1
|
Jing Jia, Ma B, Zhao X. Fetal endothelial colony-forming cells: Possible targets for prevention of the fetal origins of adult diseases. Placenta 2024; 145:80-88. [PMID: 38100962 DOI: 10.1016/j.placenta.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Endothelial colony-forming cells (ECFCs), a subset of circulating and resident endothelial progenitor cells, are capable of self-renewal and de novo vessel formation, and are known key regulators of vascular integrity and homeostasis. Numerous studies have found that exposure to hostile environment during the fetal development exerts a profound influence on the level and function of ECFCs, which may be the underlying factor linking endothelial dysfunction to cardiovascular disease of the offspring in later life. Herein, we focus on the latest findings regarding the effects of pregnancy-related disorders on the frequency and function of fetal ECFCs. Subsequently, we discuss about placental ECFCs and put forward some details that should be paid attention to in the process of ECFC isolation and culture. Overall, the information presented in this review highlight the potential of ECFCs as a future biomarker or even therapeutic targets for the pregnancy-related adverse maternal and fetal outcomes.
Collapse
Affiliation(s)
- Jing Jia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Baitao Ma
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianlan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Poojari AS, Wairkar S, Kulkarni YA. Stem cells as a regenerative medicine approach in treatment of microvascular diabetic complications. Tissue Cell 2023; 85:102225. [PMID: 37801960 DOI: 10.1016/j.tice.2023.102225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by high blood glucose and is associated with high morbidity and mortality among the diabetic population. Uncontrolled chronic hyperglycaemia causes increased formation and accumulation of different oxidative and nitrosative stress markers, resulting in microvascular and macrovascular complications, which might seriously affect the quality of a patient's life. Conventional treatment strategies are confined to controlling blood glucose by regulating the insulin level and are not involved in attenuating the life-threatening complications of diabetes mellitus. Thus, there is an unmet need to develop a viable treatment strategy that could target the multi-etiological factors involved in the pathogenesis of diabetic complications. Stem cell therapy, a regenerative medicine approach, has been investigated in diabetic complications owing to their unique characteristic features of self-renewal, multilineage differentiation and regeneration potential. The present review is focused on potential therapeutic applications of stem cells in the treatment of microvascular diabetic complications such as nephropathy, retinopathy, and polyneuropathy.
Collapse
Affiliation(s)
- Avinash S Poojari
- Shobhabhen Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Sarika Wairkar
- Shobhabhen Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Yogesh A Kulkarni
- Shobhabhen Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
3
|
Schwarz N, Yadegari H. Potentials of Endothelial Colony-Forming Cells: Applications in Hemostasis and Thrombosis Disorders, from Unveiling Disease Pathophysiology to Cell Therapy. Hamostaseologie 2023; 43:325-337. [PMID: 37857295 DOI: 10.1055/a-2101-5936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Endothelial colony-forming cells (ECFCs) are endothelial progenitor cells circulating in a limited number in peripheral blood. They can give rise to mature endothelial cells (ECs) and, with intrinsically high proliferative potency, contribute to forming new blood vessels and restoring the damaged endothelium in vivo. ECFCs can be isolated from peripheral blood or umbilical cord and cultured to generate large amounts of autologous ECs in vitro. Upon differentiation in culture, ECFCs are excellent surrogates for mature ECs showing the same phenotypic, genotypic, and functional features. In the last two decades, the ECFCs from various vascular disease patients have been widely used to study the diseases' pathophysiology ex vivo and develop cell-based therapeutic approaches, including vascular regenerative therapy, tissue engineering, and gene therapy. In the current review, we will provide an updated overview of past studies, which have used ECFCs to elucidate the molecular mechanisms underlying the pathogenesis of hemostatic disorders in basic research. Additionally, we summarize preceding studies demonstrating the utility of ECFCs as cellular tools for diagnostic or therapeutic clinical applications in thrombosis and hemostasis.
Collapse
Affiliation(s)
- Nadine Schwarz
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Hamideh Yadegari
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
4
|
Abstract
Endothelial colony-forming cells (ECFCs) are progenitor cells that can give rise to colonies of highly proliferative vascular endothelial cells (ECs) with clonal expansion and in vivo blood vessel-forming potential. More than two decades ago, the identification of ECFCs in human peripheral blood created tremendous opportunities as having a clinically accessible source of autologous ECs could facilitate meaningful therapies with the potential to impact multiple vascular diseases. Nevertheless, until recently, the field of endothelial progenitor cells has been plagued with ambiguities and controversies, and reaching a consensus on the definition of ECFCs has not been straightforward. Moreover, although the basic phenotypical and functional characteristics of cultured ECFCs are now well established, some fundamental questions such as the origin of ECFCs and their physiological roles in health and disease remain incompletely understood. Here, I highlight some critical studies that have shaped our current understanding of ECFCs in humans. Insights into the biological attributes of ECFCs are essential for facilitating the clinical translation of their therapeutic potential.
Collapse
Affiliation(s)
- Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
5
|
Marra KV, Aguilar E, Wei G, Usui-Ouchi A, Ideguchi Y, Sakimoto S, Friedlander M. Bioactive extracellular vesicles from a subset of endothelial progenitor cells rescue retinal ischemia and neurodegeneration. JCI Insight 2022; 7:e155928. [PMID: 35639473 PMCID: PMC9309054 DOI: 10.1172/jci.insight.155928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/13/2022] [Indexed: 11/24/2022] Open
Abstract
Disruption of the neurovascular unit (NVU) underlies the pathophysiology of various CNS diseases. One strategy to repair NVU dysfunction uses stem/progenitor cells to provide trophic support to the NVU's functionally coupled and interdependent vasculature and surrounding CNS parenchyma. A subset of endothelial progenitor cells, endothelial colony-forming cells (ECFCs) with high expression of the CD44 hyaluronan receptor (CD44hi), provides such neurovasculotrophic support via a paracrine mechanism. Here, we report that bioactive extracellular vesicles from CD44hi ECFCs (EVshi) are paracrine mediators, recapitulating the effects of intact cell therapy in murine models of ischemic/neurodegenerative retinopathy; vesicles from ECFCs with low expression levels of CD44 (EVslo) were ineffective. Small RNA sequencing comparing the microRNA cargo from EVshi and EVslo identified candidate microRNAs that contribute to these effects. EVshi may be used to repair NVU dysfunction through multiple mechanisms to stabilize hypoxic vasculature, promote vascular growth, and support neural cells.
Collapse
Affiliation(s)
- Kyle V. Marra
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Edith Aguilar
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Guoqin Wei
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Ayumi Usui-Ouchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Yoichiro Ideguchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Susumu Sakimoto
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Martin Friedlander
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
- Lowy Medical Research Institute, La Jolla, California, USA
| |
Collapse
|
6
|
Huang J, Zhou Q. Gene Biomarkers Related to Th17 Cells in Macular Edema of Diabetic Retinopathy: Cutting-Edge Comprehensive Bioinformatics Analysis and In Vivo Validation. Front Immunol 2022; 13:858972. [PMID: 35651615 PMCID: PMC9149582 DOI: 10.3389/fimmu.2022.858972] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Previous studies have shown that T-helper 17 (Th17) cell-related cytokines are significantly increased in the vitreous of proliferative diabetic retinopathy (PDR), suggesting that Th17 cells play an important role in the inflammatory response of diabetic retinopathy (DR), but its cell infiltration and gene correlation in the retina of DR, especially in diabetic macular edema (DME), have not been studied. Methods The dataset GSE160306 was downloaded from the Gene Expression Omnibus (GEO) database, which contains 9 NPDR samples and 10 DME samples. ImmuCellAI algorithm was used to estimate the abundance of Th17 cells in 24 kinds of infiltrating immune cells. The differentially expressed Th17 related genes (DETh17RGs) between NPDR and DME were documented by difference analysis and correlation analysis. Through aggregate analyses such as gene ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analysis, a protein-protein interaction (PPI) network was constructed to analyze the potential function of DETh17RGs. CytoHubba plug-in algorithm, Lasso regression analysis and support vector machine recursive feature elimination (SVM-RFE) were implemented to comprehensively identify Hub DETh17RGs. The expression archetypes of Hub DETh17RGs were further verified in several other independent datasets related to DR. The Th17RG score was defined as the genetic characterization of six Hub DETh17RGs using the GSVA sample score method, which was used to distinguish early and advanced diabetic nephropathy (DN) as well as normal and diabetic nephropathy. Finally, real-time quantitative PCR (qPCR) was implemented to verify the transcription levels of Hub DETh17RGs in the STZ-induced DR model mice (C57BL/6J). Results 238 DETh17RGs were identified, of which 212 genes were positively correlated while only 26 genes were negatively correlated. Six genes (CD44, CDC42, TIMP1, BMP7, RHOC, FLT1) were identified as Hub DETh17RGs. Because DR and DN have a strong correlation in clinical practice, the verification of multiple independent datasets related to DR and DN proved that Hub DETh17RGs can not only distinguish PDR patients from normal people, but also distinguish DN patients from normal people. It can also identify the initial and advanced stages of the two diseases (NPDR vs DME, Early DN vs Advanced DN). Except for CDC42 and TIMP1, the qPCR transcription levels and trends of other Hub DETh17RGs in STZ-induced DR model mice were consistent with the human transcriptome level in this study. Conclusion This study will improve our understanding of Th17 cell-related molecular mechanisms in the progression of DME. At the same time, it also provides an updated basis for the molecular mechanism of Th17 cell crosstalk in the eye and kidney in diabetes.
Collapse
Affiliation(s)
- Jing Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Center of National Ocular Disease Clinical Research Center, Nanchang, China
| | - Qiong Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Center of National Ocular Disease Clinical Research Center, Nanchang, China
| |
Collapse
|
7
|
Luo Y, Liang F, Wan X, Liu S, Fu L, Mo J, Meng X, Mo Z. Hyaluronic Acid Facilitates Angiogenesis of Endothelial Colony Forming Cell Combining With Mesenchymal Stem Cell via CD44/ MicroRNA-139-5p Pathway. Front Bioeng Biotechnol 2022; 10:794037. [PMID: 35350177 PMCID: PMC8957954 DOI: 10.3389/fbioe.2022.794037] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
Stem cells and progenitor cells have been identified as potential new therapeutic options for severe limb ischemia to induce angiogenesis, and hyaluronic acid (HA) is commonly applied as a biomaterial in tissue engineering. However, the efficiency of HA combined with human umbilical cord blood-derived endothelial colony forming cells (ECFCs) and human umbilical-derived mesenchymal stem cells (MSCs) on angiogenesis is unclear. In the present study, we showed that HA promoted angiogenesis induced by MSCs-ECFCs in Matrigel plugs and promoted blood perfusion of murine ischemic muscles. Laser confocal microscopy revealed that human-derived cells grew into the host vasculature and formed connections, as shown by mouse-specific CD31+/human-specific CD31+ double staining. In vitro assays revealed that HA supported cell proliferation and migration, enhanced CD44 expression and reduced microRNA (miR)-139-5p expression. Further analysis revealed that miR-139-5p expression was negatively regulated by CD44 in ECFCs. Flow cytometry assays showed that HA increased CD31 positive cells proportion in MSC-ECFC and could be reversed by miR-139-5p mimics transfection. Moreover, the improvement of MSC-ECFC proliferation and migration induced by HA could be blocked by upregulation of miR-139-5p expression. In conclusion, HA facilitates angiogenesis of MSCs-ECFCs, and this positive effect be associated with activation of the CD44/miR-139-5p pathway, providing a promising strategy for improving severe limb ischemia.
Collapse
Affiliation(s)
- Yufang Luo
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Fang Liang
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Xinxing Wan
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Shengping Liu
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Lanfang Fu
- Department of Endocrinology, Haikou People’s Hospital and Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Jiake Mo
- School of Medicine, Hunan Normal University, Changsha, China
| | - Xubiao Meng
- Department of Endocrinology, Haikou People’s Hospital and Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
- *Correspondence: Xubiao Meng, ; Zhaohui Mo,
| | - Zhaohui Mo
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
- *Correspondence: Xubiao Meng, ; Zhaohui Mo,
| |
Collapse
|
8
|
Cui X, Li X, He Y, Yu J, Dong N, Zhao RC. Slight up-regulation of Kir2.1 channel promotes endothelial progenitor cells to transdifferentiate into a pericyte phenotype by Akt/mTOR/Snail pathway. J Cell Mol Med 2021; 25:10088-10100. [PMID: 34592781 PMCID: PMC8572793 DOI: 10.1111/jcmm.16944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/22/2021] [Accepted: 09/19/2021] [Indexed: 12/27/2022] Open
Abstract
It was shown that endothelial progenitor cells (EPCs) have bidirectional differentiation potential and thus perform different biological functions. The purpose of this study was to investigate the effects of slight up‐regulation of the Kir2.1 channel on EPC transdifferentiation and the potential mechanism on cell function and transformed cell type. First, we found that the slight up‐regulation of Kir2.1 expression promoted the expression of the stem cell stemness factors ZFX and NS and inhibited the expression of senescence‐associated β‐galactosidase. Further studies showed the slightly increased expression of Kir2.1 could also improve the expression of pericyte molecular markers NG2, PDGFRβ and Desmin. Moreover, adenovirus‐mediated Kir2.1 overexpression had an enhanced contractile response to norepinephrine of EPCs. These results suggest that the up‐regulated expression of the Kir2.1 channel promotes EPC transdifferentiation into a pericyte phenotype. Furthermore, the mechanism of EPC transdifferentiation to mesenchymal cells (pericytes) was found to be closely related to the channel functional activity of Kir2.1 and revealed that this channel could promote EPC EndoMT by activating the Akt/mTOR/Snail signalling pathway. Overall, this study suggested that in the early stage of inflammatory response, regulating the Kir2.1 channel expression affects the biological function of EPCs, thereby determining the maturation and stability of neovascularization.
Collapse
Affiliation(s)
- Xiaodong Cui
- Department of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University Medical College, Qingdao University, Qingdao, China.,School of Basic Medicine Sciences, Weifang Medical University, Weifang, China
| | - Xiaoxia Li
- Department of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University Medical College, Qingdao University, Qingdao, China
| | - Yanting He
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, China
| | - Jie Yu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, China
| | - Naijun Dong
- Department of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University Medical College, Qingdao University, Qingdao, China
| | - Robert Chunhua Zhao
- Department of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Interferon-γ inhibits retinal neovascularization in a mouse model of ischemic retinopathy. Cytokine 2021; 143:155542. [PMID: 33926775 DOI: 10.1016/j.cyto.2021.155542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/20/2022]
Abstract
Interferon-γ (IFNG) is one of the key cytokines that regulates both innate and adaptive immune responses in the body. However, the role of IFNG in the regulation of vascularization, especially in the context of Vascular endothelial growth factor A (VEGFa)-induced angiogenesis is not clarified. Here, we report that IFNG shows potent anti-angiogenic potential against VEGFa-induced angiogenesis. IFNG significantly inhibited proliferation, migration, and tube formation of Human umbilical vein endothelial cells (HUVECs) both under basal and VEGFa-treated conditions. Intriguingly, Knockdown (KD) of STAT1 abolished the inhibitory effect of IFNG on VEGFa-induced angiogenic processes in HUVECs. Furthermore, IFNG exhibited potent anti-angiogenic efficacy in the mouse model of oxygen-induced retinopathy (OIR), an in vivo model for hypoxia-induced retinal neovascularization, without induction of functional side effects. Taken together, these results show that IFNG plays a crucial role in the regulation of VEGFa-dependent angiogenesis, suggesting its potential therapeutic applicability in neovascular diseases.
Collapse
|
10
|
Antonetti DA, Silva PS, Stitt AW. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat Rev Endocrinol 2021; 17:195-206. [PMID: 33469209 PMCID: PMC9053333 DOI: 10.1038/s41574-020-00451-4] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 01/19/2023]
Abstract
Diabetes mellitus has profound effects on multiple organ systems; however, the loss of vision caused by diabetic retinopathy might be one of the most impactful in a patient's life. The retina is a highly metabolically active tissue that requires a complex interaction of cells, spanning light sensing photoreceptors to neurons that transfer the electrochemical signal to the brain with support by glia and vascular tissue. Neuronal function depends on a complex inter-dependency of retinal cells that includes the formation of a blood-retinal barrier. This dynamic system is negatively affected by diabetes mellitus, which alters normal cell-cell interactions and leads to profound vascular abnormalities, loss of the blood-retinal barrier and impaired neuronal function. Understanding the normal cell signalling interactions and how they are altered by diabetes mellitus has already led to novel therapies that have improved visual outcomes in many patients. Research highlighted in this Review has led to a new understanding of retinal pathophysiology during diabetes mellitus and has uncovered potential new therapeutic avenues to treat this debilitating disease.
Collapse
Affiliation(s)
- David A Antonetti
- Department of Ophthalmology and Visual Sciences, Department of Molecular and Integrative Physiology, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA.
| | - Paolo S Silva
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA
| | - Alan W Stitt
- Centre for Experimental Medicine, Queen's University, Belfast, UK
| |
Collapse
|
11
|
Goncharov NV, Popova PI, Avdonin PP, Kudryavtsev IV, Serebryakova MK, Korf EA, Avdonin PV. Markers of Endothelial Cells in Normal and Pathological Conditions. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2020; 14:167-183. [PMID: 33072245 PMCID: PMC7553370 DOI: 10.1134/s1990747819030140] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 01/22/2023]
Abstract
Endothelial cells (ECs) line the blood vessels and lymphatic vessels, as well as heart chambers, forming the border between the tissues, on the one hand, and blood or lymph, on the other. Such a strategic position of the endothelium determines its most important functional role in the regulation of vascular tone, hemostasis, and inflammatory processes. The damaged endothelium can be both a cause and a consequence of many diseases. The state of the endothelium is indicated by the phenotype of these cells, represented mainly by (trans)membrane markers (surface antigens). This review defines endothelial markers, provides a list of them, and considers the mechanisms of their expression and the role of the endothelium in certain pathological conditions.
Collapse
Affiliation(s)
- N V Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia.,Research Institute of Hygiene, Occupational Pathology and Human Ecology, 188663 p.o. Kuz'molovskii, Leningrad oblast Russia
| | - P I Popova
- City Polyclinic no. 19, 142238 St. Petersburg, Russia
| | - P P Avdonin
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - I V Kudryavtsev
- Institute of Experimental Medicine, 197376 St. Petersburg, Russia.,Far-East Federal University, 690091 Vladivostok, Russia
| | - M K Serebryakova
- Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - E A Korf
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | - P V Avdonin
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
12
|
Therapeutic Potential of Endothelial Colony-Forming Cells in Ischemic Disease: Strategies to Improve their Regenerative Efficacy. Int J Mol Sci 2020; 21:ijms21197406. [PMID: 33036489 PMCID: PMC7582994 DOI: 10.3390/ijms21197406] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) comprises a range of major clinical cardiac and circulatory diseases, which produce immense health and economic burdens worldwide. Currently, vascular regenerative surgery represents the most employed therapeutic option to treat ischemic disorders, even though not all the patients are amenable to surgical revascularization. Therefore, more efficient therapeutic approaches are urgently required to promote neovascularization. Therapeutic angiogenesis represents an emerging strategy that aims at reconstructing the damaged vascular network by stimulating local angiogenesis and/or promoting de novo blood vessel formation according to a process known as vasculogenesis. In turn, circulating endothelial colony-forming cells (ECFCs) represent truly endothelial precursors, which display high clonogenic potential and have the documented ability to originate de novo blood vessels in vivo. Therefore, ECFCs are regarded as the most promising cellular candidate to promote therapeutic angiogenesis in patients suffering from CVD. The current briefly summarizes the available information about the origin and characterization of ECFCs and then widely illustrates the preclinical studies that assessed their regenerative efficacy in a variety of ischemic disorders, including acute myocardial infarction, peripheral artery disease, ischemic brain disease, and retinopathy. Then, we describe the most common pharmacological, genetic, and epigenetic strategies employed to enhance the vasoreparative potential of autologous ECFCs by manipulating crucial pro-angiogenic signaling pathways, e.g., extracellular-signal regulated kinase/Akt, phosphoinositide 3-kinase, and Ca2+ signaling. We conclude by discussing the possibility of targeting circulating ECFCs to rescue their dysfunctional phenotype and promote neovascularization in the presence of CVD.
Collapse
|
13
|
O'Neill KM, Campbell DC, Edgar KS, Gill EK, Moez A, McLoughlin KJ, O'Neill CL, Dellett M, Hargey CJ, Abudalo RA, O'Hare M, Doyle P, Toh T, Khoo J, Wong J, McCrudden CM, Meloni M, Brunssen C, Morawietz H, Yoder MC, McDonald DM, Watson CJ, Stitt AW, Margariti A, Medina RJ, Grieve DJ. NOX4 is a major regulator of cord blood-derived endothelial colony-forming cells which promotes post-ischaemic revascularization. Cardiovasc Res 2020; 116:393-405. [PMID: 30937452 DOI: 10.1093/cvr/cvz090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 02/19/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
AIMS Cord blood-derived endothelial colony-forming cells (CB-ECFCs) are a defined progenitor population with established roles in vascular homeostasis and angiogenesis, which possess low immunogenicity and high potential for allogeneic therapy and are highly sensitive to regulation by reactive oxygen species (ROS). The aim of this study was to define the precise role of the major ROS-producing enzyme, NOX4 NADPH oxidase, in CB-ECFC vasoreparative function. METHODS AND RESULTS In vitro CB-ECFC migration (scratch-wound assay) and tubulogenesis (tube length, branch number) was enhanced by phorbol 12-myristate 13-acetate (PMA)-induced superoxide in a NOX-dependent manner. CB-ECFCs highly-expressed NOX4, which was further induced by PMA, whilst NOX4 siRNA and plasmid overexpression reduced and potentiated in vitro function, respectively. Increased ROS generation in NOX4-overexpressing CB-ECFCs (DCF fluorescence, flow cytometry) was specifically reduced by superoxide dismutase, highlighting induction of ROS-specific signalling. Laser Doppler imaging of mouse ischaemic hindlimbs at 7 days indicated that NOX4-knockdown CB-ECFCs inhibited blood flow recovery, which was enhanced by NOX4-overexpressing CB-ECFCs. Tissue analysis at 14 days revealed consistent alterations in vascular density (lectin expression) and eNOS protein despite clearance of injected CB-ECFCs, suggesting NOX4-mediated modulation of host tissue. Indeed, proteome array analysis indicated that NOX4-knockdown CB-ECFCs largely suppressed tissue angiogenesis, whilst NOX4-overexpressing CB-ECFCs up-regulated a number of pro-angiogenic factors specifically-linked with eNOS signalling, in parallel with equivalent modulation of NOX-dependent ROS generation, suggesting that CB-ECFC NOX4 signalling may promote host vascular repair. CONCLUSION Taken together, these findings indicate a key role for NOX4 in CB-ECFCs, thereby highlighting its potential as a target for enhancing their reparative function through therapeutic priming to support creation of a pro-reparative microenvironment and effective post-ischaemic revascularization.
Collapse
Affiliation(s)
- Karla M O'Neill
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - David C Campbell
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Kevin S Edgar
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Eleanor K Gill
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Arya Moez
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Kiran J McLoughlin
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Christina L O'Neill
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Margaret Dellett
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Ciarán J Hargey
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Rawan A Abudalo
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Michael O'Hare
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Philip Doyle
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Tinrui Toh
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Joshua Khoo
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - June Wong
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Cian M McCrudden
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty and University Clinics Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty and University Clinics Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Mervin C Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Denise M McDonald
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Chris J Watson
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Alan W Stitt
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Andriana Margariti
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Reinhold J Medina
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - David J Grieve
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| |
Collapse
|
14
|
Chen L, Fu C, Zhang Q, He C, Zhang F, Wei Q. The role of CD44 in pathological angiogenesis. FASEB J 2020; 34:13125-13139. [PMID: 32830349 DOI: 10.1096/fj.202000380rr] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis is required for normal development and occurs as a pathological step in a variety of disease settings, such as cancer, ocular diseases, and ischemia. Recent studies have revealed the role of CD44, a widely expressed cell surface adhesion molecule, in promoting pathological angiogenesis and the development of its associated diseases through its regulation of diverse function of endothelial cells, such as proliferation, migration, adhesion, invasion, and communication with the microenvironment. Conversely, the absence of CD44 expression or inhibition of its function impairs pathological angiogenesis and disease progression. Here, we summarize the current understanding of the roles of CD44 in pathological angiogenesis and the underlying cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Li Chen
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Chenying Fu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Qing Zhang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Chengqi He
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Quan Wei
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
15
|
Komici K, Faris P, Negri S, Rosti V, García-Carrasco M, Mendoza-Pinto C, Berra-Romani R, Cervera R, Guerra G, Moccia F. Systemic lupus erythematosus, endothelial progenitor cells and intracellular Ca2+ signaling: A novel approach for an old disease. J Autoimmun 2020; 112:102486. [DOI: 10.1016/j.jaut.2020.102486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 02/07/2023]
|
16
|
Liao G, Zheng K, Shorr R, Allan DS. Human endothelial colony-forming cells in regenerative therapy: A systematic review of controlled preclinical animal studies. Stem Cells Transl Med 2020; 9:1344-1352. [PMID: 32681814 PMCID: PMC7581447 DOI: 10.1002/sctm.20-0141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/11/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Endothelial colony‐forming cells (ECFCs) hold significant promise as candidates for regenerative therapy of vascular injury. Existing studies remain largely preclinical and exhibit marked design heterogeneity. A systematic review of controlled preclinical trials of human ECFCs is needed to guide future study design and to accelerate clinical translation. A systematic search of Medline and EMBASE on 1 April 2019 returned 3131 unique entries of which 66 fulfilled the inclusion criteria. Most studies used ECFCs derived from umbilical cord or adult peripheral blood. Studies used genetically modified immunodeficient mice (n = 52) and/or rats (n = 16). ECFC phenotypes were inconsistently characterized. While >90% of studies used CD31+ and CD45−, CD14− was demonstrated in 73% of studies, CD146+ in 42%, and CD10+ in 35%. Most disease models invoked ischemia. Peripheral vascular ischemia (n = 29), central nervous system ischemia (n = 14), connective tissue injury (n = 10), and cardiovascular ischemia and reperfusion injury (n = 7) were studied most commonly. Studies showed predominantly positive results; only 13 studies reported ≥1 outcome with null results, three reported only null results, and one reported harm. Quality assessment with SYRCLE revealed potential sources of bias in most studies. Preclinical ECFC studies are associated with benefit across several ischemic conditions in animal models, although combining results is limited by marked heterogeneity in study design. In particular, characterization of ECFCs varied and aspects of reporting introduced risk of bias in most studies. More studies with greater focus on standardized cell characterization and consistency of the disease model are needed.
Collapse
Affiliation(s)
- Gary Liao
- Clinical Epidemiology and Regenerative Medicine Programs, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katina Zheng
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Risa Shorr
- Information Services, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - David S Allan
- Clinical Epidemiology and Regenerative Medicine Programs, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
17
|
Moccia F, Zuccolo E, Di Nezza F, Pellavio G, Faris PS, Negri S, De Luca A, Laforenza U, Ambrosone L, Rosti V, Guerra G. Nicotinic acid adenine dinucleotide phosphate activates two-pore channel TPC1 to mediate lysosomal Ca 2+ release in endothelial colony-forming cells. J Cell Physiol 2020; 236:688-705. [PMID: 32583526 DOI: 10.1002/jcp.29896] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most recently discovered Ca2+ -releasing messenger that increases the intracellular Ca2+ concentration by mobilizing the lysosomal Ca2+ store through two-pore channels 1 (TPC1) and 2 (TPC2). NAADP-induced lysosomal Ca2+ release regulates multiple endothelial functions, including nitric oxide release and proliferation. A sizeable acidic Ca2+ pool endowed with TPC1 is also present in human endothelial colony-forming cells (ECFCs), which represent the only known truly endothelial precursors. Herein, we sought to explore the role of the lysosomal Ca2+ store and TPC1 in circulating ECFCs by harnessing Ca2+ imaging and molecular biology techniques. The lysosomotropic agent, Gly-Phe β-naphthylamide, and nigericin, which dissipates the proton gradient which drives Ca2+ sequestration by acidic organelles, caused endogenous Ca2+ release in the presence of a replete inositol-1,4,5-trisphosphate (InsP3 )-sensitive endoplasmic reticulum (ER) Ca2+ pool. Likewise, the amount of ER releasable Ca2+ was reduced by disrupting lysosomal Ca2+ content. Liposomal delivery of NAADP induced a transient Ca2+ signal that was abolished by disrupting the lysosomal Ca2+ store and by pharmacological and genetic blockade of TPC1. Pharmacological manipulation revealed that NAADP-induced Ca2+ release also required ER-embedded InsP3 receptors. Finally, NAADP-induced lysosomal Ca2+ release was found to trigger vascular endothelial growth factor-induced intracellular Ca2+ oscillations and proliferation, while it did not contribute to adenosine-5'-trisphosphate-induced Ca2+ signaling. These findings demonstrated that NAADP-induced TPC1-mediated Ca2+ release can selectively be recruited to induce the Ca2+ response to specific cues in circulating ECFCs.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Estella Zuccolo
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Francesca Di Nezza
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Giorgia Pellavio
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Pawan S Faris
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Sharon Negri
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Umberto Laforenza
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Luigi Ambrosone
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Vittorio Rosti
- Laboratory of Biochemistry Biotechnology and Advanced Diagnostic, Myelofibrosis Study Centre, IRCCS Ospedale Policlinico San Matteo, Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
18
|
Bertelli PM, Pedrini E, Guduric-Fuchs J, Peixoto E, Pathak V, Stitt AW, Medina RJ. Vascular Regeneration for Ischemic Retinopathies: Hope from Cell Therapies. Curr Eye Res 2020; 45:372-384. [PMID: 31609636 DOI: 10.1080/02713683.2019.1681004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022]
Abstract
Retinal vascular diseases, such as diabetic retinopathy, retinopathy of prematurity, retinal vein occlusion, ocular ischemic syndrome and ischemic optic neuropathy, are leading causes of vision impairment and blindness. Whilst drug, laser or surgery-based treatments for the late stage complications of many of these diseases are available, interventions that target the early vasodegenerative stages are lacking. Progressive vasculopathy and ensuing ischemia is an underpinning pathology in many of these diseases, leading to hypoperfusion, hypoxia, and ultimately pathological neovascularization and/or edema in the retina and other ocular tissues, such as the optic nerve and iris. Therefore, repairing the retinal vasculature may prevent progression of ischemic retinopathies into late stage vascular complications. Various cell types have been explored for their vascular repair potential. Endothelial progenitor cells, mesenchymal stem cells and induced pluripotent stem cells are studied for their potential to integrate with the damaged retinal vasculature and limit ischemic injury. Clinical trials for some of these cell types have confirmed safety and feasibility in the treatment of ischemic diseases, including some retinopathies. Another promising avenue is mobilization of endogenous endothelial progenitors, whereby reparative cells are moved from their niche to circulating blood to target and home into ischemic tissues. Several aspects and properties of these cell types have yet to be elucidated. Nevertheless, we foresee that cell therapy, whether through delivery of exogenous or enhancement of endogenous reparative cells, will become a valuable and beneficial treatment for ischemic retinopathies.
Collapse
Affiliation(s)
- Pietro Maria Bertelli
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Edoardo Pedrini
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Jasenka Guduric-Fuchs
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Elisa Peixoto
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Varun Pathak
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Alan W Stitt
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Reinhold J Medina
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| |
Collapse
|
19
|
Jia J, Ma B, Wang S, Feng L. Therapeutic Potential of Endothelial Colony Forming Cells Derived from Human Umbilical Cord Blood. Curr Stem Cell Res Ther 2020; 14:460-465. [PMID: 30767752 DOI: 10.2174/1574888x14666190214162453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/06/2019] [Accepted: 01/24/2019] [Indexed: 02/08/2023]
Abstract
Endothelial progenitor cells (EPCs) are implicated in multiple biologic processes such as vascular homeostasis, neovascularization and tissue regeneration, and tumor angiogenesis. A subtype of EPCs is referred to as endothelial colony-forming cells (ECFCs), which display robust clonal proliferative potential and can form durable and functional blood vessels in animal models. In this review, we provide a brief overview of EPCs' characteristics, classification and origins, a summary of the progress in preclinical studies with regard to the therapeutic potential of human umbilical cord blood derived ECFCs (CB-ECFCs) for ischemia repair, tissue engineering and tumor, and highlight the necessity to select high proliferative CB-ECFCs and to optimize their recovery and expansion conditions.
Collapse
Affiliation(s)
- Jing Jia
- Department of Obstetrics and Gynaecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R., China
| | - Baitao Ma
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R., China
| | - Shaoshuai Wang
- Department of Obstetrics and Gynaecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R., China
| | - Ling Feng
- Department of Obstetrics and Gynaecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R., China
| |
Collapse
|
20
|
Zhang SS, Hu JQ, Liu XH, Chen LX, Chen H, Guo XH, Huang QB. Role of Moesin Phosphorylation in Retinal Pericyte Migration and Detachment Induced by Advanced Glycation Endproducts. Front Endocrinol (Lausanne) 2020; 11:603450. [PMID: 33312163 PMCID: PMC7708375 DOI: 10.3389/fendo.2020.603450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/19/2020] [Indexed: 01/22/2023] Open
Abstract
Proliferative diabetic retinopathy (PDR) involves persistent, uncontrolled formation of premature blood vessels with reduced number of pericytes. Our previous work showed that advanced glycation endproducts (AGEs) induced angiogenesis in human umbilical vein endothelial cells, mouse retina, and aortic ring, which was associated with moesin phosphorylation. Here we investigated whether moesin phosphorylation may contribute to pericyte detachment and the development of PDR. Primary retinal microvascular pericytes (RMPs) were isolated, purified from weanling rats, and identified by cellular markers α-SMA, PDGFR-β, NG2, and desmin using immunofluorescence microscopy. Effects of AGE-BSA on proliferation and migration of RMPs were examined using CCK-8, wound healing, and transwell assays. Effects on moesin phosphorylation were examined using western blotting. The RMP response to AGE-BSA was also examined when cells expressed the non-phosphorylatable Thr558Ala mutant or phospho-mimicking Thr558Asp mutant of moesin or were treated with ROCK inhibitor Y27632. Colocalization and interaction between CD44, phospho-moesin, and F-actin were observed. Experiments with cultured primary RMPs showed that AGE-BSA inhibited the proliferation, enhanced the migration, and increased moesin phosphorylation in a dose- and time-dependent manner. AGE-BSA also triggered the rearrangement of F-actin and promoted the interaction of CD44 with phospho-moesin in RMPs. These effects were abrogated in cells expressing the non-phosphorylatable moesin mutant and the application of ROCK inhibitor Y27632 attenuated AGE-induced alteration in cultured RMPs by abolishing the phosphorylation of moesin. However, those AGE-induced pathological process occurred in RMPs expressed the phospho-mimicking moesin without AGE-BSA treatment. It is concluded that AGEs could activate ROCK to mediate moesin phosphorylation at Thr558, and resulting phospho-moesin interacts with CD44 to form CD44 cluster, which might stimulate the migration of RMPs and subsequent RMP detachment in microvessel. This pathway may provide new drug targets against immature neovessel formation in PDR.
Collapse
Affiliation(s)
- Shuang-Shuang Zhang
- Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jia-Qing Hu
- Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao-Hui Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Li-Xian Chen
- Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hong Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Hua Guo
- Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiao-Bing Huang
- Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Trauma Care Center, Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Qiao-Bing Huang,
| |
Collapse
|
21
|
Li Calzi S, Shaw LC, Moldovan L, Shelley WC, Qi X, Racette L, Quigley JL, Fortmann SD, Boulton ME, Yoder MC, Grant MB. Progenitor cell combination normalizes retinal vascular development in the oxygen-induced retinopathy (OIR) model. JCI Insight 2019; 4:129224. [PMID: 31672944 DOI: 10.1172/jci.insight.129224] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/25/2019] [Indexed: 11/17/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a disorder of the developing retina of preterm infants. ROP can lead to blindness because of abnormal angiogenesis that is the result of suspended vascular development and vaso-obliteration leading to severe retinal stress and hypoxia. We tested the hypothesis that the use of the human progenitor cell combination, bone marrow-derived CD34+ cells and vascular wall-derived endothelial colony-forming cells (ECFCs), would synergistically protect the developing retinal vasculature in a mouse model of ROP, called oxygen-induced retinopathy (OIR). CD34+ cells alone, ECFCs alone, or the combination thereof were injected intravitreally at either P5 or P12 and pups were euthanized at P17. Retinas from OIR mice injected with ECFCs or the combined treatment revealed formation of the deep vascular plexus (DVP) while still in hyperoxia, with normal-appearing connections between the superficial vascular plexus (SVP) and the DVP. In addition, the combination of cells completely prevented aberrant retinal neovascularization and was more effective anatomically and functionally at rescuing the ischemia phenotype than either cell type alone. We show that the beneficial effects of the cell combination are the result of their ability to orchestrate an acceleration of vascular development and more rapid ensheathment of pericytes on the developing vessels. Lastly, our proteomic and transcriptomic data sets reveal pathways altered by the dual cell therapy, including many involved in neuroretinal maintenance, and principal component analysis (PCA) showed that cell therapy restored OIR retinas to a state that was closely associated with age-matched normal retinas. Together, these data herein support the use of dual cell therapy as a promising preventive treatment for the development of ROP in premature infants.
Collapse
Affiliation(s)
- Sergio Li Calzi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | - William C Shelley
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiaoping Qi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lyne Racette
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Seth D Fortmann
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael E Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mervin C Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Maria B Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
22
|
Ribatti D, Tamma R, Ruggieri S, Annese T, Crivellato E. Surface markers: An identity card of endothelial cells. Microcirculation 2019; 27:e12587. [PMID: 31461797 DOI: 10.1111/micc.12587] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022]
Abstract
All endothelial cells have the common characteristic that they line the vessels of the blood circulatory system. However, endothelial cells display a large degree of heterogeneity in the function of their location in the vascular tree. In this article, we have summarized the expression patterns of a number of well-accepted endothelial surface markers present in normal microvascular endothelial cells, arterial and venous endothelial cells, lymphatic endothelial cells, tumor endothelial cells, and endothelial precursor cells.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Simona Ruggieri
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Enrico Crivellato
- Department of Medicine, Section of Human Anatomy, University of Udine, Udine, Italy
| |
Collapse
|
23
|
O'Leary OE, Canning P, Reid E, Bertelli PM, McKeown S, Brines M, Cerami A, Du X, Xu H, Chen M, Dutton L, Brazil DP, Medina RJ, Stitt AW. The vasoreparative potential of endothelial colony-forming cells in the ischemic retina is enhanced by cibinetide, a non-hematopoietic erythropoietin mimetic. Exp Eye Res 2019; 182:144-155. [PMID: 30876881 DOI: 10.1016/j.exer.2019.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/24/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Retinal ischemia remains a common sight threatening end-point in blinding diseases such as diabetic retinopathy and retinopathy of prematurity. Endothelial colony forming cells (ECFCs) represent a subpopulation of endothelial progenitors with therapeutic utility for promoting reparative angiogenesis in the ischaemic retina. The current study has investigated the potential of enhancing this cell therapy approach by the dampening of the pro-inflammatory milieu typical of ischemic retina. Based on recent findings that ARA290 (cibinetide), a peptide based on the Helix-B domain of erythropoietin (EPO), is anti-inflammatory and tissue-protective, the effect of this peptide on ECFC-mediated vascular regeneration was studied in the ischemic retina. METHODS The effects of ARA290 on pro-survival signaling and function were assessed in ECFC cultures in vitro. Efficacy of ECFC transplantation therapy to promote retinal vascular repair in the presence and absence of ARA290 was studied in the oxygen induced retinopathy (OIR) model of retinal ischemia. The inflammatory cytokine profile and microglial activation were studied as readouts of inflammation. RESULTS ARA290 activated pro-survival signaling and enhanced cell viability in response to H2O2-mediated oxidative stress in ECFCs in vitro. Preconditioning of ECFCs with EPO or ARA290 prior to delivery to the ischemic retina did not enhance vasoreparative function. ARA290 delivered systemically to OIR mice reduced pro-inflammatory expression of IL-1β and TNF-α in the mouse retina. Following intravitreal transplantation, ECFCs incorporated into the damaged retinal vasculature and significantly reduced avascular area. The vasoreparative function of ECFCs was enhanced in the presence of ARA290 but not EPO. DISCUSSION Regulation of the pro-inflammatory milieu of the ischemic retina can be enhanced by ARA290 and may be a useful adjunct to ECFC-based cell therapy for ischemic retinopathies.
Collapse
Affiliation(s)
- Olivia E O'Leary
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Paul Canning
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Emma Reid
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Pietro M Bertelli
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Stuart McKeown
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | | | | | - Xuan Du
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Heping Xu
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Mei Chen
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Louise Dutton
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Derek P Brazil
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Reinhold J Medina
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Alan W Stitt
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
24
|
Aouiss A, Anka Idrissi D, Kabine M, Zaid Y. Update of inflammatory proliferative retinopathy: Ischemia, hypoxia and angiogenesis. Curr Res Transl Med 2019; 67:62-71. [PMID: 30685380 DOI: 10.1016/j.retram.2019.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 12/19/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy (DR) and retinopathy of prematurity (ROP) present two examples of proliferative retinopathy, characterized by the same stages of progression; ischemia of the retinal vessels, leads to hypoxia and to correct the problem there is the setting up of uncontrolled angiogenesis, which subsequently causes blindness or even detachment of the retina. The difference is the following; that DR initiated by the metabolic complications that are due to hyperglycemia, and ROP is induced by overexposure of the neonatal retina to oxygen. In this review, we will demonstrate the physiopathological mechanism of the two forms of proliferative retinopathy DR and ROP, in particular the role of the CD40/CD40L axis and IL-1 on vascular complications and onset of inflammation of the retina, the implications of their effects on the onset of pathogenic angiogenesis, thus understanding the link between platelets and retinal ischemia. In addition, what are the therapeutic targets that could slow its progression?
Collapse
Affiliation(s)
- A Aouiss
- Laboratory of Health and Environment, Department of Biology, Faculty of Sciences Ain Chock, University of Hassan II, Casablanca, Morocco.
| | - D Anka Idrissi
- Laboratory of Health and Environment, Department of Biology, Faculty of Sciences Ain Chock, University of Hassan II, Casablanca, Morocco
| | - M Kabine
- Laboratory of Health and Environment, Department of Biology, Faculty of Sciences Ain Chock, University of Hassan II, Casablanca, Morocco
| | - Y Zaid
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Montreal, H1T1C8, Quebec, Canada
| |
Collapse
|
25
|
O'Neill CL, McLoughlin KJ, Chambers SEJ, Guduric-Fuchs J, Stitt AW, Medina RJ. The Vasoreparative Potential of Endothelial Colony Forming Cells: A Journey Through Pre-clinical Studies. Front Med (Lausanne) 2018; 5:273. [PMID: 30460233 PMCID: PMC6232760 DOI: 10.3389/fmed.2018.00273] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/05/2018] [Indexed: 12/24/2022] Open
Abstract
For over a decade various cell populations have been investigated for their vasoreparative potential. Cells with the capacity to promote blood vessel regeneration are commonly known as endothelial progenitor cells (EPCs); although such a definition is currently considered too simple for the complexity of cell populations involved in the reparative angiogenic process. A subset of EPCs called endothelial colony forming cells (ECFCs) have emerged as a suitable candidate for cytotherapy, primarily due to their clonogenic progenitor characteristics, unequivocal endothelial phenotype, and inherent ability to promote vasculogenesis. ECFCs can be readily isolated from human peripheral and cord blood, expanded ex vivo and used to revascularize ischemic tissues. These cells have demonstrated efficacy in several in vivo preclinical models such as the ischemic heart, retina, brain, limb, lung and kidney. This review will summarize the current pre-clinical evidence for ECFC cytotherapy and discuss their potential for clinical application.
Collapse
Affiliation(s)
- Christina L O'Neill
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Kiran J McLoughlin
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Sarah E J Chambers
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Jasenka Guduric-Fuchs
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Alan W Stitt
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Reinhold J Medina
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
26
|
Lu W, Li X. PDGFs and their receptors in vascular stem/progenitor cells: Functions and therapeutic potential in retinal vasculopathy. Mol Aspects Med 2018; 62:22-32. [DOI: 10.1016/j.mam.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023]
|
27
|
Essaadi A, Nollet M, Moyon A, Stalin J, Simoncini S, Balasse L, Bertaud A, Bachelier R, Leroyer AS, Sarlon G, Guillet B, Dignat-George F, Bardin N, Blot-Chabaud M. Stem cell properties of peripheral blood endothelial progenitors are stimulated by soluble CD146 via miR-21: potential use in autologous cell therapy. Sci Rep 2018; 8:9387. [PMID: 29925894 PMCID: PMC6010456 DOI: 10.1038/s41598-018-27715-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/21/2018] [Indexed: 12/27/2022] Open
Abstract
Cell-based therapies constitute a real hope for the treatment of ischaemic diseases. One of the sources of endothelial progenitors for autologous cell therapy is Endothelial Colony Forming Cells (ECFC) that can be isolated from peripheral blood. However, their use is limited by their low number in the bloodstream and the loss of their stem cell phenotype associated with the acquisition of a senescent phenotype in culture. We hypothesized that adding soluble CD146, a novel endothelial growth factor with angiogenic properties, during the isolation and growth procedures could improve their number and therapeutic potential. Soluble CD146 increased the number of isolated peripheral blood ECFC colonies and lowered their onset time. It prevented cellular senescence, induced a partial mesenchymal phenotype and maintained a stem cell phenotype by stimulating the expression of embryonic transcription factors. These different effects were mediated through the induction of mature miR-21. When injected in an animal model of hindlimb ischaemia, sCD146-primed ECFC isolated from 40 ml of blood from patients with peripheral arterial disease were able to generate new blood vessels and restore blood flow. Treatment with sCD146 could thus constitute a promising strategy to improve the use of autologous cells for the treatment of ischaemic diseases.
Collapse
Affiliation(s)
- Amel Essaadi
- Aix Marseille Univ, INSERM 1263, INRA 1260, C2VN, Marseille, France
| | - Marie Nollet
- Aix Marseille Univ, INSERM 1263, INRA 1260, C2VN, Marseille, France
| | - Anaïs Moyon
- Aix Marseille Univ, INSERM 1263, INRA 1260, C2VN, Marseille, France.,CERIMED (European Center of Research in Medical Imaging), Aix-Marseille University, Marseille, France
| | - Jimmy Stalin
- Aix Marseille Univ, INSERM 1263, INRA 1260, C2VN, Marseille, France
| | | | - Laure Balasse
- CERIMED (European Center of Research in Medical Imaging), Aix-Marseille University, Marseille, France
| | | | | | | | - Gabrielle Sarlon
- Service of Vascular Surgery, La Timone Hospital, Marseille, France
| | - Benjamin Guillet
- Aix Marseille Univ, INSERM 1263, INRA 1260, C2VN, Marseille, France.,CERIMED (European Center of Research in Medical Imaging), Aix-Marseille University, Marseille, France
| | | | - Nathalie Bardin
- Aix Marseille Univ, INSERM 1263, INRA 1260, C2VN, Marseille, France
| | | |
Collapse
|
28
|
Lu W, Li X. Vascular stem/progenitor cells: functions and signaling pathways. Cell Mol Life Sci 2018; 75:859-869. [PMID: 28956069 PMCID: PMC11105279 DOI: 10.1007/s00018-017-2662-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/05/2017] [Accepted: 09/20/2017] [Indexed: 12/17/2022]
Abstract
Vascular stem/progenitor cells (VSCs) are an important source of all types of vascular cells needed to build, maintain, repair, and remodel blood vessels. VSCs, therefore, play critical roles in the development, normal physiology, and pathophysiology of numerous diseases. There are four major types of VSCs, including endothelial progenitor cells (EPCs), smooth muscle progenitor cells (SMPCs), pericytes, and mesenchymal stem cells (MSCs). VSCs can be found in bone marrow, circulating blood, vessel walls, and other extravascular tissues. During the past two decades, considerable progress has been achieved in the understanding of the derivation, surface markers, and differentiation of VSCs. Yet, the mechanisms regulating their functions and maintenance under normal and pathological conditions, such as in eye diseases, remain to be further elucidated. Owing to the essential roles of blood vessels in human tissues and organs, understanding the functional properties and the underlying molecular basis of VSCs is of critical importance for both basic and translational research.
Collapse
Affiliation(s)
- Weisi Lu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
| | - Xuri Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
29
|
Siegel G, Fleck E, Elser S, Hermanutz-Klein U, Waidmann M, Northoff H, Seifried E, Schäfer R. Manufacture of endothelial colony-forming progenitor cells from steady-state peripheral blood leukapheresis using pooled human platelet lysate. Transfusion 2018; 58:1132-1142. [PMID: 29473177 DOI: 10.1111/trf.14541] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/20/2017] [Accepted: 12/23/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Endothelial colony-forming progenitor cells (ECFCs) are promising candidates for cell therapies. However, ECFC translation to the clinic requires optimized isolation and manufacture technologies according to good manufacturing practice (GMP). STUDY DESIGN AND METHODS ECFCs were manufactured from steady-state peripheral blood (PB) leukapheresis (11 donors), using GMP-compliant technologies including pooled human platelet (PLT) lysate, and compared to human umbilical cord endothelial cells, human aortic endothelial cells, and human cerebral microvascular endothelial cells. Specific variables assessed were growth kinetics, phenotype, trophic factors production, stimulation of tube formation, and Dil-AcLDL uptake. RESULTS ECFCs could be isolated from PB leukapheresis units with mean processed volume of 5411 mL and mean white blood cell (WBC) concentration factor of 8.74. The mean frequency was 1.44 × 10-8 ECFCs per WBC, corresponding to a mean of 177.8 ECFCs per apheresis unit. Expandable for up to 12 cumulative population doublings, calculated projection showed that approximately 730 × 103 ECFCs could be manufactured from 1 apheresis unit. ECFCs produced epidermal growth factor, hepatocyte growth factor, vascular endothelial growth factor (VEGF)-A, PLT-derived growth factor-B, interleukin-8, and monocyte chemoattractant protein-1, featured high potential for capillary-like tubes formation, and showed no telomerase activity. They were characterized by CD29, CD31, CD44, CD105, CD117, CD133, CD144, CD146, and VEGF-R2 expression, with the most common subpopulation CD34+CD117-CD133-. Compared to controls, ECFCs featured greater Dil-AcLDL uptake and higher expression of CD29, CD31, CD34, CD44, CD144, and VEGF-R2. CONCLUSIONS Here we show that isolation of ECFCs with proangiogenic profile from steady-state PB leukapheresis is feasible, marking a first step toward ECFC product manufacture according to GMP.
Collapse
Affiliation(s)
- Georg Siegel
- Institute for Clinical and Experimental Transfusion Medicine
| | - Erika Fleck
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Stefanie Elser
- Institute for Clinical and Experimental Transfusion Medicine.,Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | | | - Marc Waidmann
- Institute for Clinical and Experimental Transfusion Medicine
| | - Hinnak Northoff
- Institute for Clinical and Experimental Transfusion Medicine
| | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Richard Schäfer
- Institute for Clinical and Experimental Transfusion Medicine.,Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
30
|
Banno K, Yoder MC. Tissue regeneration using endothelial colony-forming cells: promising cells for vascular repair. Pediatr Res 2018; 83:283-290. [PMID: 28915234 DOI: 10.1038/pr.2017.231] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/07/2017] [Indexed: 12/24/2022]
Abstract
Repairing and rebuilding damaged tissue in diseased human subjects remains a daunting challenge for clinical medicine. Proper vascular formation that serves to deliver blood-borne nutrients and adequate levels of oxygen and to remove wastes is critical for successful tissue regeneration. Endothelial colony-forming cells (ECFC) represent a promising cell source for revascularization of damaged tissue. ECFCs are identified by displaying a hierarchy of clonal proliferative potential and by pronounced postnatal vascularization ability in vivo. In this review, we provide a brief overview of human ECFC isolation and characterization, a survey of a number of animal models of human disease in which ECFCs have been shown to have prominent roles in tissue repair, and a summary of current challenges that must be overcome before moving ECFC into human subjects as a cell therapy.
Collapse
Affiliation(s)
- Kimihiko Banno
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mervin C Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
31
|
Goncharov NV, Nadeev AD, Jenkins RO, Avdonin PV. Markers and Biomarkers of Endothelium: When Something Is Rotten in the State. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9759735. [PMID: 29333215 PMCID: PMC5733214 DOI: 10.1155/2017/9759735] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
Endothelium is a community of endothelial cells (ECs), which line the blood and lymphatic vessels, thus forming an interface between the tissues and the blood or lympha. This strategic position of endothelium infers its indispensable functional role in controlling vasoregulation, haemostasis, and inflammation. The state of endothelium is simultaneously the cause and effect of many diseases, and this is coupled with modifications of endothelial phenotype represented by markers and with biochemical profile of blood represented by biomarkers. In this paper, we briefly review data on the functional role of endothelium, give definitions of endothelial markers and biomarkers, touch on the methodological approaches for revealing biomarkers, present an implicit role of endothelium in some toxicological mechanistic studies, and survey the role of reactive oxygen species (ROS) in modulation of endothelial status.
Collapse
Affiliation(s)
- Nikolay V. Goncharov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia
| | - Alexander D. Nadeev
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia
- Institute of Cell Biophysics RAS, Pushchino, Russia
| | - Richard O. Jenkins
- School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | | |
Collapse
|
32
|
Reid E, Guduric-Fuchs J, O'Neill CL, Allen LD, Chambers SEJ, Stitt AW, Medina RJ. Preclinical Evaluation and Optimization of a Cell Therapy Using Human Cord Blood-Derived Endothelial Colony-Forming Cells for Ischemic Retinopathies. Stem Cells Transl Med 2017; 7:59-67. [PMID: 29164803 PMCID: PMC5746158 DOI: 10.1002/sctm.17-0187] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/12/2017] [Indexed: 12/31/2022] Open
Abstract
Cell therapy using endothelial progenitors holds promise for vascular repair in ischemic retinopathies. Using a well-defined subpopulation of human cord blood-derived endothelial progenitors known as endothelial colony-forming cells (ECFCs), we have evaluated essential requirements for further development of this cell therapy targeting the ischemic retina, including dose response, delivery route, and toxicity. First, to evaluate therapeutic efficacy relating to cell dose, ECFCs were injected into the vitreous of mice with oxygen-induced retinopathy. Using angiography and histology, we found that intravitreal delivery of low dose (1 × 103 ) ECFCs was as effective as higher cell doses (1 × 104 , 1 × 105 ) in promoting vascular repair. Second, injection into the common carotid artery was tested as an alternative, systemic delivery route. Intracarotid ECFC delivery conferred therapeutic benefit which was comparable to intravitreal delivery using the same ECFC dose (1 × 105 ), although there were fewer human cells observed in the retinal vasculature following systemic delivery. Third, cell immunogenicity was evaluated by injecting ECFCs into the vitreous of healthy adult mice. Assessment of murine ocular tissues identified injected cells in the vitreous, while demonstrating integrity of the host retina. In addition, ECFCs did not invade into the retina, but remained in the vitreous, where they eventually underwent cell death within 3 days of delivery without evoking an inflammatory response. Human specific Alu sequences were not found in healthy mouse retinas after 3 days of ECFC delivery. These findings provide supportive preclinical evidence for the development of ECFCs as an efficacious cell product for ischemic retinopathies. Stem Cells Translational Medicine 2018;7:59-67.
Collapse
Affiliation(s)
- Emma Reid
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Jasenka Guduric-Fuchs
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Christina L O'Neill
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Lynsey-Dawn Allen
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Sarah E J Chambers
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Alan W Stitt
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Reinhold J Medina
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
33
|
Moccia F, Lucariello A, Guerra G. TRPC3-mediated Ca 2+ signals as a promising strategy to boost therapeutic angiogenesis in failing hearts: The role of autologous endothelial colony forming cells. J Cell Physiol 2017; 233:3901-3917. [PMID: 28816358 DOI: 10.1002/jcp.26152] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
Abstract
Endothelial progenitor cells (EPCs) are a sub-population of bone marrow-derived mononuclear cells that are released in circulation to restore damaged endothelium during its physiological turnover or rescue blood perfusion after an ischemic insult. Additionally, they may be mobilized from perivascular niches located within larger arteries' wall in response to hypoxic conditions. For this reason, EPCs have been regarded as an effective tool to promote revascularization and functional recovery of ischemic hearts, but clinical application failed to exploit the full potential of patients-derived cells. Indeed, the frequency and biological activity of EPCs are compromised in aging individuals or in subjects suffering from severe cardiovascular risk factors. Rejuvenating the reparative phenotype of autologous EPCs through a gene transfer approach has, therefore, been put forward as an alternative approach to enhance their therapeutic potential in cardiovascular patients. An increase in intracellular Ca2+ concentration constitutes a pivotal signal for the activation of the so-called endothelial colony forming cells (ECFCs), the only known truly endothelial EPC subset. Studies from our group showed that the Ca2+ toolkit differs between peripheral blood- and umbilical cord blood (UCB)-derived ECFCs. In the present article, we first discuss how VEGF uses repetitive Ca2+ spikes to regulate angiogenesis in ECFCs and outline how VEGF-induced intracellular Ca2+ oscillations differ between the two ECFC subtypes. We then hypothesize about the possibility to rejuvenate the biological activity of autologous ECFCs by transfecting the cell with the Ca2+ -permeable channel Transient Receptor Potential Canonical 3, which selectively drives the Ca2+ response to VEGF in UCB-derived ECFCs.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Angela Lucariello
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, Universy of Campania "L. Vanvitelli", Naples, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|