1
|
Jana S, Alayash AI. Exploring the Molecular Interplay Between Oxygen Transport, Cellular Oxygen Sensing, and Mitochondrial Respiration. Antioxid Redox Signal 2025; 42:730-750. [PMID: 39846399 DOI: 10.1089/ars.2023.0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Significance: The mitochondria play a key role in maintaining oxygen homeostasis under normal oxygen tension (normoxia) and during oxygen deprivation (hypoxia). This is a critical balancing act between the oxygen content of the blood, the tissue oxygen sensing mechanisms, and the mitochondria, which ultimately consume most oxygen for energy production. Recent Advances: We describe the well-defined role of the mitochondria in oxygen metabolism with a special focus on the impact on blood physiology and pathophysiology. Critical Issues: Fundamental questions remain regarding the impact of mitochondrial responses to changes in overall blood oxygen content under normoxic and hypoxic states and in the case of impaired oxygen sensing in various cardiovascular and pulmonary complications including blood disorders involving hemolysis and hemoglobin toxicity, ischemia reperfusion, and even in COVID-19 disease. Future Directions: Understanding the nature of the crosstalk among normal homeostatic pathways, oxygen carrying by hemoglobin, utilization of oxygen by the mitochondrial respiratory chain machinery, and oxygen sensing by hypoxia-inducible factor proteins, may provide a target for future therapeutic interventions. Antioxid. Redox Signal. 42, 730-750.
Collapse
Affiliation(s)
- Sirsendu Jana
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| |
Collapse
|
2
|
Stussman B, Camarillo N, McCrossin G, Stockman M, Norato G, Vetter CS, Ferrufino A, Adedamola A, Grayson N, Nath A, Chan L, Walitt B, Chin LMK. Post-exertional malaise in Long COVID: subjective reporting versus objective assessment. Front Neurol 2025; 16:1534352. [PMID: 40337174 PMCID: PMC12055772 DOI: 10.3389/fneur.2025.1534352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/20/2025] [Indexed: 05/09/2025] Open
Abstract
Background Post-exertional malaise (PEM) is a central feature of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and has emerged as a prominent feature of Long COVID. The optimal clinical approach to PEM is inconclusive, and studies of the impact of exercise have yielded contradictory results. Objective The objective of this study was to examine PEM in Long COVID by assessing the prevalence of self-reported PEM across study cohorts and symptom responses of Long COVID patients to a standardized exercise stressor. Secondarily, Long COVID symptom responses to exercise were compared to those of ME/CFS and healthy volunteers. Methods Data from three registered clinical trials comprised four cohorts in this study: Long COVID Questionnaire Cohort (QC; n = 244), Long COVID Exercise Cohort (EC; n = 34), ME/CFS cohort (n = 9), and healthy volunteers (HV; n = 9). All cohorts completed questionnaires related to physical function, fatigue, and/or PEM symptoms. EC also performed a standardized exercise test (cardiopulmonary exercise test, CPET), and the PEM response to CPET was assessed using visual analog scales and qualitative interviews (QIs) administered serially over 72 h. EC PEM measures were compared to ME/CFS and HV cohorts. A secondary analysis of QI explored positive responses to CPET among EC, ME/CFS and HV. Results Self-reported PEM was 67% in QC and estimated at 27% in EC. Only 2 of 34 EC patients (5.9%) were observed to develop PEM after a CPET. In addition, PEM responses after CPET in Long COVID were not as severe and prolonged as those assessed in ME/CFS. Twenty-two of 34 EC patients (64.7%) expressed at least one of 7 positive themes after the CPET. Conclusion Self-report of PEM is common in Long COVID. However, observable PEM following an exercise stressor was not frequent in this small cohort. When present, PEM descriptions during QI were less severe in Long COVID than in ME/CFS. Positive responses after an exercise stressor were common in Long COVID. Exercise testing to determine the presence of PEM may have utility for guiding clinical management of Long COVID.
Collapse
Affiliation(s)
- Barbara Stussman
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Nathan Camarillo
- Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Gayle McCrossin
- Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Marybeth Stockman
- Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Gina Norato
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - C. Stephenie Vetter
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Alenka Ferrufino
- Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Ashade Adedamola
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Nicholas Grayson
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Avindra Nath
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Leighton Chan
- Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Brian Walitt
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Lisa M. K. Chin
- Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, United States
| |
Collapse
|
3
|
Hou Y, Liu D, Guo Z, Wei C, Cao F, Xu Y, Feng Q, Liu F. Lactate and Lactylation in AKI-to-CKD: Epigenetic Regulation and Therapeutic Opportunities. Cell Prolif 2025:e70034. [PMID: 40207870 DOI: 10.1111/cpr.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/20/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
Lactate is not only a byproduct of glycolysis, but is also considered an energy source, gluconeogenic precursor, signalling molecule and protein modifier during the process of cellular metabolism. The discovery of lactylation reveals the multifaceted functions of lactate in cellular metabolism and opens new avenues for lactate-related research. Both lactate and lactylation have been implicated in regulating numerous biological processes, including tumour progression, ischemic-hypoxic injury, neurodevelopment and immune-related inflammation. The kidney plays a crucial role in regulating lactate metabolism, influencing lactate levels while also being regulated by lactate. Previous studies have demonstrated the importance of lactate in the pathogenesis of acute kidney injury (AKI) and chronic kidney disease (CKD). This review explores the role of lactate and lactylation in these diseases, comparing the function and metabolic mechanisms of lactate in normal and diseased kidneys from the perspective of lactylation. The key regulatory roles of lactylation in different organs, multiple systems, various pathological states and underlying mechanisms in AKI-to-CKD progression are summarised. Moreover, potential therapeutic targets and future research directions for lactate and lactylation across multiple kidney diseases are identified.
Collapse
Affiliation(s)
- Yi Hou
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China
| | - Zuishuang Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China
| | - Cien Wei
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Fengyu Cao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yue Xu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Qi Feng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China
| | - Fengxun Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China
| |
Collapse
|
4
|
Astley C, Drezner JA, Sieczkowska SM, Ihara A, Franco T, Gil S, DO Prado DML, Longobardi I, Suguita P, Fink T, Lindoso L, Matsuo O, Martins F, Bain V, Leal GN, Badue MF, Marques HH, Silva CA, Roschel H, Gualano B. Exercise in Pediatric COVID-19: A Randomized Controlled Trial. Med Sci Sports Exerc 2025; 57:514-523. [PMID: 39501479 DOI: 10.1249/mss.0000000000003589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
PURPOSE This study assessed the impact of a 12-wk, home-based exercise training (HBET) program on health-related quality of life (HRQOL; primary outcome), and cardiovascular and metabolic parameters in pediatric COVID-19 patients. METHODS This was a single-center, randomized controlled trial conducted in a tertiary hospital in Sao Paulo, from October 2020 to January 2022. Thirty-two patients (mean age, 12 ± 3.3 yr) were randomly assigned to either HBET or standard of care (CONTROL) in a 2:1 ratio 4 months (range: 0.7-6.6 months) after COVID-19 discharge ( n = 25 mild, n = 4 moderate, n = 3 severe illness). The HBET group underwent supervised and unsupervised sessions three times a week for 12 wk emphasizing aerobic and body weight exercises, while the CONTROL group received standard care, which included general advice for a healthy lifestyle with no prescribed exercise intervention. HRQOL (evaluated by the Pediatric Quality of Life Inventory), cardiopulmonary exercise test, brachial endothelial function and echocardiography assessments were conducted in both groups. Statistical analysis was performed using an intention-to-treat approach for the primary analysis and complete case (per-protocol) as sensitivity analysis.The significance was set at P ≤ 0.05 and P ≤ 0.10 was considered as trend. RESULTS There was no difference in HRQOL between groups. Intention-to-treat analysis indicated a trend toward increased oxygen uptake (V̇O 2 ) at anaerobic threshold following the intervention in the HBET group. In addition, a sensitivity analysis showed significant changes in peak heart rate and 1-min recovery, respiratory exchange ratio, and chronotropic response. A trend toward significance was observed in ventilation-to-maximum voluntary ventilation ratio and chronotropic response in the HBET group. No other between-group differences were detected for the cardiopulmonary exercise test, brachial flow-mediated dilation, and echocardiography variables (all P > 0.05). CONCLUSIONS In this randomized controlled trial, a 12-wk HBET intervention did not impact HRQOL in pediatric COVID-19 patients. However, exercise was able to improve the V̇O 2 at the ventilatory anaerobic threshold, heart rate peak and 1-min recovery, ventilation-to-maximum voluntary ventilation ratio, and chronotropic response, with no changes observed in other cardiovascular parameters. Further studies are needed to investigate the long-term effects of exercise interventions on the recovery of pediatric COVID-19 patients with and without preexisting chronic conditions.
Collapse
Affiliation(s)
| | - Jonathan A Drezner
- Department of Family Medicine, Center for Sports Cardiology, University of Washington, Seattle, WA
| | | | | | | | | | | | | | - Priscila Suguita
- Chidren and Adolescent Institute, Clinical Hospital, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Thais Fink
- Chidren and Adolescent Institute, Clinical Hospital, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Livia Lindoso
- Chidren and Adolescent Institute, Clinical Hospital, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Olivia Matsuo
- Chidren and Adolescent Institute, Clinical Hospital, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Fernanda Martins
- Chidren and Adolescent Institute, Clinical Hospital, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Vera Bain
- Chidren and Adolescent Institute, Clinical Hospital, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Gabriela Nunes Leal
- Chidren and Adolescent Institute, Clinical Hospital, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Maria Fernanda Badue
- Chidren and Adolescent Institute, Clinical Hospital, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Heloisa Helena Marques
- Chidren and Adolescent Institute, Clinical Hospital, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Clovis Artur Silva
- Chidren and Adolescent Institute, Clinical Hospital, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | | |
Collapse
|
5
|
Haunhorst S, Dudziak D, Scheibenbogen C, Seifert M, Sotzny F, Finke C, Behrends U, Aden K, Schreiber S, Brockmann D, Burggraf P, Bloch W, Ellert C, Ramoji A, Popp J, Reuken P, Walter M, Stallmach A, Puta C. Towards an understanding of physical activity-induced post-exertional malaise: Insights into microvascular alterations and immunometabolic interactions in post-COVID condition and myalgic encephalomyelitis/chronic fatigue syndrome. Infection 2025; 53:1-13. [PMID: 39240417 PMCID: PMC11825644 DOI: 10.1007/s15010-024-02386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND A considerable number of patients who contracted SARS-CoV-2 are affected by persistent multi-systemic symptoms, referred to as Post-COVID Condition (PCC). Post-exertional malaise (PEM) has been recognized as one of the most frequent manifestations of PCC and is a diagnostic criterion of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Yet, its underlying pathomechanisms remain poorly elucidated. PURPOSE AND METHODS In this review, we describe current evidence indicating that key pathophysiological features of PCC and ME/CFS are involved in physical activity-induced PEM. RESULTS Upon physical activity, affected patients exhibit a reduced systemic oxygen extraction and oxidative phosphorylation capacity. Accumulating evidence suggests that these are mediated by dysfunctions in mitochondrial capacities and microcirculation that are maintained by latent immune activation, conjointly impairing peripheral bioenergetics. Aggravating deficits in tissue perfusion and oxygen utilization during activities cause exertional intolerance that are frequently accompanied by tachycardia, dyspnea, early cessation of activity and elicit downstream metabolic effects. The accumulation of molecules such as lactate, reactive oxygen species or prostaglandins might trigger local and systemic immune activation. Subsequent intensification of bioenergetic inflexibilities, muscular ionic disturbances and modulation of central nervous system functions can lead to an exacerbation of existing pathologies and symptoms.
Collapse
Affiliation(s)
- Simon Haunhorst
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Wöllnitzer Straße 42, 07749, Jena, Germany
- Center for Interdisciplinary Prevention of Diseases Related to Professional Activities, Jena, Germany
| | - Diana Dudziak
- Institute of Immunology, Jena University Hospital/ Friedrich-Schiller-University Jena, Jena, Germany
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Martina Seifert
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Franziska Sotzny
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Carsten Finke
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Uta Behrends
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
- AGV Research Unit Gene Vectors, Helmholtz Munich (HMGU), Munich, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Dirk Brockmann
- Center Synergy of Systems, TU Dresden University of Technology, Dresden, Germany
| | - Paul Burggraf
- mHealth Pioneers GmbH, Körtestraße 10, 10967, Berlin, Germany
| | - Wilhelm Bloch
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Claudia Ellert
- , Landarztnetz Lahn-Dill, Wetzlar, Germany
- Initiative Long COVID Deutschland, Lemgo, Germany
| | - Anuradha Ramoji
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Centre for Photonics in Infection Research (LPI), Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | - Juergen Popp
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Centre for Photonics in Infection Research (LPI), Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | - Philipp Reuken
- Department for Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena Center for Mental Health, Jena University Hospital, Jena, Germany
- German Center for Mental Health (DZPG), Partner Site Jena, Jena, Germany
| | - Andreas Stallmach
- Department for Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Christian Puta
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Wöllnitzer Straße 42, 07749, Jena, Germany.
- Department for Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany.
- Center for Sepsis Control and Care (CSCC), Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany.
| |
Collapse
|
6
|
Kavalcı Kol B, Boşnak Güçlü M, Baytok E, Yılmaz Demirci N. Comparison of the muscle oxygenation during submaximal and maximal exercise tests in patients post-coronavirus disease 2019 syndrome with pulmonary involvement. Physiother Theory Pract 2025; 41:275-288. [PMID: 38469863 DOI: 10.1080/09593985.2024.2327534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION Pulmonary involvement is prevalent in patients with coronavirus disease 2019 (COVID-19). Arterial hypoxemia may reduce oxygen transferred to the skeletal muscles, possibly leading to impaired exercise capacity. Oxygen uptake may vary depending on the increased oxygen demand of the muscles during submaximal and maximal exercise. OBJECTIVE This study aimed to compare muscle oxygenation during submaximal and maximal exercise tests in patients with post-COVID-19 syndrome with pulmonary involvement. METHODS Thirty-nine patients were included. Pulmonary function (spirometry), peripheral muscle strength (dynamometer), quadriceps femoris (QF) muscle oxygenation (Moxy® device), and submaximal exercise capacity (six-minute walk test (6-MWT)) were tested on the first day, maximal exercise capacity (cardiopulmonary exercise test (CPET)) was tested on the second day. Physical activity level was evaluated using an activity monitor worn for five consecutive days. Cardiopulmonary responses and muscle oxygenation were compared during 6-MWT and CPET. RESULTS Patients' minimum and recovery muscle oxygen saturation were significantly decreased; maximum total hemoglobin increased, heart rate, blood pressure, breathing frequency, dyspnea, fatigue, and leg fatigue at the end-of-test and recovery increased in CPET compared to 6-MWT (p < .050). Peak oxygen consumption (VO2peak) was 18.15 ± 4.75 ml/min/kg, VO2peak; percent predicted < 80% was measured in 51.28% patients. Six-MWT distance and QF muscle strength were less than 80% predicted in 58.9% and 76.9% patients, respectively. CONCLUSIONS In patients with post-COVID-19 syndrome with pulmonary involvement, muscle deoxygenation of QF is greater during maximal exercise than during submaximal exercise. Specifically, patients with lung impairment should be evaluated for deoxygenation and should be taken into consideration during pulmonary rehabilitation.
Collapse
Affiliation(s)
- Başak Kavalcı Kol
- Pilot Health Coordinatorship, Kırşehir Ahi Evran University, Kırşehir, Türkiye
| | - Meral Boşnak Güçlü
- Faculty of Health Sciences, Department of Physical Therapy and Rehabilitation, Gazi University, Çankaya, Ankara, Türkiye
| | - Ece Baytok
- Faculty of Health Sciences, Department of Physical Therapy and Rehabilitation, Gazi University, Çankaya, Ankara, Türkiye
| | - Nilgün Yılmaz Demirci
- Faculty of Medicine, Department of Pulmonology, Gazi University, Yenimahalle, Ankara, Türkiye
| |
Collapse
|
7
|
Shchendrygina A, Ka MM, Rodriguez C, Alsoufi S, Hoffmann J, Kumar P, Carerj ML, Vanchin B, Holm N, Karyou A, Ganbat M, Nagel E, Puntmann VO. Subclinical patterns of cardiac involvement by transthoracic echocardiography in individuals with mild initial COVID-19. Sci Rep 2025; 15:3772. [PMID: 39885199 PMCID: PMC11782472 DOI: 10.1038/s41598-025-85221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/01/2025] [Indexed: 02/01/2025] Open
Abstract
The aim of this study was to evaluate the subclinical patterns and evolution of cardiac abnormalities via transthoracic echocardiography (TTE) in patients with mild initial COVID-19 illness. A total of 343 infected individuals (163 males; age 44 (interquartile range, IQR 35-52) years) years) underwent serial TTE assessments at a median of 109 (interquartile range (IQR), 77-177) and 327 (276-379) days after infection. Compared with those of non-COVID-19-infected controls (n = 94, male n = 49), baseline systolic (LVEF, TAPSE) and diastolic function (e', a', E/e') were significantly different in infected participants (p < 0.05 for all). Compared with baseline assessments, there was a reduction in global longitudinal strain (GLS) and an increase in the E wave, E/A ratio and E/e' at follow-up. At baseline, symptomatic participants had a lower LVEF and TAPSE and increased IVRT, e' and E/e'. At follow-up, symptomatic patients had a lower LV end-diastolic diameter (LVEDd). Symptoms were independently associated with E/e' at baseline (OR (95% CI) 1.45 (1.12-1.87), p = 0.005). Symptoms at follow-up were associated with LVEDd, measured either at baseline (OR: 0.91 (0.86, 0.96), p < 0.001) or follow-up (OR (95% CI) 0.91 (0.86-0.96), p < 0.001). There were significant associations for GLS and troponin and E/e' with CRP and NTproBNP at baseline. In the present cohort of COVID-19-infected individuals with mild initial illness, echocardiographic measurements revealed significant yet subclinical differences in systolic and diastolic function compared with controls, as well as between individuals with cardiac symptoms and those without. All the measured differences were small in magnitude and thus unlikely to be detectable clinically at the individual level.
Collapse
Affiliation(s)
- Anastasia Shchendrygina
- Institute for Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mame Madjiguène Ka
- Institute for Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Carlos Rodriguez
- Institute for Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Safaa Alsoufi
- Institute for Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jedrzej Hoffmann
- Institute for Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Parveen Kumar
- Institute for Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria Ludovica Carerj
- Institute for Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Byambasuren Vanchin
- Institute for Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Niels Holm
- Institute for Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Argyro Karyou
- Institute for Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mijidsuren Ganbat
- Institute for Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Eike Nagel
- Institute for Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Valentina O Puntmann
- Institute for Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Charlton BT, Goulding RP, Jaspers RT, Appelman B, van Vugt M, Wüst RCI. Skeletal muscle adaptations and post-exertional malaise in long COVID. Trends Endocrinol Metab 2024:S1043-2760(24)00298-4. [PMID: 39694730 DOI: 10.1016/j.tem.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/18/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024]
Abstract
When acute SARS-CoV-2 infections cause symptoms that persist longer than 3 months, this condition is termed long COVID. Symptoms experienced by patients often include myalgia, fatigue, brain fog, cognitive impairments, and post-exertional malaise (PEM), which is the worsening of symptoms following mental or physical exertion. There is little consensus on the pathophysiology of exercise-induced PEM and skeletal-muscle-related symptoms. In this opinion article we highlight intrinsic mitochondrial dysfunction, endothelial abnormalities, and a muscle fiber type shift towards a more glycolytic phenotype as main contributors to the reduced exercise capacity in long COVID. The mechanistic trigger for physical exercise to induce PEM is unknown, but rapid skeletal muscle tissue damage and intramuscular infiltration of immune cells contribute to PEM-related symptoms.
Collapse
Affiliation(s)
- Braeden T Charlton
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, The Netherlands; Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands
| | - Richie P Goulding
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, The Netherlands; Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands
| | - Richard T Jaspers
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, The Netherlands; Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands
| | - Brent Appelman
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Michèle van Vugt
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Division of Infectious Diseases, Tropical Medicine, Department of Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Rob C I Wüst
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, The Netherlands; Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Finnigan LEM, Cassar MP, Jafarpour M, Sultana A, Ashkir Z, Azer K, Neubauer S, Tyler DJ, Raman B, Valkovič L. 1H and 31P MR Spectroscopy to Assess Muscle Mitochondrial Dysfunction in Long COVID. Radiology 2024; 313:e233173. [PMID: 39718498 DOI: 10.1148/radiol.233173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Background Emerging evidence suggests mitochondrial dysfunction may play a role in the fatigue experienced by individuals with post-COVID-19 condition (PCC), commonly called long COVID, which can be assessed using MR spectroscopy. Purpose To compare mitochondrial function between participants with fatigue-predominant PCC and healthy control participants using MR spectroscopy, and to investigate the relationship between MR spectroscopic parameters and fatigue using the 11-item Chalder fatigue questionnaire. Materials and Methods This prospective, observational, single-center study (June 2021 to January 2024) included participants with PCC who reported moderate to severe fatigue, with normal blood test and echocardiographic results, alongside control participants without fatigue symptoms. MR spectroscopy was performed using a 3-T MRI system, measuring hydrogen 1 (1H) and phosphorus 31 (31P) during exercise and recovery in the gastrocnemius muscle. General linear models were used to compare the phosphocreatine recovery rate time constant (hereafter, τPCr) and maximum oxidative flux, also known as mitochondrial capacity (hereafter, Qmax), between groups. Pearson correlations were used to assess the relationship between MR spectroscopic parameters and fatigue scores. Results A total of 41 participants with PCC (mean age, 44 years ± 9 [SD]; 23 male) (mean body mass index [BMI], 26 ± 4) and 29 healthy control participants (mean age, 34 years ± 11; 18 male) (mean BMI, 23 ± 3) were included in the study. Participants with PCC showed higher resting phosphocreatine levels (mean difference, 4.10 mmol/L; P = .03). Following plantar flexion exercise in situ (3-5 minutes), participants with PCC had a higher τPCr (92.5 seconds ± 35.3) compared with controls (51.9 seconds ± 31.9) (mean difference, 40.6; 95% CI: 24.3, 56.6; P ≤ .001), and Qmax was higher in the control group, with a mean difference of 0.16 mmol/L per second (95% CI: 0.07, 0.26; P = .008). There was no correlation between MR spectroscopic parameters and fatigue scores (r ≤ 0.25 and P ≥ .10 for all). Conclusion Participants with PCC showed differences in τPCr and Qmax compared with healthy controls, suggesting potential mitochondrial dysfunction. This finding did not correlate with fatigue scores. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Parraga and Eddy in this issue.
Collapse
Affiliation(s)
- Lucy E M Finnigan
- From the Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK (L.E.M.F., M.P.C., M.J., A.S., Z.A., S.N., D.J.T., B.R., L.V.); Oncology and Haematology Centre, Churchill Hospital, Oxford, UK (A.S.); Axcella Therapeutics, Cambridge, Mass (K.A.); and Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia (L.V.)
| | - Mark Philip Cassar
- From the Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK (L.E.M.F., M.P.C., M.J., A.S., Z.A., S.N., D.J.T., B.R., L.V.); Oncology and Haematology Centre, Churchill Hospital, Oxford, UK (A.S.); Axcella Therapeutics, Cambridge, Mass (K.A.); and Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia (L.V.)
| | - Mehrsa Jafarpour
- From the Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK (L.E.M.F., M.P.C., M.J., A.S., Z.A., S.N., D.J.T., B.R., L.V.); Oncology and Haematology Centre, Churchill Hospital, Oxford, UK (A.S.); Axcella Therapeutics, Cambridge, Mass (K.A.); and Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia (L.V.)
| | - Antonella Sultana
- From the Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK (L.E.M.F., M.P.C., M.J., A.S., Z.A., S.N., D.J.T., B.R., L.V.); Oncology and Haematology Centre, Churchill Hospital, Oxford, UK (A.S.); Axcella Therapeutics, Cambridge, Mass (K.A.); and Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia (L.V.)
| | - Zakariye Ashkir
- From the Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK (L.E.M.F., M.P.C., M.J., A.S., Z.A., S.N., D.J.T., B.R., L.V.); Oncology and Haematology Centre, Churchill Hospital, Oxford, UK (A.S.); Axcella Therapeutics, Cambridge, Mass (K.A.); and Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia (L.V.)
| | - Karim Azer
- From the Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK (L.E.M.F., M.P.C., M.J., A.S., Z.A., S.N., D.J.T., B.R., L.V.); Oncology and Haematology Centre, Churchill Hospital, Oxford, UK (A.S.); Axcella Therapeutics, Cambridge, Mass (K.A.); and Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia (L.V.)
| | - Stefan Neubauer
- From the Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK (L.E.M.F., M.P.C., M.J., A.S., Z.A., S.N., D.J.T., B.R., L.V.); Oncology and Haematology Centre, Churchill Hospital, Oxford, UK (A.S.); Axcella Therapeutics, Cambridge, Mass (K.A.); and Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia (L.V.)
| | - Damian J Tyler
- From the Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK (L.E.M.F., M.P.C., M.J., A.S., Z.A., S.N., D.J.T., B.R., L.V.); Oncology and Haematology Centre, Churchill Hospital, Oxford, UK (A.S.); Axcella Therapeutics, Cambridge, Mass (K.A.); and Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia (L.V.)
| | - Betty Raman
- From the Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK (L.E.M.F., M.P.C., M.J., A.S., Z.A., S.N., D.J.T., B.R., L.V.); Oncology and Haematology Centre, Churchill Hospital, Oxford, UK (A.S.); Axcella Therapeutics, Cambridge, Mass (K.A.); and Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia (L.V.)
| | - Ladislav Valkovič
- From the Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK (L.E.M.F., M.P.C., M.J., A.S., Z.A., S.N., D.J.T., B.R., L.V.); Oncology and Haematology Centre, Churchill Hospital, Oxford, UK (A.S.); Axcella Therapeutics, Cambridge, Mass (K.A.); and Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia (L.V.)
| |
Collapse
|
10
|
Garbsch R, Schäfer H, Mooren FC, Schmitz B. Analysis of fat oxidation capacity during cardiopulmonary exercise testing indicates long-lasting metabolic disturbance in patients with post-covid-19 syndrome. Clin Nutr 2024; 43:26-35. [PMID: 39423759 DOI: 10.1016/j.clnu.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND & AIMS Post-COVID-19 Syndrome (PCS) is characterized by symptoms including fatigue, reduced physical performance, dyspnea, cognitive impairment, and psychological distress. The mechanisms underlying the onset and severity of PCS point to mitochondrial dysfunction as significant contributor. This study examined fat oxidation as a function of mitochondrial capacity during exercise. METHODS Single-center prospective cohort study during inpatient rehabilitation. Cardiopulmonary exercise testing and assessment of fatigue using questionnaires were performed at admission and discharge. Detailed spirometric breath-by-breath data were used to calculate substrate oxidation rates. RESULTS Patients (N = 187; 38 % women; 49.7 ± 11.4 years) were referred to rehabilitation 253.4 ± 130.6 days after infection. Lead symptoms included fatigue/exercise intolerance (79.9 %), shortness of breath (77.0 %), and cognitive dysfunction (55.1 %). Fat oxidation capacity was disturbed in PCS patients overall (AUC: 11.3 [10.7-11.9]) compared to healthy controls (p < 0.0001), with hospitalization during acute infection predicting the level of disturbance (p < 0.0001). Low exercise capacity and high fatigue scores resulted in reduced fat oxidation (both p < 0.0001). In particular, younger males were affected by significantly reduced fat oxidation capacity (sex: p = 0.002; age: p < 0.001). Metabolic disturbance was significantly improved during exercise-based rehabilitation (AUC: 14.9 [14.4-15.4]; p < 0.0001), even for the group of younger impaired males (+44.2 %; p < 0.0001). Carbohydrate oxidation was not impaired. CONCLUSIONS PCS-specific restrictions in fat oxidation may indicate persistent mitochondrial dysfunction. Clinical assessment of PCS patients should include detailed breath-by-breath analysis during exercise to identify metabolic alterations especially in the group of younger males identified in this report. Exercise-based rehabilitation results in improved exercise capacity and fat oxidation and thus likely mitochondrial function. CLINICAL TRIALS NCT06468722.
Collapse
Affiliation(s)
- René Garbsch
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal, Germany
| | - Hendrik Schäfer
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal, Germany
| | - Frank C Mooren
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal, Germany
| | - Boris Schmitz
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal, Germany.
| |
Collapse
|
11
|
Helbing DL, Dommaschk EM, Danyeli LV, Liepinsh E, Refisch A, Sen ZD, Zvejniece L, Rocktäschel T, Stabenow LK, Schiöth HB, Walter M, Dambrova M, Besteher B. Conceptual foundations of acetylcarnitine supplementation in neuropsychiatric long COVID syndrome: a narrative review. Eur Arch Psychiatry Clin Neurosci 2024; 274:1829-1845. [PMID: 38172332 PMCID: PMC11579146 DOI: 10.1007/s00406-023-01734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
Post-acute sequelae of COVID-19 can present as multi-organ pathology, with neuropsychiatric symptoms being the most common symptom complex, characterizing long COVID as a syndrome with a significant disease burden for affected individuals. Several typical symptoms of long COVID, such as fatigue, depressive symptoms and cognitive impairment, are also key features of other psychiatric disorders such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and major depressive disorder (MDD). However, clinically successful treatment strategies are still lacking and are often inspired by treatment options for diseases with similar clinical presentations, such as ME/CFS. Acetylcarnitine, the shortest metabolite of a class of fatty acid metabolites called acylcarnitines and one of the most abundant blood metabolites in humans can be used as a dietary/nutritional supplement with proven clinical efficacy in the treatment of MDD, ME/CFS and other neuropsychiatric disorders. Basic research in recent decades has established acylcarnitines in general, and acetylcarnitine in particular, as important regulators and indicators of mitochondrial function and other physiological processes such as neuroinflammation and energy production pathways. In this review, we will compare the clinical basis of neuropsychiatric long COVID with other fatigue-associated diseases. We will also review common molecular disease mechanisms associated with altered acetylcarnitine metabolism and the potential of acetylcarnitine to interfere with these as a therapeutic agent. Finally, we will review the current evidence for acetylcarnitine as a supplement in the treatment of fatigue-associated diseases and propose future research strategies to investigate the potential of acetylcarnitine as a treatment option for long COVID.
Collapse
Affiliation(s)
- Dario Lucas Helbing
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Eva-Maria Dommaschk
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Alexander Refisch
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
| | - Liga Zvejniece
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Tonia Rocktäschel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany
| | - Leonie Karoline Stabenow
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24, Uppsala, Sweden
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany.
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany.
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany.
| |
Collapse
|
12
|
Fagundes de Sousa TL, Kluser Sales AR, Martins Fagundes JG, Barbosa Botelho LF, Ribeiro de Souza F, Fonseca GW, Pereira de Albuquerque AL, Tavares de Melo MD, Alves MJDNN. Evaluation of myocardial work and exercise capacity in patients recovered from the severe form of COVID-19. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2024; 23:200324. [PMID: 39258008 PMCID: PMC11382027 DOI: 10.1016/j.ijcrp.2024.200324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
Background The impact of COVID-19 goes beyond its acute form and can lead to the persistence of symptoms and the emergence of systemic disorders, defined as long-term COVID. Methods We performed a cross-sectional study that included patients over 18 years of age who recovered from the severe form of COVID-19 at least 60 days after their discharge. Patients and controls were enrolled to undergo transthoracic echocardiography (TTE) using a more sensitive tool, myocardial work, in combination with cardiopulmonary exercise testing (CPET). Results A total of 52 patients and 31 controls were enrolled. Significant differences were observed in ejection fraction (LVEF; 62 ± 7 vs. 66 ± 6 %; p = 0.007), global longitudinal strain (LVGLS; -18.7 ± 2.6 vs. -20.4 ± 1.4 %; p = 0.001), myocardial wasted work (GWW; 152 ± 81 vs. 101 ± 54 mmHg; p = 0.003), and myocardial work efficiency (GWE; 93 ± 3 vs. 95 ± 2 %; p = 0.002). We found a significant difference in peak VO2 (24.4 ± 5.4 vs. 33.4 ± 8.8 mL/kg/min; p < 0.001), heart rate (160 ± 14 vs. 176 ± 11 bpm; p < 0.001), ventilation (84.6 ± 22.6 vs. 104.9 ± 27.0 L/min; p < 0.001), OUES% (89 ± 16 vs. 102 ± 22 %; p = 0.002), T ½ (120.3 ± 32 vs. 97.6 ± 27 s; p = 0.002) and HRR at 2 min (-36 ± 11 vs. -43 ± 13 bpm; p = 0.010). Conclusion Our findings revealed an increased wasted work, with lower myocardial efficiency, significantly reduced aerobic exercise capacity, and abnormal heart rate response during recovery, which may be related to previously described late symptoms. The reduction in functional capacity during physical exercise is partly associated with a decrease in resting myocardial work efficiency. These findings strongly indicate the need to determine whether these manifestations persist in the long term and their impact on cardiovascular health and quality of life in COVID-19 survivors.
Collapse
Affiliation(s)
- Thiago Lins Fagundes de Sousa
- Heart Institute (InCor), University of São Paulo Medical School, Brazil
- Medical Sciences Center of the Federal University of Paraíba, Brazil
| | | | - Juliana Góes Martins Fagundes
- Heart Institute (InCor), University of São Paulo Medical School, Brazil
- Medical Sciences Center of the Federal University of Paraíba, Brazil
| | - Luis Fábio Barbosa Botelho
- Heart Institute (InCor), University of São Paulo Medical School, Brazil
- Medical Sciences Center of the Federal University of Paraíba, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Liu J, Zhou F, Tang Y, Li L, Li L. Progress in Lactate Metabolism and Its Regulation via Small Molecule Drugs. Molecules 2024; 29:5656. [PMID: 39683818 DOI: 10.3390/molecules29235656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Lactate, once viewed as a byproduct of glycolysis and a metabolic "waste", is now recognized as an energy-providing substrate and a signaling molecule that modulates cellular functions under pathological conditions. The discovery of histone lactylation in 2019 marked a paradigm shift, with subsequent studies revealing that lactate can undergo lactylation with both histone and non-histone proteins, implicating it in the pathogenesis of various diseases, including cancer, liver fibrosis, sepsis, ischemic stroke, and acute kidney injury. Aberrant lactate metabolism is associated with disease onset, and its levels can predict disease outcomes. Targeting lactate production, transport, and lactylation may offer therapeutic potential for multiple diseases, yet a systematic summary of the small molecules modulating lactate and its metabolism in various diseases is lacking. This review outlines the sources and clearance of lactate, as well as its roles in cancer, liver fibrosis, sepsis, ischemic stroke, myocardial infarction, and acute kidney injury, and summarizes the effects of small molecules on lactate regulation. It aims to provide a reference and direction for future research.
Collapse
Affiliation(s)
- Jin Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Feng Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yang Tang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Linghui Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ling Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
14
|
Montoliu Nebot J, Iradi Casal A, Cepeda Madrigal S, Rissi G, Sanz Saz S, Molés Gimeno JD, Miravet Sorribes LM. [Physiological assessment and management of post-COVID patients with normal cardiopulmonary imaging and functional tests]. Semergen 2024; 50:102282. [PMID: 38936100 DOI: 10.1016/j.semerg.2024.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/24/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE Contributing to elucidate the pathophysiology of dyspnoea and exertion intolerance in post-COVID syndrome patients with normal cardiopulmonary imaging and functional tests at rest, while determining their fitness and level of endurance in order to individualize working parameters for physical rehabilitation. MATERIAL AND METHODS After an anamnesis and clinical examination at rest, 27 subjects (50±11.9 years) (14 women) with post-COVID syndrome of more than 6 months of evolution performed a continuous maximal-incremental graded cardiopulmonary exercise test (CPET) with breath-by-breath gas-exchange monitoring and continuous ECG registration, on an electromagnetically braked cycle ergometer. The values obtained were compared with those of reference, gender or controls, using the Chi-square, t-Student or ANOVA test. RESULTS The clinical examination at rest and the CPET were clinically normal and without adverse events. Reasons for stopping exercise were leg discomfort. It is only worth noting a BMI=29.9±5.8kg/m2 and a basal lactate concentration of 2.1±0.7mmol/L. The physiological assessment of endurance showed the following results relative to predicted VO2máx: 1)peakVO2=80.5±18.6%; 2)VO2 at ventilatory threshold1 (VO2VT1): 46.0±12.9%; 3)VO2VT2: 57.2±16.4%; 4)working time in acidosis: 5.6±3,0minutes; and 5)maximum lactate concentration: 5.1±2.2mmol/L. CONCLUSIONS The CPET identified limited aerobic metabolism and early increase in glycolytic metabolism as causes of dyspnoea and exercise intolerance, determined fitness for physical rehabilitation, and individualized it based on the level of endurance.
Collapse
Affiliation(s)
- J Montoliu Nebot
- Unidad de Medicina Deportiva, Servicio de Rehabilitación, Consorcio Hospitalario Provincial de Castellón, Castellón, España
| | - A Iradi Casal
- Departamento de Fisiología, Universitat de València, Valencia, España
| | - S Cepeda Madrigal
- Sección de Neumología, Hospital Universitari de La Plana, Vila-real, Castellón, España
| | - G Rissi
- Sección de Neumología, Hospital Universitari de La Plana, Vila-real, Castellón, España
| | - S Sanz Saz
- Unidad de Medicina Deportiva, Servicio de Rehabilitación, Consorcio Hospitalario Provincial de Castellón, Castellón, España
| | - J D Molés Gimeno
- Unidad de Medicina Deportiva, Servicio de Rehabilitación, Consorcio Hospitalario Provincial de Castellón, Castellón, España
| | - L M Miravet Sorribes
- Sección de Neumología, Hospital Universitari de La Plana, Vila-real, Castellón, España.
| |
Collapse
|
15
|
Pietranis KA, Kostro AM, Dzięcioł-Anikiej Z, Moskal-Jasińska D, Kuryliszyn-Moskal A. Impact of COVID-19 on Diaphragmatic Function: Understanding Multiorgan Involvement and Long-Term Consequences. J Clin Med 2024; 13:6493. [PMID: 39518632 PMCID: PMC11546792 DOI: 10.3390/jcm13216493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The COVID-19 pandemic has brought significant attention to the respiratory system, with much focus on lung-related disorders. However, the diaphragm, a crucial component of respiratory physiology, has not been adequately studied, especially in the context of long COVID. This review explores the multipotential role of the diaphragm in both respiratory health and disease, emphasizing its involvement in long-term complications following SARS-CoV-2 infection. The diaphragm's fundamental role in respiratory physiology and its impact on balance and posture control, breathing patterns, and autonomic nervous system regulation are discussed. This review examines complications arising from COVID-19, highlighting the diaphragm's involvement in neurological, musculoskeletal, and inflammatory responses. Particular attention is given to the neuroinvasive impact of SARS-CoV-2, the inflammatory response, and the direct viral effects on the diaphragm. The diaphragm's role in long COVID is explored, with a focus on specific symptoms such as voice disorders, pelvic floor dysfunction, and sleep disturbances. Diagnostic challenges, current methods for assessing diaphragmatic dysfunction, and the complexities of differentiating it from other conditions are also explored. This article is the first to comprehensively address diaphragmatic dysfunction resulting from COVID-19 and long COVID across various physiological and pathological aspects, offering a new perspective on its diagnosis and treatment within a multisystem context.
Collapse
Affiliation(s)
- Katarzyna Anna Pietranis
- Department of Rehabilitation, Medical University of Bialystok, 24A M. Skłodowskiej-Curie St., 15-276 Bialystok, Poland; (A.M.K.); (Z.D.-A.); (A.K.-M.)
| | - Amanda Maria Kostro
- Department of Rehabilitation, Medical University of Bialystok, 24A M. Skłodowskiej-Curie St., 15-276 Bialystok, Poland; (A.M.K.); (Z.D.-A.); (A.K.-M.)
| | - Zofia Dzięcioł-Anikiej
- Department of Rehabilitation, Medical University of Bialystok, 24A M. Skłodowskiej-Curie St., 15-276 Bialystok, Poland; (A.M.K.); (Z.D.-A.); (A.K.-M.)
| | - Diana Moskal-Jasińska
- Department of Clinical Phonoaudiology and Speech Therapy, Medical University of Bialystok, 37 Szpitalna St., 15-295 Bialystok, Poland;
| | - Anna Kuryliszyn-Moskal
- Department of Rehabilitation, Medical University of Bialystok, 24A M. Skłodowskiej-Curie St., 15-276 Bialystok, Poland; (A.M.K.); (Z.D.-A.); (A.K.-M.)
| |
Collapse
|
16
|
Puntmann VO, Beitzke D, Kammerlander A, Voges I, Gabbert DD, Doerr M, Chamling B, Bozkurt B, Kaski JC, Spatz E, Herrmann E, Rohde G, DeLeuw P, Taylor L, Windemuth-Kieselbach C, Harz C, Santiuste M, Schoeckel L, Hirayama J, Taylor PC, Berry C, Nagel E. Design and rationale of MYOFLAME-19 randomised controlled trial: MYOcardial protection to reduce post-COVID inFLAMmatory heart disease using cardiovascular magnetic resonance Endpoints. J Cardiovasc Magn Reson 2024; 27:101121. [PMID: 39481808 PMCID: PMC11697771 DOI: 10.1016/j.jocmr.2024.101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Cardiac symptoms due to postacute inflammatory cardiac involvement affect a broad segment of previously well people with only mild acute coronavirus disease 2019 (COVID-19) illness and without overt structural heart disease. Cardiovascular magnetic resonance (CMR) imaging can identify the underlying subclinical disease process, which is associated with chronic cardiac symptoms. Specific therapy directed at reducing postacute cardiac inflammatory involvement before development of myocardial injury and impairment is missing. METHODS Prospective multicenter randomized placebo-controlled study of myocardial protection therapy (combined immunosuppressive/antiremodeling) of low-dose prednisolone and losartan. Consecutive symptomatic individuals with a prior COVID-19 infection, no pre-existing significant comorbidities or structural heart disease, undergo standardized assessments with questionnaires, CMR imaging, and cardiopulmonary exercise testing (CPET). Eligible participants fulfilling the criteria of subclinical post-COVID inflammatory heart involvement on baseline CMR examination are randomized to treatment with either verum or placebo for a total of 16 weeks (W16). Participants and investigators remain blinded to the group allocation throughout the study duration. The primary efficacy endpoint is the absolute change of left ventricular ejection fraction to baseline at W16, measured by CMR, between the verum treatment and placebo group by absolute difference, using unpaired t-test confirmatively at a significance level of 0.05 significance level. Secondary endpoints include assessment of changes of symptoms, CMR parameters, and CPET after W16, and frequency of major adverse cardiac events after 1 year. Safety data will be analyzed for frequency, severity, and types of adverse events (AEs) for all treatment groups. The proportion of AEs related to the contrast agent gadobutrol will also be analyzed. A calculated sample size is a total of 280 participants (accounting for 22 subjects (8%) drop out), randomized in 1:1 fashion to 140 in the verum and 140 placebo groups. CONCLUSION Myoflame-19 study will examine the efficacy of a myocardial protection therapy in symptomatic participants with post-COVID inflammatory cardiac involvement determined by CMR. The aim of the intervention is to reduce the symptoms and inflammatory myocardial injury, improve exercise tolerance, and preclude the development of cardiac impairment.
Collapse
Affiliation(s)
- Valentina O Puntmann
- Institute for Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, Goethe University Frankfurt, Frankfurt am Main, Germany; German Centre for Cardiovascular Research - Partner Site Rhein-Main, Rhein-Main, Germany.
| | - Dietrich Beitzke
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Radiology and Nuclear Medicine, University Hospital Vienna, Vienna, Austria
| | | | - Inga Voges
- Department of Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany; German Centre for Cardiovascular Research - Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Dominik D Gabbert
- Department of Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Marcus Doerr
- Department of Cardiology, Angiology, and Pulmonology, Internal Intensive Care Unit, University Hospital Greifswald, Greifswald, Germany; German Centre for Cardiovascular Research - Partner Site Greifswald, Greifswald, Germany
| | - Bishwas Chamling
- Department of Cardiology, Angiology, and Pulmonology, Internal Intensive Care Unit, University Hospital Greifswald, Greifswald, Germany; German Centre for Cardiovascular Research - Partner Site Greifswald, Greifswald, Germany
| | - Biykem Bozkurt
- Winters Center for Heart Failure Research, Houston, Texas, USA; Cardiovascular Research Institute, Baylor College of Medicine, DeBakey VA Medical Center, Houston, Texas, USA
| | - Juan Carlos Kaski
- Cardiovascular Sciences, Molecular and Clinical Sciences, St George's, University of London, London, UK
| | - Erica Spatz
- Cardiovascular Medicine, Yale Center for Outcomes Research and Evaluation, Yale School of Medicine, 800 Howard Avenue, New Haven, Connecticut 06519, USA
| | - Eva Herrmann
- Institute of Biostatistics and Mathematical Modeling, Center for Health Sciences, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Gernot Rohde
- Department of Respiratory Medicine, Goethe University Frankfurt, Medical Clinic I, University Hospital, Frankfurt am Main, Germany
| | | | - Lenka Taylor
- Pharmacy of the Clinical Trial Unit, Medical School, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | - Peter C Taylor
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Windmill Road, Headington, Oxford OX3 7LD, UK
| | - Colin Berry
- University of Glasgow, School of Cardiovascular & Metabolic Health, BHF Glasgow Cardiovascular Research Centre (GCRC), Glasgow, UK
| | - Eike Nagel
- Institute for Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, Goethe University Frankfurt, Frankfurt am Main, Germany; German Centre for Cardiovascular Research - Partner Site Rhein-Main, Rhein-Main, Germany
| |
Collapse
|
17
|
Peluso MJ, Deeks SG. Mechanisms of long COVID and the path toward therapeutics. Cell 2024; 187:5500-5529. [PMID: 39326415 PMCID: PMC11455603 DOI: 10.1016/j.cell.2024.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/28/2024]
Abstract
Long COVID, a type of post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (PASC) defined by medically unexplained symptoms following infection with SARS-CoV-2, is a newly recognized infection-associated chronic condition that causes disability in some people. Substantial progress has been made in defining its epidemiology, biology, and pathophysiology. However, there is no cure for the tens of millions of people believed to be experiencing long COVID, and industry engagement in developing therapeutics has been limited. Here, we review the current state of knowledge regarding the biology and pathophysiology of long COVID, focusing on how the proposed mechanisms explain the physiology of the syndrome and how they provide a rationale for the implementation of a broad experimental medicine and clinical trials agenda. Progress toward preventing and curing long COVID and other infection-associated chronic conditions will require deep and sustained investment by funders and industry.
Collapse
Affiliation(s)
- Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Leitner BP, Joseph P, Quast AF, Ramirez MA, Heerdt PM, Villalobos JG, Singh I. The metabolic and physiologic impairments underlying long COVID associated exercise intolerance. Pulm Circ 2024; 14:e70009. [PMID: 39544193 PMCID: PMC11560803 DOI: 10.1002/pul2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
Data from invasive CPET (iCPET) revealed long COVID patients have impaired systemic oxygen extraction (EO2), suggesting impaired mitochondrial ATP production. However, it remains uncertain whether the initial severity of SARS-CoV-2 infection has implications on EO2 and exercise capacity (VO2) nor has there been assessment of anerobic ATP generation in long COVID patients. iCPET was performed on 47 long COVID patients (i.e., full cohort; n = 8 with severe SARS-CoV-2 infection). In a subset of patients (i.e., metabolomic cohort; n = 26) metabolomics on venous and arterial blood samples during iCPET was performed. In the full cohort, long COVID patients exhibited reduced peak EO2 with reduced peak VO2 (90 ± 17% predicted) relative to cardiac output (118 ± 23% predicted). Peak VO2 [88% predicted (IQR 81% - 108%) vs. 70% predicted (IQR 64% - 89%); p = 0.02] and EO2 [0.59(IQR 0.53-0.62) vs. 0.53(IQR 0.50-0.48); p = 0.01) were lower in severe versus mild infection. In the metabolomic cohort, 12 metabolites were significantly consumed, and 41 metabolites were significantly released (p-values < 0.05). Quantitative metabolomics demonstrated significant increases in inosine and succinate arteriovenous gradients during exercise. Peak VO2 was significantly correlated with peak venous succinate (r = 0.68; p = 0.0008) and peak venous lactate (r = 0.49; p = 0.0004). Peak EO2 and consequently peak VO2 impact long COVID patients in a severity dependent manner. Exercise intolerance associated with long COVID is defined by impaired aerobic and anaerobic energy production. Peak venous succinate may serve as a potential biomarker in long COVID.
Collapse
Affiliation(s)
| | - Phillip Joseph
- Department of Medicine, Section of Pulmonary, Critical Care, and Sleep MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Andres Figueroa Quast
- Department of Medicine, Section of Pulmonary, Critical Care, and Sleep MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Maria Alejandra Ramirez
- Department of Medicine, Section of Pulmonary, Critical Care, and Sleep MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Paul M. Heerdt
- Department of AnesthesiologyYale School of MedicineNew HavenConnecticutUSA
| | - Jose G. Villalobos
- Department of Medicine, Section of Pulmonary, Critical Care, and Sleep MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Inderjit Singh
- Department of Medicine, Section of Pulmonary, Critical Care, and Sleep MedicineYale School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
19
|
Santana-de Anda K, Torres-Ruiz J, Mejía-Domínguez NR, Alcalá-Carmona B, Maravillas-Montero JL, Páez-Franco JC, Vargas-Castro AS, Lira-Luna J, Camacho-Morán EA, Juarez-Vega G, Meza-Sánchez D, Núñez-Álvarez C, Rull-Gabayet M, Gómez-Martín D. Novel Clinical, Immunological, and Metabolic Features Associated with Persistent Post-Acute COVID-19 Syndrome. Int J Mol Sci 2024; 25:9661. [PMID: 39273608 PMCID: PMC11395921 DOI: 10.3390/ijms25179661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) survivors are frequently observed to present persistent symptoms constituting what has been called "post-acute COVID-19 syndrome" (PACS) or "long COVID-19". Some clinical risk factors have been identified to be associated with PACS development; however, specific mechanisms responsible for PACS pathology remain unknown. This study investigates clinical, immunological, and metabolomic risk factors associated with post-acute COVID-19 syndrome (PACS) in 51 patients, assessed 7-19 months after acute infection. Among the participants, 62.7% were male and 37.2% were female, with an average age of 47.8 years. At the follow-up, 37.2% met the criteria for PACS, revealing significant differences in immunological and metabolomic profiles at the time of acute infection. Patients with PACS were characterized by elevated levels of mature low-density granulocytes (LDGs), interleukin-8 (IL-8), pyruvate, pseudouridine, and cystine. Baseline multivariate analysis showed increased pyruvate and decreased alpha tocopherol levels. At follow-up, there was a decrease in absolute B lymphocytes and an increase in non-classical monocytes and 3-hydroxyisovaleric acid levels. These findings suggest that specific immunological and metabolomic markers during acute infection can help identify patients at higher risk of developing persistent PACS.
Collapse
Affiliation(s)
- Karina Santana-de Anda
- Immunology and Rheumatology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Jiram Torres-Ruiz
- Immunology and Rheumatology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Nancy R Mejía-Domínguez
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Beatriz Alcalá-Carmona
- Immunology and Rheumatology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - José L Maravillas-Montero
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - José Carlos Páez-Franco
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | | | - Jaquelin Lira-Luna
- Departamento de Cirugía General, Hospital Regional 1ro de Octubre, ISSSTE, Mexico City 07760, Mexico
| | - Emmanuel A Camacho-Morán
- Departamento de Medicina Crítica, Instituto Nacional de Perinatología, Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Guillermo Juarez-Vega
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - David Meza-Sánchez
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Carlos Núñez-Álvarez
- Immunology and Rheumatology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Marina Rull-Gabayet
- Immunology and Rheumatology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Diana Gómez-Martín
- Immunology and Rheumatology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| |
Collapse
|
20
|
Ward C, Schlichtholz B. Post-Acute Sequelae and Mitochondrial Aberration in SARS-CoV-2 Infection. Int J Mol Sci 2024; 25:9050. [PMID: 39201736 PMCID: PMC11354507 DOI: 10.3390/ijms25169050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
This review investigates links between post-acute sequelae of SARS-CoV-2 infection (PASC), post-infection viral persistence, mitochondrial involvement and aberrant innate immune response and cellular metabolism during SARS-CoV-2 infection. Advancement of proteomic and metabolomic studies now allows deeper investigation of alterations to cellular metabolism, autophagic processes and mitochondrial dysfunction caused by SARS-CoV-2 infection, while computational biology and machine learning have advanced methodologies of predicting virus-host gene and protein interactions. Particular focus is given to the interaction between viral genes and proteins with mitochondrial function and that of the innate immune system. Finally, the authors hypothesise that viral persistence may be a function of mitochondrial involvement in the sequestration of viral genetic material. While further work is necessary to understand the mechanisms definitively, a number of studies now point to the resolution of questions regarding the pathogenesis of PASC.
Collapse
Affiliation(s)
| | - Beata Schlichtholz
- Department of Biochemistry, Gdańsk University of Medicine, 80-210 Gdańsk, Poland;
| |
Collapse
|
21
|
Shafqat A, Masters MC, Tripathi U, Tchkonia T, Kirkland JL, Hashmi SK. Long COVID as a disease of accelerated biological aging: An opportunity to translate geroscience interventions. Ageing Res Rev 2024; 99:102400. [PMID: 38945306 DOI: 10.1016/j.arr.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
It has been four years since long COVID-the protracted consequences that survivors of COVID-19 face-was first described. Yet, this entity continues to devastate the quality of life of an increasing number of COVID-19 survivors without any approved therapy and a paucity of clinical trials addressing its biological root causes. Notably, many of the symptoms of long COVID are typically seen with advancing age. Leveraging this similarity, we posit that Geroscience-which aims to target the biological drivers of aging to prevent age-associated conditions as a group-could offer promising therapeutic avenues for long COVID. Bearing this in mind, this review presents a translational framework for studying long COVID as a state of effectively accelerated biological aging, identifying research gaps and offering recommendations for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Mary Clare Masters
- Division of Infectious Diseases, Northwestern University, Chicago, IL, USA
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shahrukh K Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Research and Innovation Center, Department of Health, Abu Dhabi, UAE; College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
22
|
Longobardi I, Prado DMLD, de Andrade DCO, Goessler KF, de Oliveira Júnior GN, de Almeida Azevedo R, Leitão AE, Santos JVP, Pinto ALDS, Gualano B, Roschel H. Cardiorespiratory abnormalities in ICU survivors of COVID-19 with postacute sequelae of SARS-CoV-2 infection are unrelated to invasive mechanical ventilation. Am J Physiol Heart Circ Physiol 2024; 326:H907-H915. [PMID: 38334972 DOI: 10.1152/ajpheart.00073.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/10/2024]
Abstract
Postacute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC) often leads to exertional intolerance and reduced exercise capacity, particularly in individuals previously admitted to an intensive care unit (ICU). However, the impact of invasive mechanical ventilation (IMV) on PASC-associated cardiorespiratory abnormalities during exercise remains poorly understood. This single-center, cross-sectional study aimed to gather knowledge on this topic. Fifty-two patients with PASC recruited ∼6 mo after ICU discharge were clustered based on their need for IMV (PASC + IMV, n = 27) or noninvasive support therapy (PASC + NIS, n = 25). Patients underwent pulmonary function and cardiopulmonary exercise testing (CPX) and were compared with a reference group (CONTROL, n = 19) comprising individuals of both sexes with similar age, comorbidities, and physical activity levels but without a history of COVID-19 illness. Individuals with PASC, irrespective of support therapy, presented with higher rates of cardiorespiratory abnormalities than CONTROL, especially dysfunctional breathing patterns, dynamic hyperinflation, reduced oxygen uptake and oxygen pulse, and blunted heart rate recovery (all P < 0.05). Only the rate of abnormal oxygen pulse was greater among PASC + IMV group than PASC + NIS group (P = 0.05). Mean estimates for all CPX variables were comparable between PASC + IMV and PASC + NIS groups (all P > 0.05). These findings indicate significant involvement of both central and peripheral factors, leading to exertional intolerance in individuals with PASC previously admitted to the ICU, regardless of their need for IMV.NEW & NOTEWORTHY We found cardiorespiratory abnormalities in ICU survivors of severe-to-critical COVID-19 with PASC to be independent of IMV need. Overall, both group of patients experienced dysfunctional breathing patterns, dynamic hyperinflation, lower oxygen uptake and oxygen pulse, and blunted heart rate responses to CPX. PASC seems to impact exertional tolerance and exercise capacity due to ventilatory inefficiency, impaired aerobic metabolism, and potential systolic and autonomic dysfunction, all of these irrespective of support therapy during ICU stay.
Collapse
Affiliation(s)
- Igor Longobardi
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Center of Lifestyle Medicine, Laboratory of Assessment and Conditioning in Rheumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | - Danilo Marcelo Leite do Prado
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Center of Lifestyle Medicine, Laboratory of Assessment and Conditioning in Rheumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | | | - Karla Fabiana Goessler
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Center of Lifestyle Medicine, Laboratory of Assessment and Conditioning in Rheumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | - Gersiel Nascimento de Oliveira Júnior
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Center of Lifestyle Medicine, Laboratory of Assessment and Conditioning in Rheumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | - Rafael de Almeida Azevedo
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Center of Lifestyle Medicine, Laboratory of Assessment and Conditioning in Rheumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | - Alice Erwig Leitão
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Center of Lifestyle Medicine, Laboratory of Assessment and Conditioning in Rheumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | - Jhonnatan Vasconcelos Pereira Santos
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Center of Lifestyle Medicine, Laboratory of Assessment and Conditioning in Rheumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | - Ana Lucia de Sá Pinto
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Center of Lifestyle Medicine, Laboratory of Assessment and Conditioning in Rheumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| | - Hamilton Roschel
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Center of Lifestyle Medicine, Laboratory of Assessment and Conditioning in Rheumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
23
|
Tryfonos A, Pourhamidi K, Jörnåker G, Engvall M, Eriksson L, Elhallos S, Asplund N, Mandić M, Sundblad P, Sepic A, Rullman E, Hyllienmark L, Rundqvist H, Lundberg TR, Gustafsson T. Functional Limitations and Exercise Intolerance in Patients With Post-COVID Condition: A Randomized Crossover Clinical Trial. JAMA Netw Open 2024; 7:e244386. [PMID: 38573638 PMCID: PMC11192186 DOI: 10.1001/jamanetworkopen.2024.4386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/02/2024] [Indexed: 04/05/2024] Open
Abstract
Importance Many patients with post-COVID condition (PCC) experience persistent fatigue, muscle pain, and cognitive problems that worsen after exertion (referred to as postexertional malaise). Recommendations currently advise against exercise in this population to prevent symptom worsening; however, prolonged inactivity is associated with risk of long-term health deterioration. Objective To assess postexertional symptoms in patients with PCC after exercise compared with control participants and to comprehensively investigate the physiologic mechanisms underlying PCC. Design, Setting, and Participants In this randomized crossover clinical trial, nonhospitalized patients without concomitant diseases and with persistent (≥3 months) symptoms, including postexertional malaise, after SARS-CoV-2 infection were recruited in Sweden from September 2022 to July 2023. Age- and sex-matched control participants were also recruited. Interventions After comprehensive physiologic characterization, participants completed 3 exercise trials (high-intensity interval training [HIIT], moderate-intensity continuous training [MICT], and strength training [ST]) in a randomized order. Symptoms were reported at baseline, immediately after exercise, and 48 hours after exercise. Main Outcomes and Measures The primary outcome was between-group differences in changes in fatigue symptoms from baseline to 48 hours after exercise, assessed via the visual analog scale (VAS). Questionnaires, cardiopulmonary exercise testing, inflammatory markers, and physiologic characterization provided information on the physiologic function of patients with PCC. Results Thirty-one patients with PCC (mean [SD] age, 46.6 [10.0] years; 24 [77%] women) and 31 healthy control participants (mean [SD] age, 47.3 [8.9] years; 23 [74%] women) were included. Patients with PCC reported more symptoms than controls at all time points. However, there was no difference between the groups in the worsening of fatigue in response to the different exercises (mean [SD] VAS ranks for HIIT: PCC, 29.3 [19.5]; controls, 28.7 [11.4]; P = .08; MICT: PCC, 31.2 [17.0]; controls, 24.6 [11.7]; P = .09; ST: PCC, 31.0 [19.7]; controls, 28.1 [12.2]; P = .49). Patients with PCC had greater exacerbation of muscle pain after HIIT (mean [SD] VAS ranks, 33.4 [17.7] vs 25.0 [11.3]; P = .04) and reported more concentration difficulties after MICT (mean [SD] VAS ranks, 33.0 [17.1] vs 23.3 [10.6]; P = .03) compared with controls. At baseline, patients with PCC showed preserved lung and heart function but had a 21% lower peak volume of oxygen consumption (mean difference: -6.8 mL/kg/min; 95% CI, -10.7 to -2.9 mL/kg/min; P < .001) and less isometric knee extension muscle strength (mean difference: -37 Nm; 95% CI, -67 to -7 Nm; P = .02) compared with controls. Patients with PCC spent 43% less time on moderate to vigorous physical activity (mean difference, -26.5 minutes/d; 95% CI, -42.0 to -11.1 minutes/d; P = .001). Of note, 4 patients with PCC (13%) had postural orthostatic tachycardia, and 18 of 29 (62%) showed signs of myopathy as determined by neurophysiologic testing. Conclusions and Relevance In this study, nonhospitalized patients with PCC generally tolerated exercise with preserved cardiovascular function but showed lower aerobic capacity and less muscle strength than the control group. They also showed signs of postural orthostatic tachycardia and myopathy. The findings suggest cautious exercise adoption could be recommended to prevent further skeletal muscle deconditioning and health impairment in patients with PCC. Trial Registration ClinicalTrials.gov Identifier: NCT05445830.
Collapse
Affiliation(s)
- Andrea Tryfonos
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Kaveh Pourhamidi
- Department of Clinical Neurophysiology, Karolinska University Hospital, Stockholm, Sweden
| | - Gustav Jörnåker
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Engvall
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Lisa Eriksson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sara Elhallos
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Asplund
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mirko Mandić
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Sundblad
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Atif Sepic
- Department of Clinical Neurophysiology, Karolinska University Hospital, Stockholm, Sweden
| | - Eric Rullman
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Hyllienmark
- Department of Clinical Neurophysiology, Karolinska University Hospital, Stockholm, Sweden
| | - Helene Rundqvist
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Tommy R. Lundberg
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
24
|
Conte C, Cipponeri E, Roden M. Diabetes Mellitus, Energy Metabolism, and COVID-19. Endocr Rev 2024; 45:281-308. [PMID: 37934800 PMCID: PMC10911957 DOI: 10.1210/endrev/bnad032] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/30/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Obesity, diabetes mellitus (mostly type 2), and COVID-19 show mutual interactions because they are not only risk factors for both acute and chronic COVID-19 manifestations, but also because COVID-19 alters energy metabolism. Such metabolic alterations can lead to dysglycemia and long-lasting effects. Thus, the COVID-19 pandemic has the potential for a further rise of the diabetes pandemic. This review outlines how preexisting metabolic alterations spanning from excess visceral adipose tissue to hyperglycemia and overt diabetes may exacerbate COVID-19 severity. We also summarize the different effects of SARS-CoV-2 infection on the key organs and tissues orchestrating energy metabolism, including adipose tissue, liver, skeletal muscle, and pancreas. Last, we provide an integrative view of the metabolic derangements that occur during COVID-19. Altogether, this review allows for better understanding of the metabolic derangements occurring when a fire starts from a small flame, and thereby help reducing the impact of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome 00166, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Elisa Cipponeri
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg 85764, Germany
| |
Collapse
|
25
|
de la Guía-Galipienso F, Palau P, Berenguel-Senen A, Perez-Quilis C, Christle JW, Myers J, Haddad F, Baggish A, D'Ascenzi F, Lavie CJ, Lippi G, Sanchis-Gomar F. Being fit in the COVID-19 era and future epidemics prevention: Importance of cardiopulmonary exercise test in fitness evaluation. Prog Cardiovasc Dis 2024; 83:84-91. [PMID: 38452909 DOI: 10.1016/j.pcad.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Endurance and resistance physical activity have been shown to stimulate the production of immunoglobulins and boost the levels of anti-inflammatory cytokines, natural killer cells, and neutrophils in the bloodstream, thereby strengthening the ability of the innate immune system to protect against diseases and infections. Coronavirus disease 19 (COVID-19) greatly impacted people's cardiorespiratory fitness (CRF) and health worldwide. Cardiopulmonary exercise testing (CPET) remains valuable in assessing physical condition, predicting illness severity, and guiding interventions and treatments. In this narrative review, we summarize the connections and impact of COVID-19 on CRF levels and its implications on the disease's progression, prognosis, and mortality. We also emphasize the significant contribution of CPET in both clinical evaluations of recovering COVID-19 patients and scientific investigations focused on comprehending the enduring health consequences of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fernando de la Guía-Galipienso
- School of Medicine, Catholic University of Valencia San Vicente Mártir, Valencia, Spain; REMA Sports Cardiology Clinic, Denia, Alicante, Spain; Ergospirometry Working Group Spanish Society of Cardiology, Madrid, Spain
| | - Patricia Palau
- Ergospirometry Working Group Spanish Society of Cardiology, Madrid, Spain; Cardiology Department, Hospital Clínico Universitario, INCLIVA. Universitat de València, Valencia, Spain
| | - Alejandro Berenguel-Senen
- Ergospirometry Working Group Spanish Society of Cardiology, Madrid, Spain; Cardiovascular Prevention and Sports Cardiology Unit, University Hospital of Toledo, Toledo, Spain
| | - Carme Perez-Quilis
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey W Christle
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan Myers
- Cardiology Division, Veterans Affairs Palo Alto Health Care System and Stanford University, Palo Alto, CA, USA
| | - François Haddad
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron Baggish
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA; Cardiovascular Performance Program, Massachusetts General Hospital, Boston, MA, USA; Swiss Olympic Medical Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Institute for Sport Science, University of Lausanne (ISSUL), Lausanne, Switzerland
| | - Flavio D'Ascenzi
- Department of Medical Biotechnologies, Sports Cardiology and Rehab Unit, University of Siena, Siena, Italy
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School - The University of Queensland School of Medicine, New Orleans, LA, USA
| | - Giuseppe Lippi
- Section of Clinical Biochemistry and School of Medicine, University of Verona, Verona, Italy
| | - Fabian Sanchis-Gomar
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
26
|
Dirajlal-Fargo S, Maison DP, Durieux JC, Andrukhiv A, Funderburg N, Ailstock K, Gerschenson M, Mccomsey GA. Altered mitochondrial respiration in peripheral blood mononuclear cells of post-acute sequelae of SARS-CoV-2 infection. Mitochondrion 2024; 75:101849. [PMID: 38341012 PMCID: PMC11283875 DOI: 10.1016/j.mito.2024.101849] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/20/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Peripheral blood mononuclear cells (PBMC) mitochondrial respiration was measured ex vivo from participants without a history of COVID (n = 19), with a history of COVID and full recovery (n = 20), and with PASC (n = 20). Mean mitochondrial basal respiration, ATP-linked respiration, maximal respiration, spare respiration capacity, ATP-linked respiration, and non-mitochondrial respiration were highest in COVID + PASC+ (p ≤ 0.04). Every unit increase in non-mitochondrial respiration, ATP-linked respiration, basal respiration, spare respiration capacity, and maximal respiration increased the predicted odds of PASC between 1 % and 6 %. Mitochondrial dysfunction in PBMCs may be contributing to the etiology of PASC.
Collapse
Affiliation(s)
- Sahera Dirajlal-Fargo
- Case Western Reserve University, Cleveland, OH, USA; Ann and Robert Lurie Children's Hospital, Chicago, IL, USA.
| | - David P Maison
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA.
| | | | - Anastasia Andrukhiv
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA.
| | - Nicholas Funderburg
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA.
| | - Kate Ailstock
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA.
| | - Mariana Gerschenson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA.
| | | |
Collapse
|
27
|
Di Laudo F, Mainieri G, Provini F. Parasomnias During the COVID-19 Pandemic. Sleep Med Clin 2024; 19:177-187. [PMID: 38368064 DOI: 10.1016/j.jsmc.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
COVID-19 had a massive impact on sleep, resulting in overall increase of sleep disturbances. During lockdown many factors contributed to sleep disturbances, in particular changes in sleep-wake habits and stress. This article will describe the frequency and features of the principal parasomnias and the impact of the pandemic and the government restriction measures on sleep. Among different pathophysiological hypotheses, we will discuss the role of stress, considered as an expression of the allostatic load. Finally, during the pandemic, parasomnias were mainly investigated by questionnaires, with controversial results; video-polysomnographic studies are crucial to obtain a definitive diagnosis, even in critical conditions.
Collapse
Affiliation(s)
- Felice Di Laudo
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Via Massarenti, 9, Pad. 11, Bologna 40138, Italy
| | - Greta Mainieri
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Via Massarenti, 9, Pad. 11, Bologna 40138, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3, Bologna 40139, Italy
| | - Federica Provini
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Via Massarenti, 9, Pad. 11, Bologna 40138, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3, Bologna 40139, Italy.
| |
Collapse
|
28
|
Laguarta-Val S, Varillas-Delgado D, Lizcano-Álvarez Á, Molero-Sánchez A, Melian-Ortiz A, Cano-de-la-Cuerda R, Jiménez-Antona C. Effects of Aerobic Exercise Therapy through Nordic Walking Program in Lactate Concentrations, Fatigue and Quality-of-Life in Patients with Long-COVID Syndrome: A Non-Randomized Parallel Controlled Trial. J Clin Med 2024; 13:1035. [PMID: 38398348 PMCID: PMC10889227 DOI: 10.3390/jcm13041035] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Long-COVID syndrome comprises a variety of signs and symptoms that develop during or after infection with COVID-19 which may affect the physical capabilities. However, there is a lack of studies investigating the effects of Long-COVID syndrome in sport capabilities after suffering from COVID-19 infection. The purpose of the study was to evaluate and compare lactate concentration and quality of life (QoL) in patients with Long-COVID with those who have not developed non-Long-COVID during Nordic walking exercise therapy. METHODS Twenty-nine patients (25.5 ± 7.1 years) took part in a non-randomized controlled trial, divided into two groups: a Long-COVID group (n = 16) and a non-Long-COVID control (n = 13). Patients were confirmed as having Long-COVID syndrome if they experienced fatigue or tiredness when performing daily activities and worsening of symptoms after vigorous physical or mental activity. All participants underwent a 12-week Nordic Walking program. Lactate concentration after exercise and distance covered during all sessions were measured. Pre- and Long-Nordic Walking program, the Modified Fatigue Impact Scale (MFIS), the Short Form 36 Health Survey (SF-36), and EURO QoL-5D (EQ-ED) were administered to assess fatigue and quality of life, respectively. RESULTS There was a lactate concentration effect between groups (F = 5.604; p = 0.024). However, there was no significant effect as a result of the session (F = 3.521; p = 0.121) with no interaction of group × session (F = 1.345; p = 0.414). The group main effect (F = 23.088; p < 0.001), time effect (F = 6.625; p = 0.026), and group × time (F = 4.632; p = 0.002) interaction on the SF-36 scale were noted. Also, there were a significant group main effect (F = 38.372; p < 0.001), time effect (F = 12.424; p = 0.005), and group × time interaction (F = 4.340; p = 0.014) on EQ-5D. However, there was only a significant group main effect (F = 26.235; p < 0.001) with no effect on time (F = 2.265; p = 0.160) and group × time (F = 1.584; p = 0.234) interaction on the MFIS scale. CONCLUSIONS The Long-COVID group showed higher lactate concentration compared with the control group during the 12 weeks of the Nordic Walking program. The Long-COVID group presented a decrease in fatigue with respect to the control group according to the MFIS scale, as well as improvement in quality of life after aerobic exercise therapy.
Collapse
Affiliation(s)
- Sofía Laguarta-Val
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Universidad Rey Juan Carlos, Alcorcon, 28922 Madrid, Spain; (S.L.-V.); (A.M.-S.); (R.C.-d.-l.-C.); (C.J.-A.)
| | - David Varillas-Delgado
- Department of Exercise and Sport Science, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo, Spain
| | - Ángel Lizcano-Álvarez
- Department of Nursing and Stomatology, Faculty of Health Sciences, Universidad Rey Juan Carlos, Alcorcon, 28922 Madrid, Spain;
| | - Alberto Molero-Sánchez
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Universidad Rey Juan Carlos, Alcorcon, 28922 Madrid, Spain; (S.L.-V.); (A.M.-S.); (R.C.-d.-l.-C.); (C.J.-A.)
| | - Alberto Melian-Ortiz
- Faculty of Nursing and Physiotherapy, Universidad Pontificia de Salamanca, 28015 Madrid, Spain;
| | - Roberto Cano-de-la-Cuerda
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Universidad Rey Juan Carlos, Alcorcon, 28922 Madrid, Spain; (S.L.-V.); (A.M.-S.); (R.C.-d.-l.-C.); (C.J.-A.)
| | - Carmen Jiménez-Antona
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Universidad Rey Juan Carlos, Alcorcon, 28922 Madrid, Spain; (S.L.-V.); (A.M.-S.); (R.C.-d.-l.-C.); (C.J.-A.)
| |
Collapse
|
29
|
Jamieson A, Al Saikhan L, Alghamdi L, Hamill Howes L, Purcell H, Hillman T, Heightman M, Treibel T, Orini M, Bell R, Scully M, Hamer M, Chaturvedi N, Montgomery H, Hughes AD, Astin R, Jones S. Mechanisms underlying exercise intolerance in long COVID: An accumulation of multisystem dysfunction. Physiol Rep 2024; 12:e15940. [PMID: 38346773 PMCID: PMC10861355 DOI: 10.14814/phy2.15940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
The pathogenesis of exercise intolerance and persistent fatigue which can follow an infection with the SARS-CoV-2 virus ("long COVID") is not fully understood. Cases were recruited from a long COVID clinic (N = 32; 44 ± 12 years; 10 (31%) men), and age-/sex-matched healthy controls (HC) (N = 19; 40 ± 13 years; 6 (32%) men) from University College London staff and students. We assessed exercise performance, lung and cardiac function, vascular health, skeletal muscle oxidative capacity, and autonomic nervous system (ANS) function. Key outcome measures for each physiological system were compared between groups using potential outcome means (95% confidence intervals) adjusted for potential confounders. Long COVID participant outcomes were compared to normative values. When compared to HC, cases exhibited reduced oxygen uptake efficiency slope (1847 (1679, 2016) vs. 2176 (1978, 2373) mL/min, p = 0.002) and anaerobic threshold (13.2 (12.2, 14.3) vs. 15.6 (14.4, 17.2) mL/kg/min, p < 0.001), and lower oxidative capacity, measured using near infrared spectroscopy (τ: 38.7 (31.9, 45.6) vs. 24.6 (19.1, 30.1) s, p = 0.001). In cases, ANS measures fell below normal limits in 39%. Long COVID is associated with reduced measures of exercise performance and skeletal muscle oxidative capacity in the absence of evidence of microvascular dysfunction, suggesting mitochondrial pathology. There was evidence of attendant ANS dysregulation in a significant proportion. These multisystem factors might contribute to impaired exercise tolerance in long COVID sufferers.
Collapse
Affiliation(s)
- Alexandra Jamieson
- MRC Unit for Lifelong Health & Ageing at UCLUniversity College LondonLondonUK
| | - Lamia Al Saikhan
- Department of Cardiac Technology, College of Applied Medial SciencesImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
| | - Lamis Alghamdi
- MRC Unit for Lifelong Health & Ageing at UCLUniversity College LondonLondonUK
- Department of Cardiac Technology, College of Applied Medial SciencesImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
| | - Lee Hamill Howes
- MRC Unit for Lifelong Health & Ageing at UCLUniversity College LondonLondonUK
| | - Helen Purcell
- Department of Respiratory MedicineUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Toby Hillman
- Department of Respiratory MedicineUniversity College London Hospitals NHS Foundation TrustLondonUK
- Respiratory MedicineUniversity College LondonLondonUK
| | - Melissa Heightman
- Department of Respiratory MedicineUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Thomas Treibel
- MRC Unit for Lifelong Health & Ageing at UCLUniversity College LondonLondonUK
- Barts Heart Centre, St Bartholomew's HospitalLondonUK
| | - Michele Orini
- MRC Unit for Lifelong Health & Ageing at UCLUniversity College LondonLondonUK
| | - Robert Bell
- Hatter Cardiovascular InstituteUniversity College LondonLondonUK
| | - Marie Scully
- Department of HaematologyUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Mark Hamer
- Division of Surgery and Interventional ScienceUniversity College LondonLondonUK
| | - Nishi Chaturvedi
- MRC Unit for Lifelong Health & Ageing at UCLUniversity College LondonLondonUK
| | - Hugh Montgomery
- Centre for Human Health and PerformanceUniversity College LondonLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre (BRC)LondonUK
| | - Alun D. Hughes
- MRC Unit for Lifelong Health & Ageing at UCLUniversity College LondonLondonUK
| | - Ronan Astin
- Department of Respiratory MedicineUniversity College London Hospitals NHS Foundation TrustLondonUK
- Centre for Human Health and PerformanceUniversity College LondonLondonUK
| | - Siana Jones
- MRC Unit for Lifelong Health & Ageing at UCLUniversity College LondonLondonUK
| |
Collapse
|
30
|
Berenguel Senén A, Gadella Fernández A, Godoy López J, Borrego Rodríguez J, Gallango Brejano M, Cepas Guillén P, de Cabo Porras C, Morante Perea C, Gigante Miravalles E, Serrano Blanco Á, San-Millán Castrillón Í, Rodríguez Padial L. Functional rehabilitation based on therapeutic exercise training in patients with postacute COVID syndrome (RECOVER). REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2024; 77:167-175. [PMID: 37797937 DOI: 10.1016/j.rec.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/26/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION AND OBJECTIVES Postacute COVID syndrome (PACS) is common after acute SARS-CoV-2 infection. One of the most frequent and disabling symptoms is exercise intolerance (EI). Recent evidence suggests that EI in PACS has a peripheral (metabolic-neuromuscular) origin, suggesting that exercise training may be an effective treatment. The aim of this study was to assess the role a therapeutic physical exercise program (TPEP) in PACS with EI. METHODS This single-center, open-label, randomized clinical trial compared an exercise training program (intervention group) with regular physical activity recommendations (control group) in patients with PACS and EI. The intervention group underwent an 8-week TPEP. The primary endpoint was improvement in functional capacity, assessed as the change in peak VO2. RESULTS We included 50 participants with PACS (73% women, mean age 47±7.1 years). The intervention group showed a 15% improvement in peak VO2 (peak VO2 pre- and postintervention: 25.5±7.7mL/kg/min and 29.3±4.7 mL/kg/min; P <.001) and a 13.2% improvement in predicted values (92.1±14.3% and 108.4±13.4%; P <.001). No significant changes in VO2 values were observed in the control group. Unlike the control group, the intervention group also showed improvements in all secondary outcomes: quality of life scales, muscle power, maximum inspiratory power, metabolic flexibility, and body fat percentage. CONCLUSIONS The program improved functional capacity in patients with PACS and EI.
Collapse
Affiliation(s)
| | | | - Juan Godoy López
- Escuela Central de Educación Física, Ejército de Tierra, Toledo, Spain
| | - Javier Borrego Rodríguez
- Servicio de Cardiología, Hospital Alfredo Espinosa, Urdúliz, Vizcaya, Spain. https://twitter.com/@JaviiBorrego
| | | | - Pedro Cepas Guillén
- Servicio de Cardiología, Hospital Clínic de Barcelona, Barcelona, Spain. https://twitter.com/@pedro_cepas
| | | | | | | | | | - Íñigo San-Millán Castrillón
- Departamento de Fisiología y Metabolismo, Universidad de Colorado, Denver, Colorado, Estados Unidos. https://twitter.com/@doctorinigo
| | - Luis Rodríguez Padial
- Servicio de Cardiología, Hospital Universitario de Toledo, Toledo, Spain. https://twitter.com/@luisrpadial
| |
Collapse
|
31
|
Kell DB, Khan MA, Kane B, Lip GYH, Pretorius E. Possible Role of Fibrinaloid Microclots in Postural Orthostatic Tachycardia Syndrome (POTS): Focus on Long COVID. J Pers Med 2024; 14:170. [PMID: 38392604 PMCID: PMC10890060 DOI: 10.3390/jpm14020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024] Open
Abstract
Postural orthostatic tachycardia syndrome (POTS) is a common accompaniment of a variety of chronic, inflammatory diseases, including long COVID, as are small, insoluble, 'fibrinaloid' microclots. We here develop the argument, with accompanying evidence, that fibrinaloid microclots, through their ability to block the flow of blood through microcapillaries and thus cause tissue hypoxia, are not simply correlated with but in fact, by preceding it, may be a chief intermediary cause of POTS, in which tachycardia is simply the body's exaggerated 'physiological' response to hypoxia. Similar reasoning accounts for the symptoms bundled under the term 'fatigue'. Amyloids are known to be membrane disruptors, and when their targets are nerve membranes, this can explain neurotoxicity and hence the autonomic nervous system dysfunction that contributes to POTS. Taken together as a system view, we indicate that fibrinaloid microclots can serve to link POTS and fatigue in long COVID in a manner that is at once both mechanistic and explanatory. This has clear implications for the treatment of such diseases.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| | - Muhammed Asad Khan
- Directorate of Respiratory Medicine, Manchester University Hospitals, Wythenshawe Hospital, Manchester M23 9LT, UK;
| | - Binita Kane
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Manchester University Foundation Trust and School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool L14 3PE, UK;
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
32
|
Appelman B, Charlton BT, Goulding RP, Kerkhoff TJ, Breedveld EA, Noort W, Offringa C, Bloemers FW, van Weeghel M, Schomakers BV, Coelho P, Posthuma JJ, Aronica E, Joost Wiersinga W, van Vugt M, Wüst RCI. Muscle abnormalities worsen after post-exertional malaise in long COVID. Nat Commun 2024; 15:17. [PMID: 38177128 PMCID: PMC10766651 DOI: 10.1038/s41467-023-44432-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 135.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
A subgroup of patients infected with SARS-CoV-2 remain symptomatic over three months after infection. A distinctive symptom of patients with long COVID is post-exertional malaise, which is associated with a worsening of fatigue- and pain-related symptoms after acute mental or physical exercise, but its underlying pathophysiology is unclear. With this longitudinal case-control study (NCT05225688), we provide new insights into the pathophysiology of post-exertional malaise in patients with long COVID. We show that skeletal muscle structure is associated with a lower exercise capacity in patients, and local and systemic metabolic disturbances, severe exercise-induced myopathy and tissue infiltration of amyloid-containing deposits in skeletal muscles of patients with long COVID worsen after induction of post-exertional malaise. This study highlights novel pathways that help to understand the pathophysiology of post-exertional malaise in patients suffering from long COVID and other post-infectious diseases.
Collapse
Affiliation(s)
- Brent Appelman
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Braeden T Charlton
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Richie P Goulding
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Tom J Kerkhoff
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Department of Physiology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Ellen A Breedveld
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Wendy Noort
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Carla Offringa
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Frank W Bloemers
- Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Department of Trauma Surgery, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Bauke V Schomakers
- Laboratory Genetic Metabolic Diseases, Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Pedro Coelho
- Serviço de Neurologia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, CHULN, Lisbon, Portugal
- Faculdade de Medicina, Centro de Estudos Egas Moniz, University of Lisbon, Lisbon, Portugal
- Department of (Neuro)pathology, Amsterdam Neuroscience, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jelle J Posthuma
- Department of Trauma Surgery, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
- Flevoziekenhuis, Division of Surgery, Hospitaalweg 1, Almere, the Netherlands
| | - Eleonora Aronica
- Department of (Neuro)pathology, Amsterdam Neuroscience, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - W Joost Wiersinga
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
- Division of Infectious Diseases, Department of Internal Medicine, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Michèle van Vugt
- Amsterdam Institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands.
- Division of Infectious Diseases, Tropical Medicine, Department of Medicine, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Rob C I Wüst
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
- Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
33
|
Meloni A, Codella R, Gotti D, Di Gennaro S, Luzi L, Filipas L. Fat oxidation rates and cardiorespiratory responses during exercise in different subject populations with post-acute sequelae of SARS-CoV-2 infection: a comparison with normative percentile values. Front Physiol 2023; 14:1310319. [PMID: 38156072 PMCID: PMC10753187 DOI: 10.3389/fphys.2023.1310319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction: Post-acute sequelae of SARS-CoV-2 infection (PASC) presents a spectrum of symptoms following acute COVID-19, with exercise intolerance being a prevalent manifestation likely linked to disrupted oxygen metabolism and mitochondrial function. This study aims to assess maximal fat oxidation (MFO) and exercise intensity at MFO (FATmax) in distinct PASC subject groups and compare these findings with normative data. Methods: Eight male subjects with PASC were involved in this study. The participants were divided into two groups: "endurance-trained" subjects (V ˙ O 2 max > 55 mL/min/kg) and "recreationally active" subjects (V ˙ O 2 max < 55 mL/min/kg). Each subject performed a graded exercise test until maximal oxygen consumption (V ˙ O 2 max ) to measure fat oxidation. Subsequently, MFO was assessed, and FATmax was calculated as the ratio between V ˙ O 2 at MFO and V ˙ O 2 max. Results: The MFO and FATmax of "endurance-trained" subjects were 0.85, 0.89, 0.71, and 0.42 and 68%, 69%, 64%, and 53%, respectively. Three out of four subjects showed both MFO and FATmax values placed over the 80th percentile of normative data. The MFO and FATmax of "recreationally active" subjects were 0.34, 0.27, 0.35, and 0.38 and 47%, 39%, 43%, and 41%, respectively. All MFO and FATmax values of those subjects placed below the 20th percentile or between the 20th and 40th percentile. Discussion: Significant differences in MFO and FATmax values between 'endurance-trained' and "recreationally active" subjects suggest that specific endurance training, rather than simply an active lifestyle, may provide protective effects against alterations in mitochondrial function during exercise in subjects with PASC.
Collapse
Affiliation(s)
- Andrea Meloni
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Roberto Codella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Daniel Gotti
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Simone Di Gennaro
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Mother-Child Sciences, Università degli Studi di Genova, Genova, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Luca Filipas
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
34
|
Miguel V, Rey-Serra C, Tituaña J, Sirera B, Alcalde-Estévez E, Herrero JI, Ranz I, Fernández L, Castillo C, Sevilla L, Nagai J, Reimer KC, Jansen J, Kramann R, Costa IG, Castro A, Sancho D, Rodríguez González-Moro JM, Lamas S. Enhanced fatty acid oxidation through metformin and baicalin as therapy for COVID-19 and associated inflammatory states in lung and kidney. Redox Biol 2023; 68:102957. [PMID: 37977043 PMCID: PMC10682832 DOI: 10.1016/j.redox.2023.102957] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Progressive respiratory failure is the primary cause of death in the coronavirus disease 2019 (COVID-19) pandemic. It is the final outcome of the acute respiratory distress syndrome (ARDS), characterized by an initial exacerbated inflammatory response, metabolic derangement and ultimate tissue scarring. A positive balance of cellular energy may result crucial for the recovery of clinical COVID-19. Hence, we asked if two key pathways involved in cellular energy generation, AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) signaling and fatty acid oxidation (FAO) could be beneficial. We tested the drugs metformin (AMPK activator) and baicalin (CPT1A activator) in different experimental models mimicking COVID-19 associated inflammation in lung and kidney. We also studied two different cohorts of COVID-19 patients that had been previously treated with metformin. These drugs ameliorated lung damage in an ARDS animal model, while activation of AMPK/ACC signaling increased mitochondrial function and decreased TGF-β-induced fibrosis, apoptosis and inflammation markers in lung epithelial cells. Similar results were observed with two indole derivatives, IND6 and IND8 with AMPK activating capacity. Consistently, a reduced time of hospitalization and need of intensive care was observed in COVID-19 patients previously exposed to metformin. Baicalin also mitigated the activation of pro-inflammatory bone marrow-derived macrophages (BMDMs) and reduced kidney fibrosis in two animal models of kidney injury, another key target of COVID-19. In human epithelial lung and kidney cells, both drugs improved mitochondrial function and prevented TGF-β-induced renal epithelial cell dedifferentiation. Our results support that favoring cellular energy production through enhanced FAO may prove useful in the prevention of COVID-19-induced lung and renal damage.
Collapse
Affiliation(s)
- Verónica Miguel
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain.
| | - Carlos Rey-Serra
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Jessica Tituaña
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Belén Sirera
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Elena Alcalde-Estévez
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - J Ignacio Herrero
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Irene Ranz
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Laura Fernández
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Carolina Castillo
- Department of Pathology. University Hospital "Príncipe de Asturias", Alcalá de Henares, Madrid, Spain
| | - Lucía Sevilla
- Department of Pneumology, University Hospital "Principe de Asturias", Alcala de Henares, Madrid, Spain
| | - James Nagai
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany; Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Katharina C Reimer
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany; Institute for Biomedical Technologies, Department of Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Jitske Jansen
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany; Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rafael Kramann
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany; Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Ana Castro
- Instituto de Química Medica (IQM-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain
| | | | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
35
|
Ramírez-Vélez R, Oscoz-Ochandorena S, García-Alonso Y, García-Alonso N, Legarra-Gorgoñon G, Oteiza J, Lorea AE, Izquierdo M, Correa-Rodríguez M. Maximal oxidative capacity during exercise is associated with muscle power output in patients with long coronavirus disease 2019 (COVID-19) syndrome. A moderation analysis. Clin Nutr ESPEN 2023; 58:253-262. [PMID: 38057014 DOI: 10.1016/j.clnesp.2023.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND & AIMS Long COVID syndrome (LCS) involves persistent symptoms experienced by many patients after recovering from coronavirus disease 2019 (COVID-19). We aimed to assess skeletal muscle energy metabolism, which is closely related to substrate oxidation rates during exercise, in patients with LCS compared with healthy controls. We also examined whether muscle power output mediates the relationship between COVID-19 and skeletal muscle energy metabolism. METHODS In this cross-sectional study, we enrolled 71 patients with LCS and 63 healthy controls. We assessed clinical characteristics such as body composition, physical activity, and muscle strength. We used cardiopulmonary exercise testing to evaluate substrate oxidation rates during graded exercise. We performed statistical analyses to compare group characteristics and peak fat oxidation differences based on power output. RESULTS The two-way analysis of covariance (ANCOVA) results, adjusted for covariates, showed that the patients with LCS had lower absolute maximal fatty acid oxidation (MFO), relative MFO/fat free mass (FFM), absolute carbohydrates oxidation (CHox), relative CHox/FFM, and oxygen uptake (V˙˙O2) at maximum fat oxidation (g min-1) than the healthy controls (P < 0.05). Moderation analysis indicated that muscle power output significantly influenced the relationship between LCS and reduced peak fat oxidation (interaction β = -0.105 [95% confidence interval -0.174; -0.036]; P = 0.026). Therefore, when muscle power output was below 388 W, the effect of the LCS on MFO was significant (62% in our study sample P = 0.010). These findings suggest compromised mitochondrial bioenergetics and muscle function, represented by lower peak fat oxidation rates, in the patients with LCS compared with the healthy controls. CONCLUSION The patients with LCS had lower peak fat oxidation during exercise compared with the healthy controls, potentially indicating impairment in skeletal muscle function. The relationship between peak fat oxidation and LCS appears to be mediated predominantly by muscle power output. Additional research should continue investigating LCS pathogenesis and the functional role of mitochondria.
Collapse
Affiliation(s)
- Robinson Ramírez-Vélez
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| | - Sergio Oscoz-Ochandorena
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Yesenia García-Alonso
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Nora García-Alonso
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Gaizka Legarra-Gorgoñon
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Julio Oteiza
- Servicio de Medicina Interna. Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Ander Ernaga Lorea
- Servicio de Endocrinología y Nutricion. Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Mikel Izquierdo
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - María Correa-Rodríguez
- Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain; Biosanitary Research Institute (ibs.GRANADA), Granada, Spain
| |
Collapse
|
36
|
Joseph P, Singh I, Oliveira R, Capone CA, Mullen MP, Cook DB, Stovall MC, Squires J, Madsen K, Waxman AB, Systrom DM. Exercise Pathophysiology in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Postacute Sequelae of SARS-CoV-2: More in Common Than Not? Chest 2023; 164:717-726. [PMID: 37054777 PMCID: PMC10088277 DOI: 10.1016/j.chest.2023.03.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
TOPIC IMPORTANCE Postacute sequelae of SARS-CoV-2 (PASC) is a long-term consequence of acute infection from COVID-19. Clinical overlap between PASC and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) has been observed, with shared symptoms including intractable fatigue, postexertional malaise, and orthostatic intolerance. The mechanistic underpinnings of such symptoms are poorly understood. REVIEW FINDINGS Early studies suggest deconditioning as the primary explanation for exertional intolerance in PASC. Cardiopulmonary exercise testing reveals perturbations related to systemic blood flow and ventilatory control associated with acute exercise intolerance in PASC, which are not typical of simple detraining. Hemodynamic and gas exchange derangements in PASC have substantial overlap with those observed with ME/CFS, suggestive of shared mechanisms. SUMMARY This review illustrates exercise pathophysiologic commonalities between PASC and ME/CFS that will help guide future diagnostics and treatment.
Collapse
Affiliation(s)
- Phillip Joseph
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale-New Haven Hospital, Yale University, New Haven, CT
| | - Inderjit Singh
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale-New Haven Hospital, Yale University, New Haven, CT
| | - Rudolf Oliveira
- Division of Respiratory Disease, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Christine A Capone
- Division of Pediatric Cardiology Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra, Manhasset, NY
| | - Mary P Mullen
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Dane B Cook
- Research Service, William S. Middleton Memorial Veterans Hospital & Department of Kinesiology, University of Wisconsin-Madison, Madison, WI
| | - Mary Catherine Stovall
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Johanna Squires
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Kristine Madsen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Aaron B Waxman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - David M Systrom
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
37
|
Joseph P, Singh I. Post-Acute Sequelae of SARS-CoV-2: More Than Deconditioning. Chest 2023; 164:583-584. [PMID: 37689472 DOI: 10.1016/j.chest.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 09/11/2023] Open
Affiliation(s)
- Phillip Joseph
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Yale-New Haven Hospital, Yale University, New Haven, CT.
| | - Inderjit Singh
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Yale-New Haven Hospital, Yale University, New Haven, CT
| |
Collapse
|
38
|
Moatar AI, Chis AR, Romanescu M, Ciordas PD, Nitusca D, Marian C, Oancea C, Sirbu IO. Plasma miR-195-5p predicts the severity of Covid-19 in hospitalized patients. Sci Rep 2023; 13:13806. [PMID: 37612439 PMCID: PMC10447562 DOI: 10.1038/s41598-023-40754-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
Predicting the clinical course of Covid-19 is a challenging task, given the multi-systemic character of the disease and the paucity of minimally invasive biomarkers of disease severity. Here, we evaluated the early (first two days post-admission) level of circulating hsa-miR-195-5p (miR-195, a known responder to viral infections and SARS-CoV-2 interactor) in Covid-19 patients and assessed its potential as a biomarker of disease severity. We show that plasma miR-195 correlates with several clinical and paraclinical parameters, and is an excellent discriminator between the severe and mild forms of the disease. Our Gene Ontology analysis of miR-195 targets differentially expressed in Covid-19 indicates a strong impact on cardiac mitochondria homeostasis, suggesting a possible role in long Covid and chronic fatigue syndrome (CFS) syndromes.
Collapse
Affiliation(s)
- Alexandra Ioana Moatar
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
- Doctoral School, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
| | - Aimee Rodica Chis
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
- Center for Complex Network Science, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
| | - Mirabela Romanescu
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
- Doctoral School, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
| | - Paula-Diana Ciordas
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
- Doctoral School, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
| | - Diana Nitusca
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
- Doctoral School, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
| | - Catalin Marian
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
- Center for Complex Network Science, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
| | - Cristian Oancea
- Department of Infectious Diseases, Discipline of Pulmonology, University of Medicine and Pharmacy "Victor Babes", E. Murgu Square no.2, 300041, Timisoara, Romania
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy Timisoara, E. Murgu Square 2, 300041, Timisoara, Romania
| | - Ioan-Ovidiu Sirbu
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania.
- Center for Complex Network Science, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania.
- Timisoara Institute of Complex Systems, 18 Vasile Lucaciu Str, 300044, Timisoara, Romania.
| |
Collapse
|
39
|
Yan H, Zhao S, Huang HX, Xie P, Cai XH, Qu YD, Zhang W, Luo JQ, Zhang L, Li X. Systematic Mendelian randomization study of the effect of gut microbiome and plasma metabolome on severe COVID-19. Front Immunol 2023; 14:1211612. [PMID: 37662924 PMCID: PMC10468967 DOI: 10.3389/fimmu.2023.1211612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND COVID-19 could develop severe respiratory symptoms in certain infected patients, especially in the patients with immune disorders. Gut microbiome and plasma metabolome act important immunological modulators in the human body and could contribute to the immune responses impacting the progression of COVID-19. However, the causal relationship between specific intestinal bacteria, metabolites and severe COVID-19 remains not clear. METHODS Based on two-sample Mendelian randomization (MR) framework, the causal effects of 131 intestinal taxa and 452 plasma metabolites on severe COVID-19 were evaluated. Single nucleotide polymorphisms (SNPs) strongly associated with the abundance of intestinal taxa and the concentration of plasma metabolites had been utilized as the instrument variables to infer whether they were causal factors of severe COVID-19. In addition, mediation analysis was conducted to find the potential association between the taxon and metabolite, and further colocalization analysis had been performed to validate the causal relationships. RESULTS MR analysis identified 13 taxa and 53 metabolites, which were significantly associated with severe COVID-19 as causal factors. Mediation analysis revealed 11 mediated relationships. Myo-inositol, 2-stearoylglycerophosphocholine, and alpha-glutamyltyrosine, potentially contributed to the association of Howardella and Ruminiclostridium 6 with severe COVID-19, respectively. Butyrivibrio and Ruminococcus gnavus could mediate the association of myo-inositol and N-acetylalanine, respectively. In addition, Ruminococcus torques abundance was colocalized with severe COVID-19 (PP.H4 = 0.77) and the colon expression of permeability related protein RASIP1 (PP.H4 = 0.95). CONCLUSIONS Our study highlights the potential causal relationships between gut microbiome, plasma metabolome and severe COVID-19, which potentially serve as clinical biomarkers for risk stratification and prognostication and benefit the mechanism mechanistic investigation of severe COVID-19.
Collapse
Affiliation(s)
- Han Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Si Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Han-Xue Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pan Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin-He Cai
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun-Dan Qu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian-Quan Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Longbo Zhang
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, Hunan, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, United States
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
40
|
López-Hernández Y, Monárrez-Espino J, López DAG, Zheng J, Borrego JC, Torres-Calzada C, Elizalde-Díaz JP, Mandal R, Berjanskii M, Martínez-Martínez E, López JA, Wishart DS. The plasma metabolome of long COVID patients two years after infection. Sci Rep 2023; 13:12420. [PMID: 37528111 PMCID: PMC10394026 DOI: 10.1038/s41598-023-39049-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023] Open
Abstract
One of the major challenges currently faced by global health systems is the prolonged COVID-19 syndrome (also known as "long COVID") which has emerged as a consequence of the SARS-CoV-2 epidemic. It is estimated that at least 30% of patients who have had COVID-19 will develop long COVID. In this study, our goal was to assess the plasma metabolome in a total of 100 samples collected from healthy controls, COVID-19 patients, and long COVID patients recruited in Mexico between 2020 and 2022. A targeted metabolomics approach using a combination of LC-MS/MS and FIA MS/MS was performed to quantify 108 metabolites. IL-17 and leptin were measured in long COVID patients by immunoenzymatic assay. The comparison of paired COVID-19/long COVID-19 samples revealed 53 metabolites that were statistically different. Compared to controls, 27 metabolites remained dysregulated even after two years. Post-COVID-19 patients displayed a heterogeneous metabolic profile. Lactic acid, lactate/pyruvate ratio, ornithine/citrulline ratio, and arginine were identified as the most relevant metabolites for distinguishing patients with more complicated long COVID evolution. Additionally, IL-17 levels were significantly increased in these patients. Mitochondrial dysfunction, redox state imbalance, impaired energy metabolism, and chronic immune dysregulation are likely to be the main hallmarks of long COVID even two years after acute COVID-19 infection.
Collapse
Affiliation(s)
- Yamilé López-Hernández
- CONAHCyT-Metabolomics and Proteomics Laboratory, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, 98000, Zacatecas, Mexico.
| | - Joel Monárrez-Espino
- Department of Health Research, Christus Muguerza del Parque Hospital - University of Monterrey, 31125, Chihuahua, Mexico
| | | | - Jiamin Zheng
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Juan Carlos Borrego
- Departamento de Epidemiología, Hospital General de Zona #1 "Emilio Varela Luján", Instituto Mexicano del Seguro Social, Zacatecas, 98000, México
| | | | - José Pedro Elizalde-Díaz
- Laboratory of Cell Communication & Extracellular Vesicles, Division of Basic Science, Instituto Nacional de Medicina Genómica, 14610, Ciudad de México, Mexico
| | - Rupasri Mandal
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Mark Berjanskii
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication & Extracellular Vesicles, Division of Basic Science, Instituto Nacional de Medicina Genómica, 14610, Ciudad de México, Mexico
| | - Jesús Adrián López
- MicroRNAs and Cancer Laboratory, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, 98000, Zacatecas, Mexico
| | - David S Wishart
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB, T6G 1C9, Canada.
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 1C9, Canada.
| |
Collapse
|
41
|
Copley M, Kozminski B, Gentile N, Geyer R, Friedly J. Postacute Sequelae of SARS-CoV-2: Musculoskeletal Conditions and Pain. Phys Med Rehabil Clin N Am 2023; 34:585-605. [PMID: 37419534 DOI: 10.1016/j.pmr.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Musculoskeletal and pain sequelae of COVID-19 are common in both the acute infection and patients experiencing longer term symptoms associated with recovery, known as postacute sequelae of COVID-19 (PASC). Patients with PASC may experience multiple manifestations of pain and other concurrent symptoms that complicate their experience of pain. In this review, the authors explore what is currently known about PASC-related pain and its pathophysiology as well as strategies for diagnosis and management.
Collapse
Affiliation(s)
- Michelle Copley
- Department of Rehabilitation Medicine, University of Washington, 325 Ninth Avenue, Seattle, WA 98104, USA
| | - Barbara Kozminski
- Department of Rehabilitation Medicine, University of Washington, 325 Ninth Avenue, Seattle, WA 98104, USA
| | - Nicole Gentile
- Department of Family Medicine, University of Washington, 1959 Northeast Pacific Street, Box 356390, Seattle, WA 98195-6390, USA; Department of Laboratory Medicine and Pathology, University of Washington, 1959 Northeast Pacific Street Seattle, WA 98195-6390, USA
| | - Rachel Geyer
- Department of Family Medicine, University of Washington, 1959 Northeast Pacific Street, Box 356390, Seattle, WA 98195-6390, USA
| | - Janna Friedly
- Department of Rehabilitation Medicine, University of Washington, 325 Ninth Avenue, Seattle, WA 98104, USA.
| |
Collapse
|
42
|
Tsilingiris D, Vallianou NG, Karampela I, Christodoulatos GS, Papavasileiou G, Petropoulou D, Magkos F, Dalamaga M. Laboratory Findings and Biomarkers in Long COVID: What Do We Know So Far? Insights into Epidemiology, Pathogenesis, Therapeutic Perspectives and Challenges. Int J Mol Sci 2023; 24:10458. [PMID: 37445634 PMCID: PMC10341908 DOI: 10.3390/ijms241310458] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Long COVID (LC) encompasses a constellation of long-term symptoms experienced by at least 10% of people after the initial SARS-CoV-2 infection, and so far it has affected about 65 million people. The etiology of LC remains unclear; however, many pathophysiological pathways may be involved, including viral persistence; a chronic, low-grade inflammatory response; immune dysregulation and a defective immune response; the reactivation of latent viruses; autoimmunity; persistent endothelial dysfunction and coagulopathy; gut dysbiosis; hormonal and metabolic dysregulation; mitochondrial dysfunction; and autonomic nervous system dysfunction. There are no specific tests for the diagnosis of LC, and clinical features including laboratory findings and biomarkers may not specifically relate to LC. Therefore, it is of paramount importance to develop and validate biomarkers that can be employed for the prediction, diagnosis and prognosis of LC and its therapeutic response, although this effort may be hampered by challenges pertaining to the non-specific nature of the majority of clinical manifestations in the LC spectrum, small sample sizes of relevant studies and other methodological issues. Promising candidate biomarkers that are found in some patients are markers of systemic inflammation, including acute phase proteins, cytokines and chemokines; biomarkers reflecting SARS-CoV-2 persistence, the reactivation of herpesviruses and immune dysregulation; biomarkers of endotheliopathy, coagulation and fibrinolysis; microbiota alterations; diverse proteins and metabolites; hormonal and metabolic biomarkers; and cerebrospinal fluid biomarkers. At present, there are only two reviews summarizing relevant biomarkers; however, they do not cover the entire umbrella of current biomarkers, their link to etiopathogenetic mechanisms or the diagnostic work-up in a comprehensive manner. Herein, we aim to appraise and synopsize the available evidence on the typical laboratory manifestations and candidate biomarkers of LC, their classification based on pathogenetic mechanisms and the main LC symptomatology in the frame of the epidemiological and clinical aspects of the syndrome and furthermore assess limitations and challenges as well as potential implications in candidate therapeutic interventions.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| | - Natalia G. Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece;
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Street, 12462 Athens, Greece;
| | | | - Georgios Papavasileiou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (G.P.); (D.P.)
| | - Dimitra Petropoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (G.P.); (D.P.)
| | - Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, DK-2200 Frederiksberg, Denmark;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (G.P.); (D.P.)
| |
Collapse
|
43
|
Komaroff AL, Lipkin WI. ME/CFS and Long COVID share similar symptoms and biological abnormalities: road map to the literature. Front Med (Lausanne) 2023; 10:1187163. [PMID: 37342500 PMCID: PMC10278546 DOI: 10.3389/fmed.2023.1187163] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Some patients remain unwell for months after "recovering" from acute COVID-19. They develop persistent fatigue, cognitive problems, headaches, disrupted sleep, myalgias and arthralgias, post-exertional malaise, orthostatic intolerance and other symptoms that greatly interfere with their ability to function and that can leave some people housebound and disabled. The illness (Long COVID) is similar to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) as well as to persisting illnesses that can follow a wide variety of other infectious agents and following major traumatic injury. Together, these illnesses are projected to cost the U.S. trillions of dollars. In this review, we first compare the symptoms of ME/CFS and Long COVID, noting the considerable similarities and the few differences. We then compare in extensive detail the underlying pathophysiology of these two conditions, focusing on abnormalities of the central and autonomic nervous system, lungs, heart, vasculature, immune system, gut microbiome, energy metabolism and redox balance. This comparison highlights how strong the evidence is for each abnormality, in each illness, and helps to set priorities for future investigation. The review provides a current road map to the extensive literature on the underlying biology of both illnesses.
Collapse
Affiliation(s)
- Anthony L. Komaroff
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, United States
| |
Collapse
|
44
|
Benedetto IG, da Silva RMC, Hetzel GM, Viana GDS, Guimarães AR, Folador L, Brentano VB, Garcia TS, Ribeiro SP, Dalcin PDTR, Gazzana MB, Berton DC. Impact of impaired pulmonary function on clinical outcomes in survivors of severe COVID-19 without pre-existing respiratory disease. J Bras Pneumol 2023; 49:e20220452. [PMID: 37255163 PMCID: PMC10578918 DOI: 10.36416/1806-3756/e20220452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/04/2023] [Indexed: 06/01/2023] Open
Abstract
OBJECTIVE To investigate the impact of impaired pulmonary function on patient-centered outcomes after hospital discharge due to severe COVID-19 in patients without preexisting respiratory disease. METHODS This is an ongoing prospective cohort study evaluating patients (> 18 years of age) 2-6 months after hospital discharge due to severe COVID-19. Respiratory symptoms, health-related quality of life, lung function, and the six-minute walk test were assessed. A restrictive ventilatory defect was defined as TLC below the lower limit of normal, as assessed by plethysmography. Chest CT scans performed during hospitalization were scored for the presence and extent of parenchymal abnormalities. RESULTS At a mean follow-up of 17.2 ± 5.9 weeks after the diagnosis of COVID-19, 120 patients were assessed. Of those, 23 (19.2%) reported preexisting chronic respiratory diseases and presented with worse lung function and exertional dyspnea at the follow-up visit in comparison with their counterparts. When we excluded the 23 patients with preexisting respiratory disease plus another 2 patients without lung volume measurements, a restrictive ventilatory defect was observed in 42/95 patients (44%). This subgroup of patients (52.4% of whom were male; mean age, 53.9 ± 11.3 years) showed reduced resting gas exchange efficiency (DLCO), increased daily-life dyspnea, increased exertional dyspnea and oxygen desaturation, and reduced health-related quality of life in comparison with those without reduced TLC (50.9% of whom were male; mean age, 58.4 ± 11.3 years). Intensive care need and higher chest CT scores were associated with a subsequent restrictive ventilatory defect. CONCLUSIONS The presence of a restrictive ventilatory defect approximately 4 months after severe COVID-19 in patients without prior respiratory comorbidities implies worse clinical outcomes.
Collapse
Affiliation(s)
- Igor Gorski Benedetto
- . Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre (RS) Brasil
| | | | - Guilherme Moreira Hetzel
- . Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre (RS) Brasil
| | - Gabriel da Silva Viana
- . Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre (RS) Brasil
| | - Amanda Reis Guimarães
- . Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre (RS) Brasil
| | - Luciano Folador
- . Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre (RS) Brasil
| | - Vicente Bohrer Brentano
- . Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre (RS) Brasil
| | - Tiago Severo Garcia
- . Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre (RS) Brasil
| | - Sergio Pinto Ribeiro
- . Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre (RS) Brasil
| | - Paulo de Tarso Roth Dalcin
- . Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre (RS) Brasil
| | - Marcelo Basso Gazzana
- . Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre (RS) Brasil
| | - Danilo Cortozi Berton
- . Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre (RS) Brasil
| |
Collapse
|
45
|
Singh TK, Zidar DA, McCrae K, Highland KB, Englund K, Cameron SJ, Chung MK. A Post-Pandemic Enigma: The Cardiovascular Impact of Post-Acute Sequelae of SARS-CoV-2. Circ Res 2023; 132:1358-1373. [PMID: 37167358 PMCID: PMC10171306 DOI: 10.1161/circresaha.122.322228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
COVID-19 has become the first modern-day pandemic of historic proportion, affecting >600 million individuals worldwide and causing >6.5 million deaths. While acute infection has had devastating consequences, postacute sequelae of SARS-CoV-2 infection appears to be a pandemic of its own, impacting up to one-third of survivors and often causing symptoms suggestive of cardiovascular phenomena. This review will highlight the suspected pathophysiology of postacute sequelae of SARS-CoV-2, its influence on the cardiovascular system, and potential treatment strategies.
Collapse
Affiliation(s)
- Tamanna K Singh
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH (TKS, MC, SJC)
- Cleveland Clinic Lerner College of Medicine, OH (T.K.S., K.M., K.B.H., K.E., S.J.C., M.K.C.)
- Case Western Reserve University School of Medicine, Cleveland, OH (T.K.S., D.A.Z., K.M., K.B.H., K.E., S.J.C., M.K.C.)
| | - David A Zidar
- Case Western Reserve University School of Medicine, Cleveland, OH (T.K.S., D.A.Z., K.M., K.B.H., K.E., S.J.C., M.K.C.)
- Louise Stokes Cleveland Veterans Affairs Medical Center, Department of Cardiovascular Medicine, Cleveland, OH (D.A.Z.)
| | - Keith McCrae
- Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH (KM)
- Cleveland Clinic Lerner College of Medicine, OH (T.K.S., K.M., K.B.H., K.E., S.J.C., M.K.C.)
- Case Western Reserve University School of Medicine, Cleveland, OH (T.K.S., D.A.Z., K.M., K.B.H., K.E., S.J.C., M.K.C.)
| | - Kristin B Highland
- Pulmonary Medicine, Cleveland Clinic, Cleveland, OH (KBH)
- Cleveland Clinic Lerner College of Medicine, OH (T.K.S., K.M., K.B.H., K.E., S.J.C., M.K.C.)
- Case Western Reserve University School of Medicine, Cleveland, OH (T.K.S., D.A.Z., K.M., K.B.H., K.E., S.J.C., M.K.C.)
| | - Kristin Englund
- Infectious Disease, Cleveland Clinic, Cleveland, OH (KE)
- Cleveland Clinic Lerner College of Medicine, OH (T.K.S., K.M., K.B.H., K.E., S.J.C., M.K.C.)
- Case Western Reserve University School of Medicine, Cleveland, OH (T.K.S., D.A.Z., K.M., K.B.H., K.E., S.J.C., M.K.C.)
| | - Scott J Cameron
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH (TKS, MC, SJC)
- Cleveland Clinic Lerner College of Medicine, OH (T.K.S., K.M., K.B.H., K.E., S.J.C., M.K.C.)
- Case Western Reserve University School of Medicine, Cleveland, OH (T.K.S., D.A.Z., K.M., K.B.H., K.E., S.J.C., M.K.C.)
| | - Mina K Chung
- Cleveland Clinic Lerner College of Medicine, OH (T.K.S., K.M., K.B.H., K.E., S.J.C., M.K.C.)
- Case Western Reserve University School of Medicine, Cleveland, OH (T.K.S., D.A.Z., K.M., K.B.H., K.E., S.J.C., M.K.C.)
| |
Collapse
|
46
|
Jie Chee Y, Dalan R. Repurposing exercise training and pharmacological therapies to address the post-acute sequelae of COVID-19 (PASC) in diabetes mellitus. Diabetes Res Clin Pract 2023; 199:110651. [PMID: 37015258 PMCID: PMC10073874 DOI: 10.1016/j.diabres.2023.110651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/06/2023]
Affiliation(s)
- Ying Jie Chee
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore.
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University Singapore.
| |
Collapse
|
47
|
Durstenfeld MS, Peluso MJ, Kaveti P, Hill C, Li D, Sander E, Swaminathan S, Arechiga VM, Lu S, Goldberg SA, Hoh R, Chenna A, Yee BC, Winslow JW, Petropoulos CJ, Kelly JD, Glidden DV, Henrich TJ, Martin JN, Lee YJ, Aras MA, Long CS, Grandis DJ, Deeks SG, Hsue PY. Reduced exercise capacity, chronotropic incompetence, and early systemic inflammation in cardiopulmonary phenotype Long COVID. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2022.05.17.22275235. [PMID: 35677073 PMCID: PMC9176659 DOI: 10.1101/2022.05.17.22275235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Mechanisms underlying persistent cardiopulmonary symptoms following SARS-CoV-2 infection (post-acute sequelae of COVID-19 "PASC" or "Long COVID") remain unclear. This study sought to elucidate mechanisms of cardiopulmonary symptoms and reduced exercise capacity using advanced cardiac testing. METHODS We performed cardiopulmonary exercise testing (CPET), cardiac magnetic resonance imaging (CMR) and ambulatory rhythm monitoring among adults > 1 year after confirmed SARS-CoV-2 infection in Long-Term Impact of Infection with Novel Coronavirus cohort (LIINC; substudy of NCT04362150 ). Adults who completed a research echocardiogram (at a median 6 months after SARS-CoV-2 infection) without evidence of heart failure or pulmonary hypertension were asked to complete additional cardiopulmonary testing approximately 1 year later. Although participants were recruited as a prospective cohort, to account for selection bias, the primary analyses were as a case-control study comparing those with and without persistent cardiopulmonary symptoms. We also correlated findings with previously measured biomarkers. We used logistic regression and linear regression models to adjust for potential confounders including age, sex, body mass index, time since SARS-CoV-2 infection, and hospitalization for acute SARS-CoV-2 infection, with sensitivity analyses adjusting for medical history. RESULTS Sixty participants (unselected for symptoms, median age 53, 42% female, 87% non- hospitalized) were studied at median 17.6 months following SARS-CoV-2 infection. On maximal CPET, 18/37 (49%) with symptoms had reduced exercise capacity (peak VO 2 <85% predicted) compared to 3/19 (16%) without symptoms (p=0.02). The adjusted peak VO 2 was 5.2 ml/kg/min (95%CI 2.1-8.3; p=0.001) or 16.9% lower actual compared to predicted (95%CI 4.3- 29.6; p=0.02) among those with symptoms compared to those without symptoms. Chronotropic incompetence was present among 12/21 (57%) with reduced VO 2 including 11/37 (30%) with symptoms and 1/19 (5%) without (p=0.04). Inflammatory markers (hsCRP, IL-6, TNF-α) and SARS-CoV-2 antibody levels measured early in PASC were negatively correlated with peak VO 2 more than 1 year later. Late-gadolinium enhancement on CMR and arrhythmias on ambulatory monitoring were not present. CONCLUSIONS We found evidence of objectively reduced exercise capacity among those with cardiopulmonary symptoms more than 1 year following COVID-19, which was associated with elevated inflammatory markers early in PASC. Chronotropic incompetence may explain exercise intolerance among some with cardiopulmonary phenotype Long COVID. Key Points Long COVID symptoms were associated with reduced exercise capacity on cardiopulmonary exercise testing more than 1 year after SARS-CoV-2 infection. The most common abnormal finding was chronotropic incompetence. Reduced exercise capacity was associated with early elevations in inflammatory markers.
Collapse
|
48
|
Prasada Kabekkodu S, Chakrabarty S, Jayaram P, Mallya S, Thangaraj K, Singh KK, Satyamoorthy K. Severe acute respiratory syndrome coronaviruses contributing to mitochondrial dysfunction: Implications for post-COVID complications. Mitochondrion 2023; 69:43-56. [PMID: 36690315 PMCID: PMC9854144 DOI: 10.1016/j.mito.2023.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Mitochondria play a central role in oxidative phosphorylation (OXPHOS), bioenergetics linked with ATP production, fatty acids biosynthesis, calcium signaling, cell cycle regulation, apoptosis, and innate immune response. Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infection manipulates the host cellular machinery for its survival and replication in the host cell. The infectiaon causes perturbed the cellular metabolism that favours viral replication leading to mitochondrial dysfunction and chronic inflammation. By localizing to the mitochondria, SARS CoV proteins increase reactive oxygen species (ROS) levels, perturbation of Ca2+ signaling, changes in mtDNA copy number, mitochondrial membrane potential (MMP), mitochondrial mass, and induction of mitophagy. These proteins also influence the fusion and fission kinetics, size, structure, and distribution of mitochondria in the infected host cells. This results in compromised bioenergetics, altered metabolism, and innate immune signaling, and hence can be a key player in determining the outcome of SARS-CoV infection. SARS-CoV infection contributes to stress and activates apoptotic pathways. This review summarizes how mitochondrial function and dynamics are affected by SARS-CoV and how the mitochondria-SARS-CoV interaction benefits viral survival and growth by evading innate host immunity. We also highlight how the SARS-CoV-mediated mitochondrial dysfunction contributes to post-COVID complications. Besides, a discussion on targeting virus-mitochondria interactions as a therapeutic strategy is presented.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576106, Manipal, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576106, Manipal, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576106, Manipal, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576106, Manipal, India
| | - Kumarasamy Thangaraj
- CSIR Centre for Cellular and Molecular Biology, Uppal Road, Telangana, 500 007, Hyderabad, India; Centre for DNA Fingerprinting and Diagnostics, Telangana, 500 039, Uppal, Hyderabad, India
| | - Keshav K Singh
- Department of Genetics, The University of Alabama at Birmingham, AL 35294, Birmingham, USA
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576106, Manipal, India.
| |
Collapse
|
49
|
Singh I, Joseph P. Short- and long-term noninvasive cardiopulmonary exercise assessment in previously hospitalised COVID-19 patients. Eur Respir J 2023; 61:13993003.01739-2022. [PMID: 36137592 PMCID: PMC9515479 DOI: 10.1183/13993003.01739-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 02/07/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has had a staggering impact on the global healthcare system [1]. It was estimated that by November 2021, over 3 billion individuals or 44% of the world's population had been infected with SARS-CoV-2 at least once [2]. In previously hospitalised COVID-19 patients, noninvasive cardiopulmonary exercise testing demonstrated interval improvement in peak exercise aerobic capacity between 3 and 12 months following hospitalisationhttps://bit.ly/3BVWwrK
Collapse
Affiliation(s)
- Inderjit Singh
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Phillip Joseph
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
50
|
Tedjasukmana R, Budikayanti A, Islamiyah WR, Witjaksono AMAL, Hakim M. Sleep disturbance in post COVID-19 conditions: Prevalence and quality of life. Front Neurol 2023; 13:1095606. [PMID: 36698905 PMCID: PMC9869804 DOI: 10.3389/fneur.2022.1095606] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
Post COVID-19 conditions are complaints and symptoms in patients with a history of probable or confirmed COVID-19 after 3 months of the onset of COVID-19 and last at least 2 months. About 10-20% of people may experience post COVID-19 conditions, one of which is sleep disturbance. There is a wide range of prevalence of sleep disturbances from 6% to more than 70%. An online survey of the post COVID-19 conditions in various countries showed that 78.58% of subjects had sleep disturbances, including insomnia, sleep-disordered breathing, central disorders of hypersomnolence, circadian rhythm sleep-wake disorders, parasomnias, and sleep-related movement disorders. Sleep disturbance can be found starting from 2 weeks until 48 weeks or more after discharge or after having a negative COVID-19 test results. Women aged < 50 years old with severe COVID-19 infection reported a worse outcome. Several mechanisms may cause sleep disturbance in post COVID-19 condition, namely persistent viral infection and inflammation, immunity dysregulation, and mitochondrial dysfunction. Several studies discovered sleep disturbance was a major problem that affected different domains of QoL in post COVID-19 conditions. Significant correlation was found between several dimensions of SF-36 with moderate-to-severe insomnia in post COVID-19 conditions. Therefore, sleep disturbance is a major problem in post COVID-19 conditions and may affect patients' QoL, and the existence of sleep disturbance should be a concern in post COVID-19 conditions period. Further research is required to determine the prevalence based on agreed definition as well as methods to assess this condition and its impact on QoL.
Collapse
Affiliation(s)
| | - Astri Budikayanti
- Department of Neurology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Neurology, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Wardah Rahmatul Islamiyah
- Department of Neurology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Neurology, Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Anastasia Melissa Ayu Larasati Witjaksono
- Department of Neurology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Neurology, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Manfaluthy Hakim
- Department of Neurology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Neurology, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| |
Collapse
|