1
|
Wang Q, Hermannsson K, Másson E, Bergman P, Guðmundsson GH. Host-directed therapies modulating innate immunity against infection in hematologic malignancies. Blood Rev 2025; 70:101255. [PMID: 39690006 DOI: 10.1016/j.blre.2024.101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Patients with hematologic malignancies (HM) are highly susceptible to bloodstream infection (BSI), particularly those undergoing treatments such as chemotherapy. A common and debilitating side effect of chemotherapy is oral and intestinal mucositis. These Patients are also at high risk of developing sepsis, which can arise from mucosal barrier injuries and significantly increases mortality in these patients. While conventional antibiotics are effective, their use can lead to antimicrobial resistance (AMR) and disrupt the gut microbiota (dysbiosis). In this review, we discuss utilizing host defense peptides (HDPs), key components of the innate immune system, and immune system inducers (ISIs) to maintain mucosal barrier integrity against infection, an underexplored host-directed therapy (HDT) approach to prevent BSI and sepsis. We advocate for the discovery of potent and safe ISIs for clinical use and call for further research into the mechanisms by which these ISIs induce HDPs and strengthen mucosal barriers.
Collapse
Affiliation(s)
- Qiong Wang
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland.
| | - Kristján Hermannsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland.
| | - Egill Másson
- Akthelia Pharmaceuticals, Grandagardi 16, 101 Reykjavik, Iceland.
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | | |
Collapse
|
2
|
Canas JJ, Arregui SW, Zhang S, Knox T, Calvert C, Saxena V, Schwaderer AL, Hains DS. DEFA1A3 DNA gene-dosage regulates the kidney innate immune response during upper urinary tract infection. Life Sci Alliance 2024; 7:e202302462. [PMID: 38580392 PMCID: PMC10997819 DOI: 10.26508/lsa.202302462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024] Open
Abstract
Antimicrobial peptides (AMPs) are host defense effectors with potent neutralizing and immunomodulatory functions against invasive pathogens. The AMPs α-Defensin 1-3/DEFA1A3 participate in innate immune responses and influence patient outcomes in various diseases. DNA copy-number variations in DEFA1A3 have been associated with severity and outcomes in infectious diseases including urinary tract infections (UTIs). Specifically, children with lower DNA copy numbers were more susceptible to UTIs. The mechanism of action by which α-Defensin 1-3/DEFA1A3 copy-number variations lead to UTI susceptibility remains to be explored. In this study, we use a previously characterized transgenic knock-in of the human DEFA1A3 gene mouse to dissect α-Defensin 1-3 gene dose-dependent antimicrobial and immunomodulatory roles during uropathogenic Escherichia coli (UPEC) UTI. We elucidate the relationship between kidney neutrophil- and collecting duct intercalated cell-derived α-Defensin 1-3/DEFA1A3 expression and UTI. We further describe cooperative effects between α-Defensin 1-3 and other AMPs that potentiate the neutralizing activity against UPEC. Cumulatively, we demonstrate that DEFA1A3 directly protects against UPEC meanwhile impacting pro-inflammatory innate immune responses in a gene dosage-dependent manner.
Collapse
Affiliation(s)
- Jorge J Canas
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Samuel W Arregui
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shaobo Zhang
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Taylor Knox
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christi Calvert
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vijay Saxena
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew L Schwaderer
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Riley Hospital for Children, Indiana University Health, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David S Hains
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
- Riley Hospital for Children, Indiana University Health, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
3
|
Lv L, Shao X, Cui E. Establishment of a Predictive Model for Acute Respiratory Distress Syndrome in Patients with Bacterial Pneumonia. J Inflamm Res 2024; 17:2825-2834. [PMID: 38737109 PMCID: PMC11088865 DOI: 10.2147/jir.s458690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/20/2024] [Indexed: 05/14/2024] Open
Abstract
Background Community-acquired pneumonia (CAP) is a global health concern due to its high rates of morbidity and mortality. Bacterial pathogens are common causes of CAP. It is one of the most common causes of acute respiratory distress syndrome (ARDS), a common severe respiratory system manifestation threatening human health. This study aimed to establish a predictive model for ARDS in patients with bacterial pneumonia, which was conducive to early identification of the occurrence and effective prevention of ARDS. Methods We collected the clinical data of hospitalized patients with bacterial pneumonia in Affiliated Huzhou Hospital of Zhejiang University School of Medicine from January 2022 to November 2022. The independent risk factors for ARDS in patients with bacterial pneumonia were determined by univariate and multivariate binary logistic regression analyses. The nomogram was constructed to display the predictive model, and the receiver-operating characteristic curve was plotted to evaluate the predictive value of ARDS. Results This study included 254 patients with bacterial pneumonia, of which 114 developed ARDS. The multivariate logistic regression analysis revealed age [odds ratio (OR) = 1.041, P = 0.003], heart rate (OR = 1.020, P = 0.028), lymphocyte count (OR = 0.555, P = 0.033), white blood cell count (OR = 1.062, P = 0.033), bilateral lung lesions (OR = 7.352, P = 0.011) and pleural effusion (OR = 2.512, P = 0.002) as the independent risk factors for ARDS. The predictive model was constructed based on the six independent factors, which was valuable in predicting ARDS with area under the curve of 0.794. Conclusion The predictive model was beneficial to evaluate the disease progression in patients with bacterial pneumonia and identify ARDS. Further, our nomogram might help doctors predict the incidence of ARDS and conduct treatment as early as possible.
Collapse
Affiliation(s)
- Lu Lv
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Xinyue Shao
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, People’s Republic of China
- School of Medicine, Huzhou University, Huzhou, Zhejiang, People’s Republic of China
| | - Enhai Cui
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
4
|
Qiao Q, Li X, Ou X, Liu X, Fu C, Wang Y, Niu B, Kong L, Yang C, Zhang Z. Hybrid biomineralized nanovesicles to enhance inflamed lung biodistribution and reduce side effect of glucocorticoid for ARDS therapy. J Control Release 2024; 369:746-764. [PMID: 38599547 DOI: 10.1016/j.jconrel.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is a critical illness characterized by severe lung inflammation. Improving the delivery efficiency and achieving the controlled release of anti-inflammatory drugs at the lung inflammatory site are major challenges in ARDS therapy. Taking advantage of the increased pulmonary vascular permeability and a slightly acidic-inflammatory microenvironment, pH-responsive mineralized nanoparticles based on dexamethasone sodium phosphate (DSP) and Ca2+ were constructed. By further biomimetic modification with M2 macrophage membranes, hybrid mineralized nanovesicles (MM@LCaP) were designed to possess immunomodulatory ability from the membranes and preserve the pH-sensitivity from core nanoparticles for responsive drug release under acidic inflammatory conditions. Compared with healthy mice, the lung/liver accumulation of MM@LCaP in inflammatory mice was increased by around 5.5 times at 48 h after intravenous injection. MM@LCaP promoted the polarization of anti-inflammatory macrophages, calmed inflammatory cytokines, and exhibited a comprehensive therapeutic outcome. Moreover, MM@LCaP improved the safety profile of glucocorticoids. Taken together, the hybrid mineralized nanovesicles-based drug delivery strategy may offer promising ideas for enhancing the efficacy and reducing the toxicity of clinical drugs.
Collapse
Affiliation(s)
- Qi Qiao
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaonan Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangjun Ou
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chuansheng Fu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Boning Niu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
5
|
Higazi AAR, Maraga E, Baraghithy S, Udi S, Azar S, Saada A, Glaser B, Avrahami D, Abdeen S, Hamdan Z, Tam J, Fanne RA. Characterization of metabolic alterations in the lean metabolically unhealthy alpha defensin transgenic mice. iScience 2024; 27:108802. [PMID: 38318380 PMCID: PMC10839648 DOI: 10.1016/j.isci.2024.108802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/25/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Inflammation is consistently linked to dysmetabolism. In transgenic mice (Def+/+) model the neutrophilic peptide, alpha defensin, proved atherogenic. This phenotype occurred despite favorable cholesterol and glucose levels, and lower body weight and blood pressure. In this study, integration of metabolic&behavioral phenotyping system, endocrine, biochemical and mitochondrial assessment, pathological and immunohistochemical tests, and multiple challenge tests was established to explore the metabolic impact of alpha defensin. Compared to the control group, Def+/+ mice exhibited lower total energy expenditure and carbohydrate utilization, and higher fat oxidation. Their ACTH-cortisol and thyroid profiles were intact. Intriguingly, they had low levels of glucagon, with high ammonia, uric acid, triglyceride, and lactate. Mitochondrial evaluations were normal. Overall, defensin-induced hypoglucagonemia is associated with lipolysis, restricted glucose oxidation, and enhanced wasting. Def+/+ mice may be a useful model for studying the category of lean, apparently metabolically healthy, and atherosclerotic phenotype, with insight into a potential inflammatory-metabolic link.
Collapse
Affiliation(s)
- Abd Al-Roof Higazi
- Department of Clinical Biochemistry, Hebrew University-Hadassah Medical Center, Jerusalem 9112001, Israel
| | - Emad Maraga
- Department of Clinical Biochemistry, Hebrew University-Hadassah Medical Center, Jerusalem 9112001, Israel
| | - Saja Baraghithy
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Shiran Udi
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Shahar Azar
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ann Saada
- Department of Genetics, Hadassah Medical Center, Jerusalem, Isarel
- Faculty of Medicine, Hebrew University, Jerusalem, Isarel
- Department of Laboratory Sciences, Hadassah Academic College, Jerusalem, Isarel
| | - Benjamin Glaser
- Endocrinology and Metabolism Department, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Dana Avrahami
- Department of Developmental Biology and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Suhair Abdeen
- Department of Clinical Biochemistry, Hebrew University-Hadassah Medical Center, Jerusalem 9112001, Israel
| | - Zenab Hamdan
- Endocrinology and Metabolism Department, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Rami Abu Fanne
- Department of Clinical Biochemistry, Hebrew University-Hadassah Medical Center, Jerusalem 9112001, Israel
- Department of Cardiology, Hillel Yaffe Medical Center, Hadera, Israel
| |
Collapse
|
6
|
Lee J, Mohammad N, Lu Y, Oshins R, Aranyos A, Brantly M. Alpha-defensins inhibit ERK/STAT3 signaling during monocyte-macrophage differentiation and impede macrophage function. Respir Res 2023; 24:309. [PMID: 38082274 PMCID: PMC10714504 DOI: 10.1186/s12931-023-02605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Alpha-1-antitrypsin deficiency (AATD) is a genetic disorder associated with a 5-tenfold decrease in lung levels of alpha-1-antitrypsin (AAT) and an increased risk for obstructive lung disease. α-defensins are cationic broad-spectrum cytotoxic and pro-inflammatory peptides found in the azurophilic granules of neutrophils. The concentration of α-defensins is less than 30 nM in the bronchoalveolar lavage fluid of healthy controls but is up to 6 μM in AATD individuals with significant lung function impairment. Alveolar macrophages are generally classified into pro-inflammatory (M1) or anti-inflammatory (M2) subsets that play distinct roles in the initiation and resolution of inflammation. Therefore, monocyte-macrophage differentiation should be tightly controlled to maintain lung integrity. In this study, we determined the effect of α-defensins on monocyte-macrophage differentiation and identified the molecular mechanism of this effect. The results of this study demonstrate that 2.5 μM of α-defensins inhibit the phosphorylation of ERK1/2 and STAT3 and suppress the expression of M2 macrophage markers, CD163 and CD206. In addition, a scratch assay shows that the high concentration of α-defensins inhibits cell movement by ~ 50%, and the phagocytosis assay using flow cytometry shows that α-defensins significantly reduce the bacterial phagocytosis rate of monocyte-derived macrophages (MDMs). To examine whether exogenous AAT is able to alleviate the inhibitory effect of α-defensins on macrophage function, we incubated MDMs with AAT prior to α-defensin treatment and demonstrate that AAT improves the migratory ability and phagocytic ability of MDMs compared with MDMs incubated only with α-defensins. Taken together, this study suggests that a high concentration of α-defensins inhibits the activation of ERK/STAT3 signaling, negatively regulates the expression of M2 macrophage markers, and impairs innate immune function of macrophages.
Collapse
Affiliation(s)
- Jungnam Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Naweed Mohammad
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Yuanqing Lu
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Regina Oshins
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Alek Aranyos
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Mark Brantly
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
7
|
Maraga E, Safadi R, Amer J, Higazi AAR, Fanne RA. Alleviation of Hepatic Steatosis by Alpha-Defensin Is Associated with Enhanced Lipolysis. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050983. [PMID: 37241215 DOI: 10.3390/medicina59050983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Background and Objectives: The neutrophilic peptide, alpha-defensin, is considered an evolving risk factor intimately linked with lipid mobilization. It was previously linked to augmented liver fibrosis. Here, we assess a potential association between alpha-defensin and fatty liver. Materials and Methods: A cohort of transgenic C57BL/6JDef+/+ male mice that overexpress the human neutrophil-derived alpha-defensin in their polymorphonuclear neutrophils (PMNs) were assessed for liver steatosis and fibrosis development. Wild type (C57BL/6JDef.Wt) and transgenic (C57BL/6JDef+/+) mice were maintained on a standard rodent chow diet for 8.5 months. At the termination of the experiment, systemic metabolic indices and hepatic immunological cell profiling were assessed. Results: The Def+/+ transgenic mice exhibited lower body and liver weights, lower serum fasting glucose and cholesterol, and significantly lower liver fat content. These results were associated with impaired liver lymphocytes count and function (lower CD8, NK cells, and killing marker CD107a). The metabolic cage demonstrated dominant fat utilization with a comparable food intake in the Def+/+ mice. Conclusions: Chronic physiological expression of alpha-defensin induces favorable blood metabolic profile, increased systemic lipolysis, and decreased hepatic fat accumulation. Further studies are needed to characterize the defensin net liver effect.
Collapse
Affiliation(s)
- Emad Maraga
- Department of Clinical Biochemistry, Hadassah Hebrew University Hospital, Jerusalem IL-91120, Israel
| | - Rifaat Safadi
- Liver Unit, Hadassah Hebrew University Hospital, Jerusalem IL-91120, Israel
| | - Johnny Amer
- Liver Unit, Hadassah Hebrew University Hospital, Jerusalem IL-91120, Israel
| | - Abd Al-Roof Higazi
- Department of Clinical Biochemistry, Hadassah Hebrew University Hospital, Jerusalem IL-91120, Israel
| | - Rami Abu Fanne
- Department of Clinical Biochemistry, Hadassah Hebrew University Hospital, Jerusalem IL-91120, Israel
- Department of Cardiology, Hillel Yaffe Medical Center, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
8
|
Abstract
Human and murine neutrophils differ with respect to representation in blood, receptors, nuclear morphology, signaling pathways, granule proteins, NADPH oxidase regulation, magnitude of oxidant and hypochlorous acid production, and their repertoire of secreted molecules. These differences often matter and can undermine extrapolations from murine studies to clinical care, as illustrated by several failed therapeutic interventions based on mouse models. Likewise, coevolution of host and pathogen undercuts fidelity of murine models of neutrophil-predominant human infections. However, murine systems that accurately model the human condition can yield insights into human biology difficult to obtain otherwise. The challenge for investigators who employ murine systems is to distinguish models from pretenders and to know when the mouse provides biologically accurate insights. Testing with human neutrophils observations made in murine systems would provide a safeguard but is not always possible. At a minimum, studies that use exclusively murine neutrophils should have accurate titles supported by data and restrict conclusions to murine neutrophils and not encompass all neutrophils. For now, the integration of evidence from studies of neutrophil biology performed using valid murine models coupled with testing in vitro of human neutrophils combines the best of both approaches to elucidate the mysteries of human neutrophil biology.
Collapse
Affiliation(s)
- William M Nauseef
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
9
|
Kayongo A, Robertson NM, Siddharthan T, Ntayi ML, Ndawula JC, Sande OJ, Bagaya BS, Kirenga B, Mayanja-Kizza H, Joloba ML, Forslund SK. Airway microbiome-immune crosstalk in chronic obstructive pulmonary disease. Front Immunol 2023; 13:1085551. [PMID: 36741369 PMCID: PMC9890194 DOI: 10.3389/fimmu.2022.1085551] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) has significantly contributed to global mortality, with three million deaths reported annually. This impact is expected to increase over the next 40 years, with approximately 5 million people predicted to succumb to COPD-related deaths annually. Immune mechanisms driving disease progression have not been fully elucidated. Airway microbiota have been implicated. However, it is still unclear how changes in the airway microbiome drive persistent immune activation and consequent lung damage. Mechanisms mediating microbiome-immune crosstalk in the airways remain unclear. In this review, we examine how dysbiosis mediates airway inflammation in COPD. We give a detailed account of how airway commensal bacteria interact with the mucosal innate and adaptive immune system to regulate immune responses in healthy or diseased airways. Immune-phenotyping airway microbiota could advance COPD immunotherapeutics and identify key open questions that future research must address to further such translation.
Collapse
Affiliation(s)
- Alex Kayongo
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Medicine, Center for Emerging Pathogens, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, United States
| | | | - Trishul Siddharthan
- Division of Pulmonary Medicine, School of Medicine, University of Miami, Miami, FL, United States
| | - Moses Levi Ntayi
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Josephine Caren Ndawula
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Obondo J. Sande
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bernard S. Bagaya
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bruce Kirenga
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Harriet Mayanja-Kizza
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Moses L. Joloba
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Sofia K. Forslund
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany,Experimental and Clinical Research Center, a cooperation of Charité - Universitatsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany,Charité-Universitatsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany,*Correspondence: Sofia K. Forslund,
| |
Collapse
|
10
|
Human neutrophil peptides 1-3 protect the murine urinary tract from uropathogenic Escherichia coli challenge. Proc Natl Acad Sci U S A 2022; 119:e2206515119. [PMID: 36161923 PMCID: PMC9546544 DOI: 10.1073/pnas.2206515119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial peptides (AMPs) are critical to the protection of the urinary tract of humans and other animals from pathogenic microbial invasion. AMPs rapidly destroy pathogens by disrupting microbial membranes and/or augmenting or inhibiting the host immune system through a variety of signaling pathways. We have previously demonstrated that alpha-defensins 1-3 (DEFA1A3) are AMPs expressed in the epithelial cells of the human kidney collecting duct in response to uropathogens. We also demonstrated that DNA copy number variations in the DEFA1A3 locus are associated with UTI and pyelonephritis risk. Because DEFA1A3 is not expressed in mice, we utilized human DEFA1A3 gene transgenic mice (DEFA4/4) to further elucidate the biological relevance of this locus in the murine urinary tract. We demonstrate that the kidney transcriptional and translational expression pattern is similar in humans and the human gene transgenic mouse upon uropathogenic Escherichia coli (UPEC) stimulus in vitro and in vivo. We also demonstrate transgenic human DEFA4/4 gene mice are protected from UTI and pyelonephritis under various UPEC challenges. This study serves as the foundation to start the exploration of manipulating the DEFA1A3 locus and alpha-defensins 1-3 expression as a potential therapeutic target for UTIs and other infectious diseases.
Collapse
|
11
|
Pulmonary perfusion imaging and delayed imaging to measure pulmonary capillary permeability in pulmonary contusion. Nucl Med Commun 2022; 43:687-693. [PMID: 35437294 DOI: 10.1097/mnm.0000000000001560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Explore the application value of pulmonary perfusion imaging and delayed imaging for evaluating pulmonary capillary permeability. MATERIALS AND METHODS After establishing a rat model of pulmonary contusion, changes in the metabolic index of technetium-99m macroaggregated albumin (99mTC-MAA) in the lungs of model rats were evaluated for two consecutive days. 99mTC-MAA metabolic indices of rat lungs with pulmonary contusion of varying severity (mild, moderate, and severe) were correlated with lung wet/dry weight ratio (W/D) and Evans blue extravasation. Finally, the method was validated in patients with pulmonary contusion and one healthy volunteer. RESULTS The 99mTC-MAA metabolic index was 23.56% ± 2.44% in healthy control (HC) rat lung, 8.56% ± 3.42% immediately after lung contusion (d0), 8.35% ± 3.20% after 1 day (d1), and 17.45% ± 6.44% after 2 days (d2); indices at d0 and d1 were significantly higher than those at HC (P < 0.05). The metabolic index of 99mTC-MAA in lung had significant negative correlations with W/D (r = -0.8025; P = 0.0092) and Evans blue extravasation (r = -0.9356; P = 0.0002). Metabolic and oxygenation indices of 99mTC-MAA exhibited a significant positive linear correlation in patients with pulmonary contusion (r = 0.8925; P = 0.0416). CONCLUSION Pulmonary perfusion and delayed imaging of 99mTC-MAA have potential value for evaluating pulmonary capillary permeability.
Collapse
|
12
|
Chelushkin PS, Shakirova JR, Kritchenkov IS, Baigildin VA, Tunik SP. Phosphorescent NIR emitters for biomedicine: applications, advances and challenges. Dalton Trans 2021; 51:1257-1280. [PMID: 34878463 DOI: 10.1039/d1dt03077a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Application of NIR (near-infrared) emitting transition metal complexes in biomedicine is a rapidly developing area of research. Emission of this class of compounds in the "optical transparency windows" of biological tissues and the intrinsic sensitivity of their phosphorescence to oxygen resulted in the preparation of several commercial oxygen sensors capable of deep (up to whole-body) and quantitative mapping of oxygen gradients suitable for in vivo experimental studies. In addition to this achievement, the last decade has also witnessed the increased growth of successful alternative applications of NIR phosphors that include (i) site-specific in vitro and in vivo visualization of sophisticated biological models ranging from 3D cell cultures to intact animals; (ii) sensing of various biologically relevant analytes, such as pH, reactive oxygen and nitrogen species, RedOx agents, etc.; (iii) and several therapeutic applications such as photodynamic (PDT), photothermal (PTT), and photoactivated cancer (PACT) therapies as well as their combinations with other therapeutic and imaging modalities to yield new variants of combined therapies and theranostics. Nevertheless, emerging applications of these compounds in experimental biomedicine and their implementation as therapeutic agents practically applicable in PDT, PTT, and PACT face challenges related to a critically important improvement of their photophysical and physico-chemical characteristics. This review outlines the current state of the art and achievements of the last decade and stresses the most promising trends, major development prospects, and challenges in the design of NIR phosphors suitable for biomedical applications.
Collapse
Affiliation(s)
- Pavel S Chelushkin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Julia R Shakirova
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Ilya S Kritchenkov
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Vadim A Baigildin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Sergey P Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| |
Collapse
|
13
|
Viola H, Washington K, Selva C, Grunwell J, Tirouvanziam R, Takayama S. A High-Throughput Distal Lung Air-Blood Barrier Model Enabled By Density-Driven Underside Epithelium Seeding. Adv Healthc Mater 2021; 10:e2100879. [PMID: 34174173 DOI: 10.1002/adhm.202100879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 12/18/2022]
Abstract
High-throughput tissue barrier models can yield critical insights on how barrier function responds to therapeutics, pathogens, and toxins. However, such models often emphasize multiplexing capability at the expense of physiologic relevance. Particularly, the distal lung's air-blood barrier is typically modeled with epithelial cell monoculture, neglecting the substantial contribution of endothelial cell feedback in the coordination of barrier function. An obstacle to establishing high-throughput coculture models relevant to the epithelium/endothelium interface is the requirement for underside cell seeding, which is difficult to miniaturize and automate. Therefore, this paper describes a scalable, low-cost seeding method that eliminates inversion by optimizing medium density to float cells so they attach under the membrane. This method generates a 96-well model of the distal lung epithelium-endothelium barrier with serum-free, glucocorticoid-free air-liquid differentiation. The polarized epithelial-endothelial coculture exhibits mature barrier function, appropriate intercellular junction staining, and epithelial-to-endothelial transmission of inflammatory stimuli such as polyinosine:polycytidylic acid (poly(I:C)). Further, exposure to influenza A virus PR8 and human beta-coronavirus OC43 initiates a dose-dependent inflammatory response that propagates from the epithelium to endothelium. While this model focuses on the air-blood barrier, the underside seeding method is generalizable to various coculture tissue models for scalable, physiologic screening.
Collapse
Affiliation(s)
- Hannah Viola
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology 311 Ferst Dr. NW Atlanta GA 30308 USA
- Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 315 Ferst Dr. NW Atlanta GA 30332 USA
| | - Kendra Washington
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology 315 Ferst Dr. NW Atlanta GA 30308 USA
| | - Cauviya Selva
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology 315 Ferst Dr. NW Atlanta GA 30308 USA
| | - Jocelyn Grunwell
- Division of Critical Care Medicine Children's Healthcare of Atlanta at Egleston 1405 Clifton Road NE Atlanta GA 30322 USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics Emory University School of Medicine and Center for CF & Airways Disease Research 2015 Uppergate Dr NE, Rm 344 Atlanta GA 30322 USA
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology 315 Ferst Dr. NW Atlanta GA 30308 USA
- Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 315 Ferst Dr. NW Atlanta GA 30332 USA
| |
Collapse
|
14
|
Abdeen S, Bdeir K, Abu‐Fanne R, Maraga E, Higazi M, Khurram N, Feldman M, Deshpande C, Litzky LA, Heyman SN, Montone KT, Cines DB, Higazi AA. Alpha-defensins: risk factor for thrombosis in COVID-19 infection. Br J Haematol 2021; 194:44-52. [PMID: 34053084 PMCID: PMC8239944 DOI: 10.1111/bjh.17503] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022]
Abstract
The inflammatory response to SARS/CoV-2 (COVID-19) infection may contribute to the risk of thromboembolic complications. α-Defensins, antimicrobial peptides released from activated neutrophils, are anti-fibrinolytic and prothrombotic in vitro and in mouse models. In this prospective study of 176 patients with COVID-19 infection, we found that plasma levels of α-defensins were elevated, tracked with disease progression/mortality or resolution and with plasma levels of interleukin-6 (IL-6) and D-dimers. Immunohistochemistry revealed intense deposition of α-defensins in lung vasculature and thrombi. IL-6 stimulated the release of α-defensins from neutrophils, thereby accelerating coagulation and inhibiting fibrinolysis in human blood, imitating the coagulation pattern in COVID-19 patients. The procoagulant effect of IL-6 was inhibited by colchicine, which blocks neutrophil degranulation. These studies describe a link between inflammation and the risk of thromboembolism, and they identify a potential new approach to mitigate this risk in patients with COVID-19 and potentially in other inflammatory prothrombotic conditions.
Collapse
Affiliation(s)
- Suhair Abdeen
- Department of Clinical BiochemistryHadassah‐Hebrew UniversityJerusalemIL‐91120Israel
| | - Khalil Bdeir
- Departments of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA19104USA
| | - Rami Abu‐Fanne
- Heart InstituteHillel Yaffe Medical Center Affiliated with Rappaport Faculty of MedicineTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Emad Maraga
- Heart InstituteHillel Yaffe Medical Center Affiliated with Rappaport Faculty of MedicineTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Mohamed Higazi
- Department of Clinical BiochemistryHadassah‐Hebrew UniversityJerusalemIL‐91120Israel
| | - Nigar Khurram
- Departments of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA19104USA
| | - Michael Feldman
- Departments of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA19104USA
| | - Charuhas Deshpande
- Departments of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA19104USA
| | - Leslie A. Litzky
- Departments of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA19104USA
| | - Samuel N. Heyman
- Department of MedicineHadassah University HospitalMt. ScopusJerusalemIL‐91240Israel
| | - Kathleen T. Montone
- Departments of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA19104USA
| | - Douglas B. Cines
- Departments of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA19104USA
- Department of MedicineUniversity of Pennsylvania‐ Perelman School of MedicinePhiladelphiaPA19104USA
| | - Abd Al‐Roof Higazi
- Department of Clinical BiochemistryHadassah‐Hebrew UniversityJerusalemIL‐91120Israel
| |
Collapse
|
15
|
Morales-Primo AU, Becker I, Zamora-Chimal J. Neutrophil extracellular trap-associated molecules: a review on their immunophysiological and inflammatory roles. Int Rev Immunol 2021; 41:253-274. [PMID: 34036897 DOI: 10.1080/08830185.2021.1921174] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neutrophil extracellular traps (NETs) are a defense mechanism against pathogens. They are composed of DNA and various proteins and have the ability to hinder microbial spreading and survival. However, NETs are not only related to infections but also participate in sterile inflammatory events. In addition to DNA, NETs contain histones, serine proteases, cytoskeletal proteins and antimicrobial peptides, all of which have immunomodulatory properties that can augment or decrease the inflammatory response. Extracellular localization of these molecules alerts the immune system of cellular damage, which is triggered by recognition of damage-associated molecular patterns (DAMPs) through specific pattern recognition receptors. However, not all of these molecules are DAMPs and may have other immunophysiological properties in the extracellular space. The release of NETs can lead to production of pro-inflammatory cytokines (due to TLR2/4/9 and inflammasome activation), the destruction of the extracellular matrix, activation of serine proteases and of matrix metallopeptidases (MMPs), modulation of cellular proliferation, induction of cellular migration and adhesion, promotion of thrombogenesis and angiogenesis and disruption of epithelial and endothelial permeability. Understanding the dynamics of NET-associated molecules, either individually or synergically, will help to unravel their role in inflammatory events and open novel perspectives for potential therapeutic targets. We here review molecules contained within NETS and their immunophysiological roles.
Collapse
Affiliation(s)
- Abraham U Morales-Primo
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Ingeborg Becker
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| |
Collapse
|
16
|
Wu YX, Zeng S, Wan BB, Wang YY, Sun HX, Liu G, Gao ZQ, Chen D, Chen YQ, Lu MD, Pang QF. Sophoricoside attenuates lipopolysaccharide-induced acute lung injury by activating the AMPK/Nrf2 signaling axis. Int Immunopharmacol 2021; 90:107187. [PMID: 33249045 DOI: 10.1016/j.intimp.2020.107187] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/19/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
Sophoricoside (SOP), an isoflavone glycoside isolated from seed of Sophora japonica L., has been reported to have various pharmacological activities, including anti-cancer, anti-allergy and anti-inflammation. However, the effect of SOP on lipopolysaccharides (LPS)-acute lung injury (ALI) is completely unclear. Here, we found that SOP pretreatment significantly ameliorated LPS-induced pathological damage, tissue permeability, neutrophil infiltration and the production of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in a murine model of ALI. Besides, SOP reduced the production of pro-inflammatory mediators such as iNOS, NO and inflammatory cytokines including TNF-α, IL-1β and IL-6 in LPS-stimulated RAW264.7 cells and bone marrow derived macrophages. Interestingly, treatment with SOP exhibited no effect on the activation of NF-κB and MAPKs in macrophages but prominently accelerated the expression and nuclear translocation of Nrf2. By using ML385, a specific Nrf2 inhibitor, we found that inhibition of Nrf2 abolished the inhibitory effect of SOP on LPS-induced iNOS expression, NO production as well as pro-inflammatory cytokine generation. SOP also activated AMPK, an upstream protein of Nrf2, under LPS stimuli. Furthermore, we demonstrated that the accelerated expression of Nrf2 induced by SOP was reversed by interference with the AMPK inhibitor Compound C. Taken together, our results suggested that SOP attenuated LPS-induced ALI in AMPK/Nrf2 dependent manner and indicated that SOP might be a potential therapeutic candidate for treating ALI/ARDS.
Collapse
Affiliation(s)
- Ya-Xian Wu
- Wuxi School of Medicine, Jiangnan University, PR China; School of Food Science and Technology, Jiangnan University, PR China
| | - Si Zeng
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, PR China
| | - Bin-Bin Wan
- Wuxi School of Medicine, Jiangnan University, PR China
| | | | | | - Gang Liu
- Wuxi School of Medicine, Jiangnan University, PR China
| | - Zhi-Qi Gao
- Wuxi School of Medicine, Jiangnan University, PR China
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, PR China
| | - Yong-Quan Chen
- Wuxi School of Medicine, Jiangnan University, PR China; School of Food Science and Technology, Jiangnan University, PR China
| | - Mu-Dan Lu
- Central Laboratory, The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, PR China.
| | | |
Collapse
|
17
|
Grégory Franck. Role of mechanical stress and neutrophils in the pathogenesis of plaque erosion. Atherosclerosis 2020; 318:60-69. [PMID: 33190807 DOI: 10.1016/j.atherosclerosis.2020.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/05/2020] [Accepted: 11/03/2020] [Indexed: 02/05/2023]
Abstract
Mechanical stress is a well-recognized driver of plaque rupture. Likewise, investigating the role of mechanical forces in plaque erosion has recently begun to provide some important insights, yet the knowledge is by far less advanced. The most significant example is that of shear stress, which has early been proposed as a possible driver for focal endothelial death and denudation. Recent findings using optical coherence tomography, computational sciences and mechanical models show that plaque erosion occurs most likely around atheromatous plaque throats with specific stress pattern. In parallel, we have recently shown that neutrophil-dependent inflammation promotes plaque erosion, possibly through a noxious action on ECs. Most importantly, spontaneous thrombosis - associated or not with EC denudation - can be impacted by hemodynamics, and it is now established that neutrophils promote thrombosis and platelet activation, highlighting a potential relationship between, mechanical stress, inflammation, and EC loss in the setting of coronary plaque erosion. Here, we review our current knowledge regarding the implication of both mechanical stress and neutrophils, and we discuss their implication in the promotion of plaque erosion via EC loss and thrombosis.
Collapse
Affiliation(s)
- Grégory Franck
- Inserm LVTS U1148. CHU Bichat, 46 Rue Henri Huchard, 75018, Paris, France.
| |
Collapse
|
18
|
Wu Y, Nie Y, Huang J, Qiu Y, Wan B, Liu G, Chen J, Chen D, Pang Q. Protostemonine alleviates heat-killed methicillin-resistant Staphylococcus aureus-induced acute lung injury through MAPK and NF-κB signaling pathways. Int Immunopharmacol 2019; 77:105964. [PMID: 31669889 DOI: 10.1016/j.intimp.2019.105964] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
Abstract
Acute lung injury (ALI) and its most severe form acute respiratory distress syndrome (ARDS) caused by gram-positive bacteria threatens human life because effective treatments and medicines is unavailable. Protostemonine (PSN), an active alkaloid mainly isolated from the roots of Stemona sesslifolia, has anti-inflammatory effects on asthma and gram-negative bacteria-induced ALI. Here, we found that PSN exhibits anti-inflammatory effects and alleviates heat-killed methicillin-resistant Staphylococcus aureus (HKMRSA)-induced pneumonia. PSN treatment significantly attenuated HKMRSA-induced pathological injury, pulmonary neutrophil infiltration, tissue permeability and the production of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in murine ALI model. In addition, PSN decreased the content of TNF-α, IL-1β, IL-6 and the expression of iNOS, as well as the production of NO in HKMRSA-induced bone marrow derived macrophages (BMDMs). Furthermore, treatment with PSN suppressed the activation of MAPKs (e.g. p38 MAPK, JNK and ERK) and NF-κB. Collectively, our results suggest that PSN ameliorates gram-positive bacteria-induced ALI in mice by inhibition of the MAPK and NF-κB signaling pathways, and our studies suggest that PSN might be a novel candidate for treating ALI/ARDS.
Collapse
Affiliation(s)
- Yaxian Wu
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Yunjuan Nie
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Jianfeng Huang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214062, PR China
| | - Yubao Qiu
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Binbin Wan
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Gang Liu
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Junliang Chen
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| | - Qingfeng Pang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China.
| |
Collapse
|
19
|
Li Q, Liu L, Sun H, Cao K. Carnosic acid protects against lipopolysaccharide-induced acute lung injury in mice. Exp Ther Med 2019; 18:3707-3714. [PMID: 31611929 PMCID: PMC6781802 DOI: 10.3892/etm.2019.8042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome is a well-known inflammatory disease associated with high rates of morbidity and mortality due to a lack of effective treatment methods. Carnosic acid (CA) is a phenolic diterpene compound that serves a central role in cytoprotective responses to inflammation. In the present study, the protective mechanism of CA on acute lung injury (ALI) induced by lipopolysaccharide (LPS) was investigated. Mice were randomly assigned to the following five groups: Control group, LPS group, and LPS plus CA groups (at 10, 20 and 40 mg/kg doses). Following pre-treatment with vehicle or CA, ALI was induced by the administration of LPS. At 6 h after LPS treatment, mice were sacrificed and lung tissues were harvested for histologic analysis and the determination of wet-to-dry ratio, myeloperoxidase activity and toll-like receptor 4 (TLR4) and NF-κB expression. Additionally, the levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) were determined in bronchoalveolar lavage fluid (BALF) and lung tissues, as well as the rate of apoptosis of the isolated neutrophils from BALF. The alleviation of LPS-induced ALI by CA was confirmed by histologic results and a reduction in the wet-to-dry ratio of lung tissues. Additionally, CA was revealed to significantly suppress the inhibitory effect of LPS on neutrophil apoptosis and the promoting effects of LPS on IL-1β, IL-6, TNF-α, TLR4 and NF-κB expression, and NF-κB phosphorylation. The current results indicated that CA protects against LPS-induced ALI via a mechanism that inhibits inflammation.
Collapse
Affiliation(s)
- Quan Li
- Intensive Care Unit, Suqian First Hospital, Suqian, Jiangsu 223800, P.R. China
| | - Ling Liu
- Intensive Care Unit, Zhongda Hospital Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Haijun Sun
- Intensive Care Unit, Suqian First Hospital, Suqian, Jiangsu 223800, P.R. China
| | - Kunyue Cao
- Intensive Care Unit, Suqian First Hospital, Suqian, Jiangsu 223800, P.R. China
| |
Collapse
|
20
|
Distinctive Roles and Mechanisms of Human Neutrophil Peptides in Experimental Sepsis and Acute Respiratory Distress Syndrome. Crit Care Med 2019; 46:e921-e927. [PMID: 29979223 DOI: 10.1097/ccm.0000000000003265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To examine the effects and mechanisms of human neutrophil peptides in systemic infection and noninfectious inflammatory lung injury. DESIGN Prospective experimental study. SETTING University hospital-based research laboratory. SUBJECTS In vitro human cells and in vivo mouse models. INTERVENTIONS Wild-type (Friend virus B-type) and conditional leukocyte human neutrophil peptides transgenic mice were subjected to either sepsis induced by cecal ligation and puncture or acute lung injury by intratracheal instillation of hydrochloric acid followed by mechanical ventilation. Using human neutrophil peptides as bait, the basal cell adhesion molecule (CD239) and the purinergic P2Y purinoceptor 6 receptor were identified as the putative human neutrophil peptides receptor complex in human lung epithelial cells. MEASUREMENTS AND MAIN RESULTS In the cecal ligation and puncture sepsis model, Friend virus B-type mice exhibited higher systemic bacterial load, cytokine production, and lung injury than human neutrophil peptides transgenic mice. Conversely, an increased lung cytokine production was seen in Friend virus B-type mice, which was further enhanced in human neutrophil peptides transgenic mice in response to two-hit lung injury induced by hydrochloric acid and mechanical ventilation. The human neutrophil peptides-mediated inflammatory response was mediated through the basal cell adhesion molecule-P2Y purinoceptor 6 receptor signal pathway in human lung epithelial cells. CONCLUSIONS Human neutrophil peptides are critical in host defense against infectious sepsis by their cationic antimicrobial properties but may exacerbate tissue injury when neutrophil-mediated inflammatory responses are excessive in noninfectious lung injury. Targeting the basal cell adhesion molecule/P2Y purinoceptor 6 signaling pathway may serve as a novel approach to attenuate the neutrophil-mediated inflammatory responses and injury while maintaining the antimicrobial function of human neutrophil peptides in critical illness.
Collapse
|
21
|
Increased gene copy number of DEFA1/DEFA3 worsens sepsis by inducing endothelial pyroptosis. Proc Natl Acad Sci U S A 2019; 116:3161-3170. [PMID: 30718392 PMCID: PMC6386704 DOI: 10.1073/pnas.1812947116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sepsis claims an estimated 30 million episodes and 6 million deaths per year, and treatment options are rather limited. Human neutrophil peptides 1-3 (HNP1-3) are the most abundant neutrophil granule proteins but their neutrophil content varies because of unusually extensive gene copy number polymorphism. A genetic association study found that increased copy number of the HNP-encoding gene DEFA1/DEFA3 is a risk factor for organ dysfunction during sepsis development. However, direct experimental evidence demonstrating that these risk alleles are pathogenic for sepsis is lacking because the genes are present only in some primates and humans. Here, we generate DEFA1/DEFA3 transgenic mice with neutrophil-specific expression of the peptides. We show that mice with high copy number of DEFA1/DEFA3 genes have more severe sepsis-related vital organ damage and mortality than mice with low copy number of DEFA1/DEFA3 or wild-type mice, resulting from more severe endothelial barrier dysfunction and endothelial cell pyroptosis after sepsis challenge. Mechanistically, HNP-1 induces endothelial cell pyroptosis via P2X7 receptor-mediating canonical caspase-1 activation in a NLRP3 inflammasome-dependent manner. Based on these findings, we engineered a monoclonal antibody against HNP-1 to block the interaction with P2X7 and found that the blocking antibody protected mice carrying high copy number of DEFA1/DEFA3 from lethal sepsis. We thus demonstrate that DEFA1/DEFA3 copy number variation strongly modulates sepsis development in vivo and explore a paradigm for the precision treatment of sepsis tailored by individual genetic information.
Collapse
|
22
|
Abu-Fanne R, Stepanova V, Litvinov RI, Abdeen S, Bdeir K, Higazi M, Maraga E, Nagaswami C, Mukhitov AR, Weisel JW, Cines DB, Higazi AAR. Neutrophil α-defensins promote thrombosis in vivo by altering fibrin formation, structure, and stability. Blood 2019; 133:481-493. [PMID: 30442678 PMCID: PMC6356988 DOI: 10.1182/blood-2018-07-861237] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023] Open
Abstract
Inflammation and thrombosis are integrated, mutually reinforcing processes, but the interregulatory mechanisms are incompletely defined. Here, we examined the contribution of α-defensins (α-defs), antimicrobial proteins released from activated human neutrophils, on clot formation in vitro and in vivo. Activation of the intrinsic pathway of coagulation stimulates release of α-defs from neutrophils. α-Defs accelerate fibrin polymerization, increase fiber density and branching, incorporate into nascent fibrin clots, and impede fibrinolysis in vitro. Transgenic mice (Def++) expressing human α-Def-1 developed larger, occlusive, neutrophil-rich clots after partial inferior vena cava (IVC) ligation than those that formed in wild-type (WT) mice. IVC thrombi extracted from Def++ mice were composed of a fibrin meshwork that was denser and contained a higher proportion of tightly packed compressed polyhedral erythrocytes than those that developed in WT mice. Def++ mice were resistant to thromboprophylaxis with heparin. Inhibiting activation of the intrinsic pathway of coagulation, bone marrow transplantation from WT mice or provision of colchicine to Def++ mice to inhibit neutrophil degranulation decreased plasma levels of α-defs, caused a phenotypic reversion characterized by smaller thrombi comparable to those formed in WT mice, and restored responsiveness to heparin. These data identify α-defs as a potentially important and tractable link between innate immunity and thrombosis.
Collapse
Affiliation(s)
- Rami Abu-Fanne
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
| | | | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Suhair Abdeen
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
| | - Khalil Bdeir
- Department of Pathology and Laboratory Medicine and
| | - Mohamed Higazi
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
| | - Emad Maraga
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
| | - Chandrasekaran Nagaswami
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and
| | - Alexander R Mukhitov
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and
| | | | - Abd Al-Roof Higazi
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
- Department of Pathology and Laboratory Medicine and
| |
Collapse
|
23
|
Nadeem A, Ahmad SF, Al-Harbi NO, Al-Harbi MM, Ibrahim KE, Kundu S, Attia SM, Alanazi WA, AlSharari SD. Inhibition of spleen tyrosine kinase signaling protects against acute lung injury through blockade of NADPH oxidase and IL-17A in neutrophils and γδ T cells respectively in mice. Int Immunopharmacol 2019; 68:39-47. [PMID: 30611000 DOI: 10.1016/j.intimp.2018.12.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/05/2018] [Accepted: 12/28/2018] [Indexed: 12/16/2022]
Abstract
Acute lung injury (ALI) is one of the most serious complications in critically ill patients which often leads to morbidity and mortality. ALI characterized by severe inflammation of lungs occurs due to uncontrolled inflammatory immune response. However, the immunological mechanism(s) are far from being understood. The spleen tyrosine kinase (SYK), a key component of immune receptor signaling, plays a critical role in the modulation of inflammatory signaling in different immune cells. However, its role in ALI remains to be explored. Therefore, in this study, we investigated the effect of R406, a SYK inhibitor in lipopolysaccharide (LPS)-induced ALI mouse model. LPS led to increased SYK expression in neutrophils and gamma delta (γδ) T cells. This was associated with increased neutrophilic airway inflammation, vascular permeability, myeloperoxidase activity in the lung with upregulated expression of NADPH oxidase (NOX2)/MCP-1/TNF-α in neutrophils and IL-17A in γδ T cells/lung. Pulmonary inflammation was associated with higher mortality in mice with ALI. Inhibition of SYK signaling using R406 in the lung led to blockade of neutrophilic airway inflammation, vascular permeability, pro-inflammatory cytokine release and oxidative stress in innate immune cells, i.e. γδ T cells and neutrophils and the lung. R406 administered LPS group had better survival rate than LPS group. This suggests that SYK upregulation in γδ T cells and neutrophils plays an important role in inflammatory process during ALI. In conclusion, R406 exhibited a great potential to block the LPS-induced airway inflammation and mortality which could be developed as a potential future therapy in ALI.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Swati Kundu
- Department of Biochemistry, South Campus, University of Delhi, New Delhi, India
| | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael A Alanazi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shakir D AlSharari
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Zheng J, Huang Y, Islam D, Wen XY, Wu S, Streutker C, Luo A, Li M, Khang J, Han B, Zhong N, Li Y, Yu K, Zhang H. Dual effects of human neutrophil peptides in a mouse model of pneumonia and ventilator-induced lung injury. Respir Res 2018; 19:190. [PMID: 30268129 PMCID: PMC6162902 DOI: 10.1186/s12931-018-0869-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/20/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Pneumonia is a major cause of high morbidity and mortality in critically illness, and frequently requires support with mechanical ventilation. The latter can lead to ventilator-induced lung injury characterized by neutrophil infiltration. The cationic human neutrophil peptides (HNP) stored in neutrophils can kill microorganisms, but excessive amount of HNP released during phagocytosis may contribute to inflammatory responses and worsen lung injury. Based on our previous work, we hypothesized that blocking the cell surface purinergic receptor P2Y6 will attenuate the HNP-induced inflammatory responses while maintaining their antimicrobial activity in pneumonia followed by mechanical ventilation. METHODS Plasma HNP levels were measured in patients with pneumonia who received mechanical ventilation and in healthy volunteers. FVB littermate control and HNP transgenic (HNP+) mice were randomized to receive P. aeruginosa intranasally. The P2Y6 antagonist (MRS2578) or vehicle control was given after P. aeruginosa instillation. Additional mice underwent mechanical ventilation at either low pressure (LP) or high pressure (HP) ventilation 48 h after pneumonia, and were observed for 24 h. RESULTS Plasma HNP concentration increased in patients with pneumonia as compared to healthy subjects. The bacterial counts in the bronchoalveolar lavage fluid (BALF) were lower in HNP+ mice than in FVB mice 72 h after P. aeruginosa instillation. However, upon receiving HP ventilation, HNP+ mice had higher levels of cytokines and chemokines in BALF than FVB mice. These inflammatory responses were attenuated by the treatment with MRS2578 that did not affect the microbial effects of HNP. CONCLUSIONS HNP exerted dual effects by exhibiting antimicrobial activity in pneumonia alone condition while enhancing inflammatory responses in pneumonia followed by HP mechanical ventilation. Blocking P2Y6 can attenuate the inflammation without affecting the antibacterial property of HNP. The P2Y6 receptor may be a novel therapeutic target in attenuation of the leukocyte-mediated excessive host responses in inflammatory lung diseases.
Collapse
Affiliation(s)
- Junbo Zheng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Yongbo Huang
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
| | - Diana Islam
- Keenan Research Center for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
| | - Xiao-Yan Wen
- Keenan Research Center for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
| | - Sulong Wu
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
| | - Catherine Streutker
- Keenan Research Center for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
| | - Alice Luo
- Keenan Research Center for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
| | - Manshu Li
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, Guangdong, China.,Keenan Research Center for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
| | - Julie Khang
- Keenan Research Center for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
| | - Bing Han
- Keenan Research Center for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
| | - Nanshan Zhong
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
| | - Yimin Li
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, Guangdong, China.
| | - Kaijiang Yu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang, China.
| | - Haibo Zhang
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, Guangdong, China. .,Keenan Research Center for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada. .,Interdepartmental Division of Critical Care Medicine, Departments of Anesthesia and Physiology, University of Toronto, Toronto, ON, M5B 1T8, Canada.
| |
Collapse
|
25
|
Zhang D, Li X, Hu Y, Jiang H, Wu Y, Ding Y, Yu K, He H, Xu J, Sun L, Qian F. Tabersonine attenuates lipopolysaccharide-induced acute lung injury via suppressing TRAF6 ubiquitination. Biochem Pharmacol 2018; 154:183-192. [DOI: 10.1016/j.bcp.2018.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022]
|
26
|
Jayne JG, Bensman TJ, Schaal JB, Park AYJ, Kimura E, Tran D, Selsted ME, Beringer PM. Rhesus θ-Defensin-1 Attenuates Endotoxin-induced Acute Lung Injury by Inhibiting Proinflammatory Cytokines and Neutrophil Recruitment. Am J Respir Cell Mol Biol 2018; 58:310-319. [PMID: 28954201 DOI: 10.1165/rcmb.2016-0428oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Acute lung injury (ALI) is a clinical syndrome characterized by acute respiratory failure and is associated with substantial morbidity and mortality. Rhesus θ-defensin (RTD)-1 is an antimicrobial peptide with immunomodulatory activity. As airway inflammation and neutrophil recruitment and activation are hallmarks of ALI, we evaluated the therapeutic efficacy of RTD-1 in preclinical models of the disease. We investigated the effect of RTD-1 on neutrophil chemotaxis and macrophage-driven pulmonary inflammation with human peripheral neutrophils and LPS-stimulated murine alveolar macrophage (denoted MH-S) cells. Treatment and prophylactic single escalating doses were administered subcutaneously in a well-established murine model of direct endotoxin-induced ALI. We assessed lung injury by histopathology, pulmonary edema, inflammatory cell recruitment, and inflammatory cytokines/chemokines in the BAL fluid. In vitro studies demonstrated that RTD-1 suppressed CXCL8-induced neutrophil chemotaxis, TNF-mediated neutrophil-endothelial cell adhesion, and proinflammatory cytokine release in activated murine alveolar immortalized macrophages (MH-S) cells. Treatment with RTD-1 significantly inhibited in vivo LPS-induced ALI by reducing pulmonary edema and histopathological changes. Treatment was associated with dose- and time-dependent inhibition of proinflammatory cytokines (TNF, IL-1β, and IL-6), peroxidase activity, and neutrophil recruitment into the airways. Antiinflammatory effects were demonstrated in animals receiving RTD-1 up to 12 hours after LPS challenge. Notably, subcutaneously administered RTD-1 demonstrates good peptide stability as demonstrated by the long in vivo half-life. Taken together, these studies demonstrate that RTD-1 is efficacious in an experimental model of ALI through inhibition of neutrophil chemotaxis and adhesion, and the attenuation of proinflammatory cytokines and gene expression from alveolar macrophages.
Collapse
Affiliation(s)
| | | | - Justin B Schaal
- 2 Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | | | - Elza Kimura
- 3 State University of Maringá, Maringá, Paraná, Brazil
| | - Dat Tran
- 2 Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Michael E Selsted
- 2 Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | | |
Collapse
|
27
|
Affiliation(s)
- Sylvia Knapp
- Department of Medicine 1Medical University of ViennaVienna, Austria
| |
Collapse
|
28
|
Liu X, Chen Q, Luo Y, Hu Y, Lai D, Zhang X, Zhang X, Yu J, Fang X, Shu Q. Plasma levels of alarmin HNPs 1-3 associate with lung dysfunction after cardiac surgery in children. BMC Pulm Med 2017; 17:218. [PMID: 29282039 PMCID: PMC5745992 DOI: 10.1186/s12890-017-0558-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 12/07/2017] [Indexed: 11/10/2022] Open
Abstract
Background Early onset of lung injury is considerable common after cardiac surgery and is associated with increasing in morbidity and mortality, but current clinical predictors for the occurrence of this complication always have limited positive warning value. This study aimed to evaluate whether elevated plasma levels of human neutrophil peptides (HNPs) 1–3 herald impaired lung function in infants and young children after cardiac surgery necessitating cardiopulmonary bypass (CPB). Methods Consecutive children younger than 3 years old who underwent cardiac surgery were prospectively enrolled. Plasma concentrations of HNPs 1–3 and inflammatory cytokines were measured before, and immediately after CPB, as well as at 1 h, 12 h, and 24 h after CPB. Results Thirty patients were enrolled, 18 (60%) of whom were infants. Plasma levels of HNPs 1–3 and the pro-inflammatory cytokine interleukin-6 (IL-6) significantly increased immediately after CPB (P < 0.001), while IL-8 increased 1 h after the CPB operation (P = 0.002). The anti-inflammatory cytokine IL-10 levels were also significantly elevated immediately after CPB compared with the baseline (P < 0.001). The stepwise multiple linear regression analysis showed that the plasma HNPs 1–3 levels immediately after CPB was independent correlated with the declined lung function, as reflected by the PaO2/FiO2 ratio on the first 2 days after operation (for the first day: OR, −1.067, 95% CI, −0.548 to −1.574; P < 0.001; for the second day: OR, −0.667, 95% CI, −0.183 to −1.148; P = 0.009) and prolonged mechanical ventilation time (OR, 0.039, 95% CI, 0.005 to 0.056; P = 0.011). Plasma levels of HNPs 1–3 and IL-10 returned to the baseline values, while IL-6 and IL-8 levels remained significantly higher than baseline 24 h after CPB (P ≤ 0.01). Conclusions Elevated HNPs 1–3 levels immediately after CPB correlate with impaired lung function, and HNPs 1–3 could serve as a quantifiable early alarmin biomarker for onset of lung injury in infants and young children undergoing cardiac surgery with CPB. Electronic supplementary material The online version of this article (10.1186/s12890-017-0558-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- XiWang Liu
- Department of Thoracic & Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, 3333 Binsheng Road, Hangzhou, 310003, China
| | - QiXing Chen
- Department of Thoracic & Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, 3333 Binsheng Road, Hangzhou, 310003, China
| | - YuJia Luo
- Department of Thoracic & Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, 3333 Binsheng Road, Hangzhou, 310003, China
| | - YaoQin Hu
- Department of Thoracic & Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, 3333 Binsheng Road, Hangzhou, 310003, China
| | - DengMing Lai
- Department of Thoracic & Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, 3333 Binsheng Road, Hangzhou, 310003, China
| | - XiaoLe Zhang
- Department of Thoracic & Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, 3333 Binsheng Road, Hangzhou, 310003, China
| | - XiangHong Zhang
- Department of Thoracic & Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, 3333 Binsheng Road, Hangzhou, 310003, China
| | - JianGen Yu
- Department of Thoracic & Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, 3333 Binsheng Road, Hangzhou, 310003, China
| | - XiangMing Fang
- Department of Anesthesiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Qiang Shu
- Department of Thoracic & Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, 3333 Binsheng Road, Hangzhou, 310003, China.
| |
Collapse
|
29
|
Bdeir K, Gollomp K, Stasiak M, Mei J, Papiewska-Pajak I, Zhao G, Worthen GS, Cines DB, Poncz M, Kowalska MA. Platelet-Specific Chemokines Contribute to the Pathogenesis of Acute Lung Injury. Am J Respir Cell Mol Biol 2017; 56:261-270. [PMID: 27755915 DOI: 10.1165/rcmb.2015-0245oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Platelets and neutrophils contribute to the development of acute lung injury (ALI). However, the mechanism by which platelets make this contribution is incompletely understood. We investigated whether the two most abundant platelet chemokines, CXCL7, which induces neutrophil chemotaxis and activation, and CXCL4, which does neither, mediate ALI through complementary pathogenic pathways. To examine the role of platelet-derived chemokines in the pathogenesis of ALI using Cxcl7-/- and Cxcl4-/- knockout mice and mice that express human CXCL7 or CXCL4, we measured levels of chemokines in these mice. ALI was then induced by acid aspiration, and the severity of injury was evaluated by histology and by the presence of neutrophils and protein in the bronchoalveolar lavage fluid. Pulmonary vascular permeability was studied in vivo by measuring extravasation of fluorescently labeled dextran. Murine CXCL7, both recombinant and native protein released from platelets, can be N-terminally processed by cathepsin G to yield a biologically active CXCL7 fragment. Although Cxcl7-/- mice are protected from lung injury through the preservation of endothelial/epithelial barrier function combined with impaired neutrophils transmigration, Cxcl4-/- mice are protected through improved barrier function without affecting neutrophils transmigration to the airways. Sensitivity to ALI is restored by transgenic expression of CXCL7 or CXCL4. Platelet-derived CXCL7 and CXCL4 contribute to the pathogenesis of ALI through complementary effects on neutrophil chemotaxis and through activation and vascular permeability.
Collapse
Affiliation(s)
- Khalil Bdeir
- Departments of 1 Pathology and Laboratory Medicine and
| | | | - Marta Stasiak
- 3 Department of Cytobiology and Proteomics, Medical University of Lodz, Lodz, Poland; and
| | - Junjie Mei
- 4 Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | - G Scott Worthen
- 6 Pediatrics, University of Pennsylvania-Perelman School of Medicine, Philadelphia, Pennsylvania.,4 Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Mortimer Poncz
- 6 Pediatrics, University of Pennsylvania-Perelman School of Medicine, Philadelphia, Pennsylvania.,Divisions of 2 Hematology and
| | - M Anna Kowalska
- Divisions of 2 Hematology and.,5 Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
30
|
Pechous RD. With Friends Like These: The Complex Role of Neutrophils in the Progression of Severe Pneumonia. Front Cell Infect Microbiol 2017; 7:160. [PMID: 28507954 PMCID: PMC5410563 DOI: 10.3389/fcimb.2017.00160] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/12/2017] [Indexed: 01/12/2023] Open
Abstract
Pneumonia is a leading cause of death from infection in the United States and across the globe. During pulmonary infection, clear resolution of host inflammatory responses occurs in the absence of appreciable lung damage. Neutrophils are the first wave of leukocytes to arrive in the lung upon infection. After activation, neutrophils traffic from the vasculature via transendothelial migration through the lung interstitium and into the alveolar space. Successful pulmonary immunity requires neutrophil-mediated killing of invading pathogens by phagocytosis and release of a myriad of antimicrobial molecules, followed by resolution of inflammation, neutrophil apoptosis, and clearing of dead or dying neutrophils by macrophages. In addition to their antimicrobial role, it is becoming clear that neutrophils are also important modulators of innate and adaptive immune responses, primarily through the release of cytokines and recruitment of additional waves of neutrophils into the airways. Though typically essential to combating severe pneumonia, neutrophil influx into the airways is a double-edged sword: Overzealous neutrophil activation can cause severe tissue damage as a result of the release of toxic agents including proteases, cationic polypeptides, cytokines, and reactive oxygen species (ROS) aimed at killing invading microbes. In extreme cases, the damage caused by neutrophils and other innate immune mediators become the primary source of morbidity and mortality. Here, we review the complex role of neutrophils during severe pneumonia by highlighting specific molecules and processes that contribute to pulmonary immunity, but can also drive progression of severe disease. Depending on the identity of the infectious agent, enhancing or suppressing neutrophil-mediated responses may be key to effectively treating severe and typically lethal pneumonia.
Collapse
Affiliation(s)
- Roger D Pechous
- Department of Microbiology and Immunology, University of Arkansas for Medical SciencesLittle Rock, AR, USA
| |
Collapse
|
31
|
Paulin N, Döring Y, Kooijman S, Blanchet X, Viola JR, de Jong R, Mandl M, Hendrikse J, Schiener M, von Hundelshausen P, Vogt A, Weber C, Bdeir K, Hofmann SM, Rensen PCN, Drechsler M, Soehnlein O. Human Neutrophil Peptide 1 Limits Hypercholesterolemia-induced Atherosclerosis by Increasing Hepatic LDL Clearance. EBioMedicine 2017; 16:204-211. [PMID: 28111237 PMCID: PMC5474437 DOI: 10.1016/j.ebiom.2017.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 11/20/2022] Open
Abstract
Increases in plasma LDL-cholesterol have unequivocally been established as a causal risk factor for atherosclerosis. Hence, strategies for lowering of LDL-cholesterol may have immediate therapeutic relevance. Here we study the role of human neutrophil peptide 1 (HNP1) in a mouse model of atherosclerosis and identify its potent atheroprotective effect both upon transgenic overexpression and therapeutic delivery. The effect was found to be due to a reduction of plasma LDL-cholesterol. Mechanistically, HNP1 binds to apolipoproteins enriched in LDL. This interaction facilitates clearance of LDL particles in the liver via LDL receptor. Thus, we here identify a non-redundant mechanism by which HNP1 allows for reduction of LDL-cholesterol, a process that may be therapeutically instructed to lower cardiovascular risk. Mice with transgenic expression of human neutrophil peptide 1 (HNP1) exhibit lower plasma VLDL/LDL levels and smaller atherosclerotic lesion sizes. Repetitive HNP1 delivery is atheroprotective by reducing hypercholesterolemia. HNP1 binds to apolipoproteins in LDL and facilitates LDL clearance in the liver involving LDL receptor.
Increased plasma lipid levels (i.e. hypercholesterolemia) are a primary risk factor for atherosclerosis, the pathology underlying myocardial infarction and stroke. Here we show that human neutrophil peptide 1 (HNP1, also known as α-defensin), an antimicrobial protein typically released from activated neutrophils, binds to apolipoproteins within plasma lipoproteins and facilitates the clearance of plasma lipids in the liver. As a consequence, repeated injection of hypercholesterolemic mice with HNP1 reduces atherosclerotic lesion formation. Thus, this study provides an innovative strategy to reduce hypercholesterolemia and hence a way to potentially reduce cardiovascular risk.
Collapse
MESH Headings
- Animals
- Apolipoproteins/blood
- Apolipoproteins/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/prevention & control
- Cholesterol, LDL/blood
- Cholesterol, LDL/metabolism
- Female
- Hep G2 Cells
- Humans
- Hypercholesterolemia/genetics
- Hypercholesterolemia/metabolism
- Hypercholesterolemia/prevention & control
- Immunohistochemistry
- Lipoproteins, LDL/blood
- Lipoproteins, LDL/metabolism
- Lipoproteins, LDL/pharmacokinetics
- Liver/drug effects
- Liver/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Confocal
- Protein Binding
- RNA Interference
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- alpha-Defensins/administration & dosage
- alpha-Defensins/genetics
- alpha-Defensins/metabolism
Collapse
Affiliation(s)
- Nicole Paulin
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich 80336, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich 80336, Germany
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Einthoven Laboratory for Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Xavier Blanchet
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich 80336, Germany
| | - Joana R Viola
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich 80336, Germany; Department of Pathology, AMC, 1105 AZ Amsterdam, The Netherlands
| | - Renske de Jong
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich 80336, Germany; Department of Pathology, AMC, 1105 AZ Amsterdam, The Netherlands
| | - Manuela Mandl
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich 80336, Germany
| | - Jeffrey Hendrikse
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich 80336, Germany; Department of Pathology, AMC, 1105 AZ Amsterdam, The Netherlands
| | - Maximilian Schiener
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich 80336, Germany
| | | | - Anja Vogt
- Medizinische Klinik und Poliklinik IV, Klinikum der LMU München, Munich 80336, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich 80336, Germany; DZHK, Partner Site Munich Heart Alliance, Munich 80336, Germany
| | - Khalil Bdeir
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susanna M Hofmann
- Medizinische Klinik und Poliklinik IV, Klinikum der LMU München, Munich 80336, Germany; Institute for Diabetes and Regeneration, Helmholtz Center Munich, Germany; German Center for Diabetes Research (DZD) München-Neuherberg, Germany
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Einthoven Laboratory for Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Maik Drechsler
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich 80336, Germany; Department of Pathology, AMC, 1105 AZ Amsterdam, The Netherlands; DZHK, Partner Site Munich Heart Alliance, Munich 80336, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich 80336, Germany; Department of Pathology, AMC, 1105 AZ Amsterdam, The Netherlands; DZHK, Partner Site Munich Heart Alliance, Munich 80336, Germany.
| |
Collapse
|
32
|
Das S, Pal S, Mitra M. Significance of Exhaled Breath Test in Clinical Diagnosis: A Special Focus on the Detection of Diabetes Mellitus. J Med Biol Eng 2016; 36:605-624. [PMID: 27853412 PMCID: PMC5083779 DOI: 10.1007/s40846-016-0164-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022]
Abstract
Analysis of volatile organic compounds (VOCs) emanating from human exhaled breath can provide deep insight into the status of various biochemical processes in the human body. VOCs can serve as potential biomarkers of physiological and pathophysiological conditions related to several diseases. Breath VOC analysis, a noninvasive and quick biomonitoring approach, also has potential for the early detection and progress monitoring of several diseases. This paper gives an overview of the major VOCs present in human exhaled breath, possible biochemical pathways of breath VOC generation, diagnostic importance of their analysis, and analytical techniques used in the breath test. Breath analysis relating to diabetes mellitus and its characteristic breath biomarkers is focused on. Finally, some challenges and limitations of the breath test are discussed.
Collapse
Affiliation(s)
- Souvik Das
- Department of Biomedical Engineering, JIS College of Engineering, Kalyani, West Bengal 741235 India
| | - Saurabh Pal
- Department of Applied Physics, University of Calcutta, Kolkata, West Bengal 700009 India
| | - Madhuchhanda Mitra
- Department of Applied Physics, University of Calcutta, Kolkata, West Bengal 700009 India
| |
Collapse
|
33
|
Tilgner J, von Trotha KT, Gombert A, Jacobs MJ, Drechsler M, Döring Y, Soehnlein O, Grommes J. Aspirin, but Not Tirofiban Displays Protective Effects in Endotoxin Induced Lung Injury. PLoS One 2016; 11:e0161218. [PMID: 27583400 PMCID: PMC5008681 DOI: 10.1371/journal.pone.0161218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 08/02/2016] [Indexed: 12/28/2022] Open
Abstract
Background Treatment of acute lung injury (ALI) remains an unsolved problem in intensive care medicine. Recruitment of neutrophils into the lungs, regarded as a key mechanism in progression of ALI, depends on signaling between neutrophils and platelets. Consequently we explored the effect of platelet-targeted aspirin and tirofiban treatment in endotoxin induced acute lung injury Methods C57Bl/6 mice were exposed to aerosolized LPS (500μg/ml) for 30min and treated with Aspirin (100μg/g bodyweight via intraperitoneal injection, 30 min before or 1 hour after LPS inhalation) or Tirofiban (0.5μg/ g bodyweight via tail vein injection 30 min before or 1 hour after LPS inhalation). The count of alveolar, interstitial, and intravascular neutrophils was assessed 4h later by flow cytometry. Lung permeability changes were assessed by FITC-dextran clearance and protein content in the BAL fluid. Results Aspirin both before and after LPS inhalation reduced neutrophil influx into the lung and lung permeability indicating the protective role of Aspirin in ALI. Tirofiban, however, did not alter neutrophil recruitment after LPS inhalation. Release of platelet-derived chemokines CCL5 and PF4 and neutrophil extracellular traps was reduced by Aspirin but not by Tirofiban. Conclusion Aspirin, but not Tirofiban reduces neutrophil recruitment and displays protective effects during endotoxin induced lung injury.
Collapse
Affiliation(s)
- Jessica Tilgner
- European Vascular Center Aachen-Maastricht, Rhenish Westphalian Technical University Aachen, Aachen Germany
| | - Klaus Thilo von Trotha
- European Vascular Center Aachen-Maastricht, Rhenish Westphalian Technical University Aachen, Aachen Germany
| | - Alexander Gombert
- European Vascular Center Aachen-Maastricht, Rhenish Westphalian Technical University Aachen, Aachen Germany
| | - Michael J. Jacobs
- European Vascular Center Aachen-Maastricht, Rhenish Westphalian Technical University Aachen, Aachen Germany
- Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maik Drechsler
- Institute for Cardiovascular Prevention, Ludwig Maximillian University Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention, Ludwig Maximillian University Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig Maximillian University Munich, Munich, Germany
- Department of Pathology, University of Amsterdam, Amsterdam, The Netherlands
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Jochen Grommes
- European Vascular Center Aachen-Maastricht, Rhenish Westphalian Technical University Aachen, Aachen Germany
- Institute for Cardiovascular Prevention, Ludwig Maximillian University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
34
|
Hill PB, Imai A. The immunopathogenesis of staphylococcal skin infections - A review. Comp Immunol Microbiol Infect Dis 2016; 49:8-28. [PMID: 27865269 DOI: 10.1016/j.cimid.2016.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/22/2016] [Accepted: 08/10/2016] [Indexed: 12/20/2022]
Abstract
Staphylococcus aureus and S. pseudintermedius are the major causes of bacterial skin disease in humans and dogs. These organisms can exist as commensals on the skin, but they can also cause severe or even devastating infections. The immune system has evolved mechanisms to deal with pathogenic microorganisms and has strategies to combat bacteria of this type. What emerges is a delicate "peace" between the opposing sides, but this balance can be disrupted leading to a full blown "war". In the ferocious battle that ensues, both sides attempt to get the upper hand, using strategies that are comparable to those used by modern day armies. In this review article, the complex interactions between the immune system and the organisms are described using such military analogies. The process is described in a sequential manner, starting with the invasion itself, and progressing to the eventual battlezone in which there are heavy casualties on both sides. By the end, the appearance of a simple pustule on the skin surface will take on a whole new meaning.
Collapse
Affiliation(s)
- P B Hill
- Companion Animal Health Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy SA 5371, Australia.
| | - A Imai
- Dermatology resident, Synergy Animal General Hospital, 815 Kishigami Kawaguchi, Saitama, 333-0823, Japan
| |
Collapse
|
35
|
Human neutrophil peptides inhibit cleavage of von Willebrand factor by ADAMTS13: a potential link of inflammation to TTP. Blood 2016; 128:110-9. [PMID: 27207796 DOI: 10.1182/blood-2015-12-688747] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 04/30/2016] [Indexed: 12/16/2022] Open
Abstract
Infection or inflammation may precede and trigger formation of microvascular thrombosis in patients with acquired thrombotic thrombocytopenic purpura (TTP). However, the mechanism underlying this clinical observation is not fully understood. Here, we show that human neutrophil peptides (HNPs) released from activated and degranulated neutrophils inhibit proteolytic cleavage of von Willebrand factor (VWF) by ADAMTS13 in a concentration-dependent manner. Half-maximal inhibitory concentrations of native HNPs toward ADAMTS13-mediated proteolysis of peptidyl VWF73 and multimeric VWF are 3.5 μM and 45 μM, respectively. Inhibitory activity of HNPs depends on the RRY motif that is shared by the spacer domain of ADAMTS13. Native HNPs bind to VWF73 (KD = 0.72 μM), soluble VWF (KD = 0.58 μM), and ultra-large VWF on endothelial cells. Enzyme-linked immunosorbent assay (ELISA) demonstrates markedly increased plasma HNPs1-3 in most patients with acquired autoimmune TTP at presentation (median, ∼170 ng/mL; range, 58-3570; n = 19) compared with healthy controls (median, ∼23 ng/mL; range, 6-44; n = 18) (P < .0001). Liquid chromatography plus tandem mass spectrometry (LC-MS/MS) reveals statistically significant increases of HNP1, HNP2, and HNP3 in patient samples (all P values <.001). There is a good correlation between measurement of HNPs1-3 by ELISA and by LC-MS/MS (Spearman ρ = 0.7932, P < .0001). Together, these results demonstrate that HNPs1-3 may be potent inhibitors of ADAMTS13 activity, likely by binding to the central A2 domain of VWF and physically blocking ADAMTS13 binding. Our findings may provide a novel link between inflammation/infection and the onset of microvascular thrombosis in acquired TTP and potentially other immune thrombotic disorders.
Collapse
|
36
|
Abu-Fanne R, Maraga E, Abd-Elrahman I, Hankin A, Blum G, Abdeen S, Hijazi N, Cines DB, Higazi AAR. α-Defensins Induce a Post-translational Modification of Low Density Lipoprotein (LDL) That Promotes Atherosclerosis at Normal Levels of Plasma Cholesterol. J Biol Chem 2015; 291:2777-86. [PMID: 26518877 DOI: 10.1074/jbc.m115.669812] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Indexed: 12/28/2022] Open
Abstract
Approximately one-half of the patients who develop clinical atherosclerosis have normal or only modest elevations in plasma lipids, indicating that additional mechanisms contribute to pathogenesis. In view of increasing evidence that inflammation contributes to atherogenesis, we studied the effect of human neutrophil α-defensins on low density lipoprotein (LDL) trafficking, metabolism, vascular deposition, and atherogenesis using transgenic mice expressing human α-defensins in their polymorphonuclear leukocytes (Def(+/+)). Accelerated Def(+/+) mice developed α-defensin·LDL complexes that accelerate the clearance of LDL from the circulation accompanied by enhanced vascular deposition and retention of LDL, induction of endothelial cathepsins, increased endothelial permeability to LDL, and the development of lipid streaks in the aortic roots when fed a regular diet and at normal plasma levels of LDL. Transplantation of bone marrow from Def(+/+) to WT mice increased LDL clearance, increased vascular permeability, and increased vascular deposition of LDL, whereas transplantation of WT bone marrow to Def(+/+) mice prevented these outcomes. The same outcome was obtained by treating Def(+/+) mice with colchicine to inhibit the release of α-defensins. These studies identify a potential new link between inflammation and the development of atherosclerosis.
Collapse
Affiliation(s)
| | - Emad Maraga
- From the Department of Clinical Biochemistry and
| | - Ihab Abd-Elrahman
- the School of Pharmacy, Hadassah-Hebrew University, Jerusalem IL-91120, Israel and
| | - Aviel Hankin
- From the Department of Clinical Biochemistry and
| | - Galia Blum
- the School of Pharmacy, Hadassah-Hebrew University, Jerusalem IL-91120, Israel and
| | | | - Nuha Hijazi
- From the Department of Clinical Biochemistry and
| | - Douglas B Cines
- the Department of Pathology and Laboratory Medicine, Perelman School of Medicine-University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Abd Al-Roof Higazi
- From the Department of Clinical Biochemistry and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine-University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
37
|
Gonzales JN, Lucas R, Verin AD. The Acute Respiratory Distress Syndrome: Mechanisms and Perspective Therapeutic Approaches. AUSTIN JOURNAL OF VASCULAR MEDICINE 2015; 2:1009. [PMID: 26973981 PMCID: PMC4786180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a severe lung inflammatory disorder with a 30-50% mortality. Sepsis and pneumonia are the leading causes of ARDS. On the cellular level there is pulmonary capillary endothelial cell permeability and fluid leakage into the pulmonary parenchyma, followed by neutrophils, cytokines and an acute inflammatory response. When fluid increases in the interstitium then the outward movement continues and protein rich fluid floods the alveolar spaces through the tight junctions of the epithelial cells. Neutrophils play an important role in the development of pulmonary edema associated with acute lung injury or ARDS. Animal studies have shown that endothelial injury appears within minutes to hours after Acute Lung Injury (ALI) initiation with resulting intercellular gaps of the endothelial cells. The Endothelial Cell (EC) gaps allow for permeability of fluid, neutrophils and cytokines into the pulmonary parenchymal space. The neutrophils that infiltrate the lungs and migrate into the airways express pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and contribute to both the endothelial and epithelial integrity disruption of the barriers. Pharmacological treatments have been ineffective. The ARDS Network trial identified low tidal volume mechanical ventilation, positive end expiratory pressure and fluid management guidelines that have improved outcomes for patients with ARDS. Extracorporeal membrane oxygenation is used in specialized centers for severe cases. Prone positioning has recently proven to have significantly decreased ventilator days and days in the intensive care unit. Current investigation includes administration of mesenchymal stem cell therapy, partial fluid ventilation, TIP peptide nebulized administration and the continued examination of pharmacologic drugs.
Collapse
Affiliation(s)
- JN Gonzales
- Department of Internal Medicine, Georgia Regents University, USA
- Vascular Biology Center, Georgia Regents University, USA
| | - R Lucas
- Department of Internal Medicine, Georgia Regents University, USA
- Department of Pharmacology and Toxicology, Georgia Regents University, USA
| | - AD Verin
- Department of Internal Medicine, Georgia Regents University, USA
- Vascular Biology Center, Georgia Regents University, USA
| |
Collapse
|
38
|
Protective Effects of Hydrogen-Rich Saline on Rats with Smoke Inhalation Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:106836. [PMID: 26090070 PMCID: PMC4454757 DOI: 10.1155/2015/106836] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/23/2015] [Accepted: 05/12/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To explore the protective effects of hydrogen-rich saline on rats with smoke inhalation injury. METHODS 36 healthy male Sprague-Dawley rats were randomly divided into 3 groups (n = 12 per group): sham group (S), inhalation injury plus normal saline treatment group (I+NS), and inhalation injury plus hydrogen-rich saline treatment group (I+HS). 30 min after injury, normal saline and hydrogen-rich saline were injected intraperitoneally (5 mL/kg) in I+NS group and I+HS group, respectively. All rats were euthanized and blood and organ specimens were collected for determination 24 h after inhalation injury. RESULTS Tumor necrosis factor-alpha (TNF-α) levels, malondialdehyde (MDA) concentrations, nuclear factor kappa B (NF-κB) p65 expression, and apoptosis index (AI) in I+HS group were significantly decreased (P < 0.05), while superoxide dismutase (SOD) activities were increased compared with those in I+NS group; and a marked improvement in alveolar structure was also found after hydrogen-rich saline treatment. CONCLUSIONS Hydrogen-rich saline treatment exerts protective effects in acute lung injury induced by inhalation injury, at least in part through the activation of anti-inflammatory and antioxidant pathways and inhibition of apoptosis.
Collapse
|
39
|
Sakamoto N, Ishimatsu Y, Kakugawa T, Yura H, Tomonaga M, Harada T, Nakashima S, Hara S, Hara A, Ishimoto H, Yatera K, Mukae H, Kohno S. Elevated plasma α-defensins in patients with acute exacerbation of fibrotic interstitial pneumonia. Respir Med 2015; 109:265-71. [PMID: 25596137 DOI: 10.1016/j.rmed.2014.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/22/2014] [Accepted: 12/28/2014] [Indexed: 01/20/2023]
Abstract
BACKGROUND Patients with fibrosing interstitial lung diseases can develop acute exacerbation (AE). The aetiology of AE remains obscure, but neutrophils might play a pivotal role in the pathogenesis. Neutrophils store azurophil granules containing defensins that are antimicrobial peptides that also function in regulating the inflammatory response. The present study evaluates plasma levels of defensins in patients with AE of interstitial pneumonia (AE-IP) to determine their role(s) in the pathogenesis of AE-IP and whether defensins could serve as a biomarker of AE-IP. METHODS Plasma levels of defensins including human neutrophil peptides (HNPs) and human beta defensin 2 (HBD2) were measured using ELISA in 21 patients with AE-IP, 44 with stable (S)-IP, nine with IP complicated with pulmonary infection (Infec-IP), and in 23 healthy volunteers. Lung HNP expression was immunohistochemically analyzed in biopsy and autopsy tissues diagnosed as S-IP and AE-IP. RESULTS Plasma levels of HNPs were significantly higher in patients with AE-IP than with S-IP, but did not differ from those with Infec-IP and were not associated with other clinical features and prognosis. Plasma HNP were not specific in terms of distinguishing AE-IP from S-IP. Immunohistochemical analysis showed increased HNPs expression in accumulated neutrophils from patients with AE-IP. Plasma levels of HBD2 did not differ among patients with AE-IP, S-IP and Infec-IP. CONCLUSIONS Elevated plasma levels of HNPs were higher in AE-IP than in S-IP, but not specific enough to serve as candidate biomarkers of AE-IP. Further studies are needed to clarify the role of defensins in the pathogenesis of AE-IP.
Collapse
Affiliation(s)
- Noriho Sakamoto
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Yuji Ishimatsu
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Tomoyuki Kakugawa
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Hirokazu Yura
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Masaomi Tomonaga
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Tatsuhiko Harada
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Shota Nakashima
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Shintaro Hara
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Atsuko Hara
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Hiroshi Ishimoto
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | - Shigeru Kohno
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan
| |
Collapse
|
40
|
Stevens LA, Barbieri JT, Piszczek G, Otuonye AN, Levine RL, Zheng G, Moss J. Nonenzymatic conversion of ADP-ribosylated arginines to ornithine alters the biological activities of human neutrophil peptide-1. THE JOURNAL OF IMMUNOLOGY 2014; 193:6144-51. [PMID: 25392530 DOI: 10.4049/jimmunol.1303068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activated neutrophils, recruited to the airway of diseased lung, release human neutrophil peptides (HNP1-4) that are cytotoxic to airway cells as well as microbes. Airway epithelial cells express arginine-specific ADP ribosyltransferase (ART)-1, a GPI-anchored ART that transfers ADP-ribose from NAD to arginines 14 and 24 of HNP-1. We previously reported that ADP-ribosyl-arginine is converted nonenzymatically to ornithine and that ADP-ribosylated HNP-1 and ADP-ribosyl-HNP-(ornithine) were isolated from bronchoalveolar lavage fluid of a patient with idiopathic pulmonary fibrosis, indicating that these reactions occur in vivo. To determine effects of HNP-ornithine on the airway, three analogs of HNP-1, HNP-(R14orn), HNP-(R24orn), and HNP-(R14,24orn), were tested for their activity against Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus; their cytotoxic effects on A549, NCI-H441, small airway epithelial-like cells, and normal human lung fibroblasts; and their ability to stimulate IL-8 and TGF-β1 release from A549 cells, and to serve as ART1 substrates. HNP and the three analogs had similar effects on IL-8 and TGF-β1 release from A549 cells and were all cytotoxic for small airway epithelial cells, NCI-H441, and normal human lung fibroblasts. HNP-(R14,24orn), when compared with HNP-1 and HNP-1 with a single ornithine substitution for arginine 14 or 24, exhibited reduced cytotoxicity, but it enhanced proliferation of A549 cells and had antibacterial activity. Thus, arginines 14 and 24, which can be ADP ribosylated by ART1, are critical to the regulation of the cytotoxic and antibacterial effects of HNP-1. The HNP analog, HNP-(R14,24orn), lacks the epithelial cell cytotoxicity of HNP-1, but partially retains its antibacterial activity and thus may have clinical applications in airway disease.
Collapse
Affiliation(s)
- Linda A Stevens
- Cardiovascular and Pulmonary Branch, National, Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Joseph T Barbieri
- Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Grzegorz Piszczek
- Biophysics Core Facility, National, Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Amy N Otuonye
- Cardiovascular and Pulmonary Branch, National, Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rodney L Levine
- Laboratory of Biochemistry, National, Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Gang Zheng
- Office of Biostatistics Research, National, Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, National, Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
41
|
Defensins and sepsis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:180109. [PMID: 25210703 PMCID: PMC4151856 DOI: 10.1155/2014/180109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/08/2014] [Accepted: 06/16/2014] [Indexed: 01/12/2023]
Abstract
Sepsis is a leading cause of mortality and morbidity in the critical illness. Multiple immune inflammatory processes take part in the pathogenesis of sepsis. Defensins are endogenous antimicrobial peptides with three disulphide bonds created by six cysteine residues. Besides the intrinsic microbicidal properties, defensins are active players which modulate both innate and adaptive immunity against various infections. Defensins can recruit neutrophils, enhance phagocytosis, chemoattract T cells and dendritic cells, promote complement activation, and induce IL-1β production and pyrotosis. Previous publications have documented that defensins play important roles in a series of immune inflammatory diseases including sepsis. This review aims to briefly summarize in vitro, in vivo, and genetic studies on defensins' effects as well as corresponding mechanisms within sepsis and highlights their promising findings which may be potential targets in future therapies of sepsis.
Collapse
|
42
|
Chen H, Wu S, Lu R, Zhang YG, Zheng Y, Sun J. Pulmonary permeability assessed by fluorescent-labeled dextran instilled intranasally into mice with LPS-induced acute lung injury. PLoS One 2014; 9:e101925. [PMID: 25007191 PMCID: PMC4090205 DOI: 10.1371/journal.pone.0101925] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/12/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Several different methods have been used to assess pulmonary permeability in response to acute lung injury (ALI). However, these methods often involve complicated procedures and algorithms that are difficult to precisely control. The purpose of the current study is to establish a feasible method to evaluate alterations in lung permeability by instilling fluorescently labeled dextran (FITC-Dextran) intranasally. METHODS/PRINCIPAL FINDINGS For the mouse model of direct ALI, lipopolysaccharide (LPS) was administered intranasally. FITC-Dextran was instilled intranasally one hour before the mice were euthanized. Plasma fluorescence intensities from the LPS group were significantly higher than in the control group. To determine the reliability and reproducibility of the procedure, we also measured the lung wet-to-dry weight ratio, the protein concentration of the bronchoalveolar lavage fluid, tight and adherens junction markers and pathological changes. Consistent results were observed when the LPS group was compared with the control group. Simultaneously, we found that the concentration of plasma FITC-Dextran was LPS dose-dependent. The concentration of plasma FITC-Dextran also increased with initial intranasal FITC-Dextran doses. Furthermore, increased fluorescence intensity of plasma FITC-Dextran was found in the intraperitoneally LPS-induced ALI model. CONCLUSION/SIGNIFICANCE In conclusion, the measurement of FITC-Dextran in plasma after intranasal instillation is a simple, reliable, and reproducible method to evaluate lung permeability alterations in vivo. The concentration of FITC-Dextran in the plasma may be useful as a potential peripheral biomarker of ALI in experimental clinical studies.
Collapse
Affiliation(s)
- Honglei Chen
- Department of Biochemistry, Rush University, Chicago, Illinois, United States of America
| | - Shaoping Wu
- Department of Biochemistry, Rush University, Chicago, Illinois, United States of America
| | - Rong Lu
- Department of Biochemistry, Rush University, Chicago, Illinois, United States of America
| | - Yong-guo Zhang
- Department of Biochemistry, Rush University, Chicago, Illinois, United States of America
| | - Yuanyuan Zheng
- Department of Biochemistry, Rush University, Chicago, Illinois, United States of America
| | - Jun Sun
- Department of Biochemistry, Rush University, Chicago, Illinois, United States of America
| |
Collapse
|
43
|
Human α-defensin expression is not dependent on CCAAT/enhancer binding protein-ε in a murine model. PLoS One 2014; 9:e92471. [PMID: 24658030 PMCID: PMC3962403 DOI: 10.1371/journal.pone.0092471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/24/2014] [Indexed: 11/19/2022] Open
Abstract
Specific granule deficiency (SGD) is a rare congenital disorder characterized by recurrent infections. The disease is caused by inactivating mutations of the CCAAT/enhancer binding protein-ε (C/EBP-ε) gene. As a consequence, specific and gelatinase granules lack most matrix proteins. Furthermore, azurophil granules contain diminished amounts of their most abundant proteins, α-defensins, also known as human neutrophil peptides (HNPs). In accordance with this, in vitro models have demonstrated induction of HNPs by C/EBP-ε. Since mice do not express myeloid defensins, they cannot per se be used to characterize the role of C/EBP-ε in controlling HNP expression in vivo. We therefore crossed a transgenic HNP-1-expressing mouse with the Cebpe-/- mouse to study the in vivo significance of C/EBP-ε for HNP-1 transcription and expression. Surprisingly, neither expression nor processing of HNP-1 was affected by lack of C/EBP-ε in these mice. Transduction of C/EBP-ε into primary bone marrow cells from HNP-1 mice induced some HNP-1 expression, but not to levels comparable to expression human cells. Taken together, our data infer that the HNP-1 of the transgenic mouse does not show an expression pattern equivalent to endogenous secondary granule proteins. This limits the use of these transgenic mice as a model for human conditions.
Collapse
|
44
|
Pulmonary blood flow increases in damaged regions directly after acid aspiration in rats. Anesthesiology 2014; 119:890-900. [PMID: 23846582 DOI: 10.1097/aln.0b013e3182a17e5b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND After gastric aspiration events, patients are at risk of pulmonary dysfunction and the development of severe acute lung injury and acute respiratory distress syndrome, which may contribute to the development of an inflammatory reaction. The authors' aim in the current study was to investigate the role of the spatial distribution of pulmonary blood flow in the pathogenesis of pulmonary dysfunction during the early stages after acid aspiration. METHODS The authors analyzed the pulmonary distribution of radiolabeled microspheres in normal (n = 6) and injured (n = 12) anesthetized rat lungs using positron emission tomography, computed tomography, and histological examination. RESULTS Injured regions demonstrate increased pulmonary blood flow in association with reduced arterial pressure and the deterioration of arterial oxygenation. After acid aspiration, computed tomography scans revealed that lung density had increased in the injured regions and that these regions colocalized with areas of increased blood flow. The acid was instilled into the middle and basal regions of the lungs. The blood flow was significantly increased to these regions compared with the blood flow to uninjured lungs in the control animals (middle region: 1.23 [1.1; 1.4] (median [25%; 75%]) vs. 1.04 [1.0; 1.1] and basal region: 1.25 [1.2; 1.3] vs. 1.02 [1.0; 1.05], respectively). The increase in blood flow did not seem to be due to vascular leakage into these injured areas. CONCLUSIONS The data suggest that 10 min after acid aspiration, damaged areas are characterized by increased pulmonary blood flow. The results may impact further treatment strategies, such as drug targeting.
Collapse
|
45
|
Williams AE, Chambers RC. The mercurial nature of neutrophils: still an enigma in ARDS? Am J Physiol Lung Cell Mol Physiol 2013; 306:L217-30. [PMID: 24318116 DOI: 10.1152/ajplung.00311.2013] [Citation(s) in RCA: 306] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The acute respiratory distress syndrome (ARDS) is a life-threatening lung condition resulting from direct and indirect insults to the lung. It is characterized by disruption of the endothelial-epithelial barrier, alveolar damage, pulmonary edema, and respiratory failure. A key feature of ARDS is the accumulation of neutrophils in the lung microvasculature, interstitium, and alveolar space. Despite a clear association between neutrophil influx into the lung and disease severity, there is some debate as to whether neutrophils directly contribute to disease pathogenesis. The primary function of neutrophils is to provide immediate host defense against pathogenic microorganisms. Neutrophils release numerous antimicrobial factors such as reactive oxygen species, proteinases, and neutrophil extracellular traps. However, these factors are also toxic to host cells and can result in bystander tissue damage. The excessive accumulation of neutrophils in ARDS may therefore contribute to disease progression. Central to neutrophil recruitment is the release of chemokines, including the archetypal neutrophil chemoattractant IL-8, from resident pulmonary cells. However, the chemokine network in the inflamed lung is complex and may involve several other chemokines, including CXCL10, CCL2, and CCL7. This review will therefore focus on the experimental and clinical evidence supporting neutrophils as key players in ARDS and the chemokines involved in recruiting them into the lung.
Collapse
Affiliation(s)
- Andrew E Williams
- Centre for Inflammation and Tissue Repair, Univ. College London, Rayne Institute, 5 Univ. St., London WC1E 6JF, UK.
| | | |
Collapse
|
46
|
Ibusuki R, Uto H, Arima S, Mawatari S, Setoguchi Y, Iwashita Y, Hashimoto S, Maeda T, Tanoue S, Kanmura S, Oketani M, Ido A, Tsubouchi H. Transgenic expression of human neutrophil peptide-1 enhances hepatic fibrosis in mice fed a choline-deficient, L-amino acid-defined diet. Liver Int 2013; 33:1549-56. [PMID: 23682724 DOI: 10.1111/liv.12203] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 04/16/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neutrophils infiltrate the livers of patients with nonalcoholic steatohepatitis (NASH). Human neutrophil peptides (HNPs) induce cytokine and chemokine production under inflammatory conditions, which may contribute to the progression of NASH. In this study, we focused on the effects of HNP-1 on hepatic steatosis and fibrosis in a mouse model of NASH induced by a choline-deficient, L-amino acid-defined (CDAA) diet. MATERIALS & METHODS We generated transgenic mice expressing HNP-1 under the control of a β-actin-based promoter. HNP-1 transgenic and wild-type C57BL/6N mice were fed a CDAA diet for 16 weeks to induce hepatic steatosis and fibrosis. Serological and histological features were examined, and the effects of HNP-1 on hepatic stellate cell lines were assessed. RESULTS HNP-1 transgenic and wild-type mice fed the CDAA diet showed no significant differences in serum alanine aminotransferase levels or the degree of hepatic steatosis based on Oil red O staining and hepatic triglyceride content. In contrast, Sirius Red and Azan staining showed significantly more severe hepatic fibrosis in HNP-1 transgenic mice compared with wild-type mice. In addition, significantly more α-smooth muscle actin-positive hepatic stellate cells were observed in the transgenic mice than in the wild-type mice. Finally, the proliferation of the LI90 hepatic stellate cell line increased in response to HNP-1. CONCLUSION Our data indicate that HNP-1 enhances hepatic fibrosis in fatty liver by inducing hepatic stellate cell proliferation. Thus, neutrophil-derived HNP-1 may contribute to the progression of NASH.
Collapse
Affiliation(s)
- Rie Ibusuki
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nomura Y, Tanabe H, Moriichi K, Igawa S, Ando K, Ueno N, Kashima S, Tominaga M, Goto T, Inaba Y, Ito T, Ishida-Yamamoto A, Fujiya M, Kohgo Y. Reduction of E-cadherin by human defensin-5 in esophageal squamous cells. Biochem Biophys Res Commun 2013; 439:71-7. [PMID: 23958301 DOI: 10.1016/j.bbrc.2013.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/08/2013] [Indexed: 02/07/2023]
Abstract
Barrett's esophagus (BE) is metaplastic columnar epithelium converted from normal squamous epithelia in the distal esophagus that is thought to be a precancerous lesion of esophageal adenocarcinoma. BE is attributed to gastroesophageal reflux disease (GERD), and therefore gastric acid or bile acids are thought to be factors that cause epithelial cell damage and inflammation in the gastro-esophageal junction. The decrease of adherent junction molecules, E-cadherin has been reported to be associated with the progression of the Barrett's carcinoma, but the initiation of BE is not sufficiently understood. BE is characterized by the presence of goblet cells and occasionally Paneth cells are observed at the base of the crypts. The Paneth cells possess dense granules, in which human antimicrobial peptide human defensin-5 (HD-5) are stored and secreted out of the cells. This study determined the roles of HD-5 produced from metaplastic Paneth cells against adjacent to squamous cells in the gastro-esophageal junction. A human squamous cell line Het-1A, was incubated with the synthetic HD-5 peptide as a model of squamous cell in the gastro-esophageal junctions, and alterations of E-cadherin were investigated. Immunocytochemistry, flowcytometry, and Western blotting showed that the expression of E-cadherin protein was decreased. And a partial recovery from the decrease was observed by treatment with a CD10/neprilysin inhibitor (thiorphan). In conclusion, E-cadherin expression in squamous cells was reduced by HD-5 using in vitro experiments. In gastro-esophageal junction, HD-5 produced from metaplastic Paneth cells may therefore accelerate the initiation of BE.
Collapse
Affiliation(s)
- Yoshiki Nomura
- Division of Gastroenterology and Hepatology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Dowlaty N, Yoon A, Galassetti P. Monitoring states of altered carbohydrate metabolism via breath analysis: are times ripe for transition from potential to reality? Curr Opin Clin Nutr Metab Care 2013; 16:466-72. [PMID: 23739629 PMCID: PMC4060961 DOI: 10.1097/mco.0b013e328361f91f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To introduce the potential of breath analysis as a diagnostic or monitoring tool in diabetes. RECENT FINDINGS Blood testing for plasma glucose and other metabolic variables is the base for the diagnosis and management of diabetes, whose two main types (type 1 and type 2, T1DM, T2DM) are projected to affect 450 million by 2030. As blood testing is often uncomfortable, painful, costly, and in some situations unreliable, the quest for alternative, noninvasive methods has been ongoing for decades. Breath analysis has emerged as an ideal alternative as sample collection is easy, painless, flexible, noninvasive, practical, and inexpensive. No single exhaled gas can reflect systemic glucose concentrations. Multiple gases, however, have been linked to various aspects of glucose metabolism, and integrated analysis of their simultaneous profiles during prolonged glycemic fluctuations has yielded accurate predictions of plasma values, building expectation that a clinically usable breath-based glucometer may be developed within a few years. SUMMARY While prototypes of hand-held breath testing glucometers may still be several years away, current research shows the imminent promise of this methodology and the widening support for its development.
Collapse
Affiliation(s)
- Newsha Dowlaty
- Institute for Clinical and Translational Science, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
49
|
Chen Q, Jin Y, Zhang K, Li H, Chen W, Meng G, Fang X. Alarmin HNP-1 promotes pyroptosis and IL-1β release through different roles of NLRP3 inflammasome via P2X7 in LPS-primed macrophages. Innate Immun 2013; 20:290-300. [PMID: 23792296 DOI: 10.1177/1753425913490575] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Defensins are the first endogenous mediators to be characterized as alarmins and play multifunctional roles in immune response. Previous studies reported that human neutrophil peptide (HNP)-1, a member of the α-defensin subfamily, could regulate the IL-1β post-translational process; however, the underlying mechanism remained unknown. Using an LPS-primed THP-1 macrophage model, we found that inhibition of P2X purinoceptor 7 (P2X7) suppressed HNP-1-initiated mature IL-1β release. Confocal microscopy and glutathione S-transferase (GST) pull-down assay demonstrated that HNP-1 bound to P2X7 directly. HNP-1 treatment increased the activated level of caspase-1, and inhibition of caspase-1 abolished IL-1β release. Incubation of LPS-primed macrophages with potassium chloride also prevented HNP-1-induced export of mature IL-1β. Likewise, an ethidium bromide uptake test showed that the P2X7-K(+) efflux-caspase-1 signaling pathway triggered by HNP-1 contributed to pyroptotic pore formation. Furthermore, knock down of inflammasome adaptor Nod-like receptor family pyrin domain containing 3 (NLRP3) decreased activated caspase-1 level and reduced pore formation in macrophages, whereas IL-1β release was not significantly impaired. These findings not only illustrated the mechanism for alarmin HNP-1 in enhancing inflammatory response, but also provided therapeutic targets for certain inflammatory diseases in which defensins play important roles.
Collapse
Affiliation(s)
- Qixing Chen
- 1Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Acute lung injury is a complex clinical syndrome involving acute inflammation, microvascular damage, and increased pulmonary vascular and epithelial permeability, frequently resulting in acute respiratory failure culminating in often-fatal acute respiratory distress syndrome. Interleukin 8 (IL-8), a potent neutrophil attractant and activator, plays a significant role in acute lung injury via the formation of anti-IL-8 autoantibody:IL-8 complexes and those complexes' interaction with FcγRIIa receptors, leading to the development of acute lung injury by, among other possible mechanisms, effecting neutrophil apoptosis. These complexes may also interact with lung endothelial cells in patients with acute respiratory distress syndrome. Continuing research of the role of neutrophils, IL-8, anti-IL-8 autoantibody:IL-8 complexes, and FcγRIIa receptors may ultimately provide molecular therapies that could lower acute respiratory distress syndrome mortality, as well as reduce or even prevent the development of acute lung injury altogether.
Collapse
Affiliation(s)
- Timothy Craig Allen
- From the Departments of Pathology (Dr Allen) and Biochemistry (Dr Kurdowska), University of Texas Health Science Center at Tyler. Dr Allen is now located at the University of Texas Medical Branch at Galveston, Texas
| | | |
Collapse
|