLs) and their cognate receptors (CXCRs) in the pathogenesis of several lung diseases such as allergic rhinitis, COPD, lung fibrosis, lung cancer, pneumonia, and tuberculosis. The potential therapeutic benefits of pharmacological or other CXCL/CXCR axis manipulations are also discussed.
Collapse
Affiliation(s)
- Kayode Komolafe
- RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA
| | - Maricica Pacurari
- RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, Jackson, MS 39217, USA
| |
Collapse
|
18
|
Satarkar D, Patra C. Evolution, Expression and Functional Analysis of CXCR3 in Neuronal and Cardiovascular Diseases: A Narrative Review. Front Cell Dev Biol 2022; 10:882017. [PMID: 35794867 PMCID: PMC9252580 DOI: 10.3389/fcell.2022.882017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Chemokines form a sophisticated communication network wherein they maneuver the spatiotemporal migration of immune cells across a system. These chemical messengers are recognized by chemokine receptors, which can trigger a cascade of reactions upon binding to its respective ligand. CXC chemokine receptor 3 (CXCR3) is a transmembrane G protein-coupled receptor, which can selectively bind to CXCL9, CXCL10, and CXCL11. CXCR3 is predominantly expressed on immune cells, including activated T lymphocytes and natural killer cells. It thus plays a crucial role in immunological processes like homing of effector cells to infection sites and for pathogen clearance. Additionally, it is expressed on several cell types of the central nervous system and cardiovascular system, due to which it has been implicated in several central nervous system disorders, including Alzheimer's disease, multiple sclerosis, dengue viral disease, and glioblastoma, as well as cardiovascular diseases like atherosclerosis, Chronic Chagas cardiomyopathy, and hypertension. This review provides a narrative description of the evolution, structure, function, and expression of CXCR3 and its corresponding ligands in mammals and zebrafish and the association of CXCR3 receptors with cardiovascular and neuronal disorders. Unraveling the mechanisms underlying the connection of CXCR3 and disease could help researchers investigate the potential of CXCR3 as a biomarker for early diagnosis and as a therapeutic target for pharmacological intervention, along with developing robust zebrafish disease models.
Collapse
Affiliation(s)
- Devi Satarkar
- Department of Developmental Biology, Agharkar Research Institute, Pune, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, Pune, India
- SP Phule University, Pune, India
| |
Collapse
|
19
|
Saunders RM, Biddle M, Amrani Y, Brightling CE. Stressed out - The role of oxidative stress in airway smooth muscle dysfunction in asthma and COPD. Free Radic Biol Med 2022; 185:97-119. [PMID: 35472411 DOI: 10.1016/j.freeradbiomed.2022.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
The airway smooth muscle (ASM) surrounding the airways is dysfunctional in both asthma and chronic obstructive pulmonary disease (COPD), exhibiting; increased contraction, increased mass, increased inflammatory mediator release and decreased corticosteroid responsiveness. Due to this dysfunction, ASM is a key contributor to symptoms in patients that remain symptomatic despite optimal provision of currently available treatments. There is a significant body of research investigating the effects of oxidative stress/ROS on ASM behaviour, falling into the following categories; cigarette smoke and associated compounds, air pollutants, aero-allergens, asthma and COPD relevant mediators, and the anti-oxidant Nrf2/HO-1 signalling pathway. However, despite a number of recent reviews addressing the role of oxidative stress/ROS in asthma and COPD, the potential contribution of oxidative stress/ROS-related ASM dysfunction to asthma and COPD pathophysiology has not been comprehensively reviewed. We provide a thorough review of studies that have used primary airway, bronchial or tracheal smooth muscle cells to investigate the role of oxidative stress/ROS in ASM dysfunction and consider how they could contribute to the pathophysiology of asthma and COPD. We summarise the current state of play with regards to clinical trials/development of agents targeting oxidative stress and associated limitations, and the adverse effects of oxidative stress on the efficacy of current therapies, with reference to ASM related studies where appropriate. We also identify limitations in the current knowledge of the role of oxidative stress/ROS in ASM dysfunction and identify areas for future research.
Collapse
Affiliation(s)
- Ruth M Saunders
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK.
| | - Michael Biddle
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Yassine Amrani
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Christopher E Brightling
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
20
|
Rong Y, Yang H, Xu H, Li S, Wang P, Wang Z, Zhang Y, Zhu W, Tang B, Zhu J, Hu Z. Bioinformatic Analysis Reveals Hub Immune-Related Genes of Diabetic Foot Ulcers. Front Surg 2022; 9:878965. [PMID: 35449555 PMCID: PMC9016148 DOI: 10.3389/fsurg.2022.878965] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022] Open
Abstract
Diabetic foot ulcer (DFU) is a complex and devastating complication of diabetes mellitus that are usually stagnant in the inflammatory phase. However, oral wound healing, which is characterized by a rapid and scarless healing process, is regarded an ideal model of wound healing. Thus, we performed a comprehensive bioinformatics analysis of the previously published data regarding oral ulcers and DFUs and found that compared to oral wound healing, the activated pathways of DFUs were enriched in cellular metabolism-related pathways but lacked the activation of inflammatory and immune-related pathways. We also found that CXCL11, DDX60, IFI44, and IFI44L were remarkable nodes since they had the most connections with other members of the module. Meanwhile, CXCL10, IRF7, and DDX58 together formed a closed-loop relationship and occupied central positions in the entire network. The real-time polymerase chain reaction and western blot was applied to validate the gene expression of the hub immune-related genes in the DFU tissues, it was found that CXCL11, IFI44, IFI44L, CXCL10 and IRF7 have a significant difference compared with normal wound tissues. Our research reveals some novel potential immune-related biomarkers and provides new insights into the molecular basis of this debilitating disease.
Collapse
Affiliation(s)
- Yanchao Rong
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hao Yang
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hailin Xu
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuting Li
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Peng Wang
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiyong Wang
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenkai Zhu
- Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Bing Tang
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Bing Tang
| | - Jiayuan Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Jiayuan Zhu
| | - Zhicheng Hu
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Zhicheng Hu
| |
Collapse
|
21
|
PM2.5 Exposure and Asthma Development: The Key Role of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3618806. [PMID: 35419163 PMCID: PMC9001082 DOI: 10.1155/2022/3618806] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/24/2022] [Indexed: 12/21/2022]
Abstract
Oxidative stress is defined as the imbalance between reactive oxygen species (ROS) production and the endogenous antioxidant defense system, leading to cellular damage. Asthma is a common chronic inflammatory airway disease. The presence of asthma tends to increase the production of reactive oxygen species (ROS), and the antioxidant system in the lungs is insufficient to mitigate it. Therefore, asthma can lead to an exacerbation of airway hyperresponsiveness and airway inflammation. PM2.5 exposure increases ROS levels. Meanwhile, the accumulation of ROS will further enhance the oxidative stress response, resulting in DNA, protein, lipid, and other cellular and molecular damage, leading to respiratory diseases. An in-depth study on the relationship between oxidative stress and PM2.5-related asthma is helpful to understand the pathogenesis and progression of the disease and provides a new direction for the treatment of the disease. This paper reviews the research progress of oxidative stress in PM2.5-induced asthma as well as highlights the therapeutic potentials of antioxidant approaches in treatment of asthma.
Collapse
|
22
|
Xu Z, Forno E, Acosta-Pérez E, Han YY, Rosser F, Manni ML, Canino G, Chen W, Celedón JC. Differential gene expression in nasal airway epithelium from overweight or obese youth with asthma. Pediatr Allergy Immunol 2022; 33:e13776. [PMID: 35470932 PMCID: PMC9047012 DOI: 10.1111/pai.13776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND The mechanisms underlying the known link between overweight/obesity and childhood asthma are unclear. We aimed to identify differentially expressed genes and pathways associated with obesity-related asthma through a transcriptomic analysis of nasal airway epithelium. METHODS We compared the whole transcriptome in nasal airway epithelium of youth with overweight or obesity and asthma with that of youth of normal weight and asthma, using RNA sequencing data from a cohort of 235 Puerto Ricans aged 9-20 years (EVA-PR) and an independent cohort of 66 children aged 6-16 years in Pittsburgh (VDKA). Differential expression analysis adjusting for age, sex, sequencing plate number, and sample sorting protocol, and the first five principal components were performed independently in each cohort. Results from the two cohorts were combined in a transcriptome-wide meta-analysis. Gene enrichment and network analyses were performed on top genes. RESULTS In the meta-analysis, 29 genes were associated with obesity-related asthma at an FDR-adjusted p <.05, including pro-inflammatory genes known to be differentially expressed in adipose tissue of obese subjects (e.g., CXCL11, CXCL10, and CXCL9) and several novel genes. Functional enrichment analyses showed that pathways for interferon signaling, and innate and adaptive immune responses were down-regulated in overweight/obese youth with asthma, while pathways related to ciliary structure or function were up-regulated. Upstream regulatory analysis predicted significant inhibition of the IRF7 pathway. Network analyses identified "hub" genes like GBP5 and SOCS1. CONCLUSION Our transcriptome-wide analysis of nasal airway epithelium identified biologically plausible genes and pathways for obesity-related asthma in youth.
Collapse
Affiliation(s)
- Zhongli Xu
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Erick Forno
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Edna Acosta-Pérez
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Yueh-Ying Han
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Franziska Rosser
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michelle L Manni
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Glorisa Canino
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Wei Chen
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Gauthier M, Kale SL, Oriss TB, Scholl K, Das S, Yuan H, Hu S, Chen J, Camiolo M, Ray P, Wenzel S, Ray A. Dual role for CXCR3 and CCR5 in asthmatic type 1 inflammation. J Allergy Clin Immunol 2022; 149:113-124.e7. [PMID: 34146578 PMCID: PMC8674372 DOI: 10.1016/j.jaci.2021.05.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Many patients with severe asthma (SA) fail to respond to type 2 inflammation-targeted therapies. We previously identified a cohort of subjects with SA expressing type 1 inflammation manifesting with IFN-γ expression and variable type 2 responses. OBJECTIVE We investigated the role of the chemotactic receptors C-X-C chemokine receptor 3 (CXCR3) and C-C chemokine receptor 5 (CCR5) in establishing type 1 inflammation in SA. METHODS Bronchoalveolar lavage microarray data from the Severe Asthma Research Program I/II were analyzed for pathway expression and paired with clinical parameters. Wild-type, Cxcr3-/-, and Ccr5-/- mice were exposed to a type 1-high SA model with analysis of whole lung gene expression and histology. Wild-type and Cxcr3-/- mice were treated with a US Food and Drug Administration-approved CCR5 inhibitor (maraviroc) with assessment of airway resistance, inflammatory cell recruitment by flow cytometry, whole lung gene expression, and histology. RESULTS A cohort of subjects with increased IFN-γ expression showed higher asthma severity. IFN-γ expression was correlated with CXCR3 and CCR5 expression, but in Cxcr3-/- and Ccr5-/- mice type 1 inflammation was preserved in a murine SA model, most likely owing to compensation by the other pathway. Incorporation of maraviroc into the experimental model blunted airway hyperreactivity despite only mild effects on lung inflammation. CONCLUSIONS IFNG expression in asthmatic airways was strongly correlated with expression of both the chemokine receptors CXCR3 and CCR5. Although these pathways provide redundancy for establishing type 1 lung inflammation, inhibition of the CCL5/CCR5 pathway with maraviroc provided unique benefits in reducing airway hyperreactivity. Targeting this pathway may be a novel approach for improving lung function in individuals with type 1-high asthma.
Collapse
Affiliation(s)
- Marc Gauthier
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa.
| | - Sagar Laxman Kale
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa
| | - Timothy B Oriss
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa; Department of Immunology, The University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Kathryn Scholl
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa
| | - Sudipta Das
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa
| | - Huijuan Yuan
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa
| | - Sanmei Hu
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa
| | - Jie Chen
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa
| | - Matthew Camiolo
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa
| | - Prabir Ray
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa; Department of Immunology, The University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Sally Wenzel
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa; The University of Pittsburgh School of Environmental and Occupational Health, Pittsburgh, Pa
| | - Anuradha Ray
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa; Department of Immunology, The University of Pittsburgh School of Medicine, Pittsburgh, Pa.
| |
Collapse
|
24
|
Effects of substrate stiffness on mast cell migration. Eur J Cell Biol 2021; 100:151178. [PMID: 34555639 DOI: 10.1016/j.ejcb.2021.151178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Mast cells (MCs) play important roles in multiple pathologies, including fibrosis; however, their behaviors in different extracellular matrix (ECM) environments have not been fully elucidated. Accordingly, in this study, the migration of MCs on substrates with different stiffnesses was investigated using time-lapse video microscopy. Our results showed that MCs could appear in round, spindle, and star-like shapes; spindle-shaped cells accounted for 80-90 % of the total observed cells. The migration speed of round cells was significantly lower than that of cells with other shapes. Interestingly, spindle-shaped MCs migrated in a jiggling and wiggling motion between protrusions. The persistence index of MC migration was slightly higher on stiffer substrates. Moreover, we found that there was an intermediate optimal stiffness at which the migration efficiency was the highest. These findings may help to improve our understanding of MC-induced pathologies and the roles of MC migration in the immune system.
Collapse
|
25
|
Weckmann M, Bahmer T, Bülow Sand JM, Rank Rønnow S, Pech M, Vermeulen C, Faiz A, Leeming DJ, Karsdal MA, Lunding L, Oliver BGG, Wegmann M, Ulrich-Merzenich G, Juergens UR, Duhn J, Laumonnier Y, Danov O, Sewald K, Zissler U, Jonker M, König I, Hansen G, von Mutius E, Fuchs O, Dittrich AM, Schaub B, Happle C, Rabe KF, van de Berge M, Burgess JK, Kopp MV. COL4A3 is degraded in allergic asthma and degradation predicts response to anti-IgE therapy. Eur Respir J 2021; 58:13993003.03969-2020. [PMID: 34326188 DOI: 10.1183/13993003.03969-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 04/28/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Asthma is a heterogeneous syndrome substantiating the urgent requirement for endotype-specific biomarkers. Dysbalance of fibrosis and fibrolysis in asthmatic lung tissue leads to reduced levels of the inflammation-protective collagen 4 (COL4A3). OBJECTIVE To delineate the degradation of COL4A3 in allergic airway inflammation and evaluate the resultant product as a biomarker for anti-IgE therapy response. METHODS The serological COL4A3 degradation marker C4Ma3 (Nordic Bioscience, Denmark) and serum cytokines were measured in the ALLIANCE cohort (pediatric cases/controls: 134/35; adult cases/controls: 149/31). Exacerbation of allergic airway disease in mice was induced by sensitising to OVA, challenge with OVA aerosol and instillation of poly(cytidylic-inosinic). Fulacimstat (chymase inhibitor, Bayer) was used to determine the role of mast cell chymase in COL4A3 degradation. Patients with cystic fibrosis (CF, n=14) and CF with allergic broncho-pulmonary aspergillosis (ABPA, n=9) as well as severe allergic, uncontrolled asthmatics (n=19) were tested for COL4A3 degradation. Omalizumab (anti-IgE) treatment was assessed by the Asthma Control Test. RESULTS Serum levels of C4Ma3 were increased in asthma in adults and children alike and linked to a more severe, exacerbating allergic asthma phenotype. In an experimental asthma mouse model, C4Ma3 was dependent on mast cell chymase. Serum C4Ma3 was significantly elevated in CF plus ABPA and at baseline predicted the success of the anti-IgE therapy in allergic, uncontrolled asthmatics (diagnostic odds ratio 31.5). CONCLUSION C4Ma3 level depend on lung mast cell chymase and are increased in a severe, exacerbating allergic asthma phenotype. C4Ma3 may serve as a novel biomarker to predict anti-IgE therapy response.
Collapse
Affiliation(s)
- Markus Weckmann
- Division of Pediatric Pneumology & Allergology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Thomas Bahmer
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.,Department of Pneumology, LungenClinic Grosshansdorf, Grosshansdorf, Germany
| | | | - Sarah Rank Rønnow
- Nordic Bioscience A/S, Herlev, Denmark.,The Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - Martin Pech
- Division of Pediatric Pneumology & Allergology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Cornelis Vermeulen
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, , GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands
| | - Alen Faiz
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, , GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands.,Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, , GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands.,Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia.,School of Medical and Molecular Biosciences, University of Technology, Sydney, NSW, Australia
| | | | | | - Lars Lunding
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.,Division of Asthma-Exacerbation & -Regulation; Program Area Asthma & Allergy, Leibniz-Center for Medicine and Biosciences Borstel
| | - Brian George G Oliver
- Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia.,School of Medical and Molecular Biosciences, University of Technology, Sydney, NSW, Australia
| | - Michael Wegmann
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.,Division of Asthma-Exacerbation & -Regulation; Program Area Asthma & Allergy, Leibniz-Center for Medicine and Biosciences Borstel
| | | | - Uwe R Juergens
- Department of Pneumonology, Medical Clinic II, University Hospital Bonn
| | - Jannis Duhn
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Olga Danov
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Ulrich Zissler
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health (CPC-M), Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Marnix Jonker
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, , GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands.,Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, , GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands
| | - Inke König
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.,Institute for Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center of Lung Research (DZL), Germany
| | - Erika von Mutius
- University Children's Hospital, Ludwig Maximilian's University, Munich, Germany.,German Research Center for Environmental Health (CPC-M), Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Oliver Fuchs
- Division of Pediatric Pneumology & Allergology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.,Department of Paediatric Respiratory Medicine, Inselspital, University Children's Hospital of Bern, University of Bern, Bern, Switzerland
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center of Lung Research (DZL), Germany
| | - Bianca Schaub
- University Children's Hospital, Ludwig Maximilian's University, Munich, Germany.,German Research Center for Environmental Health (CPC-M), Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Christine Happle
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center of Lung Research (DZL), Germany
| | - Klaus F Rabe
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.,Department of Pneumology, LungenClinic Grosshansdorf, Grosshansdorf, Germany
| | - Maarten van de Berge
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, , GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands
| | - Janette Kay Burgess
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, , GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands.,Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia.,Discipline of Pharmacology, Faculty of Medicine, The University of Sydney, NSW, Australia
| | - Matthias Volkmar Kopp
- Division of Pediatric Pneumology & Allergology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.,Department of Paediatric Respiratory Medicine, Inselspital, University Children's Hospital of Bern, University of Bern, Bern, Switzerland
| | | |
Collapse
|
26
|
Sun R, Jang JH, Lauzon AM, Martin JG. Interferon-γ amplifies airway smooth muscle-mediated CD4+ T cell recruitment by promoting the secretion of C-X-C-motif chemokine receptor 3 ligands. FASEB J 2021; 35:e21228. [PMID: 33337555 DOI: 10.1096/fj.202001480r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 11/11/2022]
Abstract
Asthmatic airways feature increased ASM mass that is largely attributable to hyperplasia, and which potentially contributes to excessive airway narrowing. T cells induce ASMC proliferation via contact-dependent mechanisms in vitro that may have importance for asthmatic ASM growth, as CD4+ T cells infiltrate ASM bundles in asthmatic human airways. In this study, we used an in vitro migration assay to investigate the pathways responsible for the trafficking of human CD4+ T cells to ASM. ASMCs induced chemotaxis of activated CD4+ T cells, which was inhibited by the CXCR3 antagonist AMG487 and neutralizing antibodies against its ligands CXCL10 and 11, but not CCR3 or CCR5 antagonists. CXCR3 expression was upregulated among all T cells following anti-CD3/CD28-activation. CD4+ T cells upregulated CXCL9, 10, and 11 expression in ASMCs in an IFN-γ/STAT1-dependent manner. Disruption of IFN-γ-signaling resulted in reduced T cell migration, along with the inhibition of CD4+ T cell-mediated STAT1 activation and CXCR3 ligand secretion by ASMCs. ASMCs derived from healthy and asthmatic donors demonstrated similar T cell-recruiting capacities. In vivo CXCL10 and 11 expression by asthmatic ASM was confirmed by immunostaining. We conclude that the CXCL10/11-CXCR3 axis causes CD4+ T cell recruitment to ASM that is amplified by T cell-derived IFN-γ.
Collapse
Affiliation(s)
- Rui Sun
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Joyce H Jang
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Anne-Marie Lauzon
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - James G Martin
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
27
|
Alzahrani A, Hussain A, Alhadian F, Hakeem J, Douaoui S, Tliba O, Bradding P, Amrani Y. Potential Role of Mast Cells in Regulating Corticosteroid Insensitivity in Severe Asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:1-12. [PMID: 33788184 DOI: 10.1007/978-3-030-63046-1_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The mechanisms driving corticosteroid insensitivity in asthma are still unclear although evidence points toward a potential role of lung mast cells. Indeed, a number of in vitro studies using various cell types showed that different mediators produced by activated mast cells, including cytokines, have the capacity to interfere with the therapeutic action of corticosteroids. In patients with severe allergic refractory asthma, the anti-IgE monoclonal antibody (mAb), Omalizumab, has been shown to be associated with a marked reduction in inhaled and systemic use of corticosteroids, further suggesting a key role of mast cells in the poor response of patients to these drugs. The present chapter will discuss the possible underlying mechanisms by which mast cells could contribute to reducing corticosteroid sensitivity seen in patients with severe asthma.
Collapse
Affiliation(s)
- Abdulrahman Alzahrani
- Department of Infection, Immunity and Inflammation, Clinical Sciences, University of Leicester, Leicester, UK
| | - Aamir Hussain
- Department of Infection, Immunity and Inflammation, Clinical Sciences, University of Leicester, Leicester, UK
| | - Fahad Alhadian
- Department of Infection, Immunity and Inflammation, Clinical Sciences, University of Leicester, Leicester, UK
| | - Jameel Hakeem
- Department of Infection, Immunity and Inflammation, Clinical Sciences, University of Leicester, Leicester, UK
| | - Sana Douaoui
- Department of Infection, Immunity and Inflammation, Clinical Sciences, University of Leicester, Leicester, UK
| | - Omar Tliba
- Department of Infection, Immunity and Inflammation, Clinical Sciences, University of Leicester, Leicester, UK
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, Clinical Sciences, University of Leicester, Leicester, UK
| | - Yassine Amrani
- Department of Respiratory Sciences, University of Leicester, Leicester, UK.
- Institute for Lung Health, Leicester Biomedical Research Center Respiratory, Leicester, UK.
| |
Collapse
|
28
|
Kaur D, Chachi L, Gomez E, Sylvius N, Singh SR, Ramsheh MY, Saunders R, Brightling CE. ST2 expression and release by the bronchial epithelium is downregulated in asthma. Allergy 2020; 75:3184-3194. [PMID: 32516479 DOI: 10.1111/all.14436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The airway epithelium plays an important role in wound repair, host defense and is involved in the immunopathogenesis of asthma. Genome wide association studies have described associations between ST2/Interleukin (IL)-33 genes in asthma, but its role in bronchial epithelium is unclear. METHODS ST2 expression was examined in subjects with asthma and healthy controls in bronchial epithelium from biopsies (n = 27 versus n = 9) and brushings (n = 34 versus n = 20) by immunohistochemistry and RNA-Seq. In human primary bronchial epithelial cells ST2 mRNA and protein expression were assessed by qPCR, flow cytometry, Western blotting, and immunofluorescence. IL-33 function in epithelial cells was examined by intracellular calcium measurements, wound healing assays, and synthetic activation by gene array and ELISA. RESULTS Bronchial epithelial ST2 protein expression was significantly decreased in biopsies in subjects with asthma compared to healthy controls (P = .039). IL1RL1 gene expression in bronchial brushes was not different between health and disease. In vitro primary bronchial epithelial cells expressed ST2 and IL-33 stimulation led to an increase in intracellular calcium, altered gene expression, but had no effect upon wound repair. Epithelial cells released sST2 spontaneously, which was reduced following stimulation with TNFα or poly-IC. Stimulation by TNFα or poly-IC did not affect the total ST2 expression by epithelial cell whereas surface ST2 decreased in response to TNFα, but not poly-IC. CONCLUSION In asthma, bronchial epithelium protein expression of ST2 is decreased. Our in vitro findings suggest that this decrease might be a consequence of the pro-inflammatory environment in asthma or in response to viral infection.
Collapse
Affiliation(s)
- Davinder Kaur
- Institute for Lung Health Department of Respiratory Sciences University of Leicester Leicester UK
| | - Latifa Chachi
- Institute for Lung Health Department of Respiratory Sciences University of Leicester Leicester UK
| | - Edith Gomez
- Institute for Lung Health Department of Respiratory Sciences University of Leicester Leicester UK
| | - Nicolas Sylvius
- Genomic Core Facility Department of Genetics University of Leicester Leicester UK
| | - Shailendra R. Singh
- Institute for Lung Health Department of Respiratory Sciences University of Leicester Leicester UK
| | - Mohammadali Y. Ramsheh
- Institute for Lung Health Department of Respiratory Sciences University of Leicester Leicester UK
| | - Ruth Saunders
- Institute for Lung Health Department of Respiratory Sciences University of Leicester Leicester UK
| | | |
Collapse
|
29
|
Bidirectional interaction of airway epithelial remodeling and inflammation in asthma. Clin Sci (Lond) 2020; 134:1063-1079. [PMID: 32369100 DOI: 10.1042/cs20191309] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/28/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022]
Abstract
Asthma is a chronic disease of the airways that has long been viewed predominately as an inflammatory condition. Accordingly, current therapeutic interventions focus primarily on resolving inflammation. However, the mainstay of asthma therapy neither fully improves lung function nor prevents disease exacerbations, suggesting involvement of other factors. An emerging concept now holds that airway remodeling, another major pathological feature of asthma, is as important as inflammation in asthma pathogenesis. Structural changes associated with asthma include disrupted epithelial integrity, subepithelial fibrosis, goblet cell hyperplasia/metaplasia, smooth muscle hypertrophy/hyperplasia, and enhanced vascularity. These alterations are hypothesized to contribute to airway hyperresponsiveness, airway obstruction, airflow limitation, and progressive decline of lung function in asthmatic individuals. Consequently, targeting inflammation alone does not suffice to provide optimal clinical benefits. Here we review asthmatic airway remodeling, focusing on airway epithelium, which is critical to maintaining a healthy respiratory system, and is the primary defense against inhaled irritants. In asthma, airway epithelium is both a mediator and target of inflammation, manifesting remodeling and resulting obstruction among its downstream effects. We also highlight the potential benefits of therapeutically targeting airway structural alterations. Since pathological tissue remodeling is likewise observed in other injury- and inflammation-prone tissues and organs, our discussion may have implications beyond asthma and lung disease.
Collapse
|
30
|
Saunders R, Kaul H, Berair R, Gonem S, Singapuri A, Sutcliffe AJ, Chachi L, Biddle MS, Kaur D, Bourne M, Pavord ID, Wardlaw AJ, Siddiqui SH, Kay RA, Brook BS, Smallwood RH, Brightling CE. DP 2 antagonism reduces airway smooth muscle mass in asthma by decreasing eosinophilia and myofibroblast recruitment. Sci Transl Med 2020; 11:11/479/eaao6451. [PMID: 30760581 DOI: 10.1126/scitranslmed.aao6451] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 06/15/2018] [Accepted: 01/25/2019] [Indexed: 12/23/2022]
Abstract
Increased airway smooth muscle mass, a feature of airway remodeling in asthma, is the strongest predictor of airflow limitation and contributes to asthma-associated morbidity and mortality. No current drug therapy for asthma is known to affect airway smooth muscle mass. Although there is increasing evidence that prostaglandin D2 type 2 receptor (DP2) is expressed in airway structural and inflammatory cells, few studies have addressed the expression and function of DP2 in airway smooth muscle cells. We report that the DP2 antagonist fevipiprant reduced airway smooth muscle mass in bronchial biopsies from patients with asthma who had participated in a previous randomized placebo-controlled trial. We developed a computational model to capture airway remodeling. Our model predicted that a reduction in airway eosinophilia alone was insufficient to explain the clinically observed decrease in airway smooth muscle mass without a concomitant reduction in the recruitment of airway smooth muscle cells or their precursors to airway smooth muscle bundles that comprise the airway smooth muscle layer. We experimentally confirmed that airway smooth muscle migration could be inhibited in vitro using DP2-specific antagonists in an airway smooth muscle cell culture model. Our analyses suggest that fevipiprant, through antagonism of DP2, reduced airway smooth muscle mass in patients with asthma by decreasing airway eosinophilia in concert with reduced recruitment of myofibroblasts and fibrocytes to the airway smooth muscle bundle. Fevipiprant may thus represent a potential therapy to ameliorate airway remodeling in asthma.
Collapse
Affiliation(s)
| | - Himanshu Kaul
- University of Leicester, Leicester LE3 9QP, UK. .,University of Sheffield, Western Bank, Sheffield S1 4DP, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bikfalvi A, Billottet C. The CC and CXC chemokines: major regulators of tumor progression and the tumor microenvironment. Am J Physiol Cell Physiol 2020; 318:C542-C554. [PMID: 31913695 DOI: 10.1152/ajpcell.00378.2019] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemokines are a family of soluble cytokines that act as chemoattractants to guide the migration of cells, in particular of immune cells. However, chemokines are also involved in cell proliferation, differentiation, and survival. Chemokines are associated with a variety of human diseases including chronic inflammation, immune dysfunction, cancer, and metastasis. This review discusses the expression of CC and CXC chemokines in the tumor microenvironment and their supportive and inhibitory roles in tumor progression, angiogenesis, metastasis, and tumor immunity. We also specially focus on the diverse roles of CXC chemokines (CXCL9-11, CXCL4 and its variant CXCL4L1) and their two chemokine receptor CXCR3 isoforms, CXCR3-A and CXCR3-B. These two distinct isoforms have divergent roles in tumors, either promoting (CXCR3-A) or inhibiting (CXCR3-B) tumor progression. Their effects are mediated not only directly in tumor cells but also indirectly via the regulation of angiogenesis and tumor immunity. A full comprehension of their mechanisms of action is critical to further validate these chemokines and their receptors as biomarkers or therapeutic targets in cancer.
Collapse
Affiliation(s)
- Andreas Bikfalvi
- INSERM U1029, Pessac, France.,University of Bordeaux, Pessac, France
| | | |
Collapse
|
32
|
Tensin1 expression and function in chronic obstructive pulmonary disease. Sci Rep 2019; 9:18942. [PMID: 31831813 PMCID: PMC6908681 DOI: 10.1038/s41598-019-55405-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/25/2019] [Indexed: 11/18/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) constitutes a major cause of morbidity and mortality. Genome wide association studies have shown significant associations between airflow obstruction or COPD with a non-synonymous SNP in the TNS1 gene, which encodes tensin1. However, the expression, cellular distribution and function of tensin1 in human airway tissue and cells are unknown. We therefore examined these characteristics in tissue and cells from controls and people with COPD or asthma. Airway tissue was immunostained for tensin1. Tensin1 expression in cultured human airway smooth muscle cells (HASMCs) was evaluated using qRT-PCR, western blotting and immunofluorescent staining. siRNAs were used to downregulate tensin1 expression. Tensin1 expression was increased in the airway smooth muscle and lamina propria in COPD tissue, but not asthma, when compared to controls. Tensin1 was expressed in HASMCs and upregulated by TGFβ1. TGFβ1 and fibronectin increased the localisation of tensin1 to fibrillar adhesions. Tensin1 and α-smooth muscle actin (αSMA) were strongly co-localised, and tensin1 depletion in HASMCs attenuated both αSMA expression and contraction of collagen gels. In summary, tensin1 expression is increased in COPD airways, and may promote airway obstruction by enhancing the expression of contractile proteins and their localisation to stress fibres in HASMCs.
Collapse
|
33
|
Virk HS, Rekas MZ, Biddle MS, Wright AKA, Sousa J, Weston CA, Chachi L, Roach KM, Bradding P. Validation of antibodies for the specific detection of human TRPA1. Sci Rep 2019; 9:18500. [PMID: 31811235 PMCID: PMC6898672 DOI: 10.1038/s41598-019-55133-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/22/2019] [Indexed: 12/26/2022] Open
Abstract
The transient receptor potential cation channel family member ankyrin 1 (TRPA1) is a potential target for several diseases, but detection of human TRPA1 (hTRPA1) protein in cells and tissues is problematic as rigorous antibody validation is lacking. We expressed hTRPA1 in a TRPA1-negative cell line to evaluate 5 commercially available antibodies by western blotting, immunofluorescence, immunocytochemistry and flow cytometry. The three most cited anti-TRPA1 antibodies lacked sensitivity and/or specificity, but two mouse monoclonal anti-TRPA1 antibodies detected hTRPA1 specifically in the above assays. This enabled the development of a flow cytometry assay, which demonstrated strong expression of TRPA1 in human lung myofibroblasts, human airway smooth muscle cells but not lung mast cells. The most cited anti-TRPA1 antibodies lack sensitivity and/or specificity for hTRPA1. We have identified two anti-TRPA1 antibodies which detect hTRPA1 specifically. Previously published data regarding human TRPA1 protein expression may need revisiting.
Collapse
Affiliation(s)
- H S Virk
- Department of Respiratory Sciences, University of Leicester, UK Institute of Lung Health and NIHR Leicester BRC-Respiratory, Leicester, United Kingdom.
| | - M Z Rekas
- Department of Respiratory Sciences, University of Leicester, UK Institute of Lung Health and NIHR Leicester BRC-Respiratory, Leicester, United Kingdom
| | - M S Biddle
- Department of Respiratory Sciences, University of Leicester, UK Institute of Lung Health and NIHR Leicester BRC-Respiratory, Leicester, United Kingdom
| | - A K A Wright
- Department of Respiratory Sciences, University of Leicester, UK Institute of Lung Health and NIHR Leicester BRC-Respiratory, Leicester, United Kingdom
| | - J Sousa
- Department of Respiratory Sciences, University of Leicester, UK Institute of Lung Health and NIHR Leicester BRC-Respiratory, Leicester, United Kingdom
| | - C A Weston
- Department of Respiratory Sciences, University of Leicester, UK Institute of Lung Health and NIHR Leicester BRC-Respiratory, Leicester, United Kingdom
| | - L Chachi
- Department of Respiratory Sciences, University of Leicester, UK Institute of Lung Health and NIHR Leicester BRC-Respiratory, Leicester, United Kingdom
| | - K M Roach
- Department of Respiratory Sciences, University of Leicester, UK Institute of Lung Health and NIHR Leicester BRC-Respiratory, Leicester, United Kingdom
| | - P Bradding
- Department of Respiratory Sciences, University of Leicester, UK Institute of Lung Health and NIHR Leicester BRC-Respiratory, Leicester, United Kingdom
| |
Collapse
|
34
|
Hasegawa T, Okazawa T, Uga H, Kurata H, Mori A. Serum CXCL9 as a potential marker of Type 1 inflammation in the context of eosinophilic asthma. Allergy 2019; 74:2515-2518. [PMID: 31125435 PMCID: PMC6972734 DOI: 10.1111/all.13924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | | | - Hitoshi Uga
- Central Research Laboratories Sysmex Corporation Kobe Japan
| | | | - Akio Mori
- National Hospital Organization Sagamihara National Hospital, Clinical Research Center Sagamihara Japan
| |
Collapse
|
35
|
Koopsamy Naidoo SV, Bester MJ, Arbi S, Venter C, Dhanraj P, Oberholzer HM. Oral exposure to cadmium and mercury alone and in combination causes damage to the lung tissue of Sprague-Dawley rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 69:86-94. [PMID: 30981014 DOI: 10.1016/j.etap.2019.03.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Environmental presence and human exposure to heavy metals in air and cigarette smoke has led to a worldwide increase in respiratory disease. The effects of oral exposure to heavy metals in liver and kidney structure and function have been widely investigated and the respiratory system as a target is often overlooked. The aim of the study was to investigate the possible structural changes in the lung tissue of Sprague-Dawley rats after oral exposure for 28 days to cadmium (Cd) and mercury (Hg), alone and in combination at 1000 times the World Health Organization's limit for each metal in drinking water. Following exposure, the general morphology of the bronchiole and lungs as well as collagen and elastin distribution was evaluated using histological techniques and transmission electron microscopy. In the lungs, structural changes to the alveoli included collapsed alveolar spaces, presence of inflammatory cells and thickening of the alveolar walls. In addition, exposure to Cd and Hg caused degeneration of the alveolar structures resulting in confluent alveoli. Changes in bronchiole morphology included an increase in smooth muscle mass with luminal epithelium degeneration, detachment and aggregation. Prominent bronchiole-associated lymphoid tissue was present in the group exposed to Cd and Hg. Ultrastructural examination confirmed the presence of fibrosis where in the Cd exposed group, collagen fibrils arrangement was dense, while in the Hg exposed group, additional prominent elastin was present. This study identified the lungs as target of heavy metals toxicity following oral exposure resulting in cellular damage, inflammation and fibrosis and increased risk of respiratory disease where Hg showed the greatest fibrotic effect, which was further, aggravated in combination with Cd.
Collapse
Affiliation(s)
| | - Megan Jean Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa
| | - Sandra Arbi
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa
| | - Chantelle Venter
- Laboratory for Microscopy and Microanalysis, University of Pretoria, South Africa
| | - Priyanka Dhanraj
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa
| | - Hester Magdalena Oberholzer
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa.
| |
Collapse
|
36
|
Wu Z, Li Y, Liu Q, Liu Y, Chen L, Zhao H, Guo H, Zhu K, Zhou N, Chai TC, Shi B. Pyroptosis engagement and bladder urothelial cell-derived exosomes recruit mast cells and induce barrier dysfunction of bladder urothelium after uropathogenic E. coli infection. Am J Physiol Cell Physiol 2019; 317:C544-C555. [PMID: 31241987 DOI: 10.1152/ajpcell.00102.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The specific regulatory mechanism of bladder urothelial barrier dysfunction after infection with uropathogenic Escherichia coli (UPEC) is still unclear. The cross talk between bladder urothelial cells and mast cells may play an important role during UPEC infection. In this study, the pyroptosis of urothelial cells was investigated after UPEC infection both in vivo and in vitro. The levels of IL-1β and IL-18 in exosomes derived from bladder urothelial cells after UPEC infection were detected. The role of these processes in the recruitment and activation of mast cells was measured. The mechanism of mast cell-induced disruption of bladder epithelial barrier function was also assessed. We found that UPEC infection induced pyroptosis of bladder urothelial cells and led to the release of IL-1β and IL-18 in the form of exosomes, which promoted the migration of mast cells. Tryptase secreted by mast cells aggravated the damage to the barrier function of the bladder urothelium by acting on protease-activated receptor 2 (PAR2). Inhibition of pyroptosis or the tryptase-PAR2 axis reduced the disruption of bladder urothelial barrier function and decreased the bacterial burden. The present study supports a novel mechanism by which pyroptosis-dependent release of exosomes from bladder urothelial cells activates mast cells and regulates bladder urothelial barrier function during UPEC infection.
Collapse
Affiliation(s)
- Zonglong Wu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yan Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Qinggang Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yaxiao Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Lipeng Chen
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Hongda Zhao
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Hongda Guo
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Kejia Zhu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Nan Zhou
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Toby C Chai
- Department of Urology, Yale School of Medicine, New Haven, Connecticut
| | - Benkang Shi
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| |
Collapse
|
37
|
Scharenberg M, Vangeti S, Kekäläinen E, Bergman P, Al-Ameri M, Johansson N, Sondén K, Falck-Jones S, Färnert A, Ljunggren HG, Michaëlsson J, Smed-Sörensen A, Marquardt N. Influenza A Virus Infection Induces Hyperresponsiveness in Human Lung Tissue-Resident and Peripheral Blood NK Cells. Front Immunol 2019; 10:1116. [PMID: 31156653 PMCID: PMC6534051 DOI: 10.3389/fimmu.2019.01116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/01/2019] [Indexed: 12/29/2022] Open
Abstract
NK cells in the human lung respond to influenza A virus- (IAV-) infected target cells. However, the detailed functional capacity of human lung and peripheral blood NK cells remains to be determined in IAV and other respiratory viral infections. Here, we investigated the effects of IAV infection on human lung and peripheral blood NK cells in vitro and ex vivo following clinical infection. IAV infection of lung- and peripheral blood-derived mononuclear cells in vitro induced NK cell hyperresponsiveness to K562 target cells, including increased degranulation and cytokine production particularly in the CD56brightCD16- subset of NK cells. Furthermore, lung CD16- NK cells showed increased IAV-mediated but target cell-independent activation compared to CD16+ lung NK cells or total NK cells in peripheral blood. IAV infection rendered peripheral blood NK cells responsive toward the normally NK cell-resistant lung epithelial cell line A549, indicating that NK cell activation during IAV infection could contribute to killing of surrounding non-infected epithelial cells. In vivo, peripheral blood CD56dimCD16+ and CD56brightCD16- NK cells were primed during acute IAV infection, and a small subset of CD16-CD49a+CXCR3+ NK cells could be identified, with CD49a and CXCR3 potentially promoting homing to and tissue-retention in the lung during acute infection. Together, we show that IAV respiratory viral infections prime otherwise hyporesponsive lung NK cells, indicating that both CD16+ and CD16- NK cells including CD16-CD49a+ tissue-resident NK cells could contribute to host immunity but possibly also tissue damage in clinical IAV infection.
Collapse
Affiliation(s)
- Marlena Scharenberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sindhu Vangeti
- Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eliisa Kekäläinen
- Immunobiology Research Program & Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.,HUSLAB, Division of Clinical Microbiology, Helsinki University Hospital, Helsinki, Finland
| | - Per Bergman
- Thoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mamdoh Al-Ameri
- Thoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niclas Johansson
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Klara Sondén
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Sara Falck-Jones
- Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Färnert
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Jakob Michaëlsson
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Smed-Sörensen
- Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nicole Marquardt
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
38
|
Sweeney L, McCloskey AP, Higgins G, Ramsey JM, Cryan SA, MacLoughlin R. Effective nebulization of interferon-γ using a novel vibrating mesh. Respir Res 2019; 20:66. [PMID: 30943978 PMCID: PMC6448243 DOI: 10.1186/s12931-019-1030-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interferon gamma (IFN-γ) is a clinically relevant immunomodulatory cytokine that has demonstrated significant potential in the treatment and management of respiratory diseases such as tuberculosis and pulmonary fibrosis. As with all large biomolecules, clinical translation is dependent on effective delivery to the disease site and delivery of IFN-γ as an aerosol offers a logical means of drug targeting. Effective localization is often hampered by instability and a lack of safe and efficient delivery systems. The present study sought to determine how effectively IFN-γ can be nebulized using two types of vibrating mesh nebulizer, each with differing mesh architectures, and to investigate the comparative efficiency of delivery of therapeutically active IFN-γ to the lungs. METHODS Nebulization of IFN-γ was carried out using two different Aerogen vibrating mesh technologies with differing mesh architectures. These technologies represent both a standard commercially available mesh type (Aerogen Solo®) and a new iteration mesh (Photo-defined aperture plate (PDAP®). Extensive aerosol studies (aerosol output and droplet analysis, non-invasive and invasive aerosol therapy) were conducted in line with regulatory requirements and characterization of the stability and bioactivity of the IFN-γ post-nebulization was confirmed using SDS-PAGE and stimulation of Human C-X-C motif chemokine 10 (CXCL 10) also known as IFN-γ-induced protein 10KDa (IP 10) expression from THP-1 derived macrophages (THP-1 cells). RESULTS Aerosol characterization studies indicated that a significant and reproducible dose of aerosolized IFN-γ can be delivered using both vibrating mesh technologies. Nebulization using both devices resulted in an emitted dose of at least 93% (100% dose minus residual volume) for IFN-γ. Characterization of aerosolized IFN-γ indicated that the PDAP was capable of generating droplets with a significantly lower mass median aerodynamic diameter (MMAD) with values of 2.79 ± 0.29 μm and 4.39 ± 0.25 μm for the PDAP and Solo respectively. The volume median diameters (VMD) of aerosolized IFN-γ corroborated this with VMDs of 2.33 ± 0.02 μm for the PDAP and 4.30 ± 0.02 μm for the Solo. SDS-PAGE gels indicated that IFN-γ remains stable after nebulization by both devices and this was confirmed by bioactivity studies using a THP-1 cell model in which an alveolar macrophage response to IFN-γ was determined. IFN-γ nebulized by the PDAP and Solo devices had no significant effect on the key inflammatory biomarker cytokine IP-10 release from this model in comparison to non-nebulized controls. Here we demonstrate that it is possible to combine IFN-γ with vibrating mesh nebulizer devices and facilitate effective aerosolisation with minimal impact on IFN-γ structure or bioactivity. CONCLUSIONS It is possible to nebulize IFN-γ effectively with vibrating mesh nebulizer devices without compromising its stability. The PDAP allows for generation of IFN-γ aerosols with improved aerodynamic properties thereby increasing its potential efficiency for lower respiratory tract deposition over current technology, whilst maintaining the integrity and bioactivity of IFN-γ. This delivery modality therefore offers a rational means of facilitating the clinical translation of inhaled IFN-γ.
Collapse
Affiliation(s)
- Louise Sweeney
- Aerogen, IDA Business Park, Dangan, Galway, Ireland
- School of Pharmacy, RCSI, Dublin, Ireland
| | - Alice P. McCloskey
- School of Pharmacy, RCSI, Dublin, Ireland
- Tissue Engineering Research Group (TERG), RCSI, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM) NUIG & RCSI, Dublin, Ireland
| | - Gerard Higgins
- School of Pharmacy, RCSI, Dublin, Ireland
- Tissue Engineering Research Group (TERG), RCSI, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM) NUIG & RCSI, Dublin, Ireland
| | - Joanne M. Ramsey
- School of Pharmacy, RCSI, Dublin, Ireland
- Tissue Engineering Research Group (TERG), RCSI, Dublin, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy, RCSI, Dublin, Ireland
- Tissue Engineering Research Group (TERG), RCSI, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), TCD, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM) NUIG & RCSI, Dublin, Ireland
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, Galway, Ireland
- School of Pharmacy, RCSI, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM) NUIG & RCSI, Dublin, Ireland
| |
Collapse
|
39
|
Fletcher JS, Wu J, Jessen WJ, Pundavela J, Miller JA, Dombi E, Kim MO, Rizvi TA, Chetal K, Salomonis N, Ratner N. Cxcr3-expressing leukocytes are necessary for neurofibroma formation in mice. JCI Insight 2019; 4:e98601. [PMID: 30728335 PMCID: PMC6413799 DOI: 10.1172/jci.insight.98601] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/20/2018] [Indexed: 12/17/2022] Open
Abstract
Plexiform neurofibroma is a major contributor to morbidity in patients with neurofibromatosis type I (NF1). Macrophages and mast cells infiltrate neurofibroma, and data from mouse models implicate these leukocytes in neurofibroma development. Antiinflammatory therapy targeting these cell populations has been suggested as a means to prevent neurofibroma development. Here, we compare gene expression in Nf1-mutant nerves, which invariably form neurofibroma, and show disruption of neuron-glial cell interactions and immune cell infiltration to mouse models, which rarely progresses to neurofibroma with or without disruption of neuron-glial cell interactions. We find that the chemokine Cxcl10 is uniquely upregulated in NF1 mice that invariably develop neurofibroma. Global deletion of the CXCL10 receptor Cxcr3 prevented neurofibroma development in these neurofibroma-prone mice, and an anti-Cxcr3 antibody somewhat reduced tumor numbers. Cxcr3 expression localized to T cells and DCs in both inflamed nerves and neurofibromas, and Cxcr3 expression was necessary to sustain elevated macrophage numbers in Nf1-mutant nerves. To our knowledge, these data support a heretofore-unappreciated role for T cells and DCs in neurofibroma initiation.
Collapse
Affiliation(s)
- Jonathan S. Fletcher
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Walter J. Jessen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Laboratory Corporation of America Holdings, Burlington, North Carolina, USA
| | - Jay Pundavela
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jacob A. Miller
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Eva Dombi
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Mi-Ok Kim
- UCSF Helen Diller Family Comprehensive Cancer Center, Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | - Tilat A. Rizvi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
40
|
Mast Cells, Basophils, and Mastocytosis. Clin Immunol 2019. [DOI: 10.1016/b978-0-7020-6896-6.00023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Faiz A, Weckmann M, Tasena H, Vermeulen CJ, Van den Berge M, Ten Hacken NHT, Halayko AJ, Ward JPT, Lee TH, Tjin G, Black JL, Haghi M, Xu CJ, King GG, Farah CS, Oliver BG, Heijink IH, Burgess JK. Profiling of healthy and asthmatic airway smooth muscle cells following interleukin-1β treatment: a novel role for CCL20 in chronic mucus hypersecretion. Eur Respir J 2018; 52:13993003.00310-2018. [PMID: 29946002 DOI: 10.1183/13993003.00310-2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023]
Abstract
Chronic mucus hypersecretion (CMH) contributes to the morbidity and mortality of asthma, and remains uncontrolled by current therapies in the subset of patients with severe, steroid-resistant disease. Altered cross-talk between airway epithelium and airway smooth muscle cells (ASMCs), driven by pro-inflammatory cytokines such as interleukin (IL)-1β, provides a potential mechanism that influences CMH. This study investigated mechanisms underlying CMH by comparing IL-1β-induced gene expression profiles between asthma and control-derived ASMCs and the subsequent paracrine influence on airway epithelial mucus production in vitroIL-1β-treated ASMCs from asthmatic patients and healthy donors were profiled using microarray analysis and ELISA. Air-liquid interface (ALI)-cultured CALU-3 and primary airway epithelial cells were treated with identified candidates and mucus production assessed.The IL-1β-induced CCL20 expression and protein release was increased in ASMCs from moderate compared with mild asthmatic patients and healthy controls. IL-1β induced lower MIR146A expression in asthma-derived ASMCs compared with controls. Decreased MIR146A expression was validated in vivo in bronchial biopsies from 16 asthmatic patients versus 39 healthy donors. miR-146a-5p overexpression abrogated CCL20 release in ASMCs. CCL20 treatment of ALI-cultured CALU-3 and primary airway epithelial cells induced mucus production, while CCL20 levels in sputum were associated with increased levels of CMH in asthmatic patients.Elevated CCL20 production by ASMCs, possibly resulting from dysregulated expression of the anti-inflammatory miR-146a-5p, may contribute to enhanced mucus production in asthma.
Collapse
Affiliation(s)
- Alen Faiz
- Woolcock Institute of Medical Research, The University of Sydney, Glebe, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,GRIAC (Groningen Research Institute for Asthma and COPD), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Dept of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Markus Weckmann
- Woolcock Institute of Medical Research, The University of Sydney, Glebe, Australia.,Section for Pediatric Pneumology and Allergology, University Medical Center Schleswig-Holstein, Campus Centrum Luebeck, Airway Research Centre North (ARCN), Member of the German Centre of Lung Research (DZL), Luebeck, Germany
| | - Haitatip Tasena
- Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,GRIAC (Groningen Research Institute for Asthma and COPD), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Dept of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Corneel J Vermeulen
- Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,GRIAC (Groningen Research Institute for Asthma and COPD), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten Van den Berge
- Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,GRIAC (Groningen Research Institute for Asthma and COPD), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nick H T Ten Hacken
- Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrew J Halayko
- University of Manitoba/Manitoba Institute of Child Health - Winnipeg, Winnipeg, MB, Canada
| | | | - Tak H Lee
- Dept of Physiology, Kings College London, London, UK
| | - Gavin Tjin
- Woolcock Institute of Medical Research, The University of Sydney, Glebe, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Discipline of Pharmacology, Faculty of Medicine, The University of Sydney, Sydney, Australia
| | - Judith L Black
- Woolcock Institute of Medical Research, The University of Sydney, Glebe, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Discipline of Pharmacology, Faculty of Medicine, The University of Sydney, Sydney, Australia
| | - Mehra Haghi
- Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Cheng-Jian Xu
- GRIAC (Groningen Research Institute for Asthma and COPD), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Dept of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - Gregory G King
- Woolcock Institute of Medical Research, The University of Sydney, Glebe, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Dept of Respiratory Medicine, Royal North Shore Hospital, St Leonards, Australia
| | - Claude S Farah
- Woolcock Institute of Medical Research, The University of Sydney, Glebe, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Dept of Respiratory Medicine, Concord Hospital, Concord, Australia
| | - Brian G Oliver
- Woolcock Institute of Medical Research, The University of Sydney, Glebe, Australia.,School of Medical and Molecular Biosciences, University of Technology Sydney, Sydney, Australia
| | - Irene H Heijink
- Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,GRIAC (Groningen Research Institute for Asthma and COPD), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Dept of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Janette K Burgess
- Woolcock Institute of Medical Research, The University of Sydney, Glebe, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,GRIAC (Groningen Research Institute for Asthma and COPD), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Discipline of Pharmacology, Faculty of Medicine, The University of Sydney, Sydney, Australia.,Dept of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
42
|
Selectively targeting prostanoid E (EP) receptor-mediated cell signalling pathways: Implications for lung health and disease. Pulm Pharmacol Ther 2018; 49:75-87. [DOI: 10.1016/j.pupt.2018.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/05/2018] [Accepted: 01/25/2018] [Indexed: 12/18/2022]
|
43
|
Oldford SA, Salsman SP, Portales-Cervantes L, Alyazidi R, Anderson R, Haidl ID, Marshall JS. Interferon α2 and interferon γ induce the degranulation independent production of VEGF-A and IL-1 receptor antagonist and other mediators from human mast cells. IMMUNITY INFLAMMATION AND DISEASE 2017; 6:176-189. [PMID: 29235261 PMCID: PMC5818443 DOI: 10.1002/iid3.211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/07/2017] [Accepted: 11/20/2017] [Indexed: 01/05/2023]
Abstract
Background Mast cells are resident immune effector cells, often studied in the context of allergic disease. Found in substantial numbers at sites of potential infection they are increased at sites of angiogenesis and can be pivotal for the sensing and clearance of a variety of pathogens. Interferons (IFNs) are cytokines that are critical for host defence against intracellular pathogens. Increased levels of IFNs are observed during viral infection and in autoimmune diseases. IFNs are also widely used therapeutically and have been examined in the therapy of severe asthma. Objective To define the selective human mast cell cytokine and chemokine response following activation with type I or type II IFN's. Methods The ability of both IFNα2 and IFNγ to induce cytokine production by human cord blood‐derived mast cells was examined in vitro. Cytokine and chemokine production at 6 and 24 h was assessed by multiplex protein analysis. Degranulation was assessed by β‐hexosaminidase release. Mast cells were also treated with reovirus or respiratory syncytial virus and their production of CXCL10, IL‐1 receptor antagonist (IL‐1Ra), and vascular endothelial growth factor (VEGF) examined after 24 h. Results In addition to increased expression of classical IFN response genes, such as CXCL10, small but significant increases in CCL5 and IL‐17 production were observed following IFN activation. Notably, human mast cells produced both VEGF and IL‐1Ra in a dose dependent manner. These responses occurred in the absence of mast cell degranulation by a mechanism consistent with classical IFN signaling. Both reovirus and respiratory syncytial virus infection of mast cells, were also associated with IFN‐dependent IL‐1Ra expression. Conclusion and Clinical Relevance Our findings demonstrate that IFNs have profound impact on cytokine and chemokine expression by human mast cells, alone or in the context of viral infection. Mast cell VEGF and IL‐1Ra responses to IFNs could impact the regulation of local inflammatory responses and subsequent tissue remodeling.
Collapse
Affiliation(s)
- Sharon A Oldford
- Dalhousie Inflammation Group, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Canadian Center for Vaccinology, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Suzanne P Salsman
- Dalhousie Inflammation Group, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Liliana Portales-Cervantes
- Dalhousie Inflammation Group, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Raidan Alyazidi
- Dalhousie Inflammation Group, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Faculty of Medicine, Department of Pediatrics, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Robert Anderson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Canadian Center for Vaccinology, IWK Health Centre, Halifax, Nova Scotia, Canada.,Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ian D Haidl
- Dalhousie Inflammation Group, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jean S Marshall
- Dalhousie Inflammation Group, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
44
|
Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD, Soni S, McSkane M, Baba H, Lenz HJ. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - A target for novel cancer therapy. Cancer Treat Rev 2017; 63:40-47. [PMID: 29207310 DOI: 10.1016/j.ctrv.2017.11.007] [Citation(s) in RCA: 954] [Impact Index Per Article: 119.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023]
Abstract
Chemokines are proteins which induce chemotaxis, promote differentiation of immune cells, and cause tissue extravasation. Given these properties, their role in anti-tumor immune response in the cancer environment is of great interest. Although immunotherapy has shown clinical benefit for some cancer patients, other patients do not respond. One of the mechanisms of resistance to checkpoint inhibitors may be chemokine signaling. The CXCL9, -10, -11/CXCR3 axis regulates immune cell migration, differentiation, and activation, leading to tumor suppression (paracrine axis). However, there are some reports that show involvements of this axis in tumor growth and metastasis (autocrine axis). Thus, a better understanding of CXCL9, -10, -11/CXCR3 axis is necessary to develop effective cancer control. In this article, we summarize recent evidence regarding CXCL9, CXCL10, CXCL11/CXCR3 axis in the immune system and discuss their potential role in cancer treatment.
Collapse
Affiliation(s)
- Ryuma Tokunaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Martin D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Michelle McSkane
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 8608556, Japan
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States.
| |
Collapse
|
45
|
Boyé K, Billottet C, Pujol N, Alves ID, Bikfalvi A. Ligand activation induces different conformational changes in CXCR3 receptor isoforms as evidenced by plasmon waveguide resonance (PWR). Sci Rep 2017; 7:10703. [PMID: 28878333 PMCID: PMC5587768 DOI: 10.1038/s41598-017-11151-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
The chemokine receptor CXCR3 plays important roles in angiogenesis, inflammation and cancer. Activation studies and biological functions of CXCR3 are complex due to the presence of spliced isoforms. CXCR3-A is known as a pro-tumor receptor whereas CXCR3-B exhibits anti-tumor properties. Here, we focused on the conformational change of CXCR3-A and CXCR3-B after agonist or antagonist binding using Plasmon Waveguide Resonance (PWR). Agonist stimulation induced an anisotropic response with very distinct conformational changes for the two isoforms. The CXCR3 agonist bound CXCR3-A with higher affinity than CXCR3-B. Using various concentrations of SCH546738, a CXCR3 specific inhibitor, we demonstrated that low SCH546738 concentrations (≤1 nM) efficiently inhibited CXCR3-A but not CXCR3-B’s conformational change and activation. This was confirmed by both, biophysical and biological methods. Taken together, our study demonstrates differences in the behavior of CXCR3-A and CXCR3-B upon ligand activation and antagonist inhibition which may be of relevance for further studies aimed at specifically inhibiting the CXCR3A isoform.
Collapse
Affiliation(s)
- K Boyé
- INSERM, U1029, Pessac, France.,Université de Bordeaux, Pessac, France
| | - C Billottet
- INSERM, U1029, Pessac, France.,Université de Bordeaux, Pessac, France
| | - N Pujol
- INSERM, U1029, Pessac, France.,Université de Bordeaux, Pessac, France
| | - I D Alves
- Université de Bordeaux, Pessac, France. .,CBMN, UMR 5248 CNRS, Pessac, France.
| | - A Bikfalvi
- INSERM, U1029, Pessac, France. .,Université de Bordeaux, Pessac, France.
| |
Collapse
|
46
|
Gauthier M, Chakraborty K, Oriss TB, Raundhal M, Das S, Chen J, Huff R, Sinha A, Fajt M, Ray P, Wenzel SE, Ray A. Severe asthma in humans and mouse model suggests a CXCL10 signature underlies corticosteroid-resistant Th1 bias. JCI Insight 2017; 2:94580. [PMID: 28679952 DOI: 10.1172/jci.insight.94580] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022] Open
Abstract
We previously showed that Th1/type 1 inflammation marked by increased IFN-γ levels in the airways can be appreciated in 50% of patients with severe asthma, despite high dose corticosteroid (CS) treatment. We hypothesized that a downstream target of IFN-γ, CXCL10, which recruits Th1 cells via the cognate receptor CXCR3, is an important contributor to Th1high asthma and CS unresponsiveness. We show high levels of CXCL10 mRNA closely associated with IFNG levels in the BAL cells of 50% of severe asthmatics and also in the airways of mice subjected to a severe asthma model, both in the context of high-dose CS treatment. The inability of CS to dampen IFNG or CXCL10 expression was not because of impaired nuclear translocation of the glucocorticoid receptor (GR) or its transactivational functions. Rather, in the presence of CS and IFN-γ, STAT1 and GR were recruited on critical regulatory elements in the endogenous CXCL10 promoter in monocytes, albeit without any abatement of CXCL10 gene expression. High CXCL10 gene expression was also associated with a mast cell signature in both humans and mice, CXCR3 being also expressed by mast cells. These findings suggest that the IFN-γ-CXCL10 axis plays a central role in persistent type 1 inflammation that may be facilitated by CS therapy through GR-STAT1 cooperation converging on the CXCL10 promoter.
Collapse
Affiliation(s)
- Marc Gauthier
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | | | - Timothy B Oriss
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Mahesh Raundhal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Sudipta Das
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Jie Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Rachael Huff
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Ayan Sinha
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Merritt Fajt
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center (UPMC), and
| | - Prabir Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center (UPMC), and.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sally E Wenzel
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center (UPMC), and.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center (UPMC), and.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
47
|
Pathogenesis of asthma: implications for precision medicine. Clin Sci (Lond) 2017; 131:1723-1735. [PMID: 28667070 DOI: 10.1042/cs20160253] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 01/03/2023]
Abstract
The pathogenesis of asthma is complex and multi-faceted. Asthma patients have a diverse range of underlying dominant disease processes and pathways despite apparent similarities in clinical expression. Here, we present the current understanding of asthma pathogenesis. We discuss airway inflammation (both T2HIGH and T2LOW), airway hyperresponsiveness (AHR) and airways remodelling as four key factors in asthma pathogenesis, and also outline other contributory factors such as genetics and co-morbidities. Response to current asthma therapies also varies greatly, which is probably related to the inter-patient differences in pathogenesis. Here, we also summarize how our developing understanding of detailed pathological processes potentially translates into the targeted treatment options we require for optimal asthma management in the future.
Collapse
|
48
|
Zasłona Z, Case S, Early JO, Lalor SJ, McLoughlin RM, Curtis AM, O'Neill LAJ. The circadian protein BMAL1 in myeloid cells is a negative regulator of allergic asthma. Am J Physiol Lung Cell Mol Physiol 2017; 312:L855-L860. [PMID: 28336811 DOI: 10.1152/ajplung.00072.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 01/21/2023] Open
Abstract
Our body clock drives rhythms in the expression of genes that have a 24-h periodicity. The transcription factor BMAL1 is a crucial component of the molecular clock. A number of physiological processes, including immune function, are modulated by the circadian clock. Asthma, a disease with very strong clinical evidence demonstrating regulation by circadian variation, is of particular relevance to circadian control of immunity. Airway hypersensitivity and asthma attacks are more common at night in humans. The molecular basis for this is unknown, and there is no model of asthma in animals with genetic distortion of the molecular clock. We used mice lacking BMAL1 in myeloid cells (BMAL1-LysM-/-) to determine the role of BMAL1 in allergic asthma. Using the ovalbumin model of allergic asthma, we demonstrated markedly increased asthma features, such as increased lung inflammation, demonstrated by drastically higher numbers of eosinophils and increased IL-5 levels in the lung and serum, in BMAL1-LysM-/- mice. In vitro studies demonstrated increased proinflammatory chemokine and mannose receptor expression in IL-4- as well as LPS-treated macrophages from BMAL1-LysM-/- mice compared with wild-type controls. This suggests that Bmal1 is a potent negative regulator in myeloid cells in the context of allergic asthma. Our findings might explain the increase in asthma incidents during the night, when BMAL1 expression is low.
Collapse
Affiliation(s)
- Zbigniew Zasłona
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; and
| | - Sarah Case
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; and
| | - James O Early
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; and
| | - Stephen J Lalor
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; and
| | - Rachel M McLoughlin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; and
| | - Anne M Curtis
- Molecular and Cellular Therapeutics Department, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; and
| |
Collapse
|
49
|
The relation of innate and adaptive immunity with viral-induced acute asthma attacks: Focusing on IP-10 and cathelicidin. Allergol Immunopathol (Madr) 2017; 45:160-168. [PMID: 27955890 PMCID: PMC7126540 DOI: 10.1016/j.aller.2016.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/23/2016] [Accepted: 07/01/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Despite growing evidence suggesting potential association between innate and adaptive immunity in viral-induced acute asthma, there is paucity of data in this area. OBJECTIVE This study aimed to investigate the association of innate and adaptive immunity with acute asthma attacks by analysing the role of IFN-γ-inducible protein 10 (IP-10), TLR2, cathelicidin, vitamin D and cytokines. MATERIAL AND METHODS This prospective study included 33 patients with viral-induced acute asthma and 30 children with controlled asthma. Nasopharyngeal swab samples were collected for virus identification and asthma attack scores assessed in acute asthma group. Blood sampling for IP-10, TLR2, cathelicidin, vitamin D levels, and spirometric indices were employed. RESULTS Serum IP-10 and cathelicidin levels of acute asthma group were significantly higher and vitamin D levels were lower than controlled asthma group (IP-10; p=0.006, cathelicidin; p=0.002, vitamin D; p<0.001). Serum IP-10 levels showed a significant negative correlation with age (p=0.009), TLR2 (p=0.05) and spirometric indices (p=0.002) in all asthmatics and a significant positive correlation with parameters of asthma attack severity (p=0.03) in acute asthma group. Higher cathelicidin values showed significant positive relation to IP-10 (beta coefficient: 33, p=0.02). Serum IP-10 levels higher than 38.9pg/ml (sensitivity: 85%, specificity: 47%, p=0.002) were predictive of virus-induced asthma. Serum IP-10 and vitamin D levels were found to be significantly related to viral-asthma attacks (IP-10; aOR: 8.93, p=0.03 and vitamin D; aOR: 0.82, p=0.001). CONCLUSIONS Innate immunity biomarkers such as serum IP-10 and cathelicidin can be used to predict viral-induced acute asthma. These biomarkers may provide potential new treatment targets for acute asthma.
Collapse
|
50
|
Chachi L, Abbasian M, Gavrila A, Alzahrani A, Tliba O, Bradding P, Wardlaw AJ, Brightling C, Amrani Y. Protein phosphatase 5 mediates corticosteroid insensitivity in airway smooth muscle in patients with severe asthma. Allergy 2017; 72:126-136. [PMID: 27501780 DOI: 10.1111/all.13003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND The mechanisms driving glucocorticoid (GC) insensitivity in patients with severe asthma are still unknown. Recent evidence suggests the existence of GC-insensitive pathways in airway smooth muscle (ASM) caused by a defect in GC receptor (GRα) function. We examined whether other mechanisms could potentially explain the reduced sensitivity of ASM cells to GC in severe asthmatics. METHODS Airway smooth muscle cells from healthy and severe asthmatic subjects were treated with TNF-α and responses to corticosteroids in both cohorts were compared by ELISA, immunoblot, immunohistochemistry and real-time PCR. Immunohistochemistry and flow cytometry assays were used to assess the expression of the protein phosphatase PP5 in endobronchial biopsies and ASM cells. RESULTS The production of CCL11 and CCL5 by TNF-α was insensitive to both fluticasone and dexamethasone in ASM cells from severe asthmatic compared to that in healthy subjects. Fluticasone-induced GRα nuclear translocation, phosphorylation at serine 211 and expression of GC-induced leucine zipper (GILZ) were significantly reduced in ASM cells from severe asthmatics compared to responses in healthy subjects. Levels of PP5 were increased in ASM cells from severe asthmatics and PP5 knockdown using siRNA restored fluticasone repressive action on chemokine production and its ability to induce GRα nuclear translocation and GRE-dependent GILZ expression. In vivo PP5 expression was also increased in the ASM bundles in endobronchial biopsies in severe asthmatics. CONCLUSIONS PP5-dependent impairment of GRα function represents a novel mechanism driving GC insensitivity in ASM in severe asthma.
Collapse
Affiliation(s)
- L. Chachi
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - M. Abbasian
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - A. Gavrila
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - A. Alzahrani
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - O. Tliba
- Department of Pharmaceutical Sciences; Jefferson School of Pharmacy; Thomas Jefferson University; Philadelphia PA USA
| | - P. Bradding
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - A. J. Wardlaw
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - C. Brightling
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - Y. Amrani
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| |
Collapse
|