1
|
Giordano L, Ware SA, Lagranha CJ, Kaufman BA. Mitochondrial DNA signals driving immune responses: Why, How, Where? Cell Commun Signal 2025; 23:192. [PMID: 40264103 PMCID: PMC12012978 DOI: 10.1186/s12964-025-02042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/14/2025] [Indexed: 04/24/2025] Open
Abstract
There has been a recent expansion in our understanding of DNA-sensing mechanisms. Mitochondrial dysfunction, oxidative and proteostatic stresses, instability and impaired disposal of nucleoids cause the release of mitochondrial DNA (mtDNA) from the mitochondria in several human diseases, as well as in cell culture and animal models. Mitochondrial DNA mislocalized to the cytosol and/or the extracellular compartments can trigger innate immune and inflammation responses by binding DNA-sensing receptors (DSRs). Here, we define the features that make mtDNA highly immunogenic and the mechanisms of its release from the mitochondria into the cytosol and the extracellular compartments. We describe the major DSRs that bind mtDNA such as cyclic guanosine-monophosphate-adenosine-monophosphate synthase (cGAS), Z-DNA-binding protein 1 (ZBP1), NOD-, LRR-, and PYD- domain-containing protein 3 receptor (NLRP3), absent in melanoma 2 (AIM2) and toll-like receptor 9 (TLR9), and their downstream signaling cascades. We summarize the key findings, novelties, and gaps of mislocalized mtDNA as a driving signal of immune responses in vascular, metabolic, kidney, lung, and neurodegenerative diseases, as well as viral and bacterial infections. Finally, we define common strategies to induce or inhibit mtDNA release and propose challenges to advance the field.
Collapse
Affiliation(s)
- Luca Giordano
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, Giessen, Germany.
| | - Sarah A Ware
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudia J Lagranha
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brett A Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Hu Y, Zhao Y, Zhang Y, Chen W, Zhang H, Jin X. Cell-free DNA: a promising biomarker in infectious diseases. Trends Microbiol 2025; 33:421-433. [PMID: 38997867 DOI: 10.1016/j.tim.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/08/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Infectious diseases pose serious threats to public health worldwide. Conventional diagnostic methods for infectious diseases often exhibit low sensitivity, invasiveness, and long turnaround times. User-friendly point-of-care tests are urgently needed for early diagnosis, treatment monitoring, and prognostic prediction of infectious diseases. Cell-free DNA (cfDNA), a promising non-invasive biomarker widely used in oncology and pregnancy, has shown great potential in clinical applications for diagnosing infectious diseases. Here, we discuss the most recent cfDNA research on infectious diseases from both the pathogen and host perspectives. We also discuss the technical challenges in this field and propose solutions to overcome them. Additionally, we provide an outlook on the potential of cfDNA as a diagnostic, treatment, and prognostic marker for infectious diseases.
Collapse
Affiliation(s)
- Yuxuan Hu
- BGI Research, Shenzhen 518083, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | | | - Yan Zhang
- BGI Research, Shenzhen 518083, China
| | - Weijun Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | | | - Xin Jin
- BGI Research, Shenzhen 518083, China; The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China; Shenzhen Key Laboratory of Transomics Biotechnologies, BGI Research, Shenzhen, China.
| |
Collapse
|
3
|
Chen Z, Behrendt R, Wild L, Schlee M, Bode C. Cytosolic nucleic acid sensing as driver of critical illness: mechanisms and advances in therapy. Signal Transduct Target Ther 2025; 10:90. [PMID: 40102400 PMCID: PMC11920230 DOI: 10.1038/s41392-025-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Nucleic acids from both self- and non-self-sources act as vital danger signals that trigger immune responses. Critical illnesses such as acute respiratory distress syndrome, sepsis, trauma and ischemia lead to the aberrant cytosolic accumulation and massive release of nucleic acids that are detected by antiviral innate immune receptors in the endosome or cytosol. Activation of receptors for deoxyribonucleic acids and ribonucleic acids triggers inflammation, a major contributor to morbidity and mortality in critically ill patients. In the past decade, there has been growing recognition of the therapeutic potential of targeting nucleic acid sensing in critical care. This review summarizes current knowledge of nucleic acid sensing in acute respiratory distress syndrome, sepsis, trauma and ischemia. Given the extensive research on nucleic acid sensing in common pathological conditions like cancer, autoimmune disorders, metabolic disorders and aging, we provide a comprehensive summary of nucleic acid sensing beyond critical illness to offer insights that may inform its role in critical conditions. Additionally, we discuss potential therapeutic strategies that specifically target nucleic acid sensing. By examining nucleic acid sources, sensor activation and function, as well as the impact of regulating these pathways across various acute diseases, we highlight the driving role of nucleic acid sensing in critical illness.
Collapse
Affiliation(s)
- Zhaorong Chen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Rayk Behrendt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Lennart Wild
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
4
|
Thomas DG, Yang J, Cho SJ, Stout-Delgado H. Heightened cholesterol 25-hydroxylase expression in aged lung during Streptococcus pneumoniae. FRONTIERS IN AGING 2024; 5:1480886. [PMID: 39717487 PMCID: PMC11663934 DOI: 10.3389/fragi.2024.1480886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024]
Abstract
Introduction Alveolar macrophages (AM) are critical effectors of the immune response and are essential for host responses to Streptococcus pneumoniae. Changes in lipid metabolism in AM can alter cellular function and biology. Impaired metabolism can contribute to excessive lipid accumulation and pro-inflammatory signaling. Our current study was designed to examine the role of cholesterol 25-hydroxylase (Ch25h), a redox enzyme that catalyzes the oxidation of cholesterol to 25-hydroxycholesterol (25-HC), in modulating AM responses in the aged lung during S. pneumoniae infection. Methods To observe the impact of aging on Ch25h expression in AM during infection, in vitro and in vivo murine models of S. pneumoniae were used. Results At baseline and in response to infection, cholesterol metabolism significantly altered in aged AM, which corresponded with increased lipid droplet formation. In vitro, treatment of aged macrophages with Ch25 h-specific siRNA improved S. pneumoniae clearance and enhanced phagocytic receptor expression. In vivo siRNA targeting significantly reduced Ch25h expression in aged lungs and improved clinical parameters during S. pneumoniae infection. Reduction of Ch25h was associated with changes in phagocytosis and antibacterial signaling, correlated with changes in cholesterol metabolism, and increased S. pneumoniae clearance. Discussion The results of our current study demonstrate that Ch25h plays an essential role in modulating aged AM responses to S. pneumoniae.
Collapse
Affiliation(s)
- David G. Thomas
- Department of Medicine, Pulmonary and Critical Care, Weill Cornell Medicine, New York, NY, United States
- New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, United States
| | - Jianjun Yang
- Department of Medicine, Pulmonary and Critical Care, Weill Cornell Medicine, New York, NY, United States
| | - Soo Jung Cho
- Department of Medicine, Pulmonary and Critical Care, Weill Cornell Medicine, New York, NY, United States
- New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, United States
| | - Heather Stout-Delgado
- Department of Medicine, Pulmonary and Critical Care, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
5
|
Huang Z, Wei C, Xie H, Xiao X, Wang T, Zhang Y, Chen Y, Hei Z, Zhao T, Yao W. Treating acute lung injury through scavenging of cell-free DNA by cationic nanoparticles. Mater Today Bio 2024; 29:101360. [PMID: 39687793 PMCID: PMC11648789 DOI: 10.1016/j.mtbio.2024.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome are life-threatening conditions induced by inflammatory responses, in which cell-free DNA (cfDNA) plays a pivotal role. This study investigated the therapeutic potential of biodegradable cationic nanoparticles (cNPs) in alleviating ALI. Using a mouse model of lipopolysaccharide-induced ALI, we examined the impact of intravenously administered cNPs. Our findings indicate that cNPs possess robust DNA binding capability, enhanced accumulation in inflamed lungs, and a favorable safety profile in vivo. Furthermore, cNPs attenuate the inflammatory response in LPS-induced ALI mice by scavenging cfDNA, mainly derived from neutrophil extracellular traps, and activating the macrophage-mediated cGAS-STING pathway. The findings suggest a potential treatment for ALI by targeting cfDNA with cNPs. This approach has demonstrated efficacy in mitigating lung injury and merits further exploration.
Collapse
Affiliation(s)
- Ziyan Huang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Cong Wei
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Hanbin Xie
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Xue Xiao
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Tienan Wang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Yihan Zhang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Yongming Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Tianyu Zhao
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Weifeng Yao
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| |
Collapse
|
6
|
Matviichuk A, Yerokhovych V, Ilkiv Y, Krasnienkov D, Korcheva V, Gurbych O, Shcherbakova A, Botsun P, Falalyeyeva T, Sulaieva O, Kobyliak N. HbA1c and leukocyte mtDNA levels as major factors associated with post-COVID-19 syndrome in type 2 diabetes patients. Sci Rep 2024; 14:25533. [PMID: 39462048 PMCID: PMC11513135 DOI: 10.1038/s41598-024-77496-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024] Open
Abstract
Post-COVID-19 syndrome (PCS) is an emerging health problem in people recovering from COVID-19 infection within the past 3-6 months. The current study aimed to define the predictive factors of PCS development by assessing the mitochondrial DNA (mtDNA) levels in blood leukocytes, inflammatory markers and HbA1c in type 2 diabetes patients (T2D) with regard to clinical phenotype, gender, and biological age. In this case-control study, 65 T2D patients were selected. Patients were divided into 2 groups depending on PCS presence: the PCS group (n = 44) and patients who did not develop PCS (n = 21) for up to 6 months after COVID-19 infection. HbA1c and mtDNA levels were the primary factors linked to PCS in different models. We observed significantly lower mtDNA content in T2D patients with PCS compared to those without PCS (1.26 ± 0.25 vs. 1.44 ± 0.24; p = 0.011). In gender-specific and age-related analyses, the mt-DNA amount did not differ significantly between the subgroups. According to the stepwise multivariate logistic regression analysis, low mtDNA content and HbA1c were independent variables associated with PCS development, regardless of oxygen, glucocorticoid therapy and COVID-19 severity. The top-performing model for PCS prediction was the gradient boosting machine (GBM). HbA1c and mtDNA had a notably greater influence than the other variables, indicating their potential as prognostic biomarkers.
Collapse
Affiliation(s)
- Anton Matviichuk
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | | | - Yeva Ilkiv
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | - Dmytro Krasnienkov
- Laboratory of Epigenetics, Institute of Gerontology Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
- Blackthorn AI, Ltd, London, UK
| | - Veronika Korcheva
- Laboratory of Epigenetics, Institute of Gerontology Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Oleksandr Gurbych
- Blackthorn AI, Ltd, London, UK
- Lviv Polytechnic National University, Lviv, Ukraine
| | | | | | - Tetyana Falalyeyeva
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Medical Laboratory CSD, Kyiv, Ukraine
| | - Oksana Sulaieva
- Medical Laboratory CSD, Kyiv, Ukraine
- Kyiv Medical University, Kyiv, Ukraine
| | - Nazarii Kobyliak
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine.
- Medical Laboratory CSD, Kyiv, Ukraine.
- Doctor of Medicine, Endocrinology Department, Bogomolets National Medical University, Ievgena Chykalenka 22a str, Kyiv, 01601, Ukraine.
| |
Collapse
|
7
|
Avdonin PP, Blinova MS, Serkova AA, Komleva LA, Avdonin PV. Immunity and Coagulation in COVID-19. Int J Mol Sci 2024; 25:11267. [PMID: 39457048 PMCID: PMC11508857 DOI: 10.3390/ijms252011267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Discovered in late 2019, the SARS-CoV-2 coronavirus has caused the largest pandemic of the 21st century, claiming more than seven million lives. In most cases, the COVID-19 disease caused by the SARS-CoV-2 virus is relatively mild and affects only the upper respiratory tract; it most often manifests itself with fever, chills, cough, and sore throat, but also has less-common mild symptoms. In most cases, patients do not require hospitalization, and fully recover. However, in some cases, infection with the SARS-CoV-2 virus leads to the development of a severe form of COVID-19, which is characterized by the development of life-threatening complications affecting not only the lungs, but also other organs and systems. In particular, various forms of thrombotic complications are common among patients with a severe form of COVID-19. The mechanisms for the development of thrombotic complications in COVID-19 remain unclear. Accumulated data indicate that the pathogenesis of severe COVID-19 is based on disruptions in the functioning of various innate immune systems. The key role in the primary response to a viral infection is assigned to two systems. These are the pattern recognition receptors, primarily members of the toll-like receptor (TLR) family, and the complement system. Both systems are the first to engage in the fight against the virus and launch a whole range of mechanisms aimed at its rapid elimination. Normally, their joint activity leads to the destruction of the pathogen and recovery. However, disruptions in the functioning of these innate immune systems in COVID-19 can cause the development of an excessive inflammatory response that is dangerous for the body. In turn, excessive inflammation entails activation of and damage to the vascular endothelium, as well as the development of the hypercoagulable state observed in patients seriously ill with COVID-19. Activation of the endothelium and hypercoagulation lead to the development of thrombosis and, as a result, damage to organs and tissues. Immune-mediated thrombotic complications are termed "immunothrombosis". In this review, we discuss in detail the features of immunothrombosis associated with SARS-CoV-2 infection and its potential underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (P.P.A.)
| |
Collapse
|
8
|
Zhang H, Li L, Luo Y, Zheng F, Zhang Y, Xie R, Ou R, Chen Y, Lin Y, Wang Y, Jin Y, Xu J, Tao Y, Qu R, Zhou W, Bai Y, Cheng F, Jin X. Fragmentomics of plasma mitochondrial and nuclear DNA inform prognosis in COVID-19 patients with critical symptoms. BMC Med Genomics 2024; 17:243. [PMID: 39363185 PMCID: PMC11451003 DOI: 10.1186/s12920-024-02022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND The mortality rate of COVID-19 patients with critical symptoms is reported to be 40.5%. Early identification of patients with poor progression in the critical cohort is essential to timely clinical intervention and reduction of mortality. Although older age, chronic diseases, have been recognized as risk factors for COVID-19 mortality, we still lack an accurate prediction method for every patient. This study aimed to delve into the cell-free DNA fragmentomics of critically ill patients, and develop new promising biomarkers for identifying the patients with high mortality risk. METHODS We utilized whole genome sequencing on the plasma cell-free DNA (cfDNA) from 33 COVID-19 patients with critical symptoms, whose outcomes were classified as survival (n = 16) and death (n = 17). Mitochondrial DNA (mtDNA) abundance and fragmentomic properties of cfDNA, including size profiles, ends motif and promoter coverages were interrogated and compared between survival and death groups. RESULTS Significantly decreased abundance (~ 76% reduction) and dramatically shorter fragment size of cell-free mtDNA were observed in deceased patients. Likewise, the deceased patients exhibited distinct end-motif patterns of cfDNA with an enhanced preference for "CC" started motifs, which are related to the activity of nuclease DNASE1L3. Several dysregulated genes involved in the COVID-19 progression-related pathways were further inferred from promoter coverages. These informative cfDNA features enabled a high PPV of 83.3% in predicting deceased patients in the critical cohort. CONCLUSION The dysregulated biological processes observed in COVID-19 patients with fatal outcomes may contribute to abnormal release and modifications of plasma cfDNA. Our findings provided the feasibility of plasma cfDNA as a promising biomarker in the prognosis prediction in critically ill COVID-19 patients in clinical practice.
Collapse
Affiliation(s)
| | - Lingguo Li
- BGI Research, Shenzhen , Guangdong, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Yuxue Luo
- BGI Research, Shenzhen , Guangdong, 518083, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Fang Zheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan , Hubei, 430022, China
| | - Yan Zhang
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Rong Xie
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Rijing Ou
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Yilin Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yu Lin
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Yeqin Wang
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Yan Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan , Hubei, 430022, China
| | - Jinjin Xu
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Ye Tao
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Ruokai Qu
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Wenwen Zhou
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Yong Bai
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Fanjun Cheng
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Xin Jin
- BGI Research, Shenzhen , Guangdong, 518083, China.
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China.
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI Research, Shenzhen, Guangdong, 518083, China.
| |
Collapse
|
9
|
Xu DW, Tate MD. Taking AIM at Influenza: The Role of the AIM2 Inflammasome. Viruses 2024; 16:1535. [PMID: 39459869 PMCID: PMC11512208 DOI: 10.3390/v16101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Influenza A viruses (IAV) are dynamic and highly mutable respiratory pathogens that present persistent public health challenges. Inflammasomes, as components of the innate immune system, play a crucial role in the early detection and response to infections. They react to viral pathogens by triggering inflammation to promote immune defences and initiate repair mechanisms. While a strong response is necessary for early viral control, overactivation of inflammasomes can precipitate harmful hyperinflammatory responses, a defining characteristic observed during severe influenza infections. The Absent in Melanoma 2 (AIM2) inflammasome, traditionally recognised for its role as a DNA sensor, has recently been implicated in the response to RNA viruses, like IAV. Paradoxically, AIM2 deficiency has been linked to both enhanced and reduced vulnerability to IAV infection. This review synthesises the current understanding of AIM2 inflammasome activation during IAV and explores its clinical implications. Understanding the nuances of AIM2's involvement could unveil novel therapeutic avenues for mitigating severe influenza outcomes.
Collapse
Affiliation(s)
- Dianne W. Xu
- Center for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Michelle D. Tate
- Center for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
10
|
Erdem H, Balkan İİ, Karaali R, Ürkmez S, Mete B, Aygün G, Saltoğlu N, Tabak ÖF, Kuşkucu MA. Cell free DNA as a new prognostic biomarker for COVID-19, A prospective cohort study. Diagn Microbiol Infect Dis 2024; 110:116367. [PMID: 38896890 DOI: 10.1016/j.diagmicrobio.2024.116367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Predicting the need of hospitalization and intensive care in COVID-19 patients has been challenging with current diagnostic tests since the beginning of the pandemic. We aimed to test cell free DNA (cfDNA) as a novel biomarker for COVID-19 disease severity and mortality. cfDNA concentration was quantified by RT-PCR based test. One hundred and sixty-eight patients(85 outpatients, 61 inpatients,22 ICU) included the study. Mean initial plasma cfDNA levels were significantly different (p < 0.01) in outpatients (1.190,66 ng/ml), inpatients (8.258,10 ng/ml) and ICU patients (84.806,87 ng/ml). ROC analysis showed with 95 % specificity that patients with initial cfDNA concentrations ≥6.389 ng/ml need to be hospitalized and those ≥26.104 ng/ml require ICU referral. cfDNA concentration was correlated with neutrophil/lymphocyte ratio, lymphocyte level, CRP, AST, LDH, CK, fibrinogen, ferritin and D-dimer. Plasma cfDNA levels on admission, well correlating with disease severity and mortality in COVID-19 that found as a useful biomarker.
Collapse
Affiliation(s)
- Hazal Erdem
- Kars Harakani State Hospital, Infectious Diseases and Clinical Microbiology; Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Infectious Diseases and Clinical Microbiology.
| | - İlker İnanç Balkan
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Infectious Diseases and Clinical Microbiology
| | - Rıdvan Karaali
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Infectious Diseases and Clinical Microbiology
| | - Seval Ürkmez
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Anesthesiology and Reanimation
| | - Birgül Mete
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Infectious Diseases and Clinical Microbiology
| | - Gökhan Aygün
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Infectious Diseases and Clinical Microbiology; Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Medical Microbiology
| | - Neşe Saltoğlu
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Infectious Diseases and Clinical Microbiology
| | - Ömer Fehmi Tabak
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Infectious Diseases and Clinical Microbiology
| | - Mert Ahmet Kuşkucu
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Medical Microbiology; Koc University, School of Medicine, Medical Microbiology; Koç University İşbank Center for Infectious Diseases (KUISCID)
| |
Collapse
|
11
|
Gay L, Desquiret-Dumas V, Nagot N, Rapenne C, Van de Perre P, Reynier P, Molès JP. Long-term persistence of mitochondrial dysfunctions after viral infections and antiviral therapies: A review of mechanisms involved. J Med Virol 2024; 96:e29886. [PMID: 39246064 DOI: 10.1002/jmv.29886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Mitochondria are vital for most cells' functions. Viruses hijack mitochondria machinery for misappropriation of energy supply or to bypass defense mechanisms. Many of these mitochondrial dysfunctions persist after recovery from treated or untreated viral infections, particularly when mitochondrial DNA is permanently damaged. Quantitative defects and structural rearrangements of mitochondrial DNA accumulate in post-mitotic tissues as recently reported long after SARS-CoV-2 or HIV infection, or following antiviral therapy. These observations are consistent with the "hit-and-run" concept proposed decades ago to explain viro-induced cell transformation and it could apply to delayed post-viral onsets of symptoms and advocate for complementary supportive care. Thus, according to this concept, following exposure to viruses or antiviral agents, mitochondrial damage could evolve into an autonomous clinical condition. It also establishes a pathogenic link between communicable and non-communicable chronic diseases.
Collapse
Affiliation(s)
- Laetitia Gay
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Valérie Desquiret-Dumas
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Clara Rapenne
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Pascal Reynier
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Jean-Pierre Molès
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| |
Collapse
|
12
|
Yoshida T, Myakala K, Jones BA, Wang XX, Shrivastav S, Santo BA, Patel TR, Zhao Y, Tutino VM, Sarder P, Rosenberg AZ, Winkler CA, Levi M, Kopp JB. NAD deficiency contributes to progressive kidney disease in HIV-nephropathy mice. Am J Physiol Renal Physiol 2024; 327:F450-F462. [PMID: 38961841 PMCID: PMC11444509 DOI: 10.1152/ajprenal.00061.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/04/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024] Open
Abstract
HIV disease remains prevalent in the United States and is particularly prevalent in sub-Saharan Africa. Recent investigations revealed that mitochondrial dysfunction in kidney contributes to HIV-associated nephropathy (HIVAN) in Tg26 transgenic mice. We hypothesized that nicotinamide adenine dinucleotide (NAD) deficiency contributes to energetic dysfunction and progressive tubular injury. We investigated metabolomic mechanisms of HIVAN tubulopathy. Tg26 and wild-type (WT) mice were treated with the farnesoid X receptor (FXR) agonist INT-747 or nicotinamide riboside (NR) from 6 to 12 wk of age. Multiomic approaches were used to characterize kidney tissue transcriptomes and metabolomes. Treatment with INT-747 or NR ameliorated kidney tubular injury, as shown by serum creatinine, the tubular injury marker urinary neutrophil-associated lipocalin, and tubular morphometry. Integrated analysis of metabolomic and transcriptomic measurements showed that NAD levels and production were globally downregulated in Tg26 mouse kidneys, especially nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD salvage pathway. Furthermore, NAD-dependent deacetylase sirtuin3 activity and mitochondrial oxidative phosphorylation activity were lower in ex vivo proximal tubules from Tg26 mouse kidneys compared with those of WT mice. Restoration of NAD levels in the kidney improved these abnormalities. These data suggest that NAD deficiency might be a treatable target for HIVAN.NEW & NOTEWORTHY The study describes a novel investigation that identified nicotinamide adenine dinucleotide (NAD) deficiency in a widely used HIV-associated nephropathy (HIVAN) transgenic mouse model. We show that INT-747, a farnesoid X receptor agonist, and nicotinamide riboside (NR), a precursor of nicotinamide, each ameliorated HIVAN tubulopathy. Multiomic analysis of mouse kidneys revealed that NAD deficiency was an upstream metabolomic mechanism contributing to HIVAN tubulopathy.
Collapse
Affiliation(s)
- Teruhiko Yoshida
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States
| | - Bryce A Jones
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States
| | - Xiaoxin X Wang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States
| | - Shashi Shrivastav
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Briana A Santo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States
| | - Tatsat R Patel
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States
| | - Yongmei Zhao
- Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States
| | - Vincent M Tutino
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States
| | - Pinaki Sarder
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States
| | - Cheryl A Winkler
- Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States
| | - Jeffrey B Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
13
|
Yoshida T, Latt KZ, Rosenberg AZ, Santo BA, Myakala K, Ishimoto Y, Zhao Y, Shrivastav S, Jones BA, Yang X, Wang XX, Tutino VM, Sarder P, Levi M, Okamoto K, Winkler CA, Kopp JB. PKR activation-induced mitochondrial dysfunction in HIV-transgenic mice with nephropathy. eLife 2024; 12:RP91260. [PMID: 39207915 PMCID: PMC11361708 DOI: 10.7554/elife.91260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
HIV disease remains prevalent in the USA and chronic kidney disease remains a major cause of morbidity in HIV-1-positive patients. Host double-stranded RNA (dsRNA)-activated protein kinase (PKR) is a sensor for viral dsRNA, including HIV-1. We show that PKR inhibition by compound C16 ameliorates the HIV-associated nephropathy (HIVAN) kidney phenotype in the Tg26 transgenic mouse model, with reversal of mitochondrial dysfunction. Combined analysis of single-nucleus RNA-seq and bulk RNA-seq data revealed that oxidative phosphorylation was one of the most downregulated pathways and identified signal transducer and activator of transcription (STAT3) as a potential mediating factor. We identified in Tg26 mice a novel proximal tubular cell cluster enriched in mitochondrial transcripts. Podocytes showed high levels of HIV-1 gene expression and dysregulation of cytoskeleton-related genes, and these cells dedifferentiated. In injured proximal tubules, cell-cell interaction analysis indicated activation of the pro-fibrogenic PKR-STAT3-platelet-derived growth factor (PDGF)-D pathway. These findings suggest that PKR inhibition and mitochondrial rescue are potential novel therapeutic approaches for HIVAN.
Collapse
Affiliation(s)
- Teruhiko Yoshida
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIHBethesdaUnited States
| | - Khun Zaw Latt
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIHBethesdaUnited States
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
| | - Briana A Santo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at BuffaloBuffaloUnited States
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown UniversityWashingtonUnited States
| | - Yu Ishimoto
- Polycystic Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIHBethesdaUnited States
| | - Yongmei Zhao
- Frederick National Laboratory for Cancer Research, NCI, NIHFrederickUnited States
| | - Shashi Shrivastav
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIHBethesdaUnited States
| | - Bryce A Jones
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown UniversityWashingtonUnited States
| | - Xiaoping Yang
- Department of Pathology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
| | - Xiaoxin X Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown UniversityWashingtonUnited States
| | - Vincent M Tutino
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at BuffaloBuffaloUnited States
| | - Pinaki Sarder
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at BuffaloBuffaloUnited States
- College of Medicine, University of FloridaGainesvilleUnited States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown UniversityWashingtonUnited States
| | - Koji Okamoto
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIHBethesdaUnited States
- Nephrology Endocrinology and Vascular Medicine, Tohoku University HospitalSendaiJapan
| | - Cheryl A Winkler
- Frederick National Laboratory for Cancer Research, NCI, NIHFrederickUnited States
| | - Jeffrey B Kopp
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIHBethesdaUnited States
| |
Collapse
|
14
|
Park JH, Park S, Kim NH, Lee Y, Chang Y, Song TJ. Postural Orthostatic Tachycardia Syndrome Associated with COVID-19: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1325. [PMID: 39202605 PMCID: PMC11356245 DOI: 10.3390/medicina60081325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024]
Abstract
Postural orthostatic tachycardia syndrome (POTS) is a complex condition marked by an atypical autonomic response to standing, leading to orthostatic intolerance and significant tachycardia without accompanying hypotension. In recent studies, a considerable number of individuals recovering from COVID-19 have been reported to experience POTS within 6 to 8 months post-infection. Key symptoms of POTS include fatigue, difficulty with orthostatic tolerance, tachycardia, and cognitive challenges. The underlying causes of POTS following COVID-19 remain unknown, with various theories proposed such as renin-angiotensin-aldosterone system (RAAS) dysregulation, hyperadrenergic reaction, and direct viral infection. Healthcare professionals should be vigilant for POTS in patients who have recovered from COVID-19 and are experiencing signs of autonomic dysfunction and use diagnostic procedures such as the tilt-up table test for confirmation. COVID-19-related POTS should be approached with a holistic strategy. Although many patients show improvement with initial non-drug treatments, for subjects who do not respond and exhibit more severe symptoms, medication-based therapies may be necessary. The current understanding of COVID-19-related POTS is limited, underscoring the need for more research to increase knowledge and enhance treatment approaches.
Collapse
Affiliation(s)
- Jung-Hyun Park
- Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.-H.P.); (S.P.); (N.-H.K.); (Y.L.)
| | - Somin Park
- Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.-H.P.); (S.P.); (N.-H.K.); (Y.L.)
| | - Na-Hye Kim
- Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.-H.P.); (S.P.); (N.-H.K.); (Y.L.)
| | - Yoonjin Lee
- Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.-H.P.); (S.P.); (N.-H.K.); (Y.L.)
| | - Yoonkyung Chang
- Department of Neurology, Mokdong Hospital, Ewha Womans University College of Medicine, Seoul 07985, Republic of Korea;
| | - Tae-Jin Song
- Department of Neurology, Seoul Hospital, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| |
Collapse
|
15
|
Yang L, Zhang C, Liu Y, Bao H, Wang Z. The Therapeutic Potential of Neutrophil Extracellular Traps and NLRP3 Inflammasomes in Mycoplasma pneumoniae Pneumonia. Immunol Invest 2024; 53:975-988. [PMID: 38874911 DOI: 10.1080/08820139.2024.2364796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
INTRODUCTION Mycoplasma pneumoniae (MP) is the most common pathogen of community-acquired pneumonia in children. However, the role of neutrophil extracellular traps (NETs) in the pathogenesis of MP is unclear. METHODS Both the level of NETs were detected between the 60 MP pneumonia patients and 20 healthy controls, whose the clinical characteristics were compared. Additionally, NETs formation induced by community-acquired respiratory distress syndrome (CARDS) toxin was also analyzed through transcriptome sequencing. RESULTS The levels of cell-free DNA, Cit-H3, and MPO-DNA complexes were significantly increased in the patients with MP pneumonia. Importantly, both cell-free DNA and LDH were higher in hospitalized patients with severity than those without severity. In addition, CARDS toxin induced the NETs formation in vitro and in vivo. Transcriptomics GO and KEGG pathway analysis indicate that NOD like receptor signaling pathway and Toll-like receptor signaling pathway are significantly enriched. Finally, we found that DNase I significantly attenuated the higher levels of Cit-H3, and up-regulation of interleukin-1β (IL-1β) and interleukin-18 (IL-18) by down-regulating the expression of NLRP3 and Caspase1(p20) in the lung tissues. DISCUSSION These results indicate that inhibiting excessive activation of NLRP3 inflammasomes, and NETs formation may alleviate MP pneumonia.
Collapse
Affiliation(s)
- Lei Yang
- Institute of Acute Abdominal Diseases, Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin, China
| | - Cen Zhang
- Department of Respiratory Critical Care, Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin, China
| | - Yan Liu
- Department of Pediatrics, Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin, China
| | - Huijing Bao
- Integrative Medical Diagnosis Laboratory, Tianjin Nankai Hospital, Tianjin, China
| | - Zhihua Wang
- Department of Pediatrics, Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin, China
- Nankai Clinical School, Tianjin Medical University, Tianjin, China
| |
Collapse
|
16
|
Tanaka A, Wakayama K, Fukuda Y, Ohta S, Homma T, Ando K, Nishihara Y, Nakano R, Zhao J, Suzuki Y, Kyotani Y, Yano H, Kasahara K, Chung KP, Sagara H, Yoshizumi M, Nakahira K. Increased levels of circulating cell-free DNA in COVID-19 patients with respiratory failure. Sci Rep 2024; 14:17399. [PMID: 39075117 PMCID: PMC11286760 DOI: 10.1038/s41598-024-68433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/23/2024] [Indexed: 07/31/2024] Open
Abstract
Cell-free DNA (cfDNA) is released from injured cells and aggravates inflammation. Patients with coronavirus disease (COVID-19) often develop pneumonia and respiratory failure, and require oxygen therapy (OT), including mechanical ventilation (MV). It remains unclear whether cfDNA predicts the risk of receiving OT or MV in COVID-19 patients. Therefore, we hypothesized that circulating cfDNA levels could reflect the severity of respiratory failure and determine a therapeutic approach for oxygenation in patients with COVID-19. We analyzed cfDNA levels in serum samples from 95 hospitalized patients with COVID-19 at Showa University Hospital (Tokyo, Japan). cfDNA levels were assessed by measuring the copy numbers of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) using quantitative real-time PCR (qPCR). Both cf-nDNA and cf-mtDNA levels were negatively correlated with adjusted SpO2 for FiO2 (SpO2/FiO2 ratio). Elevated cf-nDNA and cf-mtDNA levels were associated with the requirement for OT or MV during patient admission. Multivariate logistic regression analysis revealed that cf-nDNA and cf-mtDNA levels were independent risk factors for OT and MV. These results suggest that both serum cf-nDNA and cf-mtDNA could serve as useful early biomarkers to indicate the necessity of OT or MV in patients with COVID-19.
Collapse
Affiliation(s)
- Akihiko Tanaka
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Katsuki Wakayama
- Department of Pharmacology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Yosuke Fukuda
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Shin Ohta
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tetsuya Homma
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Koichi Ando
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Division of Internal Medicine, Showa University Dental Hospital Medical Clinic, Tokyo, Japan
| | - Yuji Nishihara
- Department of Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Ryuichi Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Jing Zhao
- Department of Pharmacology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Yuki Suzuki
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Yoji Kyotani
- Department of Pharmacology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Hisakazu Yano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Kei Kasahara
- Department of Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Kuei-Pin Chung
- Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
| | - Hironori Sagara
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masanori Yoshizumi
- Department of Pharmacology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Kiichi Nakahira
- Department of Pharmacology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
17
|
Luo X, Jiang P, Ma J, Li Z, Zhou J, Wei X, A J, Chai J, Lv Y, Cheng P, Cao C, A X. Circulating free DNA as a diagnostic marker for echinococcosis: a systematic review and meta-analysis. Front Microbiol 2024; 15:1413532. [PMID: 39021627 PMCID: PMC11251952 DOI: 10.3389/fmicb.2024.1413532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Echinococcosis is a chronic zoonotic disease caused by tapeworms of the genus Echinococcus. The World Health Organization (WHO) has identified encapsulated disease as one of 17 neglected diseases to be controlled or eliminated by 2050. There is no accurate, early, non-invasive molecular diagnostic method to detect echinococcosis. The feasibility of circulating free DNA as a diagnostic method for echinococcosis has yielded inconclusive results in a number of published studies. However, there has been no systematic evaluation to date assessing the overall performance of these assays. We report here the first meta-analysis assessing the diagnostic accuracy of cfDNA in plasma, serum, and urine for echinococcosis. Methods We systematically searched PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), and WeiPu databases up to 17 January 2024, for relevant studies. All analyses were performed using RevMan 5.3, Meta-DiSc 1.4, Stata 17.0, and R 4.3.1 software. The sensitivity, specificity, and other accuracy indicators of circulating free DNA for the diagnosis of echinococcosis were summarized. Subgroup analyses and meta-regression were performed to identify sources of heterogeneity. Results A total of 7 studies included 218 patients with echinococcosis and 214 controls (156 healthy controls, 32 other disease controls (non-hydatid patients), and 26 non-study-targeted echinococcosis controls were included). Summary estimates of the diagnostic accuracy of cfDNA in the diagnosis of echinococcosis were as follows: sensitivity (SEN) of 0.51 (95% CI: 0.45-0.56); specificity (SPE) of 0.99 (95% CI: 0.97-0.99); positive likelihood ratio (PLR) of 11.82 (95% CI: 6.74-20.74); negative likelihood ratio (NLR) of 0.57 (95% CI: 0.41-0.80); diagnostic ratio (DOR) of 36.63 (95% CI: 13.75-97.59); and area under the curve (AUC) value of 0.98 (95% CI: 0.96-1.00). Conclusion Existing evidence indicates that the combined specificity of circulating cfDNA for echinococcosis is high. However, the combined sensitivity performance is unsatisfactory due to significant inter-study heterogeneity. To strengthen the validity and accuracy of our findings, further large-scale prospective studies are required.Systematic review registrationThe systematic review was registered in the International Prospective Register of Systematic Reviews PROSPERO [CRD42023454158]. https://www.crd.york.ac.uk/PROSPERO/.
Collapse
Affiliation(s)
- Xiaoqin Luo
- Qinghai University, Xining, China
- Department of Clinical Laboratory, Qinghai Provincial People’s Hospital, Xining, China
| | | | | | - Zian Li
- Department of Clinical Laboratory, Qinghai Provincial People’s Hospital, Xining, China
| | - Jianwu Zhou
- Department of Clinical Laboratory, Qinghai Provincial People’s Hospital, Xining, China
| | | | - Jide A
- Department of Clinical Laboratory, Qinghai Provincial People’s Hospital, Xining, China
| | - Jinping Chai
- Department of Clinical Laboratory, Qinghai Provincial People’s Hospital, Xining, China
| | - Yanke Lv
- Qinghai University, Xining, China
| | | | | | - Xiangren A
- Qinghai University, Xining, China
- Department of Clinical Laboratory, Qinghai Provincial People’s Hospital, Xining, China
| |
Collapse
|
18
|
Bezemer GFG, Diks MAP, Mortaz E, van Ark I, van Bergenhenegouwen J, Kraneveld AD, Folkerts G, Garssen J. A synbiotic mixture of Bifidobacterium breve M16-V, oligosaccharides and pectin, enhances Short Chain Fatty Acid production and improves lung health in a preclinical model for pulmonary neutrophilia. Front Nutr 2024; 11:1371064. [PMID: 39006103 PMCID: PMC11239554 DOI: 10.3389/fnut.2024.1371064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Pulmonary neutrophilia is a hallmark of numerous airway diseases including Chronic Obstructive Pulmonary Disease (COPD), Neutrophilic asthma, Acute Lung Injury (ALI), Acute Respiratory Distress Syndrome (ARDS) and COVID-19. The aim of the current study was to investigate the effect of dietary interventions on lung health in context of pulmonary neutrophilia. Methods Male BALB/cByJ mice received 7 intra-nasal doses of either a vehicle or lipopolysaccharides (LPS). To study the effect of nutritional interventions they received 16 intra-gastric doses of either a vehicle (PBS) or the following supplements (1) probiotic Bifidobacterium breve (B. breve) M16-V; (2) a prebiotic fiber mixture of short-chain galacto-oligosaccharides, long-chain fructo-oligosaccharides, and low-viscosity pectin in a 9:1:2 ratio (scGOS/lcFOS/lvPectin); and (3) A synbiotic combination B. breve M16-V and scGOS/lcFOS/lvPectin. Parameters for lung health included lung function, lung morphology and lung inflammation. Parameters for systemic immunomodulation included levels of fecal short chain fatty acids and regulatory T cells. Results The synbiotic supplement protected against the LPS induced decline in lung function (35% improved lung resistance at baseline p = 0.0002 and 25% at peak challenge, p = 0.0002), provided a significant relief from pulmonary neutrophilia (40.7% less neutrophils, p < 0.01) and improved the pulmonary neutrophil-to-lymphocyte ratio (NLR) by 55.3% (p = 0.0033). Supplements did not impact lung morphology in this specific experiment. LPS applied to the upper airways induced less fecal SCFAs production compared to mice that received PBS. The production of acetic acid between day -5 and day 16 was increased in all unchallenged mice (PBS-PBS p = 0.0003; PBS-Pro p < 0.0001; PBS-Pre, p = 0.0045; PBS-Syn, p = 0.0005) which upon LPS challenge was only observed in mice that received the synbiotic mixture of B. breve M16-V and GOS:FOS:lvPectin (p = 0.0003). A moderate correlation was found for butyric acid and lung function parameters and a weak correlation was found between acetic acid, butyric acid and propionic acid concentrations and NLR. Conclusion This study suggests bidirectional gut lung cross-talk in a mouse model for pulmonary neutrophilia. Neutrophilic lung inflammation coexisted with attenuated levels of fecal SCFA. The beneficial effects of the synbiotic mixture of B. breve M16-V and GOS:FOS:lvPectin on lung health associated with enhanced levels of SCFAs.
Collapse
Affiliation(s)
- Gillina F G Bezemer
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Impact Station, Hilversum, Netherlands
| | - Mara A P Diks
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Esmaeil Mortaz
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Respiratory Immunology Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ingrid van Ark
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Jeroen van Bergenhenegouwen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone, Nutricia Research BV, Immunology, Utrecht, Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone, Nutricia Research BV, Immunology, Utrecht, Netherlands
| |
Collapse
|
19
|
Yasumizu Y, Hagiwara M, Umezu Y, Fuji H, Iwaisako K, Asagiri M, Uemoto S, Nakamura Y, Thul S, Ueyama A, Yokoi K, Tanemura A, Nose Y, Saito T, Wada H, Kakuda M, Kohara M, Nojima S, Morii E, Doki Y, Sakaguchi S, Ohkura N. Neural-net-based cell deconvolution from DNA methylation reveals tumor microenvironment associated with cancer prognosis. NAR Cancer 2024; 6:zcae022. [PMID: 38751935 PMCID: PMC11094754 DOI: 10.1093/narcan/zcae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
DNA methylation is a pivotal epigenetic modification that defines cellular identity. While cell deconvolution utilizing this information is considered useful for clinical practice, current methods for deconvolution are limited in their accuracy and resolution. In this study, we collected DNA methylation data from 945 human samples derived from various tissues and tumor-infiltrating immune cells and trained a neural network model with them. The model, termed MEnet, predicted abundance of cell population together with the detailed immune cell status from bulk DNA methylation data, and showed consistency to those of flow cytometry and histochemistry. MEnet was superior to the existing methods in the accuracy, speed, and detectable cell diversity, and could be applicable for peripheral blood, tumors, cell-free DNA, and formalin-fixed paraffin-embedded sections. Furthermore, by applying MEnet to 72 intrahepatic cholangiocarcinoma samples, we identified immune cell profiles associated with cancer prognosis. We believe that cell deconvolution by MEnet has the potential for use in clinical settings.
Collapse
Affiliation(s)
- Yoshiaki Yasumizu
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Masaki Hagiwara
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Basic Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan
| | - Yuto Umezu
- Faculty of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hiroaki Fuji
- Department of Hepato-Biliary-Pancreatic Surgery, Hyogo Medical University, Nishinomiya, Hyogo, Japan
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Keiko Iwaisako
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Masataka Asagiri
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Shinji Uemoto
- Shiga University Medical Science, Otsu, Shiga, Japan
| | - Yamami Nakamura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Sophia Thul
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Azumi Ueyama
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kazunori Yokoi
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Tanemura
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yohei Nose
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takuro Saito
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hisashi Wada
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Mamoru Kakuda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masaharu Kohara
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Satoshi Nojima
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shimon Sakaguchi
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Experimental Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto, Japan
| | - Naganari Ohkura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Basic Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
20
|
Yehya N, Booth TJ, Ardhanari GD, Thompson JM, Lam LM, Till JE, Mai MV, Keim G, McKeone DJ, Halstead ES, Lahni P, Varisco BM, Zhou W, Carpenter EL, Christie JD, Mangalmurti NS. Inflammatory and tissue injury marker dynamics in pediatric acute respiratory distress syndrome. J Clin Invest 2024; 134:e177896. [PMID: 38573766 PMCID: PMC11093602 DOI: 10.1172/jci177896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUNDThe molecular signature of pediatric acute respiratory distress syndrome (ARDS) is poorly described, and the degree to which hyperinflammation or specific tissue injury contributes to outcomes is unknown. Therefore, we profiled inflammation and tissue injury dynamics over the first 7 days of ARDS, and associated specific biomarkers with mortality, persistent ARDS, and persistent multiple organ dysfunction syndrome (MODS).METHODSIn a single-center prospective cohort of intubated pediatric patients with ARDS, we collected plasma on days 0, 3, and 7. Nineteen biomarkers reflecting inflammation, tissue injury, and damage-associated molecular patterns (DAMPs) were measured. We assessed the relationship between biomarkers and trajectories with mortality, persistent ARDS, or persistent MODS using multivariable mixed effect models.RESULTSIn 279 patients (64 [23%] nonsurvivors), hyperinflammatory cytokines, tissue injury markers, and DAMPs were higher in nonsurvivors. Survivors and nonsurvivors showed different biomarker trajectories. IL-1α, soluble tumor necrosis factor receptor 1, angiopoietin 2 (ANG2), and surfactant protein D increased in nonsurvivors, while DAMPs remained persistently elevated. ANG2 and procollagen type III N-terminal peptide were associated with persistent ARDS, whereas multiple cytokines, tissue injury markers, and DAMPs were associated with persistent MODS. Corticosteroid use did not impact the association of biomarker levels or trajectory with mortality.CONCLUSIONSPediatric ARDS survivors and nonsurvivors had distinct biomarker trajectories, with cytokines, endothelial and alveolar epithelial injury, and DAMPs elevated in nonsurvivors. Mortality markers overlapped with markers associated with persistent MODS, rather than persistent ARDS.FUNDINGNIH (K23HL-136688, R01-HL148054).
Collapse
Affiliation(s)
- Nadir Yehya
- Division of Pediatric Critical Care, Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia and
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas J. Booth
- Division of Pediatric Critical Care, Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia and
| | - Gnana D. Ardhanari
- Division of Pediatric Cardiac Critical Care Medicine, Children’s Heart Institute, Memorial Hermann Hospital, University of Texas Health McGovern Medical School, Houston, Texas, USA
| | - Jill M. Thompson
- Division of Pediatric Critical Care, Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia and
| | - L.K. Metthew Lam
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Department of Medicine and
| | - Jacob E. Till
- Division of Hematology-Oncology, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark V. Mai
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Garrett Keim
- Division of Pediatric Critical Care, Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia and
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel J. McKeone
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and
| | - E. Scott Halstead
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Patrick Lahni
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Brian M. Varisco
- Section of Critical Care, Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Erica L. Carpenter
- Division of Hematology-Oncology, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jason D. Christie
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Department of Medicine and
- Center for Translational Lung Biology and
- Center for Clinical Epidemiology and Biostatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nilam S. Mangalmurti
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Department of Medicine and
- Center for Translational Lung Biology and
| |
Collapse
|
21
|
Shah P, Agbor-Enoh S, Lee S, Andargie TE, Sinha SS, Kong H, Henry L, Park W, McNair E, Tchoukina I, Shah KB, Najjar SS, Hsu S, Rodrigo ME, Jang MK, Marboe C, Berry GJ, Valantine HA. Racial Differences in Donor-Derived Cell-Free DNA and Mitochondrial DNA After Heart Transplantation, on Behalf of the GRAfT Investigators. Circ Heart Fail 2024; 17:e011160. [PMID: 38375637 PMCID: PMC11021168 DOI: 10.1161/circheartfailure.123.011160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/07/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND Black heart transplant patients are at higher risk of acute rejection (AR) and death than White patients. We hypothesized that this risk may be associated with higher levels of donor-derived cell-free DNA (dd-cfDNA) and cell-free mitochondrial DNA. METHODS The Genomic Research Alliance for Transplantation is a multicenter, prospective, longitudinal cohort study. Sequencing was used to quantitate dd-cfDNA and polymerase chain reaction to quantitate cell-free mitochondrial DNA in plasma. AR was defined as ≥2R cellular rejection or ≥1 antibody-mediated rejection. The primary composite outcome was AR, graft dysfunction (left ventricular ejection fraction <50% and decrease by ≥10%), or death. RESULTS We included 148 patients (65 Black patients and 83 White patients), median age was 56 years and 30% female sex. The incidence of AR was higher in Black patients compared with White patients (43% versus 19%; P=0.002). Antibody-mediated rejection occurred predominantly in Black patients with a prevalence of 20% versus 2% (P<0.001). After transplant, Black patients had higher levels of dd-cfDNA, 0.09% (interquartile range, 0.001-0.30) compared with White patients, 0.05% (interquartile range, 0.001-0.23; P=0.003). Beyond 6 months, Black patients showed a persistent rise in dd-cfDNA with higher levels compared with White patients. Cell-free mitochondrial DNA was higher in Black patients (185 788 copies/mL; interquartile range, 101 252-422 133) compared with White patients (133 841 copies/mL; interquartile range, 75 346-337 990; P<0.001). The primary composite outcome occurred in 43% and 55% of Black patients at 1 and 2 years, compared with 23% and 27% in White patients, P<0.001. In a multivariable model, Black patient race (hazard ratio, 2.61 [95% CI, 1.35-5.04]; P=0.004) and %dd-cfDNA (hazard ratio, 1.15 [95% CI, 1.03-1.28]; P=0.010) were associated with the primary composite outcome. CONCLUSIONS Elevated dd-cfDNA and cell-free mitochondrial DNA after heart transplant may mechanistically be implicated in the higher incidence of AR and worse clinical outcomes in Black transplant recipients. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT02423070.
Collapse
Affiliation(s)
- Palak Shah
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church VA
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda Maryland, 20982
| | - Sean Agbor-Enoh
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda Maryland, 20982
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore MD
- Applied Precision Genomics, National Heart, Lung and Blood Institute, Bethesda MD
| | - Seiyon Lee
- Volgenau School of Engineering, George Mason University, Fairfax VA
| | - Temesgen E. Andargie
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda Maryland, 20982
- Applied Precision Genomics, National Heart, Lung and Blood Institute, Bethesda MD
| | - Shashank S. Sinha
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church VA
| | - Hyesik Kong
- Applied Precision Genomics, National Heart, Lung and Blood Institute, Bethesda MD
| | - Lawrence Henry
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church VA
| | - Woojin Park
- Applied Precision Genomics, National Heart, Lung and Blood Institute, Bethesda MD
| | - Erick McNair
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church VA
| | - Inna Tchoukina
- The Pauley Heart Center, Virginia Commonwealth University, Richmond VA
| | - Keyur B. Shah
- The Pauley Heart Center, Virginia Commonwealth University, Richmond VA
| | - Samer S. Najjar
- Advanced Heart Failure Program, Medstar Heart and Vascular Institute, Washington Hospital Center, Washington DC
| | - Steven Hsu
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore MD
| | - Maria E. Rodrigo
- Advanced Heart Failure Program, Medstar Heart and Vascular Institute, Washington Hospital Center, Washington DC
| | - Moon Kyoo Jang
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda Maryland, 20982
- Applied Precision Genomics, National Heart, Lung and Blood Institute, Bethesda MD
| | - Charles Marboe
- Department of Pathology, New York Presbyterian University Hospital of Cornell and Columbia, New York, New York, USA
| | | | - Hannah A. Valantine
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda Maryland, 20982
- Stanford University School of Medicine, Palo Alto, CA
| |
Collapse
|
22
|
Ali M, Choudhary R, Singh K, Kumari S, Kumar R, Graham BB, Pasha MAQ, Rabyang S, Thinlas T, Mishra A. Hypobaric hypoxia modulated structural characteristics of circulating cell-free DNA in high-altitude pulmonary edema. Am J Physiol Lung Cell Mol Physiol 2024; 326:L496-L507. [PMID: 38349115 PMCID: PMC11905808 DOI: 10.1152/ajplung.00245.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 04/07/2024] Open
Abstract
The utility of cell-free (cf) DNA has extended as a surrogate or clinical biomarker for various diseases. However, a more profound and expanded understanding of the diverse cfDNA population and its correlation with physiological phenotypes and environmental factors is imperative for using its full potential. The high-altitude (HA; altitude > 2,500 m above sea level) environment characterized by hypobaric hypoxia offers an observational case-control design to study the differential cfDNA profile in patients with high-altitude pulmonary edema (HAPE) (number of subjects, n = 112) and healthy HA sojourners (n = 111). The present study investigated cfDNA characteristics such as concentration, fragment length size, degree of integrity, and subfractions reflecting mitochondrial-cfDNA copies in the two groups. The total cfDNA level was significantly higher in patients with HAPE, and the level increased with increasing HAPE severity (P = 0.0036). A lower degree of cfDNA integrity of 0.346 in patients with HAPE (P = 0.001) indicated the prevalence of shorter cfDNA fragments in circulation in patients compared with the healthy HA sojourners. A significant correlation of cfDNA characteristics with the peripheral oxygen saturation levels in the patient group demonstrated the translational relevance of cfDNA molecules. The correlation was further supported by multivariate logistic regression and receiver operating characteristic curve. To our knowledge, our study is the first to highlight the association of higher cfDNA concentration, a lower degree of cfDNA integrity, and increased mitochondrial-derived cfDNA population with HAPE disease severity. Further deep profiling of cfDNA fragments, which preserves cell-type specific genetic and epigenetic features, can provide dynamic physiological responses to hypoxia.NEW & NOTEWORTHY This study observed altered cell-free (cf) DNA fragment patterns in patients with high-altitude pulmonary edema and the significant correlation of these patterns with peripheral oxygen saturation levels. This suggests deep profiling of cfDNA fragments in the future may identify genetic and epigenetic mechanisms underlying physiological and pathophysiological responses to hypoxia.
Collapse
Affiliation(s)
- Manzoor Ali
- Cardio Respiratory Disease Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Raushni Choudhary
- Cardio Respiratory Disease Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kanika Singh
- Cardio Respiratory Disease Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Swati Kumari
- Cardio Respiratory Disease Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rahul Kumar
- Department of Medicine, University of California, San Francisco, California, United States
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, United States
| | - Brian B Graham
- Department of Medicine, University of California, San Francisco, California, United States
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, United States
| | | | - Stanzen Rabyang
- Department of Medicine, Sonam Norboo Memorial Hospital, Leh, India
| | - Tashi Thinlas
- Department of Medicine, Sonam Norboo Memorial Hospital, Leh, India
| | - Aastha Mishra
- Cardio Respiratory Disease Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
23
|
Jalili S, Hashemi SMA, Sarvari J. SARS-COV-2 ORF9b Dysregulate Fibrinogen and Albumin Genes in a Liver Cell Line. Rep Biochem Mol Biol 2024; 13:51-58. [PMID: 39582820 PMCID: PMC11580134 DOI: 10.61186/rbmb.13.1.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/02/2024] [Indexed: 11/26/2024]
Abstract
Background Individuals experiencing severe cases of Coronavirus Disease 2019 (COVID-19) exhibited elevated fibrinogen levels and decreased albumin levels, potentially linked to the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) proteins. Consequently, our study endeavors to examine the impact of SARS-CoV-2 ORF9b on the expression of fibrinogen and albumin genes within the Hep-G2 cell line. Methods In this study, the Hep-G2 liver cell line was utilized alongside the plasmid pcDNA3.1 hyg+ containing ORF9b from the SARS-CoV-2 strain originating in Wuhan. Transfection procedures were executed, and the transfected cells were selected utilizing hygromycin B. Validation of ORF9b expression was conducted through SYBR green-based real-time PCR, and the expression of the Fibrinogen α (FGA), Fibrinogen β (FGB), Fibrinogen γ (FGG), and Albumin (ALB) genes was quantified using the same method. Results The real-time PCR analysis revealed a significant upregulation of fibrinogen genes-α (P=0.03), β (P=0.02), and γ (P=0.029) in Hep-G2 cells containing ORF9b compared to control cells. Furthermore, the findings indicated a markedly lower expression level of albumin in Hep-G2 cells harboring ORF9b compared to the control cells (P=0.028). Conclusions The findings suggest that SARS-CoV-2 ORF9b could potentially influence the course of SARS-CoV-2 infection by triggering the expression of α, β, and γ fibrinogen gene chains while suppressing the albumin gene. Further investigations are warranted to validate these observations across various SARS-CoV-2 strains exhibiting differing levels of pathogenicity.
Collapse
Affiliation(s)
- Shirin Jalili
- Institute of police equipment and technologies, policing sciences and social studies research institute, Tehran, Iran.
| | - Seyed Mohammad Ali Hashemi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Jamal Sarvari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
24
|
Balasubramanian S, Richert ME, Kong H, Fu S, Jang MK, Andargie TE, Keller MB, Alnababteh M, Park W, Apalara Z, Sun J, Redekar N, Orens J, Aryal S, Bush EL, Cantu E, Diamond J, Shah P, Yu K, Nathan SD, Agbor-Enoh S. Cell-Free DNA Maps Tissue Injury and Correlates with Disease Severity in Lung Transplant Candidates. Am J Respir Crit Care Med 2024; 209:727-737. [PMID: 38117233 PMCID: PMC10945061 DOI: 10.1164/rccm.202306-1064oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
Rationale: Plasma cell-free DNA levels correlate with disease severity in many conditions. Pretransplant cell-free DNA may risk stratify lung transplant candidates for post-transplant complications. Objectives: To evaluate if pretransplant cell-free DNA levels and tissue sources identify patients at high risk of primary graft dysfunction and other pre- and post-transplant outcomes. Methods: This multicenter, prospective cohort study recruited 186 lung transplant candidates. Pretransplant plasma samples were collected to measure cell-free DNA. Bisulfite sequencing was performed to identify the tissue sources of cell-free DNA. Multivariable regression models determined the association between cell-free DNA levels and the primary outcome of primary graft dysfunction and other transplant outcomes, including Lung Allocation Score, chronic lung allograft dysfunction, and death. Measurements and Main Results: Transplant candidates had twofold greater cell-free DNA levels than healthy control patients (median [interquartile range], 23.7 ng/ml [15.1-35.6] vs. 12.9 ng/ml [9.9-18.4]; P < 0.0001), primarily originating from inflammatory innate immune cells. Cell-free DNA levels and tissue sources differed by native lung disease category and correlated with the Lung Allocation Score (P < 0.001). High pretransplant cell-free DNA increased the risk of primary graft dysfunction (odds ratio, 1.60; 95% confidence interval [CI], 1.09-2.46; P = 0.0220), and death (hazard ratio, 1.43; 95% CI, 1.07-1.92; P = 0.0171) but not chronic lung allograft dysfunction (hazard ratio, 1.37; 95% CI, 0.97-1.94; P = 0.0767). Conclusions: Lung transplant candidates demonstrate a heightened degree of tissue injury with elevated cell-free DNA, primarily originating from innate immune cells. Pretransplant plasma cell-free DNA levels predict post-transplant complications.
Collapse
Affiliation(s)
- Shanti Balasubramanian
- Genomic Research Alliance for Transplantation, Bethesda, Maryland
- Division of Intramural Research, Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland
| | - Mary E. Richert
- Genomic Research Alliance for Transplantation, Bethesda, Maryland
- Division of Intramural Research, Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland
| | - Hyesik Kong
- Genomic Research Alliance for Transplantation, Bethesda, Maryland
- Division of Intramural Research, Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Sheng Fu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Moon Kyoo Jang
- Genomic Research Alliance for Transplantation, Bethesda, Maryland
- Division of Intramural Research, Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Temesgen E. Andargie
- Genomic Research Alliance for Transplantation, Bethesda, Maryland
- Division of Intramural Research, Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- Department of Biology, Howard University, Washington, District of Columbia
| | - Michael B. Keller
- Genomic Research Alliance for Transplantation, Bethesda, Maryland
- Division of Intramural Research, Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland
- Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Muhtadi Alnababteh
- Genomic Research Alliance for Transplantation, Bethesda, Maryland
- Division of Intramural Research, Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland
| | - Woojin Park
- Genomic Research Alliance for Transplantation, Bethesda, Maryland
- Division of Intramural Research, Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Zainab Apalara
- Genomic Research Alliance for Transplantation, Bethesda, Maryland
- Division of Intramural Research, Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- Integrated Data Science Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jian Sun
- Integrated Data Science Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Neelam Redekar
- Integrated Data Science Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jonathan Orens
- Genomic Research Alliance for Transplantation, Bethesda, Maryland
- Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Shambhu Aryal
- Genomic Research Alliance for Transplantation, Bethesda, Maryland
- Advanced Lung Disease and Lung Transplant Program, Inova Fairfax Hospital, Fairfax, Virginia
| | - Errol L. Bush
- Genomic Research Alliance for Transplantation, Bethesda, Maryland
- Department of Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland; and
| | - Edward Cantu
- Genomic Research Alliance for Transplantation, Bethesda, Maryland
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joshua Diamond
- Genomic Research Alliance for Transplantation, Bethesda, Maryland
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Pali Shah
- Genomic Research Alliance for Transplantation, Bethesda, Maryland
- Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Steven D. Nathan
- Genomic Research Alliance for Transplantation, Bethesda, Maryland
- Advanced Lung Disease and Lung Transplant Program, Inova Fairfax Hospital, Fairfax, Virginia
| | - Sean Agbor-Enoh
- Genomic Research Alliance for Transplantation, Bethesda, Maryland
- Division of Intramural Research, Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
25
|
Li YY, Yuan MM, Li YY, Li S, Wang JD, Wang YF, Li Q, Li J, Chen RR, Peng JM, Du B. Cell-free DNA methylation reveals cell-specific tissue injury and correlates with disease severity and patient outcomes in COVID-19. Clin Epigenetics 2024; 16:37. [PMID: 38429730 PMCID: PMC10908074 DOI: 10.1186/s13148-024-01645-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/16/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The recently identified methylation patterns specific to cell type allows the tracing of cell death dynamics at the cellular level in health and diseases. This study used COVID-19 as a disease model to investigate the efficacy of cell-specific cell-free DNA (cfDNA) methylation markers in reflecting or predicting disease severity or outcome. METHODS Whole genome methylation sequencing of cfDNA was performed for 20 healthy individuals, 20 cases with non-hospitalized COVID-19 and 12 cases with severe COVID-19 admitted to intensive care unit (ICU). Differentially methylated regions (DMRs) and gene ontology pathway enrichment analyses were performed to explore the locus-specific methylation difference between cohorts. The proportion of cfDNA derived from lung and immune cells to a given sample (i.e. tissue fraction) at cell-type resolution was estimated using a novel algorithm, which reflects lung injuries and immune response in COVID-19 patients and was further used to evaluate clinical severity and patient outcome. RESULTS COVID‑19 patients had globally reduced cfDNA methylation level compared with healthy controls. Compared with non-hospitalized COVID-19 patients, the cfDNA methylation pattern was significantly altered in severe patients with the identification of 11,156 DMRs, which were mainly enriched in pathways related to immune response. Markedly elevated levels of cfDNA derived from lung and more specifically alveolar epithelial cells, bronchial epithelial cells, and lung endothelial cells were observed in COVID-19 patients compared with healthy controls. Compared with non-hospitalized patients or healthy controls, severe COVID-19 had significantly higher cfDNA derived from B cells, T cells and granulocytes and lower cfDNA from natural killer cells. Moreover, cfDNA derived from alveolar epithelial cells had the optimal performance to differentiate COVID-19 with different severities, lung injury levels, SOFA scores and in-hospital deaths, with the area under the receiver operating characteristic curve of 0.958, 0.941, 0.919 and 0.955, respectively. CONCLUSION Severe COVID-19 has a distinct cfDNA methylation signature compared with non-hospitalized COVID-19 and healthy controls. Cell type-specific cfDNA methylation signature enables the tracing of COVID-19 related cell deaths in lung and immune cells at cell-type resolution, which is correlated with clinical severities and outcomes, and has extensive application prospects to evaluate tissue injuries in diseases with multi-organ dysfunction.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Ming-Ming Yuan
- Geneplus-Beijing, Floor 9, Building 6, Medical Park Road, Zhongguancun Life Science Park, Changping District, Beijing, 102206, China
| | - Yuan-Yuan Li
- Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Shan Li
- Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Jing-Dong Wang
- Geneplus-Shenzhen, Building B, First Branch, Zhongcheng Life Science Park, Zhongxing Road, Kengzi Street, Pingshan District, Shenzhen, 518000, China
| | - Yu-Fei Wang
- Geneplus-Shenzhen, Building B, First Branch, Zhongcheng Life Science Park, Zhongxing Road, Kengzi Street, Pingshan District, Shenzhen, 518000, China
| | - Qian Li
- Geneplus-Beijing, Floor 9, Building 6, Medical Park Road, Zhongguancun Life Science Park, Changping District, Beijing, 102206, China
| | - Jun Li
- Geneplus-Shenzhen, Building B, First Branch, Zhongcheng Life Science Park, Zhongxing Road, Kengzi Street, Pingshan District, Shenzhen, 518000, China
| | - Rong-Rong Chen
- Geneplus-Beijing, Floor 9, Building 6, Medical Park Road, Zhongguancun Life Science Park, Changping District, Beijing, 102206, China
| | - Jin-Min Peng
- Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.
| | - Bin Du
- Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.
| |
Collapse
|
26
|
Heil M. Self-DNA driven inflammation in COVID-19 and after mRNA-based vaccination: lessons for non-COVID-19 pathologies. Front Immunol 2024; 14:1259879. [PMID: 38439942 PMCID: PMC10910434 DOI: 10.3389/fimmu.2023.1259879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/26/2023] [Indexed: 03/06/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic triggered an unprecedented concentration of economic and research efforts to generate knowledge at unequalled speed on deregulated interferon type I signalling and nuclear factor kappa light chain enhancer in B-cells (NF-κB)-driven interleukin (IL)-1β, IL-6, IL-18 secretion causing cytokine storms. The translation of the knowledge on how the resulting systemic inflammation can lead to life-threatening complications into novel treatments and vaccine technologies is underway. Nevertheless, previously existing knowledge on the role of cytoplasmatic or circulating self-DNA as a pro-inflammatory damage-associated molecular pattern (DAMP) was largely ignored. Pathologies reported 'de novo' for patients infected with Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 to be outcomes of self-DNA-driven inflammation in fact had been linked earlier to self-DNA in different contexts, e.g., the infection with Human Immunodeficiency Virus (HIV)-1, sterile inflammation, and autoimmune diseases. I highlight particularly how synergies with other DAMPs can render immunogenic properties to normally non-immunogenic extracellular self-DNA, and I discuss the shared features of the gp41 unit of the HIV-1 envelope protein and the SARS-CoV 2 Spike protein that enable HIV-1 and SARS-CoV-2 to interact with cell or nuclear membranes, trigger syncytia formation, inflict damage to their host's DNA, and trigger inflammation - likely for their own benefit. These similarities motivate speculations that similar mechanisms to those driven by gp41 can explain how inflammatory self-DNA contributes to some of most frequent adverse events after vaccination with the BNT162b2 mRNA (Pfizer/BioNTech) or the mRNA-1273 (Moderna) vaccine, i.e., myocarditis, herpes zoster, rheumatoid arthritis, autoimmune nephritis or hepatitis, new-onset systemic lupus erythematosus, and flare-ups of psoriasis or lupus. The hope is to motivate a wider application of the lessons learned from the experiences with COVID-19 and the new mRNA vaccines to combat future non-COVID-19 diseases.
Collapse
Affiliation(s)
- Martin Heil
- Departamento de Ingeniería Genética, Laboratorio de Ecología de Plantas, Centro de Investigación y de Estudios Avanzados (CINVESTAV)-Unidad Irapuato, Irapuato, Mexico
| |
Collapse
|
27
|
de Diego C, Lasierra AB, López-Vergara L, Torralba L, Ruiz de Gopegui P, Lahoz R, Abadía C, Godino J, Cebollada A, Jimeno B, Bello C, Tejada A, Bello S. What is the actual relationship between neutrophil extracellular traps and COVID-19 severity? A longitudinal study. Respir Res 2024; 25:48. [PMID: 38243237 PMCID: PMC10797938 DOI: 10.1186/s12931-023-02650-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) have repeatedly been related to COVID-19 severity and mortality. However, there is no consensus on their quantification, and there are scarce data on their evolution during the disease. We studied circulating NET markers in patients with COVID-19 throughout their hospitalization. METHODS We prospectively included 93 patients (201 blood samples), evaluating the disease severity in 3 evolutionary phases (viral, early, and late inflammation). Of these, 72 had 180 samples in various phases. We also evaluated 55 controls with similar age, sex and comorbidities. We measured 4 NET markers in serum: cfDNA, CitH3, and MPO-DNA and NE-DNA complexes; as well as neutrophil-related cytokines IL-8 and G-CSF. RESULTS The COVID-19 group had higher CitH3 (28.29 vs 20.29 pg/mL, p = 0.022), and cfDNA, MPO-DNA, and NE-DNA (7.87 vs 2.56 ng/mL; 0.80 vs 0.52 and 1.04 vs 0.72, respectively, p < 0.001 for all) than the controls throughout hospitalisation. cfDNA was the only NET marker clearly related to severity, and it remained higher in non-survivors during the 3 phases. Only cfDNA was an independent risk factor for mortality and need for intensive care. Neutrophil count, IL-8, and G-CSF were significantly related to severity. MPO-DNA and NE-DNA showed significant correlations (r: 0.483, p < 0.001), including all 3 phases and across all severity grades, and they only remained significantly higher on days 10-16 of evolution in those who died. Correlations among the other NET markers were lower than expected. CONCLUSIONS The circulating biomarkers of NETs were present in patients with COVID-19 throughout hospitalization. cfDNA was associated with severity and mortality, but the three other markers showed little or no association with these outcomes. Neutrophil activity and neutrophil count were also associated with severity. MPO-DNA and NE-DNA better reflected NET formation. cfDNA appeared to be more associated with overall tissue damage; previous widespread use of this marker could have overestimated the relationship between NETs and severity. Currently, there are limitations to accurate NET markers measurement that make it difficult to assess its true role in COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Cristina de Diego
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel la Católica 1-9, 50009, Zaragoza, Spain
| | | | - Lucía López-Vergara
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel la Católica 1-9, 50009, Zaragoza, Spain
| | - Laura Torralba
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel la Católica 1-9, 50009, Zaragoza, Spain
| | | | - Raquel Lahoz
- Department of Biochemistry. Miguel, Servet University Hospital, Zaragoza, Spain
| | - Claudia Abadía
- Department of Biochemistry. Miguel, Servet University Hospital, Zaragoza, Spain
| | - Javier Godino
- Department of Cytometry and Cell Separation, Aragon Institute of Health Sciences (IACS), Zaragoza, Spain
| | - Alberto Cebollada
- Biocomputing Technical Scientific Service, Aragon Institute of Health Sciences (IACS), Zaragoza, Spain
| | - Beatriz Jimeno
- Department of Cytometry and Cell Separation, Aragon Institute of Health Sciences (IACS), Zaragoza, Spain
| | - Carlota Bello
- Department of Radiology, Hospital Clínico Lozano Blesa, Zaragoza, Spain
| | - Antonio Tejada
- Intensive Care Unit, Miguel Servet University Hospital, Zaragoza, Spain
| | - Salvador Bello
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel la Católica 1-9, 50009, Zaragoza, Spain.
| |
Collapse
|
28
|
Luo Y, Zhang H, Li L, Lin Y, Wang X, Chen W, Tao Y, Ou R, Zhou W, Zheng F, Jin Y, Cheng F, Zhu H, Zhang Y, Jin X. Heat inactivation does not alter host plasma cell-free DNA characteristics in infectious disease research. Clin Chim Acta 2024; 553:117751. [PMID: 38163539 DOI: 10.1016/j.cca.2023.117751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/28/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Cell-free DNA (cfDNA) is a promising analyte for non-invasive liquid biopsy, carrying abundant signatures for disease diagnosis and monitoring. In infectious disease researches, blood plasma samples are routinely heat-inactivated before proceeding with downstream analyses. However, the effects of heat inactivation on cfDNA fragmentomic analysis remain largely unclear, potentially introducing biases or altering the characteristics of cfDNA. METHODS We performed a comprehensive investigation of cfDNA concentrations and fragmentomics in 21 plasma samples from 7 healthy individuals, by comparing the sample group without the heat inactivation to those exposed to once or twice heat-inactivation at 56 °C for 30 min and following freeze-thaw. RESULTS Plasma samples with once and twice heat inactivation displayed no significant deviations in primary characteristics, including cfDNA concentrations, size profiles, end motif features, and genome-wide distributions, compared to samples without heat treatment. CONCLUSIONS Heat-inactivated cfDNA can be utilized for liquid biopsy in infectious disease researches, without substantial impact on cfDNA concentrations and fragmentomic properties. This study provides essential insights into the effects of heat inactivation on cfDNA properties and will contribute to the development of reliable non-invasive biomarkers for infectious disease.
Collapse
Affiliation(s)
- Yuxue Luo
- School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | | | - Lingguo Li
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Lin
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Xinxin Wang
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wei Chen
- School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China; BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Ye Tao
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Rijing Ou
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Wenwen Zhou
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Fang Zheng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Yan Jin
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Fanjun Cheng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | | | - Yan Zhang
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China.
| | - Xin Jin
- School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China; BGI-Shenzhen, Shenzhen 518083, Guangdong, China; Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, Shenzhen 518083, China.
| |
Collapse
|
29
|
Truby LK, Maamari D, Saha A, Farr M, Abdulrahim J, Billia F, Peltz M, Khush KK, Wang TJ. Towards Allograft Longevity: Leveraging Omics Technologies to Improve Heart Transplant Outcomes. Curr Heart Fail Rep 2023; 20:493-503. [PMID: 37966542 DOI: 10.1007/s11897-023-00631-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
PURPOSE OF REVIEW Heart transplantation (HT) remains the optimal therapy for patients living with end-stage heart disease. Despite recent improvements in peri-transplant management, the median survival after HT has remained relatively static, and complications of HT, including infection, rejection, and allograft dysfunction, continue to impact quality of life and long-term survival. RECENT FINDINGS Omics technologies are becoming increasingly accessible and can identify novel biomarkers for, and reveal the underlying biology of, several disease states. While some technologies, such as gene expression profiling (GEP) and donor-derived cell-free DNA (dd-cfDNA), are routinely used in the clinical care of HT recipients, a number of emerging platforms, including pharmacogenomics, proteomics, and metabolomics, hold great potential for identifying biomarkers to aid in the diagnosis and management of post-transplant complications. Omics-based assays can improve patient and allograft longevity by facilitating a personalized and precision approach to post-HT care. The following article is a contemporary review of the current and future opportunities to leverage omics technologies, including genomics, transcriptomics, proteomics, and metabolomics in the field of HT.
Collapse
Affiliation(s)
- Lauren K Truby
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| | - Dimitri Maamari
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amit Saha
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Maryjane Farr
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | | | | | - Matthias Peltz
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Kiran K Khush
- Stanford University Medical Center, Palo Alto, CA, USA
| | - Thomas J Wang
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| |
Collapse
|
30
|
Jang MK, Markowitz TE, Andargie TE, Apalara Z, Kuhn S, Agbor-Enoh S. Cell-free chromatin immunoprecipitation to detect molecular pathways in heart transplantation. Life Sci Alliance 2023; 6:e202302003. [PMID: 37730434 PMCID: PMC10511822 DOI: 10.26508/lsa.202302003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
Existing monitoring approaches in heart transplantation lack the sensitivity to provide deep molecular assessments to guide management, or require endomyocardial biopsy, an invasive and blind procedure that lacks the precision to reliably obtain biopsy samples from diseased sites. This study examined plasma cell-free DNA chromatin immunoprecipitation sequencing (cfChIP-seq) as a noninvasive proxy to define molecular gene sets and sources of tissue injury in heart transplant patients. In healthy controls and in heart transplant patients, cfChIP-seq reliably detected housekeeping genes. cfChIP-seq identified differential gene signals of relevant immune and nonimmune molecular pathways that were predominantly down-regulated in immunosuppressed heart transplant patients compared with healthy controls. cfChIP-seq also identified cell-free DNA tissue sources. Compared with healthy controls, heart transplant patients demonstrated greater cell-free DNA from tissue types associated with heart transplant complications, including the heart, hematopoietic cells, lungs, liver, and vascular endothelium. cfChIP-seq may therefore be a reliable approach to profile dynamic assessments of molecular pathways and sources of tissue injury in heart transplant patients.
Collapse
Affiliation(s)
- Moon Kyoo Jang
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD, USA
| | - Tovah E Markowitz
- NIAID Collaborative Bioinformatics Resource, Integrated Data Sciences Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Temesgen E Andargie
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD, USA
- Department of Biology, Howard University, Washington, DC, USA
| | - Zainab Apalara
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD, USA
| | - Skyler Kuhn
- NIAID Collaborative Bioinformatics Resource, Integrated Data Sciences Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Sean Agbor-Enoh
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD, USA
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Lisius G, Duttagupta R, Ahmed AA, Hensley M, Al-Yousif N, Lu M, Bain W, Shah F, Blauwkamp TA, Bercovici S, Schaefer C, Qin S, Wang X, Zhang Y, Mitchell KJ, Hughes EK, Jacobs JL, Naqvi A, Haidar G, Mellors JW, Methé B, McVerry BJ, Morris A, Kitsios GD. Noninvasive diagnosis of secondary infections in COVID-19 by sequencing of plasma microbial cell-free DNA. iScience 2023; 26:108093. [PMID: 37965142 PMCID: PMC10641743 DOI: 10.1016/j.isci.2023.108093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/04/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Secondary infection (SI) diagnosis in severe COVID-19 remains challenging. We correlated metagenomic sequencing of plasma microbial cell-free DNA (mcfDNA-Seq) with clinical SI assessment, immune response, and outcomes. We classified 42 COVID-19 inpatients as microbiologically confirmed-SI (Micro-SI, n = 8), clinically diagnosed-SI (Clinical-SI, n = 13, i.e., empiric antimicrobials), or no-clinical-suspicion-for-SI (No-Suspected-SI, n = 21). McfDNA-Seq was successful in 73% of samples. McfDNA detection was higher in Micro-SI (94%) compared to Clinical-SI (57%, p = 0.03), and unexpectedly high in No-Suspected-SI (83%), similar to Micro-SI. We detected culture-concordant mcfDNA species in 81% of Micro-SI samples. McfDNA correlated with LRT 16S rRNA bacterial burden (r = 0.74, p = 0.02), and biomarkers (white blood cell count, IL-6, IL-8, SPD, all p < 0.05). McfDNA levels were predictive of worse 90-day survival (hazard ratio 1.30 [1.02-1.64] for each log10 mcfDNA, p = 0.03). High mcfDNA levels in COVID-19 patients without clinical SI suspicion may suggest SI under-diagnosis. McfDNA-Seq offers a non-invasive diagnostic tool for pathogen identification, with prognostic value on clinical outcomes.
Collapse
Affiliation(s)
- Grace Lisius
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | - Matthew Hensley
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nameer Al-Yousif
- Division of Pulmonary, Critical Care, and Sleep Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA
| | - Michael Lu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - William Bain
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Veterans Affairs Pittsburgh Health System, Pittsburgh, PA 15240, USA
| | - Faraaz Shah
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Veterans Affairs Pittsburgh Health System, Pittsburgh, PA 15240, USA
| | | | | | - Caitlin Schaefer
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shulin Qin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiaohong Wang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Ellen K. Hughes
- Computer Vision Group, VeyTel LLC, Pittsburgh, PA 15217, USA
| | - Jana L. Jacobs
- University of Pittsburgh School of Medicine, Division of Infectious Diseases, Pittsburgh, PA 15213, USA
| | - Asma Naqvi
- University of Pittsburgh School of Medicine, Division of Infectious Diseases, Pittsburgh, PA 15213, USA
| | - Ghady Haidar
- University of Pittsburgh School of Medicine, Division of Infectious Diseases, Pittsburgh, PA 15213, USA
| | - John W. Mellors
- University of Pittsburgh School of Medicine, Division of Infectious Diseases, Pittsburgh, PA 15213, USA
| | - Barbara Methé
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alison Morris
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Georgios D. Kitsios
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
32
|
Pang Y, Andargie TE, Jang MK, Kong H, Park W, Hill T, Redekar N, Fu YP, Parth DA, Holtzman NG, Pavletic SZ, Agbor-Enoh S. Chronic graft-versus-host disease is characterized by high levels and distinctive tissue-of-origin patterns of cell-free DNA. iScience 2023; 26:108160. [PMID: 38026221 PMCID: PMC10651673 DOI: 10.1016/j.isci.2023.108160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/21/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Chronic graft-versus-host disease (cGvHD) is a devastating complication of hematopoietic stem cell transplantation (HSCT). Effective early detection may improve the outcome of cGvHD. The potential utility of circulating cell-free DNA (cfDNA), a sensitive marker for tissue injury, in HSCT and cGvHD remains to be established. Here, cfDNA of prospectively collected plasma samples from HSCT recipients (including both cGvHD and non-cGvHD) and healthy control (HC) subjects were evaluated. Deconvolution methods utilizing tissue-specific DNA methylation signatures were used to determine cfDNA tissue-of-origin. cfDNA levels were significantly higher in HSCT recipients than HC and significantly higher in cGvHD than non-cGvHD. cGvHD was characterized by a high level of cfDNA from innate immune cells, heart, and liver. Non-hematologic tissue-derived cfDNA was significantly higher in cGvHD than non-cGvHD. cfDNA temporal dynamics and tissue-of-origin composition have distinctive features in patients with cGvHD, supporting further exploration of the utility of cfDNA in the study of cGvHD.
Collapse
Affiliation(s)
- Yifan Pang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Charlotte, NC 28204, USA
| | - Temesgen E. Andargie
- Laboratory of Applied Precision Omics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biology, Howard University, Washington, DC 20059, USA
| | - Moon Kyoo Jang
- Laboratory of Applied Precision Omics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyesik Kong
- Laboratory of Applied Precision Omics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Woojin Park
- Laboratory of Applied Precision Omics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas Hill
- NIAID Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Neelam Redekar
- NIAID Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Yi-Ping Fu
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Desai A. Parth
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Noa G. Holtzman
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven Z. Pavletic
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sean Agbor-Enoh
- Laboratory of Applied Precision Omics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, MD 21205, USA
| |
Collapse
|
33
|
Flynn J, Ahmadi MM, McFarland CT, Kubal MD, Taylor MA, Cheng Z, Torchia EC, Edwards MG. Crowdsourcing temporal transcriptomic coronavirus host infection data: Resources, guide, and novel insights. Biol Methods Protoc 2023; 8:bpad033. [PMID: 38107402 PMCID: PMC10723038 DOI: 10.1093/biomethods/bpad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
The emergence of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) reawakened the need to rapidly understand the molecular etiologies, pandemic potential, and prospective treatments of infectious agents. The lack of existing data on SARS-CoV-2 hampered early attempts to treat severe forms of coronavirus disease-2019 (COVID-19) during the pandemic. This study coupled existing transcriptomic data from severe acute respiratory syndrome-related coronavirus 1 (SARS-CoV-1) lung infection animal studies with crowdsourcing statistical approaches to derive temporal meta-signatures of host responses during early viral accumulation and subsequent clearance stages. Unsupervised and supervised machine learning approaches identified top dysregulated genes and potential biomarkers (e.g. CXCL10, BEX2, and ADM). Temporal meta-signatures revealed distinct gene expression programs with biological implications to a series of host responses underlying sustained Cxcl10 expression and Stat signaling. Cell cycle switched from G1/G0 phase genes, early in infection, to a G2/M gene signature during late infection that correlated with the enrichment of DNA damage response and repair genes. The SARS-CoV-1 meta-signatures were shown to closely emulate human SARS-CoV-2 host responses from emerging RNAseq, single cell, and proteomics data with early monocyte-macrophage activation followed by lymphocyte proliferation. The circulatory hormone adrenomedullin was observed as maximally elevated in elderly patients who died from COVID-19. Stage-specific correlations to compounds with potential to treat COVID-19 and future coronavirus infections were in part validated by a subset of twenty-four that are in clinical trials to treat COVID-19. This study represents a roadmap to leverage existing data in the public domain to derive novel molecular and biological insights and potential treatments to emerging human pathogens.
Collapse
Affiliation(s)
- James Flynn
- Illumina Corporation, San Diego, CA 92122, United States
| | - Mehdi M Ahmadi
- Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | | | | | - Mark A Taylor
- Bioinfo Solutions LLC, Parker, CO 80134, United States
| | - Zhang Cheng
- Illumina Corporation, San Diego, CA 92122, United States
| | - Enrique C Torchia
- Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | | |
Collapse
|
34
|
Charoensappakit A, Sae-Khow K, Rattanaliam P, Vutthikraivit N, Pecheenbuvan M, Udomkarnjananun S, Leelahavanichkul A. Cell-free DNA as diagnostic and prognostic biomarkers for adult sepsis: a systematic review and meta-analysis. Sci Rep 2023; 13:19624. [PMID: 37949942 PMCID: PMC10638380 DOI: 10.1038/s41598-023-46663-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Although cell-free DNA (cfDNA) is an emerging sepsis biomarker, the use of cfDNA, especially as diagnostic and prognostic indicators, has surprisingly not been systemically analyzed. Data of adult patients with sepsis that conducted cfDNA measurement within 24 h of the admission was collected from PubMed, ScienceDirect, Scopus, and Cochrane Library until October 2022. The Quality in Prognosis Studies (QUIPS) and Quality Assessment in Diagnostic Studies-2 (QUADAS-2) tools were used to reduce the risk of biased assessment. The mean difference (MD) of cfDNA concentration and the standardized mean difference (SMD) between populations was calculated using Review Manager (RevMan) version 5.4.1 package software. Pooled analysis from 18 included studies demonstrated increased serum cfDNA levels in sepsis when compared with healthy control (SMD = 1.02; 95% confidence interval (CI) 0.46-1.57) or non-sepsis patients in the intensive care unit (ICU) (SMD = 1.03; 95% CI 0.65-1.40), respectively. Meanwhile, a slight decrease in the statistical value was observed when compared with non-sepsis ICU patients with SIRS (SMD = 0.74; 95% 0.41-1.06). The lower cfDNA levels were also observed in sepsis survivors compared to the non-survivors (SMD at 1.43; 95%CI 0.69-2.17) with the pooled area under the receiver operating characteristic curve (AUC) of 0.76 (95% CI 0.64-0.87) for the mortality prediction. Levels of cfDNA showed a pooled sensitivity of 0.81 (95% CI 0.75-0.86) and specificity of 0.72 (95% CI 0.65-0.78) with pooled diagnostic odd ratio (DOR) at 25.03 (95% CI 5.48-114.43) for the identification of sepsis in critically ill conditions. The cfDNA levels were significantly higher in patients with sepsis and being a helpful indicator for the critically ill conditions of sepsis. Nevertheless, results of the test must be interpreted carefully with the context of all clinical situations.
Collapse
Affiliation(s)
- Awirut Charoensappakit
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicines, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kritsanawan Sae-Khow
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicines, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pongpera Rattanaliam
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nuntanuj Vutthikraivit
- Division of Critical Care Medicine, Department of Internal Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Monvasi Pecheenbuvan
- Division of Critical Care Medicine, Department of Internal Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Suwasin Udomkarnjananun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicines, Chulalongkorn University, Bangkok, 10330, Thailand.
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
35
|
Andargie TE, Roznik K, Redekar N, Hill T, Zhou W, Apalara Z, Kong H, Gordon O, Meda R, Park W, Johnston TS, Wang Y, Brady S, Ji H, Yanovski JA, Jang MK, Lee CM, Karaba AH, Cox AL, Agbor-Enoh S. Cell-free DNA reveals distinct pathology of multisystem inflammatory syndrome in children. J Clin Invest 2023; 133:e171729. [PMID: 37651206 PMCID: PMC10617770 DOI: 10.1172/jci171729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a rare but life-threatening hyperinflammatory condition induced by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes pediatric COVID-19 (pCOVID-19). The relationship of the systemic tissue injury to the pathophysiology of MIS-C is poorly defined. We leveraged the high sensitivity of epigenomics analyses of plasma cell-free DNA (cfDNA) and plasma cytokine measurements to identify the spectrum of tissue injury and glean mechanistic insights. Compared with pediatric healthy controls (pHCs) and patients with pCOVID-19, patients with MIS-C had higher levels of cfDNA primarily derived from innate immune cells, megakaryocyte-erythroid precursor cells, and nonhematopoietic tissues such as hepatocytes, cardiac myocytes, and kidney cells. Nonhematopoietic tissue cfDNA levels demonstrated significant interindividual variability, consistent with the heterogenous clinical presentation of MIS-C. In contrast, adaptive immune cell-derived cfDNA levels were comparable in MIS-C and pCOVID-19 patients. Indeed, the cfDNA of innate immune cells in patients with MIS-C correlated with the levels of innate immune inflammatory cytokines and nonhematopoietic tissue-derived cfDNA, suggesting a primarily innate immunity-mediated response to account for the multisystem pathology. These data provide insight into the pathogenesis of MIS-C and support the value of cfDNA as a sensitive biomarker to map tissue injury in MIS-C and likely other multiorgan inflammatory conditions.
Collapse
Affiliation(s)
- Temesgen E. Andargie
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
- Department of Biology, Howard University, Washington DC, USA
| | - Katerina Roznik
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Neelam Redekar
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Tom Hill
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zainab Apalara
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Hyesik Kong
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Oren Gordon
- Infectious Diseases Unit, Department of Pediatrics, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rohan Meda
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Woojin Park
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Trevor S. Johnston
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Yi Wang
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sheila Brady
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Hongkai Ji
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jack A. Yanovski
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Moon K. Jang
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Clarence M. Lee
- Department of Biology, Howard University, Washington DC, USA
| | - Andrew H. Karaba
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Andrea L. Cox
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Sean Agbor-Enoh
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
36
|
Lu Y, Xia W, Miao S, Wang M, Wu L, Xu T, Wang F, Xu J, Mu Y, Zhang B, Pan S. Clinical Characteristics of Severe COVID-19 Patients During Omicron Epidemic and a Nomogram Model Integrating Cell-Free DNA for Predicting Mortality: A Retrospective Analysis. Infect Drug Resist 2023; 16:6735-6745. [PMID: 37873032 PMCID: PMC10590600 DOI: 10.2147/idr.s430101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Objective This study aimed to investigate the clinical characteristics and risk factors of death in severe coronavirus disease 2019 (COVID-19) during the epidemic of Omicron variants, assess the clinical value of plasma cell-free DNA (cfDNA), and construct a prediction nomogram for patient mortality. Methods The study included 282 patients with severe COVID-19 from December 2022 to January 2023. Patients were divided into survival and death groups based on 60-day prognosis. We compared the clinical characteristics, traditional laboratory indicators, and cfDNA concentrations at admission of the two groups. Univariate and multivariate logistic analyses were performed to identify independent risk factors for death in patients with severe COVID-19. A prediction nomogram for patient mortality was constructed using R software, and an internal validation was performed. Results The median age of the patients included was 80.0 (71.0, 86.0) years, and 67.7% (191/282) were male. The mortality rate was 55.7% (157/282). Age, tracheal intubation, shock, cfDNA, and urea nitrogen (BUN) were the independent risk factors for death in patients with severe COVID-19, and the area under the curve (AUC) for cfDNA in predicting patient mortality was 0.805 (95% confidence interval [CI]: 0.713-0.898, sensitivity 81.4%, specificity 75.6%, and cut-off value 97.67 ng/mL). These factors were used to construct a prediction nomogram for patient mortality (AUC = 0.856, 95% CI: 0.814-0.899, sensitivity 78.3%, and specificity 78.4%), C-index was 0.856 (95% CI: 0.832-0.918), mean absolute error of the calibration curve was 0.007 between actual and predicted probabilities, and Hosmer-Lemeshow test showed no statistical difference (χ2=6.085, P=0.638). Conclusion There was a high mortality rate among patients with severe COVID-19. cfDNA levels ≥97.67 ng/mg can significantly increase mortality. When predicting mortality in patients with severe COVID-19, a nomogram based on age, tracheal intubation, shock, cfDNA, and BUN showed high accuracy and consistency.
Collapse
Affiliation(s)
- Yanfei Lu
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People’s Republic of China
- National Key Clinical Department of Laboratory Medicine, Nanjing, People’s Republic of China
| | - Wenying Xia
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People’s Republic of China
- National Key Clinical Department of Laboratory Medicine, Nanjing, People’s Republic of China
| | - Shuxian Miao
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People’s Republic of China
- National Key Clinical Department of Laboratory Medicine, Nanjing, People’s Republic of China
| | - Min Wang
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People’s Republic of China
- National Key Clinical Department of Laboratory Medicine, Nanjing, People’s Republic of China
| | - Lei Wu
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People’s Republic of China
- National Key Clinical Department of Laboratory Medicine, Nanjing, People’s Republic of China
| | - Ting Xu
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People’s Republic of China
- National Key Clinical Department of Laboratory Medicine, Nanjing, People’s Republic of China
| | - Fang Wang
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People’s Republic of China
- National Key Clinical Department of Laboratory Medicine, Nanjing, People’s Republic of China
| | - Jian Xu
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People’s Republic of China
- National Key Clinical Department of Laboratory Medicine, Nanjing, People’s Republic of China
| | - Yuan Mu
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People’s Republic of China
- National Key Clinical Department of Laboratory Medicine, Nanjing, People’s Republic of China
| | - Bingfeng Zhang
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People’s Republic of China
- National Key Clinical Department of Laboratory Medicine, Nanjing, People’s Republic of China
| | - Shiyang Pan
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People’s Republic of China
- National Key Clinical Department of Laboratory Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
37
|
Balnis J, Lauria EJM, Yucel R, Singer HA, Alisch RS, Jaitovich A. Peripheral Blood Omics and Other Multiplex-based Systems in Pulmonary and Critical Care Medicine. Am J Respir Cell Mol Biol 2023; 69:383-390. [PMID: 37379507 PMCID: PMC10557924 DOI: 10.1165/rcmb.2023-0153ps] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023] Open
Abstract
Over the last years, the use of peripheral blood-derived big datasets in combination with machine learning technology has accelerated the understanding, prediction, and management of pulmonary and critical care conditions. The goal of this article is to provide readers with an introduction to the methods and applications of blood omics and other multiplex-based technologies in the pulmonary and critical care medicine setting to better appreciate the current literature in the field. To accomplish that, we provide essential concepts needed to rationalize this approach and introduce readers to the types of molecules that can be obtained from the circulating blood to generate big datasets; elaborate on the differences between bulk, sorted, and single-cell approaches; and the basic analytical pipelines required for clinical interpretation. Examples of peripheral blood-derived big datasets used in recent literature are presented, and limitations of that technology are highlighted to qualify both the current and future value of these methodologies.
Collapse
Affiliation(s)
- Joseph Balnis
- Division of Pulmonary and Critical Care Medicine and
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Eitel J. M. Lauria
- School of Computer Science and Mathematics, Marist College, Poughkeepsie, New York
| | - Recai Yucel
- Department of Epidemiology and Biostatistics, Temple University, Philadelphia, Pennsylvania; and
| | - Harold A. Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Reid S. Alisch
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine and
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
38
|
Hoeter K, Neuberger E, Fischer S, Herbst M, Juškevičiūtė E, Enders K, Rossmann H, Sprinzl MF, Simon P, Bodenstein M, Schaefer M. Evidence for the utility of cfDNA plasma concentrations to predict disease severity in COVID-19: a retrospective pilot study. PeerJ 2023; 11:e16072. [PMID: 37744227 PMCID: PMC10512938 DOI: 10.7717/peerj.16072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 08/20/2023] [Indexed: 09/26/2023] Open
Abstract
Background COVID-19 is a worldwide pandemic caused by the highly infective SARS-CoV-2. There is a need for biomarkers not only for overall prognosis but also for predicting the response to treatments and thus for improvements in the clinical management of patients with COVID-19. Circulating cell-free DNA (cfDNA) has emerged as a promising biomarker in the assessment of various pathological conditions. The aim of this retrospective and observational pilot study was to investigate the range of cfDNA plasma concentrations in hospitalized COVID-19 patients during the first wave of SARS-CoV-2 infection, to relate them to established inflammatory parameters as a correlative biomarker for disease severity, and to compare them with plasma levels in a healthy control group. Methods Lithium-Heparin plasma samples were obtained from COVID-19 patients (n = 21) during hospitalization in the University Medical Centre of Mainz, Germany between March and June 2020, and the cfDNA concentrations were determined by quantitative PCR yielding amplicons of long interspersed nuclear elements (LINE-1). The cfDNA levels were compared with those of an uninfected control group (n = 19). Results Plasma cfDNA levels in COVID-19 patients ranged from 247.5 to 6,346.25 ng/ml and the mean concentration was 1,831 ± 1,388 ng/ml (± standard deviation), which was significantly different from the levels of the uninfected control group (p < 0.001). Regarding clinical complications, the highest correlation was found between cfDNA levels and the myositis (p = 0.049). In addition, cfDNA levels correlated with the "WHO clinical progression scale". D-Dimer and C-reactive protein (CRP) were the clinical laboratory parameters with the highest correlations with cfDNA levels. Conclusion The results of this observational pilot study show a wide range in cfDNA plasma concentrations in patients with COVID-19 during the first wave of infection and confirm that cfDNA plasma concentrations serve as a predictive biomarker of disease severity in COVID-19.
Collapse
Affiliation(s)
- Katharina Hoeter
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Elmo Neuberger
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Susanne Fischer
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Manuel Herbst
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Ema Juškevičiūtė
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes-Gutenberg Universität Mainz, Mainz, Germany
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Kira Enders
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Heidi Rossmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Martin F. Sprinzl
- Department of Internal Medicine I, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Perikles Simon
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Marc Bodenstein
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael Schaefer
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
- Focus Program Translational Neurosciences (FTN), Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immunotherapy, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
39
|
Hovhannisyan G, Harutyunyan T, Aroutiounian R, Liehr T. The Diagnostic, Prognostic, and Therapeutic Potential of Cell-Free DNA with a Special Focus on COVID-19 and Other Viral Infections. Int J Mol Sci 2023; 24:14163. [PMID: 37762464 PMCID: PMC10532175 DOI: 10.3390/ijms241814163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cell-free DNA (cfDNA) in human blood serum, urine, and other body fluids recently became a commonly used diagnostic marker associated with various pathologies. This is because cfDNA enables a much higher sensitivity than standard biochemical parameters. The presence of and/or increased level of cfDNA has been reported for various diseases, including viral infections, including COVID-19. Here, we review cfDNA in general, how it has been identified, where it can derive from, its molecular features, and mechanisms of release and clearance. General suitability of cfDNA for diagnostic questions, possible shortcomings and future directions are discussed, with a special focus on coronavirus infection.
Collapse
Affiliation(s)
- Galina Hovhannisyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Tigran Harutyunyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
40
|
Goldberg JF, Truby LK, Agbor-Enoh S, Jackson AM, deFilippi CR, Khush KK, Shah P. Selection and Interpretation of Molecular Diagnostics in Heart Transplantation. Circulation 2023; 148:679-694. [PMID: 37603604 PMCID: PMC10449361 DOI: 10.1161/circulationaha.123.062847] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The number of heart transplants performed annually in the United States and worldwide continues to increase, but there has been little change in graft longevity and patient survival over the past 2 decades. The reference standard for diagnosis of acute cellular and antibody-mediated rejection includes histologic and immunofluorescence evaluation of endomyocardial biopsy samples, despite invasiveness and high interrater variability for grading histologic rejection. Circulating biomarkers and molecular diagnostics have shown substantial predictive value in rejection monitoring, and emerging data support their use in diagnosing other posttransplant complications. The use of genomic (cell-free DNA), transcriptomic (mRNA and microRNA profiling), and proteomic (protein expression quantitation) methodologies in diagnosis of these posttransplant outcomes has been evaluated with varying levels of evidence. In parallel, growing knowledge about the genetically mediated immune response leading to rejection (immunogenetics) has enhanced understanding of antibody-mediated rejection, associated graft dysfunction, and death. Antibodies to donor human leukocyte antigens and the technology available to evaluate these antibodies continues to evolve. This review aims to provide an overview of biomarker and immunologic tests used to diagnose posttransplant complications. This includes a discussion of pediatric heart transplantation and the disparate rates of rejection and death experienced by Black patients receiving a heart transplant. This review describes diagnostic modalities that are available and used after transplant and the landscape of future investigations needed to enhance patient outcomes after heart transplantation.
Collapse
Affiliation(s)
- Jason F Goldberg
- Department of Heart Failure and Transplantation, Inova Heart and Vascular Institute, Falls Church, VA (J.F.G., C.R.d., P.S.)
- Department of Pediatrics, Inova L.J. Murphy Children's Hospital, Falls Church, VA (J.F.G.)
| | - Lauren K Truby
- Department of Medicine, University of Texas Southwestern, Dallas (L.K.T.)
| | - Sean Agbor-Enoh
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD (S.A.-E.)
- Applied Precision Genomics, National Heart, Lung and Blood Institute, Bethesda, MD (S.A.-E.)
| | - Annette M Jackson
- Department of Surgery, Duke University School of Medicine, Durham, NC (A.M.J.)
| | - Christopher R deFilippi
- Department of Heart Failure and Transplantation, Inova Heart and Vascular Institute, Falls Church, VA (J.F.G., C.R.d., P.S.)
| | - Kiran K Khush
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, CA (K.K.K.)
| | - Palak Shah
- Department of Heart Failure and Transplantation, Inova Heart and Vascular Institute, Falls Church, VA (J.F.G., C.R.d., P.S.)
| |
Collapse
|
41
|
Theoharides TC, Kempuraj D. Potential Role of Moesin in Regulating Mast Cell Secretion. Int J Mol Sci 2023; 24:12081. [PMID: 37569454 PMCID: PMC10418457 DOI: 10.3390/ijms241512081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Mast cells have existed for millions of years in species that never suffer from allergic reactions. Hence, in addition to allergies, mast cells can play a critical role in homeostasis and inflammation via secretion of numerous vasoactive, pro-inflammatory and neuro-sensitizing mediators. Secretion may utilize different modes that involve the cytoskeleton, but our understanding of the molecular mechanisms regulating secretion is still not well understood. The Ezrin/Radixin/Moesin (ERM) family of proteins is involved in linking cell surface-initiated signaling to the actin cytoskeleton. However, how ERMs may regulate secretion from mast cells is still poorly understood. ERMs contain two functional domains connected through a long α-helix region, the N-terminal FERM (band 4.1 protein-ERM) domain and the C-terminal ERM association domain (C-ERMAD). The FERM domain and the C-ERMAD can bind to each other in a head-to-tail manner, leading to a closed/inactive conformation. Typically, phosphorylation on the C-terminus Thr has been associated with the activation of ERMs, including secretion from macrophages and platelets. It has previously been shown that the ability of the so-called mast cell "stabilizer" disodium cromoglycate (cromolyn) to inhibit secretion from rat mast cells closely paralleled the phosphorylation of a 78 kDa protein, which was subsequently shown to be moesin, a member of ERMs. Interestingly, the phosphorylation of moesin during the inhibition of mast cell secretion was on the N-terminal Ser56/74 and Thr66 residues. This phosphorylation pattern could lock moesin in its inactive state and render it inaccessible to binding to the Soluble NSF attachment protein receptors (SNAREs) and synaptosomal-associated proteins (SNAPs) critical for exocytosis. Using confocal microscopic imaging, we showed moesin was found to colocalize with actin and cluster around secretory granules during inhibition of secretion. In conclusion, the phosphorylation pattern and localization of moesin may be important in the regulation of mast cell secretion and could be targeted for the development of effective inhibitors of secretion of allergic and inflammatory mediators from mast cells.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| |
Collapse
|
42
|
Loy CJ, Sotomayor-Gonzalez A, Servellita V, Nguyen J, Lenz J, Bhattacharya S, Williams ME, Cheng AP, Bliss A, Saldhi P, Brazer N, Streithorst J, Suslovic W, Hsieh CJ, Bahar B, Wood N, Foresythe A, Gliwa A, Bhakta K, Perez MA, Hussaini L, Anderson EJ, Chahroudi A, Delaney M, Butte AJ, DeBiasi RL, Rostad CA, De Vlaminck I, Chiu CY. Nucleic acid biomarkers of immune response and cell and tissue damage in children with COVID-19 and MIS-C. Cell Rep Med 2023; 4:101034. [PMID: 37279751 PMCID: PMC10121104 DOI: 10.1016/j.xcrm.2023.101034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/28/2022] [Accepted: 04/11/2023] [Indexed: 06/08/2023]
Abstract
Differential host responses in coronavirus disease 2019 (COVID-19) and multisystem inflammatory syndrome in children (MIS-C) remain poorly characterized. Here, we use next-generation sequencing to longitudinally analyze blood samples from pediatric patients with COVID-19 or MIS-C across three hospitals. Profiling of plasma cell-free nucleic acids uncovers distinct signatures of cell injury and death between COVID-19 and MIS-C, with increased multiorgan involvement in MIS-C encompassing diverse cell types, including endothelial and neuronal cells, and an enrichment of pyroptosis-related genes. Whole-blood RNA profiling reveals upregulation of similar pro-inflammatory pathways in COVID-19 and MIS-C but also MIS-C-specific downregulation of T cell-associated pathways. Profiling of plasma cell-free RNA and whole-blood RNA in paired samples yields different but complementary signatures for each disease state. Our work provides a systems-level view of immune responses and tissue damage in COVID-19 and MIS-C and informs future development of new disease biomarkers.
Collapse
Affiliation(s)
- Conor J Loy
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Alicia Sotomayor-Gonzalez
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Venice Servellita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jenny Nguyen
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joan Lenz
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Sanchita Bhattacharya
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Alexandre P Cheng
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Andrew Bliss
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Prachi Saldhi
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Noah Brazer
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessica Streithorst
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Charlotte J Hsieh
- Division of Pediatric Infectious Diseases and Global Health, Department of Pediatrics, University of California San Francisco, Oakland, CA 94609
| | - Burak Bahar
- Children's National Hospital, Washington, DC 20010, USA
| | - Nathan Wood
- UCSF Benioff Children's Hospital, Oakland, CA 94609, USA
| | - Abiodun Foresythe
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amelia Gliwa
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kushmita Bhakta
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Maria A Perez
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Laila Hussaini
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Evan J Anderson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA; Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Meghan Delaney
- Children's National Hospital, Washington, DC 20010, USA; The George Washington University School of Medicine, Washington, DC 20052, USA
| | - Atul J Butte
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Roberta L DeBiasi
- Children's National Hospital, Washington, DC 20010, USA; The George Washington University School of Medicine, Washington, DC 20052, USA
| | - Christina A Rostad
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA.
| | - Charles Y Chiu
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
43
|
Diarimalala RO, Wei Y, Hu D, Hu K. Inflammasomes during SARS-CoV-2 infection and development of their corresponding inhibitors. Front Cell Infect Microbiol 2023; 13:1218039. [PMID: 37360532 PMCID: PMC10288989 DOI: 10.3389/fcimb.2023.1218039] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Corona Virus Disease 2019 (COVID-19) continues to be a burden for human health since its outbreak in Wuhan, China in December 2019. Recently, the emergence of new variants of concerns (VOCs) is challenging for vaccines and drugs efficiency. In severe cases, SARS-CoV-2 provokes inappropriate hyperinflammatory immune responses leading to acute respiratory distress syndrome (ARDS) and even death. This process is regulated by inflammasomes which are activated after binding of the viral spike (S) protein to cellular angiotensin-converting enzyme 2 (ACE2) receptor and triggers innate immune responses. Therefore, the formation of "cytokines storm" leads to tissue damage and organ failure. NOD-like receptor family pyrin domain containing 3 (NLRP3) is the best studied inflammasome known to be activated during SARS-CoV-2 infection. However, some studies suggest that SARS-CoV-2 infection is associated with other inflammasomes as well; such as NLRP1, absent in melanoma-2 (AIM-2), caspase-4 and -8 which were mostly found during dsRNA virus or bacteria infection. Multiple inflammasome inhibitors that exist for other non-infectious diseases have the potential to be used to treat severe SARS-CoV-2 complications. Some of them have showed quite encouraging results during pre- and clinical trials. Nevertheless, further studies are in need for the understanding and targeting of SARS-Cov-2-induced inflammasomes; mostly an update of its role during the new VOCs infection is necessary. Hence, this review highlights all reported inflammasomes involved in SARS-CoV-2 infection and their potential inhibitors including NLRP3- and Gasdermin D (GSDMD)-inhibitors. Further strategies such as immunomodulators and siRNA are also discussed. As highly related to COVID-19 severe cases, developing inflammasome inhibitors holds a promise to treat severe COVID-19 syndrome effectively and reduce mortality.
Collapse
|
44
|
Sun M, Chen P, Xiao K, Zhu X, Zhao Z, Guo C, He X, Shi T, Zhong Q, Jia Y, Tao Y, Li M, Leong KW, Shao D. Circulating Cell-Free DNAs as a Biomarker and Therapeutic Target for Acetaminophen-Induced Liver Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206789. [PMID: 37035952 PMCID: PMC10238175 DOI: 10.1002/advs.202206789] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/08/2023] [Indexed: 06/04/2023]
Abstract
Acetaminophen (APAP) overdose is a leading cause of drug-induced liver injury and acute liver failure, while the detection, prognosis prediction, and therapy for APAP-induced liver injury (AILI) remain improved. Here, it is determined that the temporal pattern of circulating cell-free DNA (cfDNA) is strongly associated with damage and inflammation parameters in AILI. CfDNA is comparable to alanine aminotransferase (ALT) in predicting mortality and outperformed ALT when combined with ALT in AILI. The depletion of cfDNA or neutrophils alleviates liver damage, while the addition of cfDNA or adoptive transfer of neutrophils exacerbates the damage. The combination of DNase I and N-acetylcysteine attenuates AILI significantly. This study establishes that cfDNA is a mechanistic biomarker to predict mortality in AILI mice. The combination of scavenging cfDNA and reducing oxidative damage provides a promising treatment for AILI.
Collapse
Affiliation(s)
- Madi Sun
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
| | - Peiyu Chen
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
| | - Kai Xiao
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
- School of MedicineSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510006China
| | - Xiang Zhu
- Laboratory of Biomaterials and Translational MedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Zhibin Zhao
- School of MedicineSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510006China
| | - Chenyang Guo
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
| | - Xuan He
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
| | - Tongfei Shi
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
| | - Qingguo Zhong
- Laboratory of Biomaterials and Translational MedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Yong Jia
- School of NursingJilin UniversityChangchunJilin130021China
| | - Yu Tao
- Laboratory of Biomaterials and Translational MedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational MedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Kam W. Leong
- Department of Systems BiologyColumbia UniversityNew YorkNY10032USA
| | - Dan Shao
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
- Guangdong Provincial Key Laboratory of Biomedical EngineeringKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationSouth China University of TechnologyGuangzhouGuangdong510006China
| |
Collapse
|
45
|
Bello S, Lasierra AB, López-Vergara L, de Diego C, Torralba L, de Gopegui PR, Lahoz R, Abadía C, Godino J, Cebollada A, Jimeno B, Bello C, Tejada A, Torres A. IL-6 and cfDNA monitoring throughout COVID-19 hospitalization are accurate markers of its outcomes. Respir Res 2023; 24:125. [PMID: 37147677 PMCID: PMC10161166 DOI: 10.1186/s12931-023-02426-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/18/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Severe COVID-19 entails a dysregulated immune response, most likely inflammation related to a lack of virus control. A better understanding of immune toxicity, immunosuppression balance, and COVID-19 assessments could help determine whether different clinical presentations are driven by specific types of immune responses. The progression of the immune response and tissular damage could predict outcomes and may help in the management of patients. METHODS We collected 201 serum samples from 93 hospitalised patients classified as moderately, severely, and critically ill. We differentiated the viral, early inflammatory, and late inflammatory phases and included 72 patients with 180 samples in separate stages for longitudinal study and 55 controls. We studied selected cytokines, P-selectin, and the tissue damage markers lactate dehydrogenase (LDH) and cell-free DNA (cfDNA). RESULTS TNF-α, IL-6, IL-8, and G-CSF were associated with severity and mortality, but only IL-6 increased since admission in the critical patients and non-survivors, correlating with damage markers. The lack of a significant decrease in IL-6 levels in the critical patients and non-survivors in the early inflammatory phase (a decreased presence in the other patients) suggests that these patients did not achieve viral control on days 10-16. For all patients, lactate dehydrogenase and cfDNA levels increased with severity, and cfDNA levels increased in the non-survivors from the first sample (p = 0.002) to the late inflammatory phase (p = 0.031). In the multivariate study, cfDNA was an independent risk factor for mortality and ICU admission. CONCLUSIONS The distinct progression of IL-6 levels in the course of the disease, especially on days 10-16, was a good marker of progression to critical status and mortality and could guide the start of IL-6 blockade. cfDNA was an accurate marker of severity and mortality from admission and throughout COVID-19 progression.
Collapse
Affiliation(s)
- Salvador Bello
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel La Católica 1-9, 50009, Zaragoza, Spain.
| | | | - Lucía López-Vergara
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel La Católica 1-9, 50009, Zaragoza, Spain
| | - Cristina de Diego
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel La Católica 1-9, 50009, Zaragoza, Spain
| | - Laura Torralba
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel La Católica 1-9, 50009, Zaragoza, Spain
| | | | - Raquel Lahoz
- Department of Biochemistry, Miguel Servet University Hospital, Zaragoza, Spain
| | - Claudia Abadía
- Department of Biochemistry, Miguel Servet University Hospital, Zaragoza, Spain
| | - Javier Godino
- Department of Cytometry and Cell Separation, Aragon Institute of Health Sciences (IACS), Zaragoza, Spain
| | - Alberto Cebollada
- Biocomputing Technical Scientific Service, Aragon Institute of Health Sciences (IACS), Zaragoza, Spain
| | - Beatriz Jimeno
- Department of Cytometry and Cell Separation, Aragon Institute of Health Sciences (IACS), Zaragoza, Spain
| | - Carlota Bello
- Department of Radiology, Hospital Clínico Lozano Blesa, Zaragoza, Spain
| | - Antonio Tejada
- Intensive Care Unit, Miguel Servet University Hospital, Zaragoza, Spain
| | - Antoni Torres
- Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona, IDIBAPS, ICREA, CIBERESUCICOVID, Barcelona, Spain
| |
Collapse
|
46
|
Gaitsch H, Franklin RJM, Reich DS. Cell-free DNA-based liquid biopsies in neurology. Brain 2023; 146:1758-1774. [PMID: 36408894 PMCID: PMC10151188 DOI: 10.1093/brain/awac438] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
This article reviews recent developments in the application of cell-free DNA-based liquid biopsies to neurological diseases. Over the past few decades, an explosion of interest in the use of accessible biofluids to identify and track molecular disease has revolutionized the fields of oncology, prenatal medicine and others. More recently, technological advances in signal detection have allowed for informative analysis of biofluids that are typically sparse in cells and other circulating components, such as CSF. In parallel, advancements in epigenetic profiling have allowed for novel applications of liquid biopsies to diseases without characteristic mutational profiles, including many degenerative, autoimmune, inflammatory, ischaemic and infectious disorders. These events have paved the way for a wide array of neurological conditions to benefit from enhanced diagnostic, prognostic, and treatment abilities through the use of liquid biomarkers: a 'liquid biopsy' approach. This review includes an overview of types of liquid biopsy targets with a focus on circulating cell-free DNA, methods used to identify and probe potential liquid biomarkers, and recent applications of such biomarkers to a variety of complex neurological conditions including CNS tumours, stroke, traumatic brain injury, Alzheimer's disease, epilepsy, multiple sclerosis and neuroinfectious disease. Finally, the challenges of translating liquid biopsies to use in clinical neurology settings-and the opportunities for improvement in disease management that such translation may provide-are discussed.
Collapse
Affiliation(s)
- Hallie Gaitsch
- NIH-Oxford-Cambridge Scholars Program, Wellcome-MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | | | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
47
|
Chen TH, Chang CJ, Hung PH. Possible Pathogenesis and Prevention of Long COVID: SARS-CoV-2-Induced Mitochondrial Disorder. Int J Mol Sci 2023; 24:8034. [PMID: 37175745 PMCID: PMC10179190 DOI: 10.3390/ijms24098034] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Patients who have recovered from coronavirus disease 2019 (COVID-19) infection may experience chronic fatigue when exercising, despite no obvious heart or lung abnormalities. The present lack of effective treatments makes managing long COVID a major challenge. One of the underlying mechanisms of long COVID may be mitochondrial dysfunction. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can alter the mitochondria responsible for energy production in cells. This alteration leads to mitochondrial dysfunction which, in turn, increases oxidative stress. Ultimately, this results in a loss of mitochondrial integrity and cell death. Moreover, viral proteins can bind to mitochondrial complexes, disrupting mitochondrial function and causing the immune cells to over-react. This over-reaction leads to inflammation and potentially long COVID symptoms. It is important to note that the roles of mitochondrial damage and inflammatory responses caused by SARS-CoV-2 in the development of long COVID are still being elucidated. Targeting mitochondrial function may provide promising new clinical approaches for long-COVID patients; however, further studies are needed to evaluate the safety and efficacy of such approaches.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Chia-Jung Chang
- Division of Critical Care Medicine, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Peir-Haur Hung
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
- Department of Life and Health Science, Chia-Nan University of Pharmacy and Science, Tainan 717301, Taiwan
| |
Collapse
|
48
|
Jin X, Wang Y, Xu J, Li Y, Cheng F, Luo Y, Zhou H, Lin S, Xiao F, Zhang L, Lin Y, Zhang Z, Jin Y, Zheng F, Chen W, Zhu A, Tao Y, Zhao J, Kuo T, Li Y, Li L, Wen L, Ou R, Li F, Lin L, Zhang Y, Sun J, Yuan H, Zhuang Z, Sun H, Chen Z, Li J, Zhuo J, Chen D, Zhang S, Sun Y, Wei P, Yuan J, Xu T, Yang H, Wang J, Xu X, Zhong N, Xu Y, Sun K, Zhao J. Plasma cell-free DNA promise monitoring and tissue injury assessment of COVID-19. Mol Genet Genomics 2023; 298:823-836. [PMID: 37059908 PMCID: PMC10104435 DOI: 10.1007/s00438-023-02014-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/25/2023] [Indexed: 04/16/2023]
Abstract
Coronavirus 2019 (COVID-19) is a complex disease that affects billions of people worldwide. Currently, effective etiological treatment of COVID-19 is still lacking; COVID-19 also causes damages to various organs that affects therapeutics and mortality of the patients. Surveillance of the treatment responses and organ injury assessment of COVID-19 patients are of high clinical value. In this study, we investigated the characteristic fragmentation patterns and explored the potential in tissue injury assessment of plasma cell-free DNA in COVID-19 patients. Through recruitment of 37 COVID-19 patients, 32 controls and analysis of 208 blood samples upon diagnosis and during treatment, we report gross abnormalities in cfDNA of COVID-19 patients, including elevated GC content, altered molecule size and end motif patterns. More importantly, such cfDNA fragmentation characteristics reflect patient-specific physiological changes during treatment. Further analysis on cfDNA tissue-of-origin tracing reveals frequent tissue injuries in COVID-19 patients, which is supported by clinical diagnoses. Hence, our work demonstrates and extends the translational merit of cfDNA fragmentation pattern as valuable analyte for effective treatment monitoring, as well as tissue injury assessment in COVID-19.
Collapse
Affiliation(s)
- Xin Jin
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jinjin Xu
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Yimin Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Fanjun Cheng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yuxue Luo
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Haibo Zhou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, Guangdong, China
| | - Shanwen Lin
- Yangjiang People's Hospital, Yangjiang, 529500, Guangdong, China
| | - Fei Xiao
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Lu Zhang
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, 510060, Guangdong, China
| | - Yu Lin
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yan Jin
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Fang Zheng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Wei Chen
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Ye Tao
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Tingyou Kuo
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, Guangdong, China
| | - Yuming Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Lingguo Li
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, Guangdong, China
| | - Liyan Wen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Rijing Ou
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Fang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Long Lin
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, Guangdong, China
| | - Yanjun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Hao Yuan
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, Guangdong, China
| | - Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Haixi Sun
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jie Li
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, Guangdong, China
| | - Jianfen Zhuo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | | | - Shengnan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yuzhe Sun
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Peilan Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jinwei Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Tian Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen, 518120, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518120, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yonghao Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
49
|
Moser T, Kühberger S, Lazzeri I, Vlachos G, Heitzer E. Bridging biological cfDNA features and machine learning approaches. Trends Genet 2023; 39:285-307. [PMID: 36792446 DOI: 10.1016/j.tig.2023.01.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
Liquid biopsies (LBs), particularly using circulating tumor DNA (ctDNA), are expected to revolutionize precision oncology and blood-based cancer screening. Recent technological improvements, in combination with the ever-growing understanding of cell-free DNA (cfDNA) biology, are enabling the detection of tumor-specific changes with extremely high resolution and new analysis concepts beyond genetic alterations, including methylomics, fragmentomics, and nucleosomics. The interrogation of a large number of markers and the high complexity of data render traditional correlation methods insufficient. In this regard, machine learning (ML) algorithms are increasingly being used to decipher disease- and tissue-specific signals from cfDNA. Here, we review recent insights into biological ctDNA features and how these are incorporated into sophisticated ML applications.
Collapse
Affiliation(s)
- Tina Moser
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Stefan Kühberger
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Isaac Lazzeri
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Georgios Vlachos
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria.
| |
Collapse
|
50
|
Mallick D, Goyal L, Chourasia P, Zapata MR, Yashi K, Surani S. COVID-19 Induced Postural Orthostatic Tachycardia Syndrome (POTS): A Review. Cureus 2023; 15:e36955. [PMID: 37009342 PMCID: PMC10065129 DOI: 10.7759/cureus.36955] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 04/03/2023] Open
Abstract
POTS (Postural Orthostatic Tachycardia Syndrome) is a multisystem disorder characterized by the abnormal autonomic response to an upright posture, causing orthostatic intolerance and excessive tachycardia without hypotension. Recent reports suggest that a significant percentage of COVID-19 survivors develop POTS within 6 to 8 months of infection. Prominent symptoms of POTS include fatigue, orthostatic intolerance, tachycardia, and cognitive impairment. The exact mechanisms of post-COVID-19 POTS are unclear. Still, different hypotheses have been given, including autoantibody production against autonomic nerve fibers, direct toxic effects of SARS-CoV-2, or sympathetic nervous system stimulation secondary to infection. Physicians should have a high suspicion of POTS in COVID-19 survival when presented with symptoms of autonomic dysfunction and should conduct diagnostic tests like the Tilt table and others to confirm it. The management of COVID-19-related POTS requires a comprehensive approach. Most patients respond to initial non-pharmacological options, but when the symptoms become more severe and they do not respond to the non-pharmacological approach, pharmacological options are considered. We have limited understanding and knowledge of post-COVID-19 POTS, and further research is warranted to improve our understanding and formulate a better management plan.
Collapse
Affiliation(s)
- Deobrat Mallick
- Internal Medicine, Christus Spohn Hospital, Corpus Christi, USA
| | - Lokesh Goyal
- Hospital Medicine, Christus Spohn Hospital, Corpus Christi, USA
| | - Prabal Chourasia
- Hospital Medicine, Mary Washington Hospital, Fredericksburg, USA
| | - Miana R Zapata
- Internal Medicine, University of the Incarnate Word School of Osteopathic Medicine, Corpus Christi, USA
| | - Kanica Yashi
- Internal Medicine, Bassett Health Care, Cooperstown, USA
| | - Salim Surani
- Anesthesiology, Mayo Clinic, Rochester, USA
- Medicine, Texas A&M University, College Station, USA
- Medicine, University of North Texas, Dallas, USA
- Internal Medicine, Pulmonary Associates, Corpus Christi, USA
- Clinical Medicine, University of Houston, Houston, USA
| |
Collapse
|