1
|
Nie J, Zhou L, Tian W, Liu X, Yang L, Yang X, Zhang Y, Wei S, Wang DW, Wei J. Deep insight into cytokine storm: from pathogenesis to treatment. Signal Transduct Target Ther 2025; 10:112. [PMID: 40234407 PMCID: PMC12000524 DOI: 10.1038/s41392-025-02178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/22/2024] [Accepted: 02/12/2025] [Indexed: 04/17/2025] Open
Abstract
Cytokine storm (CS) is a severe systemic inflammatory syndrome characterized by the excessive activation of immune cells and a significant increase in circulating levels of cytokines. This pathological process is implicated in the development of life-threatening conditions such as fulminant myocarditis (FM), acute respiratory distress syndrome (ARDS), primary or secondary hemophagocytic lymphohistiocytosis (HLH), cytokine release syndrome (CRS) associated with chimeric antigen receptor-modified T (CAR-T) therapy, and grade III to IV acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. The significant involvement of the JAK-STAT pathway, Toll-like receptors, neutrophil extracellular traps, NLRP3 inflammasome, and other signaling pathways has been recognized in the pathogenesis of CS. Therapies targeting these pathways have been developed or are currently being investigated. While novel drugs have demonstrated promising therapeutic efficacy in mitigating CS, the overall mortality rate of CS resulting from underlying diseases remains high. In the clinical setting, the management of CS typically necessitates a multidisciplinary team strategy encompassing the removal of abnormal inflammatory or immune system activation, the preservation of vital organ function, the treatment of the underlying disease, and the provision of life supportive therapy. This review provides a comprehensive overview of the key signaling pathways and associated cytokines implicated in CS, elucidates the impact of dysregulated immune cell activation, and delineates the resultant organ injury associated with CS. In addition, we offer insights and current literature on the management of CS in cases of FM, ARDS, systemic inflammatory response syndrome, treatment-induced CRS, HLH, and other related conditions.
Collapse
Grants
- 82070217, 81873427 National Natural Science Foundation of China (National Science Foundation of China)
- 82100401 National Natural Science Foundation of China (National Science Foundation of China)
- 81772477, 81201848, 82473220 National Natural Science Foundation of China (National Science Foundation of China)
- 82330010,81630010,81790624 National Natural Science Foundation of China (National Science Foundation of China)
- National High Technology Research and Development Program of China, Grant number: 2021YFA1101500.
- The Hubei Provincial Natural Science Foundation (No.2024AFB050)
- Project of Shanxi Bethune Hospital, Grant Numbber: 2023xg02); Fundamental Research Program of Shanxi Province, Grant Numbber: 202303021211224
- The Key Scientific Research Project of COVID-19 Infection Emergency Treatment of Shanxi Bethune Hospital (2023xg01), 2023 COVID-19 Research Project of Shanxi Provincial Health Commission (No.2023XG001, No. 2023XG005), Four “Batches” Innovation Project of Invigorating Medical through Science and Technology of Shanxi Province (2023XM003), Cancer special Fund research project of Shanxi Bethune Hospital (No. 2020-ZL04), and External Expert Workshop Fund Program of Shanxi Provincial Health Commission(Proteomics Shanxi studio for Huanghe professor)
- Fundamental Research Program of Shanxi Province(No.202303021221192); 2023 COVID-19 Emergency Project of Shanxi Health Commission (Nos.2023XG001,2023XG005)
Collapse
Affiliation(s)
- Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China
| | - Weiwei Tian
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Liping Yang
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Tsolaki V, Zakynthinos GE, Deskata K, Dimeas I, Parisi K, Makrygianni A, Giamouzis G, Zakynthinos E, Xanthopoulos A. Infective or Non-Infective Endocarditis: A Brief Literature Review Based on a Case Report. J Clin Med 2025; 14:2675. [PMID: 40283504 PMCID: PMC12027718 DOI: 10.3390/jcm14082675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
In the present report, we describe a patient presenting in the intensive care unit with fever, respiratory failure, and multiple lesions on cardiac valves. The patient, with a history of multiple myeloma under treatment, was intubated due to ARDS from influenza, and cardiac ultrasonography revealed lesions in the aortic, mitral, and tricuspid valves. There is a step-by-step approach in the case presentation, with clinical questions, while there is a review of the current literature concerning the issue.
Collapse
Affiliation(s)
- Vasiliki Tsolaki
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo, 41335 Larissa, Greece; (V.T.); (K.D.); (K.P.); (A.M.)
| | - George E. Zakynthinos
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantina Deskata
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo, 41335 Larissa, Greece; (V.T.); (K.D.); (K.P.); (A.M.)
| | - Ilias Dimeas
- Respiratory Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Kyriaki Parisi
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo, 41335 Larissa, Greece; (V.T.); (K.D.); (K.P.); (A.M.)
| | - Athanasia Makrygianni
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo, 41335 Larissa, Greece; (V.T.); (K.D.); (K.P.); (A.M.)
| | - Grigorios Giamouzis
- Department of Cardiology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (G.G.); (A.X.)
| | - Epaminondas Zakynthinos
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (G.G.); (A.X.)
| |
Collapse
|
3
|
Hatem BA, Jabir FA. The Role of ACE2 Receptor and Its Polymorphisms in COVID-19 Infection and Severity and Its Association with Lipid Profile, Thrombin, and D-Dimer Levels in Iraqi Patients: A Cross-Sectional Study. Biochem Genet 2024:10.1007/s10528-024-10890-7. [PMID: 39085685 DOI: 10.1007/s10528-024-10890-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 01/02/2024] [Indexed: 08/02/2024]
Abstract
COVID-19 patients experience a complex interplay involving ACE2, thrombin, D-dimer, and lipid profile, yet its full understanding remains elusive. ACE2, a pivotal regulator of the renin-angiotensin system and the primary receptor for SARS-CoV-2 undergoes downregulation upon viral binding, potentially leading to severe cases with acute respiratory distress syndrome (ARDS). A specific ACE2 gene polymorphism (rs2285666) may be associated with COVID-19 susceptibility, with the A allele potentially increasing infection risk. COVID-19 disease progression is linked to coagulation abnormalities, but the exact connection with thrombin and D-dimer remains uncertain. A study examining coagulation parameters in COVID-19 patients admitted to Al-Diwania Educational Hospital from February to May 2022 found that thrombin and D-dimer levels were directly related to disease severity. Severe cases exhibited significantly altered coagulation function compared to mild and recovered cases, with notably higher D-dimer levels and elevated thrombin serum concentrations. Moreover, dyslipidemia, particularly low HDL cholesterol, is a prevalent comorbidity in COVID-19 patients and may be linked to worse outcomes. In conclusion, COVID-19 is associated with a prothrombotic state and dysregulation of the renin-angiotensin system due to ACE2 downregulation following viral binding. The intricate interplay between ACE2, thrombin, D-dimer, and lipid profile necessitates further investigation. The multifaceted nature of the disease demands continued research to unravel its pathogenesis and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Ban Adnan Hatem
- Chemistry Department, College of Science, Al-Qadisiyah University, Al Diwaniyah, Iraq.
| | - Ferdous A Jabir
- Biochemistry Department, College of Medicine, Al-Qadisiyah University, Al Diwaniyah, Iraq
| |
Collapse
|
4
|
Ahmad I, Omura S, Sato F, Park AM, Khadka S, Gavins FNE, Tanaka H, Kimura MY, Tsunoda I. Exploring the Role of Platelets in Virus-Induced Inflammatory Demyelinating Disease and Myocarditis. Int J Mol Sci 2024; 25:3460. [PMID: 38542433 PMCID: PMC10970283 DOI: 10.3390/ijms25063460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 12/26/2024] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) infection has been used as a mouse model for two virus-induced organ-specific immune-mediated diseases. TMEV-induced demyelinating disease (TMEV-IDD) in the central nervous system (CNS) is a chronic inflammatory disease with viral persistence and an animal model of multiple sclerosis (MS) in humans. TMEV infection can also cause acute myocarditis with viral replication and immune cell infiltration in the heart, leading to cardiac fibrosis. Since platelets have been reported to modulate immune responses, we aimed to determine the role of platelets in TMEV infection. In transcriptome analyses of platelets, distinct sets of immune-related genes, including major histocompatibility complex (MHC) class I, were up- or downregulated in TMEV-infected mice at different time points. We depleted platelets from TMEV-infected mice by injecting them with platelet-specific antibodies. The platelet-depleted mice had significantly fewer viral antigen-positive cells in the CNS. Platelet depletion reduced the severities of TMEV-IDD and myocarditis, although the pathology scores did not reach statistical significance. Immunologically, the platelet-depleted mice had an increase in interferon (IFN)-γ production with a higher anti-TMEV IgG2a/IgG1 ratio. Thus, platelets may play roles in TMEV infection, such as gene expression, viral clearance, and anti-viral antibody isotype responses.
Collapse
Affiliation(s)
- Ijaz Ahmad
- Department of Microbiology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan; (I.A.); (S.O.); (F.S.); (A.-M.P.); (S.K.)
| | - Seiichi Omura
- Department of Microbiology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan; (I.A.); (S.O.); (F.S.); (A.-M.P.); (S.K.)
| | - Fumitaka Sato
- Department of Microbiology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan; (I.A.); (S.O.); (F.S.); (A.-M.P.); (S.K.)
| | - Ah-Mee Park
- Department of Microbiology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan; (I.A.); (S.O.); (F.S.); (A.-M.P.); (S.K.)
- Department of Arts and Sciences, Faculty of Medicine, Kindai University, Osaka 589-8511, Japan
| | - Sundar Khadka
- Department of Microbiology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan; (I.A.); (S.O.); (F.S.); (A.-M.P.); (S.K.)
- Department of Immunology, Duke University, Durham, NC 27708, USA
| | - Felicity N. E. Gavins
- Department of Biosciences, Centre for Inflammation Research and Translational Medicine, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
| | - Hiroki Tanaka
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa 078-8510, Japan;
| | - Motoko Y. Kimura
- Department of Experimental Immunology, Graduate School of Medicine, Chiba University, Chiba 263-8522, Japan;
| | - Ikuo Tsunoda
- Department of Microbiology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan; (I.A.); (S.O.); (F.S.); (A.-M.P.); (S.K.)
| |
Collapse
|
5
|
Arkless KL, Pan D, Shankar‐Hari M, Amison RT, Page CP, Rahman KM, Pitchford SC. Stimulation of platelet P2Y 1 receptors by different endogenous nucleotides leads to functional selectivity via biased signalling. Br J Pharmacol 2024; 181:564-579. [PMID: 36694432 PMCID: PMC10952403 DOI: 10.1111/bph.16039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/13/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND PURPOSE Platelet function during inflammation is dependent on activation by endogenous nucleotides. Non-canonical signalling via the P2Y1 receptor is important for these non-thrombotic functions of platelets. However, apart from ADP, the role of other endogenous nucleotides acting as agonists at P2Y1 receptors is unknown. This study compared the effects of ADP, Ap3A, NAD+ , ADP-ribose, and Up4A on platelet functions contributing to inflammation or haemostasis. EXPERIMENTAL APPROACH Platelets obtained from healthy human volunteers were incubated with ADP, Ap3A, NAD+ , ADP-ribose, or Up4A, with aggregation and fibrinogen binding measured (examples of function during haemostasis) or before exposure to fMLP to measure platelet chemotaxis (an inflammatory function). In silico molecular docking of these nucleotides to the binding pocket of P2Y1 receptors was then assessed. KEY RESULTS Platelet aggregation and binding to fibrinogen induced by ADP was not mimicked by NAD+ , ADP-ribose, and Up4A. However, these endogenous nucleotides induced P2Y1 -dependent platelet chemotaxis, an effect that required RhoA and Rac-1 activity, but not canonical PLC activity. Analysis of molecular docking of the P2Y1 receptor revealed distinct differences of amino acid interactions and depth of fit within the binding pocket for Ap3A, NAD+ , ADP-ribose, or Up4A compared with ADP. CONCLUSION AND IMPLICATIONS Platelet function (aggregation vs motility) can be differentially modulated by biased-agonist activation of P2Y1 receptors. This may be due to the character of the ligand-binding pocket interaction. This has implications for future therapeutic strategies aimed to suppress platelet activation during inflammation without affecting haemostasis as is the requirement of current ant-platelet drugs. LINKED ARTICLES This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.
Collapse
Affiliation(s)
- Kate L. Arkless
- Sackler Institute of Pulmonary PharmacologyInstitute of Pharmaceutical Science, King's College LondonLondonUK
| | - Dingxin Pan
- Sackler Institute of Pulmonary PharmacologyInstitute of Pharmaceutical Science, King's College LondonLondonUK
| | - Manu Shankar‐Hari
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | - Richard T. Amison
- Sackler Institute of Pulmonary PharmacologyInstitute of Pharmaceutical Science, King's College LondonLondonUK
| | - Clive P. Page
- Sackler Institute of Pulmonary PharmacologyInstitute of Pharmaceutical Science, King's College LondonLondonUK
| | - Khondaker Miraz Rahman
- Chemical Biology Group, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | - Simon C. Pitchford
- Sackler Institute of Pulmonary PharmacologyInstitute of Pharmaceutical Science, King's College LondonLondonUK
| |
Collapse
|
6
|
Kaminski TW, Brzoska T, Li X, Vats R, Katoch O, Dubey RK, Bagale K, Watkins SC, McVerry BJ, Pradhan-Sundd T, Zhang L, Robinson KM, Nyunoya T, Sundd P. Lung microvascular occlusion by platelet-rich neutrophil-platelet aggregates promotes cigarette smoke-induced severe flu. JCI Insight 2024; 9:e167299. [PMID: 38060312 PMCID: PMC10906226 DOI: 10.1172/jci.insight.167299] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Cigarette smoking is associated with a higher risk of ICU admissions among patients with flu. However, the etiological mechanism by which cigarette smoke (CS) exacerbates flu remains poorly understood. Here, we show that a mild dose of influenza A virus promotes a severe lung injury in mice preexposed to CS but not room air for 4 weeks. Real-time intravital (in vivo) lung imaging revealed that the development of acute severe respiratory dysfunction in CS- and flu-exposed mice was associated with the accumulation of platelet-rich neutrophil-platelet aggregates (NPAs) in the lung microcirculation within 2 days following flu infection. These platelet-rich NPAs formed in situ and grew larger over time to occlude the lung microvasculature, leading to the development of pulmonary ischemia followed by the infiltration of NPAs and vascular leakage into the alveolar air space. These findings suggest, for the first time to our knowledge, that an acute onset of platelet-driven thrombo-inflammatory response in the lung contributes to the development of CS-induced severe flu.
Collapse
Affiliation(s)
- Tomasz W. Kaminski
- Thrombosis and Hemostasis Program, VERSITI Blood Research Institute, Milwaukee, Wisconsin, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI)
| | - Tomasz Brzoska
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI)
- Division of Hematology and Oncology, and
| | - Xiuying Li
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ravi Vats
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI)
- Department of Bioengineering
| | - Omika Katoch
- Thrombosis and Hemostasis Program, VERSITI Blood Research Institute, Milwaukee, Wisconsin, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI)
| | - Rikesh K. Dubey
- Thrombosis and Hemostasis Program, VERSITI Blood Research Institute, Milwaukee, Wisconsin, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI)
| | - Kamal Bagale
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Simon C. Watkins
- Center for Biologic Imaging, and
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bryan J. McVerry
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Tirthadipa Pradhan-Sundd
- Transfusion Medicine, Vascular Biology and Cell Therapy Program, VERSITI Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Lianghui Zhang
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI)
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Keven M. Robinson
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Toru Nyunoya
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Prithu Sundd
- Thrombosis and Hemostasis Program, VERSITI Blood Research Institute, Milwaukee, Wisconsin, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI)
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering
| |
Collapse
|
7
|
Jiang H, Zhang Z. Immune response in influenza virus infection and modulation of immune injury by viral neuraminidase. Virol J 2023; 20:193. [PMID: 37641134 PMCID: PMC10463456 DOI: 10.1186/s12985-023-02164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Influenza A viruses cause severe respiratory illnesses in humans and animals. Overreaction of the innate immune response to influenza virus infection results in hypercytokinemia, which is responsible for mortality and morbidity. The influenza A virus surface glycoprotein neuraminidase (NA) plays a vital role in viral attachment, entry, and virion release from infected cells. NA acts as a sialidase, which cleaves sialic acids from cell surface proteins and carbohydrate side chains on nascent virions. Here, we review progress in understanding the role of NA in modulating host immune response to influenza virus infection. We also discuss recent exciting findings targeting NA protein to interrupt influenza-induced immune injury.
Collapse
Affiliation(s)
- Hongyu Jiang
- The People's Hospital of Dayi Country, Chengdu, Sichuan, China
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Zongde Zhang
- The People's Hospital of Dayi Country, Chengdu, Sichuan, China.
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
8
|
Ferdous F, Scott T. The Immunological Capacity of Thrombocytes. Int J Mol Sci 2023; 24:12950. [PMID: 37629130 PMCID: PMC10454457 DOI: 10.3390/ijms241612950] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Thrombocytes are numerous in the blood of aves (birds) and ichthyoids (fish). The origin of this cell type is a common hematopoietic stem cell giving rise to a cell that is active in blood coagulation, inflammatory functions, and the immune response in general. It has been well documented that thrombocytes can phagocytize small particles and bacteria. While phagocytosis with an associated oxidative burst has been reported for chicken thrombocytes, some questions remain as to the degradation capacity of phagosomes in ichthyoids. As innate cells, thrombocytes can be stimulated by bacterial, viral, and fungal pathogens to express altered gene expression. Furthermore, there have been observations that led researchers to state that platelets/thrombocytes are capable of serving as "professional antigen presenting cells" expressing CD40, CD80/86, MHC I, and MHC II. This indeed may be the case or, more likely at this time, provide supporting evidence that these cells aid and assist in the role of professional antigen-presenting cells to initiate adaptive immune responses.
Collapse
Affiliation(s)
- Farzana Ferdous
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Thomas Scott
- Department of Animal & Veterinary Sciences, Clemson University, 129 Poole Agricultural Center, Clemson, SC 29634, USA;
| |
Collapse
|
9
|
Zein AFMZ, Sulistiyana CS, Raffaelo WM, Pranata R. The association between mean platelet volume and poor outcome in patients with COVID-19: Systematic review, meta-analysis, and meta-regression. J Intensive Care Soc 2023; 24:299-308. [PMID: 37744074 PMCID: PMC10515336 DOI: 10.1177/17511437221121234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
INTRODUCTION This study aims to assess the association between mean platelet volume (MPV) and poor outcome in patients with COVID-19. METHODS We performed a comprehensive literature search using the PubMed, Embase and Scopus databases with keywords "2019-nCoV" OR "SARS-CoV-2" OR "COVID-19" AND "mean platelet volume" OR "MPV" on 8 July 2021. The primary outcome was composite poor outcome, defined as severe COVID-19 or mortality. The pooled effect estimate was reported as mean differences in terms of MPV between the group with and without outcome. RESULTS There were 17 studies which consist of 4549 patients with COVID-19 were included in this study. The incidence of poor outcome was 25% (20%-30%). Mean MPV was found to be higher in the poor outcome group in compare to no poor outcome group (10.3 ± 1.9 fL vs 9.9 ± 1.7 fL). The mean MPV difference between both group was 0.47 fL [95% CI 0.27, 0.67], p < 0.001; I2: 62.91%, p < 0.001). In the sub-group analysis, patients with severe COVID-19 had higher MPV (mean difference 0.54 fL [95% CI 0.28, 0.80], p < 0.001; I2: 54.84%, p = 0.014). Furthermore, MPV was also higher in the mortality group (mean difference 0.54 fL [95% CI 0.29, 0.80], p = 0.020; I2: 71.11%, p = 0.004). Meta-regression analysis showed that the association between MPV and poor outcome was not affected by age (p = 0.789), gender (p = 0.167), platelets (p = 0.056), white blood cells (p = 0.639), and lymphocytes (p = 0.733). CONCLUSION This meta-analysis indicated that increased MPV was associated with severity and mortality in patients with COVID-19. Further research is needed to determine the optimum cut-off point.
Collapse
Affiliation(s)
- Ahmad Fariz Malvi Zamzam Zein
- Department of Internal Medicine, Faculty of Medicine, Universitas Swadaya Gunung Jati, Cirebon, Indonesia
- Department of Internal Medicine, Waled General Hospital, Cirebon, Indonesia
| | - Catur Setiya Sulistiyana
- Department of Medical Education, Faculty of Medicine, Universitas Swadaya Gunung Jati, Cirebon, Indonesia
| | | | | |
Collapse
|
10
|
Xu J, Xie L. Advances in immune response to pulmonary infection: Nonspecificity, specificity and memory. Chronic Dis Transl Med 2023; 9:71-81. [PMID: 37305110 PMCID: PMC10249196 DOI: 10.1002/cdt3.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/02/2023] [Accepted: 04/14/2023] [Indexed: 06/13/2023] Open
Abstract
The lung immune response consists of various cells involved in both innate and adaptive immune processes. Innate immunity participates in immune resistance in a nonspecific manner, whereas adaptive immunity effectively eliminates pathogens through specific recognition. It was previously believed that adaptive immune memory plays a leading role during secondary infections; however, innate immunity is also involved in immune memory. Trained immunity refers to the long-term functional reprogramming of innate immune cells caused by the first infection, which alters the immune response during the second challenge. Tissue resilience limits the tissue damage caused by infection by controlling excessive inflammation and promoting tissue repair. In this review, we summarize the impact of host immunity on the pathophysiological processes of pulmonary infections and discuss the latest progress in this regard. In addition to the factors influencing pathogenic microorganisms, we emphasize the importance of the host response.
Collapse
Affiliation(s)
- Jianqiao Xu
- College of Pulmonary & Critical Care Medicine, 8th Medical CenterChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, 8th Medical CenterChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| |
Collapse
|
11
|
Yuan X, Jiang P, Qiao C, Su N, Sun P, Lin F, Li C. PLATELET SUPPRESSION BY TIROFIBAN AMELIORATES PULMONARY COAGULATION AND FIBRINOLYSIS ABNORMALITIES IN THE LUNGS OF MOUSE ANTIBODY-MEDIATED TRANSFUSION-RELATED ACUTE LUNG INJURY. Shock 2023; 59:603-611. [PMID: 36640155 DOI: 10.1097/shk.0000000000002080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
ABSTRACT This study aimed to explore the ameliorating effects of the platelet surface glycoprotein IIb/IIIa receptor antagonist tirofiban on coagulation and fibrinolytic abnormalities in a mouse model of antibody-mediated transfusion-associated acute lung injury (ALI). This is important because ALI is a major cause of death attributable to the occurrence of adverse transfusion reactions. No information on a definite diagnosis or pathological mechanism exists, and targeted treatment options are not available. In this study, wild-type male Balb/c mice aged 8 to 10 weeks were randomly divided into the TRALI model, blank control, tirofiban intervention, and isotype control groups. After different treatment exposures, the mice were observed for 2 h before being killed, and lung tissue samples were collected. To explore the intervention effect of tirofiban, the degree of lung injury was quantified by estimating the lung wet/dry ratio, rectal temperature, survival rate, total protein, and myeloperoxidase and via hematoxylin-eosin staining. Furthermore, the coagulation, anticoagulation, and fibrinolysis assays were measured by automatic coagulation instrument and enzyme-linked immunosorbent assay kits, and the fluorescence densities of platelets and fibrin were quantified using immunofluorescence to analyze the effects of tirofiban on the platelet and fibrin interactions of TRALI. Compared with the TRALI model group, the lung injury indices in the tirofiban intervention group decreased significantly, and survival rates also improved. Furthermore, the level of coagulation and fibrinolytic abnormalities were obviously lower than those in the TRALI model group. In conclusion, our findings suggest that tirofiban might interfere with TRALI by inhibiting platelet activation and improving coagulation and fibrinolytic abnormalities.
Collapse
Affiliation(s)
- Xin Yuan
- Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College, Chengdu, Sichuan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
12
|
Korkmaz FT, Traber KE. Innate immune responses in pneumonia. Pneumonia (Nathan) 2023; 15:4. [PMID: 36829255 PMCID: PMC9957695 DOI: 10.1186/s41479-023-00106-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/05/2023] [Indexed: 02/26/2023] Open
Abstract
The lungs are an immunologically unique environment; they are exposed to innumerable pathogens and particulate matter daily. Appropriate clearance of pathogens and response to pollutants is required to prevent overwhelming infection, while preventing tissue damage and maintaining efficient gas exchange. Broadly, the innate immune system is the collection of immediate, intrinsic immune responses to pathogen or tissue injury. In this review, we will examine the innate immune responses of the lung, with a particular focus on their role in pneumonia. We will discuss the anatomic barriers and antimicrobial proteins of the lung, pathogen and injury recognition, and the role of leukocytes (macrophages, neutrophils, and innate lymphocytes) and lung stromal cells in innate immunity. Throughout the review, we will focus on new findings in innate immunity as well as features that are unique to the lung.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Department of Medicine, Division of Immunology & Infectious Disease, University of Massachusetts, Worcester, MA, USA
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
| | - Katrina E Traber
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA.
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
13
|
Wrotek A, Wrotek O, Jackowska T. Platelet Abnormalities in Children with Laboratory-Confirmed Influenza. Diagnostics (Basel) 2023; 13:diagnostics13040634. [PMID: 36832122 PMCID: PMC9954849 DOI: 10.3390/diagnostics13040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND The role of platelets in the immune response against influenza has been raised, and a diagnostic or prognostic value of platelet parameter abnormalities, including platelet count (PLT), or mean platelet volume (MPV), has been suggested. The study aimed to analyze the prognostic value of platelet parameters in children hospitalized due to laboratory-confirmed influenza. METHODS We retrospectively verified the platelet parameters (PLT, MPV, MPV/PLT, and PLT/lymphocyte ratio regarding the influenza complications (acute otitis media, pneumonia, and lower respiratory tract infection-LRTI), and the clinical course (antibiotic treatment, tertiary care transfer, and death). RESULTS An abnormal PLT was observed in 84 out of 489 laboratory-confirmed cases (17.2%, 44 thrombocytopaenia cases, and 40 thrombocytoses). Patients' age correlated negatively with PLT (rho = -0.46) and positively with MPV/PLT (rho = 0.44), while MPV was not age-dependent. The abnormal PLT correlated with increased odds of complications (OR = 1.67), including LRTI (OR = 1.89). Thrombocytosis was related to increased odds of LRTI (OR = 3.64), and radiologically/ultrasound-confirmed pneumonia (OR = 2.15), mostly in children aged under 1 year (OR = 4.22 and OR = 3.79, respectively). Thrombocytopaenia was related to antibiotic use (OR = 2.41) and longer hospital stays (OR = 3.03). A lowered MPV predicted a tertiary care transfer (AUC = 0.77), while MPV/PLT was the most versatile parameter in predicting LRTI (AUC = 0.7 in <1 yo), pneumonia (AUC = 0.68 in <1 yo), and antibiotic treatment (AUC = 0.66 in 1-2 yo and AUC = 0.6 in 2-5 yo). CONCLUSIONS Platelet parameters, including PLT count abnormalities and MPV/PLT ratio, are related to the increased odds of complications and a more severe disease course, and may add important data in assessing pediatric influenza patients, but should be interpreted cautiously due to age-related specificities.
Collapse
Affiliation(s)
- August Wrotek
- Department of Pediatrics, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
- Department of Pediatrics, Bielanski Hospital, Cegłowska 80, 01-809 Warsaw, Poland
- Correspondence:
| | - Oliwia Wrotek
- Student Research Group, Bielanski Hospital, Cegłowska 80, 01-809 Warsaw, Poland
| | - Teresa Jackowska
- Department of Pediatrics, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
- Department of Pediatrics, Bielanski Hospital, Cegłowska 80, 01-809 Warsaw, Poland
| |
Collapse
|
14
|
Wang M, Li H, Liu S, Ge L, Muhmood A, Liu D, Gan F, Liu Y, Chen X, Huang K. Lipopolysaccharide aggravates canine influenza a (H3N2) virus infection and lung damage via mTOR/autophagy in vivo and in vitro. Food Chem Toxicol 2023; 172:113597. [PMID: 36596444 DOI: 10.1016/j.fct.2022.113597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Influenza A (H3N2) accounts for the majority of influenza worldwide and continues to challenge human health. Disturbance in the gut microbiota caused by many diseases leads to increased production of lipopolysaccharide (LPS), and LPS induces sepsis and conditions associated with local or systemic inflammation. However, to date, little attention has been paid to the potential impact of LPS on influenza A (H3N2) infection and the potential mechanism. Hence, in this study we used canine influenza A (H3N2) virus (CIV) as a model of influenza A virus to investigate the effect of low-dose of LPS on CIV replication and lung damage and explore the underlying mechanism in mice and A549 and HPAEpiC cells. The results showed that LPS (25 μg/kg) increased CIV infection and lung damage in mice, as indicated by pulmonary virus titer, viral NP levels, lung index, and pulmonary histopathology. LPS (1 μg/ml) also increased CIV replication in A549 cells as indicated by the above same parameters. Furthermore, low doses of LPS reduced CIV-induced p-mTOR protein expression and enhanced CIV-induced autophagy-related mRNA/protein expressions in vivo and in vitro. In addition, the use of the mTOR activator, MHY1485, reversed CIV-induced autophagy and CIV replication in A549 and HPAEpiC cells, respectively. siATG5 alleviated CIV replication exacerbated by LPS in the two lines. In conclusion, LPS aggravates CIV infection and lung damage via mTOR/autophagy.
Collapse
Affiliation(s)
- Mengmeng Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Haolei Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Azhar Muhmood
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
15
|
Dissecting Platelet's Role in Viral Infection: A Double-Edged Effector of the Immune System. Int J Mol Sci 2023; 24:ijms24032009. [PMID: 36768333 PMCID: PMC9916939 DOI: 10.3390/ijms24032009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023] Open
Abstract
Platelets play a major role in the processes of primary hemostasis and pathological inflammation-induced thrombosis. In the mid-2000s, several studies expanded the role of these particular cells, placing them in the "immune continuum" and thus changing the understanding of their function in both innate and adaptive immune responses. Among the many receptors they express on their surface, platelets express Toll-Like Receptors (TLRs), key receptors in the inflammatory cell-cell reaction and in the interaction between innate and adaptive immunity. In response to an infectious stimulus, platelets will become differentially activated. Platelet activation is variable depending on whether platelets are activated by a hemostatic or pathogen stimulus. This review highlights the role that platelets play in platelet modulation count and adaptative immune response during viral infection.
Collapse
|
16
|
Srihirun S, Sriwantana T, Srichatrapimuk S, Vivithanaporn P, Kirdlarp S, Sungkanuparph S, Phusanti S, Nanthatanti N, Suwannalert P, Sibmooh N. Increased platelet activation and lower platelet-monocyte aggregates in COVID-19 patients with severe pneumonia. PLoS One 2023; 18:e0282785. [PMID: 36888618 PMCID: PMC9994685 DOI: 10.1371/journal.pone.0282785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND The increased procoagulant platelets and platelet activation are associated with thrombosis in COVID-19. In this study, we investigated platelet activation in COVID-19 patients and their association with other disease markers. METHODS COVID-19 patients were classified into three severity groups: no pneumonia, mild-to-moderate pneumonia, and severe pneumonia. The expression of P-selectin and activated glycoprotein (aGP) IIb/IIIa on the platelet surface and platelet-leukocyte aggregates were measured prospectively on admission days 1, 7, and 10 by flow cytometry. RESULTS P-selectin expression, platelet-neutrophil, platelet-lymphocyte, and platelet-monocyte aggregates were higher in COVID-19 patients than in uninfected control individuals. In contrast, aGPIIb/IIIa expression was not different between patients and controls. Severe pneumonia patients had lower platelet-monocyte aggregates than patients without pneumonia and patients with mild-to-moderate pneumonia. Platelet-neutrophil and platelet-lymphocyte aggregates were not different among groups. There was no change in platelet-leukocyte aggregates and P-selectin expression on days 1, 7, and 10. aGPIIb/IIIa expression was not different among patient groups. Still, adenosine diphosphate (ADP)-induced aGPIIb/IIIa expression was lower in severe pneumonia than in patients without and with mild-to-moderate pneumonia. Platelet-monocyte aggregates exhibited a weak positive correlation with lymphocyte count and weak negative correlations with interleukin-6, D-dimer, lactate dehydrogenase, and nitrite. CONCLUSION COVID-19 patients have higher platelet-leukocyte aggregates and P-selectin expression than controls, indicating increased platelet activation. Compared within patient groups, platelet-monocyte aggregates were lower in severe pneumonia patients.
Collapse
Affiliation(s)
- Sirada Srihirun
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Thanaporn Sriwantana
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Sirawat Srichatrapimuk
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Suppachok Kirdlarp
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Somnuek Sungkanuparph
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Sithakom Phusanti
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Nithita Nanthatanti
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Prasit Suwannalert
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nathawut Sibmooh
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
- * E-mail:
| |
Collapse
|
17
|
Jhutty SS, Boehme JD, Jeron A, Volckmar J, Schultz K, Schreiber J, Schughart K, Zhou K, Steinheimer J, Stöcker H, Stegemann-Koniszewski S, Bruder D, Hernandez-Vargas EA. Predicting Influenza A Virus Infection in the Lung from Hematological Data with Machine Learning. mSystems 2022; 7:e0045922. [PMID: 36346236 PMCID: PMC9765554 DOI: 10.1128/msystems.00459-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The tracking of pathogen burden and host responses with minimally invasive methods during respiratory infections is central for monitoring disease development and guiding treatment decisions. Utilizing a standardized murine model of respiratory influenza A virus (IAV) infection, we developed and tested different supervised machine learning models to predict viral burden and immune response markers, i.e., cytokines and leukocytes in the lung, from hematological data. We performed independently in vivo infection experiments to acquire extensive data for training and testing of the models. We show here that lung viral load, neutrophil counts, cytokines (such as gamma interferon [IFN-γ] and interleukin 6 [IL-6]), and other lung infection markers can be predicted from hematological data. Furthermore, feature analysis of the models showed that blood granulocytes and platelets play a crucial role in prediction and are highly involved in the immune response against IAV. The proposed in silico tools pave the path toward improved tracking and monitoring of influenza virus infections and possibly other respiratory infections based on minimally invasively obtained hematological parameters. IMPORTANCE During the course of respiratory infections such as influenza, we do have a very limited view of immunological indicators to objectively and quantitatively evaluate the outcome of a host. Methods for monitoring immunological markers in a host's lungs are invasive and expensive, and some of them are not feasible to perform. Using machine learning algorithms, we show for the first time that minimally invasively acquired hematological parameters can be used to infer lung viral burden, leukocytes, and cytokines following influenza virus infection in mice. The potential of the framework proposed here consists of a new qualitative vision of the disease processes in the lung compartment as a noninvasive tool.
Collapse
Affiliation(s)
- Suneet Singh Jhutty
- Frankfurt Institute for Advanced Studiesgrid.417999.b, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe University, Frankfurt am Main, Germany
| | - Julia D. Boehme
- Immune Regulation Group, Helmholtz Centre for Infection Researchgrid.7490.a, Braunschweig, Germany
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Andreas Jeron
- Immune Regulation Group, Helmholtz Centre for Infection Researchgrid.7490.a, Braunschweig, Germany
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Julia Volckmar
- Immune Regulation Group, Helmholtz Centre for Infection Researchgrid.7490.a, Braunschweig, Germany
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Kristin Schultz
- Immune Regulation Group, Helmholtz Centre for Infection Researchgrid.7490.a, Braunschweig, Germany
- Department of Infection Genetics, Helmholtz Centre for Infection Researchgrid.7490.a, Braunschweig, Germany
| | - Jens Schreiber
- Department of Pneumology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburggrid.5807.a, Magdeburg, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Researchgrid.7490.a, Braunschweig, Germany
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kai Zhou
- Frankfurt Institute for Advanced Studiesgrid.417999.b, Frankfurt am Main, Germany
| | - Jan Steinheimer
- Frankfurt Institute for Advanced Studiesgrid.417999.b, Frankfurt am Main, Germany
| | - Horst Stöcker
- Frankfurt Institute for Advanced Studiesgrid.417999.b, Frankfurt am Main, Germany
- Institut für Theoretische Physik, Goethe Universität Frankfurt, Frankfurt am Main, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Sabine Stegemann-Koniszewski
- Department of Pneumology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburggrid.5807.a, Magdeburg, Germany
| | - Dunja Bruder
- Immune Regulation Group, Helmholtz Centre for Infection Researchgrid.7490.a, Braunschweig, Germany
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Esteban A. Hernandez-Vargas
- Frankfurt Institute for Advanced Studiesgrid.417999.b, Frankfurt am Main, Germany
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, Idaho, USA
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
18
|
Sharma S, Tyagi T, Antoniak S. Platelet in thrombo-inflammation: Unraveling new therapeutic targets. Front Immunol 2022; 13:1039843. [PMID: 36451834 PMCID: PMC9702553 DOI: 10.3389/fimmu.2022.1039843] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
In the broad range of human diseases, thrombo-inflammation appears as a clinical manifestation. Clinically, it is well characterized in context of superficial thrombophlebitis that is recognized as thrombosis and inflammation of superficial veins. However, it is more hazardous when developed in the microvasculature of injured/inflamed/infected tissues and organs. Several diseases like sepsis and ischemia-reperfusion can cause formation of microvascular thrombosis subsequently leading to thrombo-inflammation. Thrombo-inflammation can also occur in cases of antiphospholipid syndrome, preeclampsia, sickle cell disease, bacterial and viral infection. One of the major contributors to thrombo-inflammation is the loss of normal anti-thrombotic and anti-inflammatory potential of the endothelial cells of vasculature. This manifest itself in the form of dysregulation of the coagulation pathway and complement system, pathologic platelet activation, and increased recruitment of leukocyte within the microvasculature. The role of platelets in hemostasis and formation of thrombi under pathologic and non-pathologic conditions is well established. Platelets are anucleate cells known for their essential role in primary hemostasis and the coagulation pathway. In recent years, studies provide strong evidence for the critical involvement of platelets in inflammatory processes like acute ischemic stroke, and viral infections like Coronavirus disease 2019 (COVID-19). This has encouraged the researchers to investigate the contribution of platelets in the pathology of various thrombo-inflammatory diseases. The inhibition of platelet surface receptors or their intracellular signaling which mediate initial platelet activation and adhesion might prove to be suitable targets in thrombo-inflammatory disorders. Thus, the present review summarizes the concept and mechanism of platelet signaling and briefly discuss their role in sterile and non-sterile thrombo-inflammation, with the emphasis on role of platelets in COVID-19 induced thrombo-inflammation. The aim of this review is to summarize the recent developments in deciphering the role of the platelets in thrombo-inflammation and discuss their potential as pharmaceutical targets.
Collapse
Affiliation(s)
- Swati Sharma
- UNC Blood Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tarun Tyagi
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, United States
| | - Silvio Antoniak
- UNC Blood Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
19
|
Claude L, Martino F, Hermand P, Chahim B, Roger P, de Bourayne M, Garnier Y, Tressieres B, Colin Y, Le Van Kim C, Romana M, Baccini V. Platelet caspase-1 and Bruton tyrosine kinase activation in patients with COVID-19 is associated with disease severity and reversed in vitro by ibrutinib. Res Pract Thromb Haemost 2022; 6:e12811. [PMID: 36514346 PMCID: PMC9732813 DOI: 10.1002/rth2.12811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022] Open
Abstract
Background Severity of coronavirus disease 2019 (COVID-19) is often associated with thrombotic complications and cytokine storm leading to intensive are unit (ICU) admission. Platelets are known to be responsible for abnormal hemostasis parameters (thrombocytopenia, raised D-dimers, and prolonged prothrombin time) in other viral infections through the activation of the nucleotide-binding domain leucine repeat rich containing protein 3 inflammasome induced by signaling pathways driven by Bruton tyrosine kinase (BTK) and leading to caspase-1 activation. Objectives We hypothesized that caspase-1 activation and the phosphorylation of BTK could be associated with the severity of the disease and that ibrutinib, a BTK inhibitor, could inhibit platelet activation. Methods and Results We studied caspase-1 activation by flow cytometry and the phosphorylation of BTK by Western blot in a cohort of 51 Afro-Carribean patients with COVID-19 disease (19 not treated in ICU and 32 treated in ICU). Patients with a platelet count of 286.7 × 109/L (69-642 × 109/L) were treated by steroids and heparin preventive anticoagulation. Caspase-1 and BTK activation were associated with the severity of the disease and with the procoagulant state of the patients. Furthermore, we showed in vitro that the plasma of ICU patients with COVID-19 was able to increase CD62P expression and caspase-1 activity of healthy platelets and that ibrutinib could prevent it. Conclusions Our results show that caspase-1 and BTK activation are related to disease severity and suggest the therapeutic hope raised by ibrutinib in the treatment of COVID-19 by reducing the procoagulant state of the patients.
Collapse
Affiliation(s)
- Livia Claude
- Université des Antilles, UMR_S1134, BIGRPointe‐à‐PitreFrance
- Laboratoire d'Excellence GR‐ExParisFrance
- Université Paris Cité, UMR_S1134, BIGR, INSERMParisFrance
- Institut National de la Transfusion SanguineParisFrance
| | - Frédéric Martino
- Université des Antilles, UMR_S1134, BIGRPointe‐à‐PitreFrance
- Service de Réanimation, CHU de la GuadeloupePointe à PitreGuadeloupe
| | - Patricia Hermand
- Laboratoire d'Excellence GR‐ExParisFrance
- Université Paris Cité, UMR_S1134, BIGR, INSERMParisFrance
- Institut National de la Transfusion SanguineParisFrance
| | - Bassel Chahim
- Service Post‐Urgences, CHU de la GuadeloupePointe à PitreGuadeloupe
| | | | | | - Yohann Garnier
- Université des Antilles, UMR_S1134, BIGRPointe‐à‐PitreFrance
- Laboratoire d'Excellence GR‐ExParisFrance
- Université Paris Cité, UMR_S1134, BIGR, INSERMParisFrance
- Institut National de la Transfusion SanguineParisFrance
| | - Benoit Tressieres
- Centre d'Investigation Clinique Antilles Guyane, Inserm CIC 1424, CHU de la GuadeloupePointe‐à‐PitreGuadeloupe
| | - Yves Colin
- Laboratoire d'Excellence GR‐ExParisFrance
- Université Paris Cité, UMR_S1134, BIGR, INSERMParisFrance
- Institut National de la Transfusion SanguineParisFrance
| | - Caroline Le Van Kim
- Laboratoire d'Excellence GR‐ExParisFrance
- Université Paris Cité, UMR_S1134, BIGR, INSERMParisFrance
- Institut National de la Transfusion SanguineParisFrance
| | - Marc Romana
- Université des Antilles, UMR_S1134, BIGRPointe‐à‐PitreFrance
- Laboratoire d'Excellence GR‐ExParisFrance
- Université Paris Cité, UMR_S1134, BIGR, INSERMParisFrance
- Institut National de la Transfusion SanguineParisFrance
| | - Véronique Baccini
- Université des Antilles, UMR_S1134, BIGRPointe‐à‐PitreFrance
- Laboratoire d'Excellence GR‐ExParisFrance
- Université Paris Cité, UMR_S1134, BIGR, INSERMParisFrance
- Institut National de la Transfusion SanguineParisFrance
- Laboratoire d'HématologieCHU de la GuadeloupePointe à PitreGuadeloupe
| |
Collapse
|
20
|
Rommel MG, Walz L, Fotopoulou F, Kohlscheen S, Schenk F, Miskey C, Botezatu L, Krebs Y, Voelker IM, Wittwer K, Holland-Letz T, Ivics Z, von Messling V, Essers MA, Milsom MD, Pfaller CK, Modlich U. Influenza A virus infection instructs hematopoiesis to megakaryocyte-lineage output. Cell Rep 2022; 41:111447. [DOI: 10.1016/j.celrep.2022.111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 07/29/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022] Open
|
21
|
Bivalirudin exerts antiviral activity against respiratory syncytial virus-induced lung infections in neonatal mice. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:415-425. [PMID: 36651544 DOI: 10.2478/acph-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 01/26/2023]
Abstract
Respiratory syncytial virus (RSV) is the most common cause of small airways inflammation in the lungs (bronchiolitis) in neonates and immunocompromised adults. The deregulation of cellular and plasma components leads to increased morbidity and mortality. The activation of the clotting cascade plays a key role in the progression of disease severity during viral infection. The current investigation studied the effect of bivalirudin (BR) on the progression and cellular effects of RSV-induced infection in the neonatal mice model. Mice (5-7 days old) were inoculated intranasally with RSV with or without BR administration (2 mg kg-1 day-1, i.v.) for 2 weeks. Tissue histopathology, inflammatory signalling genes such as TLR, and cytokines were analyzed. The results showed pneumocytes exhibiting nuclear pyknosis, cellular infiltration in lung tissue and increased lung titers in RSV-infected mice compared to the control. Furthermore, RSV-infected mice demonstrated altered clotting parameters such as D-dimer, soluble thrombomodulin, and increased inflammatory cytokines IL-5, 6, IFN-γ, IL-13, and CXCL1. Additionally, the mRNA expression analysis displayed increased levels of IL-33, TLR3, and TLR7 genes in RSV-infected lung tissue. Further, to delineate the role of micro RNAs, the qRT-PCR analysis was done, and the results displayed an increase in miR-136, miR-30b, and let-7i. At the same time, the down-regulated expression of miR-221 in RSV-infected mice compared to the control. BR treatment reduced the cellular infiltration with reduced inflammatory cytokines and normalized clotting indices. Thus, the study shows that RSV infection induces specific changes in lung tissue and the clotting related signalling mechanism. Additionally, BR treatment significantly reduces bronchiolitis and prevents the severity of the infections suggesting that BR can possibly be used to reduce the viral-mediated infections in neonates.
Collapse
|
22
|
Soltani-Zangbar MS, Parhizkar F, Abdollahi M, Shomali N, Aghebati-Maleki L, Shahmohammadi Farid S, Roshangar L, Mahmoodpoor A, Yousefi M. Immune system-related soluble mediators and COVID-19: basic mechanisms and clinical perspectives. Cell Commun Signal 2022; 20:131. [PMID: 36038915 PMCID: PMC9421625 DOI: 10.1186/s12964-022-00948-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/02/2022] [Indexed: 12/04/2022] Open
Abstract
During SARS-CoV-2 infection, an effective immune response provides the first line of defense; however, excessive inflammatory innate immunity and impaired adaptive immunity may harm tissues. Soluble immune mediators are involved in the dynamic interaction of ligands with membrane-bound receptors to maintain and restore health after pathological events. In some cases, the dysregulation of their expression can lead to disease pathology. In this literature review, we described current knowledge of the basic features of soluble immune mediators and their dysregulation during SARS-CoV-2 infections and highlighted their contribution to disease severity and mortality. Video Abstract
Collapse
Affiliation(s)
- Mohammad Sadegh Soltani-Zangbar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Parhizkar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Abdollahi
- School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sima Shahmohammadi Farid
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Gawelek KL, Padera R, Connors J, Pinkus GS, Podznyakova O, Battinelli EM. Cardiac megakaryocytes in SARS-CoV-2 positive autopsies. Histopathology 2022; 81:600-624. [PMID: 35925828 PMCID: PMC9538948 DOI: 10.1111/his.14734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 01/08/2023]
Abstract
Thromboembolic phenomena are an important complication of infection by severe acute respiratory coronavirus 2 (SARS‐CoV‐2). Increasing focus on the management of the thrombotic complications of Coronavirus Disease 2019 (COVID‐19) has led to further investigation into the role of platelets, and their precursor cell, the megakaryocyte, during the disease course. Previously published postmortem evaluations of patients who succumbed to COVID‐19 have reported the presence of megakaryocytes in the cardiac microvasculature. Our series evaluated a cohort of autopsies performed on SARS‐CoV‐2‐positive patients in 2020 (n = 36) and prepandemic autopsies performed in early 2020 (n = 12) and selected to represent comorbidities common in cases of severe COVID‐19, in addition to infectious and noninfectious pulmonary disease and thromboembolic phenomena. Cases were assessed for the presence of cardiac megakaryocytes and correlated with the presence of pulmonary emboli and laboratory platelet parameters and inflammatory markers. Cardiac megakaryocytes were detected in 64% (23/36) of COVID‐19 autopsies, and 40% (5/12) prepandemic autopsies, with averages of 1.77 and 0.84 megakaryocytes per cm2, respectively. Within the COVID‐19 cohort, autopsies with detected megakaryocytes had significantly higher platelet counts compared with cases throughout; other platelet parameters were not statistically significant between groups. Although studies have supported a role of platelets and megakaryocytes in the response to viral infections, including SARS‐CoV‐2, our findings suggest cardiac megakaryocytes may be representative of a nonspecific inflammatory response and are frequent in, but not exclusive to, COVID‐19 autopsies.
Collapse
Affiliation(s)
- Kara L Gawelek
- Department of Pathology, Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Padera
- Department of Pathology, Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts, USA
| | - Jean Connors
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts, USA
| | - Geraldine S Pinkus
- Department of Pathology, Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts, USA
| | - Olga Podznyakova
- Department of Pathology, Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts, USA
| | - Elisabeth M Battinelli
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Mellema RA, Crandell J, Petrey AC. Platelet Dysregulation in the Pathobiology of COVID-19. Hamostaseologie 2022; 42:221-228. [PMID: 34879421 PMCID: PMC11949001 DOI: 10.1055/a-1646-3392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) encompasses a broad spectrum of clinical manifestations caused by infection with severe acute respiratory syndrome coronavirus 2.Patients with severe disease present with hyperinflammation which can affect multiple organs which often include observations of microvascular and macrovascular thrombi. COVID-19 is increasingly recognized as a thromboinflammatory disease where alterations of both coagulation and platelets are closely linked to mortality and clinical outcomes. Although platelets are most well known as central mediators of hemostasis, they possess chemotactic molecules, cytokines, and adhesion molecules that are now appreciated as playing an important role in the regulation of immune response. This review summarizes the current knowledge of platelet alterations observed in the context of COVID-19 and their impact upon disease pathobiology.
Collapse
Affiliation(s)
- Rebecca A. Mellema
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States
| | - Jacob Crandell
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| | - Aaron C. Petrey
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
25
|
Xiao S, Liu L, Sun Z, Liu X, Xu J, Guo Z, Yin X, Liao F, Xu J, You Y, Zhang T. Network Pharmacology and Experimental Validation to Explore the Mechanism of Qing-Jin-Hua-Tan-Decoction Against Acute Lung Injury. Front Pharmacol 2022; 13:891889. [PMID: 35873580 PMCID: PMC9304690 DOI: 10.3389/fphar.2022.891889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022] Open
Abstract
Qing-Jin-Hua-Tan-Decoction (QJHTD), a classic famous Chinese ancient prescription, has been used for treatment of pulmonary diseases since Ming Dynasty. A total of 22 prototype compounds of QJHTD absorbed into rat blood were chosen as candidates for the pharmacological network analysis and molecular docking. The targets from the intersection of compound target and ALI disease targets were used for GO and KEGG enrichment analyses. Molecular docking was adopted to further verify the interactions between 22 components and the top 20 targets with higher degree values in the component-target-pathway network. In vitro experiments were performed to verify the results of network pharmacology using SPR experiments, Western blot experiments, and the PMA-induced neutrophils to produce neutrophil extracellular trap (NET) model. The compound-target-pathway network includes 176 targets and 20 signaling pathways in which the degree of MAPK14, CDK2, EGFR, F2, SRC, and AKT1 is higher than that of other targets and which may be potential disease targets. The biological processes in QJHTD for ALI mainly included protein phosphorylation, response to wounding, response to bacterium, regulation of inflammatory response, and so on. KEGG enrichment analyses revealed multiple signaling pathways, including lipid and atherosclerosis, HIF-1 signaling pathway, renin-angiotensin system, and neutrophil extracellular trap formation. The molecular docking results showed that baicalin, oroxylin A-7-glucuronide, hispidulin-7-O-β-D-glucuronide, wogonoside, baicalein, wogonin, tianshic acid, and mangiferin can be combined with most of the targets, which might be the core components of QJHTD in treatment of ALI. Direct binding ability of baicalein, wogonin, and baicalin to thrombin protein was all micromolar, and their KD values were 11.92 μM, 1.303 μM, and 1.146 μM, respectively, revealed by SPR experiments, and QJHTD could inhibit Src phosphorylation in LPS-activated neutrophils by Western blot experiments. The experimental results of PMA-induced neutrophils to produce NETs indicated that QJHTD could inhibit the production of NETs. This study revealed the active compounds, effective targets, and potential pharmacological mechanisms of QJHTD acting on ALI.
Collapse
Affiliation(s)
- Shunli Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhengxiao Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoqian Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongyuan Guo
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaojie Yin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fulong Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Xu
- National and Local United Engineering Laboratory of Modern Preparation and Quality Control Technology of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Yun You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiejun Zhang
- National and Local United Engineering Laboratory of Modern Preparation and Quality Control Technology of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| |
Collapse
|
26
|
Infection of lung megakaryocytes and platelets by SARS-CoV-2 anticipate fatal COVID-19. Cell Mol Life Sci 2022; 79:365. [PMID: 35708858 PMCID: PMC9201269 DOI: 10.1007/s00018-022-04318-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2, although not being a circulatory virus, spread from the respiratory tract resulting in multiorgan failures and thrombotic complications, the hallmarks of fatal COVID-19. A convergent contributor could be platelets that beyond hemostatic functions can carry infectious viruses. Here, we profiled 52 patients with severe COVID-19 and demonstrated that circulating platelets of 19 out 20 non-survivor patients contain SARS-CoV-2 in robust correlation with fatal outcome. Platelets containing SARS-CoV-2 might originate from bone marrow and lung megakaryocytes (MKs), the platelet precursors, which were found infected by SARS-CoV-2 in COVID-19 autopsies. Accordingly, MKs undergoing shortened differentiation and expressing anti-viral IFITM1 and IFITM3 RNA as a sign of viral sensing were enriched in the circulation of deadly COVID-19. Infected MKs reach the lung concomitant with a specific MK-related cytokine storm rich in VEGF, PDGF and inflammatory molecules, anticipating fatal outcome. Lung macrophages capture SARS-CoV-2-containing platelets in vivo. The virus contained by platelets is infectious as capture of platelets carrying SARS-CoV-2 propagates infection to macrophages in vitro, in a process blocked by an anti-GPIIbIIIa drug. Altogether, platelets containing infectious SARS-CoV-2 alter COVID-19 pathogenesis and provide a powerful fatality marker. Clinical targeting of platelets might prevent viral spread, thrombus formation and exacerbated inflammation at once and increase survival in COVID-19.
Collapse
|
27
|
Plášek J, Gumulec J, Máca J, Škarda J, Procházka V, Grézl T, Václavík J. COVID-19 associated coagulopathy: Mechanisms and host-directed treatment. Am J Med Sci 2022; 363:465-475. [PMID: 34752741 PMCID: PMC8576106 DOI: 10.1016/j.amjms.2021.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/22/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is associated with specific coagulopathy that frequently occurs during the different phases of coronavirus disease 2019 (COVID-19) and can result in thrombotic complications and/or death. This COVID-19-associated coagulopathy (CAC) exhibits some of the features associated with thrombotic microangiopathy, particularly complement-mediated hemolytic-uremic syndrome. In some cases, due to the anti-phospholipid antibodies, CAC resembles catastrophic anti-phospholipid syndrome. In other patients, it exhibits features of hemophagocytic syndrome. CAC is mainly identified by: increases in fibrinogen, D-dimers, and von Willebrand factor (released from activated endothelial cells), consumption of a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13 (ADAMTS13), over activated and dysregulated complement, and elevated plasma cytokine levels. CAC manifests as both major cardiovascular and/or cerebrovascular events and dysfunctional microcirculation, which leads to multiple organ damage. It is not clear whether the mainstay of COVID-19 is complement overactivation, cytokine/chemokine activation, or a combination of these activities. Available data have suggested that non-critically ill hospitalized patients should be administered full-dose heparin. In critically ill, full dose heparin treatment is discouraged due to higher mortality rate. In addition to anti-coagulation, four different host-directed therapeutic pathways have recently emerged that influence CAC: (1) Anti-von Willebrand factor monoclonal antibodies; (2) activated complement C5a inhibitors; (3) recombinant ADAMTS13; and (4) Interleukin (IL)-1 and IL-6 antibodies. Moreover, neutralizing monoclonal antibodies against the virus surface protein have been tested. However, the role of antiplatelet treatment remains unclear for patients with COVID-19.
Collapse
Affiliation(s)
- Jiří Plášek
- Department of Internal Medicine and Cardiology, University Hospital Ostrava, Ostrava, Czech Republic; Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
| | - J Gumulec
- Department of Clinical Hematology, University Hospital of Ostrava, Ostrava, Czech Republic
| | - J Máca
- Department of Anesthesiology and Intensive Care, University Hospital Ostrava, Ostrava, Czech Republic; Medical Faculty, Institute of Physiology and Pathophysiology, University of Ostrava, Ostrava, Czech Republic
| | - J Škarda
- Institute of Clinical Pathology, University Hospital of Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - V Procházka
- Institute of Radiology, University Hospital of Ostrava, Ostrava, Czech Republic
| | - T Grézl
- Department of Internal Medicine and Cardiology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Jan Václavík
- Department of Internal Medicine and Cardiology, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
28
|
Wang C, Lashua LP, Carter CE, Johnson SK, Wang M, Ross TM, Ghedin E, Zhang B, Forst CV. Sex disparities in influenza: A multiscale network analysis. iScience 2022; 25:104192. [PMID: 35479404 PMCID: PMC9036134 DOI: 10.1016/j.isci.2022.104192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/05/2021] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
Sex differences in the pathogenesis of infectious diseases because of differential immune responses between females and males have been well-documented for multiple pathogens. However, the molecular mechanism underlying the observed sex differences in influenza virus infection remains poorly understood. In this study, we used a network-based approach to characterize the blood transcriptome collected over the course of infection with influenza A virus from female and male ferrets to dissect sex-biased gene expression. We identified significant differences in the temporal dynamics and regulation of immune responses between females and males. Our results elucidate sex-differentiated pathways involved in the unfolded protein response (UPR), lipid metabolism, and inflammatory responses, including a female-biased IRE1/XBP1 activation and male-biased crosstalk between metabolic reprogramming and IL-1 and AP-1 pathways. Overall, our study provides molecular insights into sex differences in transcriptional regulation of immune responses and contributes to a better understanding of sex biases in influenza pathogenesis. Regulation of immune responses between females and males is significantly different Rapid activation of UPR in females triggers potent immune and inflammatory responses Male-specific regulatory pattern in the AP1 pathway indicate a bias in immune response
Collapse
Affiliation(s)
- Chang Wang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Lauren P. Lashua
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Chalise E. Carter
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Scott K. Johnson
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029-6574, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029-6501, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029-6574, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029-6501, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, NY 10029-6574, USA
| | - Christian V. Forst
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029-6574, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029-6501, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029-6574
- Corresponding author
| |
Collapse
|
29
|
Schrottmaier WC, Schmuckenschlager A, Pirabe A, Assinger A. Platelets in Viral Infections - Brave Soldiers or Trojan Horses. Front Immunol 2022; 13:856713. [PMID: 35419008 PMCID: PMC9001014 DOI: 10.3389/fimmu.2022.856713] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Viral infections are often associated with platelet activation and haemostatic complications. In line, low platelet counts represent a hallmark for poor prognosis in many infectious diseases. The underlying cause of platelet dysfunction in viral infections is multifaceted and complex. While some viruses directly interact with platelets and/or megakaryocytes to modulate their function, also immune and inflammatory responses directly and indirectly favour platelet activation. Platelet activation results in increased platelet consumption and degradation, which contributes to thrombocytopenia in these patients. The role of platelets is often bi-phasic. Initial platelet hyper-activation is followed by a state of platelet exhaustion and/or hypo-responsiveness, which together with low platelet counts promotes bleeding events. Thereby infectious diseases not only increase the thrombotic but also the bleeding risk or both, which represents a most dreaded clinical complication. Treatment options in these patients are limited and new therapeutic strategies are urgently needed to prevent adverse outcome. This review summarizes the current literature on platelet-virus interactions and their impact on viral pathologies and discusses potential intervention strategies. As pandemics and concomitant haemostatic dysregulations will remain a recurrent threat, understanding the role of platelets in viral infections represents a timely and pivotal challenge.
Collapse
Affiliation(s)
- Waltraud C Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anna Schmuckenschlager
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anita Pirabe
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Al-Tamimi AO, Yusuf AM, Jayakumar MN, Ansari AW, Elhassan M, AbdulKarim F, Kannan M, Halwani R, Ahmad F. SARS-CoV-2 infection induces soluble platelet activation markers and PAI-1 in the early moderate stage of COVID-19. Int J Lab Hematol 2022; 44:712-721. [PMID: 35266284 PMCID: PMC9111479 DOI: 10.1111/ijlh.13829] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/29/2022] [Accepted: 03/02/2022] [Indexed: 01/08/2023]
Abstract
Introduction Coagulation dysfunction and thromboembolism emerge as strong comorbidity factors in severe COVID‐19. However, it is unclear when particularly platelet activation markers and coagulation factors dysregulated during the pathogenesis of COVID‐19. Here, we sought to assess the levels of coagulation and platelet activation markers at moderate and severe stages of COVID‐19 to understand the pathogenesis. Methods To understand this, hospitalized COVID‐19 patients with (severe cases that required intensive care) or without pneumonia (moderate cases) were recruited. Phenotypic and molecular characterizations were performed employing basic coagulation tests including prothrombin time (PT), activated partial thromboplastin time (APTT), D‐Dimer, and tissue factor pathway inhibitor (TFPI). The flow cytometry‐based multiplex assays were performed to assess FXI, anti‐thrombin, prothrombin, fibrinogen, FXIII, P‐selectin, sCD40L, plasminogen, tissue plasminogen activator (tPA), plasminogen activator inhibitor‐1 (PAI‐1), and D‐Dimer. Results The investigations revealed induction of plasma P‐selectin and CD40 ligand (sCD40L) in moderate COVID‐19 cases, which were significantly abolished with the progression of COVID‐19 severity. Moreover, a profound reduction in plasma tissue factor pathway inhibitor (TFPI) and FXIII were identified particularly in the severe COVID‐19. Further analysis revealed fibrinogen induction in both moderate and severe patients. Interestingly, an elevated PAI‐1 more prominently in moderate, and tPA particularly in severe COVID‐19 cases were observed. Particularly, the levels of fibrinogen and tPA directly correlated with the severity of the disease. Conclusions In summary, induction of soluble P‐selectin, sCD40L, fibrinogen, and PAI‐1 suggests the activation of platelets and coagulation system at the moderate stage before COVID‐19 patients require intensive care. These findings would help in designing better thromboprophylaxis to limit the COVID‐19 severity.
Collapse
Affiliation(s)
- Abaher O Al-Tamimi
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Ayesha M Yusuf
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Manju N Jayakumar
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Abdul W Ansari
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.,Dermatology Institute, Translational Research Institute, Academic Health Systems, Hamad Medical Corporation, Doha, Qatar
| | - Mona Elhassan
- Department of Internal Medicine, Rashid Hospital, Dubai, UAE
| | | | - Meganathan Kannan
- Blood and Vascular Biology Research Lab, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Rabih Halwani
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE
| | - Firdos Ahmad
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE
| |
Collapse
|
31
|
Wang D, Abuduaini X, Huang X, Wang H, Chen X, Le S, Chen M, Du X. Development and validation of a risk prediction model for postoperative pneumonia in adult patients undergoing Stanford type A acute aortic dissection surgery: a case control study. J Cardiothorac Surg 2022; 17:22. [PMID: 35197097 PMCID: PMC8864916 DOI: 10.1186/s13019-022-01769-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 02/10/2022] [Indexed: 01/28/2023] Open
Abstract
Background Pneumonia is a common complication after Stanford type A acute aortic dissection surgery (AADS) and contributes significantly to morbidity, mortality, and length of stay. The purpose of this study was to identify independent risk factors associated with pneumonia after AADS and to develop and validate a risk prediction model. Methods Adults undergoing AADS between 2016 and 2019 were identified in a single-institution database. Patients were randomly divided into training and validation sets at a ratio of 2:1. Preoperative and intraoperative variables were included for analysis. A multivariate logistic regression model was constructed using significant variables from univariate analysis in the training set. A nomogram was constructed for clinical utility and the model was validated in an independent dataset. Results Postoperative pneumonia developed in 170 of 492 patients (34.6%). In the training set, multivariate analysis identified seven independent predictors for pneumonia after AADS including age, smoking history, chronic obstructive pulmonary disease, renal insufficiency, leucocytosis, low platelet count, and intraoperative transfusion of red blood cells. The model demonstrated good calibration (Hosmer–Lemeshow χ2 = 3.31, P = 0.91) and discrimination (C-index = 0.77) in the training set. The model was also well calibrated (Hosmer–Lemeshow χ2 = 5.73, P = 0.68) and showed reliable discriminatory ability (C-index = 0.78) in the validation set. By visual inspection, the calibrations were good in both the training and validation sets. Conclusion We developed and validated a risk prediction model for pneumonia after AADS. The model may have clinical utility in individualized risk evaluation and perioperative management.
Collapse
Affiliation(s)
- Dashuai Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Jiefang Road, No. 1277, Wuhan, 430022, China
| | - Xiaerzhati Abuduaini
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofan Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Jiefang Road, No. 1277, Wuhan, 430022, China.
| | - Hongfei Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Jiefang Road, No. 1277, Wuhan, 430022, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Jiefang Road, No. 1277, Wuhan, 430022, China
| | - Sheng Le
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Jiefang Road, No. 1277, Wuhan, 430022, China
| | - Manhua Chen
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xinling Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Jiefang Road, No. 1277, Wuhan, 430022, China.
| |
Collapse
|
32
|
Ostermeier B, Soriano-Sarabia N, Maggirwar SB. Platelet-Released Factors: Their Role in Viral Disease and Applications for Extracellular Vesicle (EV) Therapy. Int J Mol Sci 2022; 23:2321. [PMID: 35216433 PMCID: PMC8876984 DOI: 10.3390/ijms23042321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Platelets, which are small anuclear cell fragments, play important roles in thrombosis and hemostasis, but also actively release factors that can both suppress and induce viral infections. Platelet-released factors include sCD40L, microvesicles (MVs), and alpha granules that have the capacity to exert either pro-inflammatory or anti-inflammatory effects depending on the virus. These factors are prime targets for use in extracellular vesicle (EV)-based therapy due to their ability to reduce viral infections and exert anti-inflammatory effects. While there are some studies regarding platelet microvesicle-based (PMV-based) therapy, there is still much to learn about PMVs before such therapy can be used. This review provides the background necessary to understand the roles of platelet-released factors, how these factors might be useful in PMV-based therapy, and a critical discussion of current knowledge of platelets and their role in viral diseases.
Collapse
Affiliation(s)
| | | | - Sanjay B. Maggirwar
- Department of Microbiology Immunology and Tropical Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA; (B.O.); (N.S.-S.)
| |
Collapse
|
33
|
Zayed NE, Abbas A, Lutfy SM. Criteria and potential predictors of severity in patients with COVID-19. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2022. [PMCID: PMC8857879 DOI: 10.1186/s43168-022-00116-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Background The challenge in treating severe COVID-19 in the absence of targeted medication is enforcing physicians to search carefully for clinical predictors of severity. Aim To define the profile of patients at risk of severe COVID-19 and to assess for certain predictors. Methods Confirmed COVID-19 cases were classified into the following: group A: mild/moderate cases and group B: severe/critical cases according to the selected criteria. History, radiological assessment, complete blood count, lactate dehydrogenase (LDH), myocardial enzymes, serum ferritin, and D dimer were assessed. Patients were followed for the need of ICU and mechanical ventilation. Duration till conversion, length of stay, and mortality were recorded. Results A total of 202 patients were analyzed. Group B had higher age (53.2 ± 12.6 vs 40.3 ± 10.3, P < 0.001), more prevalence of DM (60.61% vs 16.57% P < 0.001), hypertension (51.52% vs 20.12%, P < 0.001), ischemic heart (27.27% vs 3.55%, P < 0.001), bronchial asthma (36.36% vs 3.55%, P < 0.001), COPD (9.09% vs 1.18%, P = 0.03), higher mean platelet volume (MPV) (12.76 ± 7.13 vs 10.51 ± 7.78 (fL), P < 0.001), higher serum ferritin (954 ± 138 vs 447 ± 166 ng/ml, P < 0.001), higher LDH (604 ± 220 vs 384 ± 183 U/L, P-value < 0.001), higher creatine phosphokinase (24.27 ± 5.82 vs 16.4 ± 4.87 IU/L, P < 0.001), and higher mortality (30.3% vs 0.6%, P < 0.001). Multivariate regression of predictors of severity identified three predictors; age, MPV, serum ferritin, and IHD. Conclusions The current study places of interest the characteristic host-related features of severe COVID-19 and draws attention to potential predictors.
Collapse
|
34
|
Xin Y, Peng J, Hong YY, Chao QC, Na S, Pan S, Zhao LF. Advances in research on the effects of platelet activation in acute lung injury (Review). Biomed Rep 2022; 16:17. [PMID: 35154701 PMCID: PMC8814673 DOI: 10.3892/br.2022.1500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Acute lung injury (ALI) is an acute hypoxic respiratory insufficiency or failure caused by various factors inside and outside the lungs. ALI is associated with high morbidity and a poor prognosis in hospitalized patients. The lungs serve as a reservoir for platelet precursor megakaryocytes and are closely associated with platelets. Platelets not only play a central role in hemostasis, coagulation and wound healing, but can also act as inflammatory cells capable of stimulating non-hemostatic immune functions under inflammatory conditions, participating in the progression of various inflammatory diseases, and can result in tissue damage. Therefore, it was speculated that platelets may play an important role in the pathogenesis of ALI. In this review, the latest research progress on secretion of bioactive mediators from platelets, platelet activation-related signaling pathways, and the direct contact reactions between platelets and neutrophils with endothelial cells that result in ALI are described, providing evidence to support the importance of the consideration of platelets in the search for ALI interventional targets.
Collapse
Affiliation(s)
- Yuan Xin
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Jiang Peng
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Yu Yun Hong
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Qiao Cong Chao
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Su Na
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Sun Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Lin Fang Zhao
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| |
Collapse
|
35
|
Işler Y, Kaya H. Relationship of platelet counts, platelet volumes, and Curb-65 scores in the prognosis of COVID-19 patients. Am J Emerg Med 2022; 51:257-261. [PMID: 34781151 PMCID: PMC8577220 DOI: 10.1016/j.ajem.2021.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES This study investigated the relationship between 28-day mortality in patients with COVID-19 pneumonia and the CURB-65 score, platelet count (PLT), mean platelet volume (MPV), and MPV/PLT ratio (MPR). METHODS A total of 247 patients with COVID-19 pneumonia who presented to the emergency department between March 15, 2020 and May 15, 2020 were retrospectively analyzed. The age, gender, clinical presentation, history of chronic disease, thoracic computed tomography findings, MPV, PLT, MPR, CURB-65 scores, and 28-day mortality of patients were recorded. RESULTS The patients had a mean age of 51 years (IQR: 39-63 years) and 55.5% were females. The most common symptom was cough (30.4% of patients). The most common comorbidity was hypertension (13.4%), 49.8% of the cases showed intermediate involvement, and 7.7% of patients died within the first 28 days. The mean MPV was 9.71 ± 1.15, the mean PLT was 226.68 ± 83.82, and the mean MPR was 0.056 ± 0.12. There were significant correlations of 28-day mortality with the CURB-65 score, MPV, and MPR levels (p = 0.000, p = 0.034, and p = 0.034, respectively). No significant correlation was found between the PLT count and 28-day mortality (p = 0.105). CONCLUSIONS In addition to the CURB-65 score, MPV and MPR values can be used to predict 28-day mortality in patients with COVID-19 pneumonia.
Collapse
Affiliation(s)
- Yeşim Işler
- University of Health Sciences Turkey, Bursa Yuksek Ihtisas Training and Research Hospital, Department of Emergency Medicine, Bursa, Turkey.
| | - Halil Kaya
- University of Health Sciences Turkey, Bursa Yuksek Ihtisas Training and Research Hospital, Department of Emergency Medicine, Bursa, Turkey
| |
Collapse
|
36
|
Santoro F, Nuñez-Gil IJ, Vitale E, Viana-Llamas MC, Reche-Martinez B, Romero-Pareja R, Feltez Guzman G, Fernandez Rozas I, Uribarri A, Becerra-Muñoz VM, Alfonso-Rodriguez E, Garcia-Aguado M, Huang J, Ortega-Armas ME, Garcia Prieto JF, Corral Rubio EM, Ugo F, Bianco M, Mulet A, Raposeiras-Roubin S, Jativa Mendez JL, Espejo Paeres C, Albarrán AR, Marín F, Guerra F, Akin I, Cortese B, Ramakrishna H, Macaya C, Fernandez-Ortiz A, Brunetti ND. Antiplatelet therapy and outcome in COVID-19: the Health Outcome Predictive Evaluation Registry. Heart 2022; 108:130-136. [PMID: 34611045 PMCID: PMC8494537 DOI: 10.1136/heartjnl-2021-319552] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Standard therapy for COVID-19 is continuously evolving. Autopsy studies showed high prevalence of platelet-fibrin-rich microthrombi in several organs. The aim of the study was therefore to evaluate the safety and efficacy of antiplatelet therapy (APT) in hospitalised patients with COVID-19 and its impact on survival. METHODS 7824 consecutive patients with COVID-19 were enrolled in a multicentre international prospective registry (Health Outcome Predictive Evaluation-COVID-19 Registry). Clinical data and in-hospital complications were recorded. Data on APT, including aspirin and other antiplatelet drugs, were obtained for each patient. RESULTS During hospitalisation, 730 (9%) patients received single APT (93%, n=680) or dual APT (7%, n=50). Patients treated with APT were older (74±12 years vs 63±17 years, p<0.01), more frequently male (68% vs 57%, p<0.01) and had higher prevalence of diabetes (39% vs 16%, p<0.01). Patients treated with APT showed no differences in terms of in-hospital mortality (18% vs 19%, p=0.64), need for invasive ventilation (8.7% vs 8.5%, p=0.88), embolic events (2.9% vs 2.5% p=0.34) and bleeding (2.1% vs 2.4%, p=0.43), but had shorter duration of mechanical ventilation (8±5 days vs 11±7 days, p=0.01); however, when comparing patients with APT versus no APT and no anticoagulation therapy, APT was associated with lower mortality rates (log-rank p<0.01, relative risk 0.79, 95% CI 0.70 to 0.94). On multivariable analysis, in-hospital APT was associated with lower mortality risk (relative risk 0.39, 95% CI 0.32 to 0.48, p<0.01). CONCLUSIONS APT during hospitalisation for COVID-19 could be associated with lower mortality risk and shorter duration of mechanical ventilation, without increased risk of bleeding. TRIAL REGISTRATION NUMBER NCT04334291.
Collapse
Affiliation(s)
- Francesco Santoro
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Enrica Vitale
- Department of Medical and Surgical Sciences, Universita degli Studi di Foggia, Foggia, Italy
| | - Maria C Viana-Llamas
- Department of Intensive Medicine, Hospital General Universitario de Guadalajara, Guadalajara, Spain
| | | | | | | | | | - Aitor Uribarri
- Department of Cardiology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | | | | | - Marcos Garcia-Aguado
- Department of Cardiology, Puerta de Hierro University Hospital of Majadahonda, Majadahonda, Spain
| | - Jia Huang
- Department of Cardiology, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | | | | | | | - Fabrizio Ugo
- Department of Cardiology, Sant'Andrea Hospital, Vercelli, Italy
| | - Matteo Bianco
- Division of Cardiology, San Luigi Gonzaga University Hospital, Orbassano and Rivoli infermi Hospital, Rivoli, Italy
| | - Alba Mulet
- Department of Lung Disease, Hospital Clinico Valencia, Valencia, Spain
| | | | | | | | | | - Francisco Marín
- Department of Cardiology, Hospital Clinico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Universidad de Murcia, Murcia, Spain
| | - Federico Guerra
- Cardiology and Arrhythmology Department, Marche Polytechnic University, University Hospital 'Ospedali Riuniti', Ancona, Italy
| | - Ibrahim Akin
- First Department of Medicine, Faculty of Medicine, University of Mannheim, Mannheim, Germany
| | | | - Harish Ramakrishna
- Department of Cardiovascular and Thoracic Anesthesiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Carlos Macaya
- Department of Cardiology, San Carlos University Hospital, Madrid, Spain
| | | | - Natale Daniele Brunetti
- Department of Medical and Surgical Sciences, Università degli Studi di Foggia, Foggia, Italy
| |
Collapse
|
37
|
Feketea G, Vlacha V, Pop RM, Bocsan IC, Stanciu LA, Buzoianu AD, Zdrenghea M. Relationship Between Vitamin D Level and Platelet Parameters in Children With Viral Respiratory Infections. Front Pediatr 2022; 10:824959. [PMID: 35463888 PMCID: PMC9021877 DOI: 10.3389/fped.2022.824959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
UNLABELLED Apart from their classical roles, both platelets and vitamin D play important roles in inflammation and infectious diseases. This study evaluated the platelet response to viral respiratory tract infection in children aged 4-16 years, 32 with influenza, 27 with non-influenza viral infection tested by nasopharyngeal swab and 21 healthy children of the same age. Blood count, including platelet count (PLT), mean platelet volume (MPV) and other platelet indices, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and vitamin D (vit D) levels were compared. The influenza group showed lower PLT and platelet mass (PLT*MPV), and the non-influenza group showed significantly lower MPV, which was correlated with the vit D levels, but not CRP or ESR, and the value vit D*MPV was significantly lower in this group. These results revealed that platelet activation in viral respiratory tract infections in children, as measured by MPV, is related to the vit D level, with differences between influenza and non-influenza infection. CONCLUSIONS Viral respiratory tract infection in children can diminish the platelet size most likely by suppressing the platelet activation. This response is associated with low levels of vit D. Whether the vit D status is associated with the virus-platelet immune/inflammatory process needs further investigation.
Collapse
Affiliation(s)
- Gavriela Feketea
- Department of Haematology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Paediatrics, Amaliada Hospital, Amaliada, Greece.,Department of Paediatrics, Karamandaneio Children's Hospital, Patras, Greece
| | - Vasiliki Vlacha
- Department of Paediatrics, Karamandaneio Children's Hospital, Patras, Greece.,Department of Early Years Learning and Care, University of Ioannina, Ioannina, Greece
| | - Raluca Maria Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Corina Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihnea Zdrenghea
- Department of Haematology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, "Ion Chiricuta" Oncology Institute, Cluj-Napoca, Romania
| |
Collapse
|
38
|
Platelets in COVID-19 disease: friend, foe, or both? Pharmacol Rep 2022; 74:1182-1197. [PMID: 36463349 PMCID: PMC9726679 DOI: 10.1007/s43440-022-00438-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/07/2022]
Abstract
Immuno-thrombosis of COVID-19 results in the activation of platelets and coagulopathy. Antiplatelet therapy has been widely used in COVID-19 patients to prevent thrombotic events. However, recent analysis of clinical trials does not support the major effects of antiplatelet therapy on mortality in hospitalized COVID-19 patients, despite the indisputable evidence for an increased risk of thrombotic complications in COVID-19 disease. This apparent paradox calls for an explanation. Platelets have an important role in sensing and orchestrating host response to infection, and several platelet functions related to host defense response not directly related to their well-known hemostatic function are emerging. In this paper, we aim to review the evidence supporting the notion that platelets have protective properties in maintaining endothelial barrier integrity in the course of an inflammatory response, and this role seems to be of particular importance in the lung. It might, thus, well be that the inhibition of platelet function, if affecting the protective aspect of platelet activity, might diminish clinical benefits resulting from the inhibition of the pro-thrombotic phenotype of platelets in immuno-thrombosis of COVID-19. A better understanding of the platelet-dependent mechanisms involved in the preservation of the endothelial barrier is necessary to design the antiplatelet therapeutic strategies that inhibit the pro-thrombotic activity of platelets without effects on the vaso-protective function of platelets safeguarding the pulmonary endothelial barrier during multicellular host defense in pulmonary circulation.
Collapse
|
39
|
Mizurini DM, Hottz ED, Bozza PT, Monteiro RQ. Fundamentals in Covid-19-Associated Thrombosis: Molecular and Cellular Aspects. Front Cardiovasc Med 2021; 8:785738. [PMID: 34977191 PMCID: PMC8718518 DOI: 10.3389/fcvm.2021.785738] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/23/2021] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus disease (COVID-19) is associated with a high incidence of coagulopathy and venous thromboembolism that may contribute to the worsening of the clinical outcome in affected patients. Marked increased D-dimer levels are the most common laboratory finding and have been repeatedly reported in critically ill COVID-19 patients. The infection caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is followed by a massive release of pro-inflammatory cytokines, which mediate the activation of endothelial cells, platelets, monocytes, and neutrophils in the vasculature. In this context, COVID-19-associated thrombosis is a complex process that seems to engage vascular cells along with soluble plasma factors, including the coagulation cascade, and complement system that contribute to the establishment of the prothrombotic state. In this review, we summarize the main findings concerning the cellular mechanisms proposed for the establishment of COVID-19-associated thrombosis.
Collapse
Affiliation(s)
- Daniella M. Mizurini
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Eugenio D. Hottz
- Oswaldo Cruz Foundation, Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Patrícia T. Bozza
- Oswaldo Cruz Foundation, Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Robson Q. Monteiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Guo L, Li N, Yang Z, Li H, Zheng H, Yang J, Chen Y, Zhao X, Mei J, Shi H, Worthen GS, Liu L. Role of CXCL5 in Regulating Chemotaxis of Innate and Adaptive Leukocytes in Infected Lungs Upon Pulmonary Influenza Infection. Front Immunol 2021; 12:785457. [PMID: 34868067 PMCID: PMC8637413 DOI: 10.3389/fimmu.2021.785457] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
Respirovirus such as influenza virus infection induces pulmonary anti-viral immune response, orchestration of innate and adaptive immunity restrain viral infection, otherwise causes severe diseases such as pneumonia. Chemokines regulate leukocyte recruitment to the inflammation site. One chemokine CXCL5, plays a scavenging role to regulate pulmonary host defense against bacterial infection, but its role in pulmonary influenza virus infection is underdetermined. Here, using an influenza (H1N1) infected CXCL5-/- mouse model, we found that CXCL5 not only responds to neutrophil infiltration into infected lungs at the innate immunity stage, but also affects B lymphocyte accumulation in the lungs by regulating the expression of the B cell chemokine CXCL13. Inhibition of CXCL5-CXCR2 axis markedly induces CXCL13 expression in CD64+CD44hiCD274hi macrophages/monocytes in infected lungs, and in vitro administration of CXCL5 to CD64+ alveolar macrophages suppresses CXCL13 expression via the CXCL5-CXCR2 axis upon influenza challenge. CXCL5 deficiency leads to increased B lymphocyte accumulation in infected lungs, contributing to an enhanced B cell immune response and facilitating induced bronchus-associated lymphoid tissue formation in the infected lungs during the late infection and recovery stages. These data highlight multiple regulatory roles of CXCL5 in leukocyte chemotaxis during pulmonary influenza infection.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Research Center for Pediatric Diseases, Kunming Children's Hospital, Kunming, China
| | - Nan Li
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Zening Yang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Heng Li
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Huiwen Zheng
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Jinxi Yang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yanli Chen
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Xin Zhao
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Junjie Mei
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Haijing Shi
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - G Scott Worthen
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Longding Liu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| |
Collapse
|
41
|
Kim SJ, Carestia A, McDonald B, Zucoloto AZ, Grosjean H, Davis RP, Turk M, Naumenko V, Antoniak S, Mackman N, Abdul-Cader MS, Abdul-Careem MF, Hollenberg MD, Jenne CN. Platelet-Mediated NET Release Amplifies Coagulopathy and Drives Lung Pathology During Severe Influenza Infection. Front Immunol 2021; 12:772859. [PMID: 34858432 PMCID: PMC8632260 DOI: 10.3389/fimmu.2021.772859] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 01/30/2023] Open
Abstract
The influenza A virus (IAV) causes a respiratory tract infection with approximately 10% of the population infected by the virus each year. Severe IAV infection is characterized by excessive inflammation and tissue pathology in the lungs. Platelet and neutrophil recruitment to the lung are involved in the pathogenesis of IAV, but the specific mechanisms involved have not been clarified. Using confocal intravital microscopy in a mouse model of IAV infection, we observed profound neutrophil recruitment, platelet aggregation, neutrophil extracellular trap (NET) production and thrombin activation within the lung microvasculature in vivo. Importantly, deficiency or antagonism of the protease-activated receptor 4 (PAR4) reduced platelet aggregation, NET production, and neutrophil recruitment. Critically, inhibition of thrombin or PAR4 protected mice from virus-induced lung tissue damage and edema. Together, these data imply thrombin-stimulated platelets play a critical role in the activation/recruitment of neutrophils, NET release and directly contribute to IAV pathogenesis in the lung.
Collapse
MESH Headings
- Animals
- Blood Coagulation Disorders/immunology
- Blood Coagulation Disorders/metabolism
- Blood Coagulation Disorders/virology
- Blood Platelets/immunology
- Blood Platelets/metabolism
- Blood Platelets/virology
- Disease Models, Animal
- Extracellular Traps/immunology
- Extracellular Traps/metabolism
- Extracellular Traps/virology
- Female
- Humans
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza, Human/immunology
- Influenza, Human/metabolism
- Influenza, Human/virology
- Lung/immunology
- Lung/metabolism
- Lung/virology
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Confocal
- Neutrophil Infiltration/immunology
- Neutrophils/immunology
- Neutrophils/metabolism
- Neutrophils/virology
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/metabolism
- Orthomyxoviridae Infections/virology
- Platelet Aggregation/immunology
- Mice
Collapse
Affiliation(s)
- Seok-Joo Kim
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Agostina Carestia
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Braedon McDonald
- Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada
| | - Amanda Z. Zucoloto
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Heidi Grosjean
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Rachelle P. Davis
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Madison Turk
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Victor Naumenko
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Silvio Antoniak
- UNC Blood Research Center, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nigel Mackman
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | | | - Morley D. Hollenberg
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Craig N. Jenne
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
42
|
Orr-Burks N, Murray J, Todd KV, Bakre A, Tripp RA. Drug repositioning of Clopidogrel or Triamterene to inhibit influenza virus replication in vitro. PLoS One 2021; 16:e0259129. [PMID: 34714852 PMCID: PMC8555795 DOI: 10.1371/journal.pone.0259129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022] Open
Abstract
Influenza viruses cause respiratory tract infections and substantial health concerns. Infection may result in mild to severe respiratory disease associated with morbidity and some mortality. Several anti-influenza drugs are available, but these agents target viral components and are susceptible to drug resistance. There is a need for new antiviral drug strategies that include repurposing of clinically approved drugs. Drugs that target cellular machinery necessary for influenza virus replication can provide a means for inhibiting influenza virus replication. We used RNA interference screening to identify key host cell genes required for influenza replication, and then FDA-approved drugs that could be repurposed for targeting host genes. We examined the effects of Clopidogrel and Triamterene to inhibit A/WSN/33 (EC50 5.84 uM and 31.48 uM, respectively), A/CA/04/09 (EC50 6.432 uM and 3.32 uM, respectively), and B/Yamagata/16/1988 (EC50 0.28 uM and 0.11 uM, respectively) replication. Clopidogrel and Triamterene provide a druggable approach to influenza treatment across multiple strains and subtypes.
Collapse
Affiliation(s)
- Nichole Orr-Burks
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Kyle V. Todd
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Abhijeet Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
43
|
Abstract
In 2019 first reports about a new human coronavirus emerged, which causes common cold symptoms as well as acute respiratory distress syndrome. The virus was identified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and severe thrombotic events including deep vein thrombosis, pulmonary embolism, and microthrombi emerged as additional symptoms. Heart failure, myocardial infarction, myocarditis, and stroke have also been observed. As main mediator of thrombus formation, platelets became one of the key aspects in SARS-CoV-2 research. Platelets may also directly interact with SARS-CoV-2 and have been shown to carry the SARS-CoV-2 virus. Platelets can also facilitate the virus uptake by secretion of the subtilisin-like proprotein convertase furin. Cleavage of the SARS-CoV-2 spike protein by furin enhances binding capabilities and virus entry into various cell types. In COVID-19 patients, platelet count differs between mild and serious infections. Patients with mild symptoms have a slightly increased platelet count, whereas thrombocytopenia is a hallmark of severe COVID-19 infections. Low platelet count can be attributed to platelet apoptosis and the incorporation of platelets into microthrombi (peripheral consumption) and severe thrombotic events. The observed excessive formation of thrombi is due to hyperactivation of platelets caused by the infection. Various factors have been suggested in the activation of platelets in COVID-19, such as hypoxia, vessel damage, inflammatory factors, NETosis, SARS-CoV-2 interaction, autoimmune reactions, and autocrine activation. COVID-19 does alter chemokine and cytokine plasma concentrations. Platelet chemokine profiles are altered in COVID-19 and contribute to the described chemokine storms observed in severely ill COVID-19 patients.
Collapse
Affiliation(s)
- Anne-Katrin Rohlfing
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls Universtität Tübingen, Tübingen, Germany
| | - Dominik Rath
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls Universtität Tübingen, Tübingen, Germany
| | - Tobias Geisler
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls Universtität Tübingen, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls Universtität Tübingen, Tübingen, Germany
| |
Collapse
|
44
|
COVID-19 and Acute Coronary Syndromes: From Pathophysiology to Clinical Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4936571. [PMID: 34484561 PMCID: PMC8410438 DOI: 10.1155/2021/4936571] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023]
Abstract
Acute coronary syndromes (ACS) are frequently reported in patients with coronavirus disease 2019 (COVID-19) and may impact patient clinical course and mortality. Although the underlying pathogenesis remains unclear, several potential mechanisms have been hypothesized, including oxygen supply/demand imbalance, direct viral cellular damage, systemic inflammatory response with cytokine-mediated injury, microvascular thrombosis, and endothelial dysfunction. The severe hypoxic state, combined with other conditions frequently reported in COVID-19, namely sepsis, tachyarrhythmias, anemia, hypotension, and shock, can induce a myocardial damage due to the mismatch between oxygen supply and demand and results in type 2 myocardial infarction (MI). In addition, COVID-19 promotes atherosclerotic plaque instability and thrombus formation and may precipitate type 1 MI. Patients with severe disease often show decrease in platelets count, higher levels of d-dimer, ultralarge von Willebrand factor multimers, tissue factor, and prolongation of prothrombin time, which reflects a prothrombotic state. An endothelial dysfunction has been described as a consequence of the direct viral effects and of the hyperinflammatory environment. The expression of tissue factor, von Willebrand factor, thromboxane, and plasminogen activator inhibitor-1 promotes the prothrombotic status. In addition, endothelial cells generate superoxide anions, with enhanced local oxidative stress, and endothelin-1, which affects the vasodilator/vasoconstrictor balance and platelet aggregation. The optimal management of COVID-19 patients is a challenge both for logistic and clinical reasons. A deeper understanding of ACS pathophysiology may yield novel research insights and therapeutic perspectives in higher cardiovascular risk subjects with COVID-19.
Collapse
|
45
|
Affiliation(s)
- Kara L Gawelek
- Department of Pathology, Brigham and Women's Hospital (K.L.G.)
| | - Elisabeth M Battinelli
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA (E.M.B.)
| |
Collapse
|
46
|
Research progress of opioid growth factor in immune-related diseases and cancer diseases. Int Immunopharmacol 2021; 99:107713. [PMID: 34426103 DOI: 10.1016/j.intimp.2021.107713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Methionine enkephalin (MENK) has an important role in both neuroendocrine and immune systems. MENK was known as an opioid growth factor (OGF) for its growth regulatory characteristics. OGF interacts with the OGF receptor (OGFr) to inhibit DNA synthesis by upregulating p16 and/or p21, which delays the cell cycle transition from G0/G1 to S phase, and inhibits cell proliferation. In addition, OGF combines with OGFr in immune cells to exert its immunomodulatory activity and regulate immune function. OGF has been studied as an immunomodulator in a variety of autoimmune diseases, including multiple sclerosis, inflammatory bowel disease, diabetes and viral infections, and has been proven to relieve symptoms of certain diseases in animal and in vitro experiments. Also, OGF and OGFr have various anti-tumor molecular mechanisms. OGF can be used as the primary therapy alone or combined with other drugs to treat tumors. This article summarizes the research progress of OGF in immune-related diseases and cancer diseases.
Collapse
|
47
|
Morris G, Bortolasci CC, Puri BK, Marx W, O'Neil A, Athan E, Walder K, Berk M, Olive L, Carvalho AF, Maes M. The cytokine storms of COVID-19, H1N1 influenza, CRS and MAS compared. Can one sized treatment fit all? Cytokine 2021; 144:155593. [PMID: 34074585 PMCID: PMC8149193 DOI: 10.1016/j.cyto.2021.155593] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023]
Abstract
An analysis of published data appertaining to the cytokine storms of COVID-19, H1N1 influenza, cytokine release syndrome (CRS), and macrophage activation syndrome (MAS) reveals many common immunological and biochemical abnormalities. These include evidence of a hyperactive coagulation system with elevated D-dimer and ferritin levels, disseminated intravascular coagulopathy (DIC) and microthrombi coupled with an activated and highly permeable vascular endothelium. Common immune abnormalities include progressive hypercytokinemia with elevated levels of TNF-α, interleukin (IL)-6, and IL-1β, proinflammatory chemokines, activated macrophages and increased levels of nuclear factor kappa beta (NFκB). Inflammasome activation and release of damage associated molecular patterns (DAMPs) is common to COVID-19, H1N1, and MAS but does not appear to be a feature of CRS. Elevated levels of IL-18 are detected in patients with COVID-19 and MAS but have not been reported in patients with H1N1 influenza and CRS. Elevated interferon-γ is common to H1N1, MAS, and CRS but levels of this molecule appear to be depressed in patients with COVID-19. CD4+ T, CD8+ and NK lymphocytes are involved in the pathophysiology of CRS, MAS, and possibly H1N1 but are reduced in number and dysfunctional in COVID-19. Additional elements underpinning the pathophysiology of cytokine storms include Inflammasome activity and DAMPs. Treatment with anakinra may theoretically offer an avenue to positively manipulate the range of biochemical and immune abnormalities reported in COVID-19 and thought to underpin the pathophysiology of cytokine storms beyond those manipulated via the use of, canakinumab, Jak inhibitors or tocilizumab. Thus, despite the relative success of tocilizumab in reducing mortality in COVID-19 patients already on dexamethasone and promising results with Baricitinib, the combination of anakinra in combination with dexamethasone offers the theoretical prospect of further improvements in patient survival. However, there is currently an absence of trial of evidence in favour or contravening this proposition. Accordingly, a large well powered blinded prospective randomised controlled trial (RCT) to test this hypothesis is recommended.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | | | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Melbourne School of Population and Global Health, Melbourne, Australi
| | - Eugene Athan
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Lisa Olive
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, School of Psychology, Geelong, Australia
| | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, University of Toronto, Toronto, Canada, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
48
|
Gu Y, Zuo X, Zhang S, Ouyang Z, Jiang S, Wang F, Wang G. The Mechanism behind Influenza Virus Cytokine Storm. Viruses 2021; 13:1362. [PMID: 34372568 PMCID: PMC8310017 DOI: 10.3390/v13071362] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Influenza viruses are still a serious threat to human health. Cytokines are essential for cell-to-cell communication and viral clearance in the immune system, but excessive cytokines can cause serious immune pathology. Deaths caused by severe influenza are usually related to cytokine storms. The recent literature has described the mechanism behind the cytokine-storm network and how it can exacerbate host pathological damage. Biological factors such as sex, age, and obesity may cause biological differences between different individuals, which affects cytokine storms induced by the influenza virus. In this review, we summarize the mechanism behind influenza virus cytokine storms and the differences in cytokine storms of different ages and sexes, and in obesity.
Collapse
Affiliation(s)
| | | | | | | | | | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.G.); (X.Z.); (S.Z.); (Z.O.); (S.J.)
| | - Guoqiang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.G.); (X.Z.); (S.Z.); (Z.O.); (S.J.)
| |
Collapse
|
49
|
Hottz ED, Quirino-Teixeira AC, Merij LB, Pinheiro MBM, Rozini SV, Bozza FA, Bozza PT. Platelet-leukocyte interactions in the pathogenesis of viral infections. Platelets 2021; 33:200-207. [PMID: 34260328 DOI: 10.1080/09537104.2021.1952179] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Evolving evidence demonstrates that platelets have major roles in viral syndromes through previously unrecognized viral sensing and effector functions. Activated platelets and increased platelet-leukocyte aggregates are observed in clinical and experimental viral infections. The mechanisms and outcomes of platelet-leukocyte interactions depend on the interacting leukocyte as well as on the pathogen and pathological conditions. In this review, we discuss the mechanisms involved in platelet interactions with leukocytes and its functions during viral infections. We focus on the contributions of human platelet-leukocyte interactions to pathophysiological and protective responses during viral infections of major global health relevance, including acquired immunodeficiency syndrome (AIDS), dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), influenza pneumonia, and COVID-19.
Collapse
Affiliation(s)
- Eugenio D Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil.,Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Anna Cecíllia Quirino-Teixeira
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Laura Botelho Merij
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Mariana Brandi Mendonça Pinheiro
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Stephane Vicente Rozini
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Fernando A Bozza
- Laboratory of Clinical Research in Intensive Care Medicine, National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro , Brazil.,Intensive Care Medicine, D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
50
|
Feng J, Liu L, He Y, Wang M, Zhou D, Wang J. Novel insights into the pathogenesis of virus-induced ARDS: review on the central role of the epithelial-endothelial barrier. Expert Rev Clin Immunol 2021; 17:991-1001. [PMID: 34224287 DOI: 10.1080/1744666x.2021.1951233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Respiratory viruses can directly or indirectly damage the pulmonary defense barrier, potentially contributing to acute respiratory distress syndrome (ARDS). Despite developments in the understanding of the pathogenesis of ARDS, the underlying pathophysiology still needs to be elucidated.Areas covered: The PubMed database was reviewed for relevant papers published up to 2021. This review summarizes the currently immunological and clinical studies to provide a systemic overview of the epithelial-endothelial barrier, given the recently published immunological profiles upon viral pneumonia, and the potentially detrimental contribution to respiratory function caused by damage to this barrier.Expert opinion: The biophysical structure of host pulmonary defense is intrinsically linked with the ability of alveolar epithelial and capillary endothelial cells, known as the epithelial-endothelial barrier, to respond to, and instruct the delicate immune system to protect the lungs from infections and injuries. Recently published immunological profiles upon viral infection, and its contributions to the damage of respiratory function, suggest a central role for the pulmonary epithelial and endothelial barrier in the pathogenesis of ARDS. We suggest a central role and common pathways by which the epithelial-endothelial barrier contributes to the pathogenesis of ARDS.
Collapse
Affiliation(s)
- Jun Feng
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Liu
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang He
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daixing Zhou
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junshuai Wang
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|