1
|
Summers B, Kim K, Trivedi A, Lu TM, Houghton S, Palmer-Johnson J, Rojas-Quintero J, Cala-Garcia J, Pannellini T, Polverino F, Lis R, Reed HO. Mice with lymphatic dysfunction develop pathogenic lung tertiary lymphoid organs that model an autoimmune emphysema phenotype of COPD. Am J Physiol Lung Cell Mol Physiol 2025; 328:L1-L14. [PMID: 39437762 PMCID: PMC11905800 DOI: 10.1152/ajplung.00209.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/17/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024] Open
Abstract
We have previously shown that mice with a loss of C-type lectin-like type II (CLEC2), which have lymphatic dysfunction due to the role of CLEC2 in platelets for maintaining separation between the venous and lymphatic system, develop lung tertiary lymphoid organ (TLO) formation and lung injury that resembles an emphysema phenotype of chronic obstructive pulmonary disease (COPD). We now sought to investigate whether and how TLOs in these mice may play a pathogenic role in lung injury that is relevant to human disease. We found that inhibiting TLO formation using an anti-CD20 antibody in CLEC2-deficient mice partially blocked the development of emphysema. TLOs in CLEC2-deficient mice were rich in plasma cells and were a source of a broad array of autoantibodies. Chronic cigarette smoke exposure increased the size and number of lung TLOs in CLEC2-deficient mice and was associated with increased markers of antigen presentation and maturation, leading to increased autoantibody deposition. Using lung tissue from patients with COPD, we found an increase in lymphatic markers in patients with an emphysema phenotype and autoreactive TLOs compared with patients with COPD without emphysema that lack prominent TLOs. Taken together, these results demonstrate that emphysema in mice with lymphatic dysfunction can be partially rescued by blocking TLO formation and that these TLOs are the source of autoantibodies that are exacerbated by cigarette smoke. Our work suggests that lymphatic dysfunction in mice may recapitulate some aspects of an autoimmune emphysema phenotype that is seen in a subset of patients with COPD.NEW & NOTEWORTHY The lymphatic vasculature has been implicated in the pathogenesis of lung disease but remains understudied. Here, the authors use a mouse model to show that lymphatic dysfunction leads to a phenotype of emphysema that is characterized by lung tertiary lymphoid organs that are autoreactive and pathogenic. Analysis of human tissue showed increased lymphatic markers in autoimmune emphysema with prominent TLOs, compared with other COPD phenotypes.
Collapse
Affiliation(s)
- Barbara Summers
- Division of Pulmonary and Critical Care, Department of Medicine, Weill Cornell Medicine, New York, New York, United States
| | - Kihwan Kim
- Division of Pulmonary and Critical Care, Department of Medicine, Weill Cornell Medicine, New York, New York, United States
| | - Anjali Trivedi
- Division of Pulmonary and Critical Care, Department of Medicine, Weill Cornell Medicine, New York, New York, United States
| | - Tyler M Lu
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, New York, United States
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, United States
- Molecular and Cellular Biology Program, SUNY Downstate School of Graduate Studies, Brooklyn, New York, United States
| | - Sean Houghton
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, New York, United States
| | - Jade Palmer-Johnson
- Division of Pulmonary and Critical Care, Department of Medicine, Weill Cornell Medicine, New York, New York, United States
| | - Joselyn Rojas-Quintero
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Juan Cala-Garcia
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Tania Pannellini
- Department of Pathology, Weill Cornell Medicine, New York, New York, United States
| | - Francesca Polverino
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Raphaël Lis
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, New York, United States
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, United States
| | - Hasina Outtz Reed
- Division of Pulmonary and Critical Care, Department of Medicine, Weill Cornell Medicine, New York, New York, United States
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
2
|
Wu L, Zhang E, Tu Y, Chen Y, Wang C, Ren Y, Fang B. Inherent immunity and adaptive immunity: Mechanism and role in AECOPD. Innate Immun 2025; 31:17534259251322612. [PMID: 40017227 PMCID: PMC11869301 DOI: 10.1177/17534259251322612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 12/20/2024] [Accepted: 02/04/2025] [Indexed: 03/01/2025] Open
Abstract
Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is the leading cause of hospitalization and mortality in COPD patients. The occurrence of antibiotic resistance and the progression of non-infectious diseases contribute to poor patient outcomes. Thus, a comprehensive understanding of the mechanisms underlying AECOPD is essential for effective prevention. It is widely acknowledged that the immune system plays a fundamental role in pathogen clearance and the development of inflammation. Immune dysregulation, either due to deficiency or hyperactivity, has been implicated in AECOPD pathogenesis. Therefore, the purpose of this review is to investigate the possible mechanisms underlying dysregulated immune function and disease progression in COPD patients, specifically focusing on the innate and adaptive immune responses. The ultimate aim is to provide new insights for clinical prevention and treatment strategies targeting AECOPD.
Collapse
Affiliation(s)
- Linguangjin Wu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Emergency Department, Shanghai, China
| | - Erxin Zhang
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yadan Tu
- Chongqing Hospital of Traditional Chinese Medicine, Classic Department of Traditional Chinese Medicine, Chongqing, China
| | - Yong Chen
- Chongqing Hospital of Traditional Chinese Medicine, Classic Department of Traditional Chinese Medicine, Chongqing, China
| | - Chenghu Wang
- Chongqing Hospital of Traditional Chinese Medicine, Classic Department of Traditional Chinese Medicine, Chongqing, China
| | - Yi Ren
- Chongqing Hospital of Traditional Chinese Medicine, Classic Department of Traditional Chinese Medicine, Chongqing, China
| | - Bangjiang Fang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Emergency Department, Shanghai, China
| |
Collapse
|
3
|
Tu Y, Chen Y, Li X, Wang Y, Fang B, Ren Y, Wang C. Advances in acute COPD exacerbation: clarifying specific immune mechanisms of infectious and noninfectious factors. Ther Adv Respir Dis 2025; 19:17534666241308408. [PMID: 40098281 PMCID: PMC11915264 DOI: 10.1177/17534666241308408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is the main cause of hospitalization and death of patients with chronic obstructive pulmonary disease. This is largely due to bacterial resistance caused by clinical antibiotic abuse and the limited efficacy of current treatment strategies in managing noninfectious AECOPD, which presents a significant challenge for clinicians. Therefore, it is urgent for clinical treatment and prevention of AECOPD to fully understand the specific mechanism of AECOPD in the immune system and master the key differences between infectious factors and noninfectious factors. This article systematically discusses AECOPD triggered by various factors, including the activation of immune system, the recruitment and activation of inflammatory cells and the role of specific inflammatory responses, and through a comprehensive review of the literature, this article expounds the existing targeted diagnosis and treatment methods and technologies at different stages in order to provide new ideas and strategies for clinical prevention and treatment of AECOPD.
Collapse
Affiliation(s)
- Yadan Tu
- Department of Classic Chinese Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing, China
- Classic Department of Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Yong Chen
- Department of Classic Chinese Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing, China
- Classic Department of Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xuanhan Li
- Department of Classic Chinese Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing, China
- Classic Department of Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Yigang Wang
- Department of Classic Chinese Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing, China
- Classic Department of Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Bangjiang Fang
- Emergency Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Ren
- Department of Classic Chinese Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing 400021, China
- Classic Department of Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Chenghu Wang
- Department of Classic Chinese Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing, China
- Classic Department of Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
4
|
Jia L, Li N, Abdelaal TRM, Guo N, IJsselsteijn ME, van Unen V, Lindelauf C, Jiang Q, Xiao Y, Pascutti MF, Hiemstra PS, Koning F, Stolk J, Khedoe PPSJ. High-Dimensional Mass Cytometry Reveals Emphysema-associated Changes in the Pulmonary Immune System. Am J Respir Crit Care Med 2024; 210:1002-1016. [PMID: 38536165 DOI: 10.1164/rccm.202303-0442oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/27/2024] [Indexed: 10/16/2024] Open
Abstract
Rationale: Chronic inflammation plays an important role in alveolar tissue damage in emphysema, but the underlying immune alterations and cellular interactions are incompletely understood. Objectives: To explore disease-specific pulmonary immune cell alterations and cellular interactions in emphysema. Methods: We used single-cell mass cytometry (CyTOF) to compare the immune compartment in alveolar tissue from 15 patients with severe emphysema and 5 control subjects. Imaging mass cytometry (IMC) was applied to identify altered cell-cell interactions in alveolar tissue from patients with emphysema (n = 12) compared with control subjects (n = 8). Measurements and Main Results: We observed higher percentages of central memory CD4 T cells in combination with lower proportions of effector memory CD4 T cells in emphysema. In addition, proportions of cytotoxic central memory CD8 T cells and CD127+CD27+CD69- T cells were higher in emphysema, the latter potentially reflecting an influx of circulating lymphocytes into the lungs. Central memory CD8 T cells, isolated from alveolar tissue from patients with emphysema, exhibited an IFN-γ response upon anti-CD3 and anti-CD28 activation. Proportions of CD1c+ dendritic cells, expressing migratory and costimulatory markers, were higher in emphysema. Importantly, IMC enabled us to visualize increased spatial colocalization of CD1c+ dendritic cells and CD8 T cells in emphysema in situ. Conclusions: Using CyTOF, we characterized the alterations of the immune cell signature in alveolar tissue from patients with chronic obstructive pulmonary disease stage III or IV emphysema versus control lung tissue. These data contribute to a better understanding of the pathogenesis of emphysema and highlight the feasibility of interrogating the immune cell signature using CyTOF and IMC in human lung tissue. Clinical trial registered with www.clinicaltrials.gov (NCT04918706).
Collapse
Affiliation(s)
- Li Jia
- Department of Immunology
- Department of Pulmonology, PulmoScience Lab, Leiden University Medical Center, Leiden, the Netherlands
| | - Na Li
- Department of Immunology
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tamim R M Abdelaal
- Department of Radiology
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt; and
- Pattern Recognition and Bioinformatics, Delft University of Technology, Delft, the Netherlands
| | | | | | | | | | | | | | | | - Pieter S Hiemstra
- Department of Pulmonology, PulmoScience Lab, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Jan Stolk
- Department of Pulmonology, PulmoScience Lab, Leiden University Medical Center, Leiden, the Netherlands
| | - P Padmini S J Khedoe
- Department of Pulmonology, PulmoScience Lab, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
5
|
Li SH, Li QP, Chen WJ, Zhong YY, Sun J, Wu JF, Cao YX, Dong JC. Psoralen attenuates cigarette smoke extract-induced inflammation by modulating CD8 + T lymphocyte recruitment and chemokines via the JAK2/STAT1 signaling pathway. Heliyon 2024; 10:e32351. [PMID: 38988534 PMCID: PMC11233870 DOI: 10.1016/j.heliyon.2024.e32351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a respiratory inflammatory disease. Psoralen (PSO) is the main pharmacological component identified from Bu-Shen-Fang-Chuan formula which has been traditionally used in treatment of COPD, yet its efficacy in COPD inflammation were unreported. In this study, we aimed to elucidate the anti-inflammatory potential of PSO in COPD and unravel the underlying mechanisms, focusing on T lymphocyte recruitment and the modulation of chemokines, namely monokine induced by interferon-gamma (CXCL9), interferon inducible protein 10 (CXCL10), and interferon inducible T-Cell alpha chemoattractant (CXCL11). In vitro, RAW264.7 was stimulated by interferon (IFN)-γ + cigarette smoke extract (CSE) and were treated with PSO (2.5, 5, 10 μM), then the levels of chemokines and the activation of Janus kinase (JAK)/Signal transducer and activator of transcription 1 (STAT1) pathway were analyzed by real time PCR and western blot. In vivo, a murine model was established by intraperitoneal injection of CSE on day 1, 8, 15, and 22, then treated with PSO (10 mg/kg). Our experiments in vitro illustrated that PSO reduced the levels of CXCL9, CXCL10, and CXCL11, and decreased the protein phosphorylation levels of JAK2 and STAT1. Additionally, PSO effectively improved inflammatory infiltration and decreased the proportion of CD8+ T cells in CSE-exposed mice. Furthermore, PSO reduced the levels of CXCL9, CXCL10, and CXCL11 in bronchoalveolar lavage fluid (BALF) and lung tissue, and decreased the protein phosphorylation levels of JAK2 and STAT1. In conclusion, our results revealed the therapeutic potential of PSO for COPD inflammation, possibly mediated through the regulation of CD8+ T cell recruitment and chemokines via the JAK2/STAT1 signaling pathway.
Collapse
Affiliation(s)
- Shi-huan Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qiu-ping Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wen-jing Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yuan-yuan Zhong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, China
| | - Jin-feng Wu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yu-xue Cao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, China
| | - Jing-cheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, China
| |
Collapse
|
6
|
Summers B, Kim K, Lu TM, Houghton S, Trivedi A, Quintero JR, Cala-Garcia J, Pannellini T, Polverino F, Lis R, Reed HO. Lymphatic Dysfunction Models an Autoimmune Emphysema Phenotype of Chronic Obstructive Pulmonary Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564938. [PMID: 37961242 PMCID: PMC10635025 DOI: 10.1101/2023.10.31.564938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous disease that is characterized by many clinical phenotypes. One such phenotype of COPD is defined by emphysema, pathogenic lung tertiary lymphoid organs (TLOs), and autoantibody production. We have previously shown that lymphatic dysfunction can cause lung TLO formation and lung injury in mice. We now sought to uncover whether underlying lymphatic dysfunction may be a driver of lung injury in cigarette smoke (CS)-induced COPD. We found that lung TLOs in mice with lymphatic dysfunction produce autoantibodies and are associated with a lymphatic endothelial cell subtype that expresses antigen presentation genes. Mice with underlying lymphatic dysfunction develop increased emphysema after CS exposure, with increased size and activation of TLOs. CS further increased autoantibody production in mice with lymphatic dysfunction. B-cell blockade prevented TLO formation and decreased lung injury after CS in mice with lymphatic dysfunction. Using tissue from human COPD patients, we also found evidence of a lymphatic gene signature that was specific to patients with emphysema and prominent TLOs compared to COPD patients without emphysema. Taken together, these data suggest that lymphatic dysfunction may underlie lung injury in a subset of COPD patients with an autoimmune emphysema phenotype.
Collapse
|
7
|
Li DY, Chen L, Miao SY, Zhou M, Wu JH, Sun SW, Liu LL, Qi C, Xiong XZ. Inducible Costimulator-C-X-C Motif Chemokine Receptor 3 Signaling is Involved in Chronic Obstructive Pulmonary Disease Pathogenesis. Int J Chron Obstruct Pulmon Dis 2022; 17:1847-1861. [PMID: 35991707 PMCID: PMC9386059 DOI: 10.2147/copd.s371801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background The role of inducible costimulator (ICOS) signaling in chronic obstructive pulmonary disease (COPD) has not been fully elucidated. Methods We compared the percentages of ICOS+ T cells and ICOS+ regulatory T (Treg) cells in CD4+ T cells and CD4+CD25+FOXP3+ Tregs, respectively, in the peripheral blood of smokers with or without COPD to those in healthy controls. We further characterized their phenotypes using flow cytometry. To investigate the influence of ICOS signaling on C-X-C motif chemokine receptor 3 (CXCR3) expression in COPD, we evaluated the expression levels of ICOS and CXCR3 in vivo and in vitro. Results ICOS expression was elevated on peripheral CD4+ T cells and CD4+ Tregs of COPD patients, which positively correlated with the severity of lung function impairment in patients with stable COPD (SCOPD), but not in patients with acute exacerbation of COPD (AECOPD). ICOS+CD4+ Tregs in patients with SCOPD expressed higher levels of coinhibitors, programmed cell death protein 1 (PD-1) and T-cell immunoreceptor with Ig and ITIM domains (TIGIT), than ICOS−CD4+ Tregs, whereas ICOS+CD4+ T cells mostly exhibited a central memory (CD45RA−CCR7+) or effector memory (CD45RA−CCR7−) phenotype, ensuring their superior potential to respond potently and quickly to pathogen invasion. Furthermore, increased percentages of CXCR3+CD4+ T cells and CXCR3+CD4+ Tregs were observed in the peripheral blood of patients with SCOPD, and the expression level of CXCR3 was higher in ICOS+CD4+ T cells than in ICOS−CD4+ T cells. The percentage of CXCR3+CD4+ T cells was even higher in the bronchoalveolar lavage fluid than in matched peripheral blood in SCOPD group. Lastly, in vitro experiments showed that ICOS induced CXCR3 expression on CD4+ T cells. Conclusions ICOS signaling is upregulated in COPD, which induces CXCR3 expression. This may contribute to increased numbers of CXCR3+ Th1 cells in the lungs of patients with COPD, causing inflammation and tissue damage.
Collapse
Affiliation(s)
- Dan-Yang Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Long Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Shuai-Ying Miao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Department of Critical Care Medicine, General Hospital of Pingmei Shenma Medical Group, Pingdingshan, 467000, People's Republic of China
| | - Mei Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Jiang-Hua Wu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Sheng-Wen Sun
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Lan-Lan Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Chang Qi
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| |
Collapse
|
8
|
Kadushkin AG, Tahanovich AD, Movchan LV, Zafranskaya MM, Dziadzichkina VV, Shman TV. [Population rearrangement of B-lymphocytes expressing chemokine receptors in patients with chronic obstructive pulmonary disease]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:134-143. [PMID: 35485487 DOI: 10.18097/pbmc20226802134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To date, there are no drugs that can prevent progressive destruction of lung tissue and small airway fibrosis in patients with chronic obstructive pulmonary disease (COPD). Therefore, molecular mechanisms of this disease are being studied. The aim of this study was to determine the chemokine receptor expression pattern of B-lymphocytes from peripheral blood and airways of patients with COPD. Peripheral blood was collected from 51 smokers with COPD, 21 healthy smokers, and 20 healthy non-smokers. Seven smokers with COPD and 7 healthy smokers were recruited to undergo bronchoscopy with bronchoalveolar lavage (BAL). The expression of chemokine receptors CCR5, CCR6, CCR7, CXCR3, CXCR4, and CXCR5 on the surface of blood and BAL B-lymphocytes was determined by flow cytometry. It was found that the percentage of blood B-lymphocytes expressing chemokine receptors CCR5 and CXCR3 was higher in smokers with COPD compared with healthy smokers and healthy non-smokers. The percentage of CD27⁺ B-cells expressing CCR5 and CXCR3 receptors exceeded the proportion of CD27⁻ B-lymphocytes expressing these receptors in peripheral blood of patients with COPD and healthy controls. In smoking patients with COPD, the percentage of BAL B-cells expressing receptors CCR5 and CXCR3 was also increased compared with healthy smokers. There were no differences in the percentage of B-lymphocytes expressing receptors CXCR4, CXCR5, CCR6, and CCR7 in both peripheral blood and BAL between smokers with COPD and healthy smokers. A greater percentage of CD27⁻ B-lymphocytes than CD27⁺ B-cells expressed receptors CXCR4, CXCR5, CCR6, and CCR7 in the peripheral blood of smokers with COPD and healthy controls. The results of this study indicate a modification in the chemokine receptor profile of B-lymphocytes in COPD.
Collapse
Affiliation(s)
| | | | - L V Movchan
- Republican Scientific and Practical Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - M M Zafranskaya
- International Sakharov Environmental Institute of Belarusian State University, Minsk, Belarus
| | | | - T V Shman
- Republican Scientific and Practical Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| |
Collapse
|
9
|
Pouzol L, Sassi A, Baumlin N, Tunis M, Strasser DS, Lehembre F, Martinic MM. CXCR7 Antagonism Reduces Acute Lung Injury Pathogenesis. Front Pharmacol 2021; 12:748740. [PMID: 34803691 PMCID: PMC8602191 DOI: 10.3389/fphar.2021.748740] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022] Open
Abstract
Loss of control in the trafficking of immune cells to the inflamed lung tissue contributes to the pathogenesis of life-threatening acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS). Targeting CXCR7 has been proposed as a potential therapeutic approach to reduce pulmonary inflammation; however, its role and its crosstalk with the two chemokine receptors CXCR3 and CXCR4 via their shared ligands CXCL11 and CXCL12 is not yet completely understood. The present paper aimed to characterize the pathological role of the CXCR3/CXCR4/CXCR7 axis in a murine model of ALI. Lipopolysaccharide (LPS) inhalation in mice resulted in the development of key pathologic features of ALI/ARDS, including breathing dysfunctions, alteration in the alveolar capillary barrier, and lung inflammation. LPS inhalation induced immune cell infiltration into the bronchoalveolar space, including CXCR3+ and CXCR4+ cells, and enhanced the expression of the ligands of these two chemokine receptors. The first-in-class CXCR7 antagonist, ACT-1004-1239, increased levels of CXCL11 and CXCL12 in the plasma without affecting their levels in inflamed lung tissue, and consequently reduced CXCR3+ and CXCR4+ immune cell infiltrates into the bronchoalveolar space. In the early phase of lung inflammation, characterized by a massive influx of neutrophils, treatment with ACT-1004-1239 significantly reduced the LPS-induced breathing pattern alteration. Both preventive and therapeutic treatment with ACT-1004-1239 reduced lung vascular permeability and decreased inflammatory cell infiltrates. In conclusion, these results demonstrate a key pathological role of CXCR7 in ALI/ARDS and highlight the clinical potential of ACT-1004-1239 in ALI/ARDS pathogenesis.
Collapse
Affiliation(s)
| | - Anna Sassi
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | | | - Mélanie Tunis
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | | | | | | |
Collapse
|
10
|
Pabst R. The bronchus-associated-lymphoid tissue (BALT) an unique lymphoid organ in man and animals. Ann Anat 2021; 240:151833. [PMID: 34670121 DOI: 10.1016/j.aanat.2021.151833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 01/10/2023]
Abstract
The development structure and number of bronchus-associated lymphoid tissue (BALT) will be described in many different animals (like chicken, rabbit, mouse, rat, farm animals and particular the pig, monkey) and these data compared to healthy man and in human diseases. The term induced BALT should not be used because it is a tertiary lymphoid structure, which lacks the contact to a bronchus and does not consist of the important area (dome area) which is essential for antigen uptake of microbial stimuli, which are essential in the development of BALT. Mycoplasma seems to play a critical role as shown in pigs but there not been documented in other species like rabbits. More studies have to be performed in health and disease (e.g. in apes) to document the structural and functional basis to use BALT as an entry site for vaccination protocols.
Collapse
Affiliation(s)
- Reinhard Pabst
- Immunomorphology, Centre of Anatomy, Medical School Hannover, Germany.
| |
Collapse
|
11
|
Li L, Liu Y, Chiu C, Jin Y, Zhou W, Peng M, Chen LC, Sun Q, Gao J. A Regulatory Role of Chemokine Receptor CXCR3 in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Emphysema. Inflammation 2021; 44:985-998. [PMID: 33415536 DOI: 10.1007/s10753-020-01393-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/11/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD)/pulmonary emphysema is driven by the dysregulated airway inflammation and primarily influenced by the interaction between cigarette smoking (CS) and the individual's susceptibility. The inflammation in COPD involves both innate and adaptive immunity. By binding to its specific ligands, chemokine receptor CXCR3 plays an important role in regulating tissue inflammation and damage. In acute animal model challenged with either CS or pathogens, CXCR3 knockout (KO) attenuated lung inflammation and pathology. However, the role of CXCR3 in CS-induced chronic airway inflammation and pulmonary emphysema remains unknown. In this present study, we investigated the effect of CXCR3 in CS-induced pulmonary emphysema in an animal model, and the association between CXCR3 single nucleotide polymorphisms (SNPs) and COPD susceptibility in human subjects. We found that after chronic exposure to side stream CS (SSCS) for 24 weeks, CXCR3 KO mice demonstrated significant airspace enlargement expressed by mean linear intercept (Lm) compared with the wild-type (WT) mice. Consistently, CXCR3 KO mice had significantly higher BAL fluid macrophages and neutrophils, TNFα, and lung homogenate MMP-9 and MMP-12. Through genetic analysis of CXCR3 polymorphisms in a cohort of COPD patients with Han Chinese ethnicity, one CXCR3 SNP, rs2280964, was found to be genetically related to COPD susceptibility. Furthermore, CXCR3 SNP rs2280964 was significantly associated with the levels of serum MMP-9 in COPD patients. Our data from both animal and human studies revealed a novel role of CXCR3 possibly via influencing MMP9 production in the pathogenesis and progression of CS-associated COPD/pulmonary emphysema.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Case-Control Studies
- China
- Disease Models, Animal
- Female
- Genetic Association Studies
- Genetic Predisposition to Disease
- Humans
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Male
- Matrix Metalloproteinase 12/metabolism
- Matrix Metalloproteinase 9/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Neutrophils/immunology
- Neutrophils/metabolism
- Phenotype
- Polymorphism, Single Nucleotide
- Pulmonary Disease, Chronic Obstructive/genetics
- Pulmonary Disease, Chronic Obstructive/immunology
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/pathology
- Pulmonary Emphysema/genetics
- Pulmonary Emphysema/immunology
- Pulmonary Emphysema/metabolism
- Pulmonary Emphysema/pathology
- Receptors, CXCR3/genetics
- Receptors, CXCR3/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Mice
Collapse
Affiliation(s)
- Lun Li
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, #1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Yi Liu
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, #1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Department of Respiratory Medicine, Civil Aviation General Hospital, Beijing, 100123, China
| | - Chin Chiu
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Weixun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Min Peng
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, #1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Qinghua Sun
- Division of Environmental Health Sciences, College of Public Health, the Ohio State University, Columbus, OH, USA
| | - Jinming Gao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, #1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
12
|
Khalil BA, Elemam NM, Maghazachi AA. Chemokines and chemokine receptors during COVID-19 infection. Comput Struct Biotechnol J 2021; 19:976-988. [PMID: 33558827 PMCID: PMC7859556 DOI: 10.1016/j.csbj.2021.01.034] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Chemokines are crucial inflammatory mediators needed during an immune response to clear pathogens. However, their excessive release is the main cause of hyperinflammation. In the recent COVID-19 outbreak, chemokines may be the direct cause of acute respiratory disease syndrome, a major complication leading to death in about 40% of severe cases. Several clinical investigations revealed that chemokines are directly involved in the different stages of SARS-CoV-2 infection. Here, we review the role of chemokines and their receptors in COVID-19 pathogenesis to better understand the disease immunopathology which may aid in developing possible therapeutic targets for the infection.
Collapse
Key Words
- AECs, airway epithelial cells
- AP-1, Activator Protein 1
- ARDS
- ARDS, acute respiratory disease syndrome
- BALF, bronchial alveolar lavage fluid
- CAP, community acquired pneumonia
- COVID-19
- CRS, cytokine releasing syndrome
- Chemokine Receptors
- Chemokines
- DCs, dendritic cells
- ECM, extracellular matrix
- GAGs, glycosaminoglycans
- HIV, human immunodeficiency virus
- HRSV, human respiratory syncytial virus
- IFN, interferon
- IMM, inflammatory monocytes and macrophages
- IP-10, IFN-γ-inducible protein 10
- IRF, interferon regulatory factor
- Immunity
- MERS-CoV, Middle East respiratory syndrome coronavirus
- NETs, neutrophil extracellular traps
- NF-κB, Nuclear Factor kappa-light-chain-enhancer of activated B cells
- NK cells, natural killer cells
- PBMCs, peripheral blood mononuclear cells
- PRR, pattern recognition receptors
- RSV, rous sarcoma virus
- SARS-CoV, severe acute respiratory syndrome coronavirus
- SARS-CoV-2
- TLR, toll like receptor
- TRIF, TIR-domain-containing adapter-inducing interferon-β
Collapse
Affiliation(s)
- Bariaa A. Khalil
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), Sharjah, United Arab Emirates
| | - Noha Mousaad Elemam
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), Sharjah, United Arab Emirates
| | - Azzam A. Maghazachi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), Sharjah, United Arab Emirates
| |
Collapse
|
13
|
Gong F, Dai Y, Zheng T, Cheng L, Zhao D, Wang H, Liu M, Pei H, Jin T, Yu D, Zhou P. Peripheral CD4+ T cell subsets and antibody response in COVID-19 convalescent individuals. J Clin Invest 2020; 130:6588-6599. [PMID: 32841212 PMCID: PMC7685722 DOI: 10.1172/jci141054] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/20/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUNDMarked progress is achieved in understanding the physiopathology of coronavirus disease 2019 (COVID-19), which caused a global pandemic. However, the CD4+ T cell population critical for antibody response in COVID-19 is poorly understood.METHODSIn this study, we provided a comprehensive analysis of peripheral CD4+ T cells from 13 COVID-19 convalescent patients, defined as confirmed free of SARS-CoV-2 for 2 to 4 weeks, using flow cytometry and magnetic chemiluminescence enzyme antibody immunoassay. The data were correlated with clinical characteristics.RESULTSWe observed that, relative to healthy individuals, convalescent patients displayed an altered peripheral CD4+ T cell spectrum. Specifically, consistent with other viral infections, cTfh1 cells associated with SARS-CoV-2-targeting antibodies were found in COVID-19 covalescent patients. Individuals with severe disease showed higher frequencies of Tem and Tfh-em cells but lower frequencies of Tcm, Tfh-cm, Tfr, and Tnaive cells, compared with healthy individuals and patients with mild and moderate disease. Interestingly, a higher frequency of cTfh-em cells correlated with a lower blood oxygen level, recorded at the time of admission, in convalescent patients. These observations might constitute residual effects by which COVID-19 can impact the homeostasis of CD4+ T cells in the long-term and explain the highest ratio of class-switched virus-specific antibody producing individuals found in our severe COVID-19 cohort.CONCLUSIONOur study demonstrated a close connection between CD4+ T cells and antibody production in COVID-19 convalescent patients.FUNDINGSix Talent Peaks Project in Jiangsu Province and the National Natural Science Foundation of China (NSFC).
Collapse
Affiliation(s)
- Fang Gong
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yaping Dai
- Department of Laboratory Medicine, The Fifth People’s Hospital of Wuxi, Wuxi, Jiangsu, China
| | - Ting Zheng
- Qilu University of Technology, Shandong Academy of Sciences, Shandong Analysis and Test Center, Laboratory of Immunology for Environment and Health, Jinan, China
| | - Liang Cheng
- Department of Respiration, The Fifth People’s Hospital of Wuxi, Wuxi, Jiangsu, China
| | - Dan Zhao
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hao Wang
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Min Liu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Pei
- Department of Laboratory Medicine, The Fifth People’s Hospital of Wuxi, Wuxi, Jiangsu, China
| | - Tengchuan Jin
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Di Yu
- Qilu University of Technology, Shandong Academy of Sciences, Shandong Analysis and Test Center, Laboratory of Immunology for Environment and Health, Jinan, China
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Pengcheng Zhou
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
14
|
Freeman CM, Curtis JL. It's Complicated: Lung Dendritic Cells in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2020; 202:479-481. [PMID: 32286855 PMCID: PMC7427380 DOI: 10.1164/rccm.202004-0899ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Christine M Freeman
- Research ServiceVeterans Affairs Ann Arbor Healthcare SystemAnn Arbor, Michigan
- Department of Internal MedicineMichigan MedicineAnn Arbor, Michigan
- Graduate Program in ImmunologyUniversity of MichiganAnn Arbor, Michiganand
| | - Jeffrey L Curtis
- Department of Internal MedicineMichigan MedicineAnn Arbor, Michigan
- Graduate Program in ImmunologyUniversity of MichiganAnn Arbor, Michiganand
- Medical ServiceVA Ann Arbor Healthcare SystemAnn Arbor, Michigan
| |
Collapse
|
15
|
Chemokines in COPD: From Implication to Therapeutic Use. Int J Mol Sci 2019; 20:ijms20112785. [PMID: 31174392 PMCID: PMC6600384 DOI: 10.3390/ijms20112785] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
: Chronic Obstructive Pulmonary Disease (COPD) represents the 3rd leading cause of death in the world. The underlying pathophysiological mechanisms have been the focus of extensive research in the past. The lung has a complex architecture, where structural cells interact continuously with immune cells that infiltrate into the pulmonary tissue. Both types of cells express chemokines and chemokine receptors, making them sensitive to modifications of concentration gradients. Cigarette smoke exposure and recurrent exacerbations, directly and indirectly, impact the expression of chemokines and chemokine receptors. Here, we provide an overview of the evidence regarding chemokines involvement in COPD, and we hypothesize that a dysregulation of this tightly regulated system is critical in COPD evolution, both at a stable state and during exacerbations. Targeting chemokines and chemokine receptors could be highly attractive as a mean to control both chronic inflammation and bronchial remodeling. We present a special focus on the CXCL8-CXCR1/2, CXCL9/10/11-CXCR3, CCL2-CCR2, and CXCL12-CXCR4 axes that seem particularly involved in the disease pathophysiology.
Collapse
|
16
|
Ladjemi MZ, Martin C, Lecocq M, Detry B, Nana FA, Moulin C, Weynand B, Fregimilicka C, Bouzin C, Thurion P, Carlier F, Serré J, Gayan-Ramirez G, Delos M, Ocak S, Burgel PR, Pilette C. Increased IgA Expression in Lung Lymphoid Follicles in Severe Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2019; 199:592-602. [DOI: 10.1164/rccm.201802-0352oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Maha Zohra Ladjemi
- Pôle de Pneumologie, ORL & Dermatologie
- Institute for Walloon Excellence in Lifesciences and Biotechnology, Brussels, Belgium
| | - Clémence Martin
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Service de Pneumologie, Hôpital Cochin, Paris, France
| | - Marylène Lecocq
- Pôle de Pneumologie, ORL & Dermatologie
- Service de Pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Bruno Detry
- Pôle de Pneumologie, ORL & Dermatologie
- Institute for Walloon Excellence in Lifesciences and Biotechnology, Brussels, Belgium
| | | | | | | | - Chantal Fregimilicka
- Institut de Recherche Expérimentale & Clinique Imaging Platform, Institut de Recherche Expérimentale & Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Caroline Bouzin
- Institut de Recherche Expérimentale & Clinique Imaging Platform, Institut de Recherche Expérimentale & Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Pascal Thurion
- Service d’anatomopathologie, CHU de Mont-Godinne, Yvoir, Belgium
| | | | - Jef Serré
- KU Leuven, Laboratory of Respiratory Diseases, Leuven, Belgium; and
| | | | - Monique Delos
- Service d’anatomopathologie, CHU de Mont-Godinne, Yvoir, Belgium
| | - Sebahat Ocak
- Pôle de Pneumologie, ORL & Dermatologie
- Service de Pneumologie, CHU Université Catholique de Louvain Namur (Site Godinne), Yvoir, Belgium
| | - Pierre Régis Burgel
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Service de Pneumologie, Hôpital Cochin, Paris, France
| | - Charles Pilette
- Pôle de Pneumologie, ORL & Dermatologie
- Institute for Walloon Excellence in Lifesciences and Biotechnology, Brussels, Belgium
- Service de Pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
17
|
Denton AE, Innocentin S, Carr EJ, Bradford BM, Lafouresse F, Mabbott NA, Mörbe U, Ludewig B, Groom JR, Good-Jacobson KL, Linterman MA. Type I interferon induces CXCL13 to support ectopic germinal center formation. J Exp Med 2019; 216:621-637. [PMID: 30723095 PMCID: PMC6400543 DOI: 10.1084/jem.20181216] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/05/2018] [Accepted: 01/17/2019] [Indexed: 01/08/2023] Open
Abstract
Denton et al. show that during influenza infection of mice, type I interferon can induce CXCL13 de novo in pulmonary PGDFRα+ fibroblasts. This chemokine drives CXCR5-dependent recruitment of B cells to the lung, thereby supporting pulmonary germinal center formation. Ectopic lymphoid structures form in a wide range of inflammatory conditions, including infection, autoimmune disease, and cancer. In the context of infection, this response can be beneficial for the host: influenza A virus infection–induced pulmonary ectopic germinal centers give rise to more broadly cross-reactive antibody responses, thereby generating cross-strain protection. However, despite the ubiquity of ectopic lymphoid structures and their role in both health and disease, little is known about the mechanisms by which inflammation is able to convert a peripheral tissue into one that resembles a secondary lymphoid organ. Here, we show that type I IFN produced after viral infection can induce CXCL13 expression in a phenotypically distinct population of lung fibroblasts, driving CXCR5-dependent recruitment of B cells and initiating ectopic germinal center formation. This identifies type I IFN as a novel inducer of CXCL13, which, in combination with other stimuli, can promote lung remodeling, converting a nonlymphoid tissue into one permissive to functional tertiary lymphoid structure formation.
Collapse
Affiliation(s)
- Alice E Denton
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| | - Silvia Innocentin
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| | - Edward J Carr
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK.,Department of Medicine, University of Cambridge, Cambridge, UK
| | - Barry M Bradford
- The Roslin Institute and the Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| | - Fanny Lafouresse
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Neil A Mabbott
- The Roslin Institute and the Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| | - Urs Mörbe
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Joanna R Groom
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Kim L Good-Jacobson
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Michelle A Linterman
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| |
Collapse
|
18
|
Białas AJ, Siewiera K, Watała C, Rybicka A, Grobelski B, Kośmider L, Kurek J, Miłkowska-Dymanowska J, Piotrowski WJ, Górski P. Mitochondrial functioning abnormalities observed in blood platelets of chronic smoke-exposed guinea pigs - a pilot study. Int J Chron Obstruct Pulmon Dis 2018; 13:3707-3717. [PMID: 30519014 PMCID: PMC6233694 DOI: 10.2147/copd.s175444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background COPD represents a major global health issue, which is often accompanied by cardiovascular diseases. A considerable body of evidence suggests that cardiovascular risk is elevated by the activation of blood platelets, which in turn is exacerbated by inflammation. As reactive oxygen species are believed to be an important factor in platelet metabolism and functioning, the aim of our study was to perform a complex assessment of mitochondrial function in platelets in chronic smoke exposed animals with COPD-like lung lesions. Materials and methods Eight-week-old, male Dunkin Hartley guinea pigs (the study group) were exposed to the cigarette smoke from commercial unfiltered cigarettes (0.9 mg/cig of nicotine content) or to the air without cigarette smoke (control group), using the Candela Constructions® exposure system. The animals were exposed for 4 hours daily, 5 days a week, with 2×70 mL puff/minute, until signs of dyspnea were observed. The animals were bled, and isolated platelets were used to monitor blood platelet respiration. The mitochondrial respiratory parameters of the platelets were monitored in vitro based on continuous recording of oxygen consumption by high-resolution respirometry. Results An elevated respiration trend was observed in the LEAK-state (adjusted for number of platelets) in the smoke-exposed animals: 6.75 (5.09) vs 2.53 (1.28) (pmol O2/[s ⋅ 1108 platelets]); bootstrap-boosted P1α=0.04. The study group also demonstrated lowered respiration in the ET-state (normalized for protein content): 12.31 (4.84) vs 16.48 (1.72) (pmol O2/[s ⋅ mg of protein]); bootstrap-boosted P1α=0.049. Conclusion Our results suggest increased proton and electron leak and decreased electron transfer system capacity in platelets from chronic smoke-exposed animals. These observations may also indicate that platelets play an important role in the pathobiology of COPD and its comorbidities and may serve as a background for possible therapeutic targeting. However, these preliminary outcomes should be further validated in studies based on larger samples.
Collapse
Affiliation(s)
- Adam J Białas
- Department of Pneumology and Allergy, Medical University of Lodz, Lodz, Poland,
| | - Karolina Siewiera
- Department of Hemostasis and Hemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Cezary Watała
- Department of Hemostasis and Hemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Anna Rybicka
- The animal house, Pharmaceutical Faculty, Medical University of Lodz, Lodz, Poland
| | - Bartłomiej Grobelski
- The animal house, Pharmaceutical Faculty, Medical University of Lodz, Lodz, Poland
| | - Leon Kośmider
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA.,Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, VA, USA
| | - Jolanta Kurek
- Institute of Occupational Medicine and Environmental Health, Sosnowiec, Poland
| | | | | | - Paweł Górski
- Department of Pneumology and Allergy, Medical University of Lodz, Lodz, Poland,
| |
Collapse
|
19
|
Sun J, Liu T, Yan Y, Huo K, Zhang W, Liu H, Shi Z. The role of Th1/Th2 cytokines played in regulation of specific CD4 + Th1 cell conversion and activation during inflammatory reaction of chronic obstructive pulmonary disease. Scand J Immunol 2018; 88:e12674. [PMID: 29752829 DOI: 10.1111/sji.12674] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/06/2018] [Indexed: 01/08/2023]
Abstract
CD4 + Th1-CXCR3 signalling pathway may play a key role in chronic obstructive pulmonary disease (COPD). The aim of this study was to explore Th1/Th2 cytokines ratio differences in patients in different stages of COPD and to confirm the hypothesis that elastin exposure might serve as an antigen to initiate the stimulation of CD4 + Th1-CXCR3 immune inflammation pathway. Patients of COPD in different stages and normal individuals were enrolled. Ten millilitres of peripheral blood was drawn from patients. The concentration of CXCR3, IFN-γ, IL-2, IL-4 and IL-13 in plasma was detected by ELISA. The Naïve CD4+ T cells were isolated from the peripheral blood mononuclear cells, which were stimulated by elastin and collagen before determining the level of IFN-γ secretion by ELISPOT. Compared with control group, the concentration of CXCR3 in the acute exacerbation COPD (AECOPD) group was higher (P < .05). The concentration of IFN-γ and IL-2 in AECOPD group was lower than that in remission (P < .05). The concentration of IFN-γ in the AECOPD and remission was higher than that in controls (P < .05), while IL-2 was opposite (P < .01). The concentration of IL-4 and IL-13 in AECOPD group was higher than that in the controls (P < .05). The CD4+ Th1 cells stimulated by the elastin as antigen secreted more IFN-γ than that by collagen (P < .01). CXCR3 was highly expressed in patients with COPD. There were different Th1/Th2 cytokines in different stages of COPD. The CD4+Th1-specific conversion and activation may be an initiator of COPD immune inflammatory response.
Collapse
Affiliation(s)
- J Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - T Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Y Yan
- Intensive Care Unit, Shaanxi Provincial Tumor Hospital, Xi'an, Shaanxi, China
| | - K Huo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - W Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - H Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Z Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
20
|
Forestier A, Guerrier T, Jouvray M, Giovannelli J, Lefèvre G, Sobanski V, Hauspie C, Hachulla E, Hatron PY, Zéphir H, Vermersch P, Labalette M, Launay D, Dubucquoi S. Altered B lymphocyte homeostasis and functions in systemic sclerosis. Autoimmun Rev 2018; 17:244-255. [PMID: 29343447 DOI: 10.1016/j.autrev.2017.10.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/26/2017] [Indexed: 12/20/2022]
Abstract
Beyond the production of autoantibodies, B-cells are thought to play a role in systemic sclerosis (SSc) by secreting proinflammatory/profibrotic cytokines. B-cells are a heterogeneous population with different subsets distinguished by their phenotypes and cytokine production. Data about B-cell subsets, cytokine production and intracellular pathways leading to this production are scarce in SSc. The aim of our study was to describe B-cell homeostasis, activation, proliferation, cytokine production in B-cells and serum and B-cell intracellular signaling pathways in SSc. We hypothezided that B-cell homeostasis and cytokine production were altered in SSc and could be explained by serum cytokine as well as by intracellular signaling pathway abnormalities. Forty SSc patients and 20 healthy controls (HC) were prospectively included. B-cell subsets were determined by flow cytometry using CD19, CD21, CD24, CD38, CD27, IgM and IgD. CD25, CD80, CD95, HLA-DR were used to assess B-cell activation. Intracellular production of IL-10 and IL-6 were assessed by flow cytometry after TLR9 and CD40 stimulation. IL-6, IL-10, Ki67, Bcl2 mRNA were quantified in B-cells. Cytokine production was also assessed in sera and supernatants of B-cell culture, using a multiplex approach. Signaling pathways were studied through phosphorylation of mTOR, ERK, STAT3, STAT5 using a flow cytometry approach. We found that SSc patients exhibited an altered peripheral blood B-cell subset distribution, with decreased memory B-cells but increased proportion of naive and CD21LoCD38Lo B-cell subsets. We observed an increased expression of activation markers (CD80, CD95, HLA-DR) on some B-cell subsets, mainly the memory B-cells. Secretion of IL-6, BAFF and CXCL13 were increased in SSc sera. There was no correlation between the peripheral blood B-cell subsets and the serum concentrations of these cytokines. After stimulation, we observed a lower proportion of IL-10 and IL-6 producing B-cells in SSc. Finally, we observed a significant decrease of mTOR phosphorylation in SSc patient B-cells. In conclusion, we observed an altered B-cell homeostasis in SSc patients compared to HC. Memory B-cells were both decreased and activated in patients. IL-10 producing B-cells were decreased in SSc. This decrease was associated with an alteration of mTOR phosphorylation in B-cells. Conversely, there was no correlation between serum cytokine profile and B-cell homeostasis alterations.
Collapse
Affiliation(s)
- Alexandra Forestier
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France; CHU Lille, Département de médecine interne et immunologie clinique, F-59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares, France
| | - Thomas Guerrier
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France
| | - Mathieu Jouvray
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France; CHU Lille, Département de médecine interne et immunologie clinique, F-59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares, France
| | - Jonathan Giovannelli
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France; CHU Lille, Département de médecine interne et immunologie clinique, F-59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares, France
| | - Guillaume Lefèvre
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France; CHU Lille, Département de médecine interne et immunologie clinique, F-59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares, France; CHU Lille, Institut d'immunologie, F-59000 Lille, France
| | - Vincent Sobanski
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France; CHU Lille, Département de médecine interne et immunologie clinique, F-59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares, France
| | - Carine Hauspie
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France; CHU Lille, Institut d'immunologie, F-59000 Lille, France
| | - Eric Hachulla
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France; CHU Lille, Département de médecine interne et immunologie clinique, F-59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares, France
| | - Pierre-Yves Hatron
- CHU Lille, Département de médecine interne et immunologie clinique, F-59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares, France
| | - Hélène Zéphir
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France; CHU Lille, Service de neurologie, F-59000 Lille, France
| | - Patrick Vermersch
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France; CHU Lille, Service de neurologie, F-59000 Lille, France
| | - Myriam Labalette
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France; CHU Lille, Institut d'immunologie, F-59000 Lille, France
| | - David Launay
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France; CHU Lille, Département de médecine interne et immunologie clinique, F-59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares, France.
| | - Sylvain Dubucquoi
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France; CHU Lille, Institut d'immunologie, F-59000 Lille, France
| |
Collapse
|
21
|
Gohy ST, Hupin C, Pilette C, Ladjemi MZ. Chronic inflammatory airway diseases: the central role of the epithelium revisited. Clin Exp Allergy 2016; 46:529-42. [PMID: 27021118 DOI: 10.1111/cea.12712] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The respiratory epithelium plays a critical role for the maintenance of airway integrity and defense against inhaled particles. Physical barrier provided by apical junctions and mucociliary clearance clears inhaled pathogens, allergens or toxics, to prevent continuous stimulation of adaptive immune responses. The "chemical barrier", consisting of several anti-microbial factors such as lysozyme and lactoferrin, constitutes another protective mechanism of the mucosae against external aggressions before adaptive immune response starts. The reconstruction of damaged respiratory epithelium is crucial to restore this barrier. This review examines the role of the airway epithelium through recent advances in health and chronic inflammatory diseases in the lower conducting airways (in asthma and chronic obstructive pulmonary disease). Better understanding of normal and altered epithelial functions continuously provides new insights into the physiopathology of chronic airway diseases and should help to identify new epithelial-targeted therapies.
Collapse
Affiliation(s)
- S T Gohy
- Université catholique de Louvain (UCL), Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Brussels, Belgium.,Department of Pneumology, Cliniques universitaires St-Luc, Brussels, Belgium
| | - C Hupin
- Université catholique de Louvain (UCL), Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Brussels, Belgium
| | - C Pilette
- Université catholique de Louvain (UCL), Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Brussels, Belgium.,Department of Pneumology, Cliniques universitaires St-Luc, Brussels, Belgium.,Institute for Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Brussels, Belgium
| | - M Z Ladjemi
- Université catholique de Louvain (UCL), Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Brussels, Belgium.,Institute for Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Brussels, Belgium
| |
Collapse
|
22
|
Hwang JY, Randall TD, Silva-Sanchez A. Inducible Bronchus-Associated Lymphoid Tissue: Taming Inflammation in the Lung. Front Immunol 2016; 7:258. [PMID: 27446088 PMCID: PMC4928648 DOI: 10.3389/fimmu.2016.00258] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/17/2016] [Indexed: 01/09/2023] Open
Abstract
Following pulmonary inflammation, leukocytes that infiltrate the lung often assemble into structures known as inducible Bronchus-Associated Lymphoid Tissue (iBALT). Like conventional lymphoid organs, areas of iBALT have segregated B and T cell areas, specialized stromal cells, high endothelial venules, and lymphatic vessels. After inflammation is resolved, iBALT is maintained for months, independently of inflammation. Once iBALT is formed, it participates in immune responses to pulmonary antigens, including those that are unrelated to the iBALT-initiating antigen, and often alters the clinical course of disease. However, the mechanisms that govern immune responses in iBALT and determine how iBALT impacts local and systemic immunity are poorly understood. Here, we review our current understanding of iBALT formation and discuss how iBALT participates in pulmonary immunity.
Collapse
Affiliation(s)
- Ji Young Hwang
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Aaron Silva-Sanchez
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham , Birmingham, AL , USA
| |
Collapse
|
23
|
Costa C, Traves SL, Tudhope SJ, Fenwick PS, Belchamber KB, Russell RE, Barnes PJ, Donnelly LE. Enhanced monocyte migration to CXCR3 and CCR5 chemokines in COPD. Eur Respir J 2016; 47:1093-102. [DOI: 10.1183/13993003.01642-2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) patients exhibit chronic inflammation, both in the lung parenchyma and the airways, which is characterised by an increased infiltration of macrophages and T-lymphocytes, particularly CD8+ cells. Both cell types can express chemokine (C-X-C motif) receptor (CXCR)3 and C-C chemokine receptor 5 and the relevant chemokines for these receptors are elevated in COPD. The aim of this study was to compare chemotactic responses of lymphocytes and monocytes of nonsmokers, smokers and COPD patients towards CXCR3 ligands and chemokine (C-C motif) ligand (CCL)5.Migration of peripheral blood mononuclear cells, monocytes and lymphocytes from nonsmokers, smokers and COPD patients toward CXCR3 chemokines and CCL5 was analysed using chemotaxis assays.There was increased migration of peripheral blood mononuclear cells from COPD patients towards all chemokines studied when compared with nonsmokers and smokers. Both lymphocytes and monocytes contributed to this enhanced response, which was not explained by increased receptor expression. However, isolated lymphocytes failed to migrate and isolated monocytes from COPD patients lost their enhanced migratory capacity.Both monocytes and lymphocytes cooperate to enhance migration towards CXCR3 chemokines and CCL5. This may contribute to increased numbers of macrophages and T-cells in the lungs of COPD patients, and inhibition of recruitment using selective antagonists might be a treatment to reduce the inflammatory response in COPD.
Collapse
|
24
|
Bhat TA, Panzica L, Kalathil SG, Thanavala Y. Immune Dysfunction in Patients with Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc 2015; 12 Suppl 2:S169-75. [PMID: 26595735 PMCID: PMC4722840 DOI: 10.1513/annalsats.201503-126aw] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/27/2015] [Indexed: 01/09/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex chronic disease. Chronic inflammation is the hallmark of COPD, involving the interplay of a wide variety of cells in the lung microenvironment. Cigarette smoke (CS) induces chronic lung inflammation and is considered a key etiological factor in the development and pathogenesis of COPD. Structural and inflammatory cells in the lung respond to CS exposure by releasing proinflammatory mediators that recruit additional inflammatory immune cells, which collectively contribute to the establishment of a chronic inflammatory microenvironment. Chronic inflammation contributes to lung damage, compromises innate and adaptive immune responses, and facilitates the recurrent episodes of respiratory infection that punctuate and further contribute to the pathological manifestations of the stable disease. A number of studies support the conclusion that immune dysfunction leads to exacerbations and disease severity in COPD. Our group has clearly demonstrated that CS exacerbates lung inflammation and compromises immunity to respiratory pathogens in a mouse model of COPD. We have also investigated the phenotype of immune cells in patients with COPD compared with healthy control subjects and found extensive immune dysfunction due to the presence and functional activity of T regulatory cells, CD4(+)PD-1(+) exhausted effector T cells and myeloid-derived suppressor cells. Manipulation of these immunosuppressive networks in COPD could provide a rational strategy to restore functional immune responses, reduce exacerbations, and improve lung function. In this review, we discuss the role of immune dysfunction in COPD that may contribute to recurrent respiratory infections and disease severity.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Louis Panzica
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | | | - Yasmin Thanavala
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
25
|
Foo SY, Zhang V, Lalwani A, Lynch JP, Zhuang A, Lam CE, Foster PS, King C, Steptoe RJ, Mazzone SB, Sly PD, Phipps S. Regulatory T cells prevent inducible BALT formation by dampening neutrophilic inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 194:4567-76. [PMID: 25810394 DOI: 10.4049/jimmunol.1400909] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 02/16/2015] [Indexed: 11/19/2022]
Abstract
Inducible BALT (iBALT) can amplify pulmonary or systemic inflammatory responses to the benefit or detriment of the host. We took advantage of the age-dependent formation of iBALT to interrogate the underlying mechanisms that give rise to this ectopic, tertiary lymphoid organ. In this study, we show that the reduced propensity for weanling as compared with neonatal mice to form iBALT in response to acute LPS exposure is associated with greater regulatory T cell expansion in the mediastinal lymph nodes. Ab- or transgene-mediated depletion of regulatory T cells in weanling mice upregulated the expression of IL-17A and CXCL9 in the lungs, induced a tissue neutrophilia, and increased the frequency of iBALT to that observed in neonatal mice. Remarkably, neutrophil depletion in neonatal mice decreased the expression of the B cell active cytokines, a proliferation-inducing ligand and IL-21, and attenuated LPS-induced iBALT formation. Taken together, our data implicate a role for neutrophils in lymphoid neogenesis. Neutrophilic inflammation is a common feature of many autoimmune diseases in which iBALT are present and pathogenic, and hence the targeting of neutrophils or their byproducts may serve to ameliorate detrimental lymphoid neogenesis in a variety of disease contexts.
Collapse
Affiliation(s)
- Shen Yun Foo
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Vivian Zhang
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Amit Lalwani
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jason P Lynch
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Aowen Zhuang
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Chuan En Lam
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Paul S Foster
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Cecile King
- Department of Immunology, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Raymond J Steptoe
- Diamantina Institute, University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Stuart B Mazzone
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Peter D Sly
- Queensland Children's Medical Research Institute, University of Queensland, Herston, Queensland 4006, Australia; and Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Queensland 4006, Australia
| | - Simon Phipps
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Queensland 4006, Australia
| |
Collapse
|
26
|
Li JR, Zhou WX, Huang KW, Jin Y, Gao JM. Interleukin-22 exacerbates airway inflammation induced by short-term exposure to cigarette smoke in mice. Acta Pharmacol Sin 2014; 35:1393-401. [PMID: 25345745 PMCID: PMC4220081 DOI: 10.1038/aps.2014.91] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 07/31/2014] [Indexed: 12/11/2022]
Abstract
AIM Interleukin-22 (IL-22) exhibits both proinflammatory and anti-inflammatory properties in various biological processes. In this study we explored the effects of exogenous recombinant IL-22 (rIL-22) on cigarette smoke (CS)-induced airway inflammation in mice. METHODS Male C57BL/6 mice were divided into groups: (1) CS group exposed to tobacco smoke for 3 consecutive days, (2) rIL-22 group received rIL-22 (100 mg/kg, ip), and (3) CS plus rIL-22 group, received rIL-22 (100 mg/kg, ip) before the CS exposure. The airway resistance (Rn), lung morphology, inflammatory cells in the airways, and inflammatory cytokines and CXCR3 ligands in both bronchoalveolar lavage (BAL) fluids and lung tissues were analyzed. RESULTS CS alone significantly elevated IL-22 level in the BAL fluid. Both CS and rIL-22 significantly augmented airway resistance, an influx of inflammatory cells into the airways and lung parenchyma, and significantly elevated levels of pro-inflammatory cytokines (TGFβ1 and IL-17A) and CXCR3 chemokines (particularly CXCL10) at the mRNA and/or protein levels. Furthermore, the effects of rIL-22 on airway resistance and inflammation were synergistic with those of CS, as demonstrated by a further increased Rn value, infiltration of greater numbers of inflammatory cells into the lung, higher levels of inflammatory cytokines and chemokines, and more severe pathological changes in CS plus rIL-22 group as compared to those in CS group. CONCLUSION Exogenous rIL-22 exacerbates the airway inflammatory responses to CS exposure in part by inducing expression of several proinflammatory cytokines and CXCR3 ligands.
Collapse
Affiliation(s)
- Jiu-rong Li
- Department of Respiratory Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Wei-xun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ke-wu Huang
- Division of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jin-ming Gao
- Department of Respiratory Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
27
|
Higham A, Lea S, Plumb J, Maschera B, Simpson K, Ray D, Singh D. The role of the liver X receptor in chronic obstructive pulmonary disease. Respir Res 2013; 14:106. [PMID: 24118845 PMCID: PMC3852990 DOI: 10.1186/1465-9921-14-106] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/25/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND There is a need for novel anti-inflammatory therapies to treat COPD. The liver X receptor (LXR) is a nuclear hormone receptor with anti-inflammatory properties. METHODS We investigated LXR gene and protein expression levels in alveolar macrophages and whole lung tissue from COPD patients and controls, the effect of LXR activation on the suppression of inflammatory mediators from LPS stimulated COPD alveolar macrophages, and the effect of LXR activation on the induction of genes associated with alternative macrophage polarisation. RESULTS The levels of LXR mRNA were significantly increased in whole lung tissue extracts in COPD patients and smokers compared to non-smokers. The expression of LXR protein was significantly increased in small airway epithelium and alveolar epithelium in COPD patients compared to controls. No differences in LXR mRNA and protein levels were observed in alveolar macrophages between patient groups. The LXR agonist GW3965 significantly induced the expression of the LXR dependent genes ABCA1 and ABCG1 in alveolar macrophage cultures. In LPS stimulated alveolar macrophages, GW3965 suppressed the production of CXCL10 and CCL5, whilst stimulating IL-10 production. CONCLUSIONS GW3965 did not significantly suppress the production of TNFα, IL-1β, or CXCL8. Our major finding is that LXR activation has anti-inflammatory effects on CXC10, CCL5 and IL-10 production from alveolar macrophages.
Collapse
Affiliation(s)
- Andrew Higham
- The University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester Foundation Trust, Southmoor Road, Manchester M23 9LT, UK
| | - Simon Lea
- The University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester Foundation Trust, Southmoor Road, Manchester M23 9LT, UK
| | - Jonathan Plumb
- The University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester Foundation Trust, Southmoor Road, Manchester M23 9LT, UK
| | - Barbara Maschera
- GlaxoSmithKline, Respiratory CEDD, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Karen Simpson
- GlaxoSmithKline, Respiratory CEDD, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - David Ray
- The University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester Foundation Trust, Southmoor Road, Manchester M23 9LT, UK
| | - Dave Singh
- The University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester Foundation Trust, Southmoor Road, Manchester M23 9LT, UK
| |
Collapse
|
28
|
Litsiou E, Semitekolou M, Galani IE, Morianos I, Tsoutsa A, Kara P, Rontogianni D, Bellenis I, Konstantinou M, Potaris K, Andreakos E, Sideras P, Zakynthinos S, Tsoumakidou M. CXCL13 production in B cells via Toll-like receptor/lymphotoxin receptor signaling is involved in lymphoid neogenesis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013; 187:1194-202. [PMID: 23525932 DOI: 10.1164/rccm.201208-1543oc] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RATIONALE Little is known about what drives the appearance of lymphoid follicles (LFs), which may function as lymphoid organs in chronic obstructive pulmonary disease (COPD). In animal infection models, pulmonary LF formation requires expression of homeostatic chemokines by stromal cells and dendritic cells, partly via lymphotoxin. OBJECTIVES To study the role of homeostatic chemokines in LF formation in COPD and to identify mechanism(s) responsible for their production. METHODS Peripheral lung homeostatic chemokine and lymphotoxin expression were visualized by immunostainings and quantified by ELISA/quantitative reverse transcriptase-polymerase chain reaction in patients with COPD with and without LFs. Expression of lymphotoxin and homeostatic chemokine receptors was investigated by flow cytometry. Primary lung cell cultures, followed by ELISA/quantitative reverse transcriptase-polymerase chain reaction/flow cytometry, were performed to identify mechanisms of chemokine expression. Polycarbonate membrane filters were used to assess primary lung cell migration toward lung homogenates. MEASUREMENTS AND MAIN RESULTS LFs expressed the homeostatic chemokine CXCL13. Total CXCL13 levels correlated with LF density. Lung B cells of patients with COPD were important sources of CXCL13 and lymphotoxin and also expressed their receptors. Cigarette smoke extract, H2O2, and LPS exposure up-regulated B cell-derived CXCL13. The LPS-induced increase in CXCL13 was partly mediated via lymphotoxin. Notably, CXCL13 was required for efficient lung B-cell migration toward COPD lung homogenates and induced lung B cells to up-regulate lymphotoxin, which further promoted CXCL13 production, establishing a positive feedback loop. CONCLUSIONS LF formation in COPD may be driven by lung B cells via a CXCL13-dependent mechanism that involves toll-like receptor and lymphotoxin receptor signaling.
Collapse
Affiliation(s)
- Eleni Litsiou
- Department of Critical Care Medicine and Pulmonary Services, Evaggelismos General Hospital, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kato A, Hulse KE, Tan BK, Schleimer RP. B-lymphocyte lineage cells and the respiratory system. J Allergy Clin Immunol 2013; 131:933-57; quiz 958. [PMID: 23540615 DOI: 10.1016/j.jaci.2013.02.023] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 12/12/2022]
Abstract
Adaptive humoral immune responses in the airways are mediated by B cells and plasma cells that express highly evolved and specific receptors and produce immunoglobulins of most isotypes. In some cases, such as autoimmune diseases or inflammatory diseases caused by excessive exposure to foreign antigens, these same immune cells can cause disease by virtue of overly vigorous responses. This review discusses the generation, differentiation, signaling, activation, and recruitment pathways of B cells and plasma cells, with special emphasis on unique characteristics of subsets of these cells functioning within the respiratory system. The primary sensitization events that generate B cells responsible for effector responses throughout the airways usually occur in the upper airways, tonsils, and adenoid structures that make up the Waldeyer ring. On secondary exposure to antigen in the airways, antigen-processing dendritic cells migrate into secondary lymphoid organs, such as lymph nodes, that drain the upper and lower airways, and further B-cell expansion takes place at those sites. Antigen exposure in the upper or lower airways can also drive expansion of B-lineage cells in the airway mucosal tissue and lead to the formation of inducible lymphoid follicles or aggregates that can mediate local immunity or disease.
Collapse
Affiliation(s)
- Atsushi Kato
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
30
|
Dong S, Zhang X, He Y, Xu F, Li D, Xu W, Wang H, Yin Y, Cao J. Synergy of IL-27 and TNF-α in regulating CXCL10 expression in lung fibroblasts. Am J Respir Cell Mol Biol 2013; 48:518-30. [PMID: 23333920 DOI: 10.1165/rcmb.2012-0340oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
IL-27 is involved in inflammatory reactions. CXCL10 is an important chemokine contributing to airway inflammatory disease. In this study, we investigated whether IL-27 modulated the synthesis of CXCL10 in primary human lung fibroblasts (HLFs). HLFs were activated by IL-27 alone, or in combination with other cytokines. CXCL10 synthesis was measured by real-time PCR and ELISA. An examination of transcriptional regulation was performed via the transient transfection of promoter constructs, whereas mRNA stability was assessed by actinomycin D chase and real-time PCR. The underlying signaling pathways were studied by Western blotting and intracellular staining, using flow cytometry. Our results demonstrated that IL-27 induced and synergized with TNF-α to up-regulate CXCL10 mRNA and protein concentrations in a steroid-insensitive manner. This synergistic CXCL10 production was dependent on the transcriptional regulation of CXCL10 gene promoter activity and the enhanced stability of CXCL10 mRNA because of IL-27 and TNF-α, and this synergism was regulated by the activation of p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-OH kinase (PI3K)-Akt dominantly, and in small part via NF-κB. Interestingly, IL-27 promoted the basal and enhanced TNF-α-induced phosphorylation of p38 MAPK and Akt, but not IκBα. Moreover, enhanced CXCL10 mRNA stability occurred via a p38 MAPK-dependent pathway. Finally, clinical analysis showed that IL-27 was detected in the bronchoalveolar lavage of patients with asthma, chronic obstructive pulmonary disease (COPD), and pulmonary tuberculosis (PTB), and increased IL-27 concentrations were correlated with increased CXCL10 concentrations in patients with COPD and PTB. Our findings suggest that IL-27 has the potential to amplify airway inflammation via the induction of CXCL10 from HLFs, in combination with TNF-α.
Collapse
Affiliation(s)
- Shanshan Dong
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Southworth T, Metryka A, Lea S, Farrow S, Plumb J, Singh D. IFN-γ synergistically enhances LPS signalling in alveolar macrophages from COPD patients and controls by corticosteroid-resistant STAT1 activation. Br J Pharmacol 2012; 166:2070-83. [PMID: 22352763 DOI: 10.1111/j.1476-5381.2012.01907.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE IFN-γ levels are increased in chronic obstructive airway disease (COPD) patients compared with healthy subjects and are further elevated during viral exacerbations. IFN-γ can 'prime' macrophages to enhance the response to toll-like receptor (TLR) ligands, such as LPS. The aim of this study was to examine the effect IFN-γ on corticosteroid sensitivity in alveolar macrophages (AM). EXPERIMENTAL APPROACH AM from non-smokers, smokers and COPD patients were stimulated with IFN-γ and/or LPS with or without dexamethasone. IL-6, TNF-α and IFN-γ-induced protein 10 kDa (IP-10) levels were measured by elisa, and Western blots were used to investigate the IFN-γ-stimulated Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signalling pathway. Real-time PCR and flow cytometry were used to investigate TLR levels following IFN-γ treatment. KEY RESULTS In all three subject groups, IFN-γ alone had no effect on IL-6 and TNF-α production but enhanced the effects of LPS on these cytokines. In contrast, IFN-γ alone increased the production of IP-10. IFN-γ increased TLR2 and TLR4 expression in AM. Cytokine induction and STAT1 activation by IFN-γ were insensitive to dexamethasone for all groups. The inhibition of JAK and STAT1 repressed all these IFN-γ effects. CONCLUSIONS AND IMPLICATIONS Our results demonstrate that IFN-γ-induced STAT-1 signalling is corticosteroid resistant in AMs, and that targeting IFN-γ signalling by JAK inhibitors is a potentially novel anti-inflammatory strategy in COPD.
Collapse
Affiliation(s)
- T Southworth
- Manchester Academic Health Centre, NIHR Translational Research Facility, University Hospital of South Manchester Foundation Trust, Manchester, UK.
| | | | | | | | | | | |
Collapse
|
32
|
Xu C, Hesselbacher S, Tsai CL, Shan M, Spitz M, Scheurer M, Roberts L, Perusich S, Zarinkamar N, Coxson H, Krowchuk N, Corry DB, Kheradmand F. Autoreactive T Cells in Human Smokers is Predictive of Clinical Outcome. Front Immunol 2012; 3:267. [PMID: 22969766 PMCID: PMC3428109 DOI: 10.3389/fimmu.2012.00267] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/03/2012] [Indexed: 12/14/2022] Open
Abstract
Cross-sectional studies have suggested a role for activation of adaptive immunity in smokers with emphysema, but the clinical application of these findings has not been explored. Here we examined the utility of detecting autoreactive T cells as a screening tool for emphysema in an at-risk population of smokers. We followed 156 former and current (ever)-smokers for 2 years to assess whether peripheral blood CD4 T cell cytokine responses to lung elastin fragments (EFs) could discriminate between those with and without emphysema, and to evaluate the relevance of autoreactive T cells to predict changes during follow-up in lung physiological parameters. Volunteers underwent baseline complete phenotypic assessment with pulmonary function tests, quantitative chest CT, yearly 6-min walk distance (6MWD) testing, and annual measurement of CD4 T cell cytokine responses to EFs. The areas under the receiver operating characteristic curve to predict emphysema for interferon gamma (IFN-γ), and interleukin 6 (IL-6) responses to EFs were 0.81 (95% CI of 0.74-0.88) and 0.79 (95% CI of 0.72-0.86) respectively. We developed a dual cytokine enzyme-linked immunocell spot assay, the γ-6 Spot, using CD4 T cell IFN-γ and IL-6 responses and found that it discriminated emphysema with 90% sensitivity. After adjusting for potential confounders, the presence of autoreactive T cells was predictive of a decrease in 6MWD over 2 years (decline in 6MWD, -19 m per fold change in IFN-γ; P = 0.026, and -26 m per fold change in IL-6; P = 0.003). In support of the human association studies, we cloned CD4 T cells with characteristic T helper (Th)1 and Th17 responses to EFs in the peripheral blood of ever-smokers with emphysema, confirming antigenicity of lung elastin in this population. These findings collectively suggest that the EF-specific autoreactive CD4 T cell assay, γ-6 Spot, could provide a non-invasive diagnostic tool with potential application to large-scale screening to discriminate emphysema in ever-smokers, and predict early relevant physiological outcomes in those at risk.
Collapse
Affiliation(s)
- Chuang Xu
- Baylor College of Medicine Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Low CD4/CD8 Ratio in Bronchus-Associated Lymphoid Tissue Is Associated with Lung Allograft Rejection. J Transplant 2012; 2012:928081. [PMID: 22928088 PMCID: PMC3423936 DOI: 10.1155/2012/928081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/18/2012] [Accepted: 06/27/2012] [Indexed: 11/30/2022] Open
Abstract
Background. Bronchus-associated lymphoid tissue (BALT) has been associated with lung allograft rejection in rat transplant models. In human transplant recipients, BALT has not been linked to clinically significant rejection. We hypothesize that the immunohistochemical composition of BALT varies with the presence of acute lung allograft rejection. Methods. We retrospectively examined 40 human lung allograft recipients transplanted from 3/1/1999 to 6/1/2008. Patients were grouped by frequency and severity of acute rejection based on International Society of Heart Lung Transplant (ISHLT) criteria. Transbronchial biopsies were reviewed for BALT by a blinded pathologist. BALT if present was immunohistochemically stained to determine T-and B-cell subpopulations. Results. BALT presence was associated with an increased frequency of acute rejection episodes in the first year after transplantation. Patients with a lower CD4/CD8 ratio had an increased rejection rate; however, BALT size or densities of T-cell and B-cell subpopulations did not correlate with rejection rate. Conclusion. The presence of BALT is associated with an increased frequency of rejection one year after transplant. The lower the CD4/CD8 ratio, the more acute rejection episodes occur in the first year after transplantation. The immunohistochemical composition of BALT may predict patients prone to frequent episodes of acute cellular rejection.
Collapse
|
34
|
Shan M, Yuan X, Song LZ, Roberts L, Zarinkamar N, Seryshev A, Zhang Y, Hilsenbeck S, Chang SH, Dong C, Corry DB, Kheradmand F. Cigarette smoke induction of osteopontin (SPP1) mediates T(H)17 inflammation in human and experimental emphysema. Sci Transl Med 2012; 4:117ra9. [PMID: 22261033 DOI: 10.1126/scitranslmed.3003041] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Smoking-related lung diseases are among the leading causes of death worldwide, underscoring the need to understand their pathogenesis and develop new effective therapies. We have shown that CD1a+ antigen-presenting cells (APCs) from lungs of patients with emphysema can induce autoreactive T helper 1 (T(H)1) and T(H)17 cells. Similarly, the canonical cytokines interferon-γ (IFN-γ) and interleukin-17A (IL-17A) are specifically linked to lung destruction in smokers, but how smoke activates APCs to mediate emphysema remains unknown. Here, we show that, in addition to increasing IFN-γ expression, cigarette smoke increased the expression of IL-17A in both CD4+ and γδ T cells from mouse lung. IL-17A deficiency resulted in attenuation of, whereas lack of γδ T cells exacerbated, smoke-induced emphysema in mice. Adoptive transfer of lung APCs isolated from mice with emphysema revealed that this cell population was capable of transferring disease even in the absence of active smoke exposure, a process that was dependent on IL-17A expression. Spp1 (the gene for osteopontin) was highly expressed in the pathogenic lung APCs of smoke-exposed mice and was required for the T(H)17 responses and emphysema in vivo, in part through its inhibition of the expression of the transcription factor Irf7. Thus, the Spp1-Irf7 axis is critical for induction of pathological T(H)17 responses, revealing a major mechanism by which smoke activates lung APCs to induce emphysema and identifying a pathway that could be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Ming Shan
- Department of Medicine, Section of Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hardavella G, Tzortzaki EG, Siozopoulou V, Galanis P, Vlachaki E, Avgousti M, Stefanou D, Siafakas NM. Lymphangiogenesis in COPD: another link in the pathogenesis of the disease. Respir Med 2011; 106:687-93. [PMID: 22154125 DOI: 10.1016/j.rmed.2011.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 11/13/2011] [Accepted: 11/14/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND New lymphatic vessels are associated with tissue injury and repair. Recent studies have shown increased lymphatic follicles formation in the lungs of COPD patients. We hypothesized that lymphatic vascular remodeling could be part of COPD pathogenesis. AIM To investigate the lymphangiogenetic process in COPD we measured the lymphatic microvessel density (LMVD), the lymphatic invasion (L.I), and their correlation with clinical and laboratory parameters. METHODS Lung tissue from 20 COPD patients and 20 non-COPD smokers was immunohistochemically stained for D2-40 (lymphatic endothelial cell marker), and LYVE-1 (lymphatic endothelial hyaluronan receptor 1). Both groups had similar age and smoking history. RESULTS D2-40 and LYVE-1 were expressed in all specimens. Lymphatic invasion was presented only in COPD specimens. Lymphatic microvessel density (LMVD) as revealed by D2-40 and LYVE-1 markers was statistically significantly higher in COPD patients when compared with non-COPD smokers. Both markers (D2-40, LYVE-1) were correlated with FEV1 (% pred) (R(2) = 0.415, R(2) = 0.605, respectively). CONCLUSIONS We report for the first time high lymphatic microvessel density and lymphatic invasion in COPD patients, related to the degree of airway obstruction. Our findings could provide novel insights in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Georgia Hardavella
- Department of Respiratory Medicine, Medical School, University of Ioannina, Ioannina, Greece
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lugade AA, Vethanayagam RR, Nasirikenari M, Bogner PN, Segal BH, Thanavala Y. Nrf2 regulates chronic lung inflammation and B-cell responses to nontypeable Haemophilus influenzae. Am J Respir Cell Mol Biol 2011; 45:557-65. [PMID: 21216970 PMCID: PMC3175582 DOI: 10.1165/rcmb.2010-0321oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 12/17/2010] [Indexed: 12/12/2022] Open
Abstract
Nrf2 is a leucine zipper transcription factor that protects against oxidant-induced injury. Nontypeable Haemophilus influenzae is responsible for frequent disease exacerbations in patients with chronic obstructive pulmonary disease and is responsible for causing otitis media in young children. We hypothesized that Nrf2 would limit inflammatory responses to nontypeable H. influenzae. The objective of this study was to assess the role of Nrf2 in chronic lung inflammation and regulation of immune responses to nontypeable H. influenzae in mice. Wild-type (C57BL/6) mice and Nrf2(-/-) mice were instilled by oropharyngeal aspiration of 1 × 10(6) colony-forming units of live, nontypeable H. influenzae (NTHI) twice a week for 4 to 16 consecutive weeks to generate a chronic inflammatory milieu within the lungs that models chronic bronchitis. Nrf2(-/-) mice had increased lymphocytic airway inflammation compared with WT mice after NTHI challenge. Although the extent of NTHI-induced peribronchovascular inflammation did not significantly differ between the genotypes, plasma cell infiltration was significantly more abundant in Nrf2(-/-) mice. Most strikingly, Nrf2(-/-) mice generated significantly enhanced and persistent levels of serum antibodies against P6, a key outer membrane protein of NTHI. Lung dendritic cells from Nrf2(-/-) mice challenged with NTHI had increased activation markers compared with dendritic cells from similarly treated WT mice. Nrf2 regulates NTHI-induced airway inflammation characterized by lymphocytic and plasma cell infiltration and the activation of lung dendritic cells and B-cell responses in mice. Nrf2 may be a potential therapeutic target in limiting the bacterial infection-induced airway inflammation that drives exacerbations of chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Amit A. Lugade
- Departments of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | | | - Mehrab Nasirikenari
- Departments of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| | - Paul N. Bogner
- Departments of Pathology, Roswell Park Cancer Institute, Buffalo, New York
| | - Brahm H. Segal
- Departments of Immunology, Roswell Park Cancer Institute, Buffalo, New York
- Departments of Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | - Yasmin Thanavala
- Departments of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
37
|
Cox LAT. A causal model of chronic obstructive pulmonary disease (COPD) risk. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2011; 31:38-62. [PMID: 20846171 DOI: 10.1111/j.1539-6924.2010.01487.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Research on the etiology of chronic pulmonary disease (COPD), an irreversible degenerative lung disease affecting 15% to 20% of smokers, has blossomed over the past half-century. Profound new insights have emerged from a combination of in vitro and -omics studies on affected lung cell populations (including cytotoxic CD8(+) T lymphocytes, regulatory CD4(+) helper T cells, dendritic cells, alveolar macrophages and neutrophils, alveolar and bronchiolar epithelial cells, goblet cells, and fibroblasts) and extracellular matrix components (especially, elastin and collagen fibers); in vivo studies on wild-type and genetically engineered mice and other rodents; clinical investigation of cell- and molecular-level changes in asymptomatic smokers and COPD patients; genetic studies of susceptible and rapidly-progressing phenotypes (both human and animal); biomarker studies of enzyme and protein degradation products in induced sputum, bronchiolar lavage, urine, and blood; and epidemiological and clinical investigations of the time course of disease progression. To this rich mix of data, we add a relatively simple in silico computational model that incorporates recent insights into COPD disease causation and progression. Our model explains irreversible degeneration of lung tissue as resulting from a cascade of positive feedback loops: a macrophage inflammation loop, a neutrophil inflammation loop, and an alveolar epithelial cell apoptosis loop. Unrepaired damage results in clinical symptoms. The resulting model illustrates how to simplify and make more understandable the main aspects of the very complex dynamics of COPD initiation and progression, as well as how to predict the effects on risk of interventions that affect specific biological responses.
Collapse
|
38
|
Polverino F, Baraldo S, Bazzan E, Agostini S, Turato G, Lunardi F, Balestro E, Damin M, Papi A, Maestrelli P, Calabrese F, Saetta M. A Novel Insight into Adaptive Immunity in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2010; 182:1011-9. [DOI: 10.1164/rccm.200911-1700oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
39
|
|
40
|
Cosio BG, Agustí A. Update in Chronic Obstructive Pulmonary Disease 2009. Am J Respir Crit Care Med 2010; 181:655-60. [DOI: 10.1164/rccm.201001-0111up] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
41
|
Górska K, Maskey-Warzęchowska M, Krenke R. Airway inflammation in chronic obstructive pulmonary disease. Curr Opin Pulm Med 2010; 16:89-96. [DOI: 10.1097/mcp.0b013e3283341ba0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
42
|
Current World Literature. Curr Opin Pulm Med 2010; 16:162-7. [DOI: 10.1097/mcp.0b013e32833723f8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Macario CC, Torres Tajes JPD, Lanus EC. EPOC: inflamación bronquial y sistémica. Arch Bronconeumol 2010; 46 Suppl 4:9-15. [DOI: 10.1016/s0300-2896(10)70027-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
44
|
Abstract
Tobacco smoking is the dominant risk factor for chronic obstructive pulmonary disease (COPD), but viral and bacterial infections are the major causes of exacerbations in later stages of disease. Reactive oxygen species (ROS), pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns (DAMPs) activate families of pattern recognition receptors (PRRs) that include the toll-like receptors (TLRs). This understanding has led to the hypothesis that COPD is an archetypal disease of innate immunity. COPD is characterised by abnormal response to injury, with altered barrier function of the respiratory tract, an acute phase reaction, and excessive activation of macrophages, neutrophils, and fibroblasts in the lung. The activated non-specific immune system then mediates the processes of inflammation and repair, fibrosis, and proteolysis. COPD is also associated with corticosteroid resistance, abnormal macrophage and T-cell populations in the airway, autoinflammation and autoimmunity, aberrant fibrosis, accelerated ageing, systemic and concomitant disease, and defective regeneration. Such concepts have been used to generate a range of molecular targets, and clinical trials are taking place to identify effective drugs for the prevention and treatment of COPD exacerbations.
Collapse
Affiliation(s)
- Trevor T Hansel
- National Heart and Lung Institute, Imperial College, London, UK.
| | | |
Collapse
|
45
|
Barnes PJ. The cytokine network in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2009; 41:631-8. [PMID: 19717810 DOI: 10.1165/rcmb.2009-0220tr] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Multiple cytokines play a role in the orchestration of inflammation in inflammatory airway diseases, such as chronic obstructive pulmonary disease, through the recruitment, activation and survival of inflammatory cells. Lymphokines secreted from T cells regulate the pattern of inflammation, whereas proinflammatory cytokines amplify and perpetuate the inflammatory response. Multiple chemokines recruit inflammatory cells from the circulation into the lungs and many growth factors maintain this inflammation and lead to characteristic structural changes in the airways. There are several therapeutic approaches that target cytokine-mediated inflammation in chronic obstructive pulmonary disease, but blocking specific cytokines may not provide clinical benefit, whereas broad-spectrum anti-inflammatory approaches are more likely to be clinically effective.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|