1
|
Posse GB, Barberis FM, Benedetti MF, Pezzola D, Hermida Alava K, Rodríguez Laboccetta C, Videla Garrido A, Fernández Briceño V, Capece P, Nusblat A, Cuestas ML. COVID-19-associated invasive fungal infections in intensive care unit patients during the first pandemic waves in Argentina: Results of a single center experience. Med Mycol 2025; 63:myaf024. [PMID: 40053501 DOI: 10.1093/mmy/myaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/27/2025] [Accepted: 03/06/2025] [Indexed: 03/09/2025] Open
Abstract
Critically ill COVID-19 patients are at high risk for invasive fungal infections (IFIs). Data on IFI prevalence in severe COVID-19 patients in Latin America are scarce. This study aimed at analyzing the prevalence and outcomes of IFIs in COVID-19 patients from Argentina. For this purpose, a retrospective study was conducted on COVID-19 patients admitted to the intensive care unit of a hospital in Buenos Aires between 2020 and 2022, with mycological evidence of IFI. A total of 86 cases of IFIs were reported, including 50 cases of COVID-19-associated candidiasis (CAC), 29 of COVID-19-associated pulmonary aspergillosis (CAPA), 10 of COVID-19-associated histoplasmosis (CAH), two cases of cryptococcemia, and one case of invasive fusariosis. Mixed fungal infections were also detected: two cases of Pneumocystis jirovecii pneumonia with CAPA, two cases of CAC with CAPA, one case of cryptococcemia with CAPA, one case of CAPA with CAH, and one case of CAC with CAPA and CAH. The overall mortality was 67.4%, with mortality of 59.6%, 72.7%, and 62.5% for CAC, CAPA, and CAH, respectively. All cases with mixed fungal infections were fatal. The most frequent underlying comorbidities were arterial hypertension, type-2 diabetes mellitus, obesity, smoking, oncohematological disease, chronic kidney disease, and chronic obstructive pulmonary disease. Candida parapsilosis, C. albicans, and C. tropicalis were the most common species in CAC. Aspergillus fumigatus, A. flavus, A. terreus, and A. niger were predominant in CAPA. In conclusion, this study highlights the high prevalence and mortality of CAC, CAPA, and CAH in severe COVID-19 patients from Argentina.
Collapse
Affiliation(s)
- Gladys Beatriz Posse
- Laboratorio de Micología, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | | | - María Fernanda Benedetti
- Unidad de Terapia Intensiva, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Daniel Pezzola
- Unidad de Terapia Intensiva, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Katherine Hermida Alava
- Universidad de Buenos Aires, CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Carolina Rodríguez Laboccetta
- Universidad de Buenos Aires, CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - Agustín Videla Garrido
- Universidad de Buenos Aires, CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Víctor Fernández Briceño
- Universidad de Buenos Aires, CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - Paula Capece
- Laboratorio de Micología, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Alejandro Nusblat
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - María Luján Cuestas
- Universidad de Buenos Aires, CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| |
Collapse
|
2
|
Nyasulu PS, Tamuzi JL, Oliveira RKF, Oliveira SD, Petrosillo N, de Jesus Perez V, Dhillon N, Butrous G. COVID-19 and Parasitic Co-Infection: A Hypothetical Link to Pulmonary Vascular Disease. Infect Dis Rep 2025; 17:19. [PMID: 40126325 PMCID: PMC11932205 DOI: 10.3390/idr17020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/26/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Background/Objectives: Before the Coronavirus disease 2019 (COVID-19) era, the global prevalence of pulmonary arterial hypertension (PAH) was between 0.4 and 1.4 per 100,000 people. The long-term effects of protracted COVID-19 associated with pulmonary vascular disease (PVD) risk factors may increase this prevalence. According to preliminary data, the exact prevalence of early estimates places the prevalence of PVD in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection at 22%, although its predictive value remains unknown. PVD caused by COVID-19 co-infections is understudied and underreported, and its future impact is unclear. However, due to COVID-19/co-infection pathophysiological effects on pulmonary vascularization, PVD mortality and morbidity may impose a genuine concern-both now and in the near future. Based on reported studies, this literature review focused on the potential link between COVID-19, parasitic co-infection, and PVD. This review article also highlights hypothetical pathophysiological mechanisms between COVID-19 and parasitic co-infection that could trigger PVD. Methods: We conducted a systematic literature review (SLR) searching peer-reviewed articles, including link between COVID-19, parasitic co-infection, and PVD. Results: This review hypothesized that multiple pathways associated with pathogens such as underlying schistosomiasis, human immunodeficiency virus (HIV), pulmonary tuberculosis (PTB), pulmonary aspergillosis, Wuchereria bancrofti, Clonorchis sinensis, paracoccidioidomycosis, human herpesvirus 8, and scrub typhus coupled with acute or long COVID-19, may increase the burden of PVD and worsen its mortality in the future. Conclusions: Further experimental studies are also needed to determine pathophysiological pathways between PVD and a history of COVID-19/co-infections.
Collapse
|
3
|
Ahmad A, Singh RB, Nickolich KL, Pilewski MJ, Ngeow C, Frempong-Manso K, Robinson KM. Restoration of Type 17 immune signaling is not sufficient for protection during influenza-associated pulmonary aspergillosis. Front Immunol 2025; 16:1529849. [PMID: 39949778 PMCID: PMC11821594 DOI: 10.3389/fimmu.2025.1529849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction Influenza-associated pulmonary aspergillosis (IAPA) is a severe complication of influenza infection that occurs in critically ill patients and results in higher mortality compared to influenza infection alone. Interleukin-17 (IL-17) and the Type 17 immune signaling pathway cytokine family are recognized for their pivotal role in fostering protective immunity against various pathogens. In this study, we investigate the role of IL-17 and Type 17 immune signaling components during IAPA. Methods Wild-type mice were challenged with influenza A H1N1 (flu) and then exposed to Aspergillus fumigatus ATCC42202 resting conidia on day 6 post-influenza infection, followed by the quantification of cytokines and chemokines at 48 h post-fungal infection. Results and discussion The gene and protein expression levels revealed that IL-17 and Type 17 immune cytokines and antimicrobial peptides are downregulated during IAPA compared to mice singularly infected solely with A. fumigatus. Restoration of Type 17 immunity was not sufficient to provide protection against the increased fungal burden observed during IAPA. These findings contrast those observed during post-influenza bacterial super-infection, in which restoration of Type 17 immune signaling protects against exacerbation seen during super-infection. Our study highlights the need for future studies to understand the immune mechanisms that increase susceptibility to fungal infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Keven M. Robinson
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Mishra DK, Kushwaha P, Gangwar P, Singh A, Singh UP. Assessment of asymptomatic fungal infections in COVID-19 positive and COVID-19 negative pneumonia: A comprehensive epidemiological analysis. J Family Med Prim Care 2025; 14:401-405. [PMID: 39989565 PMCID: PMC11844988 DOI: 10.4103/jfmpc.jfmpc_2033_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/18/2024] [Accepted: 09/25/2024] [Indexed: 02/25/2025] Open
Abstract
Background The COVID-19 pandemic has underscored the impact of secondary fungal infections on patient outcomes. This single-center study explores asymptomatic fungal infections in COVID-19-positive and COVID-19-negative pneumonia cases, elucidating the intricate relationship between viral respiratory illnesses and fungal co-infections. Methods Conducted at a single center, this cross-sectional study examines the prevalence, risk factors, and clinical implications of asymptomatic fungal infections in patients with COVID-19-positive and COVID-19-negative pneumonia. Various demographic, clinical, and laboratory parameters were analyzed. Results Fungal infections were significantly more prevalent in COVID-19 positive pneumonia cases (60%) compared to COVID-19 negative pneumonia cases (36%), with a notable P value of 0.016309. Furthermore, COVID-19-positive patients exhibited distinct clinical characteristics, including increased use of remdesivir (94%), higher rates of invasive mechanical ventilation (36%), and a prolonged hospital stay (14.29 days). Conclusion This study sheds light on the heightened vulnerability to asymptomatic fungal infections in COVID-19-positive pneumonia cases. Understanding these infections prevalence and their associated factors is crucial for comprehensive patient care and may influence treatment strategies, emphasizing the need for targeted interventions in viral respiratory illnesses.
Collapse
Affiliation(s)
| | - Pramod Kushwaha
- Department of Microbiology, Shyam Shah Medical College, Rewa, Madhya Pradesh, India
| | - Pooja Gangwar
- Department of Obstetrics and Gynecology, Shyam Shah Medical College, Rewa, Madhya Pradesh, India
| | - Ajeet Singh
- Department of Medicine, MLB Medical College, Jhansi, Uttar Pradesh, India
| | - Umesh Pratap Singh
- Department of Medicine, Shyam Shah Medical College, Rewa, Madhya Pradesh, India
| |
Collapse
|
5
|
Hu GN, Liu WL, Chang CH, Ruan SY, Chung KP, Chien JY, Yu CJ. Microbial dynamics, risk factors and outcomes of secondary pneumonia in critically ill patients with COVID-19: A multicenter retrospective cohort study. J Formos Med Assoc 2024; 123:1186-1193. [PMID: 39013749 DOI: 10.1016/j.jfma.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/17/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Secondary pneumonia has a significant clinical impact on critically ill patients with COVID-19. AIM Considering potential geographic variations, this study explores the clinical implications of secondary pneumonia within East Asian populations. METHODS This multicenter, retrospective cohort study enrolled critical COVID-19 patients requiring intensive care units (ICUs) admission in Taiwan from December 31, 2020, to June 1, 2022. FINDINGS Among the 187 critical COVID-19 patients, 80 (42.8%) developed secondary pneumonia. The primary causative pathogens were gram-negative bacilli (GNB) (76.8%). Gram-positive cocci and fungi were mainly observed during the initial two weeks of ICU stay. Notably, the incidence of pulmonary aspergillosis was 9.2% during the first week of ICU stay and all Staphylococcus aureus were susceptible to methicillin. Multi-drug resistant organisms (MDROs) were responsible for 28.3% of the cases, exhibiting significantly longer ICU stays compared to the non-MDRO group (median, 27 vs. 14 days, P < 0.001). In the multivariate analysis, Acute Physiology and Chronic Health Evaluation II (APACHE II) and Sequential Organ Failure Assessment (SOFA) scores were associated with a significantly increased risk of secondary pneumonia. In-hospital mortality was significantly higher in patients with secondary pneumonia than in those without (37.7% vs. 16.7%, P = 0.02) and survival analysis demonstrated gram-negative bacilli-related secondary pneumonia contributed to a worse prognosis. CONCLUSION Secondary pneumonia in critical COVID-19 patients significantly raised in-hospital mortality and extended hospital and ICU stays. Moreover, the presence of GNB notably predicted an unfavorable prognosis.
Collapse
Affiliation(s)
- Geng-Ning Hu
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, National Taiwan University College of Medicine, Hsinchu, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Lun Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Department of Critical Care Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan; Data Science Center, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chia-Hao Chang
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, National Taiwan University College of Medicine, Hsinchu, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sheng-Yuan Ruan
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuei-Pin Chung
- Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jung-Yien Chien
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, National Taiwan University College of Medicine, Hsinchu, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
6
|
Kaur M, Thakur P, Verma N, Choksket S, Harshvardhan, Korpole S, Bandarupalli D, Grover V. Invasive Fungal Infections in Immunocompromised Conditions: Emphasis on COVID-19. Curr Microbiol 2024; 81:400. [PMID: 39384659 DOI: 10.1007/s00284-024-03916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024]
Abstract
The COVID-19 pandemic caused death of 6 million lives globally, primarily from respiratory failure, but also a significant number from invasive fungal co-infections in these patients, owing to the immune dysfunction in hospitalized patients. Such complications occurred more often in critically ill, hospitalized patients particularly those admitted in intensive care units and were reported as the major reason associated with a high mortality rate worldwide. Fungal pathogens most commonly associated with COVID-19 patients comprise members of the Mucorales (such as Rhizopus, Mucor, and Lichtheimia), as well as genera Aspergillus and Candida. In India, the prevalence rate of mucormycosis is relatively high than aspergillosis and candidiasis, and the predisposing risk factors associated with such infections included uncontrolled diabetes, underlying lung disease, leukopenia, neutropenia, malignancies and prolonged steroid therapy. However, co-infection with other fungi, including Alternaria and Scedosporium was also sporadically reported. These devastating invasive fungal infections are associated with differential mortality (high-low) and morbidity rates even after active management. The diagnosis of such infections is often challenging due to lack of sensitivity in contemporary diagnostic methods and poses an enormous challenge to healthcare experts. Thus, the role of early and accurate diagnosis, and management of such fungal infections, is vital in preventing life-threatening situations. Hence, this review focusses primarily on the epidemiology, predisposing risk factors, host environment, diagnosis and treatment of the most common medically important invasive fungal infections in immunocompromised conditions associated with COVID-19.
Collapse
Affiliation(s)
- Mahaldeep Kaur
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Payal Thakur
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Nandini Verma
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Stanzin Choksket
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Harshvardhan
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suresh Korpole
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Devadatha Bandarupalli
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Vishakha Grover
- Dr. HS Judge Institute of Dental Sciences and Hospital, Panjab University, Sector 25, Chandigarh, India.
| |
Collapse
|
7
|
Song L, Qiu L, Wang G, Zou W, Zhang S, Sai L. Investigation of risk factors for invasive pulmonary aspergillosis among patients with COVID-19. Sci Rep 2024; 14:20364. [PMID: 39223294 PMCID: PMC11369242 DOI: 10.1038/s41598-024-71455-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
COVID-19 associated pulmonary aspergillosis (CAPA) had been reported, and raised concern about this secondary infection due to the high mortality. This study aimed to investigate the risk factors for CAPA. The enrolled 114 COVID-19 patients were further divided into CAPA group and non-CAPA group. Demographic characteristics, underlying diseases, laboratory parameters and therapeutic schedule between the two groups were compared to identify the independent risk factors for CAPA by univariate analysis and multivariable logistic regression analysis. Sensitivity and specificity of independent risk factors were confirmed by receiver operating characteristic (ROC) curve analysis. Univariate analysis showed that renal transplant, IL-6 and CRP levels, decreased CD4 + T cell and CD8 + T cell, duration of antibiotics therapy, and prolonged mechanical ventilation were risk factors for development of CAPA. These factors were further analyzed by multivariable logistic regression analysis and the results indicated that elevated IL-6 level, decreased CD4 + T cell and prolonged mechanical ventilation could be recognized as independent risk factors for CAPA in COVID-19 patients. Identification of these risk factors is essential to initiate antifungal therapy as soon as possible to improve outcome of patients with CAPA.
Collapse
Affiliation(s)
- Li Song
- Department of Infectious Diseases, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, 250012, Shandong, China
| | - Ling Qiu
- Department of Infectious Diseases, Shandong Provincial Public Health Clinical Center, Lieshishan Dong Road 11, Jinan, 250102, Shandong, China
| | - Gang Wang
- Department of Infectious Diseases, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, 250012, Shandong, China
| | - Wenlu Zou
- Department of Infectious Diseases, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, 250012, Shandong, China
| | - Shilong Zhang
- Center for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road 44, Jinan, 250012, Shandong, China
- NHC Key Laboratory of Health Economics and Policy Research, Shandong University, Wenhua Xi Road 44, Jinan, 250012, Shandong, China
| | - Lintao Sai
- Department of Infectious Diseases, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, 250012, Shandong, China.
| |
Collapse
|
8
|
Ahmad A, Singh RB, Nickolich K, Pilewski M, Ngeow C, Frempong-Manso K, Robinson K. Restoration of Type 17 immune signaling is not sufficient for protection during influenza-associated pulmonary aspergillosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601559. [PMID: 39185245 PMCID: PMC11343153 DOI: 10.1101/2024.07.01.601559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Influenza-associated pulmonary aspergillosis (IAPA) is a severe complication of influenza infection that occurs in critically ill patients and results in higher mortality compared to influenza infection alone. Interleukin-17 (IL-17) and the Type 17 immune signaling pathway cytokine family are recognized for their pivotal role in fostering protective immunity against various pathogens. In this study, we investigate the role of IL-17 and Type 17 immune signaling components during IAPA. Wild-type mice were challenged with influenza A H1N1 (Flu) and then exposed to Aspergillus fumigatus ATCC42202 resting conidia on day 6 post-influenza infection, followed by the quantification of cytokines and chemokines at 48 hours post-fungal infection. Gene and protein expression levels revealed that IL-17 and Type 17 immune cytokines and antimicrobial peptides are downregulated during IAPA compared to mice singularly infected solely with A. fumigatus. Restoration of Type 17 immunity was not sufficient to provide protection against the increased fungal burden observed during IAPA. These findings contrast those observed during post-influenza bacterial super-infection, in which restoration of Type 17 immune signaling protects against exacerbation seen during super-infection. Our study highlights the need for future studies to understand the immune mechanisms that increase susceptibility to fungal infection.
Collapse
Affiliation(s)
- Aijaz Ahmad
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ravineel Bhan Singh
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kara Nickolich
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew Pilewski
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Caden Ngeow
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kwame Frempong-Manso
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Keven Robinson
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
9
|
Imoto W, Ihara Y, Imai T, Kawai R, Yamada K, Kaneko Y, Shintani A, Kakeya H. Incidence and risk factors for coronavirus disease 2019-associated pulmonary aspergillosis using administrative claims data. Mycoses 2024; 67:e13773. [PMID: 39090076 DOI: 10.1111/myc.13773] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/26/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis (CAPA) is one of the noticeable complications of COVID-19 and its incidence varies widely. In Japan, research on the incidence, risk factors and mortality associated with CAPA is limited. OBJECTIVES This study aimed to explore the incidence and potential risk factors for CAPA in patients with severe or critical COVID-19 and evaluate the relationship between CAPA and mortality of patients with severe or critical COVID-19. METHODS We investigated the incidence of CAPA in patients with severe and critical COVID-19 using administrative claims data from acute care hospitals in Japan. We employed multivariable regression models to explore potential risk factors for CAPA and their contribution to mortality in patients with severe and critical COVID-19. RESULTS The incidence of CAPA was 0.4%-2.7% in 33,136 patients with severe to critical COVID-19. Age, male sex, chronic lung disease, steroids, immunosuppressants, intensive care unit admission, blood transfusion and dialysis were potential risk factors for CAPA in patients with severe to critical COVID-19. CAPA was an independent factor associated with mortality. CONCLUSIONS CAPA is a serious complication in patients with severe and critical COVID-19 and may increase mortality.
Collapse
Affiliation(s)
- Waki Imoto
- Department of Infection Control Science, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Infectious Disease Medicine, Osaka Metropolitan University Hospital, Osaka, Japan
- Department of Infection Control and Prevention, Osaka Metropolitan University Hospital, Osaka, Japan
- Research Center for Infectious Disease Sciences (RCIDS), Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Osaka International Research for Infectious Diseases (OIRCID), Osaka Metropolitan University, Osaka, Japan
| | - Yasutaka Ihara
- Department of Medical Statistics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Data Intelligence Department, Global DX, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Takumi Imai
- Department of Medical Statistics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Ryota Kawai
- Department of Medical Statistics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Koichi Yamada
- Department of Infection Control Science, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Infectious Disease Medicine, Osaka Metropolitan University Hospital, Osaka, Japan
- Department of Infection Control and Prevention, Osaka Metropolitan University Hospital, Osaka, Japan
- Research Center for Infectious Disease Sciences (RCIDS), Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Osaka International Research for Infectious Diseases (OIRCID), Osaka Metropolitan University, Osaka, Japan
| | - Yukihiro Kaneko
- Research Center for Infectious Disease Sciences (RCIDS), Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Osaka International Research for Infectious Diseases (OIRCID), Osaka Metropolitan University, Osaka, Japan
- Department of Bacteriology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Ayumi Shintani
- Department of Medical Statistics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Kakeya
- Department of Infection Control Science, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Infectious Disease Medicine, Osaka Metropolitan University Hospital, Osaka, Japan
- Department of Infection Control and Prevention, Osaka Metropolitan University Hospital, Osaka, Japan
- Research Center for Infectious Disease Sciences (RCIDS), Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Osaka International Research for Infectious Diseases (OIRCID), Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
10
|
Fumarola B, Signorini L, Lorenzotti S, Lanza P, Saccani B, Van Hauwermeiren E, Mulè A, Piva S, Rota M, Zuccalà F, Rasulo FA, Filippini M, Bertazzoli A, Del Fabro G, Matteelli A. Use of nebulized liposomal amphotericin B and posaconazole as antifungal prophylaxis in patients with severe SARS-CoV2 infection in intensive care unit. Infection 2024; 52:1459-1468. [PMID: 38530518 PMCID: PMC11289071 DOI: 10.1007/s15010-024-02234-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
PURPOSE COVID-19 associated pulmonary aspergillosis (CAPA) is common and linked with high fatality rates. To assess the impact on the incidence and outcome of CAPA of an antifungal prophylaxis (AFP) we compared two cohorts of COVID-19 patients admitted to intensive care units (ICU) in Brescia, Italy, from January to August 2021. METHODS The study cohort included all mechanically ventilated patients observed between April 2021 and August 2021 with SARS-CoV-2-pneumonia, who received AFP with oral posaconazole (200 mg every 6 h) and nebulized liposomal amphotericin B (50 mg every 2 weeks) from ICU admission to 7 days after discharge or, if applicable, until tracheostomy removal. The control cohort included COVID-19 patients admitted to the same ICU between January and March 2021 who did not receive any AFP. Subjects with CAPA at ICU admission were excluded. RESULTS We included 270 patients, of whom 64 (23.7%) received AFP. In patients in the study group, CAPA-related mortality was significantly reduced (29% vs. 48% p = 0.04), as well as the incidence of CAPA (3.1% vs 12.1%, p = 0.03). Patients who developed CAPA were older (mean of 70-y-old vs 63-y-old, p < 0.001). One subject discontinued posaconazole due to an adverse reaction. Among the 46 patients who received it, only one patient reached an effective plasma concentration of posaconazole. CONCLUSION AFP was associated with reduced incidence and mortality from CAPA and was well tolerated in patients with severe COVID-19. Posaconazole concentrations below the efficacy threshold in almost all patients may be attributable to drug interactions and prompt further studies to define its clinical significance.
Collapse
Affiliation(s)
| | - Liana Signorini
- Clinic of Infectious Diseases, ASST Spedali Civili, Brescia, Italy
| | | | - Paola Lanza
- Clinic of Infectious Diseases, ASST Spedali Civili, Brescia, Italy
| | - Barbara Saccani
- Clinic of Infectious Diseases, ASST Spedali Civili, Brescia, Italy
| | | | - Alice Mulè
- Clinic of Infectious Diseases, ASST Spedali Civili, Brescia, Italy
- Department of Clinical and Experimental Medicine, University of Brescia, Brescia, Italy
| | - Simone Piva
- Department of Medical and Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
- Department of Anesthesia, Critical Care and Emergency, Spedali Civili University Hospital, Brescia, Italy
| | - Matteo Rota
- Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Francesco Zuccalà
- Department of Anesthesia and Intensive Care, Spedali Civili Hospital, Brescia, Italy
| | - Francesco Antonio Rasulo
- Intensive Care and Anesthesiology, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia and Spedali Civili Hospital, Brescia, Italy
| | - Matteo Filippini
- Intensive Care and Anesthesiology, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia and Spedali Civili Hospital, Brescia, Italy
| | - Alberto Bertazzoli
- Department of Anesthesia and Intensive Care, Spedali Civili Hospital, Brescia, Italy
| | - Giovanni Del Fabro
- Department of Infectious Diseases, ASFO "Santa Maria Degli Angeli" Hospital of Pordenone, Pordenone, Italy
| | - Alberto Matteelli
- Clinic of Infectious Diseases, ASST Spedali Civili, Brescia, Italy
- Department of Clinical and Experimental Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
11
|
Morrissey CO, Kim HY, Duong TMN, Moran E, Alastruey-Izquierdo A, Denning DW, Perfect JR, Nucci M, Chakrabarti A, Rickerts V, Chiller TM, Wahyuningsih R, Hamers RL, Cassini A, Gigante V, Sati H, Alffenaar JW, Beardsley J. Aspergillus fumigatus-a systematic review to inform the World Health Organization priority list of fungal pathogens. Med Mycol 2024; 62:myad129. [PMID: 38935907 PMCID: PMC11210617 DOI: 10.1093/mmy/myad129] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 06/29/2024] Open
Abstract
Recognizing the growing global burden of fungal infections, the World Health Organization established a process to develop a priority list of fungal pathogens (FPPL). In this systematic review, we aimed to evaluate the epidemiology and impact of invasive infections caused by Aspergillus fumigatus to inform the first FPPL. The pre-specified criteria of mortality, inpatient care, complications and sequelae, antifungal susceptibility, risk factors, preventability, annual incidence, global distribution, and emergence were used to search for relevant articles between 1 January 2016 and 10 June 2021. Overall, 49 studies were eligible for inclusion. Azole antifungal susceptibility varied according to geographical regions. Voriconazole susceptibility rates of 22.2% were reported from the Netherlands, whereas in Brazil, Korea, India, China, and the UK, voriconazole susceptibility rates were 76%, 94.7%, 96.9%, 98.6%, and 99.7%, respectively. Cross-resistance was common with 85%, 92.8%, and 100% of voriconazole-resistant A. fumigatus isolates also resistant to itraconazole, posaconazole, and isavuconazole, respectively. The incidence of invasive aspergillosis (IA) in patients with acute leukemia was estimated at 5.84/100 patients. Six-week mortality rates in IA cases ranged from 31% to 36%. Azole resistance and hematological malignancy were poor prognostic factors. Twelve-week mortality rates were significantly higher in voriconazole-resistant than in voriconazole-susceptible IA cases (12/22 [54.5%] vs. 27/88 [30.7%]; P = .035), and hematology patients with IA had significantly higher mortality rates compared with solid-malignancy cases who had IA (65/217 [30%] vs. 14/78 [18%]; P = .04). Carefully designed surveillance studies linking laboratory and clinical data are required to better inform future FPPL.
Collapse
Affiliation(s)
- C Orla Morrissey
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Hannah Y Kim
- The University of Sydney Infectious Diseases Institute (Sydney ID), New South Wales, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, New South Wales, Australia
- Westmead Hospital, Westmead, New South Wales, Australia
| | - Tra-My N Duong
- The University of Sydney Infectious Diseases Institute (Sydney ID), New South Wales, Australia
| | - Eric Moran
- Sinclair Dermatology, East Melbourne, Victoria, Australia
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - David W Denning
- Global Action for Fungal Infections, Geneva, Switzerland
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - John R Perfect
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, NC, USA
| | - Marcio Nucci
- Universidade Federal do Rio de Janeiro and Grupo Oncoclinicas, Rio de Janeiro, RJ, Brazil
| | | | - Volker Rickerts
- Robert Koch Institute Berlin, FG16, Seestrasse 10, 13353 Berlin, Germany
| | - Tom M Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Retno Wahyuningsih
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Parasitology, Faculty of Medicine, Universitas Kristen, Jakarta, Indonesia
| | - Raph L Hamers
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alessandro Cassini
- Infectious Diseases Service, Lausanne University Hospital, Lausanne, Switzerland
- Public Health Department, Canton of Vaud, Lausanne, Switzerland
| | - Valeria Gigante
- AMR Division, World Health Organization, Geneva, Switzerland
| | - Hatim Sati
- AMR Division, World Health Organization, Geneva, Switzerland
| | - Jan-Willem Alffenaar
- The University of Sydney Infectious Diseases Institute (Sydney ID), New South Wales, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, New South Wales, Australia
- Westmead Hospital, Westmead, New South Wales, Australia
| | - Justin Beardsley
- The University of Sydney Infectious Diseases Institute (Sydney ID), New South Wales, Australia
- Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| |
Collapse
|
12
|
Trápaga MR, Poester VR, Basso RP, Blan BDS, Munhoz LS, Pasqualotto AC, Werner TDF, Figurelli ML, Stevens DA, von Groll A, Xavier MO. Aspergillosis in Critically Ill Patients with and Without COVID-19 in a Tertiary Hospital in Southern Brazil. Mycopathologia 2024; 189:48. [PMID: 38847987 DOI: 10.1007/s11046-024-00862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/18/2024] [Indexed: 06/20/2024]
Abstract
The impact of invasive pulmonary aspergillosis (IPA) on non-neutropenic critically ill patients in intensive care units (ICU) has been demonstrated in recent decades. Furthermore, after the start of the COVID-19 pandemic, COVID-19 associated with pulmonary aspergillosis (CAPA) has become a major concern in ICUs. However, epidemiological data from different regions are scarce. We evaluated the prevalence and clinical-epidemiological data of IPA in patients with COVID-19 requiring mechanical ventilation (MV) in the ICU ("severe COVID-19") and non-COVID ICU patients in MV of a tertiary hospital in the southern region of Brazil. Eighty-seven patients admitted between June 2020 and August 2022 were included; 31 with severe COVID-19. For the diagnosis of IPA or CAPA, algorithms including host factors and mycological criteria (positive culture for Aspergillus spp., immunoassay for galactomannan detection, and/or qPCR) were utilized. The overall incidence of IPA and CAPA in our ICU was 73 cases/1000 ICU hospitalizations. Aspergillosis occurred in 13% (4/31) of the COVID-19 patients, and in 16% (9/56) of the critically ill patients without COVID-19, with mortality rates of 75% (3/4) and 67% (6/9), respectively. Our results highlight the need for physicians enrolled in ICU care to be aware of aspergillosis and for more access of the patients to sensitive and robust diagnostic tests by biomarkers detection.
Collapse
Affiliation(s)
- Mariana Rodrigues Trápaga
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Vanice Rodrigues Poester
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Rossana Patrícia Basso
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Hospital Universitário Dr. Miguel Riet Correa Jr., Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Bianca Dos Santos Blan
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Lívia Silveira Munhoz
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Alessandro C Pasqualotto
- Laboratório de Biologia Molecular, Santa Casa de Misericórdia, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Talita da Fontoura Werner
- Hospital Universitário Dr. Miguel Riet Correa Jr., Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Maria Letícia Figurelli
- Hospital Universitário Dr. Miguel Riet Correa Jr., Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - David A Stevens
- California Institute for Medical Research, San Jose, CA, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA, USA
| | - Andrea von Groll
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Núcleo de Pesquisa em Microbiologia Médica, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Melissa Orzechowski Xavier
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil.
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil.
| |
Collapse
|
13
|
Gerber V, Boehn L, Sabou M, Studer A, Ursenbach A, Hansmann Y, Herbrecht R, Lefebvre N, Letscher-Bru V, Danion F. Is there an interest in systematic serum screening for aspergillosis in COVID-19 patients in a medical ward? Infect Dis Now 2024; 54:104918. [PMID: 38636842 DOI: 10.1016/j.idnow.2024.104918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
PURPOSE We evaluated the interest of systematic screening of serum fungal markers in patients hospitalized in a medical ward. METHODS We retrospectively analyzed all patients hospitalized in our infectious disease department from October 1st to October 31st, 2020 for COVID-19 without prior ICU admission, and for whom systematic screening of serum fungal markers was performed. RESULTS Thirty patients were included. The majority of patients received corticosteroids (96.7%). The galactomannan antigen assay was positive for 1/30 patients at D0, and 0/24, 0/16, 0/13 and 0/2 at D4, D7, D10 and D14 respectively. 1,3-ß-D-glucan was positive for 0/30, 1/24, 1/12, 0/12, 0/2 at D0, D4, D7, D10 and D14 respectively. No Aspergillus fumigatus PCR was positive. No cases of aspergillosis were retained. CONCLUSION Our study does not support the interest of systematic screening of fungal markers in immunocompetent patients with COVID-19 in a conventional unit.
Collapse
Affiliation(s)
- Victor Gerber
- Service de maladies infectieuses et tropicales, Fédération de Médecine Translationnelle de Strasbourg, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France.
| | - Louis Boehn
- Service de maladies infectieuses et tropicales, Fédération de Médecine Translationnelle de Strasbourg, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Marcela Sabou
- Laboratoire de Parasitologie et de Mycologie Médicale, Plateau Technique de Microbiologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Antoine Studer
- Service de Médecine Intensive-Réanimation, Hôpitaux Universitaires, Strasbourg, France
| | - Axel Ursenbach
- Service de maladies infectieuses et tropicales, Fédération de Médecine Translationnelle de Strasbourg, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France; Service du Trait d'Union, Hôpitaux Universitaires, Université de Strasbourg, Strasbourg, France
| | - Yves Hansmann
- Service de maladies infectieuses et tropicales, Fédération de Médecine Translationnelle de Strasbourg, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Raoul Herbrecht
- Department of hematology, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Nicolas Lefebvre
- Service de maladies infectieuses et tropicales, Fédération de Médecine Translationnelle de Strasbourg, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Valérie Letscher-Bru
- Laboratoire de Parasitologie et de Mycologie Médicale, Plateau Technique de Microbiologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - François Danion
- Service de maladies infectieuses et tropicales, Fédération de Médecine Translationnelle de Strasbourg, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France; Inserm UMR_S 1109, Laboratoire d'ImmunoRhumatologie Moléculaire, Strasbourg, France
| |
Collapse
|
14
|
Jenks JD, Hoenigl M, Thompson GR. Study protocol: A randomized, double-blind, placebo-controlled trial of isavuconazole prophylaxis for the prevention of covid-19-associated pulmonary aspergillosis. Contemp Clin Trials Commun 2024; 39:101310. [PMID: 38832095 PMCID: PMC11144754 DOI: 10.1016/j.conctc.2024.101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Background During the early stages of the coronavirus disease 2019 (COVID-19) pandemic, those with severe COVID-19 infection were at risk for a number of opportunistic infections including COVID-19-associated pulmonary aspergillosis (CAPA). We initiated a randomized clinical trial to evaluate whether isavuconazole, a triazole antifungal, could prevent CAPA and improve survival in patients admitted to the ICU with severe COVID-19 infection. Methods We designed a phase III/IV randomized, double-blind, two-arm, placebo-controlled trial evaluating standard of care (SOC) plus isavuconazole versus SOC plus placebo and were to enroll participants admitted to the ICU with severe COVID-19 infection at three medical centers in California, United States. The projected sample size was 162 participants. Results Due to poor enrollment and the declining number of COVID-19 cases over time, the study was terminated after 7 participants were enrolled, all enrolled at one study site (UC San Diego Health). CAPA was suspected in two participants and they were started on open-label isavuconazole. One was withdrawn due to possible isavuconazole-related adverse side effects. Conclusion Enrollment was slower-than-expected due to multiple factors, including competing COVID-19-related studies and hesitancy from potential study participants or their families to join the study. Our experience highlights some of the difficulties in planning and running a clinical trial focused on fungal superinfections involving severely ill patients during the height of the COVID-19 pandemic. Lessons learned from this study will help in the design of proposed studies examining antifungal prophylaxis against aspergillosis following other severe respiratory viral infections.
Collapse
Affiliation(s)
- Jeffrey D. Jenks
- Durham County Department of Public Health, Durham, NC, USA
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, USA
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - George R. Thompson
- University of California Davis Center for Valley Fever, Sacramento, CA, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| |
Collapse
|
15
|
Akinosoglou K, Rigopoulos EA, Papageorgiou D, Schinas G, Polyzou E, Dimopoulou E, Gogos C, Dimopoulos G. Amphotericin B in the Era of New Antifungals: Where Will It Stand? J Fungi (Basel) 2024; 10:278. [PMID: 38667949 PMCID: PMC11051097 DOI: 10.3390/jof10040278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Amphotericin B (AmB) has long stood as a cornerstone in the treatment of invasive fungal infections (IFIs), especially among immunocompromised patients. However, the landscape of antifungal therapy is evolving. New antifungal agents, boasting novel mechanisms of action and better safety profiles, are entering the scene, presenting alternatives to AmB's traditional dominance. This shift, prompted by an increase in the incidence of IFIs, the growing demographic of immunocompromised individuals, and changing patterns of fungal resistance, underscores the continuous need for effective treatments. Despite these challenges, AmB's broad efficacy and low resistance rates maintain its essential status in antifungal therapy. Innovations in AmB formulations, such as lipid complexes and liposomal delivery systems, have significantly mitigated its notorious nephrotoxicity and infusion-related reactions, thereby enhancing its clinical utility. Moreover, AmB's efficacy in treating severe and rare fungal infections and its pivotal role as prophylaxis in high-risk settings highlight its value and ongoing relevance. This review examines AmB's standing amidst the ever-changing antifungal landscape, focusing on its enduring significance in current clinical practice and exploring its potential future therapeutic adaptations.
Collapse
Affiliation(s)
- Karolina Akinosoglou
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Rio, Greece
| | | | - Despoina Papageorgiou
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | - Georgios Schinas
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | - Eleni Polyzou
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | | | - Charalambos Gogos
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | - George Dimopoulos
- 3rd Department of Critical Care, Evgenidio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| |
Collapse
|
16
|
Zhang Y, Zhang H, Xu T, Zeng L, Liu F, Huang X, Liu Q. Interactions among microorganisms open up a new world for anti-infectious therapy. FEBS J 2024; 291:1615-1631. [PMID: 36527169 DOI: 10.1111/febs.16705] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The human microbiome, containing bacteria, fungi, and viruses, is a community that coexists peacefully with humans most of the time, but with the potential to cause disease under certain conditions. When the environment changes or certain stimuli are received, microbes may interact with each other, causing or increasing the severity of disease in a host. With the appropriate methods, we can make these microbiota work for us, creating new applications for human health. This review discusses the wide range of interactions between microorganisms that result in an increase in susceptibility to, severity of, and mortality of diseases, and also briefly introduces how microorganisms interact with each other directly or indirectly. The study of microbial interactions and their mechanisms has revealed a new world of treatments for infectious disease. The regulation of the balance between intestinal flora, the correct application of probiotics, and the development of effective drugs by symbiosis all demonstrate the great contributions of the microbiota to human health and its powerful potential value. Consequently, the study of interactions between microorganisms plays an essential role in identifying the causes of diseases and the development of treatments.
Collapse
Affiliation(s)
- Yejia Zhang
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, China
| | - Hanchi Zhang
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, China
- The First Clinical Medical College, Nanchang University, China
| | - Tian Xu
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, China
| | - Lingbing Zeng
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, China
- The First Clinical Medical College, Nanchang University, China
| | - Fadi Liu
- The Department of Clinical Laboratory, Children's Hospital of Jiangxi Province, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, China
| |
Collapse
|
17
|
Zhao J, Zhuo X, Pu D, Fan G, Lu B, Cao B. Comparison of influenza- and COVID-19-associated pulmonary aspergillosis in China. Eur J Clin Microbiol Infect Dis 2024; 43:683-692. [PMID: 38326545 DOI: 10.1007/s10096-024-04772-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
PURPOSE We conducted a monocentric retrospective study using the latest definitions to compare the demographic, clinical, and biological characteristics of influenza-associated pulmonary aspergillosis (IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA). METHODS The study retrospectively enrolled 180 patients, including 70 influenza/IPA patients (with positive influenza A/B and Aspergillus) and 110 COVID-19/IPA patients (with positive SARS-CoV-2 and Aspergillus). Among them, 42 (60%) and 30 (27.3%) patients fulfilled the definitions of IAPA and CAPA, respectively. RESULTS The CAPA patients had significantly higher in-hospital mortality (13/31, 41.9%) than IAPA patients (8/42, 19%) with a P-value of 0.033. Kaplan-Meier survival curve also showed significantly higher 30-day mortality for CAPA patients (P = 0.025). Additionally, the CAPA patients were older, though insignificantly, than IAPA patients (70 (60-80) vs. 62 (52-72), P = 0.075). A lower percentage of chronic pulmonary disease (12.9 vs. 40.5%, P = 0.01) but higher corticosteroids use 7 days before and after ICU admission (22.6% vs. 0%, P = 0.002) were found in CAPA patients. Notably, there were no significant differences in the percentage of ICU admission or ICU mortality between the two groups. In addition, the time from observation to Aspergillus diagnosis was significantly longer in CAPA patients than in IAPA patients (7 (2-13) vs. 0 (0-4.5), P = 0.048). CONCLUSION Patients infected with SARS-CoV-2 and Aspergillus during the concentrated outbreak of COVID-19 in China had generally higher in-hospital mortality but a lower percentage of chronic pulmonary disease than those infected with influenza and Aspergillus. For influenza-infected patients who require hospitalization, close attention should be paid to the risk of invasive aspergillosis upfront.
Collapse
Affiliation(s)
- Jiankang Zhao
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xianxia Zhuo
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Department of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Danni Pu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Guohui Fan
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Binghuai Lu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Bin Cao
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
- Department of Respiratory Medicine, Capital Medical University, Beijing, China.
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China.
| |
Collapse
|
18
|
Gioia F, Walti LN, Orchanian-Cheff A, Husain S. Risk factors for COVID-19-associated pulmonary aspergillosis: a systematic review and meta-analysis. THE LANCET. RESPIRATORY MEDICINE 2024; 12:207-216. [PMID: 38185135 DOI: 10.1016/s2213-2600(23)00408-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND COVID-19-associated pulmonary aspergillosis (CAPA) has been reported to be an emerging and potentially fatal complication of severe COVID-19. However, risk factors for CAPA have not been systematically addressed to date. METHODS In this systematic review and meta-analysis to identify factors associated with CAPA, we comprehensively searched five medical databases: Ovid MEDLINE; Ovid Embase; the Cochrane Database of Systematic Reviews; the Cochrane Central Register of Controlled Trials; and the WHO COVID-19 Database. All case-control and cohort studies in adults (aged >18 years) that described at least six cases of CAPA and evaluated any risk factors for CAPA, published from Dec 1, 2019, to July 27, 2023, were screened and assessed for inclusion. Only studies with a control population of COVID-19-positive individuals without aspergillosis were included. Two reviewers independently screened search results and extracted outcome data as summary estimates from eligible studies. The primary outcome was to identify the factors associated with CAPA. Meta-analysis was done with random-effects models, with use of the Mantel-Haenszel method to assess dichotomous outcomes as potential risk factors, or the inverse variance method to assess continuous variables for potential association with CAPA. Publication bias was assessed with funnel plots for factors associated with CAPA. The study is registered with PROSPERO, CRD42022334405. FINDINGS Of 3561 records identified, 27 articles were included in the meta-analysis. 6848 patients with COVID-19 were included, of whom 1324 (19·3%) were diagnosed with CAPA. Diagnosis rates of CAPA ranged from 2·5% (14 of 566 patients) to 47·2% (58 of 123). We identified eight risk factors for CAPA. These factors included pre-existing comorbidities of chronic liver disease (odds ratio [OR] 2·70 [95% CI 1·21-6·04], p=0·02; I2=53%), haematological malignancies (OR 2·47 [1·27-4·83], p=0·008; I2=50%), chronic obstructive pulmonary disease (OR 2·00 [1·42-2·83], p<0·0001; I2=26%), and cerebrovascular disease (OR 1·31 [1·01-1·71], p=0·05; I2=46%). Use of invasive mechanical ventilation (OR 2·83; 95% CI 1·88-4·24; p<0·0001; I2=69%), use of renal replacement therapy (OR 2·26 [1·76-2·90], p<0·0001; I2=14%), treatment of COVID-19 with interleukin-6 inhibitors (OR 2·88 [1·52-5·43], p=0·001; I2=89%), and treatment of COVID-19 with corticosteroids (OR 1·88 [1·28-2·77], p=0·001; I2=66%) were also associated with CAPA. Patients with CAPA were typically older than those without CAPA (mean age 66·6 years [SD 3·6] vs 63·5 years [5·3]; mean difference 2·90 [1·48-4·33], p<0·0001; I2=86%). The duration of mechanical ventilation in patients with CAPA was longer than in those without CAPA (n=7 studies; mean duration 19·3 days [8·9] vs 13·5 days [6·8]; mean difference 5·53 days [1·30-9·77], p=0·01; I2=88%). In post-hoc analysis, patients with CAPA had higher all-cause mortality than those without CAPA (n=20 studies; OR 2·65 [2·04-3·45], p<0·0001; I2=51%). INTERPRETATION The identified risk factors for CAPA could eventually be addressed with targeted antifungal prophylaxis in patients with severe COVID-19. FUNDING None.
Collapse
Affiliation(s)
- Francesca Gioia
- Ajmera Transplant Centre, Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, ON, Canada; Infectious Diseases Department, Hospital Ramón y Cajal, Consorcio Centro de Investigación Biomédica en Red (CB21/13/00084), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain
| | - Laura N Walti
- Ajmera Transplant Centre, Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, ON, Canada; Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ani Orchanian-Cheff
- Library and Information Services, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Shahid Husain
- Ajmera Transplant Centre, Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
19
|
Gao CA, Markov NS, Pickens C, Pawlowski A, Kang M, Walter JM, Singer BD, Wunderink RG. An observational cohort study of bronchoalveolar lavage fluid galactomannan and Aspergillus culture positivity in patients requiring mechanical ventilation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.07.24302392. [PMID: 38370841 PMCID: PMC10871379 DOI: 10.1101/2024.02.07.24302392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Rationale Critically ill patients who develop invasive pulmonary aspergillosis (IPA) have high mortality rates despite antifungal therapy. Diagnosis is difficult in these patients. Bronchoalveolar lavage (BAL) fluid galactomannan (GM) is a helpful marker of infection, although the optimal cutoff for IPA is unclear. We aimed to evaluate the BAL fluid GM and fungal culture results, demographics, and outcomes among a large cohort of mechanically ventilated patients with suspected pneumonia. Methods A single-center cohort study of patients enrolled in the Successful Clinical Response in Pneumonia Therapy (SCRIPT) study from June 2018 to March 2023. Demographics, BAL results, and outcomes data were extracted from the electronic health record and compared between groups of patients who grew Aspergillus on a BAL fluid culture, those who had elevated BAL fluid GM levels (defined as >0.5 or >0.8) but did not grow Aspergillus on BAL fluid culture, and those with neither. Results Of over 1700 BAL samples from 688 patients, only 18 BAL samples grew Aspergillus. Patients who had a BAL sample grow Aspergillus (n=15) were older (median 71 vs 62 years, p=0.023), had more days intubated (29 vs 11, p=0.002), and more ICU days (34 vs 15, p=0.002) than patients whose BAL fluid culture was negative for Aspergillus (n=672). The BAL fluid galactomannan level was higher from samples that grew Aspergillus on culture than those that did not (median ODI 7.08 vs 0.11, p<0.001), though the elevation of BAL fluid GM varied across BAL samples for patients who had serial sampling. Patients who grew Aspergillus had a similar proportion of underlying immunocompromise compared with the patients who did not, and while no statistically significant difference in overall unfavorable outcome, had longer duration of ventilation and longer ICU stays. Conclusions In this large cohort of critically ill patients with a high number of BAL samples with GM levels, we found a relatively low rate of Aspergillus growth. Patients who eventually grew Aspergillus had inconsistently elevated BAL fluid GM, and many patients with elevated BAL fluid GM did not grow Aspergillus. These data suggest that the pre-test probability of invasive pulmonary aspergillosis should be considered low in a general ICU population undergoing BAL evaluation to define the etiology of pneumonia. Improved scoring systems are needed to enhance pre-test probability for diagnostic test stewardship purposes.
Collapse
Affiliation(s)
- Catherine A. Gao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nikolay S. Markov
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chiagozie Pickens
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anna Pawlowski
- Northwestern Medicine Enterprise Data Warehouse, Chicago, IL, USA
| | - Mengjia Kang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - James M. Walter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benjamin D. Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Richard G. Wunderink
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
20
|
Abstract
The filamentous fungus Aspergillus causes a wide spectrum of diseases in the human lung, with Aspergillus fumigatus being the most pathogenic and allergenic subspecies. The broad range of clinical syndromes that can develop from the presence of Aspergillus in the respiratory tract is determined by the interaction between host and pathogen. In this review, an oversight of the different clinical entities of pulmonary aspergillosis is given, categorized by their main pathophysiological mechanisms. The underlying immune processes are discussed, and the main clinical, radiological, biochemical, microbiological, and histopathological findings are summarized.
Collapse
Affiliation(s)
- Iris Janssens
- Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Bart N. Lambrecht
- Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Pulmonary Medicine, ErasmusMC; Rotterdam, The Netherlands
| | - Eva Van Braeckel
- Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
21
|
Hernández-Silva G, Corzo-León DE, Becerril-Vargas E, Peralta-Prado AB, Odalis RG, Morales-Villarreal F, Ríos-Ayala MA, Alonso TG, Agustín FLD, Ramón AF, Hugo ATV. Clinical characteristics, bacterial coinfections and outcomes in COVID-19-associated pulmonary aspergillosis in a third-level Mexican hospital during the COVID-19 pre-vaccination era. Mycoses 2024; 67:e13693. [PMID: 38214372 DOI: 10.1111/myc.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Damage due to respiratory viruses increases the risk of bacterial and fungal coinfections and superinfections. High rates of invasive aspergillosis are seen in severe influenza and COVID-19. This report describes CAPA cases diagnosed during the first wave in the biggest reference centre for severe COVID-19 in Mexico. OBJECTIVES To describe the clinical, microbiological and radiological characteristics of patients with invasive pulmonary aspergillosis associated with critical COVID-19, as well as to describe the variables associated with mortality. METHODS This retrospective study identified CAPA cases among individuals with COVID-19 and ARDS, hospitalised from 1 March 2020 to 31 March 2021. CAPA was defined according to ECMM/ISHAM consensus criteria. Prevalence was estimated. Clinical and microbiological characteristics including bacterial superinfections, antifungal susceptibility testing and outcomes were documented. RESULTS Possible CAPA was diagnosed in 86 patients among 2080 individuals with severe COVID-19, representing 4.13% prevalence. All CAPA cases had a positive respiratory culture for Aspergillus species. Aspergillus fumigatus was the most frequent isolate (64%, n = 55/86). Seven isolates (9%, n = 7/80) were resistant to amphotericin B (A. fumigatus n = 5/55, 9%; A. niger, n = 2/7, 28%), two A. fumigatus isolates were resistant to itraconazole (3.6%, n = 2/55). Tracheal galactomannan values ranged between 1.2 and 4.05, while serum galactomannan was positive only in 11% (n = 3/26). Bacterial coinfection were documented in 46% (n = 40/86). Gram negatives were the most frequent cause (77%, n = 31/40 isolates), from which 13% (n = 4/31) were reported as multidrug-resistant bacteria. Mortality rate was 60% and worse prognosis was seen in older persons, high tracheal galactomannan index and high HbA1c level. CONCLUSIONS One in 10 individuals with CAPA carry a resistant Aspergillus isolate and/or will be affected by a MDR bacteria. High mortality rates are seen in this population.
Collapse
Affiliation(s)
- Graciela Hernández-Silva
- Infectious Diseases Department, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | - Eduardo Becerril-Vargas
- Microbiology Clinical Laboratory, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Amy Bethel Peralta-Prado
- Research Centre of Infectious Diseases, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Rodríguez-Ganes Odalis
- Pharmacology Department, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | | | | | | | - Avilez-Félix Ramón
- Pneumology Service, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | |
Collapse
|
22
|
Kumar M, Mazumder P, Silori R, Manna S, Panday DP, Das N, Sethy SK, Kuroda K, Mahapatra DM, Mahlknecht J, Tyagi VK, Singh R, Zang J, Barceló D. Prevalence of pharmaceuticals and personal care products, microplastics and co-infecting microbes in the post-COVID-19 era and its implications on antimicrobial resistance and potential endocrine disruptive effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166419. [PMID: 37625721 DOI: 10.1016/j.scitotenv.2023.166419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
The COVID-19 (coronavirus disease 2019) pandemic's steady condition coupled with predominance of emerging contaminants in the environment and its synergistic implications in recent times has stoked interest in combating medical emergencies in this dynamic environment. In this context, high concentrations of pharmaceutical and personal care products (PPCPs), microplastics (MPs), antimicrobial resistance (AMR), and soaring coinfecting microbes, tied with potential endocrine disruptive (ED) are critical environmental concerns that requires a detailed documentation and analysis. During the pandemic, the identification, enumeration, and assessment of potential hazards of PPCPs and MPs and (used as anti-COVID-19 agents/applications) in aquatic habitats have been attempted globally. Albeit receding threats in the magnitude of COVID-19 infections, both these pollutants have still posed serious consequences to aquatic ecosystems and the very health and hygiene of the population in the vicinity. The surge in the contaminants post-COVID also renders them to be potent vectors to harbor and amplify AMR. Pertinently, the present work attempts to critically review such instances to understand the underlying mechanism, interactions swaying the current health of our environment during this post-COVID-19 era. During this juncture, although prevention of diseases, patient care, and self-hygiene have taken precedence, nevertheless antimicrobial stewardship (AMS) efforts have been overlooked. Unnecessary usage of PPCPs and plastics during the pandemic has resulted in increased emerging contaminants (i.e., active pharmaceutical ingredients and MPs) in various environmental matrices. It was also noticed that among COVID-19 patients, while the bacterial co-infection prevalence was 0.2-51%, the fungi, viral, protozoan and helminth were 0.3-49, 1-22, 2-15, 0.4-15% respectively, rendering them resistant to residual PPCPs. There are inevitable chances of ED effects from PPCPs and MPs applied previously, that could pose far-reaching health concerns. Furthermore, clinical and other experimental evidence for many newer compounds is very scarce and demands further research. Pro-active measures targeting effective waste management, evolved environmental policies aiding strict regulatory measures, and scientific research would be crucial in minimizing the impact and creating better preparedness towards such events among the masses fostering sustainability.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo Leon, Mexico.
| | - Payal Mazumder
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Rahul Silori
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Suvendu Manna
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Durga Prasad Panday
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Nilotpal Das
- ENCORE Insoltech Pvt. Ltd, Randesan, Gandhinagar, Gujarat 382421, India
| | - Susanta Kumar Sethy
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Imizu 939 0398, Japan
| | - Durga Madhab Mahapatra
- Department of Chemical and Petroleum Engineering, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Jürgen Mahlknecht
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| | - Vinay Kumar Tyagi
- Wastewater Division, National Institute of Hydrology Roorkee, Roorkee, Uttranchal, India
| | - Rajesh Singh
- Wastewater Division, National Institute of Hydrology Roorkee, Roorkee, Uttranchal, India
| | - Jian Zang
- Department of Civil Engineering, Chongqing University, China
| | - Damià Barceló
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 1826, Barcelona 08034, Spain
| |
Collapse
|
23
|
Puri O, Bhatia M, Rekha US, Chakraborty D, Dua R, Dhar M, Chauhan U, Prasad A, Kalita D, Kaistha N. Post-COVID pulmonary fungal infections: An unanticipated predicament or a ticking time bomb? Clinico-microbiological profile of cases encountered during the second wave of COVID-19 pandemic at a teaching hospital in the Himalayas with a brief literature review. J Family Med Prim Care 2023; 12:3228-3235. [PMID: 38361892 PMCID: PMC10866219 DOI: 10.4103/jfmpc.jfmpc_1073_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 02/17/2024] Open
Abstract
Introduction This study attempts to generate preliminary data regarding post-COVID pulmonary fungal infections, namely, COVID-19-associated pulmonary aspergillosis (CAPA), COVID-19-associated pulmonary mucormycosis (CAPM), and mixed infections from the Himalayas and compares the micro-radio-clinical profile and outcomes of the affected patients. Materials and Methods A retrospective data analysis was conducted, where clinical profiles, microbiological and radiological reports, and outcomes of n = 16 patients of post-COVID pulmonary infections were compared. Results Of n = 16 patients, n = 7 had CAPA (n = 5 Aspergillus fumigatus, n = 1 Aspergillus flavus, and n = 1 Aspergillus niger), n = 5 CAPM (Rhizopus arrhizus), and n = 4 with mixed infections (n = 3 infected with Aspergillus fumigatus and Rhizopus spp. and n = 1 with Aspergillus flavus and Rhizopus arrhizus). Thick-walled cavitary lesions, air-fluid levels, and multiple centrilobular nodules were some of the common radiological findings reported among these patients. Conclusion The immuno-compromised state following COVID-19 infection and treatment might be responsible for the progression of regular exposure to the dense Himalayan vegetation into an invasive pulmonary fungal infection. Suspecting post-COVID pulmonary fungal infection is necessary for primary care physicians to ensure timely referral to higher centers. Mixed pulmonary fungal infections (coinfection with Aspergillus spp. and Rhizopus spp.) are also emerging as important sequelae of COVID-19.
Collapse
Affiliation(s)
- Oshin Puri
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Mohit Bhatia
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Udayakumar S. Rekha
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Deepika Chakraborty
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Ruchi Dua
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Minakshi Dhar
- Department of Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Udit Chauhan
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Amber Prasad
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Deepjyoti Kalita
- Department of Microbiology, All India Institute of Medical Sciences, Guwahati, India
| | - Neelam Kaistha
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| |
Collapse
|
24
|
Estella Á, Martín-Loeches I, Núñez MR, García CG, Pesaresi LM, Escors AA, Prieto MDL, Calvo JMS. Microbiological diagnosis of pulmonary invasive aspergillosis in critically ill patients with severe SARS-CoV-2 pneumonia: a bronchoalveolar study. Ann Clin Microbiol Antimicrob 2023; 22:90. [PMID: 37817167 PMCID: PMC10566150 DOI: 10.1186/s12941-023-00626-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/29/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Diagnosing COVID-19-associated pulmonary aspergillosis (CAPA) can be challenging since radiological and clinical criteria in the critically ill patient are nonspecific. Microbiological diagnostic support is therefore crucial. The aim of this study was to document the incidence of aspergillosis using bronchoalveolar lavage (BAL) as the diagnostic method and to determine the performance of the current mycological diagnostic tests most widely used for the diagnosis of CAPA, together with evaluation of the Asp lateral flow device (LFD). METHODS Prospective cohort study conducted between March 2020 and June 2022. Inclusion criteria were critically ill patients admitted to the ICU with SARS-CoV-2 pneumonia requiring invasive mechanical ventilation. Diagnostic bronchoscopy and BAL were performed at the beginning of invasive mechanical ventilation. The sensitivity, specificity, positive and negative predictive value (PPV and NPV), positive and negative likelihood ratio (LR + and LR-) of BAL culture, direct examination with calcofluor white stain, ELISA (Platelia) and LFD (AspLFD) for detection of galactomannan (GM) were evaluated. Aspergillus-qPCR was applied when discrepancies between diagnostic tests arose. RESULTS Of the 244 critically ill patients with SARS-CoV-2 pneumonia admitted to the ICU, the majority (n = 200, 82%) required invasive mechanical ventilation. Diagnostic bronchoscopic procedures were performed in 160 patients (80%), who were enrolled in this study. The incidence of CAPA was 18.7% (n = 30). LFD-GM demonstrated a sensitivity of 84%, specificity of 99%, PPV 94%, NPV 97%, LR(+) of 84, and LR(-) of 0.16. At GM-ELISA indices of ≥ 0.5 and ≥ 1.0, sensitivity was 92% and 79%, specificity was 95% and 99%, PPV 76% and 91%, NPV 99% and 96%, LR(+) 18 and 79, and LR(-) 0.08 and 0.21, respectively. The optimal cut-off index from the ROC curve was 0.48, with sensitivity of 95% and specificity of 95%. CONCLUSIONS Using a diagnostic strategy based on bronchoscopy and BAL, we documented a high incidence of pulmonary aspergillosis in patients with severe SARS-CoV-2 pneumonia. Asp-LFD showed moderate sensitivity and excellent specificity, with a high PPV, and could be used for rapid diagnosis of patients with suspected CAPA.
Collapse
Affiliation(s)
- Ángel Estella
- Intensive Care Unit University Hospital of Jerez, University of Cádiz. INIBiCA, Jerez de la Frontera, Spain.
| | - Ignacio Martín-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James' Hospital, Dublin, Ireland
| | - María Recuerda Núñez
- Intensive Care Unit University Hospital of Jerez, INIBiCA, Jerez de la Frontera, Spain
| | | | - Liliana Marcela Pesaresi
- Infectious diseases and Microbiology, Unit Hospital Universitario de Jerez, INIBiCA, Jerez de la Frontera, Spain
| | | | - Maria Dolores López Prieto
- Infectious diseases and Microbiology, Unit Hospital Universitario de Jerez, INIBiCA, Jerez de la Frontera, Spain
| | - Juan Manuel Sánchez Calvo
- Infectious diseases and Microbiology, Unit Hospital Universitario de Jerez, INIBiCA, Jerez de la Frontera, Spain
| |
Collapse
|
25
|
Osman H, Shaik AN, Nguyen PL, Cantor Z, Kaafarani M, Soubani AO. The Clinical Significance of Aspergillus Detected in Lower-Respiratory-Tract Samples of Critically Ill COVID-19-Positive Patients. Adv Respir Med 2023; 91:337-349. [PMID: 37736973 PMCID: PMC10514834 DOI: 10.3390/arm91050027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
Objective: Critically ill patients with acute respiratory distress syndrome (ARDS) due to viral infection are at risk for secondary complications, including invasive aspergillosis. Our study aimed to characterize the clinical significance and outcome of Aspergillus species isolated from lower-respiratory-tract samples of critically ill OVID-19 patients at a single center. Design: We conducted a retrospective cohort study to evaluate the characteristics of patients with COVID-19 and aspergillus isolated from the lower respiratory tract and to identify predictors of outcomes in this population. Setting: The setting was a single-center hospital system within the metropolitan Detroit region. Results: The prevalence of Aspergillus isolated in hospitalized COVID-19 patients was 1.18% (30/2461 patients), and it was 4.6% in critically ill ICU patients with COVID-19. Probable COVID-19-associated invasive pulmonary aspergillosis (CAPA) was found in 21 critically ill patients, and 9 cases were classified as colonization. The in-hospital mortality of critically ill patients with CAPA and those with aspergillus colonization were high but not significantly different (76% vs. 67%, p = 1.00). Furthermore, the in-hospital mortality for ICU patients with or without Aspergillus isolated was not significantly different 73.3% vs. 64.5%, respectively (OR 1.53, CI 0.64-4.06, p = 0.43). In patients in whom Aspergillus was isolated, antifungal therapy (p = 0.035, OR 12.3, CI 1.74-252); vasopressors (0.016, OR 10.6, CI 1.75-81.8); and a higher mSOFA score (p = 0.043, OR 1.29 CI 1.03-1.72) were associated with a worse outcome. In a multivariable model adjusting for other significant variables, FiO2 was the only variable associated with in-hospital mortality in patients in whom Aspergillus was isolated (OR 1.07, 95% CI 1.01-1.27). Conclusions: The isolation of Aspergillus from lower-respiratory-tract samples of critically ill patients with COVID-19 is associated with high mortality. It is important to have a low threshold for superimposed infections such as CAPA in critically ill patients with COVID-19.
Collapse
Affiliation(s)
- Heba Osman
- Department of Medicine and Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Asra N. Shaik
- Department of Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Paul L. Nguyen
- Department of Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zachary Cantor
- Department of Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mirna Kaafarani
- Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine, 3990 John R-3 Hudson, Detroit, MI 48201, USA
| | - Ayman O. Soubani
- Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine, 3990 John R-3 Hudson, Detroit, MI 48201, USA
| |
Collapse
|
26
|
Hajhosseini M, Sharifi I, Bamorovat M, Karamoozian A, Amanizadeh A, Agha Kuchak Afshari S. Monitoring of airborne fungi during the second wave of COVID-19 in selected wards of the referral university hospital in southeastern Iran. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1132. [PMID: 37653110 DOI: 10.1007/s10661-023-11791-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Microbiological monitoring of the air hospital is essential for prevention and control, due to the possible airborne route of infection transmission, especially in high-risk wards. This study aimed to monitor the airborne fungi during the second wave of the COVID-19 pandemic in selected wards of the biggest university educational hospital in Kerman, southeastern Iran. This study was conducted in 11 different wards, separated into the patient room and nursing station, of the Afzalipour hospital from May to August 2021. Fungal isolates were characterized to the species level by conventional and sequencing methods. Out of 93 obtained fungal colonies, 70 (75.3%) isolates were filamentous and 23 (24.7%) isolates were yeast. Aspergillus species were the predominant fungal isolates among the filamentous colonies (n=19; 27.1%), and Naganishia albida (formerly Cryptococcus albidus) was identified as the most common yeast isolate (n=13/23; 56.8%). The infectious ward was the most contaminated unit (n=19/93), while the least contaminated units were the neonatal intensive care unit (n=3/93), and oncology (n=3/93). The statistical findings displayed that the number of fungal isolates in patients' rooms is significantly higher than in nurses' stations (p-value=0.013). Our study demonstrated the presence of diverse fungal species in all wards of the hospital. Considering the presence of airborne fungi in hospitals and related public health problems is one of the critical issues for health systems management. In this regard, efficient monitoring of airborne fungi might play an influential role in hospital infection control and surveillance, particularly in high-risk hospitalization patients in critical wards.
Collapse
Affiliation(s)
- Mahdi Hajhosseini
- Department of Environmental Health Engineering, School of Public Health, Environmental Science and Technology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Karamoozian
- Department of Biostatistics and Epidemiology, Faculty of Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Azam Amanizadeh
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Parasitology and Mycology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Setareh Agha Kuchak Afshari
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Medical Parasitology and Mycology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
27
|
Sprute R, Nacov JA, Neofytos D, Oliverio M, Prattes J, Reinhold I, Cornely OA, Stemler J. Antifungal prophylaxis and pre-emptive therapy: When and how? Mol Aspects Med 2023; 92:101190. [PMID: 37207579 DOI: 10.1016/j.mam.2023.101190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/22/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
The growing pool of critically ill or immunocompromised patients leads to a constant increase of life-threatening invasive infections by fungi such as Aspergillus spp., Candida spp. and Pneumocystis jirovecii. In response to this, prophylactic and pre-emptive antifungal treatment strategies have been developed and implemented for high-risk patient populations. The benefit by risk reduction needs to be carefully weighed against potential harm caused by prolonged exposure against antifungal agents. This includes adverse effects and development of resistance as well as costs for the healthcare system. In this review, we summarise evidence and discuss advantages and downsides of antifungal prophylaxis and pre-emptive treatment in the setting of malignancies such as acute leukaemia, haematopoietic stem cell transplantation, CAR-T cell therapy, and solid organ transplant. We also address preventive strategies in patients after abdominal surgery and with viral pneumonia as well as individuals with inherited immunodeficiencies. Notable progress has been made in haematology research, where strong recommendations regarding antifungal prophylaxis and pre-emptive treatment are backed by data from randomized controlled trials, whereas other critical areas still lack high-quality evidence. In these areas, paucity of definitive data translates into centre-specific strategies that are based on interpretation of available data, local expertise, and epidemiology. The development of novel immunomodulating anticancer drugs, high-end intensive care treatment and the development of new antifungals with new modes of action, adverse effects and routes of administration will have implications on future prophylactic and pre-emptive approaches.
Collapse
Affiliation(s)
- Rosanne Sprute
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Julia A Nacov
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Dionysios Neofytos
- Division of Infectious Diseases, Transplant Infectious Disease Service, University Hospital of Geneva, Geneva, Switzerland
| | - Matteo Oliverio
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Juergen Prattes
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; Medical University of Graz, Department of Internal Medicine, Division of Infectious Disease, Excellence Center for Medical Mycology (ECMM), Graz, Austria
| | - Ilana Reinhold
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, Zurich, Switzerland
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
| | - Jannik Stemler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
28
|
Sánchez-Castellano MÁ, Marcelo C, Marco J, Figueira-Iglesias JC, García-Rodríguez J. A Tale of Two Hospitals: Comparing CAPA Infections in Two ICUs During the Spanish Fourth Pandemic Wave. Mycopathologia 2023; 188:335-344. [PMID: 37256502 PMCID: PMC10230482 DOI: 10.1007/s11046-023-00750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023]
Abstract
PURPOSE COVID-19 associated pulmonary aspergillosis (CAPA) is a new clinical entity linked to SARS-CoV-2 infection that is causing a rise on the risk of complications and mortality, particularly in critical patients. METHODS We compared diagnostic and clinical features in two cohorts of patients with severe COVID-19 admitted in the intensive care units (ICU) of two different hospitals in Madrid, Spain, between February and June 2021. Clinical and microbiological relevant aspects for CAPA diagnosis were collected for further classification. CAPA was classified as colonization, possible, probable, proven, and tracheobronchial aspergillosis according to the ECMM/ISHAM consensus, with some modifications to consider tracheobronchial aspirate as sample comparable to non-bronchoscopic lavages (NBL). RESULTS 56 patients admitted in HULP (Hospital Universitario La Paz) ICU and 61 patients admitted in HEEIZ (Hospital de Emergencias Isabel Zendal) ICU had clinical suspicion of invasive fungal disease in the context of COVID-19 infection. Cultures were positive for Aspergillus spp. in 32 patients. According to 2020 European Confederation of Medical Mycology and the International Society for Human and Animal Mycology (ECMM/ISHAM) consensus, 11 patients were diagnosed with possible CAPA and 10 patients with probable CAPA. Global incidence for CAPA was 6.3%. Global median days between ICU admission and diagnosis was 14 day. Aspergillus fumigatus complex was the main isolated species. Antifungal therapy was used in 75% of patients with CAPA suspicion, with inter-hospital differences in the administered antifungals. Global overall mortality rate for CAPA patients was 66.6% (14/21). All-cause mortality in non-CAPA cohorts were of 26.3% in HULP group (34/129) and 56.8% (104/183) in HEEIZ group. CONCLUSIONS There were no significant differences in incidence between the two hospitals, and differences in antifungal therapy did not correlate with differences in mortality, reflecting that both first-line azoles and Amphotericin B could be effective in treating CAPA infections, according to the current guideline indications.
Collapse
Affiliation(s)
| | - Cristina Marcelo
- Infectious Diseases Unit, Internal Medicine Department, Hospital Universitario La Paz, Madrid, Spain
| | - Javier Marco
- Hospital de Emergencias Enfermera Isabel Zendal, Madrid, Spain
| | | | | |
Collapse
|
29
|
Singh R, Malik P, Kumar M, Kumar R, Alam MS, Mukherjee TK. Secondary fungal infections in SARS-CoV-2 patients: pathological whereabouts, cautionary measures, and steadfast treatments. Pharmacol Rep 2023:10.1007/s43440-023-00506-z. [PMID: 37354313 DOI: 10.1007/s43440-023-00506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
The earliest documented COVID-19 case caused by the SARS-CoV-2 coronavirus occurred in Wuhan, China, in December 2019. Since then, several SARS-CoV-2 mutants have rapidly disseminated as exemplified by the community spread of the recent omicron variant. The disease already attained a pandemic status with ever-dwindling mortality even after two and half years of identification and considerable vaccination. Aspergillosis, candidiasis, cryptococcosis and mucormycosis are the prominent fungal infections experienced by the majority of SARS-CoV-2 high-risk patients. In its entirety, COVID-19's nexus with these fungal infections may worsen the intricacies in the already beleaguered high-risk patients, making this a topic of substantial clinical concern. Thus, thorough knowledge of the subject is necessary. This article focuses on the concomitant fungal infection(s) in COVID-19 patients, taking into account their underlying causes, the screening methods, manifested drug resistance, and long-term effects. The information and knowledge shared herein could be crucial for the management of critically ill, aged, and immunocompromised SARS-CoV-2 patients who have had secondary fungal infections (SFIs).
Collapse
Affiliation(s)
- Raj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Mukesh Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Raman Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Md Shamshir Alam
- Department of Pharmacy Practice, College of Pharmacy, National University of Science and Technology, PO Box 620, 130, Bosher-Muscat, Sultanate of Oman
| | - Tapan Kumar Mukherjee
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, UP, India.
- Department of Biotechnology, Amity University, Major Arterial Road, Action Area II, Rajarhat, New Town, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
30
|
Romanelli F, Stolfa S, Ronga L, Del Prete R, Bavaro DF, Saracino A, Dalfino L, Mosca A. Coinfections in intensive care units. Has anything changed with Covid-19 pandemia? ACTA BIO-MEDICA : ATENEI PARMENSIS 2023; 94:e2023075. [PMID: 37326281 PMCID: PMC10308474 DOI: 10.23750/abm.v94i3.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIM Since December 2019, the Coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2), has spread from China, becoming a pandemic. Bacterial and fungal co-infections may lead to increase in COVID-19 severity with a decrease in patients survive. The aim of this work was to evaluate bacterial and fungal co-infections in COVID-19 patients admitted to ICU in comparison with patients recovered in ICU in pre-COVID-19 era in order to understand whether the pandemic had changed the incidence of overinfections in patients admitted to ICU. In fact, the epidemiological data should guide the choice of empirical therapy. METHODS During pandemic, AOUC Policlinico of Bari organized dedicated ICUs for patient with SARS-CoV-2. Blood cultures, urine, and tracheobronchial aspirate were included in the analysis. RESULTS Specimens of 1905 patients were analysed in this work. Comparing clinical isolates prevalence by material and COVID-19 vs. non-COVID-19 patients statistically significant differences were detected for A. baumannii complex, Aspergillus fumigatus, Escherichia coli, Haemophilus influenzae and Serratia marcescens isolated from tracheobronchial aspirates; C. albicans from urine samples, A. baumannii complex, Enterococcus faecalis and Enterococcus faecium isolated from blood culture. CONCLUSIONS Although the organisms isolated in COVID-19 patients are consistent with those frequently associated with healthcare associated infection, our data suggest a particular prevalence in COVID-19 patients of A. baumannii, Stenotrophomonas maltophilia and Aspergillus spp. in the respiratory tract, C. albicans in urine and A. baumannii, E. faecalis and E. faecium in blood cultures.
Collapse
Affiliation(s)
- Federica Romanelli
- a:1:{s:5:"en_US";s:115:"1Section of Microbiology, Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy";}.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Adzic-Vukicevic T, Mladenovic M, Jovanovic S, Soldatović I, Radovanovic-Spurnic A. Invasive fungal disease in COVID-19 patients: a single-center prospective observational study. Front Med (Lausanne) 2023; 10:1084666. [PMID: 37359005 PMCID: PMC10288186 DOI: 10.3389/fmed.2023.1084666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 05/05/2023] [Indexed: 06/28/2023] Open
Abstract
Background Invasive fungal diseases (IFDs) are caused by fungal infections that manifest as serious secondary infections in patients with COVID-19. The increased morbidity and mortality rates are most frequently observed in patients with COVID-19-associated pulmonary aspergillosis (CAPA) and COVID-19-associated candidiasis (CAC). CAPA is the most frequently encountered infection with an incidence rate of 0.7-7.7%, while CAC is a less common and less studied fungal infection in COVID-19 patients. Materials and methods The present article is a prospective observational single-center study that was conducted between 1 September 2021 and 24 December 2021, involving 6,335 patients who were admitted to COVID Hospital "Batajnica," University Clinical Center of Serbia, Belgrade. Results Of the 6,335 patients hospitalized during the four-month period of the study, 120 patients (1.86%) who had a proven diagnosis of IFD were included in the study. These patients were divided into two groups: CAPA patients (n = 63) and CAC patients (n = 56); however, one of the 120 patients was diagnosed with Cryptoccocus neoformans infection. The mean age of the study population was 65.7 ± 13.9 years, and 78 (65.5%) of them were men. The patients were identified to have the following non-malignant comorbidities: arterial hypertension in 62 (52.1%) patients, diabetes mellitus in 34 (28.65), pre-existing lung damage similar to that observed in COPD and asthma in 20 (16.8%), and chronic renal insufficiency in 13 (10.9%) patients. The hematological malignancies were found to be the most prevalent malignancies and were identified in 20 (16.8%) patients, particularly in CAPA patients [11 (17.5%); p < 0.041]. Fiberoptic bronchoscopy with bronchoalveolar lavage fluid (BALF) and microscopic examination confirmed the presence of fungal infections in 17 (14.3%) patients. Serology testing was also performed in the majority of cases. Antibodies against Aspergillus spp. and Candida spp. were predominantly found in CAPA patients (p < 0.001). The patients were also tested for the presence of (1-3)-β-D glucan (p < 0.019), galactomannan, and mannan in the specimens. Blood cultures were found to be positive in 45 (37.8%) patients, mostly in CAC patients. Mechanical ventilation was applied in 41 (34.5%) patients, while a non-invasive technique, such as continuous positive airway pressure (CPAP) or high-flow nasal cannula (HFNC), was used in 20 (16.8%) patients. The following antifungals were administered: echinocandins in 42 (35.3%), voriconazole in 30 (25.2%), and fluconazole in 27 (22.7%) patients. Most of the patients received systemic corticosteroids (mainly methylprednisolone), while 11 (9.16%) received favipiravir, 32 (26.67%) remdesivir, 8 (6.67%) casirivimab/imdevimab, and 5 (4.16%) sotrovimab. The outcome was lethal in 76 (63.9%) patients, predominantly CAC patients (p < 0.001). Conclusion Invasive fungal disease is a severe complication associated with COVID-19 and accounts for increased mortality in these patients. Early identification and appropriate treatment may provide a favorable outcome.
Collapse
Affiliation(s)
- Tatjana Adzic-Vukicevic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Covid Hospital Batajnica, University Clinical Center of Serbia, Belgrade, Serbia
- Clinic for Pulmonology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Milos Mladenovic
- Covid Hospital Batajnica, University Clinical Center of Serbia, Belgrade, Serbia
| | - Snezana Jovanovic
- Covid Hospital Batajnica, University Clinical Center of Serbia, Belgrade, Serbia
- Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Belgrade, Serbia
| | - Ivan Soldatović
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Radovanovic-Spurnic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Covid Hospital Batajnica, University Clinical Center of Serbia, Belgrade, Serbia
- Center for Microbiology, University Clinical Center of Serbia, Belgrade, Serbia
| |
Collapse
|
32
|
Li L, Wang C, Ren Y, Liu J, Liu F, Zhang X. Clinical features and risk factors for viral pneumonia complicated with invasive pulmonary aspergillosis in adult patients. Chin Med J (Engl) 2023; 136:1361-1363. [PMID: 37106526 PMCID: PMC10309498 DOI: 10.1097/cm9.0000000000002354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Indexed: 04/29/2023] Open
Affiliation(s)
- Lijuan Li
- Department of Pulmonary and Critical Care Medicine, National Centre for Clinical Research on Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, China
| | - Chuan Wang
- Department of Pulmonary and Critical Care Medicine, First Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, China
| | - Yali Ren
- Department of Pulmonary and Critical Care Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Jiangbo Liu
- Department of Pulmonary and Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300192, China
| | - Feifei Liu
- Department of Respiratory and Critical Care Medicine, First Hospital of Qin Huang Dao, Qinhuangdao, Hebei 066000, China
| | - Xiaoqi Zhang
- Department of Pulmonary and Critical Care Medicine, Second People's Hospital of Weifang, Weifang, Shandong 261041, China
| |
Collapse
|
33
|
Tsotsolis S, Kotoulas SC, Lavrentieva A. Invasive Pulmonary Aspergillosis in Coronavirus Disease 2019 Patients Lights and Shadows in the Current Landscape. Adv Respir Med 2023; 91:185-202. [PMID: 37218799 DOI: 10.3390/arm91030016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 04/30/2023] [Indexed: 05/24/2023]
Abstract
Invasive pulmonary aspergillosis (IPA) presents a known risk to critically ill patients with SARS-CoV-2; quantifying the global burden of IPA in SARS-CoV-2 is extremely challenging. The true incidence of COVID-19-associated pulmonary aspergillosis (CAPA) and the impact on mortality is difficult to define because of indiscriminate clinical signs, low culture sensitivity and specificity and variability in clinical practice between centers. While positive cultures of upper airway samples are considered indicative for the diagnosis of probable CAPA, conventional microscopic examination and qualitative culture of respiratory tract samples have quite low sensitivity and specificity. Thus, the diagnosis should be confirmed with serum and BAL GM test or positive BAL culture to mitigate the risk of overdiagnosis and over-treatment. Bronchoscopy has a limited role in these patients and should only be considered when diagnosis confirmation would significantly change clinical management. Varying diagnostic performance, availability, and time-to-results turnaround time are important limitations of currently approved biomarkers and molecular assays for the diagnosis of IA. The use of CT scans for diagnostic purposes is controversial due to practical concerns and the complex character of lesions presented in SARS-CoV-2 patients. The key objective of management is to improve survival by avoiding misdiagnosis and by initiating early, targeted antifungal treatment. The main factors that should be considered upon selection of treatment options include the severity of the infection, concomitant renal or hepatic injury, possible drug interactions, requirement for therapeutic drug monitoring, and cost of therapy. The optimal duration of antifungal therapy for CAPA is still under debate.
Collapse
Affiliation(s)
- Stavros Tsotsolis
- Medical School, Aristotle University of Thessaloniki, Leoforos Agiou Dimitriou, 54124 Thessaloniki, Greece
| | | | - Athina Lavrentieva
- 1st ICU, General Hospital of Thessaloniki "Georgios Papanikolaou", Leoforos Papanikolaou, 57010 Thessaloniki, Greece
| |
Collapse
|
34
|
Duong TN, Le M, Beardsley J, Denning DW, Le N, Nguyen BT. Updated estimation of the burden of fungal disease in Vietnam. Mycoses 2023; 66:346-353. [PMID: 36564981 PMCID: PMC10953305 DOI: 10.1111/myc.13559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Anecdotally, the burden of fungal diseases in Vietnam is rapidly rising, but there has been no updated estimate on this issue since a previous report in 2015. OBJECTIVES In this study, we aimed at estimating the incidence and prevalence of serious fungal infections for the year 2020. METHODS We made estimates with a previously described methodology, using reports on the incidence and prevalence of various established risk factors for fungal infections from local, regional or global sources. RESULTS We estimated 2,389,661 cases of serious fungal infection occurred in Vietnam in 2020. The most common condition was recurrent vaginal candidiasis (4047/100,000 women annually). Among people living with HIV, we estimated 451 cases of cryptococcal meningitis, 1030 of pneumocystis pneumonia, 166 of histoplasmosis and 1612 of talaromycosis annually. Candidaemia incidence was estimated at 12/100,000 population each year. Owing to its high burden of tuberculosis and respiratory diseases, Vietnam had high rates of severe infections caused by Aspergillus species. Incidence of invasive aspergillosis is 24/100,000 population, allergic bronchopulmonary aspergillosis 78/100,000 and severe asthma with fungal sensitisation 102/100,000. Five-year period prevalence of chronic pulmonary aspergillosis is 120/100,000 population /5-year period. Mucormycosis, fungal keratitis and tinea capitis were estimated at 192, 14,431 and 201 episodes each year, respectively. CONCLUSIONS The number of patients with mycoses in Vietnam is likely underestimated due to a lack of local data and limited diagnostic capacity, but at least 2.5% of the population might have some form of serious fungal disease.
Collapse
Affiliation(s)
- Tra‐My N. Duong
- Sydney Infectious Diseases InstituteThe University of SydneySydneyNew South WalesAustralia
- Woolcock Institute of Medical ResearchHanoiVietnam
| | - Minh‐Hang Le
- Sydney Infectious Diseases InstituteThe University of SydneySydneyNew South WalesAustralia
- Woolcock Institute of Medical ResearchHanoiVietnam
| | - Justin Beardsley
- Sydney Infectious Diseases InstituteThe University of SydneySydneyNew South WalesAustralia
- Westmead Institute for Medical ResearchWestmeadNew South WalesAustralia
| | - David W. Denning
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and HealthUniversity of Manchester and Manchester Academic Health Science CentreManchesterUK
- Global Action for Fungal InfectionsManchesterSwitzerland
| | | | | |
Collapse
|
35
|
Recommendations and guidelines for the diagnosis and management of Coronavirus Disease-19 (COVID-19) associated bacterial and fungal infections in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:207-235. [PMID: 36586743 PMCID: PMC9767873 DOI: 10.1016/j.jmii.2022.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Coronavirus disease-19 (COVID-19) is an emerging infectious disease caused by SARS-CoV-2 that has rapidly evolved into a pandemic to cause over 600 million infections and more than 6.6 million deaths up to Nov 25, 2022. COVID-19 carries a high mortality rate in severe cases. Co-infections and secondary infections with other micro-organisms, such as bacterial and fungus, further increases the mortality and complicates the diagnosis and management of COVID-19. The current guideline provides guidance to physicians for the management and treatment of patients with COVID-19 associated bacterial and fungal infections, including COVID-19 associated bacterial infections (CABI), pulmonary aspergillosis (CAPA), candidiasis (CAC) and mucormycosis (CAM). Recommendations were drafted by the 7th Guidelines Recommendations for Evidence-based Antimicrobial agents use Taiwan (GREAT) working group after review of the current evidence, using the grading of recommendations assessment, development, and evaluation (GRADE) methodology. A nationwide expert panel reviewed the recommendations in March 2022, and the guideline was endorsed by the Infectious Diseases Society of Taiwan (IDST). This guideline includes the epidemiology, diagnostic methods and treatment recommendations for COVID-19 associated infections. The aim of this guideline is to provide guidance to physicians who are involved in the medical care for patients with COVID-19 during the ongoing COVID-19 pandemic.
Collapse
|
36
|
Mohankumar N, Rajagopal L, Nieto JJ. Optimal control for co-infection with COVID-19-Associated Pulmonary Aspergillosis in ICU patients with environmental contamination. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:9861-9875. [PMID: 37322914 DOI: 10.3934/mbe.2023432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this paper, we propose a mathematical model for COVID-19-Associated Pulmonary Aspergillosis (CAPA) co-infection, that enables the study of relationship between prevention and treatment. The next generation matrix is employed to find the reproduction number. We enhanced the co-infection model by incorporating time-dependent controls as interventions based on Pontryagin's maximum principle in obtaining the necessary conditions for optimal control. Finally, we perform numerical experiments with different control groups to assess the elimination of infection. In numerical results, transmission prevention control, treatment controls, and environmental disinfection control provide the best chance of preventing the spread of diseases more rapidly than any other combination of controls.
Collapse
Affiliation(s)
- Nandhini Mohankumar
- Department of Mathematics, Coimbatore Institute of Technology, Tamilnadu, India
| | - Lavanya Rajagopal
- Department of Mathematics, Coimbatore Institute of Technology, Tamilnadu, India
| | - Juan J Nieto
- CITMAga, Departamento de Estatística, Análise Matemática e Optimización, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
37
|
Scott J, Valero C, Mato-López Á, Donaldson IJ, Roldán A, Chown H, Van Rhijn N, Lobo-Vega R, Gago S, Furukawa T, Morogovsky A, Ben Ami R, Bowyer P, Osherov N, Fontaine T, Goldman GH, Mellado E, Bromley M, Amich J. Aspergillus fumigatus Can Display Persistence to the Fungicidal Drug Voriconazole. Microbiol Spectr 2023; 11:e0477022. [PMID: 36912663 PMCID: PMC10100717 DOI: 10.1128/spectrum.04770-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/12/2023] [Indexed: 03/14/2023] Open
Abstract
Aspergillus fumigatus is a filamentous fungus that can infect the lungs of patients with immunosuppression and/or underlying lung diseases. The mortality associated with chronic and invasive aspergillosis infections remain very high, despite availability of antifungal treatments. In the last decade, there has been a worrisome emergence and spread of resistance to the first-line antifungals, the azoles. The mortality caused by resistant isolates is even higher, and patient management is complicated as the therapeutic options are reduced. Nevertheless, treatment failure is also common in patients infected with azole-susceptible isolates, which can be due to several non-mutually exclusive reasons, such as poor drug absorption. In addition, the phenomena of tolerance or persistence, where susceptible pathogens can survive the action of an antimicrobial for extended periods, have been associated with treatment failure in bacterial infections, and their occurrence in fungal infections already proposed. Here, we demonstrate that some isolates of A. fumigatus display persistence to voriconazole. A subpopulation of the persister isolates can survive for extended periods and even grow at low rates in the presence of supra-MIC of voriconazole and seemingly other azoles. Persistence cannot be eradicated with adjuvant drugs or antifungal combinations and seemed to reduce the efficacy of treatment for certain individuals in a Galleria mellonella model of infection. Furthermore, persistence implies a distinct transcriptional profile, demonstrating that it is an active response. We propose that azole persistence might be a relevant and underestimated factor that could influence the outcome of infection in human aspergillosis. IMPORTANCE The phenomena of antibacterial tolerance and persistence, where pathogenic microbes can survive for extended periods in the presence of cidal drug concentrations, have received significant attention in the last decade. Several mechanisms of action have been elucidated, and their relevance for treatment failure in bacterial infections demonstrated. In contrast, our knowledge of antifungal tolerance and, in particular, persistence is still very limited. In this study, we have characterized the response of the prominent fungal pathogen Aspergillus fumigatus to the first-line therapy antifungal voriconazole. We comprehensively show that some isolates display persistence to this fungicidal antifungal and propose various potential mechanisms of action. In addition, using an alternative model of infection, we provide initial evidence to suggest that persistence may cause treatment failure in some individuals. Therefore, we propose that azole persistence is an important factor to consider and further investigate in A. fumigatus.
Collapse
Affiliation(s)
- Jennifer Scott
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Clara Valero
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Álvaro Mato-López
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Ian J. Donaldson
- Bioinformatics Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alejandra Roldán
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Harry Chown
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Norman Van Rhijn
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rebeca Lobo-Vega
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Sara Gago
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Takanori Furukawa
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alma Morogovsky
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronen Ben Ami
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Thierry Fontaine
- Institut Pasteur, Université de Paris, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Emilia Mellado
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- CiberInfec ISCIII, CIBER en Enfermedades Infecciosas, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jorge Amich
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| |
Collapse
|
38
|
Managing the Next Wave of Influenza and/or SARS-CoV-2 in the ICU—Practical Recommendations from an Expert Group for CAPA/IAPA Patients. J Fungi (Basel) 2023; 9:jof9030312. [PMID: 36983480 PMCID: PMC10058160 DOI: 10.3390/jof9030312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The aim of this study was to establish practical recommendations for the diagnosis and treatment of influenza-associated invasive aspergillosis (IAPA) based on the available evidence and experience acquired in the management of patients with COVID-19-associated pulmonary aspergillosis (CAPA). The CAPA/IAPA expert group defined 14 areas in which recommendations would be made. To search for evidence, the PICO strategy was used for both CAPA and IAPA in PubMed, using MeSH terms in combination with free text. Based on the results, each expert developed recommendations for two to three areas that they presented to the rest of the group in various meetings in order to reach consensus. As results, the practical recommendations for the management of CAPA/IAPA patients have been grouped into 12 sections. These recommendations are presented for both entities in the following situations: when to suspect fungal infection; what diagnostic methods are useful to diagnose these two entities; what treatment is recommended; what to do in case of resistance; drug interactions or determination of antifungal levels; how to monitor treatment effectiveness; what action to take in the event of treatment failure; the implications of concomitant corticosteroid administration; indications for the combined use of antifungals; when to withdraw treatment; what to do in case of positive cultures for Aspergillus spp. in a patient with severe viral pneumonia or Aspergillus colonization; and how to position antifungal prophylaxis in these patients. Available evidence to support the practical management of CAPA/IAPA patients is very scarce. Accumulated experience acquired in the management of CAPA patients can be very useful for the management of IAPA patients. The expert group presents eminently practical recommendations for the management of CAPA/IAPA patients.
Collapse
|
39
|
Ghalib S, Itty R, Parimi SA, Abdelwahab H, Saha BK, Beegle S. A 52-Year-Old Man Who Smokes With Rapidly Progressive Respiratory Failure. Chest 2023; 163:e119-e123. [PMID: 36894266 DOI: 10.1016/j.chest.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/26/2022] [Accepted: 10/10/2022] [Indexed: 03/09/2023] Open
Abstract
CASE PRESENTATION A 52-year-old White man, who currently smokes, was admitted to the medical ICU with worsening shortness of breath. The patient was dyspneic for a month and had been clinically diagnosed with COPD by his primary care doctor and started on bronchodilators and supplemental oxygen. He had no known medical history or recent illness. His dyspnea worsened rapidly over the next month, prompting admission to the medical ICU. He was on high-flow oxygen followed by noninvasive positive pressure ventilation and then mechanical ventilation. He denied cough, fever, night sweats, or weight loss at the time of admission. There was no history of work-related or occupational exposures, drug intake, or recent travel. Review of systems was negative for arthralgia, myalgia, or skin rash.
Collapse
Affiliation(s)
- Sana Ghalib
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Albany Medical College, Albany, NY
| | - Ria Itty
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Albany Medical College, Albany, NY
| | | | | | - Biplab K Saha
- Division of Pulmonary and Critical Care Medicine, University of Florida, Gainesville, FL.
| | - Scott Beegle
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Albany Medical College, Albany, NY
| |
Collapse
|
40
|
Ogawa M, Niki M, Imoto W, Dobashi A, Imai M, Takayama N, Mitani K, Kakuno S, Shibata W, Yamada K, Kakeya H. Characterization of Aspergillus spp. isolated from patients with coronavirus disease 2019. J Infect Chemother 2023; 29:580-585. [PMID: 36758677 PMCID: PMC9904853 DOI: 10.1016/j.jiac.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/11/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Invasive pulmonary aspergillosis (IPA) is an important complication of coronavirus disease 2019 (COVID-19), and while there are case reports and epidemiological studies, few studies have isolated Aspergillus strains from patients. Therefore, we analyzed the strains, sensitivities, and genetic homology of Aspergillus spp. Isolated from patients with COVID-19. METHODS We investigated the Aspergillus strains detected from patients with COVID-19 hospitalized in Osaka Metropolitan University Hospital from December 2020 to June 2021. A molecular epidemiological analysis of Aspergillus fumigatus was performed using drug susceptibility tests and TRESPERG typing, and data on patient characteristics were collected from electronic medical records. RESULTS Twelve strains of Aspergillus were detected in 11 of the 122 patients (9%) with COVID-19. A. fumigatus was the most common species detected, followed by one strain each of Aspergillus aureolus, Aspergillus nidulans, Aspergillus niger, and Aspergillus terreus. A. aureolus was resistant to voriconazole, and no resistance was found in other strains. All A. fumigatus strains were genetically distinct strains. Six of the 11 patients that harbored Aspergillus received antifungal drug treatment and tested positive for β-D-glucan and/or Aspergillus galactomannan antigen. The results indicated that Aspergillus infections were acquired from outside the hospital and not from nosocomial infections. CONCLUSION Strict surveillance of Aspergillus spp. is beneficial in patients at high-risk for IPA. When Aspergillus is detected, it is important to monitor the onset of IPA carefully and identify the strain, perform drug sensitivity tests, and facilitate early administration of therapeutic agents to patients with IPA.
Collapse
Affiliation(s)
- Masashi Ogawa
- Department of Infection Control and Prevention, Osaka Metropolitan University Hospital, 1-5-7 Asahi-machi, Abeno-ku, Osaka, 545-8586, Japan.
| | - Makoto Niki
- Department of Infection Control and Prevention, Osaka Metropolitan University Hospital, 1-5-7 Asahi-machi, Abeno-ku, Osaka, 545-8586, Japan.
| | - Waki Imoto
- Department of Infection Control and Prevention, Osaka Metropolitan University Hospital, 1-5-7 Asahi-machi, Abeno-ku, Osaka, 545-8586, Japan; Department of Infection Control Science, Osaka Metropolitan University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan; Department of Infectious Disease Medicine, Osaka Metropolitan University Hospital, 1-5-7 Asahi-machi, Abeno-ku, Osaka, 545-8586, Japan.
| | - Akane Dobashi
- Department of Infection Control and Prevention, Osaka Metropolitan University Hospital, 1-5-7 Asahi-machi, Abeno-ku, Osaka, 545-8586, Japan.
| | - Minami Imai
- Department of Infection Control and Prevention, Osaka Metropolitan University Hospital, 1-5-7 Asahi-machi, Abeno-ku, Osaka, 545-8586, Japan.
| | - Naomi Takayama
- Department of Infection Control and Prevention, Osaka Metropolitan University Hospital, 1-5-7 Asahi-machi, Abeno-ku, Osaka, 545-8586, Japan.
| | - Kei Mitani
- Department of Infection Control and Prevention, Osaka Metropolitan University Hospital, 1-5-7 Asahi-machi, Abeno-ku, Osaka, 545-8586, Japan.
| | - Shigeki Kakuno
- Department of Infection Control and Prevention, Osaka Metropolitan University Hospital, 1-5-7 Asahi-machi, Abeno-ku, Osaka, 545-8586, Japan; Department of Infection Control Science, Osaka Metropolitan University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan; Department of Infectious Disease Medicine, Osaka Metropolitan University Hospital, 1-5-7 Asahi-machi, Abeno-ku, Osaka, 545-8586, Japan.
| | - Wataru Shibata
- Department of Infection Control and Prevention, Osaka Metropolitan University Hospital, 1-5-7 Asahi-machi, Abeno-ku, Osaka, 545-8586, Japan; Department of Infection Control Science, Osaka Metropolitan University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan; Department of Infectious Disease Medicine, Osaka Metropolitan University Hospital, 1-5-7 Asahi-machi, Abeno-ku, Osaka, 545-8586, Japan.
| | - Koichi Yamada
- Department of Infection Control and Prevention, Osaka Metropolitan University Hospital, 1-5-7 Asahi-machi, Abeno-ku, Osaka, 545-8586, Japan; Department of Infection Control Science, Osaka Metropolitan University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan; Department of Infectious Disease Medicine, Osaka Metropolitan University Hospital, 1-5-7 Asahi-machi, Abeno-ku, Osaka, 545-8586, Japan.
| | - Hiroshi Kakeya
- Department of Infection Control and Prevention, Osaka Metropolitan University Hospital, 1-5-7 Asahi-machi, Abeno-ku, Osaka, 545-8586, Japan; Department of Infection Control Science, Osaka Metropolitan University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan; Department of Infectious Disease Medicine, Osaka Metropolitan University Hospital, 1-5-7 Asahi-machi, Abeno-ku, Osaka, 545-8586, Japan; Research Center for Infectious Disease Sciences, Osaka Metropolitan University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| |
Collapse
|
41
|
Sasani E, Bahrami F, Salehi M, Aala F, Bakhtiari R, Abdollahi A, Bashardoust B, Abdorahimi M, Khodavaisy S. Pneumocystis pneumonia in COVID-19 patients: A comprehensive review. Heliyon 2023; 9:e13618. [PMID: 36789388 PMCID: PMC9911155 DOI: 10.1016/j.heliyon.2023.e13618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
The admitted patients of intensive care units with coronavirus disease 2019 (COVID-19) meet the challenges of subsequent infections. Opportunistic fungal infections such as Pneumocystis pneumonia (PCP) are among the important factors in the context of COVID-19 patients affecting illness severity and mortality. We reviewed the literature on COVID-19 patients with PCP to identify features of this infection. Although studies confirmed at least the presence of one immunosuppressive condition in half of PCP patients, this disease can also occur in immunocompetent patients who developed the immunosuppressive condition during Covid-19 treatment. The major risk factors associated with COVID-19 patients with PCP can be considered low lymphocyte counts and corticosteroid therapy. Diagnostic and treatment options are complicated by the overlapping clinical and radiologic characteristics of PCP and COVID-19 pneumonia. Therefore, physicians should comprehensively evaluate high-risk patients for PCP prophylaxis.
Collapse
Affiliation(s)
- Elahe Sasani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fares Bahrami
- Zoonoses Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Parasitology and Mycology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammadreza Salehi
- Research center for antibiotic stewardship and antimicrobial resistance, Tehran University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases and Tropical Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Aala
- Department of Parasitology and Mycology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ronak Bakhtiari
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Bashardoust
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Abdorahimi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Sadegh Khodavaisy
- Zoonoses Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Research center for antibiotic stewardship and antimicrobial resistance, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Ventilator Acquired Pneumonia in COVID-19 ICU Patients: A Retrospective Cohort Study during Pandemia in France. J Clin Med 2023; 12:jcm12020421. [PMID: 36675351 PMCID: PMC9862383 DOI: 10.3390/jcm12020421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023] Open
Abstract
Describe the characteristics of ventilation-acquired pneumonia (VAP) and potential risk factors in critically ill SARS-CoV-2 patients admitted in three French public hospitals during the first year of the COVID-19 pandemic. We conducted a monocentric retrospective study in seven Marseille intensive care units (ICUs) aiming to describe VAP characteristics and identify their risk factors. VAP patients were compared to a non-VAP control group. From March to November 2020, 161 patients admitted for viral-induced acute respiratory failure (ARF) requiring invasive mechanical ventilation (IMV) were included. This cohort was categorized in two groups according to the development or not of a VAP during their stay in ICU. 82 patients (51%) developed ventilation-acquired pneumonia. Most of them were men (77%) and 55% had hypertension. In the VAP population, 31 out of 82 patients (38%) had received dexamethasone and 47% were administered antibiotic course prior to ICU admission. An amount of 88% of respiratory infections were late VAPs with a median delay of 10 days from the onset of IMV. Gram negative bacteria were responsible for 62% of VAPs with Pseudomonas spp. being the most documented bacteria. Less than a third of the ICU-acquired infections were due to multidrug resistant (MDR) bacteria mainly displaying AmpC cephalosporin hyper production resistance phenotype. Multivariate analysis revealed that early Dexamethasone administration in ICU, male sex, older age and ROX score were risk factors for VAP whereas pre-ICU antimicrobial treatment and higher IGS 2 were protective factors. VAP is a frequent ICU-related complication affecting half of patients infected with SARS-CoV-2 and requiring IMV. It was responsible for increased morbidity due to a longer ICU and hospital stay. VAP risk factors included demographic factors such as age and sex. Dexamethasone was associated with a threefold greater risk of developing VAP during ICU stay. These results need to be comforted by large multi-centric studies before questioning the only available and effective treatment against SARS-CoV-2 in ICU patients.
Collapse
|
43
|
COVID-19-associated pulmonary aspergillosis (CAPA) in Iranian patients admitted with severe COVID-19 pneumonia. Infection 2023; 51:223-230. [PMID: 36107379 PMCID: PMC9476444 DOI: 10.1007/s15010-022-01907-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/10/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE Bacterial or virus co-infections with SARS-CoV-2 have been reported in many studies; however, the knowledge on Aspergillus co-infection among patients with COVID-19 was limited. This study was conducted to identify and isolate fungal agents and to evaluate the prevalence of pulmonary aspergillosis (CAPA) as well as antifungal susceptibility patterns of Aspergillus species in patients with COVID-19 admitted to Shahid Beheshti Hospital, Kashan, Iran. METHODS The study involved 119 patients with severe COVID-19 pneumonia referred to the Shahid Beheshti Hospital, Kashan, Iran. A total of 17 Aspergillus spp. that were isolated from COVID-19 patients suspected of CAPA were enrolled in the study. CAPA was defined using ECMM/ISHAM consensus criteria. The PCR amplification of the β-tubulin gene was used to identify the species. The antifungal activities of fluconazole, itraconazole, voriconazole, amphotericin B against Aspergillus spp. were evaluated according to the Clinical and Laboratory Standards Institute manual (M38-A3). RESULTS From the 119 patients with severe COVID-19 pneumonia, CAPA was confirmed in 17 cases (14.3%). Of these, 12 (70.6%) were males and 5 (29.4%) were females; the mean age at presentation was 73.8 years (range: 45-88 years; median = 77; IQR = 18). Aspergillus fumigatus (9/17; 52.9%), Aspergillus flavus (5/17; 29.4%), Aspergillus oryzae (3/17, 17.6%), were identified as etiologic agents of CAPA, using the molecular techniques. Voriconazole and amphotericin B showed more activity against all isolates. Moreover, the MIC of fluconazole, itraconazole varied with the tested isolates. For 3 clinical isolates of A. fumigatus, 2 isolate of A. flavus and 3 A. oryzae, the MIC of fluconazole and itraconazole were ≥ 16 µg/mL. CONCLUSIONS We observed a high incidence (14.3%) of probable aspergillosis in 119 patients with COVID-19, which might indicate the risk for developing IPA in COVID-19 patients. When comparing patients with and without CAPA regarding baseline characteristics, CAPA patients were older (p =0 .024), had received more frequent systemic corticosteroids (p = 0.024), and had a higher mortality rate (p = 0.018). The outcome of CAPA is usually poor, thus emphasis shall be given to screening and/or prophylaxis in COVID-19 patients with any risk of developing CAPA.
Collapse
|
44
|
Huang SF, Ying-Jung Wu A, Shin-Jung Lee S, Huang YS, Lee CY, Yang TL, Wang HW, Chen HJ, Chen YC, Ho TS, Kuo CF, Lin YT, the GREAT working group. COVID-19 associated mold infections: Review of COVID-19 associated pulmonary aspergillosis and mucormycosis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022:S1684-1182(22)00285-7. [PMID: 36586744 PMCID: PMC9751001 DOI: 10.1016/j.jmii.2022.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
COVID-19-associated mold infection (CAMI) is defined as development of mold infections in COVID-19 patients. Co-pathogenesis of viral and fungal infections include the disruption of tissue barrier following SARS CoV-2 infection with the damage in the alveolar space, respiratory epithelium and endothelium injury and overwhelming inflammation and immune dysregulation during severe COVID-19. Other predisposing risk factors permissive to fungal infections during COVID-19 include the administration of immune modulators such as corticosteroids and IL-6 antagonist. COVID-19-associated pulmonary aspergillosis (CAPA) and COVID-19-associated mucormycosis (CAM) is increasingly reported during the COVID-19 pandemic. CAPA usually developed within the first month of COVID infection, and CAM frequently arose 10-15 days post diagnosis of COVID-19. Diagnosis is challenging and often indistinguishable during the cytokine storm in COVID-19, and several diagnostic criteria have been proposed. Development of CAPA and CAM is associated with a high mortality despiteappropriate anti-mold therapy. Both isavuconazole and amphotericin B can be used for treatment of CAPA and CAM; voriconazole is the primary agent for CAPA and posaconazole is an alternative for CAM. Aggressive surgery is recommended for CAM to improve patient survival. A high index of suspicion and timely and appropriate treatment is crucial to improve patient outcome.
Collapse
Affiliation(s)
- Shiang-Fen Huang
- Division of Infectious Disease, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,School of Internal Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan
| | - Alice Ying-Jung Wu
- Division of Infectious Diseases, Department of Medicine, MacKay Memorial Hospital, Taipei, Taiwan,MacKay Medical College, New Taipei City, Taiwan
| | - Susan Shin-Jung Lee
- School of Internal Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan,Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Taiwan
| | - Yu-Shan Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Yuan Lee
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Te-Liang Yang
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan,Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Hsiao-Wei Wang
- Division of Infectious Diseases, Department of Internal Medicine, Shin Kong Wu Ho- Su Memorial Hospital, Taipei, Taiwan
| | - Hung Jui Chen
- Department of Infectious Diseases, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yi Ching Chen
- Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan,College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzong-Shiann Ho
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan, Taiwan,Department of Pediatrics, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Chien-Feng Kuo
- Division of Infectious Diseases, Department of Medicine, MacKay Memorial Hospital, Taipei, Taiwan,MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan,Corresponding author
| | - Yi-Tsung Lin
- Division of Infectious Disease, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Corresponding author
| | | |
Collapse
|
45
|
Punia A, Choudhary P, Sharma N, Dahiya S, Gulia P, Chhillar AK. Therapeutic Approaches for Combating Aspergillus Associated Infection. Curr Drug Targets 2022; 23:1465-1488. [PMID: 35748549 DOI: 10.2174/1389450123666220623164548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 01/25/2023]
Abstract
Now-a-days fungal infection emerges as a significant problem to healthcare management systems due to high frequency of associated morbidity, mortality toxicity, drug-drug interactions, and resistance of the antifungal agents. Aspergillus is the most common mold that cause infection in immunocompromised hosts. It's a hyaline mold that is cosmopolitan and ubiquitous in nature. Aspergillus infects around 10 million population each year with a mortality rate of 30-90%. Clinically available antifungal formulations are restricted to four classes (i.e., polyene, triazole, echinocandin, and allylamine), and each of them have their own limitations associated with the activity spectrum, the emergence of resistance, and toxicity. Consequently, novel antifungal agents with modified and altered chemical structures are required to combat these invasive fungal infections. To overcome these limitations, there is an urgent need for new antifungal agents that can act as potent drugs in near future. Currently, some compounds have shown effective antifungal activity. In this review article, we have discussed all potential antifungal therapies that contain old antifungal drugs, combination therapies, and recent novel antifungal formulations, with a focus on the Aspergillus associated infections.
Collapse
Affiliation(s)
- Aruna Punia
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Pooja Choudhary
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Namita Sharma
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Sweety Dahiya
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Prity Gulia
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Anil K Chhillar
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
46
|
Serin I, Baltali S, Cinli TA, Goze H, Demir B, Yokus O. Lateral flow assay (LFA) in the diagnosis of COVID-19-associated pulmonary aspergillosis (CAPA): a single-center experience. BMC Infect Dis 2022; 22:822. [PMID: 36348480 PMCID: PMC9644000 DOI: 10.1186/s12879-022-07828-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Invasive pulmonary aspergillosis (IPA) is seen during coronavirus-2019 (COVID-19), has been reported in different incidences, and is defined as COVID-19-associated pulmonary aspergillosis (CAPA). Detection of galactomannan antigen is an important diagnostic step in diagnosing IPA. Enzyme-linked immunoassay (ELISA) is the most frequently used method, and lateral flow assay (LFA) is increasingly used with high sensitivity and specificity for rapid diagnosis. The present study aimed to compare the sensitivity of LFA and ELISA in the diagnosis of CAPA in COVID-19 patients followed in our hospital's ICU for pandemic (ICU-P). METHODS This study included patients with a diagnosis of COVID-19 cases confirmed by polymerase chain reaction and were followed up in ICU-P between August 2021 and February 2022 with acute respiratory failure. The diagnosis of CAPA was based on the European Confederation of Medical Mycology (ECMM) and the International Society for Human and Animal Mycology 2020 (ECMM/ ISHAM) guideline. Galactomannan levels were determined using LFA and ELISA in serum samples taken simultaneously from the patients. RESULTS Out of the 174 patients followed in the ICU-P, 56 did not meet any criteria for CAPA and were excluded from the analysis. The rate of patients diagnosed with proven CAPA was 5.7% (10 patients). A statistically significant result was obtained with LFA for the cut-off value of 0.5 ODI in the diagnosis of CAPA (p < 0.001). The same significant statistical relationship was found for the cut-off value of 1.0 ODI for the ELISA (p < 0.01). The sensitivity of LFA was 80% (95% CI: 0.55-1.05, p < 0.05), specificity 94% (95% CI: 0.89-0.98, p < 0.05); PPV 53% (95% CI: 0.28-0.79, p > 0.05) and NPV was 98% (95% CI: 0.95-1.01, p < 0.05). The risk of death was 1.66 (HR: 1.66, 95% CI: 1.02-2.86, p < 0.05) times higher in patients with an LFA result of ≥ 0.5 ODI than those with < 0.5 (p < 0.05). CONCLUSIONS It is reckoned that LFA can be used in future clinical practice, particularly given its effectiveness in patients with hematological malignancies and accuracy in diagnosing CAPA.
Collapse
Affiliation(s)
- Istemi Serin
- Department of Hematology, Istanbul Training and Research Hospital, University of Health Sciences, Org. Nafiz GURMAN Cad. 34098, Fatih, Istanbul, Turkey.
| | - Sevim Baltali
- Department of Anesthesiology and Reanimation, Istanbul Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Tahir Alper Cinli
- Department of Hematology, Istanbul Training and Research Hospital, University of Health Sciences, Org. Nafiz GURMAN Cad. 34098, Fatih, Istanbul, Turkey
| | - Hasan Goze
- Department of Hematology, Istanbul Training and Research Hospital, University of Health Sciences, Org. Nafiz GURMAN Cad. 34098, Fatih, Istanbul, Turkey
| | - Burçak Demir
- Department of Hematology, Istanbul Training and Research Hospital, University of Health Sciences, Org. Nafiz GURMAN Cad. 34098, Fatih, Istanbul, Turkey
| | - Osman Yokus
- Department of Hematology, Istanbul Training and Research Hospital, University of Health Sciences, Org. Nafiz GURMAN Cad. 34098, Fatih, Istanbul, Turkey
| |
Collapse
|
47
|
Khan AA, Farooq F, Jain SK, Golinska P, Rai M. Comparative Host-Pathogen Interaction Analyses of SARS-CoV2 and Aspergillus fumigatus, and Pathogenesis of COVID-19-Associated Aspergillosis. MICROBIAL ECOLOGY 2022; 84:1236-1244. [PMID: 34738157 PMCID: PMC8568490 DOI: 10.1007/s00248-021-01913-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/25/2021] [Indexed: 05/03/2023]
Abstract
COVID-19 caused a global catastrophe with a large number of cases making it one of the major pandemics of the human history. The clinical presentations of the disease are continuously challenging healthcare workers with the variation of pandemic waves and viral variants. Recently, SARS-CoV2 patients have shown increased occurrence of invasive pulmonary aspergillosis infection even in the absence of traditional risk factors. The mechanism of COVID-19-associated aspergillosis is not completely understood and therefore, we performed this system biological study in order to identify mechanistic implications of aspergillosis susceptibility in COVID-19 patients and the important targets associated with this disease. We performed host-pathogen interaction (HPI) analysis of SARS-CoV2, and most common COVID-19-associated aspergillosis pathogen, Aspergillus fumigatus, using in silico approaches. The known host-pathogen interactions data of SARS-CoV2 was obtained from BIOGRID database. In addition, A. fumigatus host-pathogen interactions were predicted through homology modeling. The human targets interacting with both pathogens were separately analyzed for their involvement in aspergillosis. The aspergillosis human targets were screened from DisGeNet and GeneCards. The aspergillosis targets involved in both HPI were further analyzed for functional overrepresentation analysis using PANTHER. The results indicate that both pathogens interact with a number of aspergillosis targets and altogether they recruit more aspergillosis targets in host-pathogen interaction than alone. Common aspergillosis targets involved in HPI with both SARS-CoV2 and A. fumigatus can indicate strategies for the management of both conditions by modulating these common disease targets.
Collapse
Affiliation(s)
- Abdul Arif Khan
- Division of Microbiology, Indian Council of Medical Research-National AIDS Research Institute, Pune, Maharashtra, India.
| | - Fozia Farooq
- School of Studies in Microbiology, Vikram University, Ujjain, Madhya Pradesh, India
| | - Sudhir K Jain
- School of Studies in Microbiology, Vikram University, Ujjain, Madhya Pradesh, India
| | - Patrycja Golinska
- Department of Microbiology, Nicolaus Copernicus University, Torun, Poland
| | - Mahendra Rai
- Department of Microbiology, Nicolaus Copernicus University, Torun, Poland
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, Maharashtra, India
| |
Collapse
|
48
|
Ciliated muconodular papillary tumor masked by COVID-19 infection and aspergilloma. TURK GOGUS KALP DAMAR CERRAHISI DERGISI 2022; 30:635-640. [PMID: 36605328 PMCID: PMC9801477 DOI: 10.5606/tgkdc.dergisi.2022.22603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/15/2021] [Indexed: 11/07/2022]
Abstract
Novel coronavirus disease-2019 (COVID-19) continues to pose a threat all over the world with the effect of new variants. The frequency of other secondary infections such as aspergilloma in patients with COVID-19 disease is not uncommon. Extremely rare lesions such as ciliated muconodular papillary tumor can be masked by radiological images caused by COVID-19 infection or secondary pathologies associated with it, leading to difficulties in diagnosis. Herein, we report a case in whom a diagnosis of aspergilloma and ciliated muconodular papillary tumor after six months of COVID-19 infection was made.
Collapse
|
49
|
Kinsella CM, Deijs M, Gittelbauer HM, van der Hoek L, van Dijk K. Human Clinical Isolates of Pathogenic Fungi Are Host to Diverse Mycoviruses. Microbiol Spectr 2022; 10:e0161022. [PMID: 35993766 PMCID: PMC9603141 DOI: 10.1128/spectrum.01610-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/08/2022] [Indexed: 12/31/2022] Open
Abstract
Fungi host viruses from many families, and next-generation sequencing can be used to discover previously unknown genomes. Some fungus-infecting viruses (mycoviruses) confer hypovirulence on their pathogenic hosts, raising the possibility of therapeutic application in the treatment of fungal diseases. Though all fungi probably host mycoviruses, many human pathogens have none documented, implying the mycoviral catalogue remains at an early stage. Here, we carried out virus discovery on 61 cultures of pathogenic fungi covering 27 genera and at least 56 species. Using next-generation sequencing of total nucleic acids, we found no DNA viruses but did find a surprising RNA virus diversity of 11 genomes from six classified families and two unclassified lineages, including eight genomes likely representing new species. Among these was the first jivivirus detected in a fungal host (Aspergillus lentulus). We separately utilized rolling circle amplification and next-generation sequencing to identify ssDNA viruses specifically. We identified 13 new cressdnaviruses across all libraries, but unlike the RNA viruses, they could not be confirmed by PCR in either the original unamplified samples or freshly amplified nucleic acids. Their distributions among sequencing libraries and inconsistent detection suggest low-level contamination of reagents. This highlights both the importance of validation assays and the risks of viral host prediction on the basis of highly amplified sequencing libraries. Meanwhile, the detected RNA viruses provide a basis for experimentation to characterize possible hypovirulent effects, and hint at a wealth of uncharted viral diversity currently frozen in biobanks. IMPORTANCE Fungal pathogens of humans are a growing global health burden. Viruses of fungi may represent future therapeutic tools, but for many fungal pathogens there are no known viruses. Our study examined the viral content of diverse human-pathogenic fungi in a clinical biobank, identifying numerous viral genomes, including one lineage previously not known to infect fungi.
Collapse
Affiliation(s)
- Cormac M. Kinsella
- Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Martin Deijs
- Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - H. M. Gittelbauer
- Amsterdam UMC, Laboratory of Mycology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, The Netherlands
| | - Lia van der Hoek
- Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Karin van Dijk
- Amsterdam UMC, Laboratory of Mycology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Zhao S, Martin-Vicente A, Colabardini AC, Pereira Silva L, Rinker DC, Fortwendel JR, Goldman GH, Gibbons JG. Genomic and Molecular Identification of Genes Contributing to the Caspofungin Paradoxical Effect in Aspergillus fumigatus. Microbiol Spectr 2022; 10:e0051922. [PMID: 36094204 PMCID: PMC9603777 DOI: 10.1128/spectrum.00519-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
Aspergillus fumigatus is a deadly opportunistic fungal pathogen responsible for ~100,000 annual deaths. Azoles are the first line antifungal agent used against A. fumigatus, but azole resistance has rapidly evolved making treatment challenging. Caspofungin is an important second-line therapy against invasive pulmonary aspergillosis, a severe A. fumigatus infection. Caspofungin functions by inhibiting β-1,3-glucan synthesis, a primary and essential component of the fungal cell wall. A phenomenon termed the caspofungin paradoxical effect (CPE) has been observed in several fungal species where at higher concentrations of caspofungin, chitin replaces β-1,3-glucan, morphology returns to normal, and growth rate increases. CPE appears to occur in vivo, and it is therefore clinically important to better understand the genetic contributors to CPE. We applied genomewide association (GWA) analysis and molecular genetics to identify and validate candidate genes involved in CPE. We quantified CPE across 67 clinical isolates and conducted three independent GWA analyses to identify genetic variants associated with CPE. We identified 48 single nucleotide polymorphisms (SNPs) associated with CPE. We used a CRISPR/Cas9 approach to generate gene deletion mutants for seven genes harboring candidate SNPs. Two null mutants, ΔAfu3g13230 and ΔAfu4g07080 (dscP), resulted in reduced basal growth rate and a loss of CPE. We further characterized the dscP phosphatase-null mutant and observed a significant reduction in conidia production and extremely high sensitivity to caspofungin at both low and high concentrations. Collectively, our work reveals the contribution of Afu3g13230 and dscP in CPE and sheds new light on the complex genetic interactions governing this phenotype. IMPORTANCE This is one of the first studies to apply genomewide association (GWA) analysis to identify genes involved in an Aspergillus fumigatus phenotype. A. fumigatus is an opportunistic fungal pathogen that causes hundreds of thousands of infections and ~100,000 deaths each year, and antifungal resistance has rapidly evolved in this species. A phenomenon called the caspofungin paradoxical effect (CPE) occurs in some isolates, where high concentrations of the drug lead to increased growth rate. There is clinical relevance in understanding the genetic basis of this phenotype, since caspofungin concentrations could lead to unintended adverse clinical outcomes in certain cases. Using GWA analysis, we identified several interesting candidate polymorphisms and genes and then generated gene deletion mutants to determine whether these genes were important for CPE. Two of these mutant strains (ΔAfu3g13230 and ΔAfu4g07080/ΔdscP) displayed a loss of the CPE. This study sheds light on the genes involved in clinically important phenotype CPE.
Collapse
Affiliation(s)
- Shu Zhao
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Adela Martin-Vicente
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Lilian Pereira Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - David C. Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Jarrod R. Fortwendel
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - John G. Gibbons
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|