1
|
Park S, Yoon YJ, Hong Y, Yu J, Cho JM, Jeong YJ, Yu H, Jeong H, Lee H, Hwang S, Koh WG, Yang JY, Hyun KA, Jung HI, Lim JY. CD9-enriched extracellular vesicles from chemically reprogrammed basal progenitors of salivary glands mitigate salivary gland fibrosis. Bioact Mater 2025; 47:229-247. [PMID: 39925710 PMCID: PMC11803853 DOI: 10.1016/j.bioactmat.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 12/07/2024] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
Extracellular vesicles (EVs) derived from stem cells offer promising potential for cell-free therapy. However, refining their cargo for precise disease targeting and delivery remains challenging. This study employed chemical reprogramming via dual inhibition of transforming growth factor beta (TGFβ) and bone morphogenetic protein (BMP) to expand salivary gland basal progenitor cells (sgBPCs). CD9-enriched (CD9+) EVs were then isolated from the sgBPC secretome concentrate using a dual microfluidic chip. Notably, CD9+ EVs demonstrated superior uptake by salivary epithelial cells compared to CD9-depleted (CD9-) EVs and total EVs. In vivo studies using a salivary gland (SG) obstruction mouse model and ex vivo studies in SG fibrosis organoids revealed that CD9+ EVs significantly enhanced anti-fibrotic effects over CD9- EVs and control treatments. The presence of miR-3162 and miR-1290 in CD9+ EVs supported their anti-fibrotic properties by downregulating ACVR1 expression. The chemical reprogramming culture method effectively expanded sgBPCs, enabling consistent and scalable EV production. Utilizing microfluidic chip-isolated CD9+ EVs and ductal delivery presents a targeted and efficient approach for anti-fibrotic SG regeneration.
Collapse
Affiliation(s)
- Sunyoung Park
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
- The DABOM Inc., 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Yeo-Jun Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yongpyo Hong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jianning Yu
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
- Department of Biomedical Laboratory Science, Yonsei University, 1 Yeonsedae-gil, Wonju, Gangwon-do, 26493, Republic of Korea
| | - Jae-Min Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ye Jin Jeong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Haeun Yu
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyorim Jeong
- The DABOM Inc., 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyunjin Lee
- The DABOM Inc., 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Seungyeon Hwang
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Ji Yeong Yang
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
- The DABOM Inc., 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Kyung-A Hyun
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
- Korea Electronics Technology Institute (KETI), Seongnam, Gyeonggi-do, 13509, Republic of Korea
| | - Hyo-Il Jung
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
- The DABOM Inc., 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| |
Collapse
|
2
|
Zheng Z, Qiao X, Yin J, Kong J, Han W, Qin J, Meng F, Tian G, Feng X. Advancements in omics technologies: Molecular mechanisms of acute lung injury and acute respiratory distress syndrome (Review). Int J Mol Med 2025; 55:38. [PMID: 39749711 PMCID: PMC11722059 DOI: 10.3892/ijmm.2024.5479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is an inflammatory response arising from lung and systemic injury with diverse causes and associated with high rates of morbidity and mortality. To date, no fully effective pharmacological therapies have been established and the relevant underlying mechanisms warrant elucidation, which may be facilitated by multi‑omics technology. The present review summarizes the application of multi‑omics technology in identifying novel diagnostic markers and therapeutic strategies of ALI/ARDS as well as its pathogenesis.
Collapse
Affiliation(s)
- Zhihuan Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Xinyu Qiao
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Junjie Kong
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Wanqing Han
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Jing Qin
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Fanda Meng
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, P.R. China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
3
|
Banerjee K, Saha S, Das S, Ghosal S, Ghosh I, Basu A, Jana SS. Expression of nonmuscle myosin IIC is regulated by non-canonical binding activity of miRNAs. iScience 2023; 26:108384. [PMID: 38047082 PMCID: PMC10690570 DOI: 10.1016/j.isci.2023.108384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/27/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
The expression of mechanoresponsive nonmuscle myosin II (NMII)C is found to be inducible during tumor progression, but its mechanism is yet to be explored. Here, we report a group of microRNAs (mmu-miR-200a-5p, mmu-miR-532-3p, mmu-miR-680, and mmu-miR-1901) can significantly repress the expression of nonmuscle myosin IIC (NMIIC). Interestingly, these microRNAs have both canonical and non-canonical binding sites at 3/UTR and coding sequence (CDS) of NMIIC's heavy chain (HC) mRNA. Each of the miRNA downregulates NMHC-IIC to a different degree as assessed by dual-luciferase and immunoblot analyses. When we abolish the complementary base pairing at canonical binding site, mmu-miR-532-3p can still bind at non-canonical binding site and form Argonaute2 (AGO2)-miRNA complex to downregulate the expression of NMIIC. Modulating the expression of NMIIC by miR-532-3p in mouse mammary tumor cells, 4T1, increases its tumorigenic potential both in vitro and in vivo. Together, these studies provide the functional role of miRNA's non-canonical binding mediated NMIIC regulation in tumor cells.
Collapse
Affiliation(s)
- Kumarjeet Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Shekhar Saha
- Department of Microbiology, Immunology, and Cancer Biology, Charlottesville, VA, USA
| | - Shaoli Das
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Suman Ghosal
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Indranil Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Abhimanyu Basu
- Department of General Surgery, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Siddhartha S. Jana
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| |
Collapse
|
4
|
Chen X, Chen J, Liu S, Li X. Everolimus-induced hyperpermeability of endothelial cells causes lung injury. Exp Biol Med (Maywood) 2023; 248:2440-2448. [PMID: 38158699 PMCID: PMC10903245 DOI: 10.1177/15353702231220672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/06/2023] [Indexed: 01/03/2024] Open
Abstract
The mammalian target of rapamycin (mTOR) inhibitors, everolimus (but not dactolisib), is frequently associated with lung injury in clinical therapies. However, the underlying mechanisms remain unclear. Endothelial cell barrier dysfunction plays a major role in the pathogenesis of the lung injury. This study hypothesizes that everolimus increases pulmonary endothelial permeability, which leads to lung injury. We tested the effects of everolimus on human pulmonary microvascular endothelial cell (HPMEC) permeability and a mouse model of intraperitoneal injection of everolimus was established to investigate the effect of everolimus on pulmonary vascular permeability. Our data showed that everolimus increased human pulmonary microvascular endothelial cell (HPMEC) permeability which was associated with MLC phosphorylation and F-actin stress fiber formation. Furthermore, everolimus induced an increasing concentration of intracellular calcium Ca2+ leakage in HPMECs and this was normalized with ryanodine pretreatment. In addition, ryanodine decreased everolimus-induced phosphorylation of PKCα and MLC, and barrier disruption in HPMECs. Consistent with in vitro data, everolimus treatment caused a visible lung-vascular barrier dysfunction, including an increase in protein in BALF and lung capillary-endothelial permeability, which was significantly attenuated by pretreatment with an inhibitor of PKCα, MLCK, and ryanodine. This study shows that everolimus induced pulmonary endothelial hyper-permeability, at least partly, in an MLC phosphorylation-mediated EC contraction which is influenced in a Ca2+-dependent manner and can lead to lung injury through mTOR-independent mechanisms.
Collapse
Affiliation(s)
- Xiaolin Chen
- Department of Clinical Laboratory, Pingxiang People's Hospital, Pingxiang 337000, China
- Department of Clinical Laboratory, The Sixth Clinical College of Gannan Medical University, Pingxiang 337000, China
| | - Jianhui Chen
- Department of Clinical Laboratory, Pingxiang People's Hospital, Pingxiang 337000, China
| | - Shuihong Liu
- Department of Clinical Laboratory, Pingxiang People's Hospital, Pingxiang 337000, China
| | - Xianfan Li
- Department of Clinical Laboratory, Pingxiang People's Hospital, Pingxiang 337000, China
| |
Collapse
|
5
|
Manole S, Rancea R, Vulturar R, Simon SP, Molnar A, Damian L. Frail Silk: Is the Hughes-Stovin Syndrome a Behçet Syndrome Subtype with Aneurysm-Involved Gene Variants? Int J Mol Sci 2023; 24:ijms24043160. [PMID: 36834577 PMCID: PMC9968083 DOI: 10.3390/ijms24043160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Hughes-Stovin syndrome is a rare disease characterized by thrombophlebitis and multiple pulmonary and/or bronchial aneurysms. The etiology and pathogenesis of HSS are incompletely known. The current consensus is that vasculitis underlies the pathogenic process, and pulmonary thrombosis follows arterial wall inflammation. As such, Hughes-Stovin syndrome may belong to the vascular cluster with lung involvement of Behçet syndrome, although oral aphtae, arthritis, and uveitis are rarely found. Behçet syndrome is a multifactorial polygenic disease with genetic, epigenetic, environmental, and mostly immunological contributors. The different Behçet syndrome phenotypes are presumably based upon different genetic determinants involving more than one pathogenic pathway. Hughes-Stovin syndrome may have common pathways with fibromuscular dysplasias and other diseases evolving with vascular aneurysms. We describe a Hughes-Stovin syndrome case fulfilling the Behçet syndrome criteria. A MYLK variant of unknown significance was detected, along with other heterozygous mutations in genes that may impact angiogenesis pathways. We discuss the possible involvement of these genetic findings, as well as other potential common determinants of Behçet/Hughes-Stovin syndrome and aneurysms in vascular Behçet syndrome. Recent advances in diagnostic techniques, including genetic testing, could help diagnose a specific Behçet syndrome subtype and other associated conditions to personalize the disease management.
Collapse
Affiliation(s)
- Simona Manole
- Department of Radiology, “Niculae Stăncioiu” Heart Institute, 19-21 Calea Moților Street, 400001 Cluj-Napoca, Romania
- Department of Radiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Raluca Rancea
- Cardiology Department, Heart Institute “Niculae Stăncioiu”, 19-21 Calea Moților Street, 400001 Cluj-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy 6, Pasteur, 400349 Cluj-Napoca, Romania
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 30, Fântânele Street, 400294 Cluj-Napoca, Romania
- Correspondence:
| | - Siao-Pin Simon
- Department of Rheumatology, Emergency Clinical County Hospital Cluj, Centre for Rare Autoimmune and Autoinflammatory Diseases (ERN-ReCONNET), 2-4 Clinicilor Street, 400347 Cluj-Napoca, Romania
- Discipline of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Adrian Molnar
- Department of Cardiovascular Surgery, Heart Institute “Niculae Stăncioiu”, 19-21 Calea Moților Street, 400001 Cluj-Napoca, Romania
- Department of Cardiovascular and Thoracic Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Laura Damian
- Department of Rheumatology, Emergency Clinical County Hospital Cluj, Centre for Rare Autoimmune and Autoinflammatory Diseases (ERN-ReCONNET), 2-4 Clinicilor Street, 400347 Cluj-Napoca, Romania
- CMI Reumatologie Dr. Damian, 6-8 Petru Maior Street, 400002 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Shen J, Ma X. miR‑374a‑5p alleviates sepsis‑induced acute lung injury by targeting ZEB1 via the p38 MAPK pathway. Exp Ther Med 2022; 24:564. [PMID: 35978929 PMCID: PMC9366279 DOI: 10.3892/etm.2022.11501] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/19/2022] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effects of microRNA (miR)-374a-5p on sepsis-induced acute lung injury (ALI) and the associated mechanism. Lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMVECs) were used to construct the cellular model of sepsis. A luciferase reporter assay was performed to confirm the association between miR-374a-5p and zinc finger E-box binding homeobox 1 (ZEB1). Reverse transcription-quantitative polymerase chain reaction and western blot analysis were performed to assess the relative expression of miR-374a-5p, ZEB1 and apoptosis-related proteins. Cell viability and apoptosis were determined by Cell Counting Kit-8 assay and flow cytometry, respectively. Enzyme-linked immunosorbent assays were used to evaluate inflammatory cytokines. The results revealed that miR-374a-5p was downregulated in sepsis patients and LPS-treated HPMVECs. Upregulation of miR-374a-5p alleviated LPS-triggered cell injury in HPMVECs, as evidenced by restoration of cell viability, and inhibition of apoptosis and the production of proinflammatory cytokines. In addition, ZEB1 was revealed to be a downstream target of miR-374a-5p, and overexpression of ZEB1 could reverse the anti-apoptotic and anti-inflammatory effects of miR-374a-5p on an LPS-induced sepsis cell model. Moreover, miR-374a-5p-induced protective effects involved the p38 MAPK signaling pathway. Collectively, miR-374a-5p exerted a protective role in sepsis-induced ALI by regulating the ZEB1-mediated p38 MAPK signaling pathway, providing a potential target for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Jia Shen
- Department of Intensive Care Unit, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750002, P.R. China
| | - Xiaojun Ma
- Department of Orthopedics, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
7
|
Guz M, Jeleniewicz W, Cybulski M. An Insight into miR-1290: An Oncogenic miRNA with Diagnostic Potential. Int J Mol Sci 2022; 23:1234. [PMID: 35163157 PMCID: PMC8835968 DOI: 10.3390/ijms23031234] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
For more than two decades, the view of the roles of non-coding RNAs (ncRNAs) has been radically changing. These RNA molecules that are transcribed from our genome do not have the capacity to encode proteins, but are critical regulators of gene expression at different levels. Our knowledge is constantly enriched by new reports revealing the role of these new molecular players in the development of many pathological conditions, including cancer. One of the ncRNA classes includes short RNA molecules called microRNAs (miRNAs), which are involved in the post-transcriptional control of gene expression affecting various cellular processes. The aberrant expression of miRNAs with oncogenic and tumor-suppressive function is associated with cancer initiation, promotion, malignant transformation, progression and metastasis. Oncogenic miRNAs, also known as oncomirs, mediate the downregulation of tumor-suppressor genes and their expression is upregulated in cancer. Nowadays, miRNAs show promising application in diagnosis, prediction, disease monitoring and therapy response. Our review presents a current view of the oncogenic role of miR-1290 with emphasis on its properties as a cancer biomarker in clinical medicine.
Collapse
Affiliation(s)
- Małgorzata Guz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (W.J.); (M.C.)
| | | | | |
Collapse
|
8
|
Lai Y, Huang Y. Mechanisms of Mechanical Force Induced Pulmonary Vascular Endothelial Hyperpermeability. Front Physiol 2021; 12:714064. [PMID: 34671268 PMCID: PMC8521004 DOI: 10.3389/fphys.2021.714064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022] Open
Abstract
Mechanical ventilation is a supportive therapy for patients with acute respiratory distress syndrome (ARDS). However, it also inevitably produces or aggravates the original lung injury with pathophysiological changes of pulmonary edema caused by increased permeability of alveolar capillaries which composed of microvascular endothelium, alveolar epithelium, and basement membrane. Vascular endothelium forms a semi-selective barrier to regulate body fluid balance. Mechanical ventilation in critically ill patients produces a mechanical force on lung vascular endothelium when the endothelial barrier was destructed. This review aims to provide a comprehensive overview of molecular and signaling mechanisms underlying the endothelial barrier permeability in ventilator-induced lung jury (VILI).
Collapse
Affiliation(s)
- Yan Lai
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Critical Care Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongbo Huang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Critical Care Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Zhu S, Zhang J, Gao X, Tang X, Cui Y, Li D, Jia W. Silencing of long noncoding RNA MYLK-AS1 suppresses nephroblastoma via down-regulation of CCNE1 through transcription factor TCF7L2. J Cell Physiol 2021; 236:5757-5770. [PMID: 33438217 DOI: 10.1002/jcp.30259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/29/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
Nephroblastoma, a pediatric kidney cancer, caused by pluripotent embryonic renal precursors. Long noncoding RNAs (lncRNAs) are commonly abnormal expressed in many cancers. In the present study, we fousced on one newly discrovered lncRNA, MYLK Antisense RNA 1 (MYLK-AS1), and its functional role in proliferation and cycle distribution of nephroblastoma cells. Micorarray-based analysis revealed the highly expressed Cyclin E1 (CCNE1) and MYLK-AS1 in nephroblastoma. After nephroblastoma tissue sample collection, RT-qPCR confirmed the upregulated expression of MYLK-AS1 and CCNE1 in nephroblastoma tissues and cells. Kaplan-Meier curve exhibited that patients with elevated CCNE1 had lower overall survival rate in follow-up study. RNA binding protein immunoprecipitation, chromatin immunoprecipitation, and dual-luciferase reporter gene assay were employed to determine the relationship among MYLK-AS1, TCF7L2, and CCNE1, which validated that transcription factor 7-like 2 (TCF7L2) could specifically bind to MYLK-AS1 and TCF7L2 could positively promote CCNE1. After gain- and loss-of function assays, the conclusion that silencing of MYLK-AS1 could inhibit expression of CCNE1 through the transcription factor TCF7L2 to regulate the cell proliferation and cell cycle distribution of nephroblastoma cells was obtained. Subsequently, the subcutaneous tumor formation ability of nephroblastoma cell in nude mice was observed and the silencing of MYLK-AS1 exerts suppressive role in the tumorigenic ability of nephroblastoma cells in vivo. Taken together, MYLK-AS1 constitutes a promising biomarker for the early detection and treatment of nephroblastoma.
Collapse
Affiliation(s)
- Shibo Zhu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jingqi Zhang
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaofeng Gao
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiangliang Tang
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanhong Cui
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dian Li
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Jia
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Sun X, Sun B, Sammani S, Bermudez T, Dudek S, Camp S, Garcia J. Genetic and epigenetic regulation of the non-muscle myosin light chain kinase isoform by lung inflammatory factors and mechanical stress. Clin Sci (Lond) 2021; 135:963-977. [PMID: 33792658 PMCID: PMC8047480 DOI: 10.1042/cs20201448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/19/2021] [Accepted: 04/01/2021] [Indexed: 12/24/2022]
Abstract
RATIONALE The myosin light chain kinase gene, MYLK, encodes three proteins via unique promoters, including the non-muscle isoform of myosin light chain kinase (nmMLCK), a cytoskeletal protein centrally involved in regulation of vascular integrity. As MYLK coding SNPs are associated with severe inflammatory disorders (asthma, acute respiratory distress syndrome (ARDS)), we explored clinically relevant inflammatory stimuli and promoter SNPs in nmMLCK promoter regulation. METHODS Full-length or serially deleted MYLK luciferase reporter promoter activities were measured in human lung endothelial cells (ECs). SNP-containing non-muscle MYLK (nmMYLK) DNA fragments were generated and nmMYLK promoter binding by transcription factors (TFs) detected by protein-DNA electrophoretic mobility shift assay (EMSA). Promoter demethylation was evaluated by 5-aza-2'-deoxycytidine (5-Aza). A preclinical mouse model of lipopolysaccharide (LPS)-induced acute lung injury (ALI) was utilized for nmMLCK validation. RESULTS Lung EC levels of nmMLCK were significantly increased in LPS-challenged mice and LPS, tumor necrosis factor-α (TNF-α), 18% cyclic stretch (CS) and 5-Aza each significantly up-regulated EC nmMYLK promoter activities. EC exposure to FG-4592, a prolyl hydroxylase inhibitor that increases hypoxia-inducible factor (HIF) expression, increased nmMYLK promoter activity, confirmed by HIF1α/HIF2α silencing. nmMYLK promoter deletion studies identified distal inhibitory and proximal enhancing promoter regions as well as mechanical stretch-, LPS- and TNFα-inducible regions. Insertion of ARDS-associated SNPs (rs2700408, rs11714297) significantly increased nmMYLK promoter activity via increased transcription binding (glial cells missing homolog 1 (GCM1) and intestine-specific homeobox (ISX), respectively). Finally, the MYLK rs78755744 SNP (-261G/A), residing within a nmMYLK CpG island, significantly attenuated 5-Aza-induced promoter activity. CONCLUSION These findings indicate nmMYLK transcriptional regulation by clinically relevant inflammatory factors and ARDS-associated nmMYLK promoter variants are consistent with nmMLCK as a therapeutic target in severe inflammatory disorders.
Collapse
Affiliation(s)
- Xiaoguang Sun
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - Belinda L. Sun
- Department of Pathology, University of Arizona, Tucson, AZ, U.S.A
| | - Saad Sammani
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - Tadeo Bermudez
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - Steven M. Dudek
- Department of Medicine, University of Illinois Chicago, Chicago, IL, U.S.A
| | - Sara M. Camp
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - Joe G.N. Garcia
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| |
Collapse
|
11
|
Jiao Y, Zhao D, Gao F, Hu X, Hu X, Li M, Cui Y, Wei X, Xie C, Zhao Y, Gao Y. MicroRNA-520c-3p suppresses vascular endothelium dysfunction by targeting RELA and regulating the AKT and NF-κB signaling pathways. J Physiol Biochem 2021; 77:47-61. [PMID: 33411212 DOI: 10.1007/s13105-020-00779-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022]
Abstract
Endothelial injury, which can cause endothelial inflammation and dysfunction, is an important mechanism for the development of atherosclerotic plaque. This study aims to investigate the functional role of miR-520c-3p in vascular endothelium during inflammatory diseases such as atherosclerosis. Quantitative real-time PCR was used to detect miR-520c-3p expression in in human umbilical vein endothelial cells (HUVECs) after treatment with platelet-derived growth factor (PDGF). Furthermore, the effects of miR-520c-3p overexpression and silencing on cell proliferation, adhesion, and apoptosis were assessed. Bioinformatics analysis and Biotin-labeled miRNA pull-down assay were used to confirm the targets of miR-520-3p. Then, the effects of miR-520c-3p on AKT and NF-κB signaling pathways were detected by western blot. Herein, we observed that the expression level of miR-520c-3p was downregulated in HUVECs under PDGF stimulation. Overexpression of miR-520c-3p not only decreased cell adhesion but also promoted proliferation and inhibited apoptosis to protect the viability of endothelial cells. It was confirmed that RELA is the target of miR-520c-3p. MiR-520c-3p inhibited the protein phosphorylation of AKT and RELA, and si-RELA reversed the promotion of AKT and RELA protein phosphorylation by anti-miR-520c-3p. In summary, our study suggested that miRNA-520c-3p targeting RELA through AKT and NF-κB signaling pathways regulated the proliferation, apoptosis, and adhesion of vascular endothelial cells. We conclude that miR-520c-3p may play an important role in the suppression of endothelial injury, which could serve as a biomarker and therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Yan Jiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Dandan Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Fuhua Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaoyan Hu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xinxin Hu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Mei Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ying Cui
- Liaoning Provincial Core Lab of Medical Molecular Biology, Dalian Medical University, Dalian, China
- Molecular Medicine Laboratory, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaoqing Wei
- Liaoning Provincial Core Lab of Medical Molecular Biology, Dalian Medical University, Dalian, China
- Molecular Medicine Laboratory, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ce Xie
- Liaoning Provincial Core Lab of Medical Molecular Biology, Dalian Medical University, Dalian, China
- Molecular Medicine Laboratory, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ying Zhao
- Liaoning Provincial Core Lab of Medical Molecular Biology, Dalian Medical University, Dalian, China.
- Molecular Medicine Laboratory, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Ying Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
- Liaoning Provincial Core Lab of Medical Molecular Biology, Dalian Medical University, Dalian, China.
- Molecular Medicine Laboratory, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
- Liaoning Provincial Core Lab of Medical Molecular Biology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, China.
| |
Collapse
|
12
|
Identification and Validation of Potential miRNAs, as Biomarkers for Sepsis and Associated Lung Injury: A Network-Based Approach. Genes (Basel) 2020; 11:genes11111327. [PMID: 33182754 PMCID: PMC7696689 DOI: 10.3390/genes11111327] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a dysregulated immune response disease affecting millions worldwide. Delayed diagnosis, poor prognosis, and disease heterogeneity make its treatment ineffective. miRNAs are imposingly involved in personalized medicine such as therapeutics, due to their high sensitivity and accuracy. Our study aimed to reveal the biomarkers that may be involved in the dysregulated immune response in sepsis and lung injury using a computational approach and in vivo validation studies. A sepsis miRNA Gene Expression Omnibus (GEO) dataset based on the former analysis of blood samples was used to identify differentially expressed miRNAs (DEMs) and associated hub genes. Sepsis-associated genes from the Comparative Toxicogenomics Database (CTD) that overlapped with identified DEM targets were utilized for network construction. In total, 317 genes were found to be regulated by 10 DEMs (three upregulated, namely miR-4634, miR-4638-5p, and miR-4769-5p, and seven downregulated, namely miR-4299, miR-451a, miR181a-2-3p, miR-16-5p, miR-5704, miR-144-3p, and miR-1290). Overall hub genes (HIP1, GJC1, MDM4, IL6R, and ERC1) and for miR-16-5p (SYNRG, TNRC6B, and LAMTOR3) were identified based on centrality measures (degree, betweenness, and closeness). In vivo validation of miRNAs in lung tissue showed significantly downregulated expression of miR-16-5p corroborating with our computational findings, whereas expression of miR-181a-2-3p and miR-451a were found to be upregulated in contrast to the computational approach. In conclusion, the differential expression pattern of miRNAs and hub genes reported in this study may help to unravel many unexplored regulatory pathways, leading to the identification of critical molecular targets for increased prognosis, diagnosis, and drug efficacy in sepsis and associated organ injuries.
Collapse
|
13
|
Murdaca G, Tonacci A, Negrini S, Greco M, Borro M, Puppo F, Gangemi S. Effects of AntagomiRs on Different Lung Diseases in Human, Cellular, and Animal Models. Int J Mol Sci 2019; 20:3938. [PMID: 31412612 PMCID: PMC6719072 DOI: 10.3390/ijms20163938] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/14/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION MiRNAs have been shown to play a crucial role among lung cancer, pulmonary fibrosis, tuberculosis (TBC) infection, and bronchial hypersensitivity, thus including chronic obstructive pulmonary disease (COPD) and asthma. The oncogenic effect of several miRNAs has been recently ruled out. In order to act on miRNAs turnover, antagomiRs have been developed. MATERIALS AND METHODS The systematic review was conducted under the PRISMA guidelines (registration number is: CRD42019134173). The PubMed database was searched between 1 January 2000 and 30 April 2019 under the following search strategy: (((antagomiR) OR (mirna antagonists) OR (mirna antagonist)) AND ((lung[MeSH Terms]) OR ("lung diseases"[MeSH Terms]))). We included original articles, published in English, whereas exclusion criteria included reviews, meta-analyses, single case reports, and studies published in a language other than English. RESULTS AND CONCLUSIONS A total of 68 articles matching the inclusion criteria were retrieved. Overall, the use of antagomiR was seen to be efficient in downregulating the specific miRNA they are conceived for. The usefulness of antagomiRs was demonstrated in humans, animal models, and cell lines. To our best knowledge, this is the first article to encompass evidence regarding miRNAs and their respective antagomiRs in the lung, in order to provide readers a comprehensive review upon major lung disorders.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
| | - Simone Negrini
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Monica Greco
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Matteo Borro
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Puppo
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
14
|
Wang J, Zhang C, Li C, Zhao D, Li S, Ma L, Cui Y, Wei X, Zhao Y, Gao Y. MicroRNA-92a promotes vascular smooth muscle cell proliferation and migration through the ROCK/MLCK signalling pathway. J Cell Mol Med 2019; 23:3696-3710. [PMID: 30907506 PMCID: PMC6484312 DOI: 10.1111/jcmm.14274] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/12/2019] [Accepted: 02/23/2019] [Indexed: 12/31/2022] Open
Abstract
To identify the interaction between known regulators of atherosclerosis, microRNA-92a (miR-92a), Rho-associated coiled-coil-forming kinase (ROCK) and myosin light chain kinase (MLCK), we examined their expressions during proliferation and migration of platelet-derived growth factor-BB (PDGF-BB)-regulated vascular smooth muscle cells (VSMCs), both in vivo and in vitro. During the formation of atherosclerosis plaque in mice, a parallel increase in expression levels of MLCK and miR-92a was observed while miR-92a expression was reduced in ML-7 (an inhibitor of MLCK) treated mice and in MLCK-deficient VSMCs. In vitro results indicated that both MLCK and miR-92a shared the same signalling pathway. Transfection of miR-92a mimic partially restored the effect of MLCK's deficiency and antagonized the effect of Y27632 (an inhibitor of ROCK) on the down-regulation of VSMCs activities. ML-7 increased the expression of Kruppel-like factor 4 (KLF4, a target of miR-92a), and siRNA-KLF4 increased VSMCs' activity level. Consistently, inhibition of either MLCK or ROCK enhanced the KLF4 expression. Moreover, we observed that ROCK/MLCK up-regulated miR-92a expression in VSMCs through signal transducer and activator of transcription 3 (STAT3) activation. In conclusion, the activation of ROCK/STAT3 and/or MLCK/STAT3 may up-regulate miR-92a expression, which subsequently inhibits KLF4 expression and promotes PDGF-BB-mediated proliferation and migration of VSMCs. This new downstream node in the ROCK/MLCK signalling pathway may offer a potential intervention target for treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Chenxu Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Cai Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Dandan Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Shuyao Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Le Ma
- College of StomatologyDalian Medical UniversityDalianChina
| | - Ying Cui
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
- Liaoning Provincial Key Lab of Medical Molecular BiologyDalian Medical UniversityDalianChina
| | - Xiaoqing Wei
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
- Liaoning Provincial Key Lab of Medical Molecular BiologyDalian Medical UniversityDalianChina
| | - Ying Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
- Liaoning Provincial Key Lab of Medical Molecular BiologyDalian Medical UniversityDalianChina
| | - Ying Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
- Liaoning Provincial Key Lab of Medical Molecular BiologyDalian Medical UniversityDalianChina
| |
Collapse
|
15
|
Zhao W, Li D, Su Y, Zhao H, Pang W, Sun Y, Wu S. MicroRNA-147 negatively regulates expression of toll-like receptor-7 in rat macrophages and attenuates pristane induced rheumatoid arthritis in rats. Am J Transl Res 2019; 11:2219-2231. [PMID: 31105830 PMCID: PMC6511793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
UNLABELLED Background/Introduction: Aberrant expression of Toll like receptors (TLR) plays a vital role in pathogenesis of rheumatoid arthritis (RA). Micro RNAs (miRs) could play important role in the related signaling pathways. The present study was undertaken to establish the link between miR-147 and TLR-7 in rat macrophages (in vitro) and in pristane (PS) induced arthritic rats. METHODOLOGY Dual luciferase assay was done to confirm the interaction between miR-147 and TLR-7. The effect of miR-147 on regulation of TLR-7 was done by RT-qPCR and Immunoblotting studies in rat macrophages (ATCC® CRL-2192TM) after treating them with miR-147 mimics and inhibitors. R-848 (Imiquimod) was used as TLR-7 stimulant, the mRNA and protein expression levels of IFN-β and TNF-α were recorded to determine the regulation of TLR-7. The levels of miR-147 and TLR-7 were evaluated during induction of rat bone marrow derived macrophage in the PS induced rat macrophages and spleens of methotrexate exposed rats. The miR-147 mimics was injected intraperitoneal to the PS treated rats and the severity of arthritis was studied. RESULTS The study confirmed TLR-7 mRNA as the potential target of miR-147 in rats. Alterations in miR-147 by transfecting mimics or inhibitors in ATCC® CRL-2192TM cells exhibited suppression and amelioration of TLR-7 and cytokine expression. The alteration in expression of miR-147 was inversely correlated with expression of TLR-7 during bone marrow derived macrophages induction in PS exposed cells and spleens. The abnormal expression was reversed in spleens of methotrexate treated arthritic rats. The treatment of miR-147 mimic caused suppression in expression of TLR-7 and improved the severity of arthritis in PS induced arthritic rats. CONCLUSIONS MiR-147 inversely regulates the TLR-7 signaling by targeting TLR-7 itself both in vivo and in vitro. The study provides a novel approach for conditions involving abnormal TLR-7 expression in arthritis.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Xi’an Medical UniversityXi’an 710038, Shaanxi, China
| | - Dai Li
- Department of Anesthesiology, Chang Hai Hospital, Naval Military Medical UniversityShanghai 200433, China
| | - Yuqiang Su
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Medical UniversityXi’an 710038, Shaanxi, China
| | - Haikang Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical UniversityXi’an 710038, Shaanxi, China
| | - Weiwei Pang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Xi’an Medical UniversityXi’an 710038, Shaanxi, China
| | - Yang Sun
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Xi’an Medical UniversityXi’an 710038, Shaanxi, China
| | - Shengjun Wu
- Department of Gynaecology, The Second Affiliated Hospital of Xi’an Medical UniversityXi’an 710038, Shaanxi, China
| |
Collapse
|
16
|
Fang Y, Wu D, Birukov KG. Mechanosensing and Mechanoregulation of Endothelial Cell Functions. Compr Physiol 2019; 9:873-904. [PMID: 30873580 PMCID: PMC6697421 DOI: 10.1002/cphy.c180020] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular endothelial cells (ECs) form a semiselective barrier for macromolecules and cell elements regulated by dynamic interactions between cytoskeletal elements and cell adhesion complexes. ECs also participate in many other vital processes including innate immune reactions, vascular repair, secretion, and metabolism of bioactive molecules. Moreover, vascular ECs represent a unique cell type exposed to continuous, time-dependent mechanical forces: different patterns of shear stress imposed by blood flow in macrovasculature and by rolling blood cells in the microvasculature; circumferential cyclic stretch experienced by the arterial vascular bed caused by heart propulsions; mechanical stretch of lung microvascular endothelium at different magnitudes due to spontaneous respiration or mechanical ventilation in critically ill patients. Accumulating evidence suggests that vascular ECs contain mechanosensory complexes, which rapidly react to changes in mechanical loading, process the signal, and develop context-specific adaptive responses to rebalance the cell homeostatic state. The significance of the interactions between specific mechanical forces in the EC microenvironment together with circulating bioactive molecules in the progression and resolution of vascular pathologies including vascular injury, atherosclerosis, pulmonary edema, and acute respiratory distress syndrome has been only recently recognized. This review will summarize the current understanding of EC mechanosensory mechanisms, modulation of EC responses to humoral factors by surrounding mechanical forces (particularly the cyclic stretch), and discuss recent findings of magnitude-specific regulation of EC functions by transcriptional, posttranscriptional and epigenetic mechanisms using -omics approaches. We also discuss ongoing challenges and future opportunities in developing new therapies targeting dysregulated mechanosensing mechanisms to treat vascular diseases. © 2019 American Physiological Society. Compr Physiol 9:873-904, 2019.
Collapse
Affiliation(s)
- Yun Fang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA,Correspondence to
| | - David Wu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
A systems biology network analysis of nutri(epi)genomic changes in endothelial cells exposed to epicatechin metabolites. Sci Rep 2018; 8:15487. [PMID: 30341379 PMCID: PMC6195584 DOI: 10.1038/s41598-018-33959-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
Although vasculo-protective effects of flavan-3-ols are widely accepted today, their impact on endothelial cell functions and molecular mechanisms of action involved is not completely understood. The aim of this study was to characterize the potential endothelium-protective effects of circulating epicatechin metabolites and to define underlying mechanisms of action by an integrated systems biology approach. Reduced leukocyte rolling over vascular endothelium was observed following epicatechin supplementation in a mouse model of inflammation. Integrative pathway analysis of transcriptome, miRNome and epigenome profiles of endothelial cells exposed to epicatechin metabolites revealed that by acting at these different levels of regulation, metabolites affect cellular pathways involved in endothelial permeability and interaction with immune cells. In-vitro experiments on endothelial cells confirmed that epicatechin metabolites reduce monocyte adhesion and their transendothelial migration. Altogether, our in-vivo and in-vitro results support the outcome of a systems biology based network analysis which suggests that epicatechin metabolites mediate their vasculoprotective effects through dynamic regulation of endothelial cell monocyte adhesion and permeability. This study illustrates complex and multimodal mechanisms of action by which epicatechin modulate endothelial cell integrity.
Collapse
|
18
|
Pre-transplant expressions of microRNAs, comorbidities, and post-transplant mortality. Bone Marrow Transplant 2018; 54:973-979. [PMID: 30279573 PMCID: PMC6445788 DOI: 10.1038/s41409-018-0352-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/29/2018] [Accepted: 09/12/2018] [Indexed: 11/16/2022]
Abstract
We analyzed micro-RNAs (miRs) as possible diagnostic biomarkers for relevant comorbidities prior to and prognostic biomarkers for mortality following hematopoietic cell transplantation (HCT). A randomly selected group of patients (n=36) were divided into low-risk (HCT-comorbidity index [HCT-CI] score of 0 and survived HCT) and high-risk (HCT-CI scores ≥4 and deceased after HCT) groups. There were 654 miRs tested and 19 met the pre-specified significance level of p<0.1. In subsequent models, only eight miRs maintained statistical significance in regression models after adjusting for baseline demographic factors; miRs-374b and −454 were under-expressed, while miRs-142–3p, −191, −424, −590–3p, −29c, and −15b were over-expressed among high-risk patients relative to low-risk patients. Areas under the curve for these 8 miRs ranged between 0.74 to 0.81, suggesting strong predictive capacity. Consideration of miRs may improve risk-assessment of mortality and should be further explored in larger future prospective studies.
Collapse
|
19
|
Hong J, Zhou W, Wang X. Involvement of miR-455 in the protective effect of H 2S against chemical hypoxia-induced injury in BEAS-2B cells. Pathol Res Pract 2018; 214:1804-1810. [PMID: 30193773 DOI: 10.1016/j.prp.2018.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/30/2018] [Accepted: 08/08/2018] [Indexed: 01/09/2023]
Abstract
The protective effect of hydrogen sulfide (H2S) against hypoxia-induced injury via anti-apoptosis is well established, but the underlying mechanism remains unclear. The present study aimed to investigate whether miR-455 participated in the H2S protection of lung epithelial cells against CoCl2-induced apoptosis by regulating endoplasmic reticulum stress (ERS)-related genes. Human lung epithelial cells BEAS-2B were subjected to hypoxia injury with or without H2S preconditioning. It was found that hypoxia injury increased apoptosis of BEAS-2B cells, down-regulated the expression of miR-455, and upregulated the expression of calreticulin (Calr). H2S preconditioning attenuated lung epithelial cells apoptosis, enhanced cell viability, up-regulated the expression of miR-455, as well as down-regulated the expression of Calr following hypoxia injury. In addition, Calr, GRP78, C/EBP homologous protein (CHOP) and Caspase-12 protein was down-regulated by the miR-455 mimic and up-regulated by the miR-455 inhibitor. These results implicate miR-455 regulated H2S protection of lung epithelial cells against hypoxia-induced apoptosis by stimulating Calr.
Collapse
Affiliation(s)
- Jiang Hong
- Department of Thoracic Surgery, Changhai Hospital, Shanghai 200435, China
| | - Weizheng Zhou
- Department of Thoracic Surgery, Changhai Hospital, Shanghai 200435, China
| | - Xiaowei Wang
- Department of Thoracic Surgery, Changhai Hospital, Shanghai 200435, China.
| |
Collapse
|
20
|
Pan J, Zhan C, Yuan T, Wang W, Shen Y, Sun Y, Wu T, Gu W, Chen L, Yu H. Effects and molecular mechanisms of intrauterine infection/inflammation on lung development. Respir Res 2018; 19:93. [PMID: 29747649 PMCID: PMC5946538 DOI: 10.1186/s12931-018-0787-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/23/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Intrauterine infection/inflammation plays an important role in the development of lung injury and bronchopulmonary dysplasia (BPD) in preterm infants, While a multifactorial genesis is likely, mechanisms involved in BPD after intrauterine infection/inflammation are largely unknown. Recent studies have suggested microRNAs (miRNAs) are likely to play a role. Therefore, this study aimed to study the effects and mechanisms of intrauterine infection/inflammation on lung development, and to identify miRNAs related to lung injury and BPD. METHODS An animal model of intrauterine infection/inflammation was established with pregnant SD rats endocervically inoculated with E.coli. The fetal and neonatal rats were observed at embryonic day (E) 17, 19, 21 and postnatal day (P) 1, 3, 7, 14, respectively. Body weight, lung weight, the expression levels of NLRP3, TNF-α, IL-lβ, IL-6, VEGF, Collagen I, SP-A, SP-B and SP-C in the lung tissues of fetal and neonatal rats were measured. Expression profiles of 1218 kinds of miRNAs in the lungs of neonatal rats were detected by miRNA microarray technique. Target genes of the identified miRNAs were predicted through online software. RESULTS Intrauterine infection/inflammation compromised not only weight development but also lung development of the fetal and neonatal rats. The results showed significantly increased expression of NLRP3, TNF-α, IL-1β, IL-6, Collagen I, and significantly decreased expression of VEGF, SP-A, SP-B and SP-C in the fetal and neonatal rat lung tissues in intrauterine infection group compared to the control group at different observation time point (P < 0.05). Forty-three miRNAs with significant differential expression were identified. Possible target genes regulated by the identified miRNAs are very rich. CONCLUSIONS Intrauterine infection/inflammation results in lung histological changes which are very similar to those observed in BPD. Possible mechanisms may include NLRP3 inflammasome activation followed by inflammatory cytokines expression up-regulated, inhibiting the expression of pulmonary surfactant proteins, interfering with lung interstitial development. There are many identified miRNAs which target a wide range of genes and may play an important role in the processes of lung injury and BPD.
Collapse
Affiliation(s)
- Jiarong Pan
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Canyang Zhan
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Tianming Yuan
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Weiyan Wang
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Ying Shen
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Yi Sun
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Tai Wu
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Weizhong Gu
- Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Disease, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Lihua Chen
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Huimin Yu
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| |
Collapse
|
21
|
Li Y, Zhang F, Cong Y, Zhao Y. Identification of potential genes and miRNAs associated with sepsis based on microarray analysis. Mol Med Rep 2018; 17:6227-6234. [PMID: 29512785 PMCID: PMC5928603 DOI: 10.3892/mmr.2018.8668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022] Open
Abstract
Sepsis is a type of systemic inflammatory response syndrome caused by infection. The present study aimed to examine key genes and microRNAs (miRNAs) involved in the pathogenesis of sepsis. The GSE13205 microarray dataset, downloaded from the Gene Expression Omnibus was analyzed using bioinformatics tools, and included muscle biopsy specimens of 13 patients with sepsis and eight healthy controls. The differentially expressed genes (DEGs) in samples from patients with sepsis were identified using the Linear Models for Microarray package in R language. Using the Database for Annotation, Visualization and Integration Discovery tool, functional and pathway enrichment analyses were performed to examine the potential functions of the DEGs. The protein-protein interaction (PPI) network was constructed with the DEGs using the Search Tool for the Retrieval of Interacting Genes, and the network topology was analyzed using CytoNCA. Subsequently, MCODE in Cytoscape was used to identify modules in the PPI network. Finally, the integrated regulatory network was constructed based on the DEGs, miRNAs and transcription factors (TFs). A total of 259 upregulated DEGs (MYC and BYSL) and 204 downregulated DEGs were identified in the patients with sepsis. NOP14, NOP2, AATF, GTPBP4, BYSL and TRMT6 were key genes in the MCODE module. In the integrated DEG-miRNA-TF regulatory network, hsa-miR-150 (target gene MYLK3) and 21 TFs, comprising 14 upregulated DEGs (including MYC) and seven downregulated DEGs, were identified. The results suggested that NOP14, NOP2, AATF, GTPBP4, BYSL, MYC, MYLK3 and miR-150 may be involved in the pathogenesis of sepsis.
Collapse
Affiliation(s)
- Yin Li
- Emergency Department, Huadong Hospital, Shanghai 200040, P.R. China
| | - Fengxia Zhang
- Emergency Department, Huadong Hospital, Shanghai 200040, P.R. China
| | - Yan Cong
- Emergency Department, Huadong Hospital, Shanghai 200040, P.R. China
| | - Yun Zhao
- Emergency Department, Huadong Hospital, Shanghai 200040, P.R. China
| |
Collapse
|
22
|
M 3 receptor is involved in the effect of penehyclidine hydrochloride reduced endothelial injury in LPS-stimulated human pulmonary microvascular endothelial cell. Pulm Pharmacol Ther 2017; 48:144-150. [PMID: 29158153 DOI: 10.1016/j.pupt.2017.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/19/2017] [Accepted: 11/17/2017] [Indexed: 11/20/2022]
Abstract
LPS has been recently shown to induce muscarinic acetylcholine 3 receptor (M3 receptor) expression and penehyclidine hydrochloride (PHC) is an anticholinergic drug which could block the expression of M3 receptor. PHC has been demonstrated to perform protective effect on cell injury. This study is to investigate whether the effect of PHC on microvascular endothelial injury is related to its inhibition of M3 receptor or not. HPMVECs were treated with specific M3 receptor shRNA or PBS, and randomly divided into LPS group (A group), LPS+PHC group (B group), LPS + M3 shRNA group (C group) and LPS + PHC + M3 shRNA group (D group). Cells were collected at 60 min after LPS treatment to measure levels of LDH, endothelial permeability, TNF-α and IL-6 levels, NF-κB p65 activation, I-κB protein expression, p38MAPK, and ERK1/2 activations as well as M3 mRNA expression. PHC could decrease LDH levels, cell permeability, TNF-α and IL-6 levels, p38 MAPK, ERK1/2, NF-κB p65 activations and M3 mRNA expressions compared with LPS group. When M3 receptor was silence, the changes of these indices were much more obvious. These findings suggest that M3 receptor plays an important role in LPS-induced pulmonary microvascular endothelial injury, which is regulated through NF-κB p65 and MAPK activation. And knockout of M3 receptor could attenuate LPS-induced pulmonary microvascular endothelial injury. Regulative effects of PHC on pulmonary microvascular permeability and NF-κB p65 as well as MAPK activations are including but not limited to inhibition of M3 receptor.
Collapse
|
23
|
Heinemann FM, Jindra PT, Bockmeyer CL, Zeuschner P, Wittig J, Höflich H, Eßer M, Abbas M, Dieplinger G, Stolle K, Vester U, Hoyer PF, Immenschuh S, Heinold A, Horn PA, Li W, Eisenberger U, Becker JU. Glomerulocapillary miRNA response to HLA-class I antibody in vitro and in vivo. Sci Rep 2017; 7:14554. [PMID: 29109529 PMCID: PMC5673998 DOI: 10.1038/s41598-017-14674-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 10/16/2017] [Indexed: 01/12/2023] Open
Abstract
Changes in miRNA expression glomerular of capillaries during antibody-mediated rejection (ABMR) are poorly understood and could contribute to the deleterious inflammation and fibrosis of ABMR via suppression of target genes. A better understanding could lead to novel diagnostic tools and reveal novel therapeutic targets. We explored deregulated miRNAs in an glomeruloendothelial in vitro model of ABMR due to class I human leukocyte antigen (HLA) with and without complement activation. We studied a set of 16 promising candidate miRNAs in microdissected glomeruli a confirmation set of 20 human transplant biopsies (DSA+) compared to 10 matched controls without evidence for ABMR. Twelve out of these 16 glomerulocapillary miRNAs could successfully be confirmed as dysregulated in vivo with 10 upregulated (let-7c-5p, miR-28-3p, miR-30d-5p, miR-99b-5p, miR-125a-5p, miR-195-5p, miR-374b-3p, miR-484, miR-501-3p, miR-520e) and 2 downregulated (miR29b-3p, miR-885-5p) in DSA+ vs. CONTROLS A random forest analysis based on glomerular miRNAs identified 18/20 DSA+ and 8/10 controls correctly. This glomerulocapillary miRNA signature associated with HLA class I-DSA could improve our understanding of ABMR and be useful for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Falko M Heinemann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Peter T Jindra
- Immune Evaluation Laboratory, Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Clemens L Bockmeyer
- Institute of Pathology, Department of Nephropathology, University Hospital Erlangen-Nürnberg, Erlangen, Germany
| | - Philip Zeuschner
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Juliane Wittig
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Heike Höflich
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Marc Eßer
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | | | - Georg Dieplinger
- Department of General, Visceral and Cancer Surgery, Transplant Center Cologne, University of Cologne, Cologne, Germany
| | - Katharina Stolle
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Udo Vester
- Children's Hospital, Pediatrics II, University of Duisburg-Essen, Essen, Germany
| | - Peter F Hoyer
- Children's Hospital, Pediatrics II, University of Duisburg-Essen, Essen, Germany
| | - Stephan Immenschuh
- Institute of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Andreas Heinold
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wentian Li
- Robert S Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Ute Eisenberger
- Clinic for Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jan U Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
24
|
Mascarenhas JB, Tchourbanov AY, Fan H, Danilov SM, Wang T, Garcia JGN. Mechanical Stress and Single Nucleotide Variants Regulate Alternative Splicing of the MYLK Gene. Am J Respir Cell Mol Biol 2017; 56:29-37. [PMID: 27529643 DOI: 10.1165/rcmb.2016-0053oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nonmuscle (nm) myosin light-chain kinase isoform (MLCK), encoded by the MYLK gene, is a vital participant in regulating vascular barrier responses to mechanical and inflammatory stimuli. We determined that MYLK is alternatively spliced, yielding functionally distinct nmMLCK splice variants including nmMLCK2, a splice variant highly expressed in vascular endothelial cells (EC) and associated with reduced EC barrier integrity. We demonstrated previously that the nmMLCK2 variant lacks exon 11, which encodes a key regulatory region containing two differentially phosphorylated tyrosine residues (Y464 and Y471) that influence vascular barrier function during inflammation. In this study, we used minigene constructs and RT-PCR to interrogate biophysical factors (mechanical stress) and genetic variants (MYLK single-nucleotide polymorphisms [SNPs]) that are potentially involved in regulating MYLK alternative splicing and nmMLCK2 generation. Human lung EC exposed to pathologic mechanical stress (18% cyclic stretch) produced increased nmMLCK2 expression relative to levels of nmMLCK1 with alternative splicing significantly influenced by MYLK SNPs rs77323602 and rs147245669. In silico analyses predicted that these variants would alter exon 11 donor and acceptor sites for alternative splicing, computational predictions that were confirmed by minigene studies. The introduction of rs77323602 favored wild-type nmMLCK expression, whereas rs147245669 favored alternative splicing and deletion of exon 11, yielding increased nmMLCK2 expression. Finally, lymphoblastoid cell lines selectively harboring these MYLK SNPs (rs77323602 and rs147245669) directly validated SNP-specific effects on MYLK alternative splicing and nmMLCK2 generation. Together, these studies demonstrate that mechanical stress and MYLK SNPs regulate MYLK alternative splicing and generation of a splice variant, nmMLCK2, that contributes to the severity of inflammatory injury.
Collapse
Affiliation(s)
| | - Alex Y Tchourbanov
- 2 Arizona Research Laboratory, University of Arizona, Tucson, Arizona; and
| | - Hanli Fan
- 3 Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois
| | - Sergei M Danilov
- 1 Department of Medicine, and.,3 Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois
| | | | | |
Collapse
|
25
|
Xiong Y, Wang C, Shi L, Wang L, Zhou Z, Chen D, Wang J, Guo H. Myosin Light Chain Kinase: A Potential Target for Treatment of Inflammatory Diseases. Front Pharmacol 2017; 8:292. [PMID: 28588494 PMCID: PMC5440522 DOI: 10.3389/fphar.2017.00292] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/08/2017] [Indexed: 01/30/2023] Open
Abstract
Myosin light chain kinase (MLCK) induces contraction of the perijunctional apical actomyosin ring in response to phosphorylation of the myosin light chain. Abnormal expression of MLCK has been observed in respiratory diseases, pancreatitis, cardiovascular diseases, cancer, and inflammatory bowel disease. The signaling pathways involved in MLCK activation and triggering of endothelial barrier dysfunction are discussed in this review. The pharmacological effects of regulating MLCK expression by inhibitors such as ML-9, ML-7, microbial products, naturally occurring products, and microRNAs are also discussed. The influence of MLCK in inflammatory diseases starts with endothelial barrier dysfunction. The effectiveness of anti-MLCK treatment may depend on alleviation of that primary pathological mechanism. This review summarizes evidence for the potential benefits of anti-MLCK agents in the treatment of inflammatory disease and the importance of avoiding treatment-related side effects, as MLCK is widely expressed in many different tissues.
Collapse
Affiliation(s)
- Yongjian Xiong
- Central Laboratory, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Chenou Wang
- Laboratory Animal Center, Dalian Medical UniversityDalian, China
| | - Liqiang Shi
- Laboratory Animal Center, Dalian Medical UniversityDalian, China
| | - Liang Wang
- Laboratory Animal Center, Dalian Medical UniversityDalian, China
| | - Zijuan Zhou
- Laboratory Animal Center, Dalian Medical UniversityDalian, China
| | - Dapeng Chen
- Laboratory Animal Center, Dalian Medical UniversityDalian, China
| | - Jingyu Wang
- Laboratory Animal Center, Dalian Medical UniversityDalian, China
| | - Huishu Guo
- Central Laboratory, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| |
Collapse
|
26
|
Khapchaev AY, Shirinsky VP. Myosin Light Chain Kinase MYLK1: Anatomy, Interactions, Functions, and Regulation. BIOCHEMISTRY (MOSCOW) 2017; 81:1676-1697. [PMID: 28260490 DOI: 10.1134/s000629791613006x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review discusses and summarizes the results of molecular and cellular investigations of myosin light chain kinase (MLCK, MYLK1), the key regulator of cell motility. The structure and regulation of a complex mylk1 gene and the domain organization of its products is presented. The interactions of the mylk1 gene protein products with other proteins and posttranslational modifications of the mylk1 gene protein products are reviewed, which altogether might determine the role and place of MLCK in physiological and pathological reactions of cells and entire organisms. Translational potential of MLCK as a drug target is evaluated.
Collapse
Affiliation(s)
- A Y Khapchaev
- Russian Cardiology Research and Production Center, Moscow, 121552, Russia.
| | | |
Collapse
|
27
|
Szilágyi KL, Liu C, Zhang X, Wang T, Fortman JD, Zhang W, Garcia JGN. Epigenetic contribution of the myosin light chain kinase gene to the risk for acute respiratory distress syndrome. Transl Res 2017; 180:12-21. [PMID: 27543902 PMCID: PMC5253100 DOI: 10.1016/j.trsl.2016.07.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 07/20/2016] [Accepted: 07/23/2016] [Indexed: 12/12/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating clinical syndrome with a considerable case fatality rate (∼30%-40%). Health disparities exist with African descent (AD) subjects exhibiting greater mortality than European descent (ED) individuals. Myosin light chain kinase is encoded by MYLK, whose genetic variants are implicated in ARDS pathogenesis and may influence ARDS mortality. As baseline population-specific epigenetic changes, that is, cytosine modifications, have been observed between AD and ED individuals, epigenetic variations in MYLK may provide insights into ARDS disparities. We compared methylation levels of MYLK cytosine-guanine dinucleotides (CpGs) between ARDS patients and intensive care unit (ICU) controls overall and by ethnicity in a nested case-control study of 39 ARDS cases and 75 non-ARDS ICU controls. Two MYLK CpG sites (cg03892735 and cg23344121) were differentially modified between ARDS subjects and controls (P < 0.05; q < 0.25) in a logistic regression model, where no effect modification by ethnicity or age was found. One CpG site was associated with ARDS in patients aged <58 years, cg19611163 (intron 19, 20). Two CpG sites were associated with ARDS in EDs only, gene body CpG (cg01894985, intron 2, 3) and CpG (cg16212219, intron 31, 32), with higher modification levels exhibited in ARDS subjects than controls. Cis-acting modified cytosine quantitative trait loci (mQTL) were identified using linear regression between local genetic variants and modification levels for 2 ARDS-associated CpGs (cg23344121 and cg16212219). In summary, these ARDS-associated MYLK CpGs with effect modification by ethnicity and local mQTL suggest that MYLK epigenetic variation and local genetic background may contribute to health disparities observed in ARDS.
Collapse
Affiliation(s)
- Keely L Szilágyi
- Laboratory Animal Resource Center, Indiana University School of Medicine, Indianapolis, Ind
| | - Cong Liu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Ill
| | - Xu Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Ting Wang
- University of Arizona Health Sciences, University of Arizona, Tucson, Ariz
| | - Jeffrey D Fortman
- Biological Resources Laboratory, University of Illinois at Chicago, Chicago, Ill
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| | - Joe G N Garcia
- University of Arizona Health Sciences, University of Arizona, Tucson, Ariz
| |
Collapse
|
28
|
Guarino MPL, Altomare A, Barera S, Locato V, Cocca S, Franchin C, Arrigoni G, Vannini C, Grossi S, Campomenosi P, Pasqualetti V, Bracale M, Alloni R, De Gara L, Cicala M. Effect of Inulin on Proteome Changes Induced by Pathogenic Lipopolysaccharide in Human Colon. PLoS One 2017; 12:e0169481. [PMID: 28068390 PMCID: PMC5222518 DOI: 10.1371/journal.pone.0169481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/16/2016] [Indexed: 12/27/2022] Open
Abstract
In the present study, the protective role of inulin against lipopolysaccharide (LPS)-induced oxidative stress was evaluated on human colonic mucosa using a proteomic approach. Human colonic mucosa and submucosa were sealed between two chambers, with the luminal side facing upwards and overlaid with Krebs (control), LPS or LPS+ inulin IQ solution. The solutions on the submucosal side (undernatants) were collected following 30 min of mucosal exposure. iTRAQ based analysis was used to analyze the total soluble proteomes from human colonic mucosa and submucosa treated with different undernatants. Human colonic muscle strips were exposed to the undernatants to evaluate the response to acetylcholine. Inulin exposure was able to counteract, in human colonic mucosa, the LPS-dependent alteration of some proteins involved in the intestinal contraction (myosin light chain kinase (MLCK), myosin regulatory subunit (MYL)), to reduce the up-regulation of two proteins involved in the radical-mediated oxidative stress (the DNA-apurinic or apyrimidinic site) lyase) APEX1 and the T-complex protein 1 subunit eta (CCT7) and to entail a higher level of some detoxification enzymes (the metallothionein-2 MT2A, the glutathione-S-transferase K GSTk, and two UDP- glucuronosyltransferases UGT2B4, UGT2B17). Inulin exposure was also able to prevent the LPS-dependent intestinal muscle strips contraction impairment and the mucosa glutathione level alterations. Exposure of colonic mucosa to inulin seems to prevent LPS-induced alteration in expression of some key proteins, which promote intestinal motility and inflammation, reducing the radical-mediated oxidative stress.
Collapse
Affiliation(s)
| | - Annamaria Altomare
- Gastroenterology Unit, University Campus Bio-Medico di Roma, Rome, Italy
| | - Simone Barera
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Vittoria Locato
- Food Sciences and Human Nutrition Unit, University Campus Bio-Medico di Roma, Rome, Italy
| | - Silvia Cocca
- Gastroenterology Unit, University Campus Bio-Medico di Roma, Rome, Italy
| | - Cinzia Franchin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Padova, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Padova, Italy
| | - Candida Vannini
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Sarah Grossi
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Paola Campomenosi
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Valentina Pasqualetti
- Food Sciences and Human Nutrition Unit, University Campus Bio-Medico di Roma, Rome, Italy
| | - Marcella Bracale
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Rossana Alloni
- Surgery Unit, University Campus Bio-Medico di Roma, Roma, Italy
| | - Laura De Gara
- Food Sciences and Human Nutrition Unit, University Campus Bio-Medico di Roma, Rome, Italy
| | - Michele Cicala
- Gastroenterology Unit, University Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
29
|
Ho J, Chan H, Wong SH, Wang MHT, Yu J, Xiao Z, Liu X, Choi G, Leung CCH, Wong WT, Li Z, Gin T, Chan MTV, Wu WKK. The involvement of regulatory non-coding RNAs in sepsis: a systematic review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:383. [PMID: 27890015 PMCID: PMC5125038 DOI: 10.1186/s13054-016-1555-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022]
Abstract
Background Sepsis coincides with altered gene expression in different tissues. Accumulating evidence has suggested that microRNAs, long non-coding RNAs, and circular RNAs are important molecules involved in the crosstalk with various pathways pertinent to innate immunity, mitochondrial functions, and apoptosis. Methods We searched articles indexed in PubMed (MEDLINE), EMBASE and Europe PubMed Central databases using the Medical Subject Heading (MeSH) or Title/Abstract words (“microRNA”, “long non-coding RNA”, “circular RNA”, “sepsis” and/or “septic shock”) from inception to Sep 2016. Studies investigating the role of host-derived microRNA, long non-coding RNA, and circular RNA in the pathogenesis of and as biomarkers or therapeutics in sepsis were included. Data were extracted in terms of the role of non-coding RNAs in pathogenesis, and their applicability for use as biomarkers or therapeutics in sepsis. Two independent researchers assessed the quality of studies using a modified guideline from the Systematic Review Center for Laboratory animal Experimentation (SYRCLE), a tool based on the Cochrane Collaboration Risk of Bias tool. Results Observational studies revealed dysregulation of non-coding RNAs in septic patients. Experimental studies confirmed their crosstalk with JNK/NF-κB and other cellular pathways pertinent to innate immunity, mitochondrial function, and apoptosis. Of the included studies, the SYRCLE scores ranged from 3 to 7 (average score of 4.55). This suggests a moderate risk of bias. Of the 10 articles investigating non-coding RNAs as biomarkers, none of them included a validation cohort. Selective reporting of sensitivity, specificity, and receiver operating curve was common. Conclusions Although non-coding RNAs appear to be good candidates as biomarkers and therapeutics for sepsis, their differential expression across tissues complicated the process. Further investigation on organ-specific delivery of these regulatory molecules may be useful. Electronic supplementary material The online version of this article (doi:10.1186/s13054-016-1555-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeffery Ho
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Hung Chan
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Sunny H Wong
- State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China. .,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China.
| | - Maggie H T Wang
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xiaodong Liu
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Gordon Choi
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Czarina C H Leung
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Wai T Wong
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Zheng Li
- Department of Orthopedics Surgery Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Tony Gin
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Matthew T V Chan
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China.
| | - William K K Wu
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China. .,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China.
| |
Collapse
|
30
|
Rajasekaran S, Pattarayan D, Rajaguru P, Sudhakar Gandhi PS, Thimmulappa RK. MicroRNA Regulation of Acute Lung Injury and Acute Respiratory Distress Syndrome. J Cell Physiol 2016; 231:2097-106. [PMID: 26790856 DOI: 10.1002/jcp.25316] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/20/2016] [Indexed: 12/13/2022]
Abstract
The acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI), is a very common condition associated with critically ill patients, which causes substantial morbidity and mortality worldwide. Despite decades of research, effective therapeutic strategies for clinical ALI/ARDS are not available. In recent years, microRNAs (miRNAs), small non-coding molecules have emerged as a major area of biomedical research as they post-transcriptionally regulate gene expression in diverse biological and pathological processes, including ALI/ARDS. In this context, this present review summarizes a large body of evidence implicating miRNAs and their target molecules in ALI/ARDS originating largely from studies using animal and cell culture model systems of ALI/ARDS. We have also focused on the involvement of miRNAs in macrophage polarization, which play a critical role in regulating the pathogenesis of ALI/ARDS. Finally, the possible future directions that might lead to novel therapeutic strategies for the treatment of ALI/ARDS are also reviewed. J. Cell. Physiol. 231: 2097-2106, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Subbiah Rajasekaran
- Department of Biotechnology, Anna University, BIT-Campus, Tiruchirappalli, Tamil Nadu, India
| | - Dhamotharan Pattarayan
- Department of Biotechnology, Anna University, BIT-Campus, Tiruchirappalli, Tamil Nadu, India
| | - P Rajaguru
- Department of Biotechnology, Anna University, BIT-Campus, Tiruchirappalli, Tamil Nadu, India
| | - P S Sudhakar Gandhi
- Department of Biotechnology, Anna University, BIT-Campus, Tiruchirappalli, Tamil Nadu, India
| | - Rajesh K Thimmulappa
- Department of Pulmonary Medicine, JSS Hospital, JSS University, Sri Shivarathreeshwara Nagara, Mysore, Karnataka, India
| |
Collapse
|
31
|
Newell-Litwa KA, Horwitz R, Lamers ML. Non-muscle myosin II in disease: mechanisms and therapeutic opportunities. Dis Model Mech 2015; 8:1495-515. [PMID: 26542704 PMCID: PMC4728321 DOI: 10.1242/dmm.022103] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The actin motor protein non-muscle myosin II (NMII) acts as a master regulator of cell morphology, with a role in several essential cellular processes, including cell migration and post-synaptic dendritic spine plasticity in neurons. NMII also generates forces that alter biochemical signaling, by driving changes in interactions between actin-associated proteins that can ultimately regulate gene transcription. In addition to its roles in normal cellular physiology, NMII has recently emerged as a critical regulator of diverse, genetically complex diseases, including neuronal disorders, cancers and vascular disease. In the context of these disorders, NMII regulatory pathways can be directly mutated or indirectly altered by disease-causing mutations. NMII regulatory pathway genes are also increasingly found in disease-associated copy-number variants, particularly in neuronal disorders such as autism and schizophrenia. Furthermore, manipulation of NMII-mediated contractility regulates stem cell pluripotency and differentiation, thus highlighting the key role of NMII-based pharmaceuticals in the clinical success of stem cell therapies. In this Review, we discuss the emerging role of NMII activity and its regulation by kinases and microRNAs in the pathogenesis and prognosis of a diverse range of diseases, including neuronal disorders, cancer and vascular disease. We also address promising clinical applications and limitations of NMII-based inhibitors in the treatment of these diseases and the development of stem-cell-based therapies.
Collapse
Affiliation(s)
- Karen A Newell-Litwa
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Rick Horwitz
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Marcelo L Lamers
- Department of Morphological Sciences, Institute of Basic Health Science, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-010, Brazil
| |
Collapse
|
32
|
Yang K, Gao B, Wei W, Li Z, Pan L, Zhang J, Zhao Q, Chen W, Xu Z. Changed profile of microRNAs in acute lung injury induced by cardio-pulmonary bypass and its mechanism involved with SIRT1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:1104-1115. [PMID: 25972997 PMCID: PMC4396264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE Acute lung injury (ALI) is a severe complication for patients undergoing cardiac surgery necessitating cardio-pulmonary bypass (CPB), however, the possible relationship between microRNAs change and ALI induced by CPB is still not completely understood. OBJECTIVE the aim of this study is to determine the microRNAs level changes in patients with ALI induced by CPB and its involved mechanism. METHODS We collected blood samples from 45 patients and performed microRNA microarray experiments to determine the microRNAs level changes in patients with ALI induced by CPB then the result was verified by quantitative real-time PCR (qRT-PCR). Plasma TNF-α level and respiration parameters including respiration index (RI) and oxygenation index (OI) were measured at five different time points before or after CPB. Meanwhile the correlationship between significantly changed microRNAs and TNF-α level and respiration parameters was analyzed. Further more, we transfected miR-320 mimic and inhibitor into A549 cells and observed the proliferation inhibition and apoptosis change caused by oxygen-glucose deprivation/reperfusion. Finally we using dual-luciferase reporter assay, qRT-PCR and western blot investigated the potential target of miR-320. RESULTS The level of miR-320 was higher in CPB caused ALI with the most significance. Correlation analysis found that the level of miR-320 was positively associated with TNF-α and RI (r = 0.649 and 0.564, P < 0.05), but negative correlated with OI (r = -0.638, P < 0.05). In A549 cells, up-regulated miR-320 induced proliferation inhibition and more apoptosis. SIRT1 may be a target of miR-320 and higher miR-320 resulted in lower expression of SIRT both in mRNA and protein level. CONCLUSION miR-320 may mediate the ALI after CPB in which alveolar epithelial cells are injured via down-regulating SIRT1.
Collapse
Affiliation(s)
- Kun Yang
- Department of Cardiopulmonary Bypass, Second Hospital of Lanzhou University82 Cui Ying Men Street, Lanzhou City 730030, Gansu, China
| | - Bingren Gao
- Department of Cardiac Surgery, Second Hospital of Lanzhou University82 Cui Ying Men Street, Lanzhou City 730030, Gansu, China
| | - Wansheng Wei
- Department of Cardiopulmonary Bypass, Second Hospital of Lanzhou University82 Cui Ying Men Street, Lanzhou City 730030, Gansu, China
| | - Zhenzhen Li
- Department of Cardiopulmonary Bypass, Second Hospital of Lanzhou University82 Cui Ying Men Street, Lanzhou City 730030, Gansu, China
| | - Li Pan
- Department of Cardiopulmonary Bypass, Second Hospital of Lanzhou University82 Cui Ying Men Street, Lanzhou City 730030, Gansu, China
| | - Jing Zhang
- Department of Cardiopulmonary Bypass, Second Hospital of Lanzhou University82 Cui Ying Men Street, Lanzhou City 730030, Gansu, China
| | - Qiming Zhao
- Department of Cardiac Surgery, Second Hospital of Lanzhou University82 Cui Ying Men Street, Lanzhou City 730030, Gansu, China
| | - Wensheng Chen
- Department of Cardiac Surgery, Second Hospital of Lanzhou University82 Cui Ying Men Street, Lanzhou City 730030, Gansu, China
| | - Zhiyi Xu
- Department of Cardiac Surgery, Second Hospital of Lanzhou University82 Cui Ying Men Street, Lanzhou City 730030, Gansu, China
| |
Collapse
|
33
|
Lian JY, Tuo BG. Role of non-coding RNAs in development and progression of hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2015; 23:396-403. [DOI: 10.11569/wcjd.v23.i3.396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) refer to all RNAs without protein encoding function due to the lack of an open reading frame, and they are often transcribed from the complementary strand of protein encoding genes. Based on the length, ncRNAs can be divided into long ncRNAs (lncRNAs) and short ncRNAs, and short ncRNAs include microRNAs, piRNAs and so on. ncRNAs are not only involved in life activities but also closely related to tumor cell differentiation, proliferation, migration, invasion and infiltration. ncRNAs play an important role in the development of cancer. Hepatocellular carcinoma is a digestive cancer with high incidence and mortality rates, posing a serious threat to human health; however, its pathogenesis is still unclear. In recent years, a large number of studies have found that changes in the expression of ncRNAs have a pivotal role in the development of hepatocellular carcinoma. This review summarizes the current state of knowledge about the association between ncRNAs sand hepatocellular carcinoma, with an aim to provide some clues to its diagnosis and treatment.
Collapse
|
34
|
Lv L, Huang W, Zhang J, Shi Y, Zhang L. Altered microRNA expression in stenoses of native arteriovenous fistulas in hemodialysis patients. J Vasc Surg 2014; 63:1034-43.e3. [PMID: 25498192 DOI: 10.1016/j.jvs.2014.10.099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/11/2014] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Arteriovenous fistula (AVF) disfunction is largely due to venous stenosis characterized by a marked amount of intima-media hyperplasia. However, the molecular mechanisms are currently poorly understood. MicroRNAs (miRNAs), small noncoding RNAs that are post-transcriptional regulators of gene expression, could provide insights into a mechanism for the differential expression of genes in stenotic AVFs. METHODS A microarray study was done to detect differences in miRNA levels between stenotic AVF (n = 8) and controls (n = 4). Real-time quantitative reverse-transcription polymerase chain reaction assays with 12 stenotic AVF veins and eight control veins from predialytic patients were used for verification. Putative gene targets were retrieved from miRNA target prediction databases. Networks from the target gene set were created and examined. Western blotting and immunohistochemical staining were performed to confirm the bioinformatic findings. RESULTS A microarray study identified 33 miRNAs with markedly different expression levels between stenotic AVFs and control veins. Among them, nine miRNAs were upregulated and 24 miRNAs were downregulated in the stenotic AVFs. Real-time reverse-transcription polymerase chain reaction confirmed statistically consistent expression of six selected miRNAs with microarray analysis. The predicted miRNA target genes differentially expressed in stenotic AVF based on databases were identified. The mitogen-activated protein kinase signaling pathway might be regulated by miRNAs according to bioinformatic analyses and further confirmed by Western blotting and immunohistochemical staining. CONCLUSIONS Our genome-wide approach identified several differentially expressed miRNAs in stenotic AVFs. This study also suggested that the mitogen-activated protein kinase signaling pathway might play a role in the pathogenesis of stenotic AVF.
Collapse
Affiliation(s)
- Lei Lv
- Department of Vascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weibin Huang
- Department of Vascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Vascular Surgery, The First People's Hospital of Changzhou, Changzhou, China
| | - Jiwei Zhang
- Department of Vascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxue Shi
- Department of Vascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lan Zhang
- Department of Vascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
35
|
MicroRNA-147b regulates vascular endothelial barrier function by targeting ADAM15 expression. PLoS One 2014; 9:e110286. [PMID: 25333931 PMCID: PMC4198252 DOI: 10.1371/journal.pone.0110286] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/15/2014] [Indexed: 12/17/2022] Open
Abstract
A disintegrin and metalloproteinase15 (ADAM15) has been shown to be upregulated and mediate endothelial hyperpermeability during inflammation and sepsis. This molecule contains multiple functional domains with the ability to modulate diverse cellular processes including cell adhesion, extracellular matrix degradation, and ectodomain shedding of transmembrane proteins. These characteristics make ADAM15 an attractive therapeutic target in various diseases. The lack of pharmacological inhibitors specific to ADAM15 prompted our efforts to identify biological or molecular tools to alter its expression for further studying its function and therapeutic implications. The goal of this study was to determine if ADAM15-targeting microRNAs altered ADAM15-induced endothelial barrier dysfunction during septic challenge by bacterial lipopolysaccharide (LPS). An in silico analysis followed by luciferase reporter assay in human vascular endothelial cells identified miR-147b with the ability to target the 3′ UTR of ADAM15. Transfection with a miR-147b mimic led to decreased total, as well as cell surface expression of ADAM15 in endothelial cells, while miR-147b antagomir produced an opposite effect. Functionally, LPS-induced endothelial barrier dysfunction, evidenced by a reduction in transendothelial electric resistance and increase in albumin flux across endothelial monolayers, was attenuated in cells treated with miR-147b mimics. In contrast, miR-147b antagomir exerted a permeability-increasing effect in vascular endothelial cells similar to that caused by LPS. Taken together, these data suggest the potential role of miR147b in regulating endothelial barrier function by targeting ADAM15 expression.
Collapse
|
36
|
Meyer NJ. Beyond single-nucleotide polymorphisms: genetics, genomics, and other 'omic approaches to acute respiratory distress syndrome. Clin Chest Med 2014; 35:673-84. [PMID: 25453417 DOI: 10.1016/j.ccm.2014.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This article summarizes the contributions of high-throughput genomic, proteomic, metabolomic, and gene expression investigations to the understanding of inherited or acquired risk for acute respiratory distress syndrome (ARDS). Although not yet widely applied to a complex trait like ARDS, these techniques are now routinely used to study a variety of disease states. Omic applications hold great promise for identifying novel factors that may contribute to ARDS pathophysiology or may be appropriate for further development as biomarkers or surrogates in clinical studies. Opportunities and challenges of different techniques are discussed, and examples of successful applications in non-ARDS fields are used to illustrate the potential use of each technique.
Collapse
Affiliation(s)
- Nuala J Meyer
- Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania, Perelman School of Medicine, 3600 Spruce Street, 5039 Maloney Building, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Adyshev DM, Elangovan VR, Moldobaeva N, Mapes B, Sun X, Garcia JGN. Mechanical stress induces pre-B-cell colony-enhancing factor/NAMPT expression via epigenetic regulation by miR-374a and miR-568 in human lung endothelium. Am J Respir Cell Mol Biol 2014; 50:409-18. [PMID: 24053186 DOI: 10.1165/rcmb.2013-0292oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Increased lung vascular permeability and alveolar edema are cardinal features of inflammatory conditions such as acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI). We previously demonstrated that pre-B-cell colony-enhancing factor (PBEF)/NAMPT, the proinflammatory cytokine encoded by NAMPT, participates in ARDS and VILI inflammatory syndromes. The present study evaluated posttranscriptional regulation of PBEF/NAMPT gene expression in human lung endothelium via 3'-untranslated region (UTR) microRNA (miRNA) binding. In silico analysis identified hsa-miR-374a and hsa-miR-568 as potential miRNA candidates. Increased PBEF/NAMPT transcription (by RT-PCR) and expression (by Western blotting) induced by 18% cyclic stretch (CS) (2 h: 3.4 ± 0.06 mRNA fold increase (FI); 10 h: 1.5 ± 0.06 protein FI) and by LPS (4 h: 3.8 ± 0.2 mRNA FI; 48 h: 2.6 ± 0.2 protein FI) were significantly attenuated by transfection with mimics of hsa-miR-374a or hsa-miR-568 (40-60% reductions each). LPS and 18% CS increased the activity of a PBEF/NAMPT 3'-UTR luciferase reporter (2.4-3.25 FI) with induction reduced by mimics of each miRNA (44-60% reduction). Specific miRNA inhibitors (antagomirs) for each PBEF/NAMPT miRNA significantly increased the endogenous PBEF/NAMPT mRNA (1.4-3.4 ± 0.1 FI) and protein levels (1.2-1.4 ± 0.1 FI) and 3'-UTR luciferase activity (1.4-1.7 ± 0.1 FI) compared with negative antagomir controls. Collectively, these data demonstrate that increased PBEF/NAMPT expression induced by bioactive agonists (i.e., excessive mechanical stress, LPS) involves epigenetic regulation with hsa-miR-374a and hsa-miR-568, representing novel therapeutic strategies to reduce inflammatory lung injury.
Collapse
Affiliation(s)
- Djanybek M Adyshev
- Institute for Personalized Respiratory Medicine, Department of Medicine, Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, Chicago, Illinois
| | | | | | | | | | | |
Collapse
|
38
|
Novel Pharmacologic Approaches for the Treatment of ARDS. ANNUAL UPDATE IN INTENSIVE CARE AND EMERGENCY MEDICINE 2014 2014. [PMCID: PMC7176210 DOI: 10.1007/978-3-319-03746-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Global analysis of the differentially expressed miRNAs of prostate cancer in Chinese patients. BMC Genomics 2013; 14:757. [PMID: 24191917 PMCID: PMC4008360 DOI: 10.1186/1471-2164-14-757] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 10/24/2013] [Indexed: 12/31/2022] Open
Abstract
Background Our recent study showed the global physiological function of the differentially expressed genes of prostate cancer in Chinese patients was different from that of other non-Chinese populations. microRNA are estimated to regulate the expression of greater than 60% of all protein-coding genes. To further investigate the global association between the transcript abundance of miRNAs and their target mRNAs in Chinese patients, we used microRNA microarray approach combined with bioinformatics and clinical-pathological assay to investigate the miRNA profile and evaluate the potential of miRNAs as diagnostic and prognostic markers in Chinese patients. Results A total of 28 miRNAs (fold change ≥1.5; P ≤ 0.05) were differentially expressed between tumor tissue and adjacent benign tissue of 4 prostate cancer patients.10 top Differentially expressed miRNAs were validated by qRT-PCR using all 20 tissue pairs. Compared to the miRNA profile of non-Chinese populations, the current study showed that miR-23b, miR-220, miR-221, miR-222, and miR-205 maybe common critical therapeutic targets in different populations. The integrated analysis for mRNA microarray and miRNA microarray showed the effects of specifically inhibiting and/or enhancing the function of miRNAs on the gene transcription level. The current studies also identified 15 specific expressed miRNAs in Chinese patients. The clinical feature statistics revealed that miR-374b and miR-19a have significant correlations with clinical-pathological features in Chinese patients. Conclusions Our findings showed Chinese prostate cancer patients have a common and specific miRNA expression profile compared with non-Chinese populations. The miR-374b is down-regulated in prostate cancer tissue, and it can be identified as an independent predictor of biochemical recurrence-free survival.
Collapse
|