1
|
Samareh B, Klimenkova O, Aghaallaei N, Cheng L, Zikic A, Loghmani H, Müller P, Suttorp M, Welte K, Skokowa J, Morishima T. NAMPT-mediated deacetylation of HCLS1 protein promotes clonogenic growth of pediatric CML cells. Exp Hematol 2025:104801. [PMID: 40349748 DOI: 10.1016/j.exphem.2025.104801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 04/21/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025]
Abstract
Pediatric chronic myeloid leukemia (CML) is a rare hematological malignancy with biological features that differ from that of adult patients. In pediatric CML patients the burden of tumor cells is higher resulting in a delayed achievement of deep molecular response (DMR) upon treatment with tyrosine kinase inhibitors (TKIs, e.g. imatinib) than what has been reported in adults. Therefore, the probability to develop resistance to TKIs in children with CML is higher than in adults due to much longer exposure to TKIs. Moreover, in children with CML, long-term treatment with imatinib causes hematologic and non-hematologic toxicities. Improvements of CML therapy in pediatric patients based on the targeting of hematopoiesis-specific BCR::ABL1 downstream effectors are needed. Here, we report elevated levels of the Nicotinamide phosphoribosyltransferase (NAMPT) in mononuclear cells of chronic phase CML (CP-CML) pediatric patients and in blastic phase CML cell lines. NAMPT inhibition abrogated in vitro clonogenic capacity and proliferation of CML cells. NAMPT deacetylates and activates the hematopoietic-specific lyn-substrate 1 (HCLS1) protein, which is essential for the proliferation of CML cells. Moreover, IL1RAP - a marker of myeloid leukemia initiating cells - and LEF-1 - a transcription factor of Wnt signaling - are downstream targets of NAMPT/HCLS1 pathway. Together, our results reveal new treatment avenues of pediatric CML patients by targeting NAMPT-mediated deacetylation of the hematopoietic-specific HCLS1 protein. Teaser Abstract Pediatric chronic myeloid leukemia (CML) patients need long-term tyrosine kinase inhibitor treatment which causes toxicities. Therefore, improvements of CML therapy in pediatric patients are needed. Here, we report elevated levels of the Nicotinamide phosphoribosyltransferase (NAMPT) in chronic phase pediatric CML cells. NAMPT inhibition abrogated in vitro clonogenic capacity and proliferation of CML cells. NAMPT deacetylates and activates the hematopoietic-specific lyn-substrate 1 (HCLS1) protein. Moreover, IL1RAP - a marker of myeloid leukemia initiating cells - is a downstream target of NAMPT/HCLS1 pathway. Together, our results reveal new treatment avenues of pediatric CML patients.
Collapse
Affiliation(s)
- Bardia Samareh
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Olga Klimenkova
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Narges Aghaallaei
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Lijuan Cheng
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Andrew Zikic
- Faculty of Medicine, University of Toronto, 1 King´s College Cir, Toronto, ON M5S 1A8, Canada
| | - Houra Loghmani
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Meinolf Suttorp
- Pediatric Hematology and Oncology, Medical Faculty, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Karl Welte
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, University Hospital Tübingen, Hoppe-Seyler-Strasse 1, 72076 Tübingen, Germany
| | - Julia Skokowa
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Tatsuya Morishima
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany.
| |
Collapse
|
2
|
Rodriguez M, Xu H, Hernandez A, Ingraham J, Canizales J, Arce FT, Camp SM, Briggs S, Ooi A, Burke JM, Song JH, Garcia JGN. NEDD4 E3 ligase-catalyzed NAMPT ubiquitination and autophagy activation are essential for pyroptosis-independent NAMPT secretion in human monocytes. Cell Commun Signal 2025; 23:157. [PMID: 40159488 PMCID: PMC11956250 DOI: 10.1186/s12964-025-02164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
NAMPT is an important intracellular metabolic enzyme (iNAMPT) regulating the NAD+ salvage pathway. However, increased cellular stress (infection, inflammation, hypoxia) promotes the secretion of extracellular NAMPT (eNAMPT), a TLR4 ligand and damage-associated molecular pattern protein (DAMP) that directly drives amplification of innate immune-mediated inflammatory, fibrotic, and neoplastic responses to influence disease severity. We sought to examine the mechanisms underlying pyroptotic eNAMPT release from human monocytic THP-1 cells, evoked by Nigericin, and non-pyroptotic eNAMPT secretion elicited by lipopolysaccharide (LPS). Our data indicate eNAMPT secretion/release requires NLRP3 inflammasome activation with substantial attenuation by either NLRP3 inhibition (MCC-950) or targeted genetic deletion of key inflammasome components, including NLRP3, caspase-1, or gasdermin D (GSDMD). Pyroptosis-associated eNAMPT release involved cleavage of the pore-forming GSDMD protein resulting in plasma membrane rupture (PMR) whereas non-pyroptotic LPS-induced eNAMPT secretion involved neither GSDMD cleavage nor PMR, verified utilizing non-cleavable GSDMD mutant constructs. LPS-induced eNAMPT secretion, however, was highly dependent upon NAMPT ubiquitination catalyzed by a complex containing the NEDD4 E3 ligase, Hsp90 (a selective chaperone), and intact GSDMD verified by enzymatic inhibition or silencing of NEDD4, GSDMD, or Hsp90. NAMPT ubiquitination and secretion involves autophagy activation as super-resolution microscopy analyses demonstrate NAMPT co-localization with autophagosome marker LC3B and eNAMPT secretion was significantly reduced by targeted ATG5 and ATG7 inhibition, critical components of the autophagy E3-like complex. These studies provide key insights into eNAMPT secretion that may accelerate the development of therapeutic strategies that address unmet therapeutic needs in inflammatory, fibrotic and neoplastic disorders.
Collapse
Affiliation(s)
- Marisela Rodriguez
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Haifei Xu
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Annie Hernandez
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Julia Ingraham
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Jason Canizales
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Fernando Teran Arce
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Sara M Camp
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Skyler Briggs
- Department of Molecular Medicine, University of Florida Scripps Research Institute, Jupiter, FL, USA
| | - Aikseng Ooi
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - James M Burke
- Department of Molecular Medicine, University of Florida Scripps Research Institute, Jupiter, FL, USA
| | - Jin H Song
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
- Department of Molecular Medicine, University of Florida Scripps Research Institute, Jupiter, FL, USA
| | - Joe G N Garcia
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA.
- Department of Molecular Medicine, University of Florida Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
3
|
Lee J, Woo H, Kang H, Park YK, Lee JY. Nicotinamide riboside targets mitochondrial unfolded protein response to reduce alcohol-induced damage in Kupffer cells. J Pathol 2025; 265:110-122. [PMID: 39624887 DOI: 10.1002/path.6372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/15/2024] [Accepted: 10/23/2024] [Indexed: 12/14/2024]
Abstract
The pathogenesis of alcohol-related liver disease (ALD) is closely linked to mitochondrial dysfunction and impaired cellular energy metabolism. In this study, we explored how ethanol triggers inflammation, oxidative stress, and mitochondrial dysfunction in Kupffer cells, i.e.hepatic resident macrophages, primarily focusing on the mitochondrial unfolded protein response (UPRmt) using immortalized mouse Kupffer cells (ImKCs) and mouse primary KCs. The UPRmt is a cellular defense mechanism activated in response to the perturbation of mitochondrial proteostasis to maintain mitochondrial integrity and function by upregulating the expression of mitochondrial chaperones and proteases. We also determined whether nicotinamide riboside (NR), a NAD+ precursor, could mitigate ethanol-triggered cellular damage. When ImKCs were exposed to 80 mm ethanol for 72 h, they displayed inflammation, oxidative stress, and impaired mitochondrial function with decreased mitochondrial content and deformed mitochondrial crista structure. NR, however, counteracted the effects of ethanol. Furthermore, ethanol increased mRNA and protein levels of UPRmt genes, such as mitochondrial chaperones and proteases, which were attenuated by NR. Notably, the ethanol-induced shift in the entry of activating transcription factor 5 (ATF5), a putative transcriptional regulator of UPRmt, to the nucleus from the mitochondria was abolished by NR. The induction of UPRmt genes by ethanol was significantly repressed when Atf5 was knocked down, indicating the role of ATF5 in the induction of UPRmt genes in ImKCs exposed to ethanol. We also confirmed the induction of UPRmt gene expression in mouse and human livers exposed to alcohol. Our findings demonstrate the ability of NR to alleviate ethanol-induced oxidative stress, inflammation, and mitochondrial dysfunction, partly by modulating the ATF5-dependent UPRmt pathway in ImKCs, suggesting its potential for ALD therapy. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jaeeun Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Hayoung Woo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Hyunju Kang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
- Department of Food and Nutrition, Keimyung University, Daegu, South Korea
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
4
|
Cabulong RB, Kafle SR, Singh A, Sharma M, Kim BS. Biological production of nicotinamide mononucleotide: a review. Crit Rev Biotechnol 2024:1-18. [PMID: 39675885 DOI: 10.1080/07388551.2024.2433993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/30/2024] [Accepted: 10/27/2024] [Indexed: 12/17/2024]
Abstract
Nicotinamide mononucleotide (NMN) presents significant therapeutic potential against aging-related conditions, such as Alzheimer's disease, due to its consistent and strong pharmacological effects. Aside from its anti-aging effect, NMN is also an emerging noncanonical cofactor for orthogonal metabolic pathways in the field of biomanufacturing. This has significant advantages in the field of metabolic engineering, allowing cells to produce unnatural chemicals without disrupting the natural cellular processes. NMN is produced through both the chemical and biological methods, with the latter being more environmentally sustainable. The primary biological production pathway centers on the enzyme nicotinamide phosphoribosyltransferase, which transforms nicotinamide and phosphoribosyl pyrophosphate to NMN. Efforts to increase NMN production have been explored in microorganisms, such as: Escherichia coli, Bacillus subtilis, and yeast, serving as biocatalysts, by rewiring their metabolic processes. Although most researchers are focusing on genetically and metabolically manipulating microorganisms to act as biocatalysts, a growing number of studies on cell-free synthesis are emerging as a promising strategy for producing NMN. This review explores the different biological production techniques of NMN employing microorganisms. This article, in particular, is essential to those who are working on NMN production using microbial strain engineering and cell-free systems.
Collapse
Affiliation(s)
- Rhudith B Cabulong
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Saroj Raj Kafle
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Anju Singh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Mukesh Sharma
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
5
|
Sun X, Sun B, Sammani S, Dudek S, Belvitch P, Camp S, Zhang D, Bime C, Garcia J. Genetic and epigenetic regulation of cortactin (CTTN) by inflammatory factors and mechanical stress in human lung endothelial cells. Biosci Rep 2024; 44:BSR20231934. [PMID: 39162263 PMCID: PMC11405783 DOI: 10.1042/bsr20231934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 08/21/2024] Open
Abstract
RATIONALE Cortactin, an actin-binding cytoskeletal protein, plays a crucial role in maintaining endothelial cell (EC) barrier integrity and regulating vascular permeability. The gene encoding cortactin, CTTN, is implicated in various lung inflammatory disorders. Despite this, the transcriptional regulation of CTTN by inflammatory stimuli and promoter SNPs remains unexplored. METHODS We transfected human lung ECs with a full-length CTTN promoters linked to a luciferase reporter to measure promoter activity. SNP-containing CTTN promoter was created via site-directed mutagenesis. Transfected ECs were exposed to LPS (PAMP), TNF-α (cytokine), cyclic stretch (CS), FG-4592 (HIF-inducer), NRF2 (anti-oxidant modulator), FTY-(S)-phosphate (endothelial barrier enhancer), and 5'-Aza (demethylation inducer). Immunohistochemistry was used to assess cortactin expression in mouse lungs exposed to LPS. RESULTS LPS, TNF-α, and 18%CS significantly increased CTTN promoter activities in a time-dependent manner (P<0.05). The variant rs34612166 (-212T/C) markedly enhanced LPS- and 18%CS- induced CTTN promoter activities (P<0.05). FG-4592 significantly boosted CTTN promoter activities (P<0.01), which were partially inhibited by HIF1α (KC7F2) and HIF2α (PT2385) inhibitors (P<0.05). NRF2 activator Bixin increased CTTN promoter activities, whereas NRF2 inhibitor Brusatol reduced them (P<0.05). 5'-Aza increased CTTN promoter activities by 2.9-fold (P<0.05). NF-κB response element mutations significantly reduced CTTN promoter activities response to LPS and TNFα. FTY-(S)-phosphate significantly increased CTTN promoter activities in 24 h. In vivo, cortactin levels were significantly elevated in inflammatory mouse lungs exposed to LPS for 18 h. CONCLUSION CTTN transcriptional is significantly influenced by inflammatory factors and promoter variants. Cortactin, essential in mitigating inflammatory edema, presents a promising therapeutic target to alleviate severe inflammatory disorders.
Collapse
Affiliation(s)
- Xiaoguang Sun
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - Belinda Sun
- Department of Pathology, University of Arizona, Tucson, AZ, U.S.A
| | - Saad Sammani
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - Steven M Dudek
- Department of Medicine, University of Illinois Chicago, Chicago IL, U.S.A
| | - Patrick Belvitch
- Department of Medicine, University of Illinois Chicago, Chicago IL, U.S.A
| | - Sara M. Camp
- University of Florida, UF Scripps Research Institute, Jupiter, FL, U.S.A
| | - Donna Zhang
- College of Pharmacy, University of Arizona, Tucson, AZ, U.S.A
| | - Christian Bime
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - Joe G.N. Garcia
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
- University of Florida, UF Scripps Research Institute, Jupiter, FL, U.S.A
| |
Collapse
|
6
|
Cascetta G, Colombo G, Eremita G, Garcia JGN, Lenti MV, Di Sabatino A, Travelli C. Pro- and anti-inflammatory cytokines: the hidden keys to autoimmune gastritis therapy. Front Pharmacol 2024; 15:1450558. [PMID: 39193325 PMCID: PMC11347309 DOI: 10.3389/fphar.2024.1450558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Autoimmune gastritis (AIG) is an autoimmune disorder characterized by the destruction of gastric parietal cells and atrophy of the oxyntic mucosa which induces intrinsic factor deficiency and hypo-achlorhydria. AIG predominantly affects the antral mucosa with AIG patients experiencing increased inflammation and a predisposition toward the development of gastric adenocarcinoma and type I neuroendocrine tumors. The exact pathogenesis of this autoimmune disorder is incompletely understood although dysregulated immunological mechanisms appear to major contributors. This review of autoimmune gastritis, an unmet medical need, summarizes current knowledge on pro- and anti-inflammatory cytokines and strategies for the discovery of novel biomarkers and potential pharmacological targets.
Collapse
Affiliation(s)
- Greta Cascetta
- Department of Pharmaceutical Sciences, University of Pavia, Pavia, Italy
| | - Giorgia Colombo
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Gianmarco Eremita
- Department of Pharmaceutical Sciences, University of Pavia, Pavia, Italy
| | - Joe G. N. Garcia
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, United States
| | - Marco Vincenzo Lenti
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Antonio Di Sabatino
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Valle-Mendiola A, Rocha-Zavaleta L, Maldonado-Lagunas V, Morelos-Laguna D, Gutiérrez-Hoya A, Weiss-Steider B, Soto-Cruz I. STAT5 Is Necessary for the Metabolic Switch Induced by IL-2 in Cervical Cancer Cell Line SiHa. Int J Mol Sci 2024; 25:6835. [PMID: 38999946 PMCID: PMC11241652 DOI: 10.3390/ijms25136835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024] Open
Abstract
The tumor cells reprogram their metabolism to cover their high bioenergetic demands for maintaining uncontrolled growth. This response can be mediated by cytokines such as IL-2, which binds to its receptor and activates the JAK/STAT pathway. Some reports show a correlation between the JAK/STAT pathway and cellular metabolism, since the constitutive activation of STAT proteins promotes glycolysis through the transcriptional activation of genes related to energetic metabolism. However, the role of STAT proteins in the metabolic switch induced by cytokines in cervical cancer remains poorly understood. In this study, we analyzed the effect of IL-2 on the metabolic switch and the role of STAT5 in this response. Our results show that IL-2 induces cervical cancer cell proliferation and the tyrosine phosphorylation of STAT5. Also, it induces an increase in lactate secretion and the ratio of NAD+/NADH, which suggest a metabolic reprogramming of their metabolism. When STAT5 was silenced, the lactate secretion and the NAD+/NADH ratio decreased. Also, the expression of HIF1α and GLUT1 decreased. These results indicate that STAT5 regulates IL-2-induced cell proliferation and the metabolic shift to aerobic glycolysis by regulating genes related to energy metabolism. Our results suggest that STAT proteins modulate the metabolic switch in cervical cancer cells to attend to their high demand of energy required for cell growth and proliferation.
Collapse
Affiliation(s)
- Arturo Valle-Mendiola
- Laboratorio de Oncología Molecular, Unidad de Investigación en Diferenciación Celular y Cáncer, FES Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de Mayo s/n Col. Ejército de Oriente, Mexico City 09230, Mexico; (A.V.-M.); (D.M.-L.); (A.G.-H.); (B.W.-S.)
| | - Leticia Rocha-Zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Vilma Maldonado-Lagunas
- Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica (INMEGEN), Periférico Sur no. 4809, Col. Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico;
| | - Diego Morelos-Laguna
- Laboratorio de Oncología Molecular, Unidad de Investigación en Diferenciación Celular y Cáncer, FES Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de Mayo s/n Col. Ejército de Oriente, Mexico City 09230, Mexico; (A.V.-M.); (D.M.-L.); (A.G.-H.); (B.W.-S.)
| | - Adriana Gutiérrez-Hoya
- Laboratorio de Oncología Molecular, Unidad de Investigación en Diferenciación Celular y Cáncer, FES Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de Mayo s/n Col. Ejército de Oriente, Mexico City 09230, Mexico; (A.V.-M.); (D.M.-L.); (A.G.-H.); (B.W.-S.)
- Cátedra CONAHCYT, FES Zaragoza, Universidad Nacional Autónoma de México, Mexico City 68020, Mexico
| | - Benny Weiss-Steider
- Laboratorio de Oncología Molecular, Unidad de Investigación en Diferenciación Celular y Cáncer, FES Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de Mayo s/n Col. Ejército de Oriente, Mexico City 09230, Mexico; (A.V.-M.); (D.M.-L.); (A.G.-H.); (B.W.-S.)
| | - Isabel Soto-Cruz
- Laboratorio de Oncología Molecular, Unidad de Investigación en Diferenciación Celular y Cáncer, FES Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de Mayo s/n Col. Ejército de Oriente, Mexico City 09230, Mexico; (A.V.-M.); (D.M.-L.); (A.G.-H.); (B.W.-S.)
| |
Collapse
|
8
|
Yu R, Lu G, Cheng B, Li J, Jiang Q, Lan X. Construction and validation of a novel NAD + metabolism-related risk model for prognostic prediction in osteosarcoma. J Orthop Res 2024; 42:1086-1103. [PMID: 38047487 DOI: 10.1002/jor.25757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/18/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Currently, the prognosis of osteosarcoma (OS) remains discouraging, especially in elderly/metastatic OS patients. By impairing the antitumor effect of immune cells, tumor immune microenvironment (TIME) provides an environment conducive to tumor proliferation, which highly requires accelerated nicotinamide adenine dinucleotide (NAD+) metabolism for energy. Recently, many genes involved in the sustained production of NAD+ in malignant tumors have been verified to be possible prognostic indicators and therapeutic targets. Therefore, the current study was to probe into the association of NAD+ metabolism-related genes with TIME, immunotherapeutic response, and prognosis in OS. All OS data for the study were acquired from TARGET and GEO databases. In bioinformatics analysis, we performed Cox analysis, consensus clustering, principal component analysis, t-distributed stochastic neighbor embedding, uniform manifold approximation and projection, gene set enrichment analysis, gene set variation analysis, Lasso analysis, survival and ROC curves, nomogram, immune-related analysis, drug sensitivity analysis, and single-cell RNA sequencing (scRNA-seq) analysis. Cell transfection assay, RT-qPCR, western blot analysis, as well as cell wound healing, migration, and invasion assays were performed in vitro. Bioinformatics analysis identified A&B clusters and six NAD+ metabolism-related differentially expressed genes, constructed risk model and nomogram, and performed immune-related analysis, drug susceptibility analysis, and scRNA-seq analysis to inform the clinical treatment framework. In vitro experiment revealed that CBS and INPP1 can promote migration, proliferation as well as invasion of OS cells through TGF-β1/Smad2/3 pathway. Based on bioinformatics analysis and in vitro validation, this study confirmed that NAD+ metabolism affects TIME to suggest the prognosis of OS.
Collapse
Affiliation(s)
- Ronghui Yu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Gang Lu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Banghong Cheng
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Junhong Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiqing Jiang
- Department of Orthopedics, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Xia Lan
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Wang L, Wang J, Han L, Chen T. Palmatine Attenuated Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting M1 Phenotype Macrophage Polarization via NAMPT/TLR2/CCR1 Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38619332 DOI: 10.1021/acs.jafc.3c05597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The present work was conducted to research the potential mechanism of palmatine (PAL) on lipopolysaccharide (LPS)-caused acute lung injury (ALI). Network pharmacology and bioinformatic analyses were carried out. Mice were intragastrically treated with PAL and intratracheally stimulated with LPS. LPS-induced RAW264.7 cells were employed for the in vitro model. The MPO activity, W/D ratio, neutrophils, total cell number in BALF, and histopathological alteration were examined. The levels of TNF-α, IL-1β, IL-6, IL-18, IL-4, and IL-10 in serum, BALF, and supernatant were examined by ELISA. The mRNA expressions of iNOS, CD68, Arg1, Ym1, and CD206 and protein expressions of NAMPT, TLR2, CCR1, and NLRP3 inflammasome were detected by PCR, WB, and immunofluorescence. The NAMPT inhibitor FK866, TLR2 inhibitor C29, CCR1 inhibitor BX471, NAMPT-overexpression (OE) plasmid, and TLR2-OE plasmid were used for mechanism research. As a result, PAL relieved the symptoms of ALI. PAL inhibited M1 phenotype indices and promoted M2 phenotype indices in both LPS-induced mice and RAW264.7 cells. PAL also inhibited the expressions of NAMPT, TLR2, CCR1, and NLRP3 inflammasome. The treatments with FK866, NAMPT-OE plasmid, C29, TLR2-OE plasmid, and BX471 proved that PAL exerted its effect via NAMPT/TLR2/CCR1. Molecular docking suggested that PAL might combine with NAMPT. In conclusion, PAL ameliorated LPS-induced ALI by inhibiting M1 phenotype macrophage polarization via NAMPT/TLR2/CCR1 signaling.
Collapse
Affiliation(s)
- Lei Wang
- Jiangsu Health Vocational College, Nanjing 211800, China
| | - Jinchun Wang
- Jiangsu Health Vocational College, Nanjing 211800, China
| | - Lei Han
- Jiangsu Health Vocational College, Nanjing 211800, China
| | - Tong Chen
- China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
10
|
Price DR, Garcia JGN. A Razor's Edge: Vascular Responses to Acute Inflammatory Lung Injury/Acute Respiratory Distress Syndrome. Annu Rev Physiol 2024; 86:505-529. [PMID: 38345908 PMCID: PMC11259086 DOI: 10.1146/annurev-physiol-042222-030731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Historically considered a metabolically inert cellular layer separating the blood from the underlying tissue, the endothelium is now recognized as a highly dynamic, metabolically active tissue that is critical to organ homeostasis. Under homeostatic conditions, lung endothelial cells (ECs) in healthy subjects are quiescent, promoting vasodilation, platelet disaggregation, and anti-inflammatory mechanisms. In contrast, lung ECs are essential contributors to the pathobiology of acute respiratory distress syndrome (ARDS), as the quiescent endothelium is rapidly and radically altered upon exposure to environmental stressors, infectious pathogens, or endogenous danger signals into an effective and formidable regulator of innate and adaptive immunity. These dramatic perturbations, produced in a tsunami of inflammatory cascade activation, result in paracellular gap formation between lung ECs, sustained lung edema, and multi-organ dysfunction that drives ARDS mortality. The astonishing plasticity of the lung endothelium in negotiating this inflammatory environment and efforts to therapeutically target the aberrant ARDS endothelium are examined in further detail in this review.
Collapse
Affiliation(s)
- David R Price
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY, USA
| | - Joe G N Garcia
- Center for Inflammation Sciences and Systems Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA;
| |
Collapse
|
11
|
Kempf CL, Song JH, Sammani S, Bermudez T, Reyes Hernon V, Tang L, Cai H, Camp SM, Johnson CA, Basiouny MS, Bloomquist LA, Rioux JS, White CW, Veress LA, Garcia JGN. TLR4 Ligation by eNAMPT, a Novel DAMP, is Essential to Sulfur Mustard- Induced Inflammatory Lung Injury and Fibrosis. EUROPEAN JOURNAL OF RESPIRATORY MEDICINE 2024; 6:389-397. [PMID: 38390523 PMCID: PMC10883439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Objective Human and preclinical studies of sulfur mustard (SM)-induced acute and chronic lung injuries highlight the role of unremitting inflammation. We assessed the utility of targeting the novel DAMP and TLR4 ligand, eNAMPT (extracellular nicotinamide phosphoribosyltransferase), utilizing a humanized mAb (ALT-100) in rat models of SM exposure. Methods Acute (SM 4.2 mg/kg, 24 hrs), subacute (SM 0.8 mg/kg, day 7), subacute (SM 2.1 mg/kg, day 14), and chronic (SM 1.2 mg/kg, day 29) SM models were utilized. Results Each SM model exhibited significant increases in eNAMPT expression (lung homogenates) and increased levels of phosphorylated NFkB and NOX4. Lung fibrosis (Trichrome staining) was observed in both sub-acute and chronic SM models in conjunction with elevated smooth muscle actin (SMA), TGFβ, and IL-1β expression. SM-exposed rats receiving ALT-100 (1 or 4 mg/kg, weekly) exhibited increased survival, highly significant reductions in histologic/biochemical evidence of lung inflammation and fibrosis (Trichrome staining, decreased pNFkB, SMA, TGFβ, NOX4), decreased airways strictures, and decreased plasma cytokine levels (eNAMPT, IL-6, IL-1β. TNFα). Conclusion The highly druggable, eNAMPT/TLR4 signaling pathway is a key contributor to SM-induced ROS production, inflammatory lung injury and fibrosis. The ALT-100 mAb is a potential medical countermeasure to address the unmet need to reduce SM-associated lung pathobiology/mortality.
Collapse
Affiliation(s)
- Carrie L Kempf
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ
| | - Jin H Song
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ
| | - Tadeo Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ
| | | | - Lin Tang
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ
| | - Hua Cai
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ
| | - Carly A Johnson
- Department of Pediatrics, Center for Advanced Drug Development, University of Colorado Anschutz Campus, Aurora, CO
| | - Mohamed S Basiouny
- Department of Pediatrics, Center for Advanced Drug Development, University of Colorado Anschutz Campus, Aurora, CO
| | - Leslie A Bloomquist
- Department of Pediatrics, Center for Advanced Drug Development, University of Colorado Anschutz Campus, Aurora, CO
| | - Jacqueline S Rioux
- Department of Pediatrics, Center for Advanced Drug Development, University of Colorado Anschutz Campus, Aurora, CO
| | - Carl W White
- Department of Pediatrics, Center for Advanced Drug Development, University of Colorado Anschutz Campus, Aurora, CO
| | - Livia A Veress
- Department of Pediatrics, Center for Advanced Drug Development, University of Colorado Anschutz Campus, Aurora, CO
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ
| |
Collapse
|
12
|
Liu Z, Sammani S, Barber CJ, Kempf CL, Li F, Yang Z, Bermudez RT, Camp SM, Herndon VR, Furenlid LR, Martin DR, Garcia JGN. An eNAMPT-neutralizing mAb reduces post-infarct myocardial fibrosis and left ventricular dysfunction. Biomed Pharmacother 2024; 170:116103. [PMID: 38160623 PMCID: PMC10872269 DOI: 10.1016/j.biopha.2023.116103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
Myocardial infarction (MI) triggers adverse ventricular remodeling (VR), cardiac fibrosis, and subsequent heart failure. Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is postulated to play a significant role in VR processing via activation of the TLR4 inflammatory pathway. We hypothesized that an eNAMPT specific monoclonal antibody (mAb) could target and neutralize overexpressed eNAMPT post-MI and attenuate chronic cardiac inflammation and fibrosis. We investigated humanized ALT-100 and ALT-300 mAb with high eNAMPT-neutralizing capacity in an infarct rat model to test our hypothesis. ALT-300 was 99mTc-labeled to generate 99mTc-ALT-300 for imaging myocardial eNAMPT expression at 2 hours, 1 week, and 4 weeks post-IRI. The eNAMPT-neutralizing ALT-100 mAb (0.4 mg/kg) or saline was administered intraperitoneally at 1 hour and 24 hours post-reperfusion and twice a week for 4 weeks. Cardiac function changes were determined by echocardiography at 3 days and 4 weeks post-IRI. 99mTc-ALT-300 uptake was initially localized to the ischemic area at risk (IAR) of the left ventricle (LV) and subsequently extended to adjacent non-ischemic areas 2 hours to 4 weeks post-IRI. Radioactive uptake (%ID/g) of 99mTc-ALT-300 in the IAR increased from 1 week to 4 weeks (0.54 ± 0.16 vs. 0.78 ± 0.13, P < 0.01). Rats receiving ALT-100 mAb exhibited significantly improved myocardial histopathology and cardiac function at 4 weeks, with a significant reduction in the collagen volume fraction (%LV) compared to controls (21.5 ± 6.1% vs. 29.5 ± 9.9%, P < 0.05). Neutralization of the eNAMPT/TLR4 inflammatory cascade is a promising therapeutic strategy for MI by reducing chronic inflammation, fibrosis, and preserving cardiac function.
Collapse
Affiliation(s)
- Zhonglin Liu
- Translational Imaging Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States; Department of Medical Imaging, University of Arizona Health Sciences, Tucson, AZ, United States.
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Christy J Barber
- Department of Medical Imaging, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Carrie L Kempf
- University of Florida UF Scripps Research Institute, Jupiter, FL, United States
| | - Feng Li
- Translational Imaging Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Zhen Yang
- Translational Imaging Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Rosendo T Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Sara M Camp
- University of Florida UF Scripps Research Institute, Jupiter, FL, United States
| | - Vivian Reyes Herndon
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Lars R Furenlid
- Department of Medical Imaging, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Diego R Martin
- Translational Imaging Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States.
| | - Joe G N Garcia
- University of Florida UF Scripps Research Institute, Jupiter, FL, United States
| |
Collapse
|
13
|
Sun BL, Sun X, Kempf CL, Song JH, Casanova NG, Camp SM, Hernon VR, Fallon M, Bime C, Martin DR, Travelli C, Zhang DD, Garcia JGN. Involvement of eNAMPT/TLR4 inflammatory signaling in progression of non-alcoholic fatty liver disease, steatohepatitis, and fibrosis. FASEB J 2023; 37:e22825. [PMID: 36809677 PMCID: PMC11265521 DOI: 10.1096/fj.202201972rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
Although the progression of non-alcoholic fatty liver disease (NAFLD) from steatosis to steatohepatitis (NASH) and cirrhosis remains poorly understood, a critical role for dysregulated innate immunity has emerged. We examined the utility of ALT-100, a monoclonal antibody (mAb), in reducing NAFLD severity and progression to NASH/hepatic fibrosis. ALT-100 neutralizes eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a novel damage-associated molecular pattern protein (DAMP) and Toll-like receptor 4 (TLR4) ligand. Histologic and biochemical markers were measured in liver tissues and plasma from human NAFLD subjects and NAFLD mice (streptozotocin/high-fat diet-STZ/HFD, 12 weeks). Human NAFLD subjects (n = 5) exhibited significantly increased NAMPT hepatic expression and significantly elevated plasma levels of eNAMPT, IL-6, Ang-2, and IL-1RA compared to healthy controls, with IL-6 and Ang-2 levels significantly increased in NASH non-survivors. Untreated STZ/HFD-exposed mice displayed significant increases in NAFLD activity scores, liver triglycerides, NAMPT hepatic expression, plasma cytokine levels (eNAMPT, IL-6, and TNFα), and histologic evidence of hepatocyte ballooning and hepatic fibrosis. Mice receiving the eNAMPT-neutralizing ALT-100 mAb (0.4 mg/kg/week, IP, weeks 9 to 12) exhibited marked attenuation of each index of NASH progression/severity. Thus, activation of the eNAMPT/TLR4 inflammatory pathway contributes to NAFLD severity and NASH/hepatic fibrosis. ALT-100 is potentially an effective therapeutic approach to address this unmet NAFLD need.
Collapse
Affiliation(s)
- Belinda L. Sun
- Department of Pathology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Xiaoguang Sun
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Carrie L. Kempf
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Jin H. Song
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Nancy G. Casanova
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Sara M. Camp
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Vivian Reyes Hernon
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Michael Fallon
- Department of Medicine, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| | - Christian Bime
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Diego R. Martin
- Department of Radiology and the Translational Imaging Center, Houston Methodist Hospital and the Houston Methodist Research Institute, Houston, Texas, USA
| | | | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Joe G. N. Garcia
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
14
|
Lynn H, Sun X, Casanova NG, Bime C, Reyes Hernon V, Lanham C, Oita RC, Ramos N, Sun B, Coletta DK, Camp SM, Karnes JH, Ellis NA, Garcia JG. Linkage of NAMPT promoter variants to eNAMPT secretion, plasma eNAMPT levels, and ARDS severity. Ther Adv Respir Dis 2023; 17:17534666231181262. [PMID: 37477094 PMCID: PMC10363883 DOI: 10.1177/17534666231181262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/25/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND AND OBJECTIVES eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a novel DAMP and TLR4 ligand, is a druggable ARDS therapeutic target with NAMPT promoter SNPs associated with ARDS severity. This study assesses the previously unknown influence of NAMPT promoter SNPs on NAMPT transcription, eNAMPT secretion, and ARDS severity. METHODS AND DESIGN Human lung endothelial cells (ECs) transfected with NAMPT promoter luciferase reporters harboring SNPs G-1535A, A-1001 C, and C-948A, were exposed to LPS or LPS/18% cyclic stretch (CS) and NAMPT promoter activity, NAMPT protein expression, and secretion assessed. NAMPT genotypes and eNAMPT plasma measurements (Days 0/7) were assessed in two ARDS cohorts (DISCOVERY n = 428; ALVEOLI n = 103). RESULTS Comparisons of minor allelic frequency (MAF) in both ARDS cohorts with the 1000 Human Genome Project revealed the G-1535A and C-948A SNPs to be significantly associated with ARDS in Blacks compared with controls and trended toward significance in non-Hispanic Whites. LPS-challenged and LPS/18% CS-challenged EC harboring the -1535G wild-type allele exhibited significantly increased NAMPT promoter activity (compared with -1535A) with the -1535G/-948A diplotype exhibiting significantly increased NAMPT promoter activity, NAMPT protein expression, and eNAMPT secretion compared with the -1535A/-948 C diplotype. Highly significant increases in Day 0 eNAMPT plasma values were observed in both DISCOVERY and ALVEOLI ARDS cohorts (compared with healthy controls). Among subjects surviving to Day 7, Day 7 eNAMPT values were significantly increased in Day 28 non-survivors versus survivors. The protective -1535A SNP allele drove -1535A/-1001A and -1535A/-948 C diplotypes that confer significantly reduced ARDS risk (compared with -1535G, -1535G/-1001 C, -1535G/-948A), particularly in Black ARDS subjects. NAMPT SNP comparisons within the two ARDS cohorts did not identify significant association with either APACHE III scores or plasma eNAMPT levels. CONCLUSION NAMPT SNPs influence promoter activity, eNAMPT protein expression/secretion, plasma eNAMPT levels, and ARDS severity. NAMPT genotypes are a potential tool for stratification in eNAMPT-focused ARDS clinical trials.
Collapse
Affiliation(s)
- Heather Lynn
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Xiaoguang Sun
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Nancy G. Casanova
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Christian Bime
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | | | - Clayton Lanham
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Radu C. Oita
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Nikolas Ramos
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Belinda Sun
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Dawn K. Coletta
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Sara M. Camp
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jason H. Karnes
- College of Pharmacy, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Nathan A. Ellis
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Joe G.N. Garcia
- Dr. Herbert A. Wertheim Professor of Inflammation Science, Director, Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
15
|
Sun X, Sammani S, Hufford M, Sun BL, Kempf CL, Camp SM, Garcia JGN, Bime C. Targeting SELPLG/P-selectin glycoprotein ligand 1 in preclinical ARDS: Genetic and epigenetic regulation of the SELPLG promoter. Pulm Circ 2023; 13:e12206. [PMID: 36873461 PMCID: PMC9982077 DOI: 10.1002/pul2.12206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
We previously identified a missense single nucleotide polymorphism rs2228315 (G>A, Met62Ile) in the selectin-P-ligand gene (SELPLG), encoding P-selectin glycoprotein ligand 1 (PSGL-1), to be associated with increased susceptibility to acute respiratory distress syndrome (ARDS). These earlier studies demonstrated that SELPLG lung tissue expression was increased in mice exposed to lipopolysaccharide (LPS)- and ventilator-induced lung injury (VILI) suggesting that inflammatory and epigenetic factors regulate SELPLG promoter activity and transcription. In this report, we used a novel recombinant tandem PSGL1 immunoglobulin fusion molecule (TSGL-Ig), a competitive inhibitor of PSGL1/P-selectin interactions, to demonstrate significant TSGL-Ig-mediated decreases in SELPLG lung tissue expression as well as highly significant protection from LPS- and VILI-induced lung injury. In vitro studies examined the effects of key ARDS stimuli (LPS, 18% cyclic stretch to simulate VILI) on SELPLG promoter activity and showed LPS-mediated increases in SELPLG promoter activity and identified putative promoter regions associated with increased SELPLG expression. SELPLG promoter activity was strongly regulated by the key hypoxia-inducible transcription factors, HIF-1α, and HIF-2α as well as NRF2. Finally, the transcriptional regulation of SELPLG promoter by ARDS stimuli and the effect of DNA methylation on SELPLG expression in endothelial cell was confirmed. These findings indicate SELPLG transcriptional regulation by clinically-relevant inflammatory factors with the significant TSGL-Ig-mediated attenuation of LPS and VILI highly consistent with PSGL1/P-selectin as therapeutic targets in ARDS.
Collapse
Affiliation(s)
- Xiaoguang Sun
- Division of Pulmonary and Critical Care Medicine, College of MedicineUniversity of Arizona Health SciencesTucsonArizonaUSA
| | - Saad Sammani
- Division of Pulmonary and Critical Care Medicine, College of MedicineUniversity of Arizona Health SciencesTucsonArizonaUSA
| | - Matthew Hufford
- Division of Pulmonary and Critical Care Medicine, College of MedicineUniversity of Arizona Health SciencesTucsonArizonaUSA
| | - Belinda L. Sun
- Division of Pulmonary and Critical Care Medicine, College of MedicineUniversity of Arizona Health SciencesTucsonArizonaUSA
| | - Carrie L. Kempf
- Division of Pulmonary and Critical Care Medicine, College of MedicineUniversity of Arizona Health SciencesTucsonArizonaUSA
| | - Sara M. Camp
- Division of Pulmonary and Critical Care Medicine, College of MedicineUniversity of Arizona Health SciencesTucsonArizonaUSA
| | - Joe G. N. Garcia
- Division of Pulmonary and Critical Care Medicine, College of MedicineUniversity of Arizona Health SciencesTucsonArizonaUSA
| | - Christian Bime
- Division of Pulmonary and Critical Care Medicine, College of MedicineUniversity of Arizona Health SciencesTucsonArizonaUSA
| |
Collapse
|
16
|
Xu Q, Liu X, Mohseni G, Hao X, Ren Y, Xu Y, Gao H, Wang Q, Wang Y. Mechanism research and treatment progress of NAD pathway related molecules in tumor immune microenvironment. Cancer Cell Int 2022; 22:242. [PMID: 35906622 PMCID: PMC9338646 DOI: 10.1186/s12935-022-02664-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is the core of cellular energy metabolism. NAMPT, Sirtuins, PARP, CD38, and other molecules in this classic metabolic pathway affect many key cellular functions and are closely related to the occurrence and development of many diseases. In recent years, several studies have found that these molecules can regulate cell energy metabolism, promote the release of related cytokines, induce the expression of neoantigens, change the tumor immune microenvironment (TIME), and then play an anticancer role. Drugs targeting these molecules are under development or approved for clinical use. Although there are some side effects and drug resistance, the discovery of novel drugs, the development of combination therapies, and the application of new technologies provide solutions to these challenges and improve efficacy. This review presents the mechanisms of action of NAD pathway-related molecules in tumor immunity, advances in drug research, combination therapies, and some new technology-related therapies.
Collapse
Affiliation(s)
- QinChen Xu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Ghazal Mohseni
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Xiaodong Hao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Yidan Ren
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Yiwei Xu
- Marine College, Shandong University, 264209, Weihai, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Qin Wang
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China.
| |
Collapse
|
17
|
Sammani S, Bermudez T, Kempf CL, Song JH, Fleming JC, Reyes Hernon V, Hufford M, Tang L, Cai H, Camp SM, Natarajan V, Jacobson JR, Dudek SM, Martin DR, Karmonik C, Sun X, Sun B, Casanova NG, Bime C, Garcia JGN. eNAMPT Neutralization Preserves Lung Fluid Balance and Reduces Acute Renal Injury in Porcine Sepsis/VILI-Induced Inflammatory Lung Injury. Front Physiol 2022; 13:916159. [PMID: 35812318 PMCID: PMC9257134 DOI: 10.3389/fphys.2022.916159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Numerous potential ARDS therapeutics, based upon preclinical successful rodent studies that utilized LPS challenge without mechanical ventilation, have failed in Phase 2/3 clinical trials. Recently, ALT-100 mAb, a novel biologic that neutralizes the TLR4 ligand and DAMP, eNAMPT (extracellular nicotinamide phosphoribosyltransferase), was shown to reduce septic shock/VILI-induced porcine lung injury when delivered 2 h after injury onset. We now examine the ALT-100 mAb efficacy on acute kidney injury (AKI) and lung fluid balance in a porcine ARDS/VILI model when delivered 6 h post injury.Methods/Results: Compared to control PBS-treated pigs, exposure of ALT-100 mAb-treated pigs (0.4 mg/kg, 2 h or 6 h after injury initiation) to LPS-induced pneumonia/septic shock and VILI (12 h), demonstrated significantly diminished lung injury severity (histology, BAL PMNs, plasma cytokines), biochemical/genomic evidence of NF-kB/MAP kinase/cytokine receptor signaling, and AKI (histology, plasma lipocalin). ALT-100 mAb treatment effectively preserved lung fluid balance reflected by reduced BAL protein/tissue albumin levels, lung wet/dry tissue ratios, ultrasound-derived B lines, and chest radiograph opacities. Delayed ALT-100 mAb at 2 h was significantly more protective than 6 h delivery only for plasma eNAMPT while trending toward greater protection for remaining inflammatory indices. Delayed ALT-100 treatment also decreased lung/renal injury indices in LPS/VILI-exposed rats when delivered up to 12 h after LPS.Conclusions: These studies indicate the delayed delivery of the eNAMPT-neutralizing ALT-100 mAb reduces inflammatory lung injury, preserves lung fluid balance, and reduces multi-organ dysfunction, and may potentially address the unmet need for novel therapeutics that reduce ARDS/VILI mortality.
Collapse
Affiliation(s)
- Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Tadeo Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Carrie L. Kempf
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Jin H. Song
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Justin C Fleming
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Vivian Reyes Hernon
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Matthew Hufford
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Lin Tang
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Hua Cai
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA, United States
| | - Sara M. Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Viswanathan Natarajan
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jeffrey R. Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Steven M. Dudek
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Diego R. Martin
- Department of Radiology and the Translational Imaging Center, Houston Methodist Hospital and the Houston Methodist Research Institute, Houston, TX, United States
| | - Christof Karmonik
- Department of Radiology and the Translational Imaging Center, Houston Methodist Hospital and the Houston Methodist Research Institute, Houston, TX, United States
| | - Xiaoguang Sun
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Belinda Sun
- Department of Pathology, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Nancy G. Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Christian Bime
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Joe G. N. Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
- *Correspondence: Joe G. N. Garcia,
| |
Collapse
|
18
|
Bime C, Casanova NG, Camp SM, Oita RC, Ndukum J, Hernon VR, Oh DK, Li Y, Greer PJ, Whitcomb DC, Papachristou GI, Garcia JGN. Circulating eNAMPT as a biomarker in the critically ill: acute pancreatitis, sepsis, trauma, and acute respiratory distress syndrome. BMC Anesthesiol 2022; 22:182. [PMID: 35705899 PMCID: PMC9198204 DOI: 10.1186/s12871-022-01718-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/26/2022] [Indexed: 12/21/2022] Open
Abstract
Background Nicotinamide phosphoribosyltransferase (NAMPT) exhibits dual functionality – as an intracellular enzyme regulating nicotinamide adenine dinucleotide metabolism and as an extracellular secreted protein (eNAMPT) to function as a cytokine regulator of innate immunity via binding to Toll-Like receptor 4 and NF-κB activation. In limited preclinical and clinical studies, eNAMPT was implicated in the pathobiology of acute respiratory distress syndrome (ARDS) suggesting that eNAMPT could potentially serve as a diagnostic and prognostic biomarker. We investigated the feasibility of circulating eNAMPT levels to serve as a biomarker in an expanded cohort of patients with ARDS and ARDS-predisposing conditions that included acute pancreatitis, sepsis, and trauma with comparisons to controls. Methods A total of 671 patients and 179 healthy controls were included in two independent cohorts. Plasma and serum eNAMPT levels were quantified using one of two complementary Enzyme-linked Immunosorbent Assays. After log base 2 variance stabilizing transformation of plasma/serum eNAMPT measurements, differences between healthy controls and each disease cohort were compared using linear regression or a generalized estimating equation (GEE) model where applicable. Complementary analyses included sensitivity, specificity, positive predictive values, negative predictive values, and the area under the receiver operating curve. Results Compared to controls, circulating eNAMPT levels were significantly elevated in subjects with acute pancreatitis, sepsis, trauma, and ARDS (all p < 0.01). In the acute pancreatitis cohort, circulating eNAMPT levels positively correlated with disease severity (p < 0.01). Conclusions Circulating eNAMPT levels are novel biomarker in the critically ill with acute pancreatitis, sepsis, trauma, and/or ARDS with the potential to reflect disease severity. Supplementary Information The online version contains supplementary material available at 10.1186/s12871-022-01718-1.
Collapse
Affiliation(s)
- Christian Bime
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Nancy G Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Radu C Oita
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Juliet Ndukum
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Vivian Reyes Hernon
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Dong Kyu Oh
- University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Yansong Li
- US Army Institute of Surgical Research, San Antonio, TX, USA
| | - Phil J Greer
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Ariel Precision Medicine, Pittsburgh, PA, USA
| | - David C Whitcomb
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Georgios I Papachristou
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Ohio State University College of Medicine, Columbus, OH, USA
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
19
|
Belvitch P, Casanova N, Sun X, Camp SM, Sammani S, Brown ME, Mascarhenas J, Lynn H, Adyshev D, Siegler J, Desai A, Seyed-Saadat L, Rizzo A, Bime C, Shekhawat GS, Dravid VP, Reilly JP, Jones TK, Feng R, Letsiou E, Meyer NJ, Ellis N, Garcia JGN, Dudek SM. A cortactin CTTN coding SNP contributes to lung vascular permeability and inflammatory disease severity in African descent subjects. Transl Res 2022; 244:56-74. [PMID: 35181549 PMCID: PMC9119916 DOI: 10.1016/j.trsl.2022.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/20/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022]
Abstract
The cortactin gene (CTTN), encoding an actin-binding protein critically involved in cytoskeletal dynamics and endothelial cell (EC) barrier integrity, contains single nucleotide polymorphisms (SNPs) associated with severe asthma in Black patients. As loss of lung EC integrity is a major driver of mortality in the Acute Respiratory Distress Syndrome (ARDS), sepsis, and the acute chest syndrome (ACS), we speculated CTTN SNPs that alter EC barrier function will associate with clinical outcomes from these types of conditions in Black patients. In case-control studies, evaluation of a nonsynonymous CTTN coding SNP Ser484Asn (rs56162978, G/A) in a severe sepsis cohort (725 Black subjects) revealed significant association with increased risk of sepsis mortality. In a separate cohort of sickle cell disease (SCD) subjects with and without ACS (177 SCD Black subjects), significantly increased risk of ACS and increased ACS severity (need for mechanical ventilation) was observed in carriers of the A allele. Human lung EC expressing the cortactin S484N transgene exhibited: (i) delayed EC barrier recovery following thrombin-induced permeability; (ii) reduced levels of critical Tyr486 cortactin phosphorylation; (iii) inhibited binding to the cytoskeletal regulator, nmMLCK; and (iv) attenuated EC barrier-promoting lamellipodia dynamics and biophysical responses. ARDS-challenged Cttn+/- heterozygous mice exhibited increased lung vascular permeability (compared to wild-type mice) which was significantly attenuated by IV delivery of liposomes encargoed with CTTN WT transgene but not by CTTN S484N transgene. In summary, these studies suggest that the CTTN S484N coding SNP contributes to severity of inflammatory injury in Black patients, potentially via delayed vascular barrier restoration.
Collapse
Affiliation(s)
- Patrick Belvitch
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Nancy Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Xiaoguang Sun
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | | | - Joseph Mascarhenas
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Heather Lynn
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Djanybek Adyshev
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jessica Siegler
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ankit Desai
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Laleh Seyed-Saadat
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Alicia Rizzo
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Christian Bime
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Gajendra S Shekhawat
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois
| | - John P Reilly
- Division of Pulmonary, Allergy, and Critical Care Medicine and Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Tiffanie K Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine and Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Rui Feng
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Eleftheria Letsiou
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine and Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nathan Ellis
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
20
|
Garcia AN, Casanova NG, Kempf CL, Bermudez T, Valera DG, Song JH, Sun X, Cai H, Moreno-Vinasco L, Gregory T, Oita RC, Hernon VR, Camp SM, Rogers C, Kyubwa EM, Menon N, Axtelle J, Rappaport J, Bime C, Sammani S, Cress AE, Garcia JGN. eNAMPT Is a Novel Damage-associated Molecular Pattern Protein That Contributes to the Severity of Radiation-induced Lung Fibrosis. Am J Respir Cell Mol Biol 2022; 66:497-509. [PMID: 35167418 PMCID: PMC9116358 DOI: 10.1165/rcmb.2021-0357oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022] Open
Abstract
The paucity of therapeutic strategies to reduce the severity of radiation-induced lung fibrosis (RILF), a life-threatening complication of intended or accidental ionizing radiation exposure, is a serious unmet need. We evaluated the contribution of eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a damage-associated molecular pattern (DAMP) protein and TLR4 (Toll-like receptor 4) ligand, to the severity of whole-thorax lung irradiation (WTLI)-induced RILF. Wild-type (WT) and Nampt+/- heterozygous C57BL6 mice and nonhuman primates (NHPs, Macaca mulatta) were exposed to a single WTLI dose (9.8 or 10.7 Gy for NHPs, 20 Gy for mice). WT mice received IgG1 (control) or an eNAMPT-neutralizing polyclonal or monoclonal antibody (mAb) intraperitoneally 4 hours after WTLI and weekly thereafter. At 8-12 weeks after WTLI, NAMPT expression was assessed by immunohistochemistry, biochemistry, and plasma biomarker studies. RILF severity was determined by BAL protein/cells, hematoxylin and eosin, and trichrome blue staining and soluble collagen assays. RNA sequencing and bioinformatic analyses identified differentially expressed lung tissue genes/pathways. NAMPT lung tissue expression was increased in both WTLI-exposed WT mice and NHPs. Nampt+/- mice and eNAMPT polyclonal antibody/mAb-treated mice exhibited significantly attenuated WTLI-mediated lung fibrosis with reduced: 1) NAMPT and trichrome blue staining; 2) dysregulated lung tissue expression of smooth muscle actin, p-SMAD2/p-SMAD1/5/9, TGF-β, TSP1 (thrombospondin-1), NOX4, IL-1β, and NRF2; 3) plasma eNAMPT and IL-1β concentrations; and 4) soluble collagen. Multiple WTLI-induced dysregulated differentially expressed lung tissue genes/pathways with known tissue fibrosis involvement were each rectified in mice receiving eNAMPT mAbs.The eNAMPT/TLR4 inflammatory network is essentially involved in radiation pathobiology, with eNAMPT neutralization an effective therapeutic strategy to reduce RILF severity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hua Cai
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, California
| | | | | | | | | | | | | | | | | | | | - Jay Rappaport
- Tulane National Primate Research Center, New Orleans, Louisiana
| | | | | | - Anne E. Cress
- Department of Cell and Molecular Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | | |
Collapse
|
21
|
Bermudez T, Sammani S, Song JH, Hernon VR, Kempf CL, Garcia AN, Burt J, Hufford M, Camp SM, Cress AE, Desai AA, Natarajan V, Jacobson JR, Dudek SM, Cancio LC, Alvarez J, Rafikov R, Li Y, Zhang DD, Casanova NG, Bime C, Garcia JGN. eNAMPT neutralization reduces preclinical ARDS severity via rectified NFkB and Akt/mTORC2 signaling. Sci Rep 2022; 12:696. [PMID: 35027578 PMCID: PMC8758770 DOI: 10.1038/s41598-021-04444-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Despite encouraging preclinical data, therapies to reduce ARDS mortality remains a globally unmet need, including during the COVID-19 pandemic. We previously identified extracellular nicotinamide phosphoribosyltransferase (eNAMPT) as a novel damage-associated molecular pattern protein (DAMP) via TLR4 ligation which regulates inflammatory cascade activation. eNAMPT is tightly linked to human ARDS by biomarker and genotyping studies in ARDS subjects. We now hypothesize that an eNAMPT-neutralizing mAb will significantly reduce the severity of ARDS lung inflammatory lung injury in diverse preclinical rat and porcine models. Sprague Dawley rats received eNAMPT mAb intravenously following exposure to intratracheal lipopolysaccharide (LPS) or to a traumatic blast (125 kPa) but prior to initiation of ventilator-induced lung injury (VILI) (4 h). Yucatan minipigs received intravenous eNAMPT mAb 2 h after initiation of septic shock and VILI (12 h). Each rat/porcine ARDS/VILI model was strongly associated with evidence of severe inflammatory lung injury with NFkB pathway activation and marked dysregulation of the Akt/mTORC2 signaling pathway. eNAMPT neutralization dramatically reduced inflammatory indices and the severity of lung injury in each rat/porcine ARDS/VILI model (~ 50% reduction) including reduction in serum lactate, and plasma levels of eNAMPT, IL-6, TNFα and Ang-2. The eNAMPT mAb further rectified NFkB pathway activation and preserved the Akt/mTORC2 signaling pathway. These results strongly support targeting the eNAMPT/TLR4 inflammatory pathway as a potential ARDS strategy to reduce inflammatory lung injury and ARDS mortality.
Collapse
Affiliation(s)
- Tadeo Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jin H Song
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Vivian Reyes Hernon
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Carrie L Kempf
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Alexander N Garcia
- Department of Radiation Oncology, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jessica Burt
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Matthew Hufford
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Anne E Cress
- Department of Cellular and Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | | | - Jeffrey R Jacobson
- Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Steven M Dudek
- Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | | | - Julie Alvarez
- Institute of Surgical Research, San Antonio, TX, USA
| | - Ruslan Rafikov
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Yansong Li
- Institute of Surgical Research, San Antonio, TX, USA
| | - Donna D Zhang
- College of Pharmacy, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Nancy G Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Christian Bime
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
22
|
Garcia AN, Casanova NG, Valera DG, Sun X, Song JH, Kempf CL, Moreno-Vinasco L, Burns K, Bermudez T, Valdez M, Cuellar G, Gregory T, Oita RC, Hernon VR, Barber C, Camp SM, Martin D, Liu Z, Bime C, Sammani S, Cress AE, Garcia JG. Involvement of eNAMPT/TLR4 signaling in murine radiation pneumonitis: protection by eNAMPT neutralization. Transl Res 2022; 239:44-57. [PMID: 34139379 PMCID: PMC8671169 DOI: 10.1016/j.trsl.2021.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023]
Abstract
Therapeutic strategies to prevent or reduce the severity of radiation pneumonitis are a serious unmet need. We evaluated extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a damage-associated molecular pattern protein (DAMP) and Toll-Like Receptor 4 (TLR4) ligand, as a therapeutic target in murine radiation pneumonitis. Radiation-induced murine and human NAMPT expression was assessed in vitro, in tissues (IHC, biochemistry, imaging), and in plasma. Wild type C57Bl6 mice (WT) and Nampt+/- heterozygous mice were exposed to 20Gy whole thoracic lung irradiation (WTLI) with or without weekly IP injection of IgG1 (control) or an eNAMPT-neutralizing polyclonal (pAb) or monoclonal antibody (mAb). BAL protein/cells and H&E staining were used to generate a WTLI severity score. Differentially-expressed genes (DEGs)/pathways were identified by RNA sequencing and bioinformatic analyses. Radiation exposure increases in vitro NAMPT expression in lung epithelium (NAMPT promoter activity) and NAMPT lung tissue expression in WTLI-exposed mice. Nampt+/- mice and eNAMPT pAb/mAb-treated mice exhibited significant histologic attenuation of WTLI-mediated lung injury with reduced levels of BAL protein and cells, and plasma levels of eNAMPT, IL-6, and IL-1β. Genomic and biochemical studies from WTLI-exposed lung tissues highlighted dysregulation of NFkB/cytokine and MAP kinase signaling pathways which were rectified by eNAMPT mAb treatment. The eNAMPT/TLR4 pathway is essentially involved in radiation pathobiology with eNAMPT neutralization an effective therapeutic strategy to reduce the severity of radiation pneumonitis.
Collapse
Affiliation(s)
- Alexander N Garcia
- Department of Radiation Oncology, University of Arizona Health Sciences, Tucson, Arizona
| | - Nancy G Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Daniel G Valera
- Department of Radiation Oncology, University of Arizona Health Sciences, Tucson, Arizona
| | - Xiaoguang Sun
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Jin H Song
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Carrie L Kempf
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | | | - Kimberlie Burns
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Tadeo Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Mia Valdez
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Genesis Cuellar
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Taylor Gregory
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Radu C Oita
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Vivian Reyes Hernon
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Christy Barber
- Department of Medical Imaging, University of Arizona Health Sciences, Tucson, Arizona
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Diego Martin
- Department of Radiology and the Translational Imaging Center, Houston Methodist Research Institute, Houston, Texas
| | - Zhonglin Liu
- Department of Medical Imaging, University of Arizona Health Sciences, Tucson, Arizona
| | - Christian Bime
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Anne E Cress
- Department of Cell and Molecular Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Joe Gn Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona.
| |
Collapse
|
23
|
Joelsson JP, Ingthorsson S, Kricker J, Gudjonsson T, Karason S. Ventilator-induced lung-injury in mouse models: Is there a trap? Lab Anim Res 2021; 37:30. [PMID: 34715943 PMCID: PMC8554750 DOI: 10.1186/s42826-021-00108-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Ventilator-induced lung injury (VILI) is a serious acute injury to the lung tissue that can develop during mechanical ventilation of patients. Due to the mechanical strain of ventilation, damage can occur in the bronchiolar and alveolar epithelium resulting in a cascade of events that may be fatal to the patients. Patients requiring mechanical ventilation are often critically ill, which limits the possibility of obtaining patient samples, making VILI research challenging. In vitro models are very important for VILI research, but the complexity of the cellular interactions in multi-organ animals, necessitates in vivo studies where the mouse model is a common choice. However, the settings and duration of ventilation used to create VILI in mice vary greatly, causing uncertainty in interpretation and comparison of results. This review examines approaches to induce VILI in mouse models for the last 10 years, to our best knowledge, summarizing methods and key parameters presented across the studies. The results imply that a more standardized approach is warranted.
Collapse
Affiliation(s)
- Jon Petur Joelsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland. .,Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland. .,EpiEndo Pharmaceuticals, Seltjarnarnes, Iceland.
| | - Saevar Ingthorsson
- Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland.,Faculty of Nursing, University of Iceland, Reykjavik, Iceland
| | | | - Thorarinn Gudjonsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland.,EpiEndo Pharmaceuticals, Seltjarnarnes, Iceland
| | - Sigurbergur Karason
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Intensive Care Unit, Landspitali-University Hospital, Reykjavik, Iceland
| |
Collapse
|
24
|
Lai Y, Huang Y. Mechanisms of Mechanical Force Induced Pulmonary Vascular Endothelial Hyperpermeability. Front Physiol 2021; 12:714064. [PMID: 34671268 PMCID: PMC8521004 DOI: 10.3389/fphys.2021.714064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022] Open
Abstract
Mechanical ventilation is a supportive therapy for patients with acute respiratory distress syndrome (ARDS). However, it also inevitably produces or aggravates the original lung injury with pathophysiological changes of pulmonary edema caused by increased permeability of alveolar capillaries which composed of microvascular endothelium, alveolar epithelium, and basement membrane. Vascular endothelium forms a semi-selective barrier to regulate body fluid balance. Mechanical ventilation in critically ill patients produces a mechanical force on lung vascular endothelium when the endothelial barrier was destructed. This review aims to provide a comprehensive overview of molecular and signaling mechanisms underlying the endothelial barrier permeability in ventilator-induced lung jury (VILI).
Collapse
Affiliation(s)
- Yan Lai
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Critical Care Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongbo Huang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Critical Care Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
25
|
Strategies to DAMPen COVID-19-mediated lung and systemic inflammation and vascular injury. Transl Res 2021; 232:37-48. [PMID: 33358868 PMCID: PMC7749994 DOI: 10.1016/j.trsl.2020.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
Approximately 15%-20% of patients infected with SARS-CoV-2 coronavirus (COVID-19) progress beyond mild and self-limited disease to require supplemental oxygen for severe pneumonia; 5% of COVID-19-infected patients further develop acute respiratory distress syndrome (ARDS) and multiorgan failure. Despite mortality rates surpassing 40%, key insights into COVID-19-induced ARDS pathology have not been fully elucidated and multiple unmet needs remain. This review focuses on the unmet need for effective therapies that target unchecked innate immunity-driven inflammation which drives unchecked vascular permeability, multiorgan dysfunction and ARDS mortality. Additional unmet needs including the lack of insights into factors predicting pathogenic hyperinflammatory viral host responses, limited approaches to address the vast disease heterogeneity in ARDS, and the absence of clinically-useful ARDS biomarkers. We review unmet needs persisting in COVID-19-induced ARDS in the context of the potential role for damage-associated molecular pattern proteins in lung and systemic hyperinflammatory host responses to SARS-CoV-2 infection that ultimately drive multiorgan dysfunction and ARDS mortality. Insights into promising stratification-enhancing, biomarker-based strategies in COVID-19 and non-COVID ARDS may enable the design of successful clinical trials of promising therapies.
Collapse
Key Words
- ace2, angiotensin converting enzyme 2
- ang-2, angiopoietin-2
- ards, acute respiratory distress syndrome
- covid-19, coronavirus disease 19 infection
- crp, c-reactive protein
- damps, damage-associated molecular pattern proteins
- enampt, extracellular nicotinamide phosphoribosyl-transferase
- ifnγ, interferon gamma
- il-1ra, interleukin 1 receptor antagonist
- il-6, interleukin 6
- ip-10, interferon gamma-induced protein 10
- irf7, interferon regulatory factor 7
- mcp1, monocyte chemoattractant protein 1
- mif, macrophage migration inhibition factor
- hmgb1, the high mobility group box 1 protein
- no, nitric oxide
- pamps, pathogen-associated molecular pattern proteins
- ripk1, receptor-interacting serine/threonine-protein kinase
- ros, reactive oxygen species
- sars-cov-2, severe acute respiratory syndrome-related coronavirus 2
- smi, small molecule inhibitor
- tlrs, toll-like family of receptors
- tnfα, tumor necrosis factor alpha
- vili, ventilator-induced lung injury
Collapse
|
26
|
Huffaker TB, Ekiz HA, Barba C, Lee SH, Runtsch MC, Nelson MC, Bauer KM, Tang WW, Mosbruger TL, Cox JE, Round JL, Voth WP, O'Connell RM. A Stat1 bound enhancer promotes Nampt expression and function within tumor associated macrophages. Nat Commun 2021; 12:2620. [PMID: 33976173 PMCID: PMC8113251 DOI: 10.1038/s41467-021-22923-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 03/30/2021] [Indexed: 02/03/2023] Open
Abstract
Tumor associated macrophage responses are regulated by distinct metabolic states that affect their function. However, the ability of specific signals in the local tumor microenvironment to program macrophage metabolism remains under investigation. Here, we identify NAMPT, the rate limiting enzyme in NAD salvage synthesis, as a target of STAT1 during cellular activation by interferon gamma, an important driver of macrophage polarization and antitumor responses. We demonstrate that STAT1 occupies a conserved element within the first intron of Nampt, termed Nampt-Regulatory Element-1 (NRE1). Through disruption of NRE1 or pharmacological inhibition, a subset of M1 genes is sensitive to NAMPT activity through its impact on glycolytic processes. scRNAseq is used to profile in vivo responses by NRE1-deficient, tumor-associated leukocytes in melanoma tumors through the creation of a unique mouse strain. Reduced Nampt and inflammatory gene expression are present in specific myeloid and APC populations; moreover, targeted ablation of NRE1 in macrophage lineages results in greater tumor burden. Finally, elevated NAMPT expression correlates with IFNγ responses and melanoma patient survival. This study identifies IFN and STAT1-inducible Nampt as an important factor that shapes the metabolic program and function of tumor associated macrophages.
Collapse
Affiliation(s)
- Thomas B Huffaker
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - H Atakan Ekiz
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Cindy Barba
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Soh-Hyun Lee
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Marah C Runtsch
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Morgan C Nelson
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Kaylyn M Bauer
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - William W Tang
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | | | - James E Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
| | - June L Round
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Warren P Voth
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| | - Ryan M O'Connell
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
27
|
Lee JY, Stevens RP, Migaud M, Stevens T. Salvaging the endothelium in acute respiratory distress syndrome: a druggable intersection between TLR4 and NAD + signalling. Eur Respir J 2021; 57:57/5/2004588. [PMID: 33958376 DOI: 10.1183/13993003.04588-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/17/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Ji Young Lee
- Dept of Physiology and Cell Biology, University of South Alabama, Mobile, AL, USA.,Dept of Internal Medicine, University of South Alabama, Mobile, AL, USA.,The Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Reece P Stevens
- Dept of Physiology and Cell Biology, University of South Alabama, Mobile, AL, USA.,The Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Marie Migaud
- Dept of Pharmacology, University of South Alabama, Mobile, AL, USA.,The Mitchell Cancer Institute, the University of South Alabama, Mobile, AL, USA
| | - Troy Stevens
- Dept of Physiology and Cell Biology, University of South Alabama, Mobile, AL, USA.,Dept of Internal Medicine, University of South Alabama, Mobile, AL, USA.,The Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
28
|
Pereira DA, Sandrim VC, Palei AC, Amaral LM, Belo VA, Lacchini R, Cavalli RC, Tanus-Santos JE, Luizon MR. NAMPT single-nucleotide polymorphism rs1319501 and visfatin/NAMPT affect nitric oxide formation, sFlt-1 and antihypertensive therapy response in preeclampsia. Pharmacogenomics 2021; 22:451-464. [PMID: 33944612 DOI: 10.2217/pgs-2021-0006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: We examined the relationships between visfatin/NAMPT and nitrite concentrations (a marker of nitric oxide [NO] formation) or sFlt-1 levels in 205 patients with preeclampsia (PE) responsive or nonresponsive to antihypertensive therapy, and whether NAMPT SNPs rs1319501 and rs3801266 affect nitrite concentrations in PE and 206 healthy pregnant women. Patients & methods: Circulating visfatin/NAMPT and sFlt-1 levels were measured by ELISA, and nitrite concentrations by using an ozone-based chemiluminescence assay. Results: In nonresponsive PE patients, visfatin/NAMPT levels were inversely related to nitrite concentrations and positively related to sFlt-1 levels. NAMPT SNP rs1319501 affected nitrite concentrations in nonresponsive PE patients and was tightly linked with NAMPT functional SNPs in Europeans. Conclusion: NAMPT SNP rs1319501 and visfatin/NAMPT affect NO formation, sFlt-1 levels and antihypertensive therapy response in PE.
Collapse
Affiliation(s)
- Daniela A Pereira
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Valeria C Sandrim
- Department of Biophysics & Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Ana C Palei
- Department of Surgery, University of Mississippi Medical Center, Jackson, MS 392164, USA
| | - Lorena M Amaral
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS 392164, USA
| | - Vanessa A Belo
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing & Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Ricardo C Cavalli
- Department of Gynecology & Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Marcelo R Luizon
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of Genetics, Ecology & Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
29
|
Quijada H, Bermudez T, Kempf CL, Valera DG, Garcia AN, Camp SM, Song JH, Franco E, Burt JK, Sun B, Mascarenhas JB, Burns K, Gaber A, Oita RC, Reyes Hernon V, Barber C, Moreno-Vinasco L, Sun X, Cress AE, Martin D, Liu Z, Desai AA, Natarajan V, Jacobson JR, Dudek SM, Bime C, Sammani S, Garcia JG. Endothelial eNAMPT amplifies pre-clinical acute lung injury: efficacy of an eNAMPT-neutralising monoclonal antibody. Eur Respir J 2021; 57:2002536. [PMID: 33243842 PMCID: PMC8100338 DOI: 10.1183/13993003.02536-2020] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
RATIONALE The severe acute respiratory syndrome coronavirus 2/coronavirus disease 2019 pandemic has highlighted the serious unmet need for effective therapies that reduce acute respiratory distress syndrome (ARDS) mortality. We explored whether extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a ligand for Toll-like receptor (TLR)4 and a master regulator of innate immunity and inflammation, is a potential ARDS therapeutic target. METHODS Wild-type C57BL/6J or endothelial cell (EC)-cNAMPT -/- knockout mice (targeted EC NAMPT deletion) were exposed to either a lipopolysaccharide (LPS)-induced ("one-hit") or a combined LPS/ventilator ("two-hit")-induced acute inflammatory lung injury model. A NAMPT-specific monoclonal antibody (mAb) imaging probe (99mTc-ProNamptor) was used to detect NAMPT expression in lung tissues. Either an eNAMPT-neutralising goat polyclonal antibody (pAb) or a humanised monoclonal antibody (ALT-100 mAb) were used in vitro and in vivo. RESULTS Immunohistochemical, biochemical and imaging studies validated time-dependent increases in NAMPT lung tissue expression in both pre-clinical ARDS models. Intravenous delivery of either eNAMPT-neutralising pAb or mAb significantly attenuated inflammatory lung injury (haematoxylin and eosin staining, bronchoalveolar lavage (BAL) protein, BAL polymorphonuclear cells, plasma interleukin-6) in both pre-clinical models. In vitro human lung EC studies demonstrated eNAMPT-neutralising antibodies (pAb, mAb) to strongly abrogate eNAMPT-induced TLR4 pathway activation and EC barrier disruption. In vivo studies in wild-type and EC-cNAMPT -/- mice confirmed a highly significant contribution of EC-derived NAMPT to the severity of inflammatory lung injury in both pre-clinical ARDS models. CONCLUSIONS These findings highlight both the role of EC-derived eNAMPT and the potential for biologic targeting of the eNAMPT/TLR4 inflammatory pathway. In combination with predictive eNAMPT biomarker and NAMPT genotyping assays, this offers the opportunity to identify high-risk ARDS subjects for delivery of personalised medicine.
Collapse
Affiliation(s)
- Hector Quijada
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
- Co-first authors
| | - Tadeo Bermudez
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
- Co-first authors
| | - Carrie L. Kempf
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Daniel G. Valera
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Alexander N. Garcia
- Dept of Radiation Oncology, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Sara M. Camp
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jin H. Song
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Evelyn Franco
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jessica K. Burt
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Belinda Sun
- Dept of Pathology, University of Arizona Health Sciences, Tucson, AZ, USA
| | | | - Kimberlie Burns
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Amir Gaber
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Radu C. Oita
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | | | - Christy Barber
- Dept of Medical Imaging, University of Arizona Health Sciences, Tucson, AZ, USA
| | | | - Xiaoguang Sun
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Anne E. Cress
- Dept of Cellular and Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Diego Martin
- Houston Methodist Hospital Research Institute, Houston, TX, USA
| | - Zhonglin Liu
- Dept of Medical Imaging, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Ankit A. Desai
- Dept of Medicine, Indiana University, Indianapolis IN, USA
| | | | | | - Steven M. Dudek
- Dept of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Christian Bime
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Saad Sammani
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
- Co-senior authors
| | - Joe G.N. Garcia
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
- Co-senior authors
| |
Collapse
|
30
|
Sun X, Sun B, Sammani S, Bermudez T, Dudek S, Camp S, Garcia J. Genetic and epigenetic regulation of the non-muscle myosin light chain kinase isoform by lung inflammatory factors and mechanical stress. Clin Sci (Lond) 2021; 135:963-977. [PMID: 33792658 PMCID: PMC8047480 DOI: 10.1042/cs20201448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/19/2021] [Accepted: 04/01/2021] [Indexed: 12/24/2022]
Abstract
RATIONALE The myosin light chain kinase gene, MYLK, encodes three proteins via unique promoters, including the non-muscle isoform of myosin light chain kinase (nmMLCK), a cytoskeletal protein centrally involved in regulation of vascular integrity. As MYLK coding SNPs are associated with severe inflammatory disorders (asthma, acute respiratory distress syndrome (ARDS)), we explored clinically relevant inflammatory stimuli and promoter SNPs in nmMLCK promoter regulation. METHODS Full-length or serially deleted MYLK luciferase reporter promoter activities were measured in human lung endothelial cells (ECs). SNP-containing non-muscle MYLK (nmMYLK) DNA fragments were generated and nmMYLK promoter binding by transcription factors (TFs) detected by protein-DNA electrophoretic mobility shift assay (EMSA). Promoter demethylation was evaluated by 5-aza-2'-deoxycytidine (5-Aza). A preclinical mouse model of lipopolysaccharide (LPS)-induced acute lung injury (ALI) was utilized for nmMLCK validation. RESULTS Lung EC levels of nmMLCK were significantly increased in LPS-challenged mice and LPS, tumor necrosis factor-α (TNF-α), 18% cyclic stretch (CS) and 5-Aza each significantly up-regulated EC nmMYLK promoter activities. EC exposure to FG-4592, a prolyl hydroxylase inhibitor that increases hypoxia-inducible factor (HIF) expression, increased nmMYLK promoter activity, confirmed by HIF1α/HIF2α silencing. nmMYLK promoter deletion studies identified distal inhibitory and proximal enhancing promoter regions as well as mechanical stretch-, LPS- and TNFα-inducible regions. Insertion of ARDS-associated SNPs (rs2700408, rs11714297) significantly increased nmMYLK promoter activity via increased transcription binding (glial cells missing homolog 1 (GCM1) and intestine-specific homeobox (ISX), respectively). Finally, the MYLK rs78755744 SNP (-261G/A), residing within a nmMYLK CpG island, significantly attenuated 5-Aza-induced promoter activity. CONCLUSION These findings indicate nmMYLK transcriptional regulation by clinically relevant inflammatory factors and ARDS-associated nmMYLK promoter variants are consistent with nmMLCK as a therapeutic target in severe inflammatory disorders.
Collapse
Affiliation(s)
- Xiaoguang Sun
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - Belinda L. Sun
- Department of Pathology, University of Arizona, Tucson, AZ, U.S.A
| | - Saad Sammani
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - Tadeo Bermudez
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - Steven M. Dudek
- Department of Medicine, University of Illinois Chicago, Chicago, IL, U.S.A
| | - Sara M. Camp
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - Joe G.N. Garcia
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| |
Collapse
|
31
|
Xu W, Chao Y, Liang M, Huang K, Wang C. CTRP13 Mitigates Abdominal Aortic Aneurysm Formation via NAMPT1. Mol Ther 2021; 29:324-337. [PMID: 32966772 DOI: 10.1016/j.ymthe.2020.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/09/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease characterized by localized dilation of the abdominal aorta. C1q/tumor necrosis factor (TNF)-related protein-13 (CTRP13) is a secreted adipokine that plays important roles in the cardiovascular system. However, the functional role of CTRP13 in the formation and development of AAA has yet to be explored. In this study, we determined that serum CTRP13 levels were significantly downregulated in blood samples from patients with AAA and in rodent AAA models induced by Angiotensin II (Ang II) in ApoE-/- mice or by CaCl2 in C57BL/6J mice. Using two distinct murine models of AAA, CTRP13 was shown to effectively reduce the incidence and severity of AAA in conjunction with reduced aortic macrophage infiltration, expression of proinflammatory cytokines (interleukin-6 [IL-6], TNF-α, and monocyte chemoattractant protein 1 [MCP-1]), and vascular smooth muscle cell (SMC) apoptosis. Mechanistically, nicotinamide phosphoribosyl-transferase 1 (NAMPT1) was identified as a new target of CTRP13. The decreased in vivo and in vitro expression of NAMPT1 was markedly reversed by CTRP13 supplementation in a ubiquitination-proteasome-dependent manner. NAMPT1 knockdown further blocked the beneficial effects of CTRP13 on vascular inflammation and SMC apoptosis. Overall, our study reveals that CTRP13 management may be an effective treatment for preventing AAA formation.
Collapse
Affiliation(s)
- Wenjing Xu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuelin Chao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Minglu Liang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Cheng Wang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
32
|
Bossardi Ramos R, Adam AP. Molecular Mechanisms of Vascular Damage During Lung Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:95-107. [PMID: 34019265 DOI: 10.1007/978-3-030-68748-9_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A variety of pulmonary and systemic insults promote an inflammatory response causing increased vascular permeability, leading to the development of acute lung injury (ALI), a condition necessitating hospitalization and intensive care, or the more severe acute respiratory distress syndrome (ARDS), a disease with a high mortality rate. Further, COVID-19 pandemic-associated ARDS is now a major cause of mortality worldwide. The pathogenesis of ALI is explained by injury to both the vascular endothelium and the alveolar epithelium. The disruption of the lung endothelial and epithelial barriers occurs in response to both systemic and local production of pro-inflammatory cytokines. Studies that evaluate the association of genetic polymorphisms with disease risk did not yield many potential therapeutic targets to treat and revert lung injury. This failure is probably due in part to the phenotypic complexity of ALI/ARDS, and genetic predisposition may be obscured by the multiple environmental and behavioral risk factors. In the last decade, new research has uncovered novel epigenetic mechanisms that control ALI/ARDS pathogenesis, including histone modifications and DNA methylation. Enzyme inhibitors such as DNMTi and HDACi may offer new alternative strategies to prevent or reverse the vascular damage that occurs during lung injury. This review will focus on the latest findings on the molecular mechanisms of vascular damage in ALI/ARDS, the genetic factors that might contribute to the susceptibility for developing this disease, and the epigenetic changes observed in humans, as well as in experimental models of ALI/ADRS.
Collapse
Affiliation(s)
- Ramon Bossardi Ramos
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Alejandro Pablo Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA. .,Department of Ophthalmology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
33
|
Sun BL, Sun X, Casanova N, Garcia AN, Oita R, Algotar AM, Camp SM, Hernon VR, Gregory T, Cress AE, Garcia JGN. Role of secreted extracellular nicotinamide phosphoribosyltransferase (eNAMPT) in prostate cancer progression: Novel biomarker and therapeutic target. EBioMedicine 2020; 61:103059. [PMID: 33045468 PMCID: PMC7559260 DOI: 10.1016/j.ebiom.2020.103059] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND There remains a serious need to prevent the progression of invasive prostate cancer (PCa). We previously showed that secreted extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is a multifunctional innate immunity regulator via TLR4 ligation which has been implicated in PCa progression. Here we investigate the role of eNAMPT as a diagnostic biomarker and therapeutic target in the progression of PCa. METHODS Tumor NAMPT expression and plasma eNAMPT level were evaluated in human subjects with various PCa tumor stages and high risk subjects followed-up clinically for PCa. The genetic regulation of NAMPT expression in PCa cells and the role of eNAMPT in PCa invasion were investigated utilizing in vitro and in vivo models. FINDINGS Marked NAMPT expression was detected in human extraprostatic-invasive PCa tissues compared to minimal expression of organ-confined PCa. Plasma eNAMPT levels were significantly elevated in PCa subjects compared to male controls, and significantly greater in subjects with extraprostatic-invasive PCa compared to subjects with organ-confined PCa. Plasma eNAMPT levels showed significant predictive value for diagnosing PCa. NAMPT expression and eNAMPT secretion were highly upregulated in human PCa cells in response to hypoxia-inducible factors and EGF. In vitro cell culture and in vivo preclinical mouse model studies confirmed eNAMPT-mediated enhancement of PCa invasiveness into muscle tissues and dramatic attenuation of PCa invasion by weekly treatment with an eNAMPT-neutralizing polyclonal antibody. INTERPRETATION This study suggests that eNAMPT is a potential biomarker for PCa, especially invasive PCa. Neutralization of eNAMPT may be an effective therapeutic approach to prevent PCa invasion and progression.
Collapse
Affiliation(s)
- Belinda L Sun
- Department of Pathology, The University of Arizona Health Sciences, United States.
| | - Xiaoguang Sun
- Department of Medicine, The University of Arizona Health Sciences, United States
| | - Nancy Casanova
- Department of Medicine, The University of Arizona Health Sciences, United States
| | - Alexander N Garcia
- Department of Radiation Oncology, The University of Arizona Health Sciences, United States
| | - Radu Oita
- Department of Medicine, The University of Arizona Health Sciences, United States
| | - Amit M Algotar
- Department of Family Medicine, The University of Arizona Health Sciences, United States
| | - Sara M Camp
- Department of Medicine, The University of Arizona Health Sciences, United States
| | - Vivian Reyes Hernon
- Department of Medicine, The University of Arizona Health Sciences, United States
| | - Taylor Gregory
- Department of Medicine, The University of Arizona Health Sciences, United States
| | - Anne E Cress
- Department of Cellular and Molecular Medicine, the University of Arizona Health Sciences, United States
| | - Joe G N Garcia
- Department of Medicine, The University of Arizona Health Sciences, United States.
| |
Collapse
|
34
|
Sun X, Sun BL, Babicheva A, Vanderpool R, Oita RC, Casanova N, Tang H, Gupta A, Lynn H, Gupta G, Rischard F, Sammani S, Kempf CL, Moreno-Vinasco L, Ahmed M, Camp SM, Wang J, Desai AA, Yuan JXJ, Garcia JGN. Direct Extracellular NAMPT Involvement in Pulmonary Hypertension and Vascular Remodeling. Transcriptional Regulation by SOX and HIF-2α. Am J Respir Cell Mol Biol 2020; 63:92-103. [PMID: 32142369 PMCID: PMC7328254 DOI: 10.1165/rcmb.2019-0164oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 03/05/2020] [Indexed: 12/21/2022] Open
Abstract
We previously demonstrated involvement of NAMPT (nicotinamide phosphoribosyltransferase) in pulmonary arterial hypertension (PAH) and now examine NAMPT regulation and extracellular NAMPT's (eNAMPT's) role in PAH vascular remodeling. NAMPT transcription and protein expression in human lung endothelial cells were assessed in response to PAH-relevant stimuli (PDGF [platelet-derived growth factor], VEGF [vascular endothelial growth factor], TGF-β1 [transforming growth factor-β1], and hypoxia). Endothelial-to-mesenchymal transition was detected by SNAI1 (snail family transcriptional repressor 1) and PECAM1 (platelet endothelial cell adhesion molecule 1) immunofluorescence. An eNAMPT-neutralizing polyclonal antibody was tested in a PAH model of monocrotaline challenge in rats. Plasma eNAMPT concentrations, significantly increased in patients with idiopathic pulmonary arterial hypertension, were highly correlated with indices of PAH severity. eNAMPT increased endothelial-to-mesenchymal transition, and each PAH stimulus significantly increased endothelial cell NAMPT promoter activity involving transcription factors STAT5 (signal transducer and activator of transcription 5), SOX18 (SRY-box transcription factor 18), and SOX17 (SRY-box transcription factor 17), a PAH candidate gene newly defined by genome-wide association study. The hypoxia-induced transcription factor HIF-2α (hypoxia-inducible factor-2α) also potently regulated NAMPT promoter activity, and HIF-2α binding sites were identified between -628 bp and -328 bp. The PHD2 (prolyl hydroxylase domain-containing protein 2) inhibitor FG-4592 significantly increased NAMPT promoter activity and protein expression in an HIF-2α-dependent manner. Finally, the eNAMPT-neutralizing polyclonal antibody significantly reduced monocrotaline-induced vascular remodeling, PAH hemodynamic alterations, and NF-κB activation. eNAMPT is a novel and attractive therapeutic target essential to PAH vascular remodeling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mohamed Ahmed
- Department of Pediatrics, University of Arizona Health Sciences, Tucson, Arizona
| | | | | | | | | | | |
Collapse
|
35
|
Lamb DA, Moore JH, Mesquita PHC, Smith MA, Vann CG, Osburn SC, Fox CD, Lopez HL, Ziegenfuss TN, Huggins KW, Goodlett MD, Fruge AD, Kavazis AN, Young KC, Roberts MD. Resistance training increases muscle NAD + and NADH concentrations as well as NAMPT protein levels and global sirtuin activity in middle-aged, overweight, untrained individuals. Aging (Albany NY) 2020; 12:9447-9460. [PMID: 32369778 PMCID: PMC7288928 DOI: 10.18632/aging.103218] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
We examined if resistance training affected muscle NAD+ and NADH concentrations as well as nicotinamide phosphoribosyltransferase (NAMPT) protein levels and sirtuin (SIRT) activity markers in middle-aged, untrained (MA) individuals. MA participants (59±4 years old; n=16) completed 10 weeks of full-body resistance training (2 d/wk). Body composition, knee extensor strength, and vastus lateralis muscle biopsies were obtained prior to training (Pre) and 72 hours following the last training bout (Post). Data from trained college-aged men (22±3 years old, training age: 6±2 years old; n=15) were also obtained for comparative purposes. Muscle NAD+ (+127%, p<0.001), NADH (+99%, p=0.002), global SIRT activity (+13%, p=0.036), and NAMPT protein (+15%, p=0.014) increased from Pre to Post in MA participants. Additionally, Pre muscle NAD+ and NADH in MA participants were lower than college-aged participants (p<0.05), whereas Post values were similar between cohorts (p>0.10). Interestingly, muscle citrate synthase activity levels (i.e., mitochondrial density) increased in MA participants from Pre to Post (+183%, p<0.001), and this increase was significantly associated with increases in muscle NAD+ (r2=0.592, p=0.001). In summary, muscle NAD+, NADH, and global SIRT activity are positively affected by resistance training in middle-aged, untrained individuals. Whether these adaptations facilitated mitochondrial biogenesis remains to be determined.
Collapse
Affiliation(s)
- Donald A Lamb
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | | | | | - Morgan A Smith
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| | | | - Shelby C Osburn
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| | - Carlton D Fox
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| | - Hector L Lopez
- Center for Applied Health Sciences, Canfield, OH 44406, USA
| | | | - Kevin W Huggins
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Michael D Goodlett
- Athletics Department, Auburn University, Auburn, AL 36849, USA.,Edward Via College of Osteopathic Medicine, Auburn, AL 36832, USA
| | - Andrew D Fruge
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | | | - Kaelin C Young
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA.,Edward Via College of Osteopathic Medicine, Auburn, AL 36832, USA
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA.,Edward Via College of Osteopathic Medicine, Auburn, AL 36832, USA
| |
Collapse
|
36
|
de Guia RM, Agerholm M, Nielsen TS, Consitt LA, Søgaard D, Helge JW, Larsen S, Brandauer J, Houmard JA, Treebak JT. Aerobic and resistance exercise training reverses age-dependent decline in NAD + salvage capacity in human skeletal muscle. Physiol Rep 2020; 7:e14139. [PMID: 31207144 PMCID: PMC6577427 DOI: 10.14814/phy2.14139] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
Aging decreases skeletal muscle mass and strength, but aerobic and resistance exercise training maintains skeletal muscle function. NAD+ is a coenzyme for ATP production and a required substrate for enzymes regulating cellular homeostasis. In skeletal muscle, NAD+ is mainly generated by the NAD+ salvage pathway in which nicotinamide phosphoribosyltransferase (NAMPT) is rate‐limiting. NAMPT decreases with age in human skeletal muscle, and aerobic exercise training increases NAMPT levels in young men. However, whether distinct modes of exercise training increase NAMPT levels in both young and old people is unknown. We assessed the effects of 12 weeks of aerobic and resistance exercise training on skeletal muscle abundance of NAMPT, nicotinamide riboside kinase 2 (NRK2), and nicotinamide mononucleotide adenylyltransferase (NMNAT) 1 and 3 in young (≤35 years) and older (≥55 years) individuals. NAMPT in skeletal muscle correlated negatively with age (r2 = 0.297, P < 0.001, n = 57), and VO2peak was the best predictor of NAMPT levels. Moreover, aerobic exercise training increased NAMPT abundance 12% and 28% in young and older individuals, respectively, whereas resistance exercise training increased NAMPT abundance 25% and 30% in young and in older individuals, respectively. None of the other proteins changed with exercise training. In a separate cohort of young and old people, levels of NAMPT, NRK1, and NMNAT1/2 in abdominal subcutaneous adipose tissue were not affected by either age or 6 weeks of high‐intensity interval training. Collectively, exercise training reverses the age‐dependent decline in skeletal muscle NAMPT abundance, and our findings highlight the value of exercise training in ameliorating age‐associated deterioration of skeletal muscle function.
Collapse
Affiliation(s)
- Roldan M de Guia
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Agerholm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas S Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leslie A Consitt
- Department of Biomedical Sciences, Ohio Musculoskeletal and Neurological Institute, Diabetes Institute, Ohio University, Athens, Ohio
| | - Ditte Søgaard
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørn W Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Josef Brandauer
- Department of Health Sciences, Gettysburg College, Gettysburg, Pennsylvania
| | - Joseph A Houmard
- Department of Kinesiology, Human Performance Laboratory, East Carolina University, Greenville, North Carolina.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Lynn H, Sun X, Casanova N, Gonzales-Garay M, Bime C, Garcia JGN. Genomic and Genetic Approaches to Deciphering Acute Respiratory Distress Syndrome Risk and Mortality. Antioxid Redox Signal 2019; 31:1027-1052. [PMID: 31016989 PMCID: PMC6939590 DOI: 10.1089/ars.2018.7701] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Acute respiratory distress syndrome (ARDS) is a severe, highly heterogeneous critical illness with staggering mortality that is influenced by environmental factors, such as mechanical ventilation, and genetic factors. Significant unmet needs in ARDS are addressing the paucity of validated predictive biomarkers for ARDS risk and susceptibility that hamper the conduct of successful clinical trials in ARDS and the complete absence of novel disease-modifying therapeutic strategies. Recent Advances: The current ARDS definition relies on clinical characteristics that fail to capture the diversity of disease pathology, severity, and mortality risk. We undertook a comprehensive survey of the available ARDS literature to identify genes and genetic variants (candidate gene and limited genome-wide association study approaches) implicated in susceptibility to developing ARDS in hopes of uncovering novel biomarkers for ARDS risk and mortality and potentially novel therapeutic targets in ARDS. We further attempted to address the well-known health disparities that exist in susceptibility to and mortality from ARDS. Critical Issues: Bioinformatic analyses identified 201 ARDS candidate genes with pathway analysis indicating a strong predominance in key evolutionarily conserved inflammatory pathways, including reactive oxygen species, innate immunity-related inflammation, and endothelial vascular signaling pathways. Future Directions: Future studies employing a system biology approach that combines clinical characteristics, genomics, transcriptomics, and proteomics may allow for a better definition of biologically relevant pathways and genotype-phenotype connections and result in improved strategies for the sub-phenotyping of diverse ARDS patients via molecular signatures. These efforts should facilitate the potential for successful clinical trials in ARDS and yield a better fundamental understanding of ARDS pathobiology.
Collapse
Affiliation(s)
- Heather Lynn
- Department of Physiological Sciences and University of Arizona, Tucson, Arizona.,Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Xiaoguang Sun
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Nancy Casanova
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | | | - Christian Bime
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Joe G N Garcia
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
38
|
Mascarenhas JB, Tchourbanov AY, Danilov SM, Zhou T, Wang T, Garcia JGN. The Splicing Factor hnRNPA1 Regulates Alternate Splicing of the MYLK Gene. Am J Respir Cell Mol Biol 2019; 58:604-613. [PMID: 29077485 DOI: 10.1165/rcmb.2017-0141oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Profound lung vascular permeability is a cardinal feature of acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI), two syndromes known to centrally involve the nonmuscle isoform of myosin light chain kinase (nmMLCK) in vascular barrier dysregulation. Two main splice variants, nmMLCK1 and nmMLCK2, are well represented in human lung endothelial cells and encoded by MYLK, and they differ only in the presence of exon 11 in nmMLCK1, which contains critical phosphorylation sites (Y464 and Y471) that influence nmMLCK enzymatic activity, cellular translocation, and localization in response to vascular agonists. We recently demonstrated the functional role of SNPs in altering MYLK splicing, and in the present study we sought to identify the role of splicing factors in the generation of nmMLCK1 and nmMLCK2 spliced variants. Using bioinformatic in silico approaches, we identified a putative binding site for heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), a recognized splicing factor. We verified hnRNPA1 binding to MYLK by gel shift analyses and that hnRNPA1 gene and protein expression is upregulated in mouse lungs obtained from preclinical models of ARDS and VILI and in human endothelial cells exposed to 18% cyclic stretch, a model that reproduces the excessive mechanical stress observed in VILI. Using an MYLK minigene approach, we established a direct role of hnRNPA1 in MYLK splicing and in the context of 18% cyclic stretch. In summary, these data indicate an important regulatory role for hnRNPA1 in MYLK splicing, and they increase understanding of MYLK splicing in the regulation of lung vascular integrity during acute lung inflammation and excessive mechanical stress, such as that observed in ARDS and VILI.
Collapse
Affiliation(s)
| | | | - Sergei M Danilov
- 1 Department of Medicine, College of Medicine, and.,3 Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois; and
| | - Tong Zhou
- 4 Department of Physiology and Cell Biology, The University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Ting Wang
- 1 Department of Medicine, College of Medicine, and
| | | |
Collapse
|
39
|
Oita RC, Camp SM, Ma W, Ceco E, Harbeck M, Singleton P, Messana J, Sun X, Wang T, Garcia JGN. Novel Mechanism for Nicotinamide Phosphoribosyltransferase Inhibition of TNF-α-mediated Apoptosis in Human Lung Endothelial Cells. Am J Respir Cell Mol Biol 2019; 59:36-44. [PMID: 29337590 DOI: 10.1165/rcmb.2017-0155oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) exists as both intracellular NAMPT and extracellular NAMPT (eNAMPT) proteins. eNAMPT is secreted into the blood and functions as a cytokine/enzyme (cytozyme) that activates NF-κB signaling via ligation of Toll-like receptor 4 (TLR4), further serving as a biomarker for inflammatory lung disorders such as acute respiratory distress syndrome. In contrast, intracellular NAMPT is involved in nicotinamide mononucleotide synthesis and has been implicated in the regulation of cellular apoptosis, although the exact mechanisms for this regulation are poorly understood. We examined the role of NAMPT in TNF-α-induced human lung endothelial cell (EC) apoptosis and demonstrated that reduced NAMPT expression (siRNA) increases EC susceptibility to TNF-α-induced apoptosis as reflected by PARP-1 cleavage and caspase-3 activation. In contrast, overexpression of NAMPT served to reduce degrees of TNF-α-induced EC apoptosis. Inhibition of nicotinamide mononucleotide synthesis by FK866 (a selective NAMPT enzymatic inhibitor) failed to alter TNF-α-induced human lung EC apoptosis, suggesting that NAMPT-dependent NAD+ generation is unlikely to be involved in regulation of TNF-α-induced EC apoptosis. We next confirmed that TNF-α-induced EC apoptosis is attributable to NAMPT secretion into the EC culture media and subsequent eNAMPT ligation of TLR4 on the EC membrane surface. Silencing of NAMPT expression, direct neutralization of secreted eNAMPT by an NAMPT-specific polyclonal antibody (preventing TLR4 ligation), or direct TLR4 antagonism all served to significantly increase EC susceptibility to TNF-α-induced EC apoptosis. Together, these studies provide novel insights into NAMPT contributions to lung inflammatory events and to novel mechanisms of EC apoptosis regulation.
Collapse
Affiliation(s)
- Radu C Oita
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, Arizona
| | - Sara M Camp
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, Arizona
| | - Wenli Ma
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, Arizona
| | - Ermelinda Ceco
- 2 Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | - Mark Harbeck
- 2 Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | | | - Joe Messana
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, Arizona
| | - Xiaoguang Sun
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, Arizona
| | - Ting Wang
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, Arizona
| | - Joe G N Garcia
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
40
|
Zhang LJ, Li XQ, Wang CD, Zhuang L, Gong Q, Li SJ, Liu X, Dong H, Wang XC. The Correlation of Visfatin and Its Gene Polymorphism with Non-Small Cell Lung Cancer. Cancer Biother Radiopharm 2018; 33:460-465. [PMID: 30256660 DOI: 10.1089/cbr.2018.2526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objective: To investigate the protein expression of visfatin and its gene polymorphism in non-small cell lung cancer (NSCLC) patients. Methods: The plasma level of visfatin was detected by enzyme-linked immunosorbent assay, and the genotypes rs59744560, rs9770242, and rs61330082 in the visfatin gene were detected by gene sequencing. Result: This study revealed that plasma levels of visfatin in NSCLC patients were significantly higher than the levels in healthy people (p < 0.01). The high level of plasma visfatin was found to be significantly correlated with TNM stage (p < 0.05). No mutations were detected in rs59744560 and rs9770242 loci. Three genotypes (CC, CT, and TT) were detected in rs61330082 locus, and the differences in the frequency distribution of these genotypes were significant in the two groups (p < 0.05). Central obesity and the CC genotype were independent risk factors in the pathogenesis of NSCLC (p < 0.05). Conclusion: The plasma visfatin level in NSCLC patients significantly increased, and high plasma visfatin levels were correlated with tumor stage. Gene polymorphism was found in the visfatin gene rs61330082 locus. The CC genotype might increase the risk for patients suffering from NSCLC, while the CT genotype, TT genotype, and T allele may reduce the risk of NSCLC. The rs61330082 locus can be used as genetic markers of high-risk populations.
Collapse
Affiliation(s)
- Li-Juan Zhang
- Department of Palliative Medicine, Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, China
| | - Xue-Qin Li
- Department of Palliative Medicine, Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, China
| | - Cun-De Wang
- Department of Palliative Medicine, Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, China
| | - Li Zhuang
- Department of Palliative Medicine, Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, China
| | - Quan Gong
- Department of Palliative Medicine, Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, China
| | - Shi-Juan Li
- Department of Palliative Medicine, Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, China
| | - Xin Liu
- Department of Tumor Research Institute, Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, China
| | - Hui Dong
- Department of Palliative Medicine, Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, China
| | - Xi-Cai Wang
- Department of Tumor Research Institute, Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, China
| |
Collapse
|
41
|
Bime C, Pouladi N, Sammani S, Batai K, Casanova N, Zhou T, Kempf CL, Sun X, Camp SM, Wang T, Kittles RA, Lussier YA, Jones TK, Reilly JP, Meyer NJ, Christie JD, Karnes JH, Gonzalez-Garay M, Christiani DC, Yates CR, Wurfel MM, Meduri GU, Garcia JGN. Genome-Wide Association Study in African Americans with Acute Respiratory Distress Syndrome Identifies the Selectin P Ligand Gene as a Risk Factor. Am J Respir Crit Care Med 2018; 197:1421-1432. [PMID: 29425463 PMCID: PMC6005557 DOI: 10.1164/rccm.201705-0961oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 02/08/2018] [Indexed: 12/29/2022] Open
Abstract
RATIONALE Genetic factors are involved in acute respiratory distress syndrome (ARDS) susceptibility. Identification of novel candidate genes associated with increased risk and severity will improve our understanding of ARDS pathophysiology and enhance efforts to develop novel preventive and therapeutic approaches. OBJECTIVES To identify genetic susceptibility targets for ARDS. METHODS A genome-wide association study was performed on 232 African American patients with ARDS and 162 at-risk control subjects. The Identify Candidate Causal SNPs and Pathways platform was used to infer the association of known gene sets with the top prioritized intragenic SNPs. Preclinical validation of SELPLG (selectin P ligand gene) was performed using mouse models of LPS- and ventilator-induced lung injury. Exonic variation within SELPLG distinguishing patients with ARDS from sepsis control subjects was confirmed in an independent cohort. MEASUREMENTS AND MAIN RESULTS Pathway prioritization analysis identified a nonsynonymous coding SNP (rs2228315) within SELPLG, encoding P-selectin glycoprotein ligand 1, to be associated with increased susceptibility. In an independent cohort, two exonic SELPLG SNPs were significantly associated with ARDS susceptibility. Additional support for SELPLG as an ARDS candidate gene was derived from preclinical ARDS models where SELPLG gene expression in lung tissues was significantly increased in both ventilator-induced (twofold increase) and LPS-induced (5.7-fold increase) murine lung injury models compared with controls. Furthermore, Selplg-/- mice exhibited significantly reduced LPS-induced inflammatory lung injury compared with wild-type C57/B6 mice. Finally, an antibody that neutralizes P-selectin glycoprotein ligand 1 significantly attenuated LPS-induced lung inflammation. CONCLUSIONS These findings identify SELPLG as a novel ARDS susceptibility gene among individuals of European and African descent.
Collapse
Affiliation(s)
| | - Nima Pouladi
- Department of Medicine
- Center for Biomedical Informatics and Biostatistics
| | | | | | | | | | | | | | | | | | | | - Yves A. Lussier
- Department of Medicine
- Center for Biomedical Informatics and Biostatistics
| | - Tiffanie K. Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - John P. Reilly
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jason D. Christie
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jason H. Karnes
- Department of Pharmacy Practice and Science, University of Arizona, Tucson, Arizona
| | | | - David C. Christiani
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | | | - Mark M. Wurfel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | | | | |
Collapse
|
42
|
Ohanna M, Cerezo M, Nottet N, Bille K, Didier R, Beranger G, Mograbi B, Rocchi S, Yvan-Charvet L, Ballotti R, Bertolotto C. Pivotal role of NAMPT in the switch of melanoma cells toward an invasive and drug-resistant phenotype. Genes Dev 2018; 32:448-461. [PMID: 29567766 PMCID: PMC5900716 DOI: 10.1101/gad.305854.117] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 03/05/2018] [Indexed: 12/19/2022]
Abstract
In BRAFV600E melanoma cells, a global metabolomic analysis discloses a decrease in nicotinamide adenine dinucleotide (NAD+) levels upon PLX4032 treatment that is conveyed by a STAT5 inhibition and a transcriptional regulation of the nicotinamide phosphoribosyltransferase (NAMPT) gene. NAMPT inhibition decreases melanoma cell proliferation both in vitro and in vivo, while forced NAMPT expression renders melanoma cells resistant to PLX4032. NAMPT expression induces transcriptomic and epigenetic reshufflings that steer melanoma cells toward an invasive phenotype associated with resistance to targeted therapies and immunotherapies. Therefore, NAMPT, the key enzyme in the NAD+ salvage pathway, appears as a rational target in targeted therapy-resistant melanoma cells and a key player in phenotypic plasticity of melanoma cells.
Collapse
Affiliation(s)
- Mickaël Ohanna
- U1065, Institut National de la Santé et de la Recherche Médicale (INSERM), Biology and Pathologies of Melanocytes, Equipe Labellisée L'Association pour la Recherche sur le Cancer (ARC) 2015, Université Nice Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France
| | - Mickaël Cerezo
- U1065, Institut National de la Santé et de la Recherche Médicale (INSERM), Biology and Pathologies of Melanocytes, Equipe Labellisée L'Association pour la Recherche sur le Cancer (ARC) 2015, Université Nice Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France
| | - Nicolas Nottet
- Université Nice Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | - Karine Bille
- U1065, Institut National de la Santé et de la Recherche Médicale (INSERM), Biology and Pathologies of Melanocytes, Equipe Labellisée L'Association pour la Recherche sur le Cancer (ARC) 2015, Université Nice Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France
| | - Robin Didier
- U1065, Institut National de la Santé et de la Recherche Médicale (INSERM), Biology and Pathologies of Melanocytes, Equipe Labellisée L'Association pour la Recherche sur le Cancer (ARC) 2015, Université Nice Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France
| | - Guillaume Beranger
- U1065, Institut National de la Santé et de la Recherche Médicale (INSERM), Biology and Pathologies of Melanocytes, Equipe Labellisée L'Association pour la Recherche sur le Cancer (ARC) 2015, Université Nice Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France
| | - Baharia Mograbi
- U1081, INSERM, Institute of Research on Cancer and Ageing of Nice (IRCAN), Equipe Labellisée ARC, Université Nice Côte d'Azur, UMR7284, Centre National de la Recherche Scientifique (CNRS), 06107 Nice, France
| | - Stéphane Rocchi
- U1065, Institut National de la Santé et de la Recherche Médicale (INSERM), Biology and Pathologies of Melanocytes, Equipe Labellisée L'Association pour la Recherche sur le Cancer (ARC) 2015, Université Nice Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France
| | - Laurent Yvan-Charvet
- U1065, INSERM, Team ATIP-Avenir, Université Nice Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | - Robert Ballotti
- U1065, Institut National de la Santé et de la Recherche Médicale (INSERM), Biology and Pathologies of Melanocytes, Equipe Labellisée L'Association pour la Recherche sur le Cancer (ARC) 2015, Université Nice Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France
| | - Corine Bertolotto
- U1065, Institut National de la Santé et de la Recherche Médicale (INSERM), Biology and Pathologies of Melanocytes, Equipe Labellisée L'Association pour la Recherche sur le Cancer (ARC) 2015, Université Nice Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France
| |
Collapse
|
43
|
Francisco V, Pérez T, Pino J, López V, Franco E, Alonso A, Gonzalez-Gay MA, Mera A, Lago F, Gómez R, Gualillo O. Biomechanics, obesity, and osteoarthritis. The role of adipokines: When the levee breaks. J Orthop Res 2018; 36:594-604. [PMID: 29080354 DOI: 10.1002/jor.23788] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/21/2017] [Indexed: 02/04/2023]
Abstract
Osteoarthritis is a high-incidence painful and debilitating disease characterized by progressive degeneration of articular joints, which indicates a breakdown in joint homeostasis favoring catabolic processes. Biomechanical loading, associated with inflammatory and metabolic imbalances of joint, strongly contributes to the initiation and progression of the disease. Obesity is a primary risk factor for disease onset, and mechanical factors increased the risk for disease progression. Moreover, inflammatory mediators, in particular, adipose tissue-derived cytokines (better known as adipokines) play a critical role linking obesity and osteoarthritis. The present article summarizes the knowledge about the role of adipokines in cartilage and bone function, highlighting their contribution to the imbalance of joint homeostasis and, consequently, pathogenesis of osteoarthritis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:594-604, 2018.
Collapse
Affiliation(s)
- Vera Francisco
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, Santiago de Compostela, 15706, Spain
| | - Tamara Pérez
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, Santiago de Compostela, 15706, Spain
| | - Jesús Pino
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, Santiago de Compostela, 15706, Spain
| | - Verónica López
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, Santiago de Compostela, 15706, Spain
| | - Eloy Franco
- Musculoskeletal Pathology Group, SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Ana Alonso
- Musculoskeletal Pathology Group, SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Miguel Angel Gonzalez-Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Universidad de Cantabria and IDIVAL, Hospital Universitario Marqués de Valdecilla, Av. Valdecilla, Santander, 39008, Spain
| | - Antonio Mera
- SERGAS (Servizo Galego de Saude), Santiago University Clinical Hospital, Division of Rheumatology, Travesía da Choupana S/N, Santiago de Compostela, 15706, Spain
| | - Francisca Lago
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Department of Cellular and Molecular Cardiology, CIBERCV (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares), Building C, Travesía da Choupana S/N, Santiago de Compostela, 15706, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, Santiago de Compostela, 15706, Spain
| |
Collapse
|
44
|
Elangovan VR, Camp SM, Kelly GT, Desai AA, Adyshev D, Sun X, Black SM, Wang T, Garcia JGN. Endotoxin- and mechanical stress-induced epigenetic changes in the regulation of the nicotinamide phosphoribosyltransferase promoter. Pulm Circ 2017; 6:539-544. [PMID: 28090296 DOI: 10.1086/688761] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mechanical ventilation, a lifesaving intervention for patients with acute respiratory distress syndrome (ARDS), also unfortunately contributes to excessive mechanical stress and impaired lung physiological and structural integrity. We have elsewhere established the pivotal role of increased nicotinamide phosphoribosyltransferase (NAMPT) transcription and secretion as well as its direct binding to the toll-like receptor 4 (TLR4) in the progression of this devastating syndrome; however, regulation of this critical gene in ventilator-induced lung injury (VILI) is not well characterized. On the basis of an emerging role for epigenetics in enrichment of VILI and CpG sites within the NAMPT promoter and 5'UTR, we hypothesized that NAMPT expression and downstream transcriptional events are influenced by epigenetic mechanisms. Concomitantly, excessive mechanical stress of human pulmonary artery endothelial cells or lipopolysaccharide (LPS) treatment led to both reduced DNA methylation levels in the NAMPT promoter and increased gene transcription. Histone deacetylase inhibition by trichostatin A or Sirt-1-silencing RNA attenuates LPS-induced NAMPT expression. Furthermore, recombinant NAMPT administration induced TLR4-dependent global H3K9 hypoacetylation. These studies suggest a complex epigenetic regulatory network of NAMPT in VILI and ARDS and open novel strategies for combating VILI and ARDS.
Collapse
Affiliation(s)
- Venkateswaran Ramamoorthi Elangovan
- Department of Medicine, University of Arizona, Tucson, Arizona, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sara M Camp
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Gabriel T Kelly
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Ankit A Desai
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Djanybek Adyshev
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xiaoguang Sun
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Stephen M Black
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Ting Wang
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Joe G N Garcia
- Department of Medicine, University of Arizona, Tucson, Arizona, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
45
|
Wang T, Gross C, Desai AA, Zemskov E, Wu X, Garcia AN, Jacobson JR, Yuan JXJ, Garcia JGN, Black SM. Endothelial cell signaling and ventilator-induced lung injury: molecular mechanisms, genomic analyses, and therapeutic targets. Am J Physiol Lung Cell Mol Physiol 2016; 312:L452-L476. [PMID: 27979857 DOI: 10.1152/ajplung.00231.2016] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/08/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022] Open
Abstract
Mechanical ventilation is a life-saving intervention in critically ill patients with respiratory failure due to acute respiratory distress syndrome (ARDS). Paradoxically, mechanical ventilation also creates excessive mechanical stress that directly augments lung injury, a syndrome known as ventilator-induced lung injury (VILI). The pathobiology of VILI and ARDS shares many inflammatory features including increases in lung vascular permeability due to loss of endothelial cell barrier integrity resulting in alveolar flooding. While there have been advances in the understanding of certain elements of VILI and ARDS pathobiology, such as defining the importance of lung inflammatory leukocyte infiltration and highly induced cytokine expression, a deep understanding of the initiating and regulatory pathways involved in these inflammatory responses remains poorly understood. Prevailing evidence indicates that loss of endothelial barrier function plays a primary role in the development of VILI and ARDS. Thus this review will focus on the latest knowledge related to 1) the key role of the endothelium in the pathogenesis of VILI; 2) the transcription factors that relay the effects of excessive mechanical stress in the endothelium; 3) the mechanical stress-induced posttranslational modifications that influence key signaling pathways involved in VILI responses in the endothelium; 4) the genetic and epigenetic regulation of key target genes in the endothelium that are involved in VILI responses; and 5) the need for novel therapeutic strategies for VILI that can preserve endothelial barrier function.
Collapse
Affiliation(s)
- Ting Wang
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Christine Gross
- Vascular Biology Center, Augusta University, Augusta, Georgia
| | - Ankit A Desai
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Evgeny Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Xiaomin Wu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Alexander N Garcia
- Department of Pharmacology University of Illinois at Chicago, Chicago, Illinois; and
| | - Jeffrey R Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jason X-J Yuan
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Joe G N Garcia
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona;
| |
Collapse
|
46
|
Shimizu Y, Camp SM, Sun X, Zhou T, Wang T, Garcia JGN. Sp1-mediated nonmuscle myosin light chain kinase expression and enhanced activity in vascular endothelial growth factor-induced vascular permeability. Pulm Circ 2015; 5:707-15. [PMID: 26697178 DOI: 10.1086/684124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Despite the important role played by the nonmuscle isoform of myosin light chain kinase (nmMLCK) in vascular barrier regulation and the implication of both nmMLCK and vascular endothelial growth factor (VEGF) in the pathogenesis of acute respiratory distress syndrome (ARDS), the role played by nmMLCK in VEGF-induced vascular permeability is poorly understood. In this study, the role played by nmMLCK in VEGF-induced vascular hyperpermeability was investigated. Human lung endothelial cell barrier integrity in response to VEGF is examined in both the absence and the presence of nmMLCK small interfering RNAs. Levels of nmMLCK messenger RNA (mRNA), protein, and promoter activity expression were monitored after VEGF stimulation in lung endothelial cells. nmMYLK promoter activity was assessed using nmMYLK promoter luciferase reporter constructs with a series of nested deletions. nmMYLK transcriptional regulation was further characterized by examination of a key transcriptional factor. nmMLCK plays an important role in VEGF-induced permeability. We found that activation of the VEGF signaling pathway in lung endothelial cells increases MYLK gene product at both mRNA and protein levels. Increased nmMLCK mRNA and protein expression is a result of increased nmMYLK promoter activity, regulated in part by binding of the Sp1 transcription factor on triggering by the VEGF signaling pathway. Taken together, these findings suggest that MYLK is an important ARDS candidate gene and a therapeutic target that is highly influenced by excessive VEGF concentrations in the inflamed lung.
Collapse
Affiliation(s)
- Yuka Shimizu
- Department of Medicine and University of Arizona Respiratory Center, University of Arizona, Tucson, Arizona, USA
| | - Sara M Camp
- Department of Medicine and University of Arizona Respiratory Center, University of Arizona, Tucson, Arizona, USA
| | - Xiaoguang Sun
- Department of Medicine and University of Arizona Respiratory Center, University of Arizona, Tucson, Arizona, USA
| | - Tong Zhou
- Department of Medicine and University of Arizona Respiratory Center, University of Arizona, Tucson, Arizona, USA
| | - Ting Wang
- Department of Medicine and University of Arizona Respiratory Center, University of Arizona, Tucson, Arizona, USA
| | - Joe G N Garcia
- Department of Medicine and University of Arizona Respiratory Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
47
|
Unique Toll-Like Receptor 4 Activation by NAMPT/PBEF Induces NFκB Signaling and Inflammatory Lung Injury. Sci Rep 2015; 5:13135. [PMID: 26272519 PMCID: PMC4536637 DOI: 10.1038/srep13135] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/20/2015] [Indexed: 02/07/2023] Open
Abstract
Ventilator-induced inflammatory lung injury (VILI) is mechanistically linked to increased NAMPT transcription and circulating levels of nicotinamide phosphoribosyl-transferase (NAMPT/PBEF). Although VILI severity is attenuated by reduced NAMPT/PBEF bioavailability, the precise contribution of NAMPT/PBEF and excessive mechanical stress to VILI pathobiology is unknown. We now report that NAMPT/PBEF induces lung NFκB transcriptional activities and inflammatory injury via direct ligation of Toll-like receptor 4 (TLR4). Computational analysis demonstrated that NAMPT/PBEF and MD-2, a TLR4-binding protein essential for LPS-induced TLR4 activation, share ~30% sequence identity and exhibit striking structural similarity in loop regions critical for MD-2-TLR4 binding. Unlike MD-2, whose TLR4 binding alone is insufficient to initiate TLR4 signaling, NAMPT/PBEF alone produces robust TLR4 activation, likely via a protruding region of NAMPT/PBEF (S402-N412) with structural similarity to LPS. The identification of this unique mode of TLR4 activation by NAMPT/PBEF advances the understanding of innate immunity responses as well as the untoward events associated with mechanical stress-induced lung inflammation.
Collapse
|
48
|
Robinson MB, Deshpande DA, Chou J, Cui W, Smith S, Langefeld C, Hastie AT, Bleecker ER, Hawkins GA. IL-6 trans-signaling increases expression of airways disease genes in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2015; 309:L129-38. [PMID: 26001777 DOI: 10.1152/ajplung.00288.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/14/2015] [Indexed: 12/18/2022] Open
Abstract
Genetic data suggest that IL-6 trans-signaling may have a pathogenic role in the lung; however, the effects of IL-6 trans-signaling on lung effector cells have not been investigated. In this study, human airway smooth muscle (HASM) cells were treated with IL-6 (classical) or IL-6+sIL6R (trans-signaling) for 24 h and gene expression was measured by RNAseq. Intracellular signaling and transcription factor activation were assessed by Western blotting and luciferase assay, respectively. The functional effect of IL-6 trans-signaling was determined by proliferation assay. IL-6 trans-signaling had no effect on phosphoinositide-3 kinase and Erk MAP kinase pathways in HASM cells. Both classical and IL-6 trans-signaling in HASM involves activation of Stat3. However, the kinetics of Stat3 phosphorylation by IL-6 trans-signaling was different than classical IL-6 signaling. This was further reflected in the differential gene expression profile by IL-6 trans-signaling in HASM cells. Under IL-6 trans-signaling conditions 36 genes were upregulated, including PLA2G2A, IL13RA1, MUC1, and SOD2. Four genes, including CCL11, were downregulated at least twofold. The expression of 112 genes was divergent between IL-6 classical and trans-signaling, including the genes HILPDA, NNMT, DAB2, MUC1, WWC1, and VEGFA. Pathway analysis revealed that IL-6 trans-signaling induced expression of genes involved in regulation of airway remodeling, immune response, hypoxia, and glucose metabolism. Treatment of HASM cells with IL-6+sIL6R induced proliferation in a dose-dependent fashion, suggesting a role for IL-6 trans-signaling in asthma pathogenesis. These novel findings demonstrate differential effect of IL-6 trans-signaling on airway cells and identify IL-6 trans-signaling as a potential modifier of airway inflammation and remodeling.
Collapse
Affiliation(s)
- Mac B Robinson
- Wake Forest School of Medicine, Center for Genomics and Personalized Medicine Research, Winston-Salem, North Carolina; Wake Forest School of Medicine, Department of Neurobiology and Anatomy, Winston-Salem, North Carolina
| | - Deepak A Deshpande
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Jeffery Chou
- Wake Forest School of Medicine, Center for Public Health Genomics, Winston-Salem, North Carolina
| | - Wei Cui
- Wake Forest School of Medicine, Center for Genomics and Personalized Medicine Research, Winston-Salem, North Carolina
| | - Shelly Smith
- Wake Forest School of Medicine, Center for Genomics and Personalized Medicine Research, Winston-Salem, North Carolina
| | - Carl Langefeld
- Wake Forest School of Medicine, Center for Public Health Genomics, Winston-Salem, North Carolina
| | - Annette T Hastie
- Wake Forest School of Medicine, Center for Genomics and Personalized Medicine Research, Winston-Salem, North Carolina
| | - Eugene R Bleecker
- Wake Forest School of Medicine, Center for Genomics and Personalized Medicine Research, Winston-Salem, North Carolina
| | - Gregory A Hawkins
- Wake Forest School of Medicine, Center for Genomics and Personalized Medicine Research, Winston-Salem, North Carolina;
| |
Collapse
|