1
|
Olivieri B, Günaydın FE, Corren J, Senna G, Durham SR. The combination of allergen immunotherapy and biologics for inhalant allergies: Exploring the synergy. Ann Allergy Asthma Immunol 2025; 134:385-395. [PMID: 38897405 DOI: 10.1016/j.anai.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
The development of monoclonal antibodies that selectively target IgE and type 2 immunity has opened new possibilities in the treatment of allergies. Although they have been used mainly as single therapies found to have efficacy in the management of asthma and other T2-mediated diseases, there is a growing interest in using these monoclonal antibodies in combination with allergen immunotherapy (AIT). AIT has transformed the treatment of allergic diseases by aiming to modify the underlying immune response to allergens rather than just providing temporary symptom relief. Despite the proven efficacy and safety of AIT, unmet needs call for further research and innovation. Combination strategies involving biologics and AIT exhibit potential in improving short-term efficacy, reducing adverse events, and increasing immunologic tolerance. Anti-IgE emerges as the most promising therapeutic strategy, not only enhancing AIT's safety and tolerability but also providing additional evidence of efficacy compared with AIT alone. Anti-interleukin-4 receptor offers a reduction in adverse effects and an improved immunologic profile when combined with AIT; however, its impact on short-term efficacy seems limited. The combination of cat dander subcutaneous immunotherapy with anti-thymic stromal lymphopoietin was synergistic with enhanced efficacy and altered immune responses that persisted for 1 year after discontinuation compared with AIT alone. Long-term studies are needed to evaluate the sustained benefits and safety profiles of combination strategies.
Collapse
Affiliation(s)
- Bianca Olivieri
- Asthma, Allergy and Clinical Immunology Section, University Hospital of Verona, Verona, Italy
| | - Fatma Esra Günaydın
- Department of Immunology and Allergy Diseases, Ordu University Education and Training Hospital, Ordu, Turkey
| | - Jonathan Corren
- Division of Allergy and Clinical Immunology, Department of Medicine and Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Gianenrico Senna
- Asthma, Allergy and Clinical Immunology Section, University Hospital of Verona, Verona, Italy; Department of Medicine, University of Verona, Verona, Italy
| | - Stephen R Durham
- Allergy and Clinical Immunology, Section Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
2
|
Flicker S, Ohlin M, Atanasio A, Pomés A. Editorial: Allergen-specific antibodies: from basic science to clinical application. FRONTIERS IN ALLERGY 2025; 6:1568735. [PMID: 40078967 PMCID: PMC11897023 DOI: 10.3389/falgy.2025.1568735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Affiliation(s)
- Sabine Flicker
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mats Ohlin
- Department of Immunotechnology and SciLifeLab, Lund University, Lund, Sweden
| | - Amanda Atanasio
- Immunology and Inflammation, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, United States
| | - Anna Pomés
- Basic Research, InBio, Charlottesville, VA, United States
| |
Collapse
|
3
|
Alska E, Łaszczych D, Napiórkowska-Baran K, Szymczak B, Rajewska A, Rubisz AE, Romaniuk P, Wrzesień K, Mućka N, Bartuzi Z. Advances in Biologic Therapies for Allergic Diseases: Current Trends, Emerging Agents, and Future Perspectives. J Clin Med 2025; 14:1079. [PMID: 40004611 PMCID: PMC11856668 DOI: 10.3390/jcm14041079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Biologic therapies have revolutionized the treatment of severe allergic diseases, including asthma, atopic dermatitis (AD), chronic spontaneous urticaria (CSU), chronic rhinosinusitis with nasal polyps (CRSwNP), eosinophilic gastrointestinal diseases (EGIDs), and allergic rhinitis (AR). These molecularly targeted agents provide significant benefits for patients unresponsive to conventional treatments by addressing underlying immune mechanisms, particularly type 2 inflammation driven by cytokines such as IL-4, IL-5, and IL-13. Recent advancements include biologics targeting alarmins like thymic stromal lymphopoietin (TSLP) and IL-33, which may address both type 2 and non-type 2 inflammation, broadening their therapeutic scope. Despite their effectiveness, biologics remain expensive, posing socioeconomic challenges, and there are concerns regarding long-term safety and inter-individual variability in responses. Promising innovations such as bispecific antibodies and ultra-long-acting agents are under investigation, alongside digital health tools like remote biomarker monitoring and AI-driven decision support systems, which aim to enhance personalized care. However, disparities in access, particularly for underserved populations, underscore the need for policy reforms and affordable biosimilars. This review synthesizes recent findings and emerging trends, highlighting the evolving role of biologics in transforming allergic disease management and offering insights into future research directions.
Collapse
Affiliation(s)
- Ewa Alska
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (E.A.); (Z.B.)
| | - Dariusz Łaszczych
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (D.Ł.); (B.S.); (A.R.); (A.E.R.); (P.R.); (K.W.); (N.M.)
| | - Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (E.A.); (Z.B.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (D.Ł.); (B.S.); (A.R.); (A.E.R.); (P.R.); (K.W.); (N.M.)
| | - Alicja Rajewska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (D.Ł.); (B.S.); (A.R.); (A.E.R.); (P.R.); (K.W.); (N.M.)
| | - Aleksandra Ewa Rubisz
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (D.Ł.); (B.S.); (A.R.); (A.E.R.); (P.R.); (K.W.); (N.M.)
| | - Paulina Romaniuk
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (D.Ł.); (B.S.); (A.R.); (A.E.R.); (P.R.); (K.W.); (N.M.)
| | - Katarzyna Wrzesień
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (D.Ł.); (B.S.); (A.R.); (A.E.R.); (P.R.); (K.W.); (N.M.)
| | - Natalia Mućka
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (D.Ł.); (B.S.); (A.R.); (A.E.R.); (P.R.); (K.W.); (N.M.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (E.A.); (Z.B.)
| |
Collapse
|
4
|
Bachmann MF, Krenger PS, Mohsen MO, Kramer MF, Starchenka S, Whitehead P, Vogel M, Heath MD. On the role of antibody affinity and avidity in the IgE-mediated allergic response. Allergy 2025; 80:37-46. [PMID: 39189064 PMCID: PMC11724228 DOI: 10.1111/all.16248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/28/2024]
Abstract
Type I hypersensitivity, also known as classical allergy, is mediated via allergen-specific IgE antibodies bound to type I FcR (FcεRI) on the surface of mast cells and basophils upon cross-linking by allergens. This IgE-mediated cellular activation may be blocked by allergen-specific IgG through multiple mechanisms, including direct neutralization of the allergen or engagement of the inhibitory receptor FcγRIIb which blocks IgE signal transduction. In addition, co-engagement of FcεRI and FcγRIIb by IgE-IgG-allergen immune complexes causes down regulation of receptor-bound IgE, resulting in desensitization of the cells. Both, activation of FcεRI by allergen-specific IgE and engagement of FcγRIIb by allergen-specific IgG are driven by allergen-binding. Here we delineate the distinct roles of antibody affinity versus avidity in driving these processes and discuss the role of IgG subclasses in inhibiting basophil and mast cell activation.
Collapse
Affiliation(s)
- Martin F. Bachmann
- Department of Rheumatology and ImmunologyUniversity Hospital of BernBernSwitzerland
- Department for Biomedical Research Bern (DBMR)University of BernBernSwitzerland
- Nuffield Department of Medicine, The Jenner InstituteUniversity of OxfordOxfordUK
| | - Pascal S. Krenger
- Department of Rheumatology and ImmunologyUniversity Hospital of BernBernSwitzerland
- Department for Biomedical Research Bern (DBMR)University of BernBernSwitzerland
| | - Mona O. Mohsen
- Department of Rheumatology and ImmunologyUniversity Hospital of BernBernSwitzerland
- Department for Biomedical Research Bern (DBMR)University of BernBernSwitzerland
| | | | | | | | - Monique Vogel
- Department of Rheumatology and ImmunologyUniversity Hospital of BernBernSwitzerland
- Department for Biomedical Research Bern (DBMR)University of BernBernSwitzerland
| | | |
Collapse
|
5
|
Watanabe Y, Okafuji I, Tamai S, Hosokawa N, Ohbayashi T, Kato S, Ito K, Kawano M, Ohshima Y. Epitope profiling of cow's milk allergen-specific antibodies with determining IgE content in epitopes-ALL, a 14-epitopes mixture. J Immunol Methods 2024; 535:113773. [PMID: 39489375 DOI: 10.1016/j.jim.2024.113773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/25/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Allergen-specific antibodies (Abs), IgE, and IgG4 increase during the early phase of oral immunotherapy (OIT) of allergen food in patients; subsequently, IgE levels decrease and specific IgG4 levels increase after successful OIT treatment. The detailed profile of these Abs during OIT remains largely unclear. We developed a diagnostic tool to assess the OIT efficacy and extent of responsiveness based on a profiling method by identifying epitopes recognized by the Ab classes of IgE or IgG4. A peptide microarray followed by microplate analysis using synthetic peptides was used to identify 14 epitopes widely recognized by IgE and/or IgG4 in the serum samples of patients with OIT among the amino acid sequences of five major cow's milk allergens. The set of defined 14 epitopes clarified different epitope profiles of allergen-specific IgE and IgG4 in each patient's serum samples. Moreover, the total signal of Abs recognizing all 14 epitopes was equal to the sum of all individual epitope-specific Abs. It was further observed that the quantitative value of IgE concentrations of 14 epitopes-ALL correlated with the ImmunoCAP IgE value. These findings strongly imply that the quantity of IgE and IgG4 recognizing epitopes-ALL may easily be used to measure allergy severity. To investigate this potential, we developed an immunochromatographic method that can detect IgE and IgG4 levels in patient samples. This study clearly demonstrated the usefulness of the defined 14 epitopes and their mixture, "epitopes-ALL," and that the simple and reliable methods of immunochromatography and microplate analyses demonstrating the epitope profile of allergen-specific Abs are applicable for diagnostic use at multiple disease stages and the OIT-treatment course in patients with cow's milk allergy.
Collapse
Affiliation(s)
- Yoshihiro Watanabe
- IgG4-related Immunology, Graduate School of Medicine, Medical Science, Kanazawa University Hospital 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan.
| | - Ikuo Okafuji
- Pediatrics, Kobe City Medical Center General Hospital 2-1-1 Minatoshima Minami-cho, Chuo-ku, Kobe 650-0047, Japan
| | - Satoko Tamai
- IgG4-related Immunology, Graduate School of Medicine, Medical Science, Kanazawa University Hospital 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Natsuko Hosokawa
- Rheumatology, Kanazawa University Hospital 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Takako Ohbayashi
- Rheumatology, Kanazawa University Hospital 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Shigeki Kato
- Prima Meat Packers Group, Tsukuba Food Evaluation Center Co., Ltd.635 Naka Mukaihara, Tsuchiura 300-0841, Ibaraki, Japan
| | - Kiyoaki Ito
- Rheumatology, Kanazawa University Hospital 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Mitsuhiro Kawano
- Rheumatology, Kanazawa University Hospital 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Yusei Ohshima
- Pediatrics, University of Fukui Hospital 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| |
Collapse
|
6
|
Olivry T, Mirande L, Aglas L, Morel B, Mas-Fontao A, Fitchette AC, Holztrattner L, Stigler M, Roberge J, Martel C, Stordeur V, Desgagnés R, Vézina L, Favrot C, Gomord V. Rapid induction of allergen-blocking IgG in dogs vaccinated with plant-based, Der f 2-expressing bioparticles. Vet Dermatol 2024; 35:672-682. [PMID: 39223106 DOI: 10.1111/vde.13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/12/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Allergen-carrying virus-like particles are effective and safe means of allergen immunotherapy (AIT) in rodent models. OBJECTIVE To study the development of allergen-blocking immunoglobulin (Ig)G in dogs injected with Der f 2-carrying enveloped plant-based bioparticles (eBPs). MATERIALS AND METHODS Laboratory beagle dogs were injected intradermally (ID) or subcutaneously (SC) with Der f 2-eBP three times at 2-week intervals. A basophil mediator release assay was used to compare the reactivity of Der f 2-eBPs to that of recombinant Der f 2. Allergen-specific IgG serum levels were determined by immunoblotting and ELISA. The allergen-blocking potential of postvaccination IgG was assessed by Pet Allergy Xplorer (PAX) macroarray and basophil mediator release inhibition assays. RESULTS The amount of Der f 2 eBPs needed to induce basophil activation was 1000-fold higher than that of the soluble natural allergen. In both immunisation groups, eBP injections caused no adverse events and induced Der f 2-specific IgG, first detected on Day (D)14 and peaking on D41. The co-incubation of sera with a Der f 2-IgE-rich canine serum pool resulted in a mean PAX inhibition of 70% (ID) to 80% (SC) on D41. For both groups, the inhibition of basophil mediator release reached 75% on D28 and D41. The percentage inhibition of PAX and mediator release correlated significantly with Der f 2 IgG levels. CONCLUSION AND CLINICAL RELEVANCE Intradermal and subcutaneous injections of Der f 2-eBPs were safe and increased Der f 2-specific IgG. The clinical benefit of immunotherapy will be evaluated in future trials enrolling atopic dogs allergic to house dust mites.
Collapse
Affiliation(s)
| | | | - Lorenz Aglas
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | | | | | | | - Lena Holztrattner
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Maria Stigler
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | | | | | | | | | | | - Claude Favrot
- Dermatology Unit, Clinical for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Véronique Gomord
- Angany Innovation, Val de Reuil, France
- Angany Genetics, Val de Reuil, France
| |
Collapse
|
7
|
Lao-Araya M. Novel Approaches to Allergen Immunotherapy for Respiratory Allergies. Pharmaceuticals (Basel) 2024; 17:1510. [PMID: 39598421 PMCID: PMC11597824 DOI: 10.3390/ph17111510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Allergen immunotherapy (AIT) remains the cornerstone for managing respiratory allergies, offering long-term symptom relief, disease modification, and prevention of disease progression. While novel approaches like intralymphatic and epicutaneous immunotherapy and the combination of allergens with adjuvants show promise, traditional methods remain effective and safe. Hypoallergenic T-cell peptide vaccines and recombinant allergens require further research to confirm their clinical benefits. Passive immunotherapy, while demonstrating effectiveness in specific cases, needs exploration of its long-term efficacy and broader applicability. Combining AIT with biologics may enhance safety and treatment outcomes. Despite emerging innovations, allergen-specific immunotherapy with natural allergen extracts remains the primary disease-modifying treatment, offering long-term symptom relief and prevention of disease progression. Continued research is essential to refine and optimize allergen immunotherapy strategies, providing patients with more effective and personalized treatment options.
Collapse
Affiliation(s)
- Mongkol Lao-Araya
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
8
|
Knol EF, van Neerven RJJ. IgE versus IgG and IgA: Differential roles of allergen-specific antibodies in sensitization, tolerization, and treatment of allergies. Immunol Rev 2024; 328:314-333. [PMID: 39285523 PMCID: PMC11659938 DOI: 10.1111/imr.13386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The prevalence of asthma, rhinitis, and food allergies has increased dramatically over the last few decades. This increase originally started in western countries, but is now also evident in many other regions of the world. Given the fact that the increase is so quick, the noted increase cannot be linked to a genetic effect, and many environmental factors have been identified that are associated with increased or reduced prevalence of allergies, like changing dietary habits, increased urbanization, pollution, exposure to microorganisms and LPS, and the farming environment and raw milk consumption. Although the key role of allergen-specific IgE in allergies is well known, the role of allergen-specific IgG and IgA antibodies is less well defined. This review will provide an overview of the functions of allergen-specific IgE in allergy, the role of allergen-specific antibodies (IgG (4) and IgA) in allergen immunotherapy (AIT), the possibility to use allergen-specific antibodies for treatment of ongoing allergies, and the potential role of allergen-specific antibodies in tolerance induction to allergens in a preventive setting. In the last, more speculative, section we will present novel hypotheses on the potential role of allergen-specific non-IgE antibodies in allergies by directing antigen presentation, Th2 development, and innate immune training.
Collapse
Affiliation(s)
- E. F. Knol
- Department of Dermatology/AllergologyUMC UtrechtUtrechtthe Netherlands
| | - R. J. J. van Neerven
- Cell Biology and ImmunologyWageningen University & ResearchWageningenthe Netherlands
| |
Collapse
|
9
|
Rabin RL. The Potential of Human Monoclonal IgE Antibodies to Establish Biological Potency and Stability of Allergen Extracts. Curr Allergy Asthma Rep 2024; 24:471-475. [PMID: 39046600 PMCID: PMC11364621 DOI: 10.1007/s11882-024-01168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE OF REVIEW Allergenic extracts are often standardized to control for potency, either by measuring concentrations of major allergens or "overall allergenicity" by competition for IgE in pooled sera from highly allergic subjects with a reference extract. Recent developments present an opportunity to use human mAb cloned from highly allergic subjects to define potency of allergenic extracts. RECENT FINDINGS Two recent developments present an opportunity for revising potency measurements of allergen extracts: cloning allergen specific IgE from allergic subjects and extensive epitope mapping of major allergenic proteins. Because human IgE mAb recognize biologically relevant epitopes, they present a novel opportunity to determine the potencies of allergenic extracts and may contribute to the science base for allergen standardization.
Collapse
Affiliation(s)
- Ronald L Rabin
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 10309 New Hampshire Avenue Building 52, Room 3332, Silver Spring, MD, USA.
| |
Collapse
|
10
|
Rabin RL, Croote D, Chen A, Dobrovolskaia E, Wong JJW, Grossman J, Hamilton RG. A human monoclonal antibody based immunoenzymetric assay to measure Fel d 1 concentrations in cat hair and pelt allergenic extracts. FRONTIERS IN ALLERGY 2024; 5:1417879. [PMID: 39076462 PMCID: PMC11284339 DOI: 10.3389/falgy.2024.1417879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/31/2024] Open
Abstract
In the United States, 19 allergen extracts of different specificities are standardized, which means that their potencies are determined in comparison to a US reference standard. For cat allergen extracts, potency is determined by measuring Fel d 1 content expressed in in Fel d 1 units, and with a unitage that correlates with skin test reactions (bioequivalent allergy units or BAU). Currently, Fel d 1 content is measured with a radial immunodiffusion (RID) assay that uses polyclonal sheep antisera to detect the allergenic protein by producing a white precipitin line in agar gel. However, the RID is considered cumbersome, and the polyclonal sera may qualitatively vary among animals and may recognize epitopes irrelevant to human allergic disease. In this report, we describe a quantitative two-site immunoenzymetric assay (IEMA) for Fel d 1 that uses immobilized capture and soluble biotin-labeled detection Fel d 1-specific human IgE monoclonal antibodies (mAb) that have been class-switched to IgG4. Together, they sandwich Fel d 1 molecules from extracts. Using purified natural Fel d 1 as a calibrator, the historically reported ∼4 micrograms Fel d 1/Fel d 1 unit assignment was directly measured in this mAb-based IEMA at 3.12 ± 0.24 micrograms of Fel d 1 per Fel d 1 unit. This IEMA appears to be equivalent to RID in the measurement of biological potencies of commercial cat hair and cat pelt extracts marketed in the United States.
Collapse
Affiliation(s)
- Ronald L. Rabin
- Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (US-FDA), Silver Spring, MD, United States
| | - Derek Croote
- IgGenix Inc., South San Francisco, CA, United States
| | - Aaron Chen
- Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (US-FDA), Silver Spring, MD, United States
| | - Ekaterina Dobrovolskaia
- Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (US-FDA), Silver Spring, MD, United States
| | | | | | - Robert G. Hamilton
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
11
|
Zettl I, Bauernfeind C, Kollárová J, Flicker S. Single-Domain Antibodies-Novel Tools to Study and Treat Allergies. Int J Mol Sci 2024; 25:7602. [PMID: 39062843 PMCID: PMC11277559 DOI: 10.3390/ijms25147602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
IgE-mediated allergies represent a major health problem in the modern world. Apart from allergen-specific immunotherapy (AIT), the only disease-modifying treatment, researchers focus on biologics that target different key molecules such as allergens, IgE, or type 2 cytokines to ameliorate allergic symptoms. Single-domain antibodies, or nanobodies, are the newcomers in biotherapeutics, and their huge potential is being investigated in various research fields since their discovery 30 years ago. While they are dominantly applied for theranostics of cancer and treatment of infectious diseases, nanobodies have become increasingly substantial in allergology over the last decade. In this review, we discuss the prerequisites that we consider to be important for generating useful nanobody-based drug candidates for treating allergies. We further summarize the available research data on nanobodies used as allergen monitoring and detection probes and for therapeutic approaches. We reflect on the limitations that have to be addressed during the development process, such as in vivo half-life and immunogenicity. Finally, we speculate about novel application formats for allergy treatment that might be available in the future.
Collapse
Affiliation(s)
- Ines Zettl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Clarissa Bauernfeind
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Jessica Kollárová
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sabine Flicker
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
12
|
Rosada T, Bartuzi Z, Grześk-Kaczyńska M, Rydzyńska M, Ukleja-Sokołowska N. Treatment of Allergies to Fur Animals. Int J Mol Sci 2024; 25:7218. [PMID: 39000328 PMCID: PMC11241144 DOI: 10.3390/ijms25137218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Allergy to fur animals is becoming an increasingly common clinical problem in everyday medical practice. Depending on the route of exposure to the allergen, patients present with many, often non-specific symptoms. The most common illnesses among people with allergies to the above-mentioned allergens are as follows: allergic rhinitis, allergic conjunctivitis, atopic bronchial asthma, food allergy, allergic contact dermatitis, and sometimes anaphylactic shock. In recent years, there has been a change in the holistic approach to the treatment of allergy patients. The method of treatment should be tailored to a specific patient, taking into account his or her predispositions, economic possibilities, and therapeutic goals. The article describes the main methods of treating allergies, focusing primarily on allergies to fur animals. Allergy treatment always requires great care, and qualification for specific types of therapy should be preceded by a thorough and accurate diagnosis.
Collapse
Affiliation(s)
- Tomasz Rosada
- Chair and Clinic of Allergology, Clinical Immunology and Internal Diseases, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Zbigniew Bartuzi
- Chair and Clinic of Allergology, Clinical Immunology and Internal Diseases, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Magdalena Grześk-Kaczyńska
- Clinic of Allergology, Clinical Immunology and Internal Diseases, Jan Biziel University Hospital No. 2 in Bydgoszcz, Ujejskiego 75, 85-168 Bydgoszcz, Poland
| | - Magdalena Rydzyńska
- Clinic of Allergology, Clinical Immunology and Internal Diseases, Jan Biziel University Hospital No. 2 in Bydgoszcz, Ujejskiego 75, 85-168 Bydgoszcz, Poland
| | - Natalia Ukleja-Sokołowska
- Chair and Clinic of Allergology, Clinical Immunology and Internal Diseases, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| |
Collapse
|
13
|
Bauernfeind C, Zettl I, Ivanova T, Goryainova O, Weijler AM, Pranz B, Drescher A, Focke-Tejkl M, Pavkov-Keller T, Eckl-Dorna J, Tillib SV, Flicker S. Trimeric Bet v 1-specific nanobodies cause strong suppression of IgE binding. Front Immunol 2024; 15:1343024. [PMID: 38784378 PMCID: PMC11112410 DOI: 10.3389/fimmu.2024.1343024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/27/2024] [Indexed: 05/25/2024] Open
Abstract
Background Around 20% of the population in Northern and Central Europe is affected by birch pollen allergy, with the major birch pollen allergen Bet v 1 as the main elicitor of allergic reactions. Together with its cross-reactive allergens from related trees and foods, Bet v 1 causes an impaired quality of life. Hence, new treatment strategies were elaborated, demonstrating the effectiveness of blocking IgG antibodies on Bet v 1-induced IgE-mediated reactions. A recent study provided evidence for the first time that Bet v 1-specific nanobodies reduce patients´ IgE binding to Bet v 1. In order to increase the potential to outcompete IgE recognition of Bet v 1 and to foster cross-reactivity and cross-protection, we developed Bet v 1-specific nanobody trimers and evaluated their capacity to suppress polyclonal IgE binding to corresponding allergens and allergen-induced basophil degranulation. Methods Nanobody trimers were engineered by adding isoleucine zippers, thus enabling trimeric formation. Trimers were analyzed for their cross-reactivity, binding kinetics to Bet v 1, and related allergens, and patients' IgE inhibition potential. Finally, their efficacy to prevent basophil degranulation was investigated. Results Trimers showed enhanced recognition of cross-reactive allergens and increased efficiency to reduce IgE-allergen binding compared to nanobody monomers. Furthermore, trimers displayed slow dissociation rates from allergens and suppressed allergen-induced mediator release. Conclusion We generated high-affine nanobody trimers that target Bet v 1 and related allergens. Trimers blocked IgE-allergen interaction by competing with IgE for allergen binding. They inhibited IgE-mediated release of biological mediators, demonstrating a promising potential to prevent allergic reactions caused by Bet v 1 and relatives.
Collapse
Affiliation(s)
- Clarissa Bauernfeind
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ines Zettl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Tatiana Ivanova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Oksana Goryainova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Marianne Weijler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Barbara Pranz
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Margarete Focke-Tejkl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- BioHealth Field of Excellence, University of Graz, Graz, Austria
| | - Julia Eckl-Dorna
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Sergei V. Tillib
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sabine Flicker
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Paolucci M, Antz N, Homère V, Kolm I, Kündig TM, Johansen P. A murine model of peanut-allergic asthma. FRONTIERS IN ALLERGY 2024; 5:1378877. [PMID: 38765484 PMCID: PMC11099873 DOI: 10.3389/falgy.2024.1378877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/11/2024] [Indexed: 05/22/2024] Open
Abstract
Objectives Peanut allergy is an IgE-mediated food allergy that is associated with asthma in certain patients. With increasing prevalence, its great impact on the quality of life, and a lack of treatment options, the need for new therapy options is a given. Hence, models for research and development are required. This study aimed to establish a murine model of allergic airway inflammation induced by peanut allergens. Methods C3H mice were sensitised by intraperitoneal injections of peanut allergen extract and challenged by an intranasal application of the same extract. The assessment of airway inflammation involved the analysis of immune cells in the bronchoalveolar lavage fluid as measured by flow cytometry. Inflammatory reactions in the lung tissue were also studied by histology and quantitative PCR. Moreover, peanut-specific immune responses were studied after re-stimulation of spleen cells in vitro. Results Sensitisation led to allergen-specific IgE, IgA, and IgG1 seroconversion. Subsequent nasal exposure led to allergic airway inflammation as manifested by structural changes such as bronchial smooth muscle hypertrophy, mucus cell hyperplasia, infiltration of eosinophil cells and T cells, as well as an upregulation of genes expressing IL-4, IL-5, IL-13, and IFN-γ. Upon re-stimulation of splenocytes with peanut allergen, increased secretion of both T-helper type 2 (Th2) and Th1 cytokines was observed. Conclusion We successfully established a peanut-associated asthma model that exhibited many features characteristic of airway inflammation in human patients with allergic asthma. The model holds potential as a tool for investigating novel therapeutic approaches aimed at preventing the development of allergic asthma.
Collapse
Affiliation(s)
- Marta Paolucci
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | - Nathalie Antz
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | - Valentine Homère
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | - Isabel Kolm
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas M. Kündig
- Department of Dermatology, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Pål Johansen
- Department of Dermatology, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Zhang YY, Zhang M, Zhang JQ, Li QQ, Lu MP, Cheng L. Combination of omalizumab with allergen immunotherapy versus immunotherapy alone for allergic diseases: A meta-analysis of randomized controlled trials. Int Forum Allergy Rhinol 2024; 14:794-806. [PMID: 37715592 DOI: 10.1002/alr.23268] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Allergen immunotherapy (AIT)-associated adverse events (AEs) limit its usage in the management of allergic diseases. The monoclonal anti-IgE antibody (omalizumab) and AIT have complementary actions. However, no consensus has been reached on whether their combination could exert superior efficacy and safety. OBJECTIVE To evaluate whether the combination of AIT with omalizumab is superior to AIT alone in treating allergic diseases. METHODS The MEDLINE/PubMed, Embase, Scopus and Cochrane Library databases were searched to identify randomized control trials (RCTs) reporting the outcomes of omalizumab combined with AIT (omalizumab + AIT) versus AIT alone. A random-effect model was established to estimate outcomes with a 95% confidence interval (CI). RESULTS A total of 11 eligible RCTs (involving 901 patients) were screened out for the meta-analysis. According to a pooled analysis, omalizumab + AIT significantly increased the number of patients achieving the target maintenance dose (TMD) and sustained unresponsiveness (SU) to allergens (odds ratio [OR] = 2.43; 95% CI: 1.33-4.44; p = 0.004; I2 = 35%, and OR = 6.77; 95% CI: 2.10-21.80; p = 0.001; I2 = 36%, respectively). Similarly, individuals receiving the combination therapy reported significantly fewer episodes of severe systemic AEs than AIT alone (OR = 0.32; 95% CI: 0.18-0.59; p = 0.0003; I2 = 0%). Meanwhile, the improvements in symptom severity score (mean difference [MD] = -0.26), rescue medication daily means score (MD = -0.14), and number of patients consuming epinephrine in AIT (OR = 0.20) were all more evident than those in AIT alone. CONCLUSION Omalizumab + AIT can significantly enhance the efficacy and safety of AIT by increasing TMD and SU to allergens, while decreasing severe systemic AEs.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Min Zhang
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jia-Qi Zhang
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qiu-Qi Li
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mei-Ping Lu
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lei Cheng
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- International Centre for Allergy Research, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Sarfraz Z, Sarfraz A, Cherrez-Ojeda I. Investigating Experimental Treatments for Rhinitis: A State-of-the-Art Systematic Review. EAR, NOSE & THROAT JOURNAL 2024:1455613231222363. [PMID: 38205635 DOI: 10.1177/01455613231222363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Background: Rhinitis is a common inflammatory condition that affects the nasal passages, significantly impacting quality of life and placing a considerable burden on healthcare systems. While traditional treatments offer limited relief, there is a growing interest in novel therapies. This systematic review aims to analyze investigational new treatments for rhinitis. Methods: A search was conducted in ClinicalTrials.gov, the World Health Organization International Clinical Trials Registry Platform, and the European Union Clinical Trials Register, as well as PubMed, Web of Science, and the Cochrane Library. Both ongoing and completed clinical trials exploring innovative therapies for rhinitis, including immunotherapy, probiotics, and stem cell therapy, were included. Results: This systematic review compiled information from 74 clinical trials-51 completed and 23 ongoing-focused on new treatments for rhinitis. A significant portion of the completed studies (44) focused on various forms of immunotherapy, which showed potential for long-term effectiveness and had a high safety profile. Another seven completed trials investigated probiotics as a treatment method, yielding mixed results, though they did show promise in managing symptoms, particularly when combined with other treatments. The ongoing trials are primarily investigating immunotherapy, with a smaller number looking at probiotics and stem cell therapy. This shows a continued exploration of innovative and diverse therapies for managing rhinitis. Conclusion: This study highlights the potential of emerging rhinitis therapies to improve patient outcomes and enhance quality of life. Continued research is recommended for developing more effective, personalized, and targeted therapeutic strategies for rhinitis.
Collapse
Affiliation(s)
- Zouina Sarfraz
- Department of Medicine, Fatima Jinnah Medical University, Lahore, Pakistan
| | - Azza Sarfraz
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, SD, Pakistan
| | - Ivan Cherrez-Ojeda
- Department of Allergy and Pulmnology, Universidad Espíritu Santo, Samborondón, Guayas, Ecuador
| |
Collapse
|
17
|
Storni F, Vogel M, Bachmann MF, Engeroff P. IgG in the control of FcεRI activation: a battle on multiple fronts. Front Immunol 2024; 14:1339171. [PMID: 38274816 PMCID: PMC10808611 DOI: 10.3389/fimmu.2023.1339171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
The rising global incidence of IgE-mediated allergic reactions poses a significant challenge to the quality of life of affected individuals and to healthcare systems, with current treatments being limited in effectiveness, safety, and disease-modifying capabilities. IgE acts by sensitizing the high-affinity IgE receptor FcεRI expressed by mast cells and basophils, tuning these cells for inflammatory degranulation in response to future allergen encounters. In recent years, IgG has emerged as an essential negative regulator of IgE-dependent allergic inflammation. Mechanistically, studies have proposed different pathways by which IgG can interfere with the activation of IgE-mediated inflammation. Here, we briefly summarize the major proposed mechanisms of action by which IgG controls the IgE-FcεRI inflammatory axis and how those mechanisms are currently applied as therapeutic interventions for IgE-mediated inflammation.
Collapse
Affiliation(s)
- Federico Storni
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Monique Vogel
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
| | - Martin F. Bachmann
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
| | - Paul Engeroff
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
| |
Collapse
|
18
|
Kumar B, Deshmukh R. A Review on Novel Therapeutic Modalities and Evidence-based Drug Treatments against Allergic Rhinitis. Curr Pharm Des 2024; 30:887-901. [PMID: 38486383 DOI: 10.2174/0113816128295952240306072100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/20/2024] [Indexed: 06/21/2024]
Abstract
Allergic rhinitis (AR) is an IgE-mediated atopic disease that occurs due to inhaled antigens in the immediate phase. Misdiagnosis, insufficient treatment, or no treatment at all are frequent problems associated with the widespread condition known as chronic allergic rhinitis. AR symptoms include runny, itchy, stuffy, and sneezing noses. Asthma and nasal polyps, for example, sometimes occur simultaneously in patients. In order for people living with AR to be as comfortable and productive as possible, treatment should center on reducing their symptoms. The online sources and literature, such as Pubmed, ScienceDirect, and Medline, were reviewed to gather information regarding therapeutic modalities of AR and evidence-based treatments for the disease as the objectives of the present study. An increasing number of people are suffering from AR, resulting in a heavy financial and medical burden on healthcare systems around the world. Undertreating AR frequently results in a decline in quality of life. Treatment compliance is a critical challenge in the administration of AR. Innovative therapies are needed for RA to provide patients with symptom alleviation that is less expensive, more effective, and longer duration of action. Evidence-based guidelines are helpful for managing AR illness. Treating AR according to evidence-based standards can help in disease management. AR treatment includes allergen avoidance, drug therapy, immunotherapy, patient education, and follow-up. However, AR treatment with intranasal corticosteroids is more popular. Hence, in this review article, treatment options for AR are discussed in depth. We also discussed the incidence, causes, and new treatments for this clinical condition.
Collapse
Affiliation(s)
- Bhupendra Kumar
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Rohitas Deshmukh
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
19
|
Ma J, Zhao K, Zhu Y, Xu W, Huang J, Wei X, Zhao Z. Bibliometric analysis of monoclonal antibodies for atherosclerosis. Hum Vaccin Immunother 2023; 19:2266926. [PMID: 37905896 PMCID: PMC10760398 DOI: 10.1080/21645515.2023.2266926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/01/2023] [Indexed: 11/02/2023] Open
Abstract
Atherosclerosis (AS) is a prevalent cardiovascular disease that greatly increases mortality in the aging population and imposes a heavy burden on global healthcare systems. The purpose of this study is to examine the research structure and current trends of monoclonal antibodies (mAbs) against AS from a bibliometric perspective, since the development of these drugs is currently booming. This study collected articles and reviews on mAbs against AS from the Web of Science Core Collection, spanning from 2003 to 2022. Biblioshiny was utilized to analyze and visualize the characteristics of countries, regions, authors, institutions, and journals included in this collection. We used VOS viewer to illustrate the frequency of country co-occurrence, and CiteSpace to visualize co-cited reference, keywords co-occurrence, keywords citation bursts, keywords clustering and timeline plots. The study included 1325 publications, with the United States emerging as a leading contributor to the field. ATHEROSCLEROSIS, CIRCULATION and ARTERIOSCLEROSISTHROMBOSIS AND VASCULAR BIOLOGY are core journals that publish high-quality literature on the latest advances in the field. Noteworthy authors with numerous high-quality publications include Witztum JL and Tsimikas S. Currently, lipid metabolism and inflammation are the main research areas of interest in this field. The mAbs against AS is an evolving field, and ongoing research continues to advance our understanding. This paper provides a comprehensive overview of the current state of knowledge in this area, highlighting two primary research directions: inflammation and lipid metabolism. Additionally, the paper identifies emerging research hotspots, which will provide researchers with useful insights to guide future investigations and anticipate research directions.
Collapse
Affiliation(s)
- Jiqing Ma
- Department of Vascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Kaiwen Zhao
- Department of Vascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yalin Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Anesthesiology, Naval Hospital of Eastern Theater, Zhoushan, China
| | - Wen Xu
- Department of Anesthesiology, Naval Hospital of Eastern Theater, Zhoushan, China
| | - Jie Huang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaolong Wei
- Department of Vascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhiqing Zhao
- Department of Vascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
20
|
Fernandes LGR, Spillner E, Jakob T. Potential and limitations of epitope mapping and molecular targeting in Hymenoptera venom allergy. FRONTIERS IN ALLERGY 2023; 4:1327391. [PMID: 38162556 PMCID: PMC10755883 DOI: 10.3389/falgy.2023.1327391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Hymenoptera venom (HV) allergy can lead to life threatening conditions by specific IgE (sIgE)-mediated anaphylactic reactions. The knowledge about major allergens from venom of different clinically relevant species increased in the last decades, allowing the development of component-resolved diagnostics in which sIgE to single allergens is analysed. Despite these advances, the precise regions of the allergens that bind to IgE are only known for few HV allergens. The detailed characterization of IgE epitopes may provide valuable information to improve immunodiagnostic tests and to develop new therapeutic strategies using allergen-derived peptides or other targeted approaches. Epitope-resolved analysis is challenging, since the identification of conformational epitopes present in many allergens demands complex technologies for molecular analyses. Furthermore, functional analysis of the epitopeś interaction with their respective ligands is needed to distinguish epitopes that can activate the allergic immune response, from those that are recognized by irrelevant antibodies or T cell receptors from non-effector cells. In this review, we focus on the use of mapping and molecular targeting approaches for characterization of the epitopes of the major venom allergens of clinically relevant Hymenoptera species. The screening of the most relevant allergen peptides by epitope mapping could be helpful for the development of molecules that target major and immunodominant epitopes blocking the allergen induced cellular reactions as novel approach for the treatment of HV allergy.
Collapse
Affiliation(s)
- Luís Gustavo Romani Fernandes
- Experimental Dermatology and Allergy Research Group, Department of Dermatology and Allergology, University Medical Center Gießen-Marburg, Justus Liebig University Gießen, Gießen, Germany
- Laboratory of Translational Immunology, Internal Medicine Department, School of Medical Sciences, State University of Campinas, Campinas-SP, Brazil
| | - Edzard Spillner
- Immunological Biotechnology, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Thilo Jakob
- Experimental Dermatology and Allergy Research Group, Department of Dermatology and Allergology, University Medical Center Gießen-Marburg, Justus Liebig University Gießen, Gießen, Germany
| |
Collapse
|
21
|
Brazhnikov G, Smolnikov E, Litovkina A, Jiang T, Shatilov A, Tulaeva I, Tulaev M, Karaulov A, Poroshina A, Zhernov Y, Focke‐Tejkl M, Weber M, Akinfenwa O, Elisyutina O, Andreev S, Shilovskiy I, Shershakova N, Smirnov V, Fedenko E, Lepeshkova TS, Beltyukov EC, Naumova VV, Kundi M, Khaitov M, Wiedermann U, Valenta R, Campana R. Natural human Bet v 1-specific IgG antibodies recognize non-conformational epitopes whereas IgE reacts with conformational epitopes. Allergy 2023; 78:3136-3153. [PMID: 37701941 PMCID: PMC10952721 DOI: 10.1111/all.15865] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND The nature of epitopes on Bet v 1 recognized by natural IgG antibodies of birch pollen allergic patients and birch pollen-exposed but non-sensitized subjects has not been studied in detail. OBJECTIVE To investigate IgE and IgG recognition of Bet v 1 and to study the effects of natural Bet v 1-specific IgG antibodies on IgE recognition of Bet v 1 and Bet v 1-induced basophil activation. METHODS Sera from birch pollen allergic patients (BPA, n = 76), allergic patients without birch pollen allergy (NBPA, n = 40) and non-allergic individuals (NA, n = 48) were tested for IgE, IgG as well as IgG1 and IgG4 reactivity to folded recombinant Bet v 1, two unfolded recombinant Bet v 1 fragments comprising the N-terminal (F1) and C-terminal half of Bet v 1 (F2) and unfolded peptides spanning the corresponding sequences of Bet v 1 and the apple allergen Mal d 1 by ELISA or micro-array analysis. The ability of Bet v 1-specific serum antibodies from non-allergic subjects to inhibit allergic patients IgE or IgG binding to rBet v 1 or to unfolded Bet v 1-derivatives was assessed by competition ELISAs. Furthermore, the ability of serum antibodies from allergic and non-allergic subjects to modulate Bet v 1-induced basophil activation was investigated using rat basophilic leukaemia cells expressing the human FcεRI which had been loaded with IgE from BPA patients. RESULTS IgE antibodies from BPA patients react almost exclusively with conformational epitopes whereas IgG, IgG1 and IgG4 antibodies from BPA, NBPA and NA subjects recognize mainly unfolded and sequential epitopes. IgG competition studies show that IgG specific for unfolded/sequential Bet v 1 epitopes is not inhibited by folded Bet v 1 and hence the latter seem to represent cryptic epitopes. IgG reactivity to Bet v 1 peptides did not correlate with IgG reactivity to the corresponding Mal d 1 peptides and therefore does not seem to be a result of primary sensitization to PR10 allergen-containing food. Natural Bet v 1-specific IgG antibodies inhibited IgE binding to Bet v 1 only poorly and could even enhance Bet v 1-specific basophil activation. CONCLUSION IgE and IgG antibodies from BPA patients and birch pollen-exposed non-sensitized subjects recognize different epitopes. These findings explain why natural allergen-specific IgG do not protect against allergic symptoms and suggest that allergen-specific IgE and IgG have different clonal origin.
Collapse
Affiliation(s)
- Georgii Brazhnikov
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Evgenii Smolnikov
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
- Department of Immunology, Institute of MedicineRUDN UniversityMoscowRussia
| | - Alla Litovkina
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
- Department of Immunology, Institute of MedicineRUDN UniversityMoscowRussia
| | - Tianchi Jiang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Artem Shatilov
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
| | - Inna Tulaeva
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- Laboratory of Immunopathology, Department of Clinical Immunology and AllergologyI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | - Mikhail Tulaev
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and AllergologyI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | - Alina Poroshina
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
| | - Yury Zhernov
- F. Erismann Institute of Public HealthI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | - Margarete Focke‐Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- Karl Landsteiner University of Health SciencesKremsAustria
| | - Milena Weber
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Oluwatoyin Akinfenwa
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Olga Elisyutina
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
- Department of Immunology, Institute of MedicineRUDN UniversityMoscowRussia
| | - Sergey Andreev
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
| | - Igor Shilovskiy
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
| | - Nadezhda Shershakova
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
| | - Valeriy Smirnov
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
| | - Elena Fedenko
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
| | | | - Evgeny Cronidovich Beltyukov
- Department of Faculty Therapy, Endocrinology, Allergology and ImmunologyUral State Medical UniversityYekaterinburgRussia
| | - Veronika Victorovna Naumova
- Department of Faculty Therapy, Endocrinology, Allergology and ImmunologyUral State Medical UniversityYekaterinburgRussia
| | - Michael Kundi
- Institute for Hygiene and Applied Immunology, Center for Public HealthMedical University of ViennaViennaAustria
| | - Musa Khaitov
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
- Pirogov Russian National Research Medical UniversityMoscowRussia
| | - Ursula Wiedermann
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
- Laboratory of Immunopathology, Department of Clinical Immunology and AllergologyI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
- Karl Landsteiner University of Health SciencesKremsAustria
| | - Raffaela Campana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
22
|
Yang M, Sun L, Zhu D, Meng C, Sha J. Recent advances in understanding the effects of T lymphocytes on mucosal barrier function in allergic rhinitis. Front Immunol 2023; 14:1224129. [PMID: 37771581 PMCID: PMC10523012 DOI: 10.3389/fimmu.2023.1224129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/27/2023] [Indexed: 09/30/2023] Open
Abstract
Allergic rhinitis is a non-infectious chronic inflammatory disease of the nasal mucosa that affects T cells and their cytokines. T cells play significant roles in the development of allergic inflammatory diseases by orchestrating mechanisms underlying innate and adaptive immunity. Although many studies on allergic rhinitis have focused on helper T cells, molecular makeup, and pathogenesis-related transduction pathways, pathological mechanisms have not yet been completely explored. Recent studies have suggested that T cell status may play an important role in the interaction between T cells and the nasal mucosal barrier in allergic rhinitis. This study aimed to explore the interactions between T cells and nasal mucosal barriers in allergic rhinitis and to review the therapeutic modalities of pertinent biological agents involving T cells.
Collapse
Affiliation(s)
- Maolin Yang
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liwei Sun
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases (20190901003JC), Changchun, China
| | - Dongdong Zhu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases (20190901003JC), Changchun, China
| | - Cuida Meng
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases (20190901003JC), Changchun, China
| | - Jichao Sha
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases (20190901003JC), Changchun, China
| |
Collapse
|
23
|
Devadoss D, Surbaugh K, Manevski M, Wickramaratne C, Chaput D, Chung A, de Leon F, Chand HS, Dhau JS. Indoor-air purification by photoelectrochemical oxidation mitigates allergic airway responses to aerosolized cat dander in a murine model. Sci Rep 2023; 13:10980. [PMID: 37414804 PMCID: PMC10325967 DOI: 10.1038/s41598-023-38155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023] Open
Abstract
Portable air purifiers help improve indoor air quality by neutralizing allergens, including animal dander proteins. However, there are limited in-vivo models to assess the efficacy of these devices. Here, we developed a novel animal model of experimental asthma using aerosolized cat dander extract (CDE) exposure and compared the efficacy of select air purification technologies. Mice were exposed to CDE aerosols for 6 weeks in separate custom-built whole-body exposure chambers equipped with either a photoelectrochemical oxidative (PECO) Molekule filtration device (PFD) or a HEPA-assisted air filtration device (HFD) along with positive (a device with no filtration capability) and negative controls. Compared to the positive control group, the CDE-induced airway resistance, and plasma IgE and IL-13 levels were significantly reduced in both air purifier groups. However, PFD mice showed a better attenuation of lung tissue mucous hyperplasia and eosinophilia than HFD and positive control mice, indicating a better efficacy in managing CDE-induced allergic responses. Cat dander protein destruction was evaluated by LCMS proteomic analysis, which revealed the degradation of 2731 unique peptides on PECO media in 1 h. Thus, allergen protein destruction on filtration media enhances air purifier efficacy that could provide relief from allergy responses compared to traditional HEPA-based filtration alone.
Collapse
Affiliation(s)
- Dinesh Devadoss
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA.
| | - Kerri Surbaugh
- Research and Development, Molekule Group, Inc., 3802 Spectrum Blvd, Tampa, FL, 33612, USA
| | - Marko Manevski
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA
| | - Chatura Wickramaratne
- Research and Development, Molekule Group, Inc., 3802 Spectrum Blvd, Tampa, FL, 33612, USA
| | - Dale Chaput
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33612, USA
| | - Arianne Chung
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA
| | - Francisco de Leon
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA
| | - Hitendra S Chand
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA
| | - Jaspreet S Dhau
- Research and Development, Molekule Group, Inc., 3802 Spectrum Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
24
|
Šošić L, Paolucci M, Flory S, Jebbawi F, Kündig TM, Johansen P. Allergen immunotherapy: progress and future outlook. Expert Rev Clin Immunol 2023:1-25. [PMID: 37122076 DOI: 10.1080/1744666x.2023.2209319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
INTRODUCTION Allergy, the immunological hypersensitivity to innocuous environmental compounds, is a global health problem. The disease triggers, allergens, are mostly proteins contained in various natural sources such as plant pollen, animal dander, dust mites, foods, fungi and insect venoms. Allergies can manifest with a wide range of symptoms in various organs, and be anything from just tedious to life-threatening. A majority of all allergy patients are self-treated with symptom-relieving medicines, while allergen immunotherapy (AIT) is the only causative treatment option. AREAS COVERED This review will aim to give an overview of the state-of-the-art allergy management, including the use of new biologics and the application of biomarkers, and a special emphasis and discussion on current research trends in the field of AIT. EXPERT OPINION Conventional AIT has proven effective, but the years-long treatment compromises patient compliance. Moreover, AIT is typically not offered in food allergy. Hence, there is a need for new, effective and safe AIT methods. Novel routes of administration (e.g. oral and intralymphatic), hypoallergenic AIT products and more effective adjuvants holds great promise. Most recently, the development of allergen-specific monoclonal antibodies for passive immunotherapy may also allow treatment of patients currently not treated or treatable.
Collapse
Affiliation(s)
- Lara Šošić
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Marta Paolucci
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Stephan Flory
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Fadi Jebbawi
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Pål Johansen
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| |
Collapse
|
25
|
Lin Y, Wang W, Zhu Z, Aodeng S, Wang L, Liu Y, Li J, Zha Y, Wang X, Lv W. Adverse Events for Monoclonal Antibodies in Patients with Allergic Rhinitis: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J Clin Med 2023; 12:2848. [PMID: 37109185 PMCID: PMC10144224 DOI: 10.3390/jcm12082848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background: Allergic rhinitis (AR) is a common disease in otolaryngology and novel biological therapies are required for clinical needs. To assess the tolerability of monoclonal antibodies, justifying their clinical applications, we presented a comprehensive safety profile of biologics in AR; (2) Methods: A systematic literature search was conducted following PRISMA guidelines for randomized clinical trials comparing monoclonal antibodies and placebo in AR. PubMed, Web of Science, Medline, and Cochrane were searched up until 9 January 2023. Among 3590 records in total, 12 studies with more than 2600 patients were included. Quality was assessed for all studies using Cochrane risk-of-bias tool for randomized trials, and subgrouped meta-analysis was performed; (3) Results: We accomplished an up-to-date literature overview and analysis on adverse events of monoclonal antibodies in AR. Total, common, severe, discontinuation-causing, and serious adverse events failed to reach statistical significance. Country was an essential factor for heterogeneity, and urticaria was the adverse event at highest risk (RR 2.81, 95% CI 0.79-9.95); (4) Conclusions: Monoclonal antibodies are considered well tolerated and relatively safe in patients with AR. The regions of patients and hypersensitive adverse reactions such as urticaria require a special caution in biological treatments in AR.
Collapse
Affiliation(s)
- Yuxi Lin
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100006, China
| | - Weiqing Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100006, China
| | - Zhenzhen Zhu
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100006, China
| | - Surita Aodeng
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100006, China
| | - Lei Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100006, China
| | - Yuzhuo Liu
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100006, China
| | - Jingjing Li
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100006, China
| | - Yang Zha
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100006, China
| | - Xiaowei Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100006, China
| | - Wei Lv
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100006, China
| |
Collapse
|
26
|
Weichwald C, Zettl I, Ellinger I, Niespodziana K, Waltl EE, Villazala-Merino S, Ivanov D, Eckl-Dorna J, Niederberger-Leppin V, Valenta R, Flicker S. Antibody Conjugates Bispecific for Pollen Allergens and ICAM-1 with Potential to Prevent Epithelial Allergen Transmigration and Rhinovirus Infection. Int J Mol Sci 2023; 24:ijms24032725. [PMID: 36769047 PMCID: PMC9917280 DOI: 10.3390/ijms24032725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Allergy and rhinovirus (RV) infections are major triggers for rhinitis and asthma, causing a socioeconomic burden. As RVs and allergens may act synergistically to promote airway inflammation, simultaneous treatment strategies for both causative agents would be innovative. We have previously identified the transmembrane glycoprotein intercellular adhesion molecule 1 (ICAM-1) as an anchor for antibody conjugates bispecific for ICAM-1 and Phleum pratense (Phl p) 2, a major grass pollen allergen, to block allergen transmigration through the epithelial barrier. Since ICAM-1 is a receptor for the major group RVs, we speculated that our bispecific antibody conjugates may protect against RV infection. Therefore, we created antibody conjugates bispecific for ICAM-1 and the major grass pollen allergen Phl p 5 and analyzed their capacity to affect allergen penetration and RV infection. Bispecific antibody conjugates significantly reduced the trans-epithelial migration of Phl p 5 and thus the basolateral Phl p 5 concentration and allergenic activity as determined by humanized rat basophilic leukemia cells and inhibited RV infection of cultured epithelial cells. A reduction in allergenic activity was obtained only through the prevention of allergen transmigration because the Phl p 5-specific IgG antibody did not block the allergen-IgE interaction. Our results indicate the potential of allergen/ICAM-1-specific antibody conjugates as a topical treatment strategy for allergy and RV infections.
Collapse
Affiliation(s)
- Christina Weichwald
- Division of Immunopathology, Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ines Zettl
- Division of Immunopathology, Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Isabella Ellinger
- Division of Cellular and Molecular Pathophysiology, Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Katarzyna Niespodziana
- Division of Immunopathology, Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Eva E. Waltl
- Department of Otorhinolaryngology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Daniel Ivanov
- Division of Immunopathology, Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Julia Eckl-Dorna
- Department of Otorhinolaryngology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Rudolf Valenta
- Division of Immunopathology, Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
- National Research Centre (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, 115478 Moscow, Russia
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Sabine Flicker
- Division of Immunopathology, Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40400-51150
| |
Collapse
|
27
|
Janeczek K, Kowalska W, Zarobkiewicz M, Suszczyk D, Mikołajczyk M, Markut-Miotła E, Morawska-Michalska I, Bakiera A, Tomczak A, Kaczyńska A, Emeryk A, Roliński J, Piotrowska-Weryszko K. Effect of immunostimulation with bacterial lysate on the clinical course of allergic rhinitis and the level of γδT, iNKT and cytotoxic T cells in children sensitized to grass pollen allergens: A randomized controlled trial. Front Immunol 2023; 14:1073788. [PMID: 36733480 PMCID: PMC9887322 DOI: 10.3389/fimmu.2023.1073788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND There are many drugs for allergic rhinitis (AR), however, these drugs show variable clinical effectiveness and some side effects. Therefore, new methods of AR pharmacotherapy are being sought. OBJECTIVES The objectives of this study were to evaluate the efficacy of polyvalent mechanical bacterial lysate (PMBL) therapy in improving the clinical course of grass pollen-induced AR (seasonal AR, SAR) in children and its effect on changes in the blood level of the γδT, iNKT and cytotoxic T cell subsets. METHODS Fifty children with SAR were enrolled in this study and were randomly assigned to either the PMBL group or the placebo group. The severity of SAR symptoms was assessed using the total nasal symptom score (TNSS) and visual analogue scale (VAS). During two visits (V1, V2), peak nasal inspiratory flow (PNIF) was measured and peripheral blood was collected for immunological analyses. The study also included 2 telephone contacts (TC1, TC2). RESULTS The severity of the nasal symptoms of SAR on the TNSS scale was revealed to have a significantly lower impact in the PMBL group vs the placebo group at measuring points TC1 and V2 (p = 0.01, p = 0.009, respectively). A statistically significantly lower mean severity of nasal symptoms of SAR on the VAS scale was recorded for children in the PMBL group compared to the placebo group at measuring points TC1, V2 and TC2 (p = 0.04, p = 0.04, p = 0.03, respectively). The compared groups do not show significant differences in terms of PNIF values at individual measuring points. There were no statistically significant changes in immune variables. For both groups, there was a statistically significant association between the level of Th1-like γδT cells and the severity of SAR symptoms expressed on the TNSS scale (p = 0.03) - the lower the level of Th1-like γδT cells, the higher the TNSS value. CONCLUSION Administration of sublingual PMBL tablets during the grass pollen season proves to have a high efficacy in alleviating SAR symptoms in children sensitized to grass pollen allergens. Th1-like γδT cells may be used as potential markers for SAR severity in children. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, identifier (NCT04802616).
Collapse
Affiliation(s)
- Kamil Janeczek
- Department of Pulmonary Diseases and Children Rheumatology, Medical University of Lublin, Lublin, Poland
| | - Wioleta Kowalska
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| | - Michał Zarobkiewicz
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| | - Dorota Suszczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Lublin, Poland
| | - Marek Mikołajczyk
- Department of Allergology, Voivodeship Rehabilitation Hospital for Children in Ameryka, Olsztynek, Poland
| | - Ewa Markut-Miotła
- Department of Pulmonary Diseases and Children Rheumatology, Medical University of Lublin, Lublin, Poland
| | | | - Adrian Bakiera
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Tomczak
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Kaczyńska
- Department of Pulmonary Diseases and Children Rheumatology, Medical University of Lublin, Lublin, Poland
| | - Andrzej Emeryk
- Department of Pulmonary Diseases and Children Rheumatology, Medical University of Lublin, Lublin, Poland
| | - Jacek Roliński
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
28
|
REGN1908/1909 prevented cat allergen-induced early asthmatic responses in an environmental exposure unit. J Allergy Clin Immunol 2022; 150:1437-1446. [PMID: 35934082 DOI: 10.1016/j.jaci.2022.06.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND The dominant allergen in cat dander, Felis domesticus allergen 1 (Fel d 1), is a persistent trigger for allergic rhinitis and asthma symptoms. OBJECTIVE We evaluated the efficacy of Fel d 1 monoclonal antibodies (REGN1908/1909) in preventing cat allergen-induced early asthmatic responses (EARs) in cat-allergic patients with mild asthma. METHODS Patients were randomized to single-dose REGN1908/1909 600 mg (n = 29) or placebo (n = 27). The FEV1 was measured for up to 4 hours in a cat allergen environmental exposure unit up to 85 days after dosing. Assessments included between-group differences in change from baseline in FEV1 area under the curve (AUC; 0-2 hours) and incidence of EAR (FEV1 reduction ≥20%). TRIAL REGISTRATION NCT03838731. RESULTS Single-dose REGN1908/1909 significantly prevented reductions in FEV1 on days 8, 29, 57, and 85. Most REGN1908/1909 patients did not have an EAR by 4 hours (the last time point tested). In contrast, placebo-treated patients experienced a ≥20% mean FEV1 reduction on days 8, 29, 57, and 85 after dosing, with most experiencing an EAR within 1 hour. REGN1908/1909-treated patients tolerated 3-fold higher allergen quantities (P < .05 at all time points) versus placebo. REGN1908/1909 substantially reduced skin test reactivity to cat allergen versus placebo at all time points tested (nominal P < .001). REGN1908/1909 was generally well tolerated; no serious adverse events or deaths were reported. CONCLUSION Single-dose REGN1908/1909 significantly prevented reductions in FEV1 in cat-allergic patients with mild asthma on cat allergen environmental exposure unit exposure at 8 days and up to 85 days after dose.
Collapse
|
29
|
Zhang Y, Lan F, Zhang L. Update on pathomechanisms and treatments in allergic rhinitis. Allergy 2022; 77:3309-3319. [PMID: 35892225 DOI: 10.1111/all.15454] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/10/2022] [Accepted: 07/23/2022] [Indexed: 01/28/2023]
Abstract
Allergic rhinitis (AR) is a global health problem with increasing prevalence and association with an enormous medical and socioeconomic burden. New recognition of immune cells such as type 2 innate lymphocytes (ILC2s), T helper (Th2) 2 cells, follicular helper T cells, follicular regulatory T cells, regulatory T cells, B cells, dendritic cells, and epithelial cells in AR pathogenesis has been updated in this review paper. An in-depth understanding of the mechanisms underlying AR will aid the identification of biomarkers associated with disease and ultimately provide valuable parameters critical to guide personalized targeted therapy. As the only etiological treatment option for AR, allergen-specific immunotherapy (AIT) has attracted increasing attention, with evidence for effectiveness of AIT recently demonstrated in several randomized controlled trials and long-term real-life studies. The exploration of biologics as therapeutic options has only involved anti-IgE and anti-type 2 inflammatory agents; however, the cost-effectiveness of these agents remains to be elucidated precisely. In the midst of the currently on-going COVID-19 pandemic, a global life-threatening disease, although some studies have indicated that AR is not a risk factor for severity and mortality of COVID-19, this needs to be confirmed in multi-centre, real-life studies of AR patients from different parts of the world.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Feng Lan
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Atanasio A, Orengo JM, Sleeman MA, Stahl N. Biologics as novel therapeutics for the treatment of allergy: Challenges and opportunities. FRONTIERS IN ALLERGY 2022; 3:1019255. [DOI: 10.3389/falgy.2022.1019255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Over the last 4 decades there has been a significant global increase in the incidence and prevalence of IgE-mediated allergy. Although much progress has been made in the management of allergy via patient education, pharmacotherapy and immunomodulatory treatment regimens, significant unmet need remains. Advancements in our knowledge base surrounding the type 2 immune response, production of IgE and maintenance of immunological memory has led the field to explore targeted intervention of allergic pathways using monoclonal antibodies (mAbs). Intervention at various stages of the allergic cascade offers the opportunity to prevent initiation and/or maintenance of the type 2 immune response and effectively provide therapeutic benefit to patients. Furthermore, a better understanding of the protective mechanisms involved in allergen specific immunotherapy (AIT) has led us to appreciate the interplay of immunoglobulins in the allergic response, specifically the benefit in shifting the IgG:IgE ratio in favor of functionally relevant blocking IgG. Thus, treatments that lower IgE or boost IgG with the ability to outcompete IgE binding to allergen also present a favorable approach in the treatment of allergy. In this short review we discuss and highlight recent advances in the use of biologics to treat severe allergy, highlighting the key challenges but also the significant opportunities and advances to date.
Collapse
|
31
|
Abstract
Allergen immunotherapy is a form of therapeutic vaccination for established IgE-mediated hypersensitivity to common allergen sources such as pollens, house dust mites and the venom of stinging insects. The classical protocol, introduced in 1911, involves repeated subcutaneous injection of increasing amounts of allergen extract, followed by maintenance injections over a period of 3 years, achieving a form of allergen-specific tolerance that provides clinical benefit for years after its discontinuation. More recently, administration through the sublingual route has emerged as an effective, safe alternative. Oral immunotherapy for peanut allergy induces effective ‘desensitization’ but not long-term tolerance. Research and clinical trials over the past few decades have elucidated the mechanisms underlying immunotherapy-induced tolerance, involving a reduction of allergen-specific T helper 2 (TH2) cells, an induction of regulatory T and B cells, and production of IgG and IgA ‘blocking’ antibodies. To better harness these mechanisms, novel strategies are being explored to achieve safer, effective, more convenient regimens and more durable long-term tolerance; these include alternative routes for current immunotherapy approaches, novel adjuvants, use of recombinant allergens (including hypoallergenic variants) and combination of allergens with immune modifiers or monoclonal antibodies targeting the TH2 cell pathway. Durham and Shamji review the history and future of allergen immunotherapy for established IgE-mediated hypersensitivity to common allergens. They describe the mechanisms of immunotherapy-induced tolerance and the new strategies being explored to achieve safer, more effective, long-term tolerance.
Collapse
|
32
|
Liu Y, Liu Z. Epidemiology, Prevention and Clinical Treatment of Allergic Rhinitis: More Understanding, Better Patient Care. J Clin Med 2022; 11:jcm11206062. [PMID: 36294381 PMCID: PMC9605427 DOI: 10.3390/jcm11206062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022] Open
Abstract
Allergic rhinitis (AR) is a noninfectious inflammatory disease of the nasal mucosa mediated by IgE after atopic individuals are exposed to inhaled allergens and involving a variety of immune cells and cytokines [...].
Collapse
Affiliation(s)
- Yang Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan 430030, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan 430030, China
- Correspondence:
| |
Collapse
|
33
|
Smeekens JM, Kesselring JR, Frizzell H, Bagley KC, Kulis MD. Induction of food-specific IgG by Gene Gun-delivered DNA vaccines. FRONTIERS IN ALLERGY 2022; 3:969337. [PMID: 36340020 PMCID: PMC9632862 DOI: 10.3389/falgy.2022.969337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
Background Shellfish and tree nut allergies are among the most prevalent food allergies, now affecting 2%–3% and 1% of the US population, respectively. Currently, there are no approved therapies for shellfish or tree nut allergies, with strict avoidance being the standard of care. However, oral immunotherapy for peanut allergy and subcutaneous immunotherapy for environmental allergens are efficacious and lead to the production of allergen-specific IgG, which causes suppression of allergen effector cell degranulation. Since allergen-specific IgG is a desired response to alleviate IgE-mediated allergies, we tested transcutaneously-delivered DNA vaccines targeting shellfish and tree nut allergens for their ability to induce antigen-specific IgG, which would have therapeutic potential for food allergies. Methods We assessed Gene Gun-delivered DNA vaccines targeting either crustacean shellfish or walnut/pecan allergens, with or without IL-12, in naïve mice. Three strains of mice, BALB/cJ, C3H/HeJ and CC027/GeniUnc, were evaluated for IgG production following vaccination. Vaccines were administered twice via Gene Gun, three weeks apart and then blood was collected three weeks following the final vaccination. Results Vaccination with shellfish allergen DNA led to increased shrimp-specific IgG in all three strains, with the highest production in C3H/HeJ from the vaccine alone, whereas the vaccine with IL-12 led to the highest IgG production in BALB/cJ and CC027/GeniUnc mice. Similar IgG production was also induced against lobster and crab allergens. For walnut/pecan vaccines, BALB/cJ and C3H/HeJ mice produced significantly higher walnut- and pecan-specific IgG with the vaccine alone compared to the vaccine with IL-12, while the CC027 mice made significantly higher IgG with the addition of IL-12. Notably, intramuscular administration of the vaccines did not lead to increased antigen-specific IgG production, indicating that Gene Gun administration is a superior delivery modality. Conclusions Overall, these data demonstrate the utility of DNA vaccines against two lifelong food allergies, shellfish and tree nuts, suggesting their potential as a food allergy therapy in the future.
Collapse
Affiliation(s)
- Johanna M. Smeekens
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- UNC Food Allergy Initiative, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- Correspondence: Johanna M. Smeekens
| | - Janelle R. Kesselring
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- UNC Food Allergy Initiative, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | | | | | - Michael D. Kulis
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- UNC Food Allergy Initiative, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
34
|
Investigational Treatments in Phase I and II Clinical Trials: A Systematic Review in Asthma. Biomedicines 2022; 10:biomedicines10092330. [PMID: 36140430 PMCID: PMC9496184 DOI: 10.3390/biomedicines10092330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Inhaled corticosteroids (ICS) remain the mainstay of asthma treatment, along with bronchodilators serving as control agents in combination with ICS or reliever therapy. Although current pharmacological treatments improve symptom control, health status, and the frequency and severity of exacerbations, they do not really change the natural course of asthma, including disease remission. Considering the highly heterogeneous nature of asthma, there is a strong need for innovative medications that selectively target components of the inflammatory cascade. The aim of this review was to systematically assess current investigational agents in Phase I and II randomised controlled trials (RCTs) over the last five years. Sixteen classes of novel therapeutic options were identified from 19 RCTs. Drugs belonging to different classes, such as the anti-interleukin (IL)-4Rα inhibitors, anti-IL-5 monoclonal antibodies (mAbs), anti-IL-17A mAbs, anti-thymic stromal lymphopoietin (TSLP) mAbs, epithelial sodium channel (ENaC) inhibitors, bifunctional M3 receptor muscarinic antagonists/β2-adrenoceptor agonists (MABAs), and anti-Fel d 1 mAbs, were found to be effective in the treatment of asthma, with lung function being the main assessed outcome across the RCTs. Several novel investigational molecules, particularly biologics, seem promising as future disease-modifying agents; nevertheless, further larger studies are required to confirm positive results from Phase I and II RCTs.
Collapse
|
35
|
Morita H, Matsumoto K, Saito H. Review of biologics in allergy and immunology. J Allergy Clin Immunol 2022; 150:766-777. [PMID: 36058723 DOI: 10.1016/j.jaci.2022.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 10/14/2022]
Abstract
Biologics or molecularly targeted drugs are often highly effective for the treatment of allergic diseases and other immunologic disorders, and they are relatively safe for short-term use as compared with conventional approaches such as the systemic use of corticosteroids. A number of studies published in 2021 consistently demonstrated their effectiveness and also revealed unanticipated findings. Among them, clinical trials for asthma and chronic obstructive pulmonary disease using biologics targeting thymic stromal lymphopoietin, IL-33, and IL-33 receptor demonstrated that these type 2 alarmin cytokines are also involved in non-type 2, noneosinophilic inflammation. Randomized controlled trials reporting the efficacies of 2 small-molecule oral drugs targeting Janus kinase-1 had a substantial impact on the management of atopic dermatitis. These drugs demonstrated superiority over dupilumab, which has previously demonstrated efficacy and is in wide use in clinical practice. As a concern, biologics are generally costly, and it should be noted that racial/ethnic minority populations may be less likely to receive biologics in the real world. Here, we have reviewed recent clinical trials and related topics dealing with the effects of biologics on allergic and immunologic diseases; in addition, we discuss how our understanding of the pathophysiology of these disorders has progressed.
Collapse
Affiliation(s)
- Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Allergy Center, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
36
|
Hu Y, Wang Y, Lin J, Wu S, Muyldermans S, Wang S. Versatile Application of Nanobodies for Food Allergen Detection and Allergy Immunotherapy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8901-8912. [PMID: 35820160 DOI: 10.1021/acs.jafc.2c03324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The unique characteristics of camelid heavy-chain only antibody (HCAb) derived nanobodies (Nbs) have facilitated their employment as tools for research and application in extensive fields including food safety inspection, diagnosis and therapy of diseases, etc., to develop immune detecting techniques or alternative candidates of conventional antibodies as diagnostic and therapeutic reagents. The wide application in the fields of food allergen inspection and immunotherapy has not been addressed as not much results published in the literature. The robust properties and straightforward selecting strategy of Nbs impel the advantageous employment compared with monoclonal antibodies (mAbs) to establish immunoassay and serve as blocking antibodies to compete immunoglobulin E (IgE) binding epitopes on food allergens. More and more efforts have been invested to develop specific Nbs against food allergen proteins, such as macadamia allergen of Mac i 1, peanut allergen of Ara h 3, and lupine allergen of Lup an 1, which demonstrated the potential of Nbs for research and application in food allergen surveillance. Meanwhile, the paratopes of Nbs preferably targeting the unique epitopes of food allergens can provide more possibilities to serve as blocking antibodies to shield IgE binding epitopes for food allergy immunotherapy. Regardless, the research and application of Nbs in the field of food allergen and allergic reactions are expected to attract dramatic focus and produce promising research outputs.
Collapse
Affiliation(s)
- Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing Lin
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Sihao Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
37
|
Xiang F, Zeng Z, Wang L, Yang YP, Zhang QX. Polymorphisms and AR: A Systematic Review and Meta-Analyses. Front Genet 2022; 13:899923. [PMID: 35846137 PMCID: PMC9284009 DOI: 10.3389/fgene.2022.899923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Allergic rhinitis (AR) is an especially common disorder associated with both environmental and genetic factors, and a lot of researchers have attempted to find polymorphisms which predisposed to the disease. We conducted a meta-analysis of the most frequently researched polymorphisms to find those genes which may be susceptible to AR and then may be of value in diagnosis. Methods: Pubmed and China National Knowledge Infrastructure (CNKI) databases were searched to screen out eligible studies focusing on the correlation between polymorphisms and AR susceptibility, and then polymorphisms cited in at least 3 studies were selected. Results: The 142 papers originally selected cited 78 genes. Twelve genes (coinciding with 23 polymorphisms) were reported in more than three papers. Twenty-three polymorphisms were involved in the meta-analysis. Among the 23 polymorphisms, only 4 were found to be related to the risk of AR: IL-13 rs20541, CTLA-4 rs11571302, IL-4R RS1801275 and ACE (I/D). The remaining 19 of the 23 polymorphisms were not associated with AR. Conclusion: We found polymorphisms that could be used for AR diagnosing and those that were unrelated to AR. This may be the first step in detecting polymorphic combinations susceptible to AR (IL-13 RS20541, CTLA-4 RS11571302, IL-4R RS1801275 and ACE (I/D). In addition, our results may improve AR diagnosis and contribute to the intensive study of AR.
Collapse
Affiliation(s)
- Feng Xiang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zeng
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Wang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ye Peng Yang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin Xiu Zhang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Qin Xiu Zhang,
| |
Collapse
|
38
|
Molecular Allergen-Specific IgE Recognition Profiles and Cumulative Specific IgE Levels Associated with Phenotypes of Cat Allergy. Int J Mol Sci 2022; 23:ijms23136984. [PMID: 35805985 PMCID: PMC9266786 DOI: 10.3390/ijms23136984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023] Open
Abstract
Cat allergy is a major trigger factor for respiratory reactions (asthma and rhinitis) in patients with immunoglobulin E (IgE) sensitization. In this study, we used a comprehensive panel of purified cat allergen molecules (rFel d 1, nFel d 2, rFel d 3, rFel d 4, rFel d 7, and rFel d 8) that were obtained by recombinant expression in Escherichia coli or by purification as natural proteins to study possible associations with different phenotypes of cat allergy (i.e., rhinitis, conjunctivitis, asthma, and dermatitis) by analyzing molecular IgE recognition profiles in a representative cohort of clinically well-characterized adult cat allergic subjects (n = 84). IgE levels specific to each of the allergen molecules and to natural cat allergen extract were quantified by ImmunoCAP measurements. Cumulative IgE levels specific to the cat allergen molecules correlated significantly with IgE levels specific to the cat allergen extract, indicating that the panel of allergen molecules resembled IgE epitopes of the natural allergen source. rFel d 1 represented the major cat allergen, which was recognized by 97.2% of cat allergic patients; however, rFel d 3, rFel d 4, and rFel d 7 each showed IgE reactivity in more than 50% of cat allergic patients, indicating the importance of additional allergens in cat allergy. Patients with cat-related skin symptoms showed a trend toward higher IgE levels and/or frequencies of sensitization to each of the tested allergen molecules compared with patients suffering only from rhinitis or asthma, while there were no such differences between patients with rhinitis and asthma. The IgE levels specific to allergen molecules, the IgE levels specific to cat allergen extract, and the IgE levels specific to rFel d 1 were significantly higher in patients with four different symptoms compared with patients with 1–2 symptoms. This difference was more pronounced for the sum of IgE levels specific to the allergen molecules and to cat extract than for IgE levels specific for rFel d 1 alone. Our study indicates that, in addition to rFel d 1, rFel d 3, rFel d 4, and rFel d 7 must be considered as important cat allergens. Furthermore, the cumulative sum of IgE levels specific to cat allergen molecules seems to be a biomarker for identifying patients with complex phenotypes of cat allergy. These findings are important for the diagnosis of IgE sensitization to cats and for the design of allergen-specific immunotherapies for the treatment and prevention of cat allergy.
Collapse
|
39
|
Zhang H, Xian M, Shi X, Luo T, Su Q, Li J, Feng M. Blocking function of allergen-specific immunoglobulin G, F(ab') 2, and Fab antibodies prepared from patients undergoing Dermatophagoides pteronyssinus immunotherapy. Ann Allergy Asthma Immunol 2022; 128:689-696. [PMID: 35405358 DOI: 10.1016/j.anai.2022.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The blocking function of allergen-specific F(ab')2 [sF(ab')2] and Fab (sFab) fragment antibodies prepared from allergen immunotherapy-induced specific immunoglobulin G (sIgG) has not been fully investigated. OBJECTIVE To investigate the inhibitory function of sIgG, sF(ab')2, and sFab antibodies in patients undergoing Dermatophagoides pteronyssinus (Der-p) subcutaneous immunotherapy (SCIT). METHODS This study involved 10 subjects (aged 18-42 years) with house dust mite allergic rhinitis or asthma who received a 156-week course of Der-p SCIT. Total IgG levels were purified from the serum of the participants at weeks 0 and 156 by protein A affinity chromatography. Der-p sIgG was purified by affinity chromatography with Der-p as a ligand at week 156. The sF(ab')2 and sFab antibodies were prepared from Der-p sIgG by treatment with pepsin and papain, respectively. Furthermore, IgE-facilitated allergen binding assay, basophil activation inhibition test, and cytokine release inhibition assay were used to assess the inhibitory function of Der-p sIgG, sF(ab')2, and sFab antibodies. RESULTS We found that the Der-p sIgG, sF(ab')2, and sFab antibodies markedly blocked Der-p-allergen sIgE complex binding to B cells, inhibited basophil activation, and markedly reduced the production of interleukin (IL)-5, IL-13, IL-17, and tumor necrosis factor-α by peripheral blood mononuclear cells. CONCLUSION SCIT-induced Der-p sIgG, sF(ab')2, and sFab antibodies may block the formation of Der-p-sIgE complexes and may serve as a potential allergen-targeted biologics candidate for the treatment of allergic asthma. CLINICAL TRIAL REGISTRATION This study was approved by the Ethics Committee of the First Affiliated Hospital of Guangzhou Medical University and registered in the Chinese Clinical Trial Registry (ChiCTR-OOC-15006207, https://www.chictr.org.cn/enindex.aspx).
Collapse
Affiliation(s)
- Huan Zhang
- Huizhou Central People's Hospital, Huizhou, Guangdong, People's Republic of China
| | - Mo Xian
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xu Shi
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Tian Luo
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qiujuan Su
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Mulin Feng
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China; People's Hospital of Yangjiang, Yangjiang, Guangdong, People's Republic of China.
| |
Collapse
|
40
|
Zettl I, Ivanova T, Strobl MR, Weichwald C, Goryainova O, Khan E, Rutovskaya MV, Focke‐Tejkl M, Drescher A, Bohle B, Flicker S, Tillib SV. Isolation of nanobodies with potential to reduce patients' IgE binding to Bet v 1. Allergy 2022; 77:1751-1760. [PMID: 34837242 DOI: 10.1111/all.15191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/03/2021] [Accepted: 11/18/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Recent studies showed that a single injection of human monoclonal allergen-specific IgG antibodies significantly reduced allergic symptoms in birch pollen-allergic patients. Since the production of full monoclonal antibodies in sufficient amounts is laborious and expensive, we sought to investigate if smaller recombinant allergen-specific antibody fragments, that is, nanobodies, have similar protective potential. For this purpose, nanobodies specific for Bet v 1, the major birch pollen allergen, were generated to evaluate their efficacy to inhibit IgE-mediated responses. METHODS A cDNA-VHH library was constructed from a camel immunized with Bet v 1 and screened for Bet v 1 binders encoding sequences by phage display. Selected nanobodies were expressed, purified, and analyzed in regards of epitope-specificity and affinity to Bet v 1. Furthermore, cross-reactivity to Bet v 1-homologues from alder, hazel and apple, and their usefulness to inhibit IgE binding and allergen-induced basophil activation were investigated. RESULTS We isolated three nanobodies that recognize Bet v 1 with high affinity and cross-react with Aln g 1 (alder) and Cor a 1 (hazel). Their epitopes were mapped to the alpha-helix at the C-terminus of Bet v 1. All nanobodies inhibited allergic patients' polyclonal IgE binding to Bet v 1, Aln g 1, and Cor a 1 and partially suppressed Bet v 1-induced basophil activation. CONCLUSION We identified high-affinity Bet v 1-specific nanobodies that recognize an important IgE epitope and reduce allergen-induced basophil activation revealing the first proof that allergen-specific nanobodies are useful tools for future treatment of pollen allergy.
Collapse
Affiliation(s)
- Ines Zettl
- Division of Immunopathology Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Tatiana Ivanova
- Institute of Gene Biology Russian Academy of Sciences Moscow Russia
| | - Maria R. Strobl
- Division of Experimental Allergology Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Christina Weichwald
- Division of Immunopathology Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | | | - Evgenia Khan
- Institute of Gene Biology Russian Academy of Sciences Moscow Russia
| | - Marina V. Rutovskaya
- Institute of Gene Biology Russian Academy of Sciences Moscow Russia
- A.N.Severtsov Institute of Ecology and Evolution Russian Academy of Sciences Moscow Russia
| | - Margarete Focke‐Tejkl
- Division of Immunopathology Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | | | - Barbara Bohle
- Division of Experimental Allergology Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Sabine Flicker
- Division of Immunopathology Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Sergei V. Tillib
- Institute of Gene Biology Russian Academy of Sciences Moscow Russia
| |
Collapse
|
41
|
Hossenbaccus L, Linton S, Ramchandani R, Burrows AG, Ellis AK. Study of Cat Allergy Using Controlled Methodology-A Review of the Literature and a Call to Action. FRONTIERS IN ALLERGY 2022; 3:828091. [PMID: 35386639 PMCID: PMC8974834 DOI: 10.3389/falgy.2022.828091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The prevalence of cat allergen-induced AR is increasing worldwide, prompting its study using controlled methodology. Three general categories of allergen exposure models currently exist for the study of cat allergen-induced AR: natural exposure cat rooms, allergen exposure chambers (AEC), and nasal allergen challenges (NAC). We evaluated existing literature surrounding the use of these models to study cat allergen induced AR using online research databases, including OVID Medline, Embase, and Web of Science. We report that natural exposure cat rooms have been important in establishing the foundation for our understanding of cat allergen-induced AR. Major limitations, including variable allergen ranges and differing study designs highlight the need for a more standardized protocol. In comparison, AECs are an exceptional model to mimic real-world allergen exposure and study long-term implications of AR with large sample sizes. Existing AECs are limited by heterogeneous facility designs, differing methods of cat allergen distribution, and issues surrounding cost and accessibility. Conversely, NACs allow for smaller participant cohorts for easier biological sampling and are ideal for phase I, phase 2 or proof-of-concept studies. NACs generally have a standardized protocol and are less expensive compared to AECs. Nevertheless, NACs solely capture acute allergen exposure and have the further limitation of using allergen extracts rather than natural allergen. As the use of combined controlled methodologies is sparse, we recommend concurrent use of AECs and NACs to study short- and long-term effects of AR, thereby providing a more holistic representation of cat allergen-induced AR.
Collapse
Affiliation(s)
- Lubnaa Hossenbaccus
- Department of Medicine, Queen's University, Kingston, ON, Canada
- Allergy Research Unit, Kingston Health Sciences Centre – KGH Site, Kingston, ON, Canada
| | - Sophia Linton
- Department of Medicine, Queen's University, Kingston, ON, Canada
- Allergy Research Unit, Kingston Health Sciences Centre – KGH Site, Kingston, ON, Canada
| | - Rashi Ramchandani
- Department of Medicine, Queen's University, Kingston, ON, Canada
- Allergy Research Unit, Kingston Health Sciences Centre – KGH Site, Kingston, ON, Canada
| | - Alyssa G. Burrows
- Department of Medicine, Queen's University, Kingston, ON, Canada
- Allergy Research Unit, Kingston Health Sciences Centre – KGH Site, Kingston, ON, Canada
| | - Anne K. Ellis
- Department of Medicine, Queen's University, Kingston, ON, Canada
- Allergy Research Unit, Kingston Health Sciences Centre – KGH Site, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
42
|
Sánchez Montalvo A, Gohy S, Rombaux P, Pilette C, Hox V. The Role of IgA in Chronic Upper Airway Disease: Friend or Foe? FRONTIERS IN ALLERGY 2022; 3:852546. [PMID: 35386640 PMCID: PMC8974816 DOI: 10.3389/falgy.2022.852546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 01/28/2023] Open
Abstract
Chronic upper airway inflammation is amongst the most prevalent chronic disease entities in the Western world with prevalence around 30% (rhinitis) and 11% (rhinosinusitis). Chronic rhinitis and rhinosinusitis may severely impair the quality of life, leading to a significant socio-economic burden. It becomes more and more clear that the respiratory mucosa which forms a physiological as well as chemical barrier for inhaled particles, plays a key role in maintaining homeostasis and driving disease. In a healthy state, the mucosal immune system provides protection against pathogens as well as maintains a tolerance toward non-harmful commensal microbes and benign environmental substances such as allergens. One of the most important players of the mucosal immune system is immunoglobulin (Ig) A, which is well-studied in gut research where it has emerged as a key factor in creating tolerance to potential food allergens and maintaining a healthy microbiome. Although, it is very likely that IgA plays a similar role at the level of the respiratory epithelium, very little research has been performed on the role of this protein in the airways, especially in chronic upper airway diseases. This review summarizes what is known about IgA in upper airway homeostasis, as well as in rhinitis and rhinosinusitis, including current and possible new treatments that may interfere with the IgA system. By doing so, we identify unmet needs in exploring the different roles of IgA in the upper airways required to find new biomarkers or therapeutic options for treating chronic rhinitis and rhinosinusitis.
Collapse
Affiliation(s)
- Alba Sánchez Montalvo
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Sophie Gohy
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Pulmonology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Cystic Fibrosis Reference Center, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Philippe Rombaux
- Department of Otorhinolaryngology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Pulmonology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Valérie Hox
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Otorhinolaryngology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- *Correspondence: Valérie Hox
| |
Collapse
|
43
|
Pfaar O, Bousquet J, Durham SR, Kleine-Tebbe J, Larché M, Roberts G, Shamji MH, Gerth van Wijk R. One hundred and ten years of Allergen Immunotherapy: A journey from empiric observation to evidence. Allergy 2022; 77:454-468. [PMID: 34315190 DOI: 10.1111/all.15023] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022]
Abstract
One hundred and ten years after Noon's first clinical report of the subcutaneous application of allergen extracts, allergen immunotherapy (AIT) has evolved as the most important pillar of the treatment of allergic patients. It is the only disease-modifying treatment option available and the evidence for its clinical efficacy and safety is broad and undisputed. Throughout recent decades, more insights into the underlying mechanisms, in particular the modulation of innate and adaptive immune responses, have been described. AIT is acknowledged by worldwide regulatory authorities, and following the regulatory guidelines for product development, AIT products are subject to a rigorous evaluation before obtaining market authorization. Knowledge and practice are anchored in international guidelines, such as the recently published series of the European Academy of Allergy and Clinical Immunology (EAACI). Innovative approaches continue to be further developed with the focus on clinical improvement by, for example, the usage of adjuvants, peptides, recombinants, modification of allergens, new routes of administration, and the concomitant use of biologicals. In addition, real-life data provide complementary and valuable information on the effectiveness and tolerability of this treatment option in the clinical routine. New mobile health technologies and big-data approaches will improve daily treatment convenience, adherence, and efficacy of AIT. However, the current coronavirus disease 2019 (COVID-19) pandemic has also had some implications for the feasibility and practicability of AIT. Taken together, AIT as the only disease-modifying therapy in allergic diseases has been broadly investigated over the past 110 years laying the path for innovations and further improvement.
Collapse
Affiliation(s)
- Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Jean Bousquet
- Department of Dermatology and Allergy, Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Comprehensive Allergy Center, Berlin, Germany
- University Hospital Montpellier, Montpellier, France
| | - Stephen R Durham
- Allergy and Clinical Immunology, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College NIHR Biomedical Research Centre, National Heart and Lung Institute, London, UK
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient and Clinical Research Center, Berlin, Germany
| | - Mark Larché
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Graham Roberts
- Faculty of Medicine, University of Southampton, Southampton, UK
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Mohamed H Shamji
- Allergy and Clinical Immunology, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College NIHR Biomedical Research Centre, National Heart and Lung Institute, London, UK
| | - Roy Gerth van Wijk
- Section of Allergology and Clinical Immunology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
44
|
Penagos M, Durham SR. Allergen immunotherapy for long-term tolerance and prevention. J Allergy Clin Immunol 2022; 149:802-811. [DOI: 10.1016/j.jaci.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
|
45
|
Atanasio A, Franklin MC, Kamat V, Hernandez AR, Badithe A, Ben LH, Jones J, Bautista J, Yancopoulos GD, Olson W, Murphy AJ, Sleeman MA, Orengo JM. Targeting immunodominant Bet v 1 epitopes with monoclonal antibodies prevents the birch allergic response. J Allergy Clin Immunol 2022; 149:200-211. [PMID: 34126155 DOI: 10.1016/j.jaci.2021.05.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/16/2021] [Accepted: 05/14/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Blocking the major cat allergen, Fel d 1, with mAbs was effective in preventing an acute cat allergic response. OBJECTIVES This study sought to extend the allergen-specific antibody approach and demonstrate that a combination of mAbs targeting Bet v 1, the immunodominant and most abundant allergenic protein in birch pollen, can prevent the birch allergic response. METHODS Bet v 1-specific mAbs, REGN5713, REGN5714, and REGN5715, were isolated using the VelocImmune platform. Surface plasmon resonance, x-ray crystallography, and cryo-electron microscopy determined binding kinetics and structural data. Inhibition of IgE-binding, basophil activation, and mast cell degranulation were assessed via blocking ELISA, flow cytometry, and the passive cutaneous anaphylaxis mouse model. RESULTS REGN5713, REGN5714, and REGN5715 bind with high affinity and noncompetitively to Bet v 1. A cocktail of all 3 antibodies, REGN5713/14/15, blocks IgE binding to Bet v 1 and inhibits Bet v 1- and birch pollen extract-induced basophil activation ex vivo and mast cell degranulation in vivo. Crystal structures of the complex of Bet v 1 with immunoglobulin antigen-binding fragments of REGN5713 or REGN5715 show distinct interaction sites on Bet v 1. Cryo-electron microscopy reveals a planar and roughly symmetrical complex formed by REGN5713/14/15 bound to Bet v 1. CONCLUSIONS These data confirm the immunodominance of Bet v 1 in birch allergy and demonstrate blockade of the birch allergic response with REGN5713/14/15. Structural analyses show simultaneous binding of REGN5713, REGN5714, and REGN5715 with substantial areas of Bet v 1 exposed, suggesting that targeting specific epitopes is sufficient to block the allergic response.
Collapse
Affiliation(s)
| | | | | | | | | | - Li-Hong Ben
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Fuhrmann V, Huang HJ, Akarsu A, Shilovskiy I, Elisyutina O, Khaitov M, van Hage M, Linhart B, Focke-Tejkl M, Valenta R, Sekerel BE. From Allergen Molecules to Molecular Immunotherapy of Nut Allergy: A Hard Nut to Crack. Front Immunol 2021; 12:742732. [PMID: 34630424 PMCID: PMC8496898 DOI: 10.3389/fimmu.2021.742732] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Peanuts and tree nuts are two of the most common elicitors of immunoglobulin E (IgE)-mediated food allergy. Nut allergy is frequently associated with systemic reactions and can lead to potentially life-threatening respiratory and circulatory symptoms. Furthermore, nut allergy usually persists throughout life. Whether sensitized patients exhibit severe and life-threatening reactions (e.g., anaphylaxis), mild and/or local reactions (e.g., pollen-food allergy syndrome) or no relevant symptoms depends much on IgE recognition of digestion-resistant class I food allergens, IgE cross-reactivity of class II food allergens with respiratory allergens and clinically not relevant plant-derived carbohydrate epitopes, respectively. Accordingly, molecular allergy diagnosis based on the measurement of allergen-specific IgE levels to allergen molecules provides important information in addition to provocation testing in the diagnosis of food allergy. Molecular allergy diagnosis helps identifying the genuinely sensitizing nuts, it determines IgE sensitization to class I and II food allergen molecules and hence provides a basis for personalized forms of treatment such as precise prescription of diet and allergen-specific immunotherapy (AIT). Currently available forms of nut-specific AIT are based only on allergen extracts, have been mainly developed for peanut but not for other nuts and, unlike AIT for respiratory allergies which utilize often subcutaneous administration, are given preferentially by the oral route. Here we review prevalence of allergy to peanut and tree nuts in different populations of the world, summarize knowledge regarding the involved nut allergen molecules and current AIT approaches for nut allergy. We argue that nut-specific AIT may benefit from molecular subcutaneous AIT (SCIT) approaches but identify also possible hurdles for such an approach and explain why molecular SCIT may be a hard nut to crack.
Collapse
Affiliation(s)
- Verena Fuhrmann
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Huey-Jy Huang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Aysegul Akarsu
- Division of Allergy and Asthma, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Igor Shilovskiy
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Olga Elisyutina
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Musa Khaitov
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University, Hospital, Stockholm, Sweden
| | - Birgit Linhart
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
- Karl Landsteiner University of Health Sciences, Krems, Austria
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Bulent Enis Sekerel
- Division of Allergy and Asthma, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
47
|
Kamal MA, Dingman R, Wang CQ, Lai CH, Rajadhyaksha M, DeVeaux M, Orengo JM, Radin A, Davis JD. REGN1908-1909 monoclonal antibodies block Fel d 1 in cat allergic subjects: Translational pharmacokinetics and pharmacodynamics. Clin Transl Sci 2021; 14:2440-2449. [PMID: 34437752 PMCID: PMC8604232 DOI: 10.1111/cts.13112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
REGN1908‐1909, a 1:1 cocktail of two fully human IgG4 monoclonal antibodies (mAbs), REGN1908 and REGN1909, is being evaluated for treatment of cat allergy. Both REGN1908 and REGN1909 bind to the dominant cat allergen, Fel d 1. Adults with cat allergy confirmed by skin prick test (SPT) were randomized to single subcutaneous administration of placebo (n = 6) or REGN1908‐1909 at doses of 150 (n = 6), 300 (n = 6), or 600 mg (n = 6). Blood samples were taken at prespecified time points for pharmacokinetic (PK) analysis and exploratory evaluation of biomarkers (IgE and SPT). Safety was assessed. Drug concentration‐time profiles in serum for ascending doses of REGN1908‐1909 were consistent with linear PKs. Noncompartmental analysis showed that maximum concentration (Cmax) and exposure increased proportionately with dose, with similar time to maximum concentration (Tmax) for REGN1908 and REGN1909 (6.2 to 8.2 days across doses), and a longer terminal half‐life for REGN1908 (~ 30 days) relative to REGN1909 (~ 21 days). Adverse events were not dose dependent; there were no dose‐limiting toxicities. REGN1908‐1909 is characterized by linear and dose‐proportional kinetics of the two individual mAb components. A single 600 mg dose maintains total mAb mean concentrations in serum above the target (mean of ~ 10 mg/L) for 8–12 weeks. Maintaining this mean target concentration resulted in translational pharmacodynamic effects: maximal mast cell degranulation in a passive cutaneous anaphylaxis mouse model, and maintenance of clinical efficacy measured by Total Nasal Symptom Score in a previous proof‐of‐mechanism study.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Allen Radin
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | |
Collapse
|