1
|
Wu IC, Wang YK, Chen YH, Wu CC, Wu MC, Chen WC, Wang WL, Lin HS, Chen CC, Chou SH, Liu YP, Wu MT. High Serum Elafin Prediction of Poor Prognosis of Locoregional Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13123082. [PMID: 34205756 PMCID: PMC8233752 DOI: 10.3390/cancers13123082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Conventional serum markers such as carcinoembryonic antigen (CEA), squamous cell carcinoma antigen (SCC), and tissue polypeptide antigen (TPA) have a low sensitivity in predicting the prognosis of locoregional esophageal squamous cell carcinoma cell (ESCC). In our clinical study, we found high serum elafin to be an independent outcome predictor for stage I-IIIA ESCC, considering T, N, overall stage, and treatment. In vitro experiments showed that adding recombinant elafin drove ESCC cell proliferation, migration and invasion, while shRNA attenuated elafin levels, abrogating those effects. Our results suggested serum elafin might be a noninvasive biomarker to predict the outcome of locoregional ESCC and could potentially be used as a therapeutic target. Abstract Esophageal squamous cell carcinoma (ESCC) is a highly aggressive tumor known to have locally advanced and metastatic features which cause a dismal prognosis. We sought to determine whether elafin, a non-invasive and secretory small-molecule marker, could be used to predict prognosis in locoregional ESCC patients in human and in vitro studies. In our human study, 119 subjects were identified as having incident and pathologically-proved ESCC with stage I-IIIA tumors from southern Taiwan between 2000 and 2016. We measured their serum elafin levels at baseline and followed them until the date of cancer death or until January 2020, the end of this study. Those with high serum elafin levels were found to have a 1.99-fold risk (95% confidence interval: 1.17–3.38) shorter survival than those who did not. In our in vitro experiments, elevated elafin levels were found to drive ESCC cell proliferation, migration and invasion, while attenuation of elafin level by shRNA abrogated those effects. We concluded that elafin promotes ESCC motility and invasion and leads to a worse clinical prognosis in ESCC patients without distant metastasis.
Collapse
Affiliation(s)
- I-Chen Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (I.-C.W.); (Y.-K.W.); (Y.-H.C.)
- Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.W.); (S.-H.C.)
| | - Yao-Kuang Wang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (I.-C.W.); (Y.-K.W.); (Y.-H.C.)
- Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.W.); (S.-H.C.)
| | - Yi-Hsun Chen
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (I.-C.W.); (Y.-K.W.); (Y.-H.C.)
| | - Chun-Chieh Wu
- Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.W.); (S.-H.C.)
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Meng-Chieh Wu
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 807, Taiwan;
| | - Wei-Chung Chen
- Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-C.C.); (C.-C.C.)
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wen-Lun Wang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-DA Hospital/I-Shou University, Kaohsiung 824, Taiwan;
| | - Hung-Shun Lin
- Department of Laboratory Medicine & Department of Research, Education & Training, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Public Health, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chou-Cheng Chen
- Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-C.C.); (C.-C.C.)
| | - Shah-Hwa Chou
- Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.W.); (S.-H.C.)
- Division of Chest Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Peng Liu
- Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-C.C.); (C.-C.C.)
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (Y.-P.L.); (M.-T.W.); Tel.: +886-7-3121101 (ext. 5092-424) (Y.-P.L.); +886-7-3121101 (ext. 2315) (M.-T.W.)
| | - Ming-Tsang Wu
- Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-C.C.); (C.-C.C.)
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Public Health, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Rapid Screening Research Center for Toxicology and Biomedicine, National Sun Yat-Sen University, Kaohsiung 807, Taiwan
- Correspondence: (Y.-P.L.); (M.-T.W.); Tel.: +886-7-3121101 (ext. 5092-424) (Y.-P.L.); +886-7-3121101 (ext. 2315) (M.-T.W.)
| |
Collapse
|
2
|
Alpha-1 Antitrypsin-A Target for MicroRNA-Based Therapeutic Development for Cystic Fibrosis. Int J Mol Sci 2020; 21:ijms21030836. [PMID: 32012925 PMCID: PMC7037267 DOI: 10.3390/ijms21030836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder arising from mutations to the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Disruption to normal ion homeostasis in the airway results in impaired mucociliary clearance, leaving the lung more vulnerable to recurrent and chronic bacterial infections. The CF lung endures an excess of neutrophilic inflammation, and whilst neutrophil serine proteases are a crucial part of the innate host defence to infection, a surplus of neutrophil elastase (NE) is understood to create a net destructive effect. Alpha-1 antitrypsin (A1AT) is a key antiprotease in the control of NE protease activity but is ineffective in the CF lung due to the huge imbalance of NE levels. Therapeutic strategies to boost levels of protective antiproteases such as A1AT in the lung remain an attractive research strategy to limit the damage from excess protease activity. microRNAs are small non-coding RNA molecules that bind specific cognate sequences to inhibit expression of target mRNAs. The inhibition of miRNAs which target the SERPINA1 (A1AT-encoding gene) mRNA represents a novel therapeutic approach for CF inflammation. This could involve the delivery of antagomirs that bind and sequester the target miRNA, or target site blockers that bind miRNA recognition elements within the target mRNA to prevent miRNA interaction. Therefore, miRNA targeted therapies offer an alternative strategy to drive endogenous A1AT production and thus supplement the antiprotease shield of the CF lung.
Collapse
|
3
|
Alejandre Alcazar MA, Kaschwich M, Ertsey R, Preuss S, Milla C, Mujahid S, Masumi J, Khan S, Mokres LM, Tian L, Mohr J, Hirani DV, Rabinovitch M, Bland RD. Elafin Treatment Rescues EGFR-Klf4 Signaling and Lung Cell Survival in Ventilated Newborn Mice. Am J Respir Cell Mol Biol 2018; 59:623-634. [PMID: 29894205 PMCID: PMC6236693 DOI: 10.1165/rcmb.2017-0332oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 05/30/2018] [Indexed: 12/14/2022] Open
Abstract
Mechanical ventilation with O2-rich gas (MV-O2) inhibits alveologenesis and lung growth. We previously showed that MV-O2 increased elastase activity and apoptosis in lungs of newborn mice, whereas elastase inhibition by elafin suppressed apoptosis and enabled lung growth. Pilot studies suggested that MV-O2 reduces lung expression of prosurvival factors phosphorylated epidermal growth factor receptor (pEGFR) and Krüppel-like factor 4 (Klf4). Here, we sought to determine whether apoptosis and lung growth arrest evoked by MV-O2 reflect disrupted pEGFR-Klf4 signaling, which elafin treatment preserves, and to assess potential biomarkers of bronchopulmonary dysplasia (BPD). Five-day-old mice underwent MV with air or 40% O2 for 8-24 hours with or without elafin treatment. Unventilated pups served as controls. Immunoblots were used to assess lung pEGFR and Klf4 proteins. Cultured MLE-12 cells were exposed to AG1478 (EGFR inhibitor), Klf4 siRNA, or vehicle to assess effects on proliferation, apoptosis, and EGFR regulation of Klf4. Plasma elastase and elafin levels were measured in extremely premature infants. In newborn mice, MV with air or 40% O2 inhibited EGFR phosphorylation and suppressed Klf4 protein content in lungs (vs. unventilated controls), yielding increased apoptosis. Elafin treatment inhibited elastase, preserved lung pEGFR and Klf4, and attenuated the apoptosis observed in lungs of vehicle-treated mice. In MLE-12 studies, pharmacological inhibition of EGFR and siRNA suppression of Klf4 increased apoptosis and reduced proliferation, and EGFR inhibition decreased Klf4. Plasma elastase levels were more than twofold higher, without a compensating increase of plasma elafin, in infants with BPD, compared to infants without BPD. These findings indicate that pEGFR-Klf4 is a novel prosurvival signaling pathway in lung epithelium that MV disrupts. Elafin preserves pEGFR-Klf4 signaling and inhibits apoptosis, thereby enabling lung growth during MV. Together, our animal and human data raise the question: would elastase inhibition prevent BPD in high-risk infants exposed to MV-O2?
Collapse
Affiliation(s)
- Miguel A. Alejandre Alcazar
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
- Department of Pediatric and Adolescent Medicine, Center of Molecular Medicine Cologne, University Hospital of Cologne, Cologne, Germany
| | - Mark Kaschwich
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Robert Ertsey
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Stefanie Preuss
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Carlos Milla
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Sana Mujahid
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Juliet Masumi
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Suleman Khan
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Lucia M. Mokres
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Lu Tian
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Jasmine Mohr
- Department of Pediatric and Adolescent Medicine, Center of Molecular Medicine Cologne, University Hospital of Cologne, Cologne, Germany
| | - Dharmesh V. Hirani
- Department of Pediatric and Adolescent Medicine, Center of Molecular Medicine Cologne, University Hospital of Cologne, Cologne, Germany
| | - Marlene Rabinovitch
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Richard D. Bland
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| |
Collapse
|
4
|
De Rose V, Molloy K, Gohy S, Pilette C, Greene CM. Airway Epithelium Dysfunction in Cystic Fibrosis and COPD. Mediators Inflamm 2018; 2018:1309746. [PMID: 29849481 PMCID: PMC5911336 DOI: 10.1155/2018/1309746] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/15/2018] [Accepted: 02/01/2018] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis is a genetic disease caused by mutations in the CFTR gene, whereas chronic obstructive pulmonary disease (COPD) is mainly caused by environmental factors (mostly cigarette smoking) on a genetically susceptible background. Although the etiology and pathogenesis of these diseases are different, both are associated with progressive airflow obstruction, airway neutrophilic inflammation, and recurrent exacerbations, suggesting common mechanisms. The airway epithelium plays a crucial role in maintaining normal airway functions. Major molecular and morphologic changes occur in the airway epithelium in both CF and COPD, and growing evidence suggests that airway epithelial dysfunction is involved in disease initiation and progression in both diseases. Structural and functional abnormalities in both airway and alveolar epithelium have a relevant impact on alteration of host defences, immune/inflammatory response, and the repair process leading to progressive lung damage and impaired lung function. In this review, we address the evidence for a critical role of dysfunctional airway epithelial cells in chronic airway inflammation and remodelling in CF and COPD, highlighting the common mechanisms involved in the epithelial dysfunction as well as the similarities and differences of the two diseases.
Collapse
Affiliation(s)
- Virginia De Rose
- Department of Clinical and Biological Sciences, University of Torino, A.O.U. S. Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Kevin Molloy
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Dublin, Ireland
| | - Sophie Gohy
- Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Université Catholique de Louvain (UCL), Brussels, Belgium
- Department of Pneumology, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Charles Pilette
- Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Université Catholique de Louvain (UCL), Brussels, Belgium
- Department of Pneumology, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Catherine M. Greene
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Dublin, Ireland
| |
Collapse
|
5
|
Small DM, Doherty DF, Dougan CM, Weldon S, Taggart CC. The role of whey acidic protein four-disulfide-core proteins in respiratory health and disease. Biol Chem 2017; 398:425-440. [PMID: 27930359 DOI: 10.1515/hsz-2016-0262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/13/2016] [Indexed: 11/15/2022]
Abstract
Members of the whey acidic protein (WAP) or WAP four-disulfide-core (WFDC) family of proteins are a relatively under-explored family of low molecular weight proteins. The two most prominent WFDC proteins, secretory leukocyte protease inhibitor (SLPI) and elafin (or the precursor, trappin-2), have been shown to possess multiple functions including anti-protease, anti-bacterial, anti-viral and anti-inflammatory properties. It is therefore of no surprise that both SLPI and elafin/trappin-2 have been developed as potential therapeutics. Given the abundance of SLPI and elafin/trappin-2 in the human lung, most work in the area of WFDC research has focused on the role of WFDC proteins in protecting the lung from proteolytic attack. In this review, we will outline the current evidence regarding the expanding role of WFDC protein function with a focus on WFDC activity in lung disease as well as emerging data regarding the function of some of the more recently described WFDC proteins.
Collapse
|
6
|
Olewicz-Gawlik A, Trzybulska D, Graniczna K, Kuznar-Kaminska B, Katulska K, Batura-Gabryel H, Frydrychowicz M, Danczak-Pazdrowska A, Mozer-Lisewska I. Serum alarm antiproteases in systemic sclerosis patients. Hum Immunol 2017; 78:559-564. [PMID: 28606626 DOI: 10.1016/j.humimm.2017.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/16/2017] [Accepted: 06/02/2017] [Indexed: 01/05/2023]
Abstract
Alarm antiproteases, i.e. secretory leukocyte protease inhibitor ad elafin, are key mediators in innate immune response and integrate innate and adaptive immunity systems. The aim of the study was to assess clinical significance of serum levels of alarm antiproteases, elafin and secretory leukocyte protease inhibitor (SLPI) in patients with systemic sclerosis (SSc). Twenty-eight patients with SSc, 25 patients with rheumatoid arthritis (RA) and 22 healthy controls were recruited. Serum elafin and SLPI levels were examined using enzyme-linked immunosorbent assay (ELISA). The patients with SSc had significantly increased serum levels of SLPI in comparison with the RA patients and the healthy controls (p<0.01), and the RA patients presented significantly higher serum levels of elafin in comparison with the controls (p=0.003). In the SSc subgroup serum SLPI level negatively correlated with diffusing capacity of the lung for carbon monoxide (DLCO) (r=-0.41, p=0.03) and total lung capacity (r=-0.42, p=0.03). Both alarm antiproteases, elafin and SLPI could be potentially implicated in the pathogenesis of SSc and SLPI may be considered a candidate for serum biomarker of lung involvement in SSc.
Collapse
Affiliation(s)
- Anna Olewicz-Gawlik
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Poznan University of Medical Sciences, Szwajcarska 3, 61-285 Poznan, Poland; Department of Rheumatology and Clinical Immunology, Poznan University of Medical Sciences, Przybyszewskiego 39, 60-356 Poznan, Poland.
| | - Dorota Trzybulska
- Department of Rheumatology and Clinical Immunology, Poznan University of Medical Sciences, Przybyszewskiego 39, 60-356 Poznan, Poland
| | - Katarzyna Graniczna
- Regional Centre of Blood Donation and Blood Treatment, Marcelińska 44, 60-354 Poznan, Poland
| | - Barbara Kuznar-Kaminska
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences, Szamarzewskiego 84, 60-569 Poznan, Poland
| | - Katarzyna Katulska
- Department of General Radiology and Neuroradiology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Halina Batura-Gabryel
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences, Szamarzewskiego 84, 60-569 Poznan, Poland
| | - Magdalena Frydrychowicz
- Department of Immunology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | | | - Iwona Mozer-Lisewska
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Poznan University of Medical Sciences, Szwajcarska 3, 61-285 Poznan, Poland
| |
Collapse
|
7
|
The Role of Serine Proteases and Antiproteases in the Cystic Fibrosis Lung. Mediators Inflamm 2015; 2015:293053. [PMID: 26185359 PMCID: PMC4491392 DOI: 10.1155/2015/293053] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/08/2015] [Indexed: 12/05/2022] Open
Abstract
Cystic fibrosis (CF) lung disease is an inherited condition with an incidence rate of approximately 1 in 2500 new born babies. CF is characterized as chronic infection of the lung which leads to inflammation of the airway. Sputum from CF patients contains elevated levels of neutrophils and subsequently elevated levels of neutrophil serine proteases. In a healthy individual these proteases aid in the phagocytic process by degrading microbial peptides and are kept in homeostatic balance by cognate antiproteases. Due to the heavy neutrophil burden associated with CF the high concentration of neutrophil derived proteases overwhelms cognate antiproteases. The general effects of this protease/antiprotease imbalance are impaired mucus clearance, increased and self-perpetuating inflammation, and impaired immune responses and tissue. To restore this balance antiproteases have been suggested as potential therapeutics or therapeutic targets. As such a number of both endogenous and synthetic antiproteases have been trialed with mixed success as therapeutics for CF lung disease.
Collapse
|
8
|
Bermúdez-Humarán LG, Motta JP, Aubry C, Kharrat P, Rous-Martin L, Sallenave JM, Deraison C, Vergnolle N, Langella P. Serine protease inhibitors protect better than IL-10 and TGF-β anti-inflammatory cytokines against mouse colitis when delivered by recombinant lactococci. Microb Cell Fact 2015; 14:26. [PMID: 25889561 PMCID: PMC4371826 DOI: 10.1186/s12934-015-0198-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/23/2015] [Indexed: 12/18/2022] Open
Abstract
Background Different studies have described the successful use of recombinant lactic acid bacteria (recLAB) to deliver anti-inflammatory molecules at the mucosal level to treat Inflammatory Bowel Disease (IBD). Methods In order to identify the best strategy to treat IBD using recLAB, we compared the efficacy of different recombinant strains of Lactococcus lactis (the model LAB) secreting two types of anti-inflammatory molecules: cytokines (IL-10 and TGF-β1) and serine protease inhibitors (Elafin and Secretory Leukocyte Protease Inhibitor: SLPI), using a dextran sulfate sodium (DSS)-induced mouse model of colitis. Results Our results show that oral administration of recombinant L. lactis strains expressing either IL-10 or TGF-β1 display moderate anti-inflammatory effects in inflamed mice and only for some clinical parameters. In contrast, delivery of either serine protease inhibitors Elafin or SLPI by recLAB led to a significant reduction of intestinal inflammation for all clinical parameters tested. Since the best results were obtained with Elafin-producing L. lactis strain, we then tried to enhance Elafin expression and hence its delivery rate by producing it in a L. lactis mutant strain inactivated in its major housekeeping protease, HtrA. Strikingly, a higher reduction of intestinal inflammation in DSS-treated mice was observed with the Elafin-overproducing htrA strain suggesting a dose-dependent Elafin effect. Conclusions Altogether, these results strongly suggest that serine protease inhibitors are the most efficient anti-inflammatory molecules to be delivered by recLAB at the mucosal level for IBD treatment.
Collapse
Affiliation(s)
- Luis G Bermúdez-Humarán
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France.
| | - Jean-Paul Motta
- Inserm, U1043, Toulouse, F-31300, France. .,CNRS, U5282, Toulouse, F-31300, France. .,Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France. .,Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada.
| | - Camille Aubry
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France.
| | - Pascale Kharrat
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France.
| | - Laurence Rous-Martin
- Inserm, U1043, Toulouse, F-31300, France. .,CNRS, U5282, Toulouse, F-31300, France. .,Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France.
| | - Jean-Michel Sallenave
- INSERM U874, Institut Pasteur, 25 rue du Dr Roux, 75015, Paris, France. .,INSERM U1152, Faculté de Médecine site Bichat, Université Paris Diderot, 16, rue Henri Huchard, 75018, Paris, France. .,Université Sorbonne Paris Cité, Université Paris Diderot, rue du Dr Roux, 75015, Paris, France.
| | - Céline Deraison
- Inserm, U1043, Toulouse, F-31300, France. .,CNRS, U5282, Toulouse, F-31300, France. .,Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France.
| | - Nathalie Vergnolle
- Inserm, U1043, Toulouse, F-31300, France. .,CNRS, U5282, Toulouse, F-31300, France. .,Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France. .,Université Sorbonne Paris Cité, Université Paris Diderot, rue du Dr Roux, 75015, Paris, France.
| | - Philippe Langella
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France.
| |
Collapse
|
9
|
Ramadan A, Paczesny S. Various forms of tissue damage and danger signals following hematopoietic stem-cell transplantation. Front Immunol 2015; 6:14. [PMID: 25674088 PMCID: PMC4309199 DOI: 10.3389/fimmu.2015.00014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem-cell transplantation (HSCT) is the most potent curative therapy for many malignant and non-malignant disorders. Unfortunately, a major complication of HSCT is graft-versus-host disease (GVHD), which is mediated by tissue damage resulting from the conditioning regimens before the transplantation and the alloreaction of dual immune components (activated donor T-cells and recipient’s antigen-presenting cells). This tissue damage leads to the release of alarmins and the triggering of pathogen-recognition receptors that activate the innate immune system and subsequently the adaptive immune system. Alarmins, which are of endogenous origin, together with the exogenous pathogen-associated molecular patterns (PAMPs) elicit similar responses of danger signals and represent the group of damage-associated molecular patterns (DAMPs). Effector cells of innate and adaptive immunity that are activated by PAMPs or alarmins can secrete other alarmins and amplify the immune responses. These complex interactions and loops between alarmins and PAMPs are particularly potent at inducing and then aggravating the GVHD reaction. In this review, we highlight the role of these tissue damaging molecules and their signaling pathways. Interestingly, some DAMPs and PAMPs are organ specific and GVHD-induced and have been shown to be interesting biomarkers. Some of these molecules may represent potential targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Abdulraouf Ramadan
- Department of Pediatrics, Melvin and Bren Simon Cancer Center, Indiana University , Indianapolis, IN , USA ; Department of Microbiology and Immunology, Indiana University , Indianapolis, IN , USA
| | - Sophie Paczesny
- Department of Pediatrics, Melvin and Bren Simon Cancer Center, Indiana University , Indianapolis, IN , USA ; Department of Microbiology and Immunology, Indiana University , Indianapolis, IN , USA
| |
Collapse
|
10
|
Tejera P, O'Mahony DS, Owen CA, Wei Y, Wang Z, Gupta K, Su L, Villar J, Wurfel M, Christiani DC. Functional characterization of polymorphisms in the peptidase inhibitor 3 (elafin) gene and validation of their contribution to risk of acute respiratory distress syndrome. Am J Respir Cell Mol Biol 2014; 51:262-72. [PMID: 24617927 DOI: 10.1165/rcmb.2013-0238oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Elafin (peptidase inhibitor 3 [PI3]) and its biologically active precursor, pre-elafin, are neutrophil serine proteinase inhibitors with an important role in preventing excessive tissue injury during inflammatory events. Recently, we reported an association between single-nucleotide polymorphism (SNP) rs2664581 in the PI3 gene, increased risk of acute respiratory distress syndrome (ARDS) and pre-elafin circulating levels. This study aims to validate the legitimacy of this association by using a cohort of patients who met the criteria for systemic inflammatory response syndrome and were at risk of developing ARDS (n = 840). A comprehensive functional study of SNPs in PI3 gene was also performed. Luciferase assays and electrophoretic mobility shift assays were conducted to determine the functional relevance of promoter region variants. The effect of the coding SNP rs2664581 on the neutrophil elastase inhibitory activity and transglutaminase binding properties of pre-elafin was also investigated. The variant allele of rs2664581 (C) was significantly associated with increased ARDS risk, mainly among subjects with sepsis (odds ratio = 1.44; 95% confidence interval = 1.04-1.99; P = 0.0276, adjusted by age, sex, and Acute Physiology and Chronic Health Evaluation III). Pre-elafin recombinant protein carrying the amino acid change associated with rs2664581 (Thr34Pro, mutant protein [MT]) had greater capacity to undergo transglutaminase-mediated cross-linking to immobilized fibronectin than wild-type protein in vitro (P < 0.003). No differences were observed in the neutrophil elastase inhibitory activities of wild-type versus MT proteins. In addition, the risk allele-promoter construct had significantly lower cytokine-induced transcriptional activity. Electrophoretic mobility shift assay results indicated a differential binding of nuclear proteins to the G and A alleles of SNP -338G > A. Our results confirm the association between SNP rs2664581 and enhanced risk of ARDS, further supporting the role of PI3 in ARDS development. SNPs in the PI3 locus may act synergistically by regulating PI3 gene expression and pre-elafin biological functions.
Collapse
Affiliation(s)
- Paula Tejera
- 1 Harvard School of Public Health, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hilgendorff A, Parai K, Ertsey R, Juliana Rey-Parra G, Thébaud B, Tamosiuniene R, Jain N, Navarro EF, Starcher BC, Nicolls MR, Rabinovitch M, Bland RD. Neonatal mice genetically modified to express the elastase inhibitor elafin are protected against the adverse effects of mechanical ventilation on lung growth. Am J Physiol Lung Cell Mol Physiol 2012; 303:L215-27. [PMID: 22683569 DOI: 10.1152/ajplung.00405.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanical ventilation (MV) with O(2)-rich gas (MV-O(2)) offers life-saving treatment for newborn infants with respiratory failure, but it also can promote lung injury, which in neonates translates to defective alveolar formation and disordered lung elastin, a key determinant of lung growth and repair. Prior studies in preterm sheep and neonatal mice showed that MV-O(2) stimulated lung elastase activity, causing degradation and remodeling of matrix elastin. These changes yielded an inflammatory response, with TGF-β activation, scattered elastic fibers, and increased apoptosis, culminating in defective alveolar septation and arrested lung growth. To see whether sustained inhibition of elastase activity would prevent these adverse pulmonary effects of MV-O(2), we did studies comparing wild-type (WT) and mutant neonatal mice genetically modified to express in their vascular endothelium the human serine elastase inhibitor elafin (Eexp). Five-day-old WT and Eexp mice received MV with 40% O(2) (MV-O(2)) for 24-36 h. WT and Eexp controls breathed 40% O(2) without MV. MV-O(2) increased lung elastase and MMP-9 activity, resulting in elastin degradation (urine desmosine doubled), TGF-β activation (pSmad-2 increased 6-fold), apoptosis (cleaved-caspase-3 increased 10-fold), and inflammation (NF-κB activation, influx of neutrophils and monocytes) in lungs of WT vs. unventilated controls. These changes were blocked or blunted during MV-O(2) of Eexp mice. Scattered lung elastin and emphysematous alveoli observed in WT mice after 36 h of MV-O(2) were attenuated in Eexp mice. Both WT and Eexp mice showed defective VEGF signaling (decreased lung VEGF-R2 protein) and loss of pulmonary microvessels after lengthy MV-O(2), suggesting that elafin's beneficial effects during MV-O(2) derived primarily from preserving matrix elastin and suppressing lung inflammation, thereby enabling alveolar formation during MV-O(2). These results suggest that degradation and remodeling of lung elastin can contribute to defective lung growth in response to MV-O(2) and might be targeted therapeutically to prevent ventilator-induced neonatal lung injury.
Collapse
Affiliation(s)
- Anne Hilgendorff
- Department of Pediatrics, Stanford University, Stanford, California 94305-5162, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Alam SR, Newby DE, Henriksen PA. Role of the endogenous elastase inhibitor, elafin, in cardiovascular injury. Biochem Pharmacol 2012; 83:695-704. [DOI: 10.1016/j.bcp.2011.11.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 02/05/2023]
|
13
|
SLPI and trappin-2 as therapeutic agents to target airway serine proteases in inflammatory lung diseases: current and future directions. Biochem Soc Trans 2012; 39:1441-6. [PMID: 21936830 DOI: 10.1042/bst0391441] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is now clear that NSPs (neutrophil serine proteases), including elastase, Pr3 (proteinase 3) and CatG (cathepsin G) are major pathogenic determinants in chronic inflammatory disorders of the lungs. Two unglycosylated natural protease inhibitors, SLPI (secretory leucocyte protease inhibitor) and elafin, and its precursor trappin-2 that are found in the lungs, have therapeutic potential for reducing the protease-induced inflammatory response. This review examines the multifaceted roles of SLPI and elafin/trappin-2 in the context of their possible use as inhaled drugs for treating chronic lung diseases such as CF (cystic fibrosis) and COPD (chronic obstructive pulmonary disease).
Collapse
|
14
|
Abstract
WAP (whey acidic protein) is an important whey protein present in milk of mammals. This protein has characteristic domains, rich in cysteine residues, called 4-DSC (four-disulfide core domain). Other proteins, mainly present at mucosal surfaces, have been shown to also possess these characteristic WAP-4-DSC domains. The present review will focus on two WAP-4-DSC containing proteins, namely SLPI (secretory leucocyte protease inhibitor) and trappin-2/elafin. Although first described as antiproteases able to inhibit in particular host neutrophil proteases [NE (neutrophil elastase), cathepsin-G and proteinase-3] and as such, able to limit maladaptive tissue damage during inflammation, it has become apparent that these molecules have a variety of other functions (direct antimicrobial activity, bacterial opsonization, induction of adaptive immune responses, promotion of tissue repair, etc.). After providing information about the 'classical' antiproteasic role of these molecules, we will discuss the evidence pertaining to their pleiotropic functions in inflammation and immunity.
Collapse
|
15
|
Abstract
SLPI (secretory leucoprotease inhibitor) and elafin represent the archetypal members of the WFDC [WAP (whey acidic protein) four disulfide core] family of proteins, and were originally characterized as protease inhibitors but have since been shown to possess a wider repertoire of activities. These functions include antimicrobial and immunomodulatory properties, suggesting that these proteins may play key roles in the innate immune response, and indicate the potential to develop some of these proteins as novel therapeutics. Susceptibility to host and bacterial protease cleavage may, however, limit the efficacy of recombinant protein therapies in diseases with a high protease burden such as CF (cystic fibrosis) lung disease. To overcome this problem, further refinement of the native proteins will be required to provide effective treatment strategies.
Collapse
|
16
|
Hilgendorff A, Parai K, Ertsey R, Jain N, Navarro EF, Peterson JL, Tamosiuniene R, Nicolls MR, Starcher BC, Rabinovitch M, Bland RD. Inhibiting lung elastase activity enables lung growth in mechanically ventilated newborn mice. Am J Respir Crit Care Med 2011; 184:537-46. [PMID: 21562133 DOI: 10.1164/rccm.201012-2010oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RATIONALE Mechanical ventilation with O₂-rich gas (MV-O₂) offers life-saving treatment for respiratory failure, but also promotes lung injury. We previously reported that MV-O2 of newborn mice increased lung elastase activity, causing elastin degradation and redistribution of elastic fibers from septal tips to alveolar walls. These changes were associated with transforming growth factor (TGF)-β activation and increased apoptosis leading to defective alveolarization and lung growth arrest, as seen in neonatal chronic lung disease. OBJECTIVES To determine if intratracheal treatment of newborn mice with the serine elastase inhibitor elafin would prevent MV-O₂-induced lung elastin degradation and the ensuing cascade of events causing lung growth arrest. METHODS Five-day-old mice were treated via tracheotomy with recombinant human elafin or vehicle (lactated-Ringer solution), followed by MV with 40% O₂ for 8-24 hours; control animals breathed 40% O₂ without MV. At study's end, lungs were harvested to assess key variables noted below. MEASUREMENTS AND MAIN RESULTS MV-O₂ of vehicle-treated pups increased lung elastase and matrix metalloproteinase-9 activity when compared with unventilated control animals, causing elastin degradation (urine desmosine doubled), TGF-β activation (pSmad-2 tripled), and apoptosis (cleaved-caspase-3 increased 10-fold). Quantitative lung histology showed larger and fewer alveoli, greater inflammation, and scattered elastic fibers. Elafin blocked these MV-O₂-induced changes. CONCLUSIONS Intratracheal elafin, by blocking lung protease activity, prevented MV-O₂-induced elastin degradation, TGF-β activation, apoptosis, and dispersion of matrix elastin, and attenuated lung structural abnormalities noted in vehicle-treated mice after 24 hours of MV-O₂. These findings suggest that elastin breakdown contributes to defective lung growth in response to MV-O₂ and might be targeted therapeutically to prevent MV-O₂-induced lung injury.
Collapse
Affiliation(s)
- Anne Hilgendorff
- Department of Pediatrics, Stanford University, Stanford, California 94305-5162, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Antimicrobial peptides (AMPs) are small proteins produced by epithelial surfaces and inflammatory cells, which have broad-spectrum antimicrobial and immunomodulatory activities. They are known to be important in a number of infectious and inflammatory conditions and have been shown to be present in a number of sites throughout the female reproductive tract. Inflammation and infection are associated with a number of complications of pregnancy including preterm labor, and AMPs may play a key role in maintaining and protecting pregnancy. The aim of this review is to describe the expression and function of AMPs in the pregnant female reproductive tract and their relation to preterm labor.
Collapse
Affiliation(s)
- Lorraine Frew
- MRC Centre for Reproductive Health, The Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | | |
Collapse
|
18
|
Liu Z, Yu Z, Liu N, Zhao C, Hu J, Dai Q. cDNA cloning of conotoxins with framework XII from several Conus species. Acta Biochim Biophys Sin (Shanghai) 2010; 42:656-61. [PMID: 20732855 DOI: 10.1093/abbs/gmq066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In our efforts for cloning novel I(2)-superfamily conotoxins using the signal peptide sequence, we identified a novel conotoxin Lt12.4 from Conus litteratus. This gene has a framework XII (-C-C-C-C-CC-C-C-), which is distinct from the cysteine pattern I(2)-superfamily conotoxin (-C-C-CC-CC-C-C-). Subsequently, we found the signal peptide sequence of Lt12.4 by 5'-RACE. Using this new sequence, we identified another five novel conotoxins with this cysteine pattern from four Conus species (Conus eburneus, Conus imperialis, Conus marmoreus, and C. litteratus). These novel conotoxins have the same cysteine pattern as the reported Gla-TxX and Gla-MII, and may contain Gla residues. Furthermore, they have the highly conserved signal peptide and hypervariable mature peptide sequences, and widely exist in Conus species. Therefore, it could be defined as a new superfamily of E-conotoxins.
Collapse
Affiliation(s)
- Zhuguo Liu
- Beijing Institute of Biotechnology, China
| | | | | | | | | | | |
Collapse
|
19
|
Sallenave JM. Secretory leukocyte protease inhibitor and elafin/trappin-2: versatile mucosal antimicrobials and regulators of immunity. Am J Respir Cell Mol Biol 2010; 42:635-43. [PMID: 20395631 DOI: 10.1165/rcmb.2010-0095rt] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Elafin and secretory leukocyte protease inhibitor (SLPI) are pleiotropic molecules chiefly synthesized at the mucosal surface that have a fundamental role in the surveillance against microbial infections. Their initial discovery as anti-proteases present in the inflammatory milieu in chronic pathologies such as those of the lung suggested that they may play a role in keeping in check extracellular proteases released during the excessive activation of innate immune cells such as neutrophils. This soon proved to be a simplistic explanation, as other functions were also soon ascribed to these molecules (antimicrobial, modulation of innate and adaptive immunity, regulation of tissue repair). Data emanating from patients with chronic pathologies (in the lung and elsewhere) have shown that SLPI and elafin are often inactivated in inflammatory secretions, either through the action of host or microbial products, justifying attempts at antiprotease supplementation in clinical protocols. Although these have been sparse, proof of principle has been demonstrated, and future challenges will undoubtedly rest with improvements in methods of delivery in the context of tissue inflammation and in careful selection of patients more likely to benefit from SLPI/elafin augmentation.
Collapse
|
20
|
Quinn DJ, Weldon S, Taggart CC. Antiproteases as therapeutics to target inflammation in cystic fibrosis. Open Respir Med J 2010; 4:20-31. [PMID: 20448835 PMCID: PMC2864511 DOI: 10.2174/1874306401004020020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 11/22/2022] Open
Abstract
Cystic Fibrosis (CF) is the most common fatal inherited disease of Caucasians, affecting about 1 in 3000 births. Patients with CF have a recessive mutation in the gene encoding the CF transmembrane conductance regulator (CFTR). CFTR is expressed in the epithelium of many organs throughout the exocrine system, however, inflammation and damage of the airways as a result of persistent progressive endobronchial infection is a central feature of CF. The inflammatory response to infection brings about a sustained recruitment of neutrophils to the site of infection. These neutrophils release various pro-inflammatory compounds including proteases, which when expressed at aberrant levels can overcome the endogenous antiprotease defence mechanisms of the lung. Unregulated, these proteases can exacerbate inflammation and result in the degradation of structural proteins and tissue damage leading to bronchiectasis and loss of respiratory function. Other host-derived and bacterial proteases may also contribute to the inflammation and lung destruction observed in the CF lung. Antiprotease strategies to dampen the excessive inflammatory response and concomitant damage to the airways remains an attractive therapeutic option for CF patients.
Collapse
Affiliation(s)
| | | | - Clifford C Taggart
- Centre for Infection and Immunity, Whitla Medical Building, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
| |
Collapse
|
21
|
Marischen L, Wesch D, Schröder JM, Wiedow O, Kabelitz D. Human gammadelta T cells produce the protease inhibitor and antimicrobial peptide elafin. Scand J Immunol 2009; 70:547-52. [PMID: 19906197 DOI: 10.1111/j.1365-3083.2009.02337.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human gammadelta T cells rapidly secrete pro-inflammatory cytokines in response to T cell receptor-dependent recognition of pyrophosphates produced by many bacteria and parasites. In further support of an important role of gammadelta T cells in the immune defence against infection, human gammadelta T cells have been shown to produce the antimicrobial peptide LL37/cathelicidin. In this study, we have investigated whether gammadelta T cells can produce additional antimicrobial peptides. To this end, we have screened human gammadelta T cell clones by RT-PCR for mRNA expression of a broad range of antimicrobial peptides. While alpha-defensins were absent and beta-defensins (HBD1) present only in rare gammadelta T cell clones, elafin mRNA was induced by supernatant of Pseudomonas aeruginosa grown under static conditions. Elafin is a protease inhibitor that also displays antimicrobial activity. Constitutive intracellular expression of elafin was demonstrated by flow cytometry and Western blot analysis. Furthermore, trappin-2 (pre-elafin) could be immunoprecipitated in cell lysates but also in the supernatant of gammadelta T cells stimulated by Ps. aeruginosa supernatant. Taken together, our studies reveal a novel effector function of gammadelta T cells which might be important for local immune defence.
Collapse
Affiliation(s)
- L Marischen
- Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | | | | | | | | |
Collapse
|
22
|
Stock SJ, Duthie L, Tremaine T, Calder AA, Kelly RW, Riley SC. Elafin (SKALP/Trappin-2/proteinase inhibitor-3) is produced by the cervix in pregnancy and cervicovaginal levels are diminished in bacterial vaginosis. Reprod Sci 2009; 16:1125-34. [PMID: 19723838 DOI: 10.1177/1933719109341998] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVES To examine cervicovaginal elafin production in pregnancy and determine its relationship in bacterial vaginosis. STUDY DESIGN Samples of cervicovaginal secretions were collected from women with uncomplicated singleton pregnancies (n = 112) below 20 weeks gestation. Bacterial flora was assessed using Nugent's criteria, and levels of elafin were measured by enzyme-linked immunosorbent serologic assay (ELISA). Elafin expression in the cervix was also examined by immunohistochemistry. In vitro expression of elafin was examined using cervix and vaginal cell lines. RESULTS Elafin is expressed in the cervical glandular epithelium. Elafin was found in all 112 samples of cervicovaginal secretions and levels were diminished in women with bacterial vaginosis (P < .05). Interleukin 1beta (IL-1beta) stimulated elafin expression in cells derived from the endocervix, but not in those derived from the vaginal epithelium. CONCLUSIONS Elafin is a component of cervicovaginal secretions in pregnancy, and levels are diminished in bacterial vaginosis. It may be an important component of innate immunity in the lower genital tract.
Collapse
Affiliation(s)
- Sarah J Stock
- University of Edinburgh Centre for Reproductive Biology, Edinburgh, United Kingdom.
| | | | | | | | | | | |
Collapse
|
23
|
Wilkinson TS, Dhaliwal K, Hamilton TW, Lipka AF, Farrell L, Davidson DJ, Duffin R, Morris AC, Haslett C, Govan JRW, Gregory CD, Sallenave JM, Simpson AJ. Trappin-2 promotes early clearance of Pseudomonas aeruginosa through CD14-dependent macrophage activation and neutrophil recruitment. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1338-46. [PMID: 19264904 DOI: 10.2353/ajpath.2009.080746] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microaspiration of Pseudomonas aeruginosa contributes to the pathogenesis of nosocomial pneumonia. Trappin-2 is a host defense peptide that assists with the clearance of P. aeruginosa through undefined mechanisms. A model of macrophage interactions with replicating P. aeruginosa (strain PA01) in serum-free conditions was developed, and the influence of subantimicrobial concentrations of trappin-2 was subsequently studied. PA01 that was pre-incubated with trappin-2 (at concentrations that have no direct antimicrobial effects), but not control PA01, was cleared by alveolar and bone marrow-derived macrophages. However, trappin-2-enhanced clearance of PA01 was completely abrogated by CD14- null macrophages. Fluorescence microscopy demonstrated the presence of trappin-2 on the bacterial cell surface of trappin-2-treated PA01. In a murine model of early lung infection, trappin-2-treated PA01 was cleared more efficiently than control PA01 2 hours of intratracheal instillation. Furthermore, trappin-2-treated PA01 up-regulated the murine chemokine CXCL1/KC after 2 hours with a corresponding increase in neutrophil recruitment 1 hour later. These in vivo trappin-2-treated PA01 effects were absent in CD14-deficient mice. Trappin-2 appears to opsonize P. aeruginosa for more efficient, CD14-dependent clearance by macrophages and contributes to the induction of chemokines that promote neutrophil recruitment. Trappin-2 may therefore play an important role in innate recognition and clearance of pathogens during the very earliest stages of pulmonary infection.
Collapse
Affiliation(s)
- Thomas S Wilkinson
- MRC Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tejera P, Wang Z, Zhai R, Su L, Sheu CC, Taylor DM, Chen F, Gong MN, Thompson BT, Christiani DC. Genetic polymorphisms of peptidase inhibitor 3 (elafin) are associated with acute respiratory distress syndrome. Am J Respir Cell Mol Biol 2009; 41:696-704. [PMID: 19251943 DOI: 10.1165/rcmb.2008-0410oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Peptidase inhibitor 3 (PI3, elafin) is a protease inhibitor produced locally in the lung, where it plays a central role in controlling excessive activity of neutrophil elastase. Our previous study revealed that PI3 gene expression is down-regulated during the acute stage of acute respiratory distress syndrome (ARDS). We conducted a case-control study to investigate whether genetic variants in PI3 gene are associated with ARDS development. Based on resequencing data from 29 unrelated white subjects, three tagging single-nucleotide polymorphisms were selected and genotyped in a prospective cohort consisting of 449 white patients with ARDS (cases) and 1,031 critically ill patients (at-risk control subjects). We found that the variant allele of rs2664581 (T34P) was significantly associated with increased ARDS risk (odds ratio [OR], 1.35; 95% confidence interval [CI], 1.09-1.67; P = 0.006; false discovery rate adjusted P = 0.018). Moreover, this association was stronger among subjects with extrapulmonary injury. The common haplotype Hap2 (TTC), containing the variant allele of rs2664581, was also identified as a risk haplotype for ARDS (OR, 1.31; 95% CI, 1.05-1.64; P = 0.015). Furthermore, the rs2664581 polymorphism was associated with circulating PI3 levels in multivariate analyses. Patients with ARDS homozygous for the wild-type A allele of rs2664581 showed significant lower PI3 plasma level (P = 0.019) at ARDS onset as compared with those homozygous or heterozygous for the variant C allele. Our data suggest that polymorphisms in PI3 gene are significantly associated with ARDS risk and with circulating PI3 levels.
Collapse
Affiliation(s)
- Paula Tejera
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Room I-1407, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Roghanian A, Sallenave JM. Neutrophil elastase (NE) and NE inhibitors: canonical and noncanonical functions in lung chronic inflammatory diseases (cystic fibrosis and chronic obstructive pulmonary disease). J Aerosol Med Pulm Drug Deliv 2008; 21:125-44. [PMID: 18518838 DOI: 10.1089/jamp.2007.0653] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Proteases and antiproteases have multiple important roles both in normal homeostasis and during inflammation. Antiprotease molecules may have developed in a parallel network, consisting of "alarm" and "systemic" inhibitors. Their primary function was thought until recently to mainly prevent the potential injurious effects of excess release of proteolytic enzymes, such as neutrophil elastase (NE), from inflammatory cells. However, recently, new potential roles have been ascribed to these antiproteases. We will review "canonical" and new "noncanonical" functions for these molecules, and more particularly, those pertaining to their role in innate and adaptive immunity (antibacterial activity and biasing of the adaptive immune response).
Collapse
Affiliation(s)
- Ali Roghanian
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh University Medical School, Edinburgh, United Kingdom
| | | |
Collapse
|
26
|
Nishiyama K, Sugawara K, Nouchi T, Kawano N, Soejima K, Abe SI, Mizokami H. Purification and cDNA cloning of a novel protease inhibitor secreted into culture supernatant by MDCK cells. Biologicals 2008; 36:122-33. [PMID: 17892946 DOI: 10.1016/j.biologicals.2007.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 06/25/2007] [Accepted: 07/16/2007] [Indexed: 11/30/2022] Open
Abstract
The infectivity of influenza viruses to host cells depends on the activation of the viral glycoprotein hemagglutinin (HA) by proteases. Starting from the observation that influenza virus replication in MDCK (Madin Darby canine kidney) cells was impaired by inactivation of trypsin in the culture fluids, we demonstrated that the inhibitory activity was resolved into two Trypsin-inactivating factors (TF), TF A (15 kDa) and TF B (11 kDa). N-terminal protein sequences of the factors revealed that TF A was a known Submandibular Protease Inhibitor (SPI) secreted in dog saliva, while TF B was a novel protein (renamed CKPI; canine kidney protease inhibitor). Following peptide mapping and protein sequencing of CKPI we obtained a 390 bp cDNA encoding a 130-amino-acid protein from MDCK cell total RNA. Protein sequence comparison showed a 63.8% identity with human secretory leukocyte protease inhibitor (SLPI), the molecule containing two conserved whey acidic protein (WAP) motifs, and we suggest that CKPI is thought to be the canine analogue of human SLPI. These results suggest that the inhibitory factors are secreted from MDCK cells, which are involved in prevention of virus replication, and applicable to the protection of host cells from virus infection.
Collapse
Affiliation(s)
- Kiyoto Nishiyama
- Applied Research Department, Kikuchi Research Center, The Chemo-Sero-Therapeutic Research Institute, Kyokushi Kawabe 1314-1, Kikuchi, Kumamoto 869-1298, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Moreau T, Baranger K, Dadé S, Dallet-Choisy S, Guyot N, Zani ML. Multifaceted roles of human elafin and secretory leukocyte proteinase inhibitor (SLPI), two serine protease inhibitors of the chelonianin family. Biochimie 2007; 90:284-95. [PMID: 17964057 DOI: 10.1016/j.biochi.2007.09.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 09/07/2007] [Indexed: 12/31/2022]
Abstract
Elafin and SLPI are low-molecular weight proteins that were first identified as protease inhibitors in mucous fluids including lung secretions, where they help control excessive proteolysis due to neutrophil serine proteases (elastase, proteinase 3 and cathepsin G). Elafin and SLPI are structurally related in that both have a fold with a four-disulfide core or whey acidic protein (WAP) domain responsible for inhibiting proteases. Elafin is derived from a precursor, trappin-2 or pre-elafin, by proteolysis. Trappin-2, which is itself a protease inhibitor, has a unique N-terminal domain that enables it to become cross-linked to extracellular matrix proteins by transglutaminase(s). SLPI and elafin/trappin-2 are attractive candidates as therapeutic molecules for inhibiting neutrophil serine proteases in inflammatory lung diseases. Hence, they have become the WAP proteins most studied over the last decade. This review focuses on recent findings revealing that SLPI and elafin/trappin-2 have many biological functions as diverse as anti-bacterial, anti-fungal, anti-viral, anti-inflammatory and immuno-modulatory functions, in addition to their well-recognized role as protease inhibitors.
Collapse
Affiliation(s)
- Thierry Moreau
- INSERM U618 Protéases et Vectorisation Pulmonaires, IFR 135 Imagerie fonctionnelle, Université François Rabelais, Tours, France.
| | | | | | | | | | | |
Collapse
|
28
|
Chowdhury MA, Kuivaniemi H, Romero R, Edwin S, Chaiworapongsa T, Tromp G. Identification of novel functional sequence variants in the gene for peptidase inhibitor 3. BMC MEDICAL GENETICS 2006; 7:49. [PMID: 16719916 PMCID: PMC1508140 DOI: 10.1186/1471-2350-7-49] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 05/23/2006] [Indexed: 11/20/2022]
Abstract
BACKGROUND Peptidase inhibitor 3 (PI3) inhibits neutrophil elastase and proteinase-3, and has a potential role in skin and lung diseases as well as in cancer. Genome-wide expression profiling of chorioamniotic membranes revealed decreased expression of PI3 in women with preterm premature rupture of membranes. To elucidate the molecular mechanisms contributing to the decreased expression in amniotic membranes, the PI3 gene was searched for sequence variations and the functional significance of the identified promoter variants was studied. METHODS Single nucleotide polymorphisms (SNPs) were identified by direct sequencing of PCR products spanning a region from 1,173 bp upstream to 1,266 bp downstream of the translation start site. Fourteen SNPs were genotyped from 112 and nine SNPs from 24 unrelated individuals. Putative transcription factor binding sites as detected by in silico search were verified by electrophoretic mobility shift assay (EMSA) using nuclear extract from Hela and amnion cell nuclear extract. Deviation from Hardy-Weinberg equilibrium (HWE) was tested by chi2 goodness-of-fit test. Haplotypes were estimated using expectation maximization (EM) algorithm. RESULTS Twenty-three sequence variations were identified by direct sequencing of polymerase chain reaction (PCR) products covering 2,439 nt of the PI3 gene (-1,173 nt of promoter sequences and all three exons). Analysis of 112 unrelated individuals showed that 20 variants had minor allele frequencies (MAF) ranging from 0.02 to 0.46 representing "true polymorphisms", while three had MAF < or = 0.01. Eleven variants were in the promoter region; several putative transcription factor binding sites were found at these sites by database searches. Differential binding of transcription factors was demonstrated at two polymorphic sites by electrophoretic mobility shift assays, both in amniotic and HeLa cell nuclear extracts. Differential binding of the transcription factor GATA1 at -689C>G site was confirmed by a supershift. CONCLUSION The promoter sequences of PI3 have a high degree of variability. Functional promoter variants provide a possible mechanism for explaining the differences in PI3 mRNA expression levels in the chorioamniotic membranes, and are also likely to be useful in elucidating the role of PI3 in other diseases.
Collapse
Affiliation(s)
- Mahboob A Chowdhury
- Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Helena Kuivaniemi
- Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
- Perinatology Research Branch, National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD, USA
| | - Samuel Edwin
- Perinatology Research Branch, National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gerard Tromp
- Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
29
|
Abstract
Elafin and SLPI (secretory leucocyte protease inhibitor) have multiple important roles both in normal homoeostasis and at sites of inflammation. These include antiprotease and antimicrobial activity as well as modulation of the response to LPS (lipopolysaccharide) stimulation. Elafin and SLPI are members of larger families of proteins secreted predominantly at mucosal sites, and have been shown to be modulated in multiple pathological conditions. We believe that elafin and SLPI are important molecules in the controlled functioning of the innate immune system, and may have further importance in the integration of this system with the adaptive immune response. Recent interest has focused on the influence of inflamed tissues on the recruitment and phenotypic modulation of cells of the adaptive immune system and, indeed, the local production of elafin and SLPI indicate that they are ideally placed in this regard. Functionally related proteins, such as the defensins and cathelicidins, have been shown to have direct effects upon dendritic cells with potential alteration of their phenotype towards type I or II immune responses. This review addresses the multiple functions of elafin and SLPI in the inflammatory response and discusses further their roles in the development of the adaptive immune response.
Collapse
Affiliation(s)
- Steven E Williams
- Rayne Laboratory, Respiratory Medicine Unit, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | | | | | |
Collapse
|
30
|
Guyot N, Zani ML, Berger P, Dallet-Choisy S, Moreau T. Proteolytic susceptibility of the serine protease inhibitor trappin-2 (pre-elafin): evidence for tryptase-mediated generation of elafin. Biol Chem 2005; 386:391-9. [PMID: 15899702 DOI: 10.1515/bc.2005.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A number of serine, cysteine, metallo- and acid proteases were evaluated for their ability to proteolytically cleave the serine protease inhibitor trappin-2, also known as pre-elafin, and to release elafin from its precursor. None of the metalloproteases or acid proteases examined cleaved trappin-2, while serine and cysteine proteases preferentially cleaved trappin-2 within its non-inhibitory N-terminal moiety. Cathepsin L, cathepsin K, plasmin, trypsin and tryptase were able to release elafin by cleaving the Lys 38 -Ala 39 peptide bond in trappin-2. However, purified tryptase appeared to be efficient at releasing elafin. Incubation of trappin-2 with purified mast cells first challenged with anti-immunoglobulin E or calcium ionophore A23187 resulted in the rapid generation of elafin. This proteolytic release of elafin from trappin-2 was inhibited in the presence of a tryptase inhibitor, suggesting that this mast cell enzyme was involved in the process. Finally, ex vivo incubation of trappin-2 with sputum from cystic fibrosis patients indicated the production of a proteolytic immunoreactive fragment with the same mass as that of native elafin. This cleavage did not occur when preincubating the sputum with polyclonal antibodies directed against tryptase. Taken together, these findings indicate that tryptase could likely be involved in the maturation of trappin-2 into elafin under physiological conditions.
Collapse
Affiliation(s)
- Nicolas Guyot
- INSERM U618 Protéases et Vectorisation Pulmonaires, and IFR 135 Imagerie Fonctionnelle, Université François Rabelais, 10 Boulevard Tonnellé, BP 3223, F-37032 Tours Cedex, France
| | | | | | | | | |
Collapse
|
31
|
|
32
|
McMichael JW, Roghanian A, Jiang L, Ramage R, Sallenave JM. The antimicrobial antiproteinase elafin binds to lipopolysaccharide and modulates macrophage responses. Am J Respir Cell Mol Biol 2005; 32:443-52. [PMID: 15668324 DOI: 10.1165/rcmb.2004-0250oc] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lipopolysaccharides (LPS) of the outer membrane of Gram-negative bacteria represent a primary target for innate immune responses. We demonstrate here that the antimicrobial/anti-neutrophil elastase full-length elafin (FL-EL) is able to bind both smooth and rough forms of LPS. The N-terminus was shown to bind both forms of LPS more avidly. We demonstrate that the lipid A core-binding proteins polymyxin B (PB) and LPS-binding protein (LBP) compete with elafin for binding, and that LBP is able to displace prebound elafin from LPS. When PB, FL-EL, N-EL, and C-EL were pre-incubated with LPS before addition to immobilized LBP, PB was the most potent inhibitor of LPS transfer to LBP. These data prompted us to examine the biological consequences of elafin binding to LPS, using tumor necrosis factor (TNF)-alpha release by murine macrophages. In serum-containing conditions, N-EL had no effect, whereas both C-EL and FL-EL inhibited TNF-alpha production. In serum-free conditions, however, all moieties had a stimulatory activity on TNF-alpha release, with C-EL being the most potent at the highest concentration. The differential biological activity of elafin in different conditions suggests a role for this molecule in either LPS detoxification or activation of innate immune responses, depending on the external cellular environment.
Collapse
Affiliation(s)
- Jonathan W McMichael
- Rayne Laboratory, MRC Centre for Inflammation Research, Edinburgh University Medical School, Teviot Place, Edinburgh EH8 9AG, Scotland, UK
| | | | | | | | | |
Collapse
|
33
|
Henriksen PA, Devitt A, Kotelevtsev Y, Sallenave JM. Gene delivery of the elastase inhibitor elafin protects macrophages from neutrophil elastase-mediated impairment of apoptotic cell recognition. FEBS Lett 2004; 574:80-4. [PMID: 15358543 DOI: 10.1016/j.febslet.2004.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 08/02/2004] [Indexed: 11/20/2022]
Abstract
The resolution of inflammation is dependent on recognition and phagocytic removal of apoptotic cells by macrophages. Receptors for apoptotic cells are sensitive to degradation by human neutrophil elastase (HNE). We show in the present study that HNE cleaves macrophage cell surface CD14 and in so doing, reduces phagocytic recognition of apoptotic lymphocytic cells (Mutu 1). Using an improved method of adenovirus-mediated transfection of macrophages with the HNE inhibitor elafin, we demonstrate that elafin overexpression prevents CD14 cleavage and restores apoptotic cell recognition by macrophages. This approach of genetic modification of macrophages could be used to restore apoptotic cell recognition in inflammatory conditions.
Collapse
Affiliation(s)
- Peter A Henriksen
- Rayne Laboratory, MRC Centre for Inflammation Research, Edinburgh University Medical School, Teviot Place, Edinburgh EH8 9AG, UK
| | | | | | | |
Collapse
|
34
|
Brown TI, Mistry R, Collie DD, Tate S, Sallenave JM. Trappin ovine molecule (TOM), the ovine ortholog of elafin, is an acute phase reactant in the lung. Physiol Genomics 2004; 19:11-21. [PMID: 15292488 DOI: 10.1152/physiolgenomics.00113.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As large animal models continue to play an important role in translating lung-directed therapeutic strategies from laboratory animals to humans, there is an increasing interest in the analysis of endogenous regulators of inflammation at both a genomic and a therapeutic level. To this end, we have sought to characterize the ovine ortholog of elafin, an important regulator of inflammation in humans. We have isolated both the elafin cDNA and gene, which have a similar structure to other species' orthologs. Interestingly, we have isolated two alleles for ovine elafin, which contain a very high number of transglutamination repeats, thought to be important in binding elafin to the interstitium. The mainly mucosal mRNA distribution for ovine elafin suggests that ovine elafin may, like its human ortholog, have functions in innate immunity. This is supported by analysis of elafin and the related protein secretory leukocyte protease inhibitor (SLPI) in ovine bronchoalveolar fluid in response to locally administered lipopolysaccharide and confirmation of them acting as "alarm" antiproteases. We have also cloned the ovine elafin cDNA into an adenoviral vector and have demonstrated correct processing of the secreted protein as well as biological activity. Overexpression of ovine elafin in a lung-derived epithelial cell line has a protective effect against the enzymes human neutrophil and porcine pancreatic elastase. The identification of the ovine elafin gene and its translated protein are important in developing practical strategies aimed at regulating inflammation in the large mammalian lung.
Collapse
Affiliation(s)
- Thomas I Brown
- Rayne Laboratory, Respiratory Medicine Unit, Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Zani ML, Nobar SM, Lacour SA, Lemoine S, Boudier C, Bieth JG, Moreau T. Kinetics of the inhibition of neutrophil proteinases by recombinant elafin and pre-elafin (trappin-2) expressed in Pichia pastoris. ACTA ACUST UNITED AC 2004; 271:2370-8. [PMID: 15182352 DOI: 10.1111/j.1432-1033.2004.04156.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Elafin and its precursor, trappin-2 or pre-elafin, are specific endogenous inhibitors of human neutrophil elastase and proteinase 3 but not of cathepsin G. Both inhibitors belong, together with secretory leukocyte protease inhibitor, to the chelonianin family of canonical protease inhibitors of serine proteases. A cDNA coding either elafin or its precursor, trappin-2, was fused in frame with yeast alpha-factor cDNA and expressed in the Pichia pastoris yeast expression system. Full-length elafin or full-length trappin-2 were secreted into the culture medium with high yield, indicating correct processing of the fusion proteins by the yeast KEX2 signal peptidase. Both recombinant inhibitors were purified to homogeneity from concentrated culture medium by one-step cationic exchange chromatography and characterized by N-terminal amino acid sequencing, Western blot and kinetic studies. Both recombinant elafin and trappin-2 were found to be fast-acting inhibitors of pancreatic elastase, neutrophil elastase and proteinase 3 with k(ass) values of 2-4 x 10(6) m(-1).s(-1), while dissociation rate constants k(diss) were found to be in the 10(-4) s(-1) range, indicating low reversibility of the complexes. The equilibrium dissociation constant K(i) for the interaction of both recombinant inhibitors with their target enzymes was either directly measured for pancreatic elastase or calculated from k(ass) and k(diss) values for neutrophil elastase and proteinase 3. K(i) values were found to be in the 10(-10) molar range and virtually identical for both inhibitors. Based on the kinetic parameters determined here, it may be concluded that both recombinant elafin and trappin-2 may act as potent anti-inflammatory molecules and may be of therapeutic potential in the treatment of various inflammatory lung diseases.
Collapse
|
36
|
Simpson AJ, Wallace WA, Marsden ME, Govan JR, Porteous DJ, Haslett C, Sallenave JM. Adenoviral augmentation of elafin protects the lung against acute injury mediated by activated neutrophils and bacterial infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:1778-86. [PMID: 11466403 DOI: 10.4049/jimmunol.167.3.1778] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During acute pulmonary infection, tissue injury may be secondary to the effects of bacterial products or to the effects of the host inflammatory response. An attractive strategy for tissue protection in this setting would combine antimicrobial activity with inhibition of human neutrophil elastase (HNE), a key effector of neutrophil-mediated tissue injury. We postulated that genetic augmentation of elafin (an endogenous inhibitor of HNE with intrinsic antimicrobial activity) could protect the lung against acute inflammatory injury without detriment to host defense. A replication-deficient adenovirus encoding elafin cDNA significantly protected A549 cells against the injurious effects of both HNE and whole activated human neutrophils in vitro. Intratracheal replication-deficient adenovirus encoding elafin cDNA significantly protected murine lungs against injury mediated by Pseudomonas aeruginosa in vivo. Genetic augmentation of elafin therefore has the capacity to protect the lung against the injurious effects of both bacterial pathogens resistant to conventional antibiotics and activated neutrophils.
Collapse
Affiliation(s)
- A J Simpson
- Rayne Laboratory, Respiratory Medicine Unit, Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh EH8 9AG, Scotland, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
37
|
Simpson AJ, Cunningham GA, Porteous DJ, Haslett C, Sallenave JM. Regulation of adenovirus-mediated elafin transgene expression by bacterial lipopolysaccharide. Hum Gene Ther 2001; 12:1395-406. [PMID: 11485631 DOI: 10.1089/104303401750298553] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lipopolysaccharide (LPS) is a mediator of inflammatory lung injury. Selective augmentation of host defense molecules such as elafin (an elastase inhibitor with antimicrobial activity) at the onset of pulmonary inflammation is an attractive potential therapeutic strategy. The aim of this study was to determine whether elafin expression could be induced by LPS administered after transfection with adenovirus (Ad) encoding human elafin downstream of the murine cytomegalovirus (CMV) promoter (known to be potentially responsive to LPS). In addition, we aimed to determine the effect of local elafin augmentation on neutrophil migration to the lung. LPS significantly up-regulated elafin expression from pulmonary epithelial cells transfected with Ad-elafin in vitro. In murine airways expression of human elafin was achieved using doses low enough (3 x 10(7) plaque forming units) to circumvent overt vector-induced inflammation. LPS significantly up-regulated human elafin secretion in murine airways treated with Ad-elafin [117 ng/ml in bronchoalveolar lavage fluid (BALF) after LPS administration, 5.9 ng/ml after PBS, p < 0.01)]. Over-expression of elafin significantly augmented LPS-mediated neutrophil migration into the airways in vivo (1.30 x 10(6) neutrophils in BALF after Ad-elafin/LPS treatment, 0.54 x 10(6) after Ad-lacZ/LPS (p < 0.05), 0.63 x 10(6) after PBS/LPS (p < 0.05)) and significantly enhanced human neutrophil migration in vitro. These data suggest novel functions for elafin in neutrophil migration, and that judicious selection of promoters may allow single, low-dose adenoviral administration to effect inflammation-specific expression of potentially therapeutic transgenes.
Collapse
Affiliation(s)
- A J Simpson
- Rayne Laboratory, Respiratory Medicine Unit, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh EH8 9AG, Scotland, UK
| | | | | | | | | |
Collapse
|
38
|
Wang PW, Eisenbart JD, Espinosa R, Davis EM, Larson RA, Le Beau MM. Refinement of the smallest commonly deleted segment of chromosome 20 in malignant myeloid diseases and development of a PAC-based physical and transcription map. Genomics 2000; 67:28-39. [PMID: 10945467 DOI: 10.1006/geno.2000.6215] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A deletion of the long arm of chromosome 20, del(20q), is a recurring abnormality in malignant myeloid diseases. In previous studies, we delineated a commonly deleted segment (CDS) of 5 Mb within band 20q12 flanked by D20S206 (proximal) and D20S481 (distal). We have generated a detailed physical map of P1 artificial chromosome (PAC) clones of this interval as well as a transcriptional map. The contig consists of 81 clones to which 152 markers (27 genes, 45 unique expressed sequence tags (ESTs) or UniGenes, 24 polymorphisms, and 56 sequence-tagged sites) have been mapped. Using PAC clones for fluorescence in situ hybridization analysis of myeloid leukemia cells with reciprocal translocations of 20q, or unbalanced rearrangements leading to loss of 20q, we have narrowed the CDS to an approximately 250-kb interval encompassing two overlapping PACs, P201E16 and P29M7 (between EST AA368224 and D20S481). This interval is gene-rich and contains 5 characterized genes, 4 UniGenes, and 9 single ESTs. The development of a transcriptional map and the identification of the smallest CDS will facilitate the molecular cloning of a myeloid leukemia suppressor gene on 20q.
Collapse
MESH Headings
- Alleles
- Chromosome Banding/methods
- Chromosome Deletion
- Chromosome Mapping
- Chromosomes, Artificial, Yeast
- Chromosomes, Bacterial
- Chromosomes, Human, Pair 20
- Cloning, Molecular
- Cytogenetic Analysis
- Expressed Sequence Tags
- Gene Rearrangement
- Genetic Markers
- Humans
- In Situ Hybridization, Fluorescence
- Leukemia, Myeloid/genetics
- Microsatellite Repeats
- Translocation, Genetic
- Tumor Cells, Cultured/physiology
Collapse
Affiliation(s)
- P W Wang
- Department of Medicine, and the University of Chicago Cancer Research Center, The University of Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
39
|
Zaidi SH, You XM, Ciura S, O'Blenes S, Husain M, Rabinovitch M. Suppressed smooth muscle proliferation and inflammatory cell invasion after arterial injury in elafin-overexpressing mice. J Clin Invest 2000; 105:1687-95. [PMID: 10862784 PMCID: PMC378511 DOI: 10.1172/jci9147] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Elastases degrade the extracellular matrix, releasing growth factors and chemotactic peptides, inducing glycoproteins such as tenascin, and thereby promoting vascular cell proliferation and migration. Administration of serine elastase inhibitors reduces experimentally induced vascular disease. The ability to mount an intrinsic anti-elastase response may, therefore, protect against intimal/medial thickening after vascular injury. To investigate this, we showed that wire-induced endothelial denudation of the carotid artery is associated with transient elevation in elastase activity and confirmed that this is abolished in transgenic mice overexpressing the serine elastase inhibitor, elafin, targeted to the cardiovascular system. Ten days after injury, nontransgenic littermates show vessel enlargement, intimal thickening, increased medial area and cellularity, and 2-fold increase in tenascin. Injured vessels in transgenic mice become enlarged but are otherwise similar to sham-operated controls. Injury-induced vessel wall thickening, which is observed only in nontransgenic mice, is related to foci of neutrophils and macrophages, in addition to smooth muscle cells that fail to stain for alpha-actin and are likely dedifferentiated. Our study therefore suggests that a major determinant of the vascular response to injury is the early transient induction of serine elastase activity, which leads to cellular proliferation and inflammatory cell migration.
Collapse
MESH Headings
- Animals
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/physiopathology
- Carotid Artery, External/pathology
- Carotid Artery, External/physiology
- Cell Division
- Enzyme Induction
- Humans
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mice
- Mice, Inbred Strains
- Mice, Transgenic
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiology
- Pancreatic Elastase/biosynthesis
- Proteinase Inhibitory Proteins, Secretory
- Proteins/genetics
- Proteins/physiology
Collapse
Affiliation(s)
- S H Zaidi
- Program in Cardiovascular Research, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Simpson A, Haslett C, Sallenave J. Current and Future Applications of Gene Therapy in Respiratory Disease. J R Coll Physicians Edinb 2000. [DOI: 10.1177/147827150003000107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- A.J. Simpson
- SpR in Respiratory and General Medicine, Wellcome Clinical Training Fellow, Rayne Laboratory University of Edinburgh Medical School, Edinburgh
| | - C. Haslett
- Professor of Respiratory Medicine University of Edinburgh Medical School, Edinburgh
| | - J.M. Sallenave
- Senior Scientist, Rayne Laboratory All at Respiratory Medicine Unit, University of Edinburgh Medical School, Edinburgh
| |
Collapse
|
41
|
Sallenave JM. The role of secretory leukocyte proteinase inhibitor and elafin (elastase-specific inhibitor/skin-derived antileukoprotease) as alarm antiproteinases in inflammatory lung disease. Respir Res 2000; 1:87-92. [PMID: 11667971 PMCID: PMC59548 DOI: 10.1186/rr18] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2000] [Revised: 08/07/2000] [Accepted: 08/07/2000] [Indexed: 02/01/2023] Open
Abstract
Secretory leukocyte proteinase inhibitor and elafin are two low-molecular-mass elastase inhibitors that are mainly synthesized locally at mucosal sites. It is thought that their physicochemical properties allow them to efficiently inhibit target enzymes, such as neutrophil elastase, released into the interstitium. Historically, in the lung, these inhibitors were first purified from secretions of patients with chronic obstructive pulmonary disease and cystic fibrosis. This suggested that they might be important in controlling excessive neutrophil elastase release in these pathologies. They are upregulated by 'alarm signals' such as bacterial lipopolysaccharides, and cytokines such as interleukin-1 and tumor necrosis factor and have been shown to be active against Gram-positive and Gram-negative bacteria, so that they have joined the growing list of antimicrobial 'defensin-like' peptides produced by the lung. Their site of synthesis and presumed functions make them very attractive candidates as potential therapeutic agents under conditions in which the excessive release of elastase by neutrophils might be detrimental. Because of its natural tropism for the lung, the use of adenovirus-mediated gene transfer is extremely promising in such applications.
Collapse
Affiliation(s)
- J M Sallenave
- Center for Inflammation Research, Edinburgh Medical School, Edinburgh, Scotland, UK.
| |
Collapse
|
42
|
Reid PT, Marsden ME, Cunningham GA, Haslett C, Sallenave JM. Human neutrophil elastase regulates the expression and secretion of elafin (elastase-specific inhibitor) in type II alveolar epithelial cells. FEBS Lett 1999; 457:33-7. [PMID: 10486558 DOI: 10.1016/s0014-5793(99)01004-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Elafin is a low molecular weight antiproteinase believed to be important in the regulation of elastase mediated tissue damage. The expression of elafin is known to be regulated by proinflammatory cytokines such as interleukin-1 beta and tumour necrosis factor but little was known regarding the effect of human neutrophil elastase (HNE). Employing a chloramphenicol acetyltransferase reporter construct of the human elafin gene, reverse transcription PCR from total cellular RNA and ELISA techniques, we have examined the effect of human neutrophil elastase on the transcription and secretion of human elafin in the pulmonary epithelial A549 cell line. Stimulation with HNE at concentrations of 10(-10) and 10(-11) M resulted in a significant upregulation of elafin promoter activity. Similarly, transcription of the endogenous human elafin gene was upregulated with HNE concentrations ranging from 10(-10) to 10(-12) M. In addition, we demonstrate that stimulation with HNE at concentrations ranging from 10(-9) and 10(-12) M resulted in a significant reduction in the secreted elafin protein as measured in the cell supernatant. These results provide further evidence for a role of elafin in the regulation of HNE driven proteolysis of the extracellular matrix.
Collapse
Affiliation(s)
- P T Reid
- Rayne Laboratory, University of Edinburgh Medical School, UK
| | | | | | | | | |
Collapse
|
43
|
Simpson AJ, Maxwell AI, Govan JR, Haslett C, Sallenave JM. Elafin (elastase-specific inhibitor) has anti-microbial activity against gram-positive and gram-negative respiratory pathogens. FEBS Lett 1999; 452:309-13. [PMID: 10386612 DOI: 10.1016/s0014-5793(99)00670-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Elafin (elastase-specific inhibitor) is a low molecular weight inhibitor of neutrophil elastase which is secreted in the lung. Using synthetic peptides corresponding to full-length elafin (H2N-1AVT.....95Q-OH), the NH2-terminal domain (H2N-1AVT.....50K-OH) and the COOH-terminal domain (H2N-51PGS.....95Q-OH), we demonstrate that elafin's anti-elastase activity resides exclusively in the COOH-terminus. Several characteristics of elafin suggest potential anti-microbial activity. The anti-microbial activity of elafin, and of its two structural domains, was tested against the respiratory pathogens Pseudomonas aeruginosa and Staphylococcus aureus. Elafin killed both bacteria efficiently, with 93% killing of P. aeruginosa by 2.5 microM elafin and 48% killing of S. aureus by 25 microM elafin. For both organisms, full-length elafin was required to optimise bacterial killing. These findings represent the first demonstration of co-existent anti-proteolytic and anti-microbial functions for elafin.
Collapse
Affiliation(s)
- A J Simpson
- Rayne Laboratory, University of Edinburgh Medical School, UK
| | | | | | | | | |
Collapse
|
44
|
Zaidi SH, Hui CC, Cheah AY, You XM, Husain M, Rabinovitch M. Targeted overexpression of elafin protects mice against cardiac dysfunction and mortality following viral myocarditis. J Clin Invest 1999; 103:1211-9. [PMID: 10207173 PMCID: PMC408273 DOI: 10.1172/jci5099] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Serine elastases degrade elastin, stimulate vascular smooth muscle cell migration and proliferation, and are associated with myocardial damage. To evaluate the impact of elastase inhibition on cardiovascular development and disease, transgenic mice were created in which the mouse preproendothelin-1 promoter was used to target elafin overexpression to the cardiovascular system. To distinguish the transgene from endogenous elafin, constructs were made incorporating a FLAG sequence; the COOH-terminus FLAG-tagged elafin construct produced a stable, functionally active gene product and was used to create transgenic mice. Consistent with endothelin expression, abundant elafin mRNA was observed in transgenic F1 embryos (embryonic day 13.5) and in adult transgenic mice heart, trachea, aorta, kidney, lung, and skin, but not in liver, spleen, and intestine. Functional activity of the transgene was confirmed by heightened myocardial elastase inhibitory activity. No tissue abnormalities were detected by light microscopy or elastin content. However, injection of 10 plaque-forming units (PFU) of encephalomyocarditis virus resulted in death within 11 days in 10 out of 12 nontransgenic mice compared with one out of nine transgenic littermates. This reduced mortality was associated with better cardiac function and less myocardial inflammatory damage. Thus, elafin expression may confer a protective advantage in myocarditis and other inflammatory diseases.
Collapse
Affiliation(s)
- S H Zaidi
- Program in Cardiovascular Research, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Kuijpers AL, Pfundt R, Zeeuwen PL, Molhuizen HO, Mariman EC, van de Kerkhof PC, Schalkwijk J. SKALP/elafin gene polymorphisms are not associated with pustular forms of psoriasis. Clin Genet 1998; 54:96-101. [PMID: 9727750 DOI: 10.1111/j.1399-0004.1998.tb03703.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Psoriasis is a multifactorial skin disease characterised by epidermal abnormalities and infiltration by lymphocytes and polymorphonuclear leukocytes (PMN). Skin-derived antileukoproteinase (SKALP), also known as elafin, is a potent inhibitor of human leukocyte elastase and proteinase 3, two PMN-derived proteinases implicated in tissue destruction and leukocyte migration. We have shown that, at least at the protein level, SKALP is significantly decreased in lesional skin of patients with pustular psoriasis compared with plaque-type psoriasis. This finding raised the possibility that SKALP could be one of the candidate genes for pustular forms of psoriasis. We therefore performed single strand conformation polymorphism (SSCP) analysis on the SKALP gene to screen for mutations/polymorphisms in the exons of 30 patients with plaque-type psoriasis, 15 patients with pustular psoriasis and 48 healthy controls. In exon 1 a polymorphism was detected at position +43 relative to the translation start site, resulting in a substitution of threonine for alanine in the signal peptide. In the promoter region a dinucleotide repeat polymorphism was identified. Both polymorphisms were not associated with pustular psoriasis, or psoriasis in general. Our data indicate that the decrease in SKALP activity in pustular psoriasis is not caused by mutations in the coding region of the gene, and that there is no allelic association between pustular psoriasis and SKALP gene polymorphisms.
Collapse
Affiliation(s)
- A L Kuijpers
- Department of Dermatology, University Hospital Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
46
|
Ishida-Yamamoto A, Iizuka H. Structural organization of cornified cell envelopes and alterations in inherited skin disorders. Exp Dermatol 1998; 7:1-10. [PMID: 9517915 DOI: 10.1111/j.1600-0625.1998.tb00295.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cornified cell envelope is a highly insoluble and extremely tough structure formed beneath the cell membrane during terminal differentiation of keratinocytes. Its main function is to provide human skin with a protective barrier against the environment. Sequential cross-linking of several integral components catalyzed by transglutaminases leads to a gradual increase in the thickness of the envelope and underscores its rigidity. Key structural players in this cross-linking process include involucrin, loricrin, SPRRs, elafin, cystatin A, S100 family proteins, and some desmosomal proteins. The recent identification of genetic skin diseases with mutations in the genes encoding some of these proteins, including transglutaminase 1 and loricrin, has disclosed that abnormal cornified cell envelope synthesis is significantly involved in the pathophysiology of certain inherited keratodermas and reflects perturbations in the complex, yet highly orderly process of cornified cell envelope formation in normal skin biology.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Membrane/metabolism
- Cell Membrane/pathology
- Cornified Envelope Proline-Rich Proteins
- Cystatins/metabolism
- Filaggrin Proteins
- Humans
- Ichthyosis/genetics
- Ichthyosis/metabolism
- Ichthyosis/pathology
- Intermediate Filament Proteins/metabolism
- Keratinocytes/metabolism
- Keratinocytes/pathology
- Keratoderma, Palmoplantar, Diffuse/genetics
- Keratoderma, Palmoplantar, Diffuse/metabolism
- Keratoderma, Palmoplantar, Diffuse/pathology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Protein Precursors/metabolism
- Proteinase Inhibitory Proteins, Secretory
- Proteins/metabolism
- Skin/cytology
- Skin/metabolism
- Skin Diseases, Genetic/genetics
- Skin Diseases, Genetic/metabolism
- Skin Diseases, Genetic/pathology
- Transglutaminases/metabolism
Collapse
Affiliation(s)
- A Ishida-Yamamoto
- Department of Dermatology, Asahikawa Medical College, Nishikagura, Japan
| | | |
Collapse
|
47
|
Maizieres M, Kaplan H, Millot JM, Bonnet N, Manfait M, Puchelle E, Jacquot J. Neutrophil elastase promotes rapid exocytosis in human airway gland cells by producing cytosolic Ca2+ oscillations. Am J Respir Cell Mol Biol 1998; 18:32-42. [PMID: 9448043 DOI: 10.1165/ajrcmb.18.1.2841] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The molecular and ionic mechanisms responsible for the regulation of mucus exocytosis in human airway gland cells remain poorly defined. To determine whether dynamic changes of intracellular free Ca2+ concentration [Ca2+]i can promote different exocytotic responses, we monitored dynamic changes in [Ca2+]i and secretory granule (SG) exocytosis in individual human tracheal submucosal serous gland (HTG) cells. These changes were in response to exposure of the cells to three different secretagogues associated with airway inflammation and disease: human neutrophil elastase (HNE), histamine, and ATP. Dynamic changes in [Ca2+]i from single cells were determined with Indo-1/AM using quantitative UV laser microspectrofluorometry. The rate of SG exocytosis was measured in single cells by fluorescence videomicroscopy of SG degranulation and by the ELISA method. Exposure of HTG cells to a low concentration of HNE (1.0 microM) caused a high rate of SG exocytosis (52% decrease in the initial quinacrine fluorescence) during the first 8-min stimulation period compared with that observed following exposure of the cells to 100 microM histamine (10% decrease) or 100 microM ATP (6% decrease). In contrast to a rapid and transient rise in [Ca2+]i induced by histamine (1.0-100 microM) and ATP (10-100 microM), HNE (0.01-1 microM) generated asynchronous oscillations in [Ca2+]i over the first 8-min period. Depletion of internal Ca2+ stores with thapsigargin (500 nM) induced a significant reduction (P < 0.01) in the observed increases in [Ca2+]i upon addition of each of the secretagogues, but did not greatly affect the SG exocytotic responses. Interestingly, the removal of extracellular Ca2+ (+5 mM EGTA) significantly reduced (P < 0.01) both the [Ca2+]i increases and the rate of SG exocytosis following exposure to the secretagogues. We also demonstrate that the influx of extracellular Ca2+ and [Ca2+]i oscillations rather than the absolute level of [Ca2+]i regulate the rapid onset and extent of exocytotic responses to HNE in airway gland cells. Taken together, these results provide strong evidence that [Ca2+]i is a critical intracellular messenger in the regulation of exocytosis process in human airway gland cells.
Collapse
Affiliation(s)
- M Maizieres
- INSERM U.314, and Laboratoire de Spectroscopie Biomoléculaire, UFR de Pharmacie, Université de Reims, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Zeeuwen PL, Hendriks W, de Jong WW, Schalkwijk J. Identification and sequence analysis of two new members of the SKALP/elafin and SPAI-2 gene family. Biochemical properties of the transglutaminase substrate motif and suggestions for a new nomenclature. J Biol Chem 1997; 272:20471-8. [PMID: 9252357 DOI: 10.1074/jbc.272.33.20471] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The human epithelial proteinase inhibitor SKALP/elafin and the porcine sodium-potassium ATPase inhibitor SPAI-2 are two highly homologous proteins that share an NH2-terminal transglutaminase substrate domain and a COOH-terminal whey acidic protein (WAP) domain. Here we describe the bovine and simian orthologs of SKALP/elafin as well as two new bovine family members that are designated Trappin-4 and Trappin-5 on the basis of a new nomenclature that we propose (Trappin = TRansglutaminase substrate and WAP motif-containing ProteIN). Sequence analysis of Trappin-4 and Trappin-5 revealed a domain structure that is very similar to SPAI-2 (Trappin-1) and SKALP/elafin (Trappin-2). The transglutaminase substrate motifs are conserved although the number of repeats varies among species and among family members. The sequence of Trappin-4 and Trappin-5 diverges from Trappin-1 and Trappin-2 at the putative reactive site in the WAP domain. The bovine ortholog of Trappin-2 is expressed in tongue and snout epidermis; Trappin-4 is expressed in trachea, ileum, and tongue; and Trappin-5 is expressed at low levels in trachea, as determined by RNase protection and Northern blot analysis. Based on the analysis of 67 transglutaminase substrate repeats as present in all known Trappin gene family members from four different mammalian species a consensus sequence could be established: Gly-Gln-Asp-Pro-Val-Lys (GQDPVK). Using biotinylated hexapeptide probes we found that the GQDPVK sequence is a very efficient transglutaminase substrate both for guinea pig liver transglutaminase and for epidermal transglutaminase, and it acts as acyl donor as well as acceptor. We propose that the Trappin protein family forms a new group of enzyme inhibitors with various specificities of the WAP domain, which share transglutaminase substrate motifs that can act as an anchoring sequence.
Collapse
Affiliation(s)
- P L Zeeuwen
- Department of Dermatology, Institute of Cellular Signaling, University of Nijmegen, P. O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
49
|
Sallenave JM, Tremblay GM, Gauldie J, Richards CD. Oncostatin M, but not interleukin-6 or leukemia inhibitory factor, stimulates expression of alpha1-proteinase inhibitor in A549 human alveolar epithelial cells. J Interferon Cytokine Res 1997; 17:337-46. [PMID: 9198001 DOI: 10.1089/jir.1997.17.337] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Alpha-1 proteinase inhibitor (A1-Pi) is the main serine proteinase inhibitor found in human plasma and is a potent elastase inhibitor in various tissues, including lung. A1-Pi is expressed and induced in liver during inflammatory responses but can also be produced by epithelial cells. Since hepatocyte A1-Pi production is stimulated by interleukin-6 (IL-6) and other gp130-cytokines, such as leukemia inhibitory factor (LIF) and oncostatin M (OM), we investigated the role of these cytokines in regulating A1-Pi in lung epithelial cells. We show that OM, a monocyte and T cell product, can specifically and potently induce A1-Pi production in lung-derived A549 alveolar (epithelial) cells, as well as in liver-derived HepG2 cells. Both A1-Pi protein (as detected by ELISA and Western blots) and mRNA levels were enhanced 20-fold to 30-fold in A549 cells. OM was also able to stimulate the expression of tissue inhibitor of metalloproteinase-1 in these cells. Interestingly, other members of the IL-6 family (IL-6 and LIF) had little or no effect on A549 cells, and proinflammatory cytokines, such as IL-1 beta and tumor necrosis factor-alpha (TNF-alpha) also had no stimulatory effect on A1-Pi synthesis in A549 cells. Costimulation with IL-1 beta resulted in a decrease in A1-Pi production from OM-stimulated A549 cells. However, IL-6 production was synergistically enhanced. OM was also able to stimulate A1-Pi production from a bronchial epithelial primary cell line, whereas an intestinal epithelial cell line HT29 responded to IL-6 but not OM. These results suggest that lung levels A1-Pi could be derived not only from liver and inflammatory cells but also from epithelial cells, which can be upregulated on stimulation by OM. This may have implications for regulation of local activity of human neutrophil elastase (HNE) in such diseases as emphysema and cystic fibrosis.
Collapse
Affiliation(s)
- J M Sallenave
- Department of Pathology, McMaster University Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
50
|
Labow RS, Erfle DJ, Santerre JP. Elastase-induced hydrolysis of synthetic solid substrates: poly(ester-urea-urethane) and poly(ether-urea-urethane). Biomaterials 1996; 17:2381-8. [PMID: 8982479 DOI: 10.1016/s0142-9612(96)00088-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human neutrophil elastase (HNE) and porcine pancreatic elastase (PPE) were incubated with two radiolabelled model poly(urethane), a poly(ester-urea-urethane) containing [14C]toluene diisocyanate ([14C]TDI), poly(caprolactone)(PCL) and ethylenediamine (ED), and a poly(ether-urea-urethane) containing [14C]TDI, poly(tetramethylene oxide) (PTMO) and ED. Ten-fold more radioactive carbon was released when PPE was incubated with [14C]TDI/PCL/ED than when HNE was used. The PPE-induced radioactive carbon release was significantly reduced by a specific elastase inhibitor. Ten-fold less radioactive carbon was released when [14C]TDI/PTMO/ED was incubated with PPE as compared to [14C]TDI/PCL/ED. Since neutrophils, which contain elastolytic activity, are present during the inflammatory response, the stability of biomaterials used in implanted devices may be affected.
Collapse
Affiliation(s)
- R S Labow
- Cardiovascular Devices Division, University of Ottawa Heart Institute, ON, Canada
| | | | | |
Collapse
|